

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

H.264/AVC Scalable High Profile 解碼器之設計與實作

Design and Implementation of H.264/AVC Scalable High
Profile Decoder

研究生︰陳宥辰

指導教授︰張添烜 博士

中華民國 九十九 年 九 月

H.264/AVC Scalable High Profile 解碼器之設計與實作

Design and Implementation of H.264/AVC Scalable High

Profile Decoder

研 究 生︰陳宥辰 Student: Yu-Chen Chen

指導教授︰張添烜 博士 Advisor: Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of Master
in

Electronics Engineering
September 2010
Hsinchu, Taiwan

中華民國 九十九 年 九 月

i

H.264/AVC Scalable High Profile 解碼器之設計與

實作

研究生: 陳宥辰 指導教授: 張添烜 博士

國立交通大學

電子工程學系電子研究所碩士班

摘 要

 隨著愈來愈先進的視訊標準，視訊裝置的應用也更趨廣泛。在這些標準之中，

可調性影像編碼(SVC)不僅提供高規格的影像編碼，同時也支援了時間、品質、

空間上的可調性。然而這些可調性在視訊晶片的設計上會造成解碼時間、記憶體

頻寬、邏輯閘成本等額外的負擔。因此，本篇論文呈現了 Scalable High profile

H.264/AVC 解碼器從解碼流程分析、架構設計到模組實作的優化。

 在解碼流程上，本篇論文採取先前提出的畫面幀為基礎(frame-based)之空間

層解碼，並提出一個可以在記憶體頻寬和巨圖塊的處理週期分別能達到 71%和

66%縮減的單次品質層解碼流程。對於在層間幀內預測的質地填充(texture

padding)方面，我們提出了基本層級(BL-level)的填充流程並節省了層間幀內預測

巨區塊 26%的解碼時間。

 在上述流程下，本解碼器採取四級管線架構設計來增加解碼速度。第一個管

線級是由三品質層平行處理的熵解碼器(Entropy Decoder)和語法解析器(Syntax

Parser)所組成。第二個管線級是由殘餘重建路徑、層間預測器、以及參考像素抓

取單元所組成。本論文特別針對殘餘重建路徑進行優化，以解決由可調性所造成

的額外複雜度。經由實驗結果，我們所提出的平行管線架構和暫存結果重複使用

ii

(temporal result reusing)方法相對於傳統方法能節省 54%的邏輯閘。對於層間預測，

我們提出中央化的累加器型層間對應結構、簡化的多相插值器以及有效率的移動

向量向上取樣器來節省邏輯閘成本和解碼時間。第三個管線級是由動作補償和幀

內預測器所組成。而第四個管線級是由去區塊濾波器和質地填充器所組成。為了

有效存取外部記憶體，本篇論文使用了針對可調性解碼規格客製化的記憶體要求

協定。

 最後，我們提出的 Scalable High profile 解碼器在 UMC 90 奈米的製程環境下

總共約使用了 54 萬個邏輯閘和 3 萬 9 千個位元組的內部記憶體。其在一秒內可

以處理 60 張 CIF-SD480p-HD1080p 規格和三層品質層的畫面幀。相對於較早的

解碼器，本實作能在多樣可調性的基礎上提供更好的解碼效率。

iii

Design and Implementation of H.264/AVC Scalable High

Profile Decoder

Student: Yu-Chen Chen Advisor: Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Video applications are everywhere with the more and more advance standards.

Scalable Video Coding (SVC) not only supports high definition specifications but also

provides temporal, quality, and spatial scalabilities. However, these additional

scalabilities cause the decoding time, memory bandwidth, and area cost overhead in

chip design aspect. Thus, this thesis presents an H.264/AVC Scalable High Profile

decoder with optimizations on decoding flow, architecture design, and module

implementation.

For decoding flow, this thesis adopts the previous proposed frame-based flow for

spatial layer decoding, and proposes one-pass MB-based flow for quality layer

decoding that saves 71% and 66% in external memory bandwidth and macroblock

processing cycle respectively. For texture padding in inter-layer intra prediction, we

propose BL-level padding flow that saves 26% decoding time in IntraBL coded

macroblocks.

With above flow, the decoder adopts four stages pipeline architecture to enhance

iv

the decoding throughput. The 1st stage is composed of entropy decoder and syntax

parser which deal with 3 quality coefficients in parallel. The 2nd stage is composed of

residual reconstruction path, inter-layer predictor, and reference pixels fetch unit. This

thesis specifically optimizes the residual reconstruction path with parallel-pipeline

architecture and temporal result reuse to cope with the additional complexity from

SVC standard, which leads to 54% gate count savings compared with the traditional

serial-pipeline architecture. For inter-layer predictor design, we propose the

centralized accumulation-based CCSP concept, simplified poly-phase interpolator,

and efficient MV upsampler to save the area cost and decoding time. The 3rd stage is

composed of motion compensation and Intra predictor. The 4th stage is composed of

the deblocking filter and the texture padder. To efficiently access external memory, a

SVC-customized memory protocol is adopted in this thesis.

Finally, the proposed design Scalable High profile decoder is implemented with

UMC 90nm CMOS technology, which cost 565.12k gate count, and 39.66 Kbytes on

chip memory. It is capable of 60fps, CIF-SD480p-HD1080p, and 3 quality layers

decoding at 135MHz. Compared to the previous designs, the proposed decoder

achieves better decoding efficiency based on multiple scalabilities.

v

誌 謝

首先，要感謝我的指導教授－張添烜博士。張教授給予我在研究上自由揮灑

的空間，並適時地提供建議和教導，並讓我能以確的方法和態度進行研究。此外，

教授提供的各項訓練和資源，也讓我的研究得以順利進行。在此由衷地感謝張添

烜教授。

同時也要謝謝我的口試委員們，交大電子李鎮宜教授、中央電機蔡宗漢教授，

在百忙之中抽空前來口試，感謝各位教授的不吝指導讓本論文得以更加完備。

接著，我要感謝實驗室的夥伴。謝謝李國龍學長，帶我進入影像編碼的領域，

並且與SVC團隊的成員們討論所遇到的種種難題。謝謝曾宇晟學長和王國振學長

的指導，讓我不論在修課或研究上都能有更多的收穫。謝謝陳之悠學長、黃筱珊

學姊、沈孟維學長和許博淵學長，你們細心的指導和寶貴的意見讓我受益良多。

謝謝陳奕均同學、洪瑩蓉同學、許博雄同學和廖元歆同學，與你們不論一起上課

研究或是聊天娛樂都會是我寶貴的回憶。還要謝謝蔡政君學長、孟勳、克嘉、英

佑和亮齊等學弟，你們的幫忙讓我的實驗室生活能順利渡過。

 另外，我要感謝交大棒球隊黃衫楹教練和全體成員們，你們讓我有個愉快且

充實的大學和研究所生活。最後，我要感謝怡婷和我的家人們，你們的默默支持，

是我能夠完成學業的最大動力。

在此，謹把這篇論文獻給所有愛我與我愛的人。

vi

Contents
Chapter 1. Introduction...1

1.1. Motivation...1

1.2. Thesis Organization...2

Chapter 2. Overview of SVC Standard..3

2.1. Fundamentals of SVC …………………………………………………..4

2.2. Features of SVC Decoder……………………………………………….6

2.2.1. Single-loop Decoding…………………………………………..7

2.2.2. Key Picture Concept and Combined Scalability………………...8

2.2.3. Data Dependency of SVC Decoder…………………………….8

2.3. Inter-layer Prediction……………………………………………………9

2.3.1. Flags and Macroblock Type.………………………………….. .9

2.3.2. Calculation of Corresponding Spatial Positions.........................10

2.3.3. Inter-layer Intra Prediction…... 12

2.3.4. Inter-layer Residual Prediction…………………………….......13

2.3.5. Inter-layer Motion Prediction…………..…………...................13

2.4. Related Works………………..16

 Chapter 3. Framework of SVC Decoder...17

3.1. Design Specification..17

3.2. Decoding Flow Analysis..18

3.2.1. Spatial Layer Decoding...........…………..…………................ .18

3.2.2. Quality Layer Decoding... 18

3.2.3. Texture Padding..22

3.3. Proposed Framework...25

3.3.1. Overview of Architecture......…………..…………...................25

3.3.2. Optimization...27

3.4. External Memory Access...37

3.4.1. System Integration..37

3.4.2. Memory Request Protocol..38

3.5. Summary..40

Chapter 4. Module Design..........................…………………….........43

vii

4.1. Inter-layer Prediction...43

4.1.1. Poly-phase Interpolator Design... . 43

4.1.2. Texture Padding... .46

4.1.3. MV Upsampler... .49

4.2. Intra Prediction..50

4.2.1. Architecture...50

4.2.2. Processing Flow.. .52

4.2.3. Plane Mode Generator...53

4.2.4. Synthesis Results...56

Chapter 5. Implementation Result.............……………………........57

5.1. Design Flow...57

5.2. Gate Count...57

5.3. Memory Organization..58

5.4. Comparison..61

Chapter 6. Conclusion and Future Work..……………………........63

6.1. Conclusion...63

6.2. Future Work...64

 Reference..…………………….........65

 viii

List of Figures
Fig. 2.1. History of video coding standards..3

Fig. 2.2. Scalability demonstration of SVC..4

Fig. 2.3. Block diagram of SVC encoder with two spatial layers................................5

Fig. 2.4. Block diagram of SVC decoder ...7

Fig. 2.5. Data dependency of SVC decoder..8

Fig. 2.6. Reconstruction flow of ILP..10

Fig. 2.7. EL/BL position mapping for IntraBL identification.................................. ..11

Fig. 2.8. Filling strategy for un-available blocks: (a) 4×4 process;(b) 8×8 process. ..14

Fig. 2.9. Example of motion vector integration...15

Fig. 3.1. Frame-based quality layer decoding flow...19

Fig. 3.2. MB-based quality layer decoding flow...20

Fig. 3.3. Proposed one-pass quality layer decoding flow..22

Fig. 3.4. Padding of intra macroblocks before upsampling23

Fig. 3.5. Proposed BL-level padding... ..24

Fig. 3.6. Example of padding in base layer: (a) CIF frame; (b) local enlarge...........24

Fig. 3.7. Architecture of proposed SVC decoder..27

Fig. 3.8. Residual reconstruction flow with SNR scalability.....................................28

Fig. 3.9. Pipeline chain of residual reconstruction in SVC.......................................29

Fig. 3.10. Serial-pipeline chain quality processing..30

Fig. 3.11. Parallel-pipeline chain quality processing...31

Fig. 3.12. Inter-layer prediction flows with (a) separated CCSP;

 (b) centralized CCSP.. .34

Fig. 3.13 4-tap poly-phase filtering process... ..35

Fig. 3.14. Temporal results reusing scheme...36

Fig. 3.15. System integration of external memory accessing.....................................38

Fig. 3.16. Timing diagram: (a) read request; (b) write request..................................40

Fig. 3.17. Comparison of quality decoding flows in (a) memory bandwidth;

 (b) MB processing cycles...41

Fig. 3.18. Gate count savings of residual reconstruction path...................................41

Fig. 4.1. Architecture of the proposed interpolator..45

Fig. 4.2. Detail of texture padding... ..48

Fig. 4.3. Texture Padding: (a) Process status; (b) Neighboring pixel buffering.......48

 ix

Fig. 4.4. MV and Sub-macroblock type derivation..50

Fig. 4.5. Timing schedule of MV upsampler..50

Fig. 4.6. Data path of Intra Prediction..51

Fig. 4.7. Neighboring data SRAM...52

Fig. 4.8. Intra Prediction: (a) Processing order; (b) Processing flow.......................52

Fig. 4.9. Intra plane mode prediction (a) intra 16×16; (b) chroma...........................53

Fig. 4.10. Wight derivation circuit...54

Fig. 4.11. Proposed plane sample generator..54

Fig. 5.1. Design Flow in this work..57

 x

List of Tables

Table. 2.1. Profiles of SVC..6

Table. 2.2. Poly-phase coefficients of upsampling filter..12

Table. 3.1. Memory bandwidth requirement in frame-based quality decodingflow..20

Table. 3.2. Memory bandwidth requirement in MB-based quality decoding flow....21

Table. 3.3. Memory bandwidth requirement in One-Pass quality decoding flow22

Table. 3.4. Comparison of serial and parallel pipeline strategy..................................31

Table. 3.5. Gate count savings from temporal result reusing.....................................37

Table. 3.6. General request format...39

Table. 4.1. Symmetry of coefficients table...44

Table. 4.2. Input selection and classification for adders..45

Table. 4.3. Synthesis results of horizontal basic interpolator....................................46

Table. 4.4. Capacity requirement of padding buffers..48

Table .4.5. Timing scheduling (a) luma; (b) chroma...55

Table. 4.6. Synthesis results of Intra predictor..56

Table. 5.1. List of gate count for proposed SVC decoder.. .58

Table. 5.2. List of DRAM requirement for proposed SVC decoder59

Table. 5.3. List of SRAM requirement for proposed SVC decoder61

Table. 5.4. Comparison with other state-of-art video decoders62

 xi

 xii

 1

Chapter 1. Introduction

Video applications have been everywhere since advances of network bandwidth

and wireless access techniques. With the prosperity of portable devices, digital

televisions and internet videos, the applications of digital video become diversified.

The state-of-art coding standard H.264/AVC [1] achieves high performance in bit-rate

savings for these applications. Video encoder provides different bit-streams for

different demands of video size, quality and frame rate. To further integrate the

processing of different video demands, SVC, developed by the Joint Video Team

(JVT) of ISO/IEC Motion Picture Expert Group (MPEG) and ITU-T Video Coding

Expert Group (VCEG), delivers flexible scalabilities in temporal, spatial and quality

domains by a single bit-stream [2]. Bit-stream of SVC is integrated at once with the

benefits of coding time and complexity consumption. For the receiver side, decoder

must guarantees the reconstruction of various scalabilities.

1.1. Motivation
Recently, real-time processing with HD resolution is basically boosted for video

applications. To meet the processing specification, video decoders are commonly

integrated to ASIC chips [3][4][5][6][7]. These designs were implemented within

H.264/AVC standard however did not support the scalable extension.

The high definition and various scalabilities make SVC decoder much more

complex than H.264/AVC and previous standards. Critical issues from external

memory bandwidth, processing throughput, and area cost need to be solved in SVC

chip designing. In order to deal with those problems, this thesis makes efforts on the

 2

investigation of design and implementation methodology for SVC decoder.

1.2. Thesis Organization
The organization of this thesis is described as follows. Chapter 1 makes a brief

introduction of SVC and motivation of this work. Chapter 2 gives an overview on

SVC standard and introduces the mechanism of inter-layer prediction in SVC. In

Chapter 3, the overall architecture in this work is presented with the decoding flow

analysis and data path optimization. Chapter 4 shows the hardware implementation

and experiment results of the proposed SVC decoder. Finally, the conclusion and

future work will be given in Chapter 5.

 3

Chapter 2. Overview of SVC Standard

With the stronger demands of multimedia applications, video coding techniques

have been constantly concerned as well. The compression capability has getting more

powerful with the more advanced video coding techniques. Fig. 2.1 shows the

evolution history of video coding standards. For the multiple device network

applications, the state-of-art standard, SVC, further provides flexible scalabilities for

applications. The term “scalability” means that certain parts of the bit-stream can be

removed in order to adapt to the requirements of receivers.

Fig. 2.2 gives a scalability demonstration of SVC. For encoder, temporal, spatial,

and quality scalabilities are integrated in single bit-stream. This bit-stream provides

selective ranges from multiple levels of frame rate, frame size, and video quality. The

bit-steam is transmitted to every device by broadcasting within the communication

networks. Each backend device then adaptively extracts the corresponding parts of

bit-stream for their specific application. For example, HDTV extracts the highest level

scalabilities with its customized purpose and high-speed transmitting channel. Cell

phone extracts the lowest level part of bit-stream on the contrary.

Fig. 2.1. History of video coding standards

 4

Fig. 2.2. Scalability demonstration of SVC

2.1. Fundamentals of SVC
SVC is inherited from H.264/AVC with its advanced coding techniques. In

addition, it provides scalabilities in three domains where the architecture of encoder is

shown in Fig. 2.3. In the beginning, the original texture is down-sampled to

supportable image resolutions. Two spatial layers are configured to achieve the spatial

scalability in this case. The functional behaviors within shaded region are equal to

H.264/AVC. Different from H.264/AVC, the upper resolution layer (spatial

enhancement layer) uses the upsampled information from lower resolution layer

(spatial base layer) as prediction candidates. That is because with the scaled

relationship between layers, scaled motions vectors, residuals, and texture value from

base layer may predict more accurately. The prediction scheme is called inter-layer

prediction (ILP) which achieves high coding performance for SVC. Progressive SNR

refinement coding produces multiple levels of transformed coefficients to provide

quality scalability. Because temporal scalability is already enabled by H.264/AVC,

SVC only provides supplemental enhancement information to improve its usage.

 5

Fig. 2.3. Block diagram of SVC encoder with two spatial layers

The SVC Amendment of H.264/AVC specifies three profiles for scalable video

coding [8]: Scalable Base, Scalable High, and Scalable High Intra. The coding tools

supported by each profile are listed in Table. 2.1. The Scalable Baseline profile is

mainly used for applications with low decoding complexity. The supportable

resolution ratio between successive layers is restricted to 1.5 or 2. Thus, the

complexity of ILP can be reduced by the macroblock-aligned spatial mapping. In

Scalable High profile, arbitrary spatial resolution ratios can be supported. Except for

spatial scalability, temporal and quality scalability are supported without any

restriction in both Scalable Baseline and Scalable High Profile. Scalable Baseline

profile and Scalable High profile retains all the coding tools from Baseline Profile and

High Profile of H.264/AVC, respectively. Noticeably, Scalable Baseline profile

supports B Slices, weighted prediction, CABAC entropy coding, and 8x8 luma

transform in enhancement layers, although these coding tools are not supported in

Baseline profile of H.264/AVC. Scalable High Intra profile is mainly considered for

professional applications which contain only IDR pictures. Except for this restriction,

 6

the coding tools are the same with Scalable High profile.

Table. 2.1. Profiles of SVC

Coding Tools Baseline High High Intra

Arbitrary Resolution Ratio N Y Y

Inter-laced Coding N Y Y

Temporal Scalability Without Restriction Y Y Y

Quality Scalability Without Restriction Y Y Y

H.264/AVC Baseline Profile Y Y Y

H.264/AVC High Profile N Y Y

B Slices Y Y Y

Weighted Prediction Y Y Y

CABAC Entropy Coding Y Y Y

8x8 Luma Transform for EL Y Y Y

Only IDR pictures N N Y

2.2. Features of SVC Decoder
SVC decoder not only inherits the coding techniques from H.264/AVC but also

guarantees the reconstruction of spatial, temporal, and quality scalabilities as shown

in Fig. 2.4. In the beginning, the extracted bit-stream with necessary scalability is

entropy decoded and the parsed data are used as the source of further reconstruction.

Quality scalability is mainly processed with the refinement of scaling coefficients,

which brings quality disparity for different layers. With the utilization of inter-layer

prediction, reference data from base layer will be upsampled as the predicted contents.

The inter-layer prediction mechanism will be introduced in next section. Similar to

the existing H.264/AVC standard, intra prediction and motion compensation are used

in SVC with the spatial and temporal locality. The pixel sample reconstruction is

 7

accomplished by adding residuals to those predicted samples. Finally, deblocking

filter is applied to erase the blocking effect.

Fig. 2.4. Block diagram of SVC decoder

2.2.1. Single-loop Decoding

Single-loop decoding [9] is an advanced mechanism to lower the decoding

complexity. Because the Inter-coded macroblocks only use the motion information of

base layer, motion compensation in base layer can be avoided. Only Intra-coded and

IntraBL-coded macroblocks are reconstructed and deblocked in spatial base layers.

Thus, the complexity can be reduced due to the single motion compensation loop

among spatial layers. To further integrate this mechanism with inter-layer intra

prediction, texture padding is applied to extending the reference sample boundary for

those regions are un-available for upsampling.

 8

2.2.2. Key Picture Concept and Combined Scalability

 Except for single-loop decoding, “key picture concept” and “combined

scalability” is added to simply the coding flow of SVC. Key picture concept provides

appropriate trade-off between stream-truncated drift and coding efficiency for

hierarchical prediction structures. Beside, based on combined scalability concept, only

quality refinement is needed inside the same dependency layer. Thus, multi-loop

reconstruction flow for quality layers can be avoided by single prediction generation.

For detail of key picture concept and combined scalability, please refer [10] [11].

2.2.3. Data Dependency of SVC Decoder

 In summary, with simplifications mentioned above, the data dependency of SVC

decoder is shown in Fig. 2.5. The solid lines represent reference direction of

coefficients where should not be across spatial and temporal layers. The dotted lines

indicate the reference direction of predictions: for inter-layer prediction, top quality

layer reconstruction is referenced; for motion compensation, P slice references the

data of bottom quality and B slice references the top ones. Based on single-loop

decoding, motion compensation only executes in the top spatial layer which means

there is no temporal referencing in spatial base layer. The referencing structure

mentioned above makes SVC decoder simpler to be implemented.

Fig. 2.5. Data dependency of SVC decoder

 9

2.3. Inter-layer Prediction
Inter-layer prediction (ILP) is the novel coding technique which applied in SVC

standard. From experimental results, it considerably lowers the bit-rate by taking

advantage of the content locality between spatial layers. In addition to dyadic

applications, ILP mechanism also works under the situations of arbitrary hierarchical

frame sizes, which is defined in Scalable High profile. In reality, ILP adopts

“Extended Spatial Scalability (ESS) [12]” approach to deal with the macroblock and

data un-aligned of two spatial layers. In this section, the practical mechanism of

ESS-utilized ILP in SVC decoder will be introduced.

2.3.1. Flags and Macroblock Types

 The reconstruction procedure of ILP is illustrated in Fig. 2.6. In this figure, the

identification of Base_mode_flag is processed in the beginning of this flow. Once this

flag is set true, the current spatial enhancement macroblock will be totally inter-layer

predicted by contents from base layer. Therefore, the enabling of this flag can be

regarded as the appearance of a novel macroblock type “BaseMode”, which has not

existed in H.264/AVC or earlier standard.

 After the BaseMode type is qualified, this flow goes to IntraBL identification. In

this process, SVC standard chooses sixteen feature points of enhancement layer as

representational positions of current macroblock. As shown in Fig. 2.7, these sample

positions are going to map their specific base layer positions by calculation. One thing

we can imagine is that these points belong to their corresponding macroblocks in base

layer. By definition, if all the corresponding macroblocks are reconstruct-able, the

current macroblock type is named as “IntraBL”. Otherwise, if any corresponding

macroblock of these sixteen points is inter-coded, the current macroblock is called as

“InterBL”. InterBL and IntraBL are the two subsets of BaseMode type. IntraBL type

 10

adopts the upsampling samples as prediction of current macroblock entirely, and it

would not be accompanied with inter-layer motion (ILMP) and inter-layer residual

(ILRP) mechanisms. In the other hand, InterBL type uses the information of base

more directly. Under this type, every sample within “reconstruct-able” (IntraBL or

Intra) macroblocks in base layer is predicted by upsampling of inter-layer texture. And

the other samples will be predicted by result of motion compensation with the scaled

motion vectors.

Fig. 2.6. Reconstruction flow of ILP

 11

Position
Mapping

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Enhancement Layer
Base Layer

0
Belongs

To
Inter

InterBL

Intra

Intra Intra

Intra

IntraBL

Intra

Intra Intra

 Fig. 2.7. EL/BL position mapping of IntraBL identification

2.3.2. Calculation of Corresponding Spatial Positions

Compared with dyadic spatial scalability, non-dyadic one suffers from the issue

of indirect position mapping between two spatial layers. ESS adopts the scheme

called “Calculation of Corresponding Spatial Positions (CCSP) [12]” to map

corresponding samples between two successive layers. The concept of this derivation

is to exploit inter-layer resolution ratios to determine the corresponding positions and

upsampling parameters. The mathematical term of CCSP is shown as below

BLm ＝ {[m × Dm)＋Am] >> (Sm－4)}－dm

where m {x,y} and 0 < x < FrameWidth, 0 < y < FrameHeight (2.1)

m is the current sample absolute position in enhancement layer. Sm and Dm are

parameters which refer to the resolution ratio between spatial layers. Am and dm are

terms added to increase the arithmetic precision. With parameters mentioned above,

BLm can be finally derived where indicates the absolute position with 1/16th precision

in base layer. This term is derived to infer the corresponding sample positions and

interpolation phases for upsampling. The inferred parameters play significant roles in

the overall ILP mechanism. In Fig. 2.6, blocks within dotted line are the components

accompanied with CCSP process directly.

 12

2.3.3. Inter-layer Intra Prediction

Inter-layer Intra Prediction (ILIP), one of the mechanisms of ILP, uses the

up-sampled deblocked samples as the texture prediction. The up-sampling operation

applies a separable 4-tap and bi-linear poly-phase interpolation filter for luma and

chroma respectively. The numerator tap values for these dedicated filters are shown in

Table. 2.2, and a five-bit rounding right shift operation will be applied for producing

normalized results.

Table. 2.2. Poly-phase coefficients of upsampling filter

(a) Bi-linear filter; (b) 4-tap filter

 Corresponding positions of target reference samples in base layer are derived

from CCSP, which is listed below

phase coefficients

C-1 C0 C1 C2

0 0 32 0 0
1 -1 32 2 -1

2 -2 31 4 -1

3 -3 30 6 -1

4 -3 28 8 -1

5 -4 26 11 -1

6 -4 24 14 -2

7 -3 22 16 -3

8 -3 19 19 -3

9 -3 16 22 -3

10 -3 14 24 -4

11 -1 11 26 -4

12 -1 8 28 -3

13 -1 6 30 -3

14 -1 4 31 -2

15 -1 2 32 -1

phase coefficients

C0 C1

0 32 0
1 30 2

2 28 4

3 26 6

4 24 8

5 22 10

6 20 12

7 18 14

8 16 16

9 14 18

10 12 20

11 10 22

12 8 24

13 6 26

14 4 28

15 2 30

 13

BLPOSm = BLm >> 4 (2.2)

Where BLm is the derived term in Eg. (2.1) In addition, the target interpolation phases

are also derived according to BLm

 BLPHSm = BLm & 15 (2.3)

For an enhancement layer position m, its corresponding 4-tap poly-phase filtering

equation is

P = Sp(BLPOSm – 1) × C-1(BLPHSm) + Sp(BLPOSm) × C0(BLPHSm)

 +Sp(BLPOSm + 1) × C1(BLPHSm) + Sp(BLPOSm + 2) × C2(BLPHSm) (2.4)

where Sp(x) is the sample value in absolute position x and Cn(y) is the nth coefficient to

phase index y. SVC adopts the interpolation in Eq. (2.4) in horizontal and vertical

dimensions to produce the texture prediction. The process fully takes advantage of the

corresponding parameters derived from CCSP with concept of position mapping.

From related experimental results, the poly-phase filter indeed holds good prediction

performance with prediction generation.

2.3.4. Inter-layer Residual Prediction

The prediction generation of Inter-layer residual prediction (ILRP) is similar to

ILIP. Being a little different, ILRP adopts bi-linear filter to interpolate both luma and

chroma samples. Moreover, because discrete cosine transform (DCT) is based on 4×4

or 8×8 blocks, filtering will not take place in transform block boundaries in SVC

standard. The block-wise interpolation equation is listed below

P = (Transformblock(BLPOSm) == Transformblock(BLPOSm+1)) ?

(Sp(BLPOSm) × C0(BLPHSm) +Sp(BLPOSm + 1) × C1(BLPHSm)) :

[(BLPHSm < 8) ? (Sp(BLPOSm) <<5) : (Sp(BLPOSm + 1) <<5)] (2.5)

From Eq. (2.5), we can observe the filtering will be skipped if the input pairs of

bi-linear filter are within different transform blocks.

 14

2.3.5. Inter-layer Motion Prediction

Motion vector is another information which delivers the similarity between

spatial layers. As a result, inter-layer motion prediction (ILMP) mechanism uses the

scaled motion vectors to acquire the better solution in temporal locality. The

upsampling of motion vectors can be divided to several steps as followings.

1) Find the corresponding motion vectors

ILMP generates all 4×4 blocks in current macroblock with up-sampled motion

vectors. The spatial mapping of successive layers is also shown in Fig. 2.7. The

sixteen corresponding positions are located at sixteen corresponding 4×4 blocks which

should contains motion vectors in every block. However, if the corresponding block is

located at Intra or IntraBL region, there is no motion vector available. Thus, SVC

adopts hierarchical strategy to fill the corresponding motion vectors of un-available

regions. Fig.2.8 shows the 4×4-based and 8×8-based mapping. Motion vector filling is

processed first in 4×4 level. Single un-available block applies the neighboring motion

vectors in priority of horizontal, vertical, and diagonal directions. If all of the motion

vectors inside 8×8 are not available, 8×8-based processing is further applied. After the

filling process, these base layer motion vectors at co-located blocks are going to be

upsampled then.

1

3 2

(a) (b)

Fig.2.8. Filling strategy for un-available blocks: (a) 4×4 process; (b) 8×8 process

 15

2) Motion vector upsampling

The motion vector upsampling equation is shown as below

MVEL ＝ (MVBL × Dmv +32768) >>16 (2.5)

where MVBL is the reference motion vector value in base layer, and Dmv is the spatial

parameter which represents the ratio between layers. MVEL is the target derived

motion vector in the current macroblock.

3) Refinements of reference index and motion vector

Two level steps are needed to refine the scaled motion vectors and the reference

indexes. Reference indexes are used to indicate the reference direction (forward or

backward) in motion compensation which is in a 8×8 block set. However, upsampled

motion vectors with reference indexes from base layer may cause the inconsistency.

Thus, reference indexes are further reorganized in the reference list domain with the

priority shown in Fig. 2.8 (a).

The second level refinement is the motion vector integration technique. SVC

averages “similar” motion vectors of adjacent 4×4 blocks within the same reference

indexes to generate a new motion vector as shown in Fig. 2.9. The definite threshold

of the term “similar” is represented by Eq. (2.6).

︱MVx0 – MVx1︱+ ︱MVy0 – MVy1︱≤ 1 (2.6)

With this process, block partitions are further integrated and become simpler.

Fig. 2.9. Example of motion vector integration

 16

2.4. Related Works
 Since SVC has been standardized in 2007 [2], more and more researches and

analysis about SVC architecture are published recently. Memory storage is an

important issue which is caused by additional data dependency of SVC. For memory

architecture analysis, [13] analyzed the spatial layer decoding flow in consideration of

inter-layer prediction data. In this research, frame-base decoding flow is most efficient

for spatial layer decoding with memory characteristics. [14] also proposed a memory

architecture for SVC which focus on the size reduction of on-chip memory. For

inter-layer prediction, the most different part from H.264/AVC, [15] proposed a

cost-efficient residual prediction hardware architecture for encoder. However, it does

not mention the detail implementation of residual prediction. For the whole chip

integration, designs [3] ~ [7] implemented and optimized H.264/AVC decoder already

by focusing on the power consumption, on-chip memory demand, or gate count issues.

[16] is the first published work about the integration of a SVC decoder which will be

compared with this work later.

 17

Chapter 3. Framework of SVC Decoder

In this Chapter, the analysis and architecture of the proposed SVC decoder chip

will be demonstrated as follows. We first consider the most appropriate decoding flow

among three dimensions: spatial layer, quality layer and texture padding procedure.

Each dimension is analyzed in consideration of memory bandwidth, decoding time or

area cost. Afterward, the overall 4-stage pipeline architecture will be presented with

design methodologies. There are architecture optimization and comparison to improve

the area cost of this work. Then the external memory access system with the efficient

data transaction will be introduced in the final section.

3.1. Design Specification
In Chapter 2, we have introduced the profiles with coding tools of H.264/AVC

Scalable extension. To achieve high performance in video decoding, the proposed

SVC decoder supports main features in Scalable High Profile. Because of the support

to high throughput decoding for high definition applications, the limited resources are

hardly able to cope with infinite scalabilities. With restrictions to the layers of

scalabilities, specifications of the proposed SVC decoder chip are listed as follows.

(a) Supports bitstreams of H.264/AVC High Profile.

(b) Supports at most 3 spatial layers from QCIF to HD1080p.

(c) Supports at most 3 quality layers.

(d) Supports all GOP sizes under 8.

(e) Supports arbitrary resolution ratios between spatial layers with ESS.

Under the restrictions mentioned above, the proposed SVC decoder successfully

 18

reconstructs the Scalable High profile bit-streams encoded by reference software

JSVM 9.14 [17]. In addition, the critical specification of this work is to

simultaneously support 3 spatial layers (CIF-SD480p-HD1080p) and 3 quality layers

decoding at 60 frames per second, which is under the working frequency of 135MHz.

3.2. Decoding Flow Analysis
With the additional feature of multiple-domain scalabilities, the traditional

decoding flow of H.264/AVC is no longer appropriate for scalable extension.

Therefore, an efficient decoding flow must be investigated to deal with the additional

complexity from SVC. Moreover, memory bandwidth is a typical issue for video

chip design and significantly influenced by the processing procedure. In this section,

some strategies of decoding flow will be analyzed in consideration of memory access.

A most efficient decoding procedure will be utilized for the proposed SVC decoder.

Finally, we will introduce the memory controller protocol which plays an important

role in external data access.

3.2.1. Spatial Layer Decoding

Spatial scalability is the most distinct part between H.264/AVC and SVC. With

utilization of inter-layer prediction, data dependency exists between spatial layers.

Among the related researches, [13] has analyzed the spatial decoding flow based on

memory access from H.264/AVC to SVC. From this research, frame-based spatial

decoding flow has better characteristics than other strategies with appropriate memory

partition

3.2.2. Quality Layer Decoding

In SVC, quality scalability is achieved by using coarse-grain scalability (CGS) or

medium-grain scalability (MGS). Coefficients in enhancement layer are reconstructed

by the sum coefficients from base layer and delta coefficients from entropy decoder.

 19

With quality scalability, the reconstruction capability of SVC decoder is challenged by

the increasing amount of quality layers. To deal with all quality layer coefficients, the

decoding flow plays an important role in both processing time and memory access

aspects.

1) Frame-based quality decoding

In traditional flow [2], quality layer decoding proceeds in frame-level approach as

shown in Fig. 3.1. Enhancement layer frames are reconstructed after the previously

decoded frame in base layer. However, this flow introduces significant external

memory accesses. For one thing, reference data for prediction generation must be

loaded if necessary (I/P slice in top spatial layer). In this case, external memory access

for prediction reference data doubles with multiple quality layers. For the other,

coefficients in base layer are also stored for being referenced in enhancement layer.

This amount of quality coefficients is too large to store in internal memory. For

example, memory space of 8160×384×2 bytes are totally needed for the frame size of

HD1080p. Therefore, considerable external memory access occurs for processing

every quality layer. Table. 3.1 lists the external memory bandwidth requirement in

frame-based quality decoding flow. In Table. 3.1, the “others” item means the write

out data which includes inter-layer data or frame pixels.

Fig. 3.1. Frame-based quality layer decoding flow

 20

Table. 3.1. Memory bandwidth requirement in frame-based quality decoding flow

Item/Sequence Blue-Sky Tractor Pedestrian-area

Prediction Reference 31.51MBps 33.14MBps 33.31MBps

Quality Coefficients 160.9MBps 160.9MBps 160.9MBps

 Others 43.48MBps 43.53MBps 43.32MBps

Total 235.89MBps 237.57MBps 237.53MBps

* GOP : 8 / Frame-rate : 30fps / QP: 12-22-32 / Frame-size : CIF-480p

2) MB-based quality decoding

MB-based decoding is another approach for quality decoding. Coefficients from

different quality layers are reconstructed within the same macroblock in successive

order, as shown in Fig. 3.2. It is not necessary to put the quality coefficients out

because they will be referenced within the same macroblock process. Instead, internal

memory can handle the amount of coefficients (384×2 bytes). As a result, no external

memory access for quality coefficients is required in MB-based quality layer

decoding. The only data to be accessed from external memory is the reference data for

prediction generation. The external memory bandwidth requirement of MB-based

quality decoding flow is listed as Table. 3.2.

Fig. 3.2. MB-based quality layer decoding flow

 21

Table. 3.2. Memory bandwidth requirement in MB-based quality decoding flow

Item/Sequence Blue-Sky Tractor Pedestrian-area

Prediction Reference 31.51MBps 33.14MBps 33.31MBps

Quality Coefficients 0 0 0

 Others 43.48MBps 43.53MBps 43.32MBps

Total 74.99MBps 76.67MBps 76.63MBps

* GOP : 8 / Frame-rate : 30fps / QP: 12-22-32 / Frame-size : CIF-480p

3) One-Pass quality decoding

Although the access of external memory time is saved, the long decoding time

for quality layers is still a problem in MB-based decoding. The long latency comes

from the entropy decoding for DCT coefficients and the reconstruction path for

residuals which increases by the quality layers. Fortunately, because the entropy

decoding process of each quality layer is independent with others, all of the

coefficients in each quality layer can be parses separately. Thus, the parallel entropy

decoding is utilized to achieve higher throughput. In addition, with the combined

scalability concept, the residual reconstruction path can be merged into single

macroblock processing [11]. Thus, at most 66% macroblock processing cycles can be

saved for the 3-quality-layer application as shown in Fig. 3.3.

Besides, because quality layers are processed in parallel, the prediction

generation can be parallel processed with residual reconstruction. That means only

single-loop is required for prediction generation. Thus, prediction reference data (i.e.

reference pixels for motion compensation, base layer texture, base layer residual, etc.)

from external memory are only fetched once in single macroblock processing. As a

result, memory bandwidth can be further reduced as listed in Table. 3.3.

 22

Fig. 3.3. Proposed one-pass quality layer decoding flow

Table. 3.3. Memory bandwidth requirement in One-Pass quality decoding flow

Item/Sequence Blue-Sky Tractor Pedestrian-area

Prediction Reference 24.83MBps 25.63MBps 25.59MBps

 Others 43.48MBps 43.53MBps 43.32MBps

Total 68.31MBps 69.16MBps 68.91MBps

* GOP : 8 / Frame-rate : 30fps / QP: 12-22-32 / Frame-size : CIF-480p

3.2.3. Texture Padding

Inter-layer intra prediction (ILIP) is one of the inter-layer prediction schemes as

described in Chapter 2. The prediction in spatial enhancement layer is generated by

upsampled texture in base layer. However, with the utilization of single-loop decoding

flow, there might be un-available regions in the reference layer. That is because with

this flow, it is not necessary to reconstruct pixels in Inter-coded macroblocks during

spatial base layer processing. Thus, extensions for un-available regions in base layer

are generated in case of invalid reference during upsampling. Fig. 3.4. shows the

example of extensive padding for reference layer. In Fig. 3.4 (a). and Fig. 3.4. (b), the

un-available region only needs to be constantly extended for both vertical and

horizontal borders. In Fig. 3.4 (c). and Fig. 3.4. (d), diagonal down-right-like padding

 23

is required for filling the referenced un-available region.

Fig. 3.4. Padding of intra macroblocks before upsampling [9]

In the traditional upsampling flow of ILIP [2], the padding action is processed in

spatial enhancement level. The first step of upsampling in IntraBL macroblocks is to

determine the reference co-located region in base layer. Once the reference region is

determined, required reference texture from base layer would be fetched. For those

regions cannot be reconstructed, they could be filled by padding process as shown in

Fig. 3.4. After that, reference pixels with border extension will be upsampled by linear

filter to be the prediction of enhancement layer. However, critical issue exists in the

traditional upsampling flow. The most significant problem is that the padding

complexity grows when the reference region gets larger or more arbitrarily organized.

With the bit-stream where ILIP appears frequently, latency of padding may however

be the burden of video decoding. As a result, we proposed the “BL-level” padding

flow to solve problems mentioned above.

We move the padding procedure from enhancement layer to base layer, from

IntraBL macroblocks to Inter macroblocks as shown in Fig. 3.5. In the proposed flow,

macroblocks pre-pad in base layer to extend the reconstruction border and fills up the

un-available Inter-coded regions. Fig. 3.6 shows the padding example within a base

layer frame. With the pre-padding step, there will be no extension procedure in

enhancement layer and time consumption can be obviously saved. Furthermore, the

 24

padding procedure causes no additional time repaid in base layer decoding. For one

thing, because Inter-coded macroblocks would not be reconstructed to pixel samples

in spatial base layer with single-loop decoding concept, deblocking filter would also

not be utilized in these macroblocks. Thus, conceptually, pre-padding for un-available

region can be processed instead of deblocking during Inter-coded macroblocks. For

another, deblocking filter component is commonly organized as an isolated pipeline

data path in video decoder design. If we combine padding and deblocking in the same

stage, the padding time can be hidden without additional penalty. From simulation

results, 26% decoding time can be saved for IntraBL macroblocks.

Fig. 3.5. Proposed BL-level padding

(a) (b)

Fig. 3.6. Example of padding in base layer: (a) CIF frame; (b) local enlarge

 25

3.3. Proposed Framework
Based on the appropriate flow previously described, a novel framework of SVC

decoder will be demonstrated in this section. An architecture overview of this work

will be firstly introduced with the basic components of SVC decoder. After that, we

will present the architecture optimization which lowers the complexity in decoding.

3.3.1. Overview of Architecture

To improve the decoding/encoding speed and lower the power consumption,

partition the entire system into several pipeline stages is a common methodology for

video CODEC chip design [18][19][20]. In this work, we adopt the 4-stage pipeline

architecture to achieve high throughput decoding. Fig. 3.7 shows the overall

architecture of the proposed SVC decoder and the organization of every stage is

briefly demonstrated as follows.

The 1st stage is composed of parallel processing entropy decoding components

and the syntax parser. As mentioned in previous section, at most 3 DCT coefficients

from 3 quality layers are parsed in this stage. Fortunately, with the improvement of

decoding throughput [21], only 2 set of CAVLD/CABAD decoder is required which

did not cause too much gate count overhead. Besides, motion vector difference (MVD)

is also produced by entropy decoding. The syntax parser delivers parsed parameters

which are required for the following stages.

The 2nd stage is composed of the residual reconstruction path, the inter-layer

predictor, the motion vector generator and other reconstruction elements. Coefficients

from 1st stage1 are reconstructed to residual in this stage. The residual reconstruction

path basically includes the pipeline chain with the process of inverse quantization,

coefficients refinement, inverse transform, and residual accumulation. In this path,

triple sets of this pipeline chain produce different quality residuals in parallel. The ILP

 26

module generates inter-layer predictions by upsampling information from base layer

which includes motion vectors, reconstructed pixels and residuals. If residual

prediction mode is applied to current macroblock, ILP interpolator will be involved in

the pipeline chain to obtain the final residual. Besides, MV Generator generates the

motion vectors for bi-directional reference of current macroblock. With the derived

motion vectors and partition sizes, reference pixel for motion compensation can be

fetched at once.

Sample prediction of both Inter-coded and Intra-coded modes is generated in the

3rd stage. This stage includes interpolators which accomplish the 6-tap and bi-liner

filtering for motion compensation and the prediction generator with all 4×4, 8×8, and

16×16 Intra modes. The produced prediction is then added with residuals from 2nd

stage and forms the pre-deblocking samples. The final 4th stage is composed of

deblocking filter and texture padding module. The deblocked data is passed to

padding module to acquire the extension for inter-layer upsampling.

In this work, each pipeline stage is separated by pipeline ping-pong buffers. Ports

of current and next stages are read/write in interleave way to avoid the access

conflicts. To simply the control logic, we adopt synchronous approach to deliver the

pipeline register which means the macroblock changes simultaneously for each stage.

For external memory access, memory controller is utilized as the interface of decoder

design and system bus.

Besides, under the target specification described in Section 3.1, averaging 227

cycles are mostly consumed for single macroblock decoding. It comes from the

equation listed below.

227 = (135 × 106) / [(396 + 1350 + 8160) × 60] (3.1)

 Frequency Total MBs in one frame Frame rate

 27

CABAD
CAVLD

CABAD
CAVLD

IQ CR

IT

MV
Generator

Syntax
Parser

bitstream

ILP

ILmvp

+

coef.

mvd

ILresP

ILtexP
+

res

Ref. Fetch

res

Motion
Compensation

Intra Predictor

+

mv

Deblocking
Filter

Buffer

Texture
Padding

Data from external data buffer

Data to external data buffer

STAGE1 STAGE2 STAGE3 STAGE4

x 3

Fig. 3.7. Architecture of proposed SVC decoder

3.3.2. Optimization

1) Reconstruction path

In H.264/AVC decoding process, the code words with residual information will

be reconstructed by entropy decoding, inverse quantization, and inverse transform.

This reconstruction path is used to provide the dedicate prediction errors. However,

the residual reconstruction path in SVC is different and more complex than

H.264/AVC.

 Complexity issue in SVC

For one thing, SVC supports the quality scalability by involving the code words

with transform coefficients of different QPs. Coefficients in enhancement layer are

usually reconstructed by adding the sum of delta coefficients in the previous layers.

This multi-level coefficients stratification makes the video quality scalable for

different requirements. For the other, inter-layer residual accumulation is added in

SVC. It further lowers the bit-rate by removing the redundancy in residual level. With

the utilization of residual prediction, upsampled data must be added to the results of

inverse transform. The two steps mentioned above are newly involved in SVC

standard and the reconstruction flow is shown in Fig. 3.8.

 28

 Fig. 3.8. Residual reconstruction flow with SNR scalability

 Shared interpolation components

Both inter-layer intra and inter-layer residual predictions utilize the poly-phase

filter to generate the prediction samples. To further improve the efficiency of

hardware utilization, the interpolation components of inter-layer intra and inter-layer

residual prediction can be shared. First of all, we develop the 2-tap/4-tap switching

basic interpolator, which can be reused for residual and texture upsampling (will be

further described in Chapter 4). Thus, only one set of interpolator is required to

process texture and residual upsampling.

In addition, the external memory buffer can be shared. It is used to restore the

reference residual and texture from base layer. Inter-layer texture prediction needs the

size of 19×19 luma pixel buffers and two 9×9 chroma pixel buffers to contain the

maximum external data. Besides, inter-layer residual prediction needs 17×17 luma

residual buffers and two 9×9 buffers to restore the reference residual. With the buffer

reusing strategy, 47.2% buffer usage can be reduced.

Inter-layer intra and inter-layer residual prediction never exist during the same

macroblock process except for InterBL macroblock type. Thus, for the InterBL type,

processing intervals of texture prediction and residual prediction must be staggered to

avoid the resource hazard from the shared interpolator and memory buffers.

 29

 Pipeline chain of residual reconstruction

The residual construction flow is also commonly implemented by pipelining in

video chip design. For SVC decoder, quality refinement and residual accumulation are

added as shown in Fig. 3.8. Thus, these two steps are further involved in the pipeline

chain. Fig. 3.9 shows the timing diagram of the residual reconstruction with

pipelining. Each pipeline stage deals with a block of samples and then passes the

result to next stage in every cycle. After the first 4 cycles, residuals from the same

block are generated in successive cycles. The more samples within one block (more

processing throughput), the less reconstruction time is needed. However, that is the

trade-off result against the computation complexity of every stage.

Fig. 3.9 Pipeline chain of residual reconstruction in SVC

Taking the numerous (at most 3 in this work) layers of SNR scalability into

consideration, the scheduling and arrangement of residual reconstruction is a novel

issue worth discussing. Therefore, two scheduling strategies will be analyzed here and

one of them will be chosen for this work.

i. Serial-pipeline quality processing

In this strategy, quality coefficients from different layers are reconstructed in

serial order within different timing intervals as shown in Fig. 3.10. Only one set of

pipeline processing unit is required which is reused by every quality layer. A size of

384×2 bytes coefficients refinements buffer is required to restore the coefficients of

quality base layer. Besides, with the shared interpolation component scheme,

 30

inter-layer intra prediction is processed after the residual reconstruction flow with the

same throughput. To meet the constraint of cycle budget (227 cycles), the processing

parallelism is set to 8.

 Fig. 3.10. Serial-pipeline chain quality processing

ii. Parallel-pipeline quality processing

Unlike the serial-pipeline strategy with one pipeline chain, parallel-pipeline

strategy triples the pipeline chain to separately reconstruct the residual form different

quality layers. However, quality enhancement layers need the coefficients from base

layer during the coefficients refinement stage. The absolutely parallel reconstruction

may cause hazards between layers because of the data dependency. Therefore, we

delay the reconstruction procedure between layers with one cycle so that the

coefficients can be passed across layers. Fig. 3.11 shows the scheduling of

parallel-pipeline quality processing with the throughput of 4.

 Fig. 3.11. Parallel-pipeline chain quality processing

 31

iii. Comparison

 The processing time consumption of these two strategies is very close and both

of them are under the constraint of cycle budget. Thus, with the similar timing

characteristics, complexity issue dominates the performance. Table. 3.4 lists the

synthesis gate counts and memory requirements of major components with both

strategies. From Table 3.4, although components such as inverse quantization are

tripled for different quality layers, components of inter-layer prediction are not tripled

in parallel-pipeline strategy. That is because with the combined scalability, all quality

layers use the same contents as their prediction. Thus, only one set of interpolator is

required for the parallel reconstruction of different quality layers. Compared to the

high throughput of serial-pipeline chain, gate counts of interpolator are lowered with

the smaller processing throughput in parallel pipeline chain. By simplifying the most

complex part, total gate counts are significantly lowered by simplified inter-layer

interpolator in spite of the increasing gate counts of other pipeline components.

Furthermore, memory usage is saved in parallel-pipeline strategy with the coefficient

passing technique. As a result, parallel-pipeline is more efficient strategy form

comparison and would be adopted in this SVC decoder work.

Table. 3.4 Comparison of serial and parallel pipeline strategy

Item Serial-pipeline Parallel-pipeline

Inverse Quantization 9,327 4,724 × 3

Coefficients Refinement 314 155 × 3

Inverse Transform 23,124 12,137 × 3

 Residual Accumulation 314 155 × 2

Residual/Texture

Interpolation

Input Selector 5,901 × 20 5,901 × 16

Basic Interpolator Ver. 1,281 × 20 Ver. 1,281 × 16

 32

Hor. 1,816 × 8 Hor. 1,816 × 4

Total 191,247 173,379

 Memory Requirement 768 Bytes 0

 * Synthesized by UMC90 at 135MHz

2) Inter-layer Predictor

Inter-layer prediction (ILP) is an additional novel mechanism in SVC which

spreads on three domains: inter-layer texture prediction, inter-layer residual prediction

and inter-layer motion prediction. Prediction tools mentioned above significantly

improve the coding efficiency but introduce much more coding complexity. It brings

the overhead of hardware cost and power consumption. Not only for SVC encoder but

also decoder suffers from the complexity of prediction generation. To light these

burdens, we made efforts to simplify the architecture of ILP mechanism.

 Centralized accumulation-based CCSP engine

The first issue comes from “calculation of corresponding positions (CCSP)”

where the mechanism has been mentioned in Chapter 2. From the reconstruction flow

of ILP in Fig. 2.5, we can observe some functional blocks need CCSP to achieve the

spatial scalability. However, the derivation of CCSP also introduces the complexity

and decoding time overhead. First of all, the functional equation has listed in the Eq.

(2.1) with arithmetic terms in addition, shift and multiplication. Generally, the

multiplications are avoided for circuit designs which cost much more area than other

arithmetic components. For the second, the ILP construction flow process CCSP in

different forms repeatedly. For example, the InterBL macroblock type with ILRP

totally process CCSP five times in the decoding flow which may cause considerable

timing repaid. As a result, we proposed a centralized accumulation-based calculation

CCSP engine to process to solve the problems mentioned above.

 33

i. Use accumulators to replace multipliers

Despite there are many terms and complicated calculations in Eq. (2.1), [12] has

introduced the opportunity to optimize the equation. Obviously, the terms of Dm, Am,

Sm, and dm which are derived from inter-layer ratios, can be determined before coding

the first macroblock in enhancement. Without spatial resolution changes, these terms

will remain unchanged in following macroblock coding procedures. Thus, even

though there seem many variables in CCSP derivation process, the difference between

successive corresponding samples is actually a constant. This feature can be derived

from

BLm+1 － BLm

 ＝ { { [(m+1) × Dm ＋ Am] >> (Sm－ 4) }－ dm}－

{ { [m × Dm ＋ Am] >> (Sm－ 4) }－ dm }

＝ [(m + 1 － m) × Dm] >> (Sm－ 4)

＝ Dm >> (Sm － 4) (3.2)

From Eq. (3.2), BLm+1 can be derived by adding a constant Dm >> (Sm－4) from

BLm. In other words, for the purposes of getting the next corresponding sample

position, the only operation is adding a constant from current corresponding sample

position. Thus, in hardware aspect, the needed multiplier in Eq. (3.2) can be replaced

by a register plus an adder in the form of accumulator. Finally, the area cost of CCSP

can be reduced by the substitution from multipliers to accumulators, which is a more

efficient way in hardware architecture design.

ii. Centralized CCSP

 In the traditional flow, CCSP of different inter-layer predictions types are

separately processed as shown in Fig. 3.12 (a). However, calculation redundancy may

 34

conceal in the traditional flow because the calculation of spatial parameters is similar

for inter-layer predictions. The spatial parameters here are the interpolation phase,

corresponding motion vectors… etc, which are related to the spatial relationship

between two layers and originated from CCSP. In order to remove this redundancy

and improve the decoding efficiency, a centralized CCSP concept is proposed as

shown in Fig. 3.12 (b). Noticeably, the interpolation parameters (phase and BLPos) of

inter-layer intra and inter-layer residual prediction are the same and also can be shared.

In the proposed strategy, all spatial parameters from different prediction mechanisms

are simultaneously derived by the centralized CCSP engine. The accumulation-based

calculation is executed once instead of repeated operations. Some derived parameters

are further restored, such as the interpolation phase or the corresponding macroblock

partitioning. The buffering makes the prediction flow flexible because all of the

inter-layer prediction modules can access the spatial parameters at any time without

recalculation of CCSP. Some spatial parameters such as the corresponding motion

vector positions and the range of reference texture can be integrated as the external

memory requests. In summary, the proposed centralized accumulation-based CCSP

engine not only reduces the hardware complexity but also further simplify the

decoding flow of inter-layer prediction.

 (a) (b)

Fig. 3.12. Inter-layer prediction flows with (a) separated CCSP; (b) centralized CCSP

 35

 Temporal Results Reuse

In Chapter 1, we have already introduced the equation of ILTP and ILRP, which

are mainly composed of the upsampling interpolators to generate the prediction

samples. To achieve high prediction throughputs, upsampling interpolators can be

numerously established in parallel. However, complexity problem also exits in

hardware architecture of upsampling interpolator. The complexity gap by the

parallelism of interpolator has been previously described. It comes from the

poly-phase basic interpolator and the input group selection module. Basic

interpolators with various look-up table and multiplications bring out the intensity of

hardware cost. The function of a basic interpolator has been listed in Eq. (2.4) and Eq.

(2.5). Besides, every basic interpolators need to select its input groups from the

external buffers. This action cause high complexity because of the large location

range of input groups.

The target processing throughput is four pixels per cycle as previously described.

Under this satiation, the requirement of reference data and basic interpolator for 4-tap

filter is shown in Fig. 3.11.

Fig. 3.13 4-tap poly-phase filtering process

 36

 Because of the limited critical path, the two dimensional interpolation is divided

to a couple of successive cycles. For a group of four predicted samples, it requires

16(4×4) interpolators to generate the temporal result in vertical dimension. These

temporal results are restored in temporal buffers as the inputs of the horizontal

interpolation in next cycle. In the two dimensional procedure, total sixteen vertical

basic interpolators and four horizontal basic interpolators are required for the dotted

region in Fig. 3.13. This amount of basic interpolators may cause area overhead. To

lower the gate counts, we adopt the temporal result reusing scheme, which reduces the

usage amount of vertical basic interpolators.

 We observed that if the target sample groups are in successive order toward

specific (horizontal or vertical) direction, some part of temporal results can be reused

in successive cycles. Fig. 3.14 shows the overlapped region of temporal result in

horizontal interpolation order. In cycle n+1, the value of temporal results in those

overlapped region stay unchanged compared with previous cycle. That means with

value reusing, there are only 4 newly temporal results must be created in cycle n+1. In

other words, the amount of vertical basic interpolators can be reduced to 4. The gate

count reductions by temporal result reuse is 70.6% as listed on Table. 3.5.

4
5
6
7

Temporal Result
Overlapped

0

2
3

Temporal Result
Newly Created

1

Fig. 3.14. Temporal results reusing scheme

 37

Table. 3.5. Gate count savings from temporal result reusing

Item Without Reuse With Reuse Reduction

Input Selector 94,416 23,604 75%

Vertical Interpolator 20,496 5,124 75%

Horizontal Interpolator 7,264 7,264 0%

Total 12,2176 35,992 70.6%

3.4. External Memory Access
 External memory access is an important issue for video chips which dominates

the performance of power consumption and coding throughput. In this section, the

overview of memory system will be introduced at first. Then, the proposed memory

request protocol will be presented to support the external memory access in SVC.

3.4.1. System Integration

 Fig. 3.15 shows the system integration of external memory access. Designs

within the 4-stage pipeline architecture can propose their request individually. In order

to handle the data communication between design and DRAM, a memory controller

module is established. The components inside the memory controller module are

listed as follows:

 Data/Address manager, the major component in memory controller, receives the

requests and transforms them to corresponding addresses to DRAM. Also, it

integrates the proper data in the data communication interface. Because of the large

amount of external memory data in SVC, several processing units might propose their

request simultaneously. Under this situation, an arbitrator is required to solve the

request conflicts. Besides, FIFO buffer and busy signal are utilized to restore those

 38

non-top priority requests and uncertain delays respectively. In this work, a packaged

DDR400 DRAM SystemC model is utilized to co-simulate with the proposed design.

Fig. 3.15. System integration of external memory accessing

3.4.2. Memory Request Protocol

With the added data in spatial and quality scalability, SVC standard access the

external memory more frequently than H.264/AVC. One group of the extra data is

composed of residual data and motion vectors for inter-layer prediction, and the other

is the reconstructed pixels from different quality layers for “key picture concept”.

These extra data make the memory access more complicated in SVC. To deal with the

significant and various external data access efficiently, fixed-length instruction-based

request protocol for external memory access is utilized.

1) Request Format

The proposed protocol is composed of two parts: one is the MCM_RQST and the

other is MCM_INST. The previous part is the enable signal from the 4-stage decoder

design, which represents that the request of external memory access occurs.

MCM_INST is the data with instruction format which can be parsed to identify the

 39

feature of requests. Table. 3.6 shows the 45-bit length general format of MCM_INST.

The first 10 bits are the global identifiers which lower the parsing complexity for

memory controller with the fixed form among all request types. The following 35 bits

are specified request content which depends on the request types.

Table. 3.6. General request format

Item Bit Length Function

Write 1 Write enable

Type 3 0 : MV data

1 : Reconstructed data

2 : Residual data

3 : Bitstream (Read only)

4 : Original picture (Encoder only)

Did 2 Dependency ID (0~2)

Frame_num 4 Frame number (0~8)

Content 35 Request dependent contents

Write is used to identify the read/write operation. Type represents the operation

types with five different sources from external memory. Did and Frame_num indicate

the target spatial layer and frame number of the accessed data, respectively. Except for

the above global items, the rest bit-length is composed of Content, which is the

request content depends on operation types. This fixed-length format simplifies the

decoding complexity of memory controller.

2) Transaction

 Read operation

When a read request occurs, MCM_RQST is pulled up by the 4-stage pipeline

decoder with the request instruction MCM_INST. By signaling of the enable symbol,

MCM_INST will be then loaded into the FIFO of memory controller module. After

 40

several cycles from the processing of DRAM latency, required data will be returned

with a valid-bit. Fig. 3.16 (a) shows the timing diagram of read request in proposed

protocol. The handshaking mechanism is globally controlled within the memory

controller level. Thus, it is delivers efficient memory transaction without stalling the

processing components for waiting the request acceptation.

 Write operation

 In write operation, the write data from 4-stage pipeline design must hold until the

pulling-up of written signal from external memory. Once the Written symbol is

signaled, other MCM_RQSTs can be proposed immediately. Fig. 3.16 (b) shows the

timing diagram of write request in proposed protocol.

CLK

MCM_INST INST0

Written

MCM_RQST

Write Data W_Data0

INST1

W_Data1

DRAM Access Latency

CLK

MCM_INST INST0

Data Valid

MCM_RQST

Read Data R_Data0

DRAM Access Latency

INST1

R_Data1

(a) (b)

Fig. 3.16. Timing diagram: (a) read request; (b) write request

3.5. Summary
 In this chapter, the decoding flow of SNR scalability is analyzed based on three

strategies: frame-based, MB-based, and the proposed One-pass quality decoding. To

summarize the simulation result, Fig. 3.17 shows comparison of the memory

bandwidth and processing macroblocks among those decoding flows. The One-Pass

quality decoding performs well from its parallel decoding strategy in addition to

MB-based quality decoding. For architecture design, 4-stage synchronous pipeline

architecture is utilized for this work. The residual reconstruction path in 2nd stage is

 41

the most complicated part in SVC. Thus, we propose the parallel-pipeline

reconstruction flow and temporal results reusing scheme to lower the gate count. The

gate count saving is summarized as Fig. 3.18.

 Besides, the BL-level padding flow is proposed to accelerate the texture padding

process which has 26% improvement in IntraBL-coded macroblocks. To improve the

area cost and the coding flexibility of inter-layer prediction, a centralized

accumulation-based CCSP scheme is utilized. Finally, the external memory access in

this work is introduced with the specified protocol.

(a) (b)

Fig. 3.17. Comparison of quality decoding flows in (a) memory bandwidth;

 (b) MB processing cycles

Fig. 3.18. Gate count savings of residual reconstruction path

 42

 43

Chapter 4. Module Design

Detail implementation methodology and optimization strategy of SVC decoder

modules are introduced in this Chapter. At first, the physical implementation of

inter-layer content upsampler will be presented. Afterward, the intra-reconstruction

component in this work will be mentioned with the proposed low-complexity plane

generator. Components of entropy decoding, motion compensation, deblocking filter

will be briefly introduced then. At last, there will be the research and refined

architecture of the memory controller module arbitrator.

4.1. Inter-layer Prediction
 Three components of inter-layer prediction are introduced in this Section:

poly-phase interpolator, texture padding module, and MV upsampler.

4.1.1. Poly-phase Interpolator Design

The major complexity of a basic interpolator comes from the various combination

of filtering coefficients. This variety introduces a large amount of arithmetic

components and complex control circuits. To lighten hardware burden, we propose a

hybrid interpolator architecture to implement both of 4-tap and bi-linear interpolations.

Through our design, the adders can be shared by these two interpolation processes and

consequently lowers the hardware cost. The details of our designs are describes as

follows.

1) Simplification of coefficients table

To reduce the control complexity, the most important thing is to simplify the

variety of coefficient combinations. From the coefficient table, the symmetries in the

 44

filter coefficient table as shown in Table. 4.1 can be observed directly. For example,

supposed that 4-tap filter is used and the interpolation phase is 13, circuits whose

phase equal to three can be shared by only exchanging C-1 for C2, and C0 for C1. Thus,

half of contents in the table can be reduced by exchanging inputs with symmetric

coefficient columns in the table.

Table.4.1. Symmetry of coefficients table

(a) Bi-linear filter

coefficients phase coefficients

C1 C0 C0 C1

─ ─ 0 32 0
2 30 15 1 30 2

4 28 14 2 28 4

6 26 13 3 26 6

8 24 12 4 24 8

10 22 11 5 22 10

12 20 10 6 20 12

14 18 9 7 18 14

─ ─ 8 16 16

(b) 4-tap filter

coefficients phase coefficients

C-1 C0 C1 C2 C-1 C0 C1 C2

─ ─ ─ ─ 0 0 32 0 0
-1 2 32 -1 15 1 -1 32 2 -1

-1 4 31 -2 14 2 -2 31 4 -1

-1 6 30 -3 13 3 -3 30 6 -1

-1 8 28 -3 12 4 -3 28 8 -1

-1 11 26 -4 11 5 -4 26 11 -1

-2 14 24 -4 10 6 -4 24 14 -2

-3 16 22 -3 9 7 -3 22 16 -3

─ ─ ─ ─ 8 -3 19 19 -3

 45

2) Simple adder-tree architecture

Fig. 4.1 shows our proposed hybrid interpolation module. In Stage I, reference

samples are rearranged according to interpolation phase and filtering mode. This step

takes the advantage of coefficient table symmetry as previously described. In Stage II,

scaling engine produces scaled elements and classifies them to three sets. The

classifying strategy is to group minimum scaled elements in every set, thus the input

selection for adders can be efficiently simplified. The proposed scaled element

classification is listed in Table. 4.2 in detail. Finally, the data path in stage III is

basically composed of simple two-level adder-tree architecture. This architecture

makes the circuits simpler without complex control signals.

 Fig. 4.1. Architecture of the proposed interpolator

Table. 4.2. Input selection and classification for adders

Mode Phase
adder A adder B adder C adder D

in0 in1 in2 in0 in1 in2 in0 in1 in0 in1 in2

0 0 16b 16b 0 0 0 0 0 0 A B C

0 1 16b 16b 0 2c 0 0 -a -d A B C

0 2 16b 16b -b 0 4c 0 -2a -d A B C

0 3 16b 16b -2b 2c 4c -d -a -2a A B C

0 4 16b 16b -4b 0 8c -d -a -2a A B C

0 5 16b 16b 2b 2c 8c c -4a -d A B C

0 6 16b 16b 0 2c 8c 4c -4a -2d A B C

0 7 16b 16b 0 2d 16c -d -a -2a A B C

 46

0 8 C 2C 16B 0 b c -a -d A B 2B

1 0 16b 16b 0 0 0 0 0 0 A B C

1 1 16b 16b -2b 0 0 2c 0 0 A B C

1 2 16b 8b 4b 4c 0 0 0 0 A B C

1 3 16b 8b 2b 4c 0 2c 0 0 A B C

1 4 16b 8b 0 0 8c 0 0 0 A B C

1 5 16b 2b 4b 0 8c 2c 0 0 A B C

1 6 16b 0 4b 4c 8c 0 0 0 A B C

1 7 16b 2b 0 4c 8c 2c 0 0 A B C

1 8 8b 0 0 0 8c 0 0 0 A B C

 Set A Set B Set C

 The synthesis result and the comparison of proposed method and direct

implementations is listed in Table. 4.3. The gate counts saving from switched method

is 14.7% by combining bi-linear and 4-tap filter together. Additional 28.8% gate

counts can be further saved by the proposed simple poly-phase interpolator design.

Table. 4.3. Synthesis results of horizontal basic interpolator

Method Gate counts

4-tap (Direct) 2,119

Bi-linear (Direct) 873

Switched (Direct) 2,551

Proposed 1,816

 * Synthesized by UMC90 at 135MHz

4.1.2. Texture Padding

In Chapter 3, we have mentioned the proposed BL-level flow for texture padding

for inter-layer intra prediction. In this section, the detail module design of texture

padding will be introduced. Fig. 4.2 shows the detail of texture padding. The dotted

 47

region is the target region, and the texts in the right side indicate the padding function.

~A means region A is not reconstructed (Inter-coded region in base layer), so as ~B,

~C. The different types of neighboring macroblocks affect the operations of the target

8×8 block which is divided to three regions with different cases. The operation

functions “ddr”, “ver”, “hor” mean the down-diagonal right, vertical, horizontal

extrapolations respectively. Therefore, the target 8×8 block can be padded if the

neighboring macroblock types and neighboring pixels (a, b, and c) are determined.

With the data dependency from neighboring pixels and macroblock types, the

target region of macroblock-based texture padding is special where the padded region

is not a real macroblock. It is a macroblock-size region which composed of 4 8×8

blocks at the up-left side of current macroblock. Fig. 4.2 also shows the target 4 8×8

blocks within the dotted line which can be simultaneously determined.

The determination function is presented as follows: If the current macroblock is

reconstruct-able, the deblocked samples in block X will be regarded as neighboring

pixels for other three blocks. Otherwise, the block X will be padded where the

neighboring information is derived and ready for use. Also, other three blocks (A, B

and C in Fig. 4.2) can be determined in the same way with block X. Fig. 4.3 (a)

illustrates the padding status with the macroblock-based processing. The deblocked

cross stripe at the macroblock boundaries are referenced for padding the four

neighboring 8×8 blocks. This texture padding order works successively without data

hazards from neighboring information.

 Besides, extra buffers are needed to restore the neighboring samples as shown in

Fig. 4.3 (b). Parts of deblocked data from current macroblock processing are picked

into buffers to be referenced in texture padding. In summary, padding buffers can be

classified to three types: current MB buffer, column buffer, and row buffer. Current

MB buffer restores the deblocked samples for the texture padding with current

 48

macroblock processing. Column buffer and row buffer is used to buffer the reference

samples for the next and the next-row macroblock processing, respectively. Fig. 4.3 (a)

also shows the usage of padding buffers with the cross stripe in different colors. The

capacity requirement of padding buffers is listed in Table. 4.3.

X

(1) Case(~A, ~B, ~C)
R(I) = R(II) = R(III) = 0

(2) Case(A, ~B, ~C)
R(I) = R(II) = R(III) = a

(3) Case(A, B, C)
R(I) = ddr(b), R(II) = ddr(a), R(III) = ddr(c)

(4) Case(~A, B, C)
R(I) = ddr(b), R(II) = (b0+c0+1)/2, R(III) = ddr(c)

(5) Case(A, B, ~C) or Case(~A, B, ~C)
R(I) = R(II) = R(III) = ver(b)

(6) Case(A, ~B, C) or Case(~A, ~B, C)
R(I) = R(II) = R(III) = hor(c)

a

A B

C

Macroblock Boundary

b

c

Curr.
MB

 Fig. 4.2. Detail of texture padding

(a) (b)

Fig. 4.3. Texture Padding: (a) Process status; (b) Neighboring pixel buffering

Table. 4.3. Capacity requirement of padding buffers

Item Current MB Column Row

Luma 37 15 8 × 120

Cb + Cr 21 + 21 7 + 7 0

Total 79 29 960

 *Unit: Byte

 49

4.1.3. MV Upsampler

The flow of motion vector upsampling is mentioned in Chapter 2 with its

refinement actions. From Eq. (2.5), because of the multiplier term, motion vector

from base layer is not a constant. Thus, multiplications cannot be avoided by

adder-tree architecture or accumulator. In the proposed MV upsampler, two

multipliers are established for the MVx and MVy. Thus, total 16 cycles are needed to

scale the motion vectors in a reference list. This throughput is acceptable with

minimum hardware cost in the proposed architecture. In addition, MV Merge

component is required to integrate the motion vector refinements. One MV Merge

module is utilized in this work to average the similar motion vectors and derive the

new sub-partition type. The averaging and partitioning strategy is listed in Fig. 4.4.

Motion vectors in a 4×4 block are required to further profile their similarity

characteristics. Then the macroblock partitioning can be derived under the

combinations among those similarity sets. Finally, three partition types lead to

different adding combinations of motion vectors with reused adder units.

Furthermore, the MV upsampling is accelerated by the identification of

direct_8x8_inference_flag. This term is an optional flag signaled from encoder,

which represents the other three motion vectors within a 8×8 block are set equal to the

corner one in B_Slice. This configuration make the macroblock partition size limited

to beyond-8×8. Thus, the identification of direct_8x8_inference_flag can remove

additional steps from general cases. Under this flag, only 8 motion vectors are

required to be upsampled and the MV merge step is skipped because the motion

vectors are already integrated.

Fig. 4.5. shows the timing schedule of proposed MV upsampler determined by

the slice type and inference_8×8_flag. The processing time is saved by the adaptive

scheduling with flag identification.

 50

Fig. 4.4. MV and Sub-macroblock type derivation

Fig. 4.5. Timing schedule of MV upsampler

4.2. Intra Prediction
Intra-frame prediction is a commonly seen prediction mechanism which widely

used in image/video coding standards. In the Intra-coded macroblocks, prediction

samples are generated from padding the spatial neighboring pixels. Because pixels in

natural scenes are likely similar to other pixels around, Intra prediction achieve good

compression performance.

4.2.1. Architecture

In this work, Intra prediction generator is arranged in the 3rd pipeline stage.

Residual data within at most two qualities are read from previous stage and being

reconstructed to sample pixels in this stage. The lower quality residual is used to

reconstruct the lowest quality samples, which are regarded as the prediction data to

the quality enhancement layer. The architecture of proposed Intra predictor is shown

in Fig. 4.6.

 51

To restore the needed data from neighboring macroblocks, two neighboring data

SRAMs are established for luma and chroma respectively. Because the maximum

frame size of this work is 1080p which contains 120 macroblocks in a frame row, the

entries 0 to 119 are used to buffer the neighboring data from upper line. In addition,

the entry 120 is for the left neighboring line data. The illustration of the neighboring

data SRAM is shown in Fig. 4.7. 16 luma neighboring sample pixels and 4

neighboring prediction modes are grouped to 144 bits as a memory column. Besides,

8 cb and 8 cr samples are also grouped as chroma neighboring data.

With the required neighboring data, prediction of current macroblock can be

generated in sequential order. The prediction data would be added to residuals to form

the reconstructed pixels. During the reconstruction process, the minimum quality

layer reconstructed data will be updated to neighboring buffer for the un-processed

blocks. Besides, with the minimum reconstructed samples, maximum quality layer

residuals can be formed by simple accumulation. The residuals with different quality

layers are accessed in parallel in this work, thus reconstruction of two different quality

layers can be processed within the same cycle.

Fig. 4.6. Data path of Intra Prediction

 52

Fig. 4.7. Neighboring data SRAM

(a) (b)

Fig. 4.8 Intra Prediction: (a) Processing order; (b) Processing flow

4.2.2. Processing Flow

Trading off by hardware cost and the cycle budget, this work takes 4 pixels

parallelism as the processing throughput. Fig. 4.8. (a) shows the reconstruction order

for the luma samples and the arrows indicate the next processing row. No matter what

prediction modes, 4 samples within each 4×1 row are reconstructed in the same cycle.

Consequently, there are total 64 luma rows and 32 chroma processing rows for an

Intra-coded macroblock. Fig. 4.8 (b) shows the processing flow of the proposed Intra

predictor. The reconstruction of luma samples and neighboring buffer update are

firstly processed according to the block-based prediction modes. The state of luma

 53

sample procedure is repeated according to the prediction mode, I_4×4, I_8×8, and

I_16×16. After the luma loop, chroma reconstruction can be process then with the

refreshed neighboring data from chroma neighboring data SRAM. The reconstruction

of macroblock will be done in 121~145 cycles depends on the intra prediction modes.

4.2.3. Plane Mode Generator

Plane mode is the most complex mode among the Intra prediction modes. Some

encoder design removes this mode because of the major problem, significant area cost.

Fig. 4.9 shows the function of plane mode, which needs distinctive calculation

compared with other prediction modes in Intra prediction. The Intra predictor supports

all prediction modes in H.264/AVC in this work. To reduce the complexity overhead,

we proposed an area efficient scheme to implement the plane mode generator.

(a) (b)

Fig. 4.9. Intra plane mode prediction (a) intra 16×16; (b) chroma

 54

1) Weight Derivation

At first, the horizontal and vertical plane “Pre_Weight” H and V can be generated

by the accumulation buffer and scaling-addition combinations. Fig. 4.10. shows the

derivation circuit. In0 and In1 are the input pair which selected for subtraction. The

timing schedule and scaled term for weight derivation is listed in Table. 4.4. The cycle

counter can be the index of the input pair and scaling coefficients. Acc_Buf is used to

restore the temp relay pre-weight which will be accumulated later. During the 9th

cycle, the plane weight α or β will be further derived to by shifting and adding by the

final accumulation result. With the accumulation based weight derivation, 9 cycles

and 5 cycles are needed to process one directional weight derivation for luma and

chroma respectively.

In0

0

0

0

- <<1

<<2

<<3

Acc_Buf

Cnt[0]

Cnt[1]

Cnt[2]

~(|cnt)&Luma

Pre_Weight

In1

Fig. 4.10. Wight derivation circuit

Fig. 4.11. Proposed plane sample generator

 55

Table. 4.4. Timing scheduling (a) luma; (b) chroma

(a)

Cycles 1 2 3 4 5 6 7 8 9

Cnt 0 1 2 3 4 5 6 7 (Acc_buf×

5+16)

>>6

In0 p15 p8 p9 p10 p11 p12 p13 p14

In1 pUL p6 p5 p4 p3 p2 p1 p0

Scaled 8 1 2 3 4 5 6 7

(b)

Cycles 1 2 3 4 5

Cnt 0 1 2 3 (Acc_buf

×5+16)

>>6

In0 p7 p4 p5 p6

In1 pUL p2 p1 p0

Scaled 4 1 2 3

2) Coefficients combination

After the previous step, calculated plane weights will be involved with

position-related linear combination then. The coefficient weight for every position is

listed in Table.4.4.

Pred(h,v) = [α + β × (h - D) + γ × (v - D) + 16] >> 5

D = 7 for luma, D = 3 for chroma (4.1)

Because 4 prediction samples which output per every successive cycle is in the same

row in this work, the γ × (v - D) term can be reuse for these 4 samples (the same v).

Moreover, These 4 samples are in successive order in horizontal direction. Once the

term β × (h - D) of the left most sample is derived, other 3 samples can be derived by

adding the scalings of constant β. With this characteristic, the coefficient index can be

reduced to quarter in horizontal direction. Fig. 4.11 illustrates the proposed plane

sample generator.

 56

4.2.4. Synthesis Result

 The synthesis result of Intra predictor is listed as Table. 4.5. From Table. 4.5, this

work is competitive with [20] in the gate count and internal memory usage aspect.

Table. 4.5. Synthesis results of Intra predictor

Item [20] Proposed

Process 0.18um 0.09um

Frequency 120MHz 135MHz

Specification H.264/AVC Decoder SVC Decoder

Pixel Parallelism 4 pixels 4 pixels

Internal Memory 4.93KBytes 4.12KBytes

Gate counts 28,707 28,326

 - Neighboring Pixel Buffer N/A 7,490

 - I16 / Plane Mode N/A 3,556 / 2,889

 - I4 N/A 2,167

 - I8 N/A 4,345

 - IChroma(Not including plane mode) N/A 1,680

 - Control & Arithmetic N/A 8,108

 - Reconstruction N/A 980

 57

Chapter 5. Implementation Result

In this chapter, implementation results of this work are summarized which

includes the synthesized gate counts and memory requirement. The proposed Scalable

High profile video decoder architecture is implemented in Verilog HDL with UMC

90nm 1P9M CMOS technology.

5.1. Design Flow
 Fig. 5.1 shows the design flow in this work. After certainly defining the target

system specification, the corresponding C-model is generated then. It is convenient to

develop the coding algorithms by software-based approach. Once the algorithm is

confirmed, the hardware architecture can be implemented in verilog HDL. The RTL

verification of functional and timing behaviors starts by simulation with golden

C-model. SystemC model is introduced to co-simulate with verilog models for higher

level design. Comparisons from synthesis results direct the refinement loop to an

appropriate architecture design.

Fig. 5.1. Design Flow in this work

5.2. Gate Count
 For 135 MHz synthesis frequency (clock period is set to 7.4 ns), the total gate

count of this work is about 565 k. The gate count of each component is listed in

 58

Table. 5.1.

Table. 5.1. List of gate count for proposed SVC decoder

Module Gate counts

Entropy Decoder + Syntax Parser 213,638

Motion Compensation 107,080

Deblocking Filter 24,573

Inter-layer Prediction 87,778

 - Centralized CCSP 14,312

 - Texture/Residual Upsample 43,032

 - MV Upsample 6,703

 - External Data Buffer 23,131

Residual Reconstruction 56,184

 - Inverse DCT & Hadamard Transform 36,117

 - Inverse Quantization 15,972

 - Reconstruction + Control 4,095

Intra Prediction 28,326

 - Prediction Generator + Control 20,836

 - Neighboring Pixel Buffer 7,490

Texture Padding 9,870

 - Padding Unit 4,398

 - Neighboring Pixel Buffer 5,472

Memory Controller 12,678

System Control 2,001

Total 541,527

 * Synthesized by UMC90 at 135MHz

5.3. Memory Organization
 With the numerous quality and spatial scalabilities provided by SVC, memory

demand is also significantly increasing among other standards. To balance the on-chip

 59

memory demand and processing throughput, partitioning the data stream into internal

(high speed) and external (large capacity) storage elements is needed. The

requirement and organization of external and internal memory usage are presented in

this sub-section.

1) External memory

The detail of external memory data is listed in Table. 5.2. With the MB-based

spatial layer decoding flow, inter-layer prediction data is placed into the external

memory. Because the inter-layer prediction data is not referenced across frame

boundary (see Fig. 2.5), only one frame size is required. Noticeably, motion vector is

defined as a 42-bit data with two reference lists in this work. Thus, 84 bytes are

required to restore motion vectors in one macroblock. In the target (top enhancement)

spatial layer, deblocked pixel samples are wrote to external memory to be referenced

or displayed. Two quality layers in key pictures are restored according to key picture

concept. Besides, in the lowest spatial layer, column motion vectors in list1 frames are

restored for B_Direct mode. The total external memory requirement in this work is

44178.75 Kbytes (about 43Mbytes).

Table. 5.2. List of DRAM requirement for proposed SVC decoder

Module DRAM Requirement

Inter-layer Prediction 7171.875

 - Motion Vector 669.375

 - Residual 3442.5

 - Texture 3060

MC Reference/Display 33660

Column Motion Vector 3346.875

Total 44178.75

 Unit: Kbytes

 60

2) Internal memory

 Table 5.3 lists the internal memory requirement among components and pipeline

stages. For inter-layer intra and residual prediction, the transform size and

reconstruct-able symbol of corresponding macroblocks in base layer are restored in

SRAM. For deblocking filter, motion compensation, and Intra prediction, SRAMs are

used to buffering the neighboring data from left or the upper line macroblocks.

However, because two quality reconstruction pixels need to be deblocked in the key

picture, SRAM requirement is also doubled. Similar situations exist in the pipeline

stage buffer, which pass coefficients, residuals, and reconstructed pixels with two

qualities to next stage. In summary, the total internal memory requirement in this is

39.66 Kbytes.

Table. 5.3. List of SRAM requirement for proposed SVC decoder

Module SRAM Requirement

Single Port Dual/Two Port

Entropy Decoder + Syntax Parser 2.039 3.411

Motion Compensation 2.461

Deblocking Filter 7.461 1.218

 - Neighboring Pixels (Q0+Qmax) 7.374

 - Others 0.087 1.218

Inter-layer Prediction 4

Intra Prediction 4.116

 - Luma Neighboring Data 2.179

 - Chroma Neighboring Pixels 1.937

Texture Padding 0.937

Pipeline Ping-pong Buffer 12.893 1.125

 - Stage1 4.269

 -_Coefficients 4.113

 - MVDs 0.156

 61

 - Stage2 6.968 1.125

 - Residuals (Q0+Qmax) 0.562 1.125

 - MC Reference Pixels 6.250

 - MVs 0.156

 - Stage3 1.656

 -_Reconstructed_Pixels 1.50

 - MVs 0.156

Total 33.907 5.754

Total (Single port + Two/Dual port) 39.661

 * Unit: Kbytes

5.4. Comparison
 The comparison of this and other state-of-art video decoders are listed in Table.

5.4. Because there is only one published design of H.264/AVC scalable extension so

far [16], H.264/AVC HD decoders [4] [5] are listed in the comparison table. Generally,

the gate count cost for SVC decoder is larger than H.264/AVC due to the additional

scalabilities. It majorly comes from the inter-layer prediction which introduces high

arithmetic complexity and numerous external data buffers. Also, SVC applications

have more external memory requirements as well. With the equal standard, Scalable

High profile, although [16] has better capability in decoding single scalability, this

work can provide superior Max Throughput for multiple scalabilities. Max

Throughput represents the processing competence for combined spatial and quality

scalability as defined in Table. 5.4. To normalize the performance, Gate Efficiency

and SRAM Efficiency are utilized which mean the Max throughput per kilo gates and

Max Throughput per kilo bytes, respectively. This work has better performance in

Gate Efficiency. However, the relative high internal memory requirement causes the

drop of SRAM Efficiency.

 62

Table. 5.4. Comparison with other state-of-art video decoders

 [4] [5] [16] Proposed

Technology 0.18 um 0.18 um 0.09 um 0.09 um

Max Clock Rate 100MHz 120MHz 210MHz 135MHz

Profile MPEG-2 SP@ML

H.264 BL@L4

H.264

Baseline/Main

SVC High

MVC High

SVC High @ L5

Max Spec.

 (H.264)

1920×1088

 @ 30fps

1920×1088

@30fps

4096×2160

@24fps

1920×1088

@60fps

Max Spec.

(SVC)

N/A N/A SL: 1920×1088 +

1280×720 @ 30fps

QL: 1920×1088

w/ 4 QLs @30fps

 1920×1088 +

 720×480 +

 352×288

 w/ 3 QLs @60fps

Gate Count 303.78 K 160 K 414.28 K 541.52 K

Internal Memory 22.75 Kbtyes 4.5 Kbtyes 8.99 Kbtyes 39.66 Kbtyes

External Memory 8MB DRAM N/A N/A 43MB DRAM

Max Throughput 244800 MB/s 244800 MB/s 979200 MB/s 1783080 MB/s

Gate Efficiency 805.84

MB/Kgates-s

1530

MB/Kgates-s

2363.62

MB/Kgates-s

3292.68

MB/Kgates-s

SRAM

Efficiency

10760

MB/Kbytes-s

54400

MB/Kbytes-s

108921

MB/Kbytes-s

44959

MB/Kbytes-s

* Max Throughput = Frame rate × Processing MBs in (Spatial + Quality) layers

 63

Chapter 6. Conclusion and Future Work

6.1. Conclusion
 In this thesis, a complete design methodology for SVC decoder is presented from

decoding flow analysis to module implementation. From simulation results, the

proposed One-pass quality decoding further reduces 71% memory bandwidth and at

most 66% macroblock processing time. For the padding issue before texture

upsampling, the proposed BL-level scheme can save 26% time consumption for the

IntraBL macroblocks. This work also analyzes and optimizes the architecture design

of SVC decoder. For the residual reconstruction path, parallel-pipeline architecture

saves 9.1% gate count cost and 100% memory cost compared with the other one.

Temporal result reusing scheme reduces 75% required basic vertical interpolations,

which lowers 70.6% gate counts in interpolator design. The parallel-pipeline

architecture and temporal result reusing scheme can be combined and lead to 54%

gate count savings in residual reconstruction path. This thesis also introduced the

architecture design of external memory access and inter-layer prediction. For

inter-layer module design, the proposed basic interpolator reduces 28.8% hardware

complexity. The gate counts of MV upsampler and texture padder are 6.7k and 4.4k

respectively.

 Finally, the proposed a Scalable high profile decoder can successfully support 3

spatial layers and 3 quality layers simultaneously. It meets the specification which

combines CIF, SD480p, and HD1080p with 3 quality layers at 60 frames per second.

The total gate counts and internal memory usage in this work are 541.52k and 39.66

Kbytes, respectively.

 64

6.2. Future Work
 The power consumption issue is not mentioned in this work. Although the

simplified complexity basically helps the power reduction, specific power saving

strategies may further help the power performance in this work. In addition, because

this work is based on the result of gate-level simulation, physical layout and chip

testing are not included. For further verification or power testing, the back-end design

flow is required in the future.

 65

Reference

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, "Draft ITU-T

Recommendation and Final Draft International Standard of Joint Video

Specification (ITU-T Rec. H.264/ISO/ IEC 14 496-10 AVC," JVT-G050, 2003.

[2] Joint Draft 11 of SVC Amendment, Joint Video Team (JVT) of ISO/IEC MPEG

& ITU-T VCEG, Oct. 2007.

[3] D.-Zhou et al., "A 1080p@60fps multi-standard video decoder chip designed for

power and cost efficiency in a system perspective," in Symposium on VLSI

Circuit, pp. 262-263, June. 2009.

[4] T.-M. Liu et al., "A 125 µW, Fully Scalable MPEG-2 and H.264/AVC Video

Decoder for Mobile Applications," in IEEE Solid-State Circuits Conference, Dig.

Tech, pp. 402-403, 2006, Feb. 2006.

[5] C.-C. Lin et al., "A 160kGate 4.5kB SRAM H.264 Video Decoder for HDTV

Applications," in IEEE Solid-State Circuits Conference, Dig. Tech, pp. 406-407,

Feb. 2006.

[6] C.-D. Chien et al., "A 252kgate/71mW Multi-Standard Multi-Channel Video

Decoder for High Definition Video Applications," in IEEE Solid-State Circuits

Conference, Dig. Tech, pp. 282-283, Feb. 2007.

[7] Sze. V. et al., "A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder." in IEEE

Journal of Solid-State Circuits, vol.4, no.11, pp. 2943-2956, Nov. 2009.

[8] H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video

Coding Extension of the H.264/AVC Standard," in IEEE Transactions on

 66

Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103-1120, Sep.

2007.

[9] H. Schwarz et al., "Constrained Inter-Layer Prediction for Single-Loop Decoding

in Spatial Scalability, " in Proceedings of IEEE International Conference on

Image Processing, vol. 2, pp. 870-873, Sep. 2005.

[10] H. Schwarz, D. Marpe and T. Wiegand, "Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard,” in IEEE Transactions on Circuits and

Systems for Video Technology, vol. 17, no. 9, pp. 1103-1120, Sep. 2007.

[11] H. Schwarz et al., "Combined Scalability Support for the Scalable Extension of

H.264/AVC," in Proceedings of IEEE International Conference on Multimedia &

Expo, pp. 446-449, Jul. 2005.

[12] C. A. Segall and G. J. Sullivan, "Spatial Scalability Within the H.264/AVC

Scalable Video Coding Extension," in IEEE Transactions on Circuits and

Systems for Video Technology, vol. 17, no. 9, pp. 1121-1135, Sep. 2007.

[13] P.-Y. Hsu, G.-L. Li and T.-S. Chang, "Memory Analysis for H.264/AVC Scalable

Extension Decoder, " in Proceeding of APSIPA Annual Summit and Conference,

pp. 299-302, Oct. 2009.

[14] Narvekar, N.D. et al., "An H.264/SVC memory architecture supporting spatial

and course-grained quality scalabilities," in IEEE Conference on Image

Processing, pp. 2661-2664, Nov. 2009.

[15] Y.-H. Chen, et al., "A cost-efficient residual prediction VLSI architecture for

H.264/AVC scalable extension,” in Proc. of Picture Coding Symposium, 2007

[16] T.-D. Chuang, et al., "A 59.5mW Scalable/Multi-view Video Decoder Chip for

 67

Quad/3D Full HDTV and Video Streaming Applications," in IEEE Solid-State

Circuits Conference, Dig. Tech, pp. 330-331, Feb. 2010.

[17] SVC Reference Software, JSVM 9.14.

[18] T.-W. Chen, et al., "Architecture Design of H.264/AVC Decoder with Hybrid

Task Pipelining for High Definition Videos," in Proceeding of IEEE

International Symposium on Circuits and Systems, pp.2931–2934, May. 2005.

[19] T.-A. Lin, et al., "An H.264/AVC Decoder with 4x4-block Level Pipeline," in

Proceeding of IEEE International Symposium on Circuits and Systems,

pp.1810-1813, May 2005.

[20] T.-C. Chen, C.-J. Lian, L.-G. Chen, "Hardware architecture design of an

H.264/AVC video codec," in Asia and South Pacific Design Automation

Conference, March. 2006.

[21] Y.-H. Liao, G.-L. Li and T.-S. Chang, "A high throughput VLSI design with

hybrid memory architecture for H.264/AVC CABAC decoder," in Proceeding of

IEEE International Symposium on Circuits and Systems, pp.2007- 2010, May.

2010.

