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H.264/AVC Scalable High Profile 解碼器之設計與

實作 

研究生: 陳宥辰                                  指導教授: 張添烜 博士 

國立交通大學 

電子工程學系電子研究所碩士班 

摘  要 

 隨著愈來愈先進的視訊標準，視訊裝置的應用也更趨廣泛。在這些標準之中，

可調性影像編碼(SVC)不僅提供高規格的影像編碼，同時也支援了時間、品質、

空間上的可調性。然而這些可調性在視訊晶片的設計上會造成解碼時間、記憶體

頻寬、邏輯閘成本等額外的負擔。因此，本篇論文呈現了 Scalable High profile 

H.264/AVC 解碼器從解碼流程分析、架構設計到模組實作的優化。 

 在解碼流程上，本篇論文採取先前提出的畫面幀為基礎(frame-based)之空間

層解碼，並提出一個可以在記憶體頻寬和巨圖塊的處理週期分別能達到 71%和

66%縮減的單次品質層解碼流程。對於在層間幀內預測的質地填充(texture 

padding)方面，我們提出了基本層級(BL-level)的填充流程並節省了層間幀內預測

巨區塊 26%的解碼時間。 

 在上述流程下，本解碼器採取四級管線架構設計來增加解碼速度。第一個管

線級是由三品質層平行處理的熵解碼器(Entropy Decoder)和語法解析器(Syntax 

Parser)所組成。第二個管線級是由殘餘重建路徑、層間預測器、以及參考像素抓

取單元所組成。本論文特別針對殘餘重建路徑進行優化，以解決由可調性所造成

的額外複雜度。經由實驗結果，我們所提出的平行管線架構和暫存結果重複使用
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(temporal result reusing)方法相對於傳統方法能節省 54%的邏輯閘。對於層間預測，

我們提出中央化的累加器型層間對應結構、簡化的多相插值器以及有效率的移動

向量向上取樣器來節省邏輯閘成本和解碼時間。第三個管線級是由動作補償和幀

內預測器所組成。而第四個管線級是由去區塊濾波器和質地填充器所組成。為了

有效存取外部記憶體，本篇論文使用了針對可調性解碼規格客製化的記憶體要求

協定。 

 最後，我們提出的 Scalable High profile 解碼器在 UMC 90 奈米的製程環境下

總共約使用了 54 萬個邏輯閘和 3 萬 9 千個位元組的內部記憶體。其在一秒內可

以處理 60 張 CIF-SD480p-HD1080p 規格和三層品質層的畫面幀。相對於較早的

解碼器，本實作能在多樣可調性的基礎上提供更好的解碼效率。 
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Design and Implementation of H.264/AVC Scalable High 

Profile Decoder  

Student: Yu-Chen Chen                          Advisor: Tian-Sheuan Chang 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 

Video applications are everywhere with the more and more advance standards. 

Scalable Video Coding (SVC) not only supports high definition specifications but also 

provides temporal, quality, and spatial scalabilities. However, these additional 

scalabilities cause the decoding time, memory bandwidth, and area cost overhead in 

chip design aspect. Thus, this thesis presents an H.264/AVC Scalable High Profile 

decoder with optimizations on decoding flow, architecture design, and module 

implementation.  

For decoding flow, this thesis adopts the previous proposed frame-based flow for 

spatial layer decoding, and proposes one-pass MB-based flow for quality layer 

decoding that saves 71% and 66% in external memory bandwidth and macroblock 

processing cycle respectively. For texture padding in inter-layer intra prediction, we 

propose BL-level padding flow that saves 26% decoding time in IntraBL coded 

macroblocks.  

With above flow, the decoder adopts four stages pipeline architecture to enhance 
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the decoding throughput. The 1st stage is composed of entropy decoder and syntax 

parser which deal with 3 quality coefficients in parallel. The 2nd stage is composed of 

residual reconstruction path, inter-layer predictor, and reference pixels fetch unit. This 

thesis specifically optimizes the residual reconstruction path with parallel-pipeline 

architecture and temporal result reuse to cope with the additional complexity from 

SVC standard, which leads to 54% gate count savings compared with the traditional 

serial-pipeline architecture. For inter-layer predictor design, we propose the 

centralized accumulation-based CCSP concept, simplified poly-phase interpolator, 

and efficient MV upsampler to save the area cost and decoding time. The 3rd stage is 

composed of motion compensation and Intra predictor. The 4th stage is composed of 

the deblocking filter and the texture padder. To efficiently access external memory, a 

SVC-customized memory protocol is adopted in this thesis.  

Finally, the proposed design Scalable High profile decoder is implemented with 

UMC 90nm CMOS technology, which cost 565.12k gate count, and 39.66 Kbytes on 

chip memory. It is capable of 60fps, CIF-SD480p-HD1080p, and 3 quality layers 

decoding at 135MHz. Compared to the previous designs, the proposed decoder 

achieves better decoding efficiency based on multiple scalabilities.  
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Chapter 1. Introduction 

Video applications have been everywhere since advances of network bandwidth 

and wireless access techniques. With the prosperity of portable devices, digital 

televisions and internet videos, the applications of digital video become diversified. 

The state-of-art coding standard H.264/AVC [1] achieves high performance in bit-rate 

savings for these applications. Video encoder provides different bit-streams for 

different demands of video size, quality and frame rate. To further integrate the 

processing of different video demands, SVC, developed by the Joint Video Team 

(JVT) of ISO/IEC Motion Picture Expert Group (MPEG) and ITU-T Video Coding 

Expert Group (VCEG), delivers flexible scalabilities in temporal, spatial and quality 

domains by a single bit-stream [2]. Bit-stream of SVC is integrated at once with the 

benefits of coding time and complexity consumption. For the receiver side, decoder 

must guarantees the reconstruction of various scalabilities.  

1.1. Motivation 
Recently, real-time processing with HD resolution is basically boosted for video 

applications. To meet the processing specification, video decoders are commonly 

integrated to ASIC chips [3][4][5][6][7]. These designs were implemented within 

H.264/AVC standard however did not support the scalable extension.  

The high definition and various scalabilities make SVC decoder much more 

complex than H.264/AVC and previous standards. Critical issues from external 

memory bandwidth, processing throughput, and area cost need to be solved in SVC 

chip designing. In order to deal with those problems, this thesis makes efforts on the 
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investigation of design and implementation methodology for SVC decoder. 

1.2. Thesis Organization 
The organization of this thesis is described as follows. Chapter 1 makes a brief 

introduction of SVC and motivation of this work. Chapter 2 gives an overview on 

SVC standard and introduces the mechanism of inter-layer prediction in SVC. In 

Chapter 3, the overall architecture in this work is presented with the decoding flow 

analysis and data path optimization. Chapter 4 shows the hardware implementation 

and experiment results of the proposed SVC decoder. Finally, the conclusion and 

future work will be given in Chapter 5. 
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Chapter 2. Overview of SVC Standard 

With the stronger demands of multimedia applications, video coding techniques 

have been constantly concerned as well. The compression capability has getting more 

powerful with the more advanced video coding techniques. Fig. 2.1 shows the 

evolution history of video coding standards. For the multiple device network 

applications, the state-of-art standard, SVC, further provides flexible scalabilities for 

applications. The term “scalability” means that certain parts of the bit-stream can be 

removed in order to adapt to the requirements of receivers.  

Fig. 2.2 gives a scalability demonstration of SVC. For encoder, temporal, spatial, 

and quality scalabilities are integrated in single bit-stream. This bit-stream provides 

selective ranges from multiple levels of frame rate, frame size, and video quality. The 

bit-steam is transmitted to every device by broadcasting within the communication 

networks. Each backend device then adaptively extracts the corresponding parts of 

bit-stream for their specific application. For example, HDTV extracts the highest level 

scalabilities with its customized purpose and high-speed transmitting channel. Cell 

phone extracts the lowest level part of bit-stream on the contrary.  

 

Fig. 2.1. History of video coding standards 
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Fig. 2.2. Scalability demonstration of SVC 

2.1. Fundamentals of SVC 
SVC is inherited from H.264/AVC with its advanced coding techniques. In 

addition, it provides scalabilities in three domains where the architecture of encoder is 

shown in Fig. 2.3. In the beginning, the original texture is down-sampled to 

supportable image resolutions. Two spatial layers are configured to achieve the spatial 

scalability in this case. The functional behaviors within shaded region are equal to 

H.264/AVC. Different from H.264/AVC, the upper resolution layer (spatial 

enhancement layer) uses the upsampled information from lower resolution layer 

(spatial base layer) as prediction candidates. That is because with the scaled 

relationship between layers, scaled motions vectors, residuals, and texture value from 

base layer may predict more accurately. The prediction scheme is called inter-layer 

prediction (ILP) which achieves high coding performance for SVC. Progressive SNR 

refinement coding produces multiple levels of transformed coefficients to provide 

quality scalability. Because temporal scalability is already enabled by H.264/AVC, 

SVC only provides supplemental enhancement information to improve its usage. 
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Fig. 2.3. Block diagram of SVC encoder with two spatial layers 

 

The SVC Amendment of H.264/AVC specifies three profiles for scalable video 

coding [8]: Scalable Base, Scalable High, and Scalable High Intra. The coding tools 

supported by each profile are listed in Table. 2.1. The Scalable Baseline profile is 

mainly used for applications with low decoding complexity. The supportable 

resolution ratio between successive layers is restricted to 1.5 or 2. Thus, the 

complexity of ILP can be reduced by the macroblock-aligned spatial mapping. In 

Scalable High profile, arbitrary spatial resolution ratios can be supported. Except for 

spatial scalability, temporal and quality scalability are supported without any 

restriction in both Scalable Baseline and Scalable High Profile. Scalable Baseline 

profile and Scalable High profile retains all the coding tools from Baseline Profile and 

High Profile of H.264/AVC, respectively. Noticeably, Scalable Baseline profile 

supports B Slices, weighted prediction, CABAC entropy coding, and 8x8 luma 

transform in enhancement layers, although these coding tools are not supported in 

Baseline profile of H.264/AVC. Scalable High Intra profile is mainly considered for 

professional applications which contain only IDR pictures. Except for this restriction, 
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the coding tools are the same with Scalable High profile.  

Table. 2.1. Profiles of SVC 

Coding Tools Baseline High High Intra

Arbitrary Resolution Ratio N Y Y 

Inter-laced Coding N Y Y 

Temporal Scalability Without Restriction Y Y Y 

Quality Scalability Without Restriction Y Y Y 

H.264/AVC Baseline Profile Y Y Y 

H.264/AVC High Profile N Y Y 

B Slices Y Y Y 

Weighted Prediction     Y     Y     Y 

CABAC Entropy Coding Y Y Y 

8x8 Luma Transform for EL Y Y Y 

Only IDR pictures N N Y 

2.2. Features of SVC Decoder 
SVC decoder not only inherits the coding techniques from H.264/AVC but also 

guarantees the reconstruction of spatial, temporal, and quality scalabilities as shown 

in Fig. 2.4. In the beginning, the extracted bit-stream with necessary scalability is 

entropy decoded and the parsed data are used as the source of further reconstruction. 

Quality scalability is mainly processed with the refinement of scaling coefficients, 

which brings quality disparity for different layers. With the utilization of inter-layer 

prediction, reference data from base layer will be upsampled as the predicted contents. 

The inter-layer prediction mechanism will be introduced in next section. Similar to 

the existing H.264/AVC standard, intra prediction and motion compensation are used 

in SVC with the spatial and temporal locality. The pixel sample reconstruction is 
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accomplished by adding residuals to those predicted samples. Finally, deblocking 

filter is applied to erase the blocking effect.  

Fig. 2.4. Block diagram of SVC decoder 

 

2.2.1. Single-loop Decoding 

Single-loop decoding [9] is an advanced mechanism to lower the decoding 

complexity. Because the Inter-coded macroblocks only use the motion information of 

base layer, motion compensation in base layer can be avoided. Only Intra-coded and 

IntraBL-coded macroblocks are reconstructed and deblocked in spatial base layers. 

Thus, the complexity can be reduced due to the single motion compensation loop 

among spatial layers. To further integrate this mechanism with inter-layer intra 

prediction, texture padding is applied to extending the reference sample boundary for 

those regions are un-available for upsampling.  
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2.2.2. Key Picture Concept and Combined Scalability 

  Except for single-loop decoding, “key picture concept” and “combined 

scalability” is added to simply the coding flow of SVC. Key picture concept provides 

appropriate trade-off between stream-truncated drift and coding efficiency for 

hierarchical prediction structures. Beside, based on combined scalability concept, only 

quality refinement is needed inside the same dependency layer. Thus, multi-loop 

reconstruction flow for quality layers can be avoided by single prediction generation. 

For detail of key picture concept and combined scalability, please refer [10] [11]. 

2.2.3. Data Dependency of SVC Decoder 

  In summary, with simplifications mentioned above, the data dependency of SVC 

decoder is shown in Fig. 2.5. The solid lines represent reference direction of 

coefficients where should not be across spatial and temporal layers. The dotted lines 

indicate the reference direction of predictions: for inter-layer prediction, top quality 

layer reconstruction is referenced; for motion compensation, P slice references the 

data of bottom quality and B slice references the top ones. Based on single-loop 

decoding, motion compensation only executes in the top spatial layer which means 

there is no temporal referencing in spatial base layer. The referencing structure 

mentioned above makes SVC decoder simpler to be implemented.  

 

Fig. 2.5. Data dependency of SVC decoder 
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2.3. Inter-layer Prediction 
Inter-layer prediction (ILP) is the novel coding technique which applied in SVC 

standard. From experimental results, it considerably lowers the bit-rate by taking 

advantage of the content locality between spatial layers. In addition to dyadic 

applications, ILP mechanism also works under the situations of arbitrary hierarchical 

frame sizes, which is defined in Scalable High profile. In reality, ILP adopts 

“Extended Spatial Scalability (ESS) [12]” approach to deal with the macroblock and 

data un-aligned of two spatial layers. In this section, the practical mechanism of 

ESS-utilized ILP in SVC decoder will be introduced.   

2.3.1. Flags and Macroblock Types 

 The reconstruction procedure of ILP is illustrated in Fig. 2.6. In this figure, the 

identification of Base_mode_flag is processed in the beginning of this flow. Once this 

flag is set true, the current spatial enhancement macroblock will be totally inter-layer 

predicted by contents from base layer. Therefore, the enabling of this flag can be 

regarded as the appearance of a novel macroblock type “BaseMode”, which has not 

existed in H.264/AVC or earlier standard. 

 After the BaseMode type is qualified, this flow goes to IntraBL identification. In 

this process, SVC standard chooses sixteen feature points of enhancement layer as 

representational positions of current macroblock. As shown in Fig. 2.7, these sample 

positions are going to map their specific base layer positions by calculation. One thing 

we can imagine is that these points belong to their corresponding macroblocks in base 

layer. By definition, if all the corresponding macroblocks are reconstruct-able, the 

current macroblock type is named as “IntraBL”. Otherwise, if any corresponding 

macroblock of these sixteen points is inter-coded, the current macroblock is called as 

“InterBL”. InterBL and IntraBL are the two subsets of BaseMode type. IntraBL type 
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adopts the upsampling samples as prediction of current macroblock entirely, and it 

would not be accompanied with inter-layer motion (ILMP) and inter-layer residual 

(ILRP) mechanisms. In the other hand, InterBL type uses the information of base 

more directly. Under this type, every sample within “reconstruct-able” (IntraBL or 

Intra) macroblocks in base layer is predicted by upsampling of inter-layer texture. And 

the other samples will be predicted by result of motion compensation with the scaled 

motion vectors. 

Fig. 2.6. Reconstruction flow of ILP 
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   Fig. 2.7. EL/BL position mapping of IntraBL identification  

 

2.3.2. Calculation of Corresponding Spatial Positions 

Compared with dyadic spatial scalability, non-dyadic one suffers from the issue 

of indirect position mapping between two spatial layers. ESS adopts the scheme 

called “Calculation of Corresponding Spatial Positions (CCSP) [12]” to map 

corresponding samples between two successive layers. The concept of this derivation 

is to exploit inter-layer resolution ratios to determine the corresponding positions and 

upsampling parameters. The mathematical term of CCSP is shown as below 

BLm ＝ {[m × Dm)＋Am] >> (Sm－4)}－dm       

where m  {x,y} and 0 < x < FrameWidth, 0 < y < FrameHeight   (2.1) 

m is the current sample absolute position in enhancement layer. Sm and Dm are 

parameters which refer to the resolution ratio between spatial layers. Am and dm are 

terms added to increase the arithmetic precision. With parameters mentioned above, 

BLm can be finally derived where indicates the absolute position with 1/16th precision 

in base layer. This term is derived to infer the corresponding sample positions and 

interpolation phases for upsampling. The inferred parameters play significant roles in 

the overall ILP mechanism. In Fig. 2.6, blocks within dotted line are the components 

accompanied with CCSP process directly.  
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2.3.3. Inter-layer Intra Prediction 

Inter-layer Intra Prediction (ILIP), one of the mechanisms of ILP, uses the 

up-sampled deblocked samples as the texture prediction. The up-sampling operation 

applies a separable 4-tap and bi-linear poly-phase interpolation filter for luma and 

chroma respectively. The numerator tap values for these dedicated filters are shown in 

Table. 2.2, and a five-bit rounding right shift operation will be applied for producing 

normalized results. 

Table. 2.2. Poly-phase coefficients of upsampling filter  

(a) Bi-linear filter;       (b) 4-tap filter 

 

 Corresponding positions of target reference samples in base layer are derived 

from CCSP, which is listed below 

phase coefficients 

C-1 C0 C1 C2 

0 0 32 0 0 
1 -1 32 2 -1 

2 -2 31 4 -1 

3 -3 30 6 -1 

4 -3 28 8 -1 

5 -4 26 11 -1 

6 -4 24 14 -2 

7 -3 22 16 -3 

8 -3 19 19 -3 

9 -3 16 22 -3 

10 -3 14 24 -4 

11 -1 11 26 -4 

12 -1 8 28 -3 

13 -1 6 30 -3 

14 -1 4 31 -2 

15 -1 2 32 -1 

phase coefficients 

C0 C1 

0 32 0 
1 30 2 

2 28 4 

3 26 6 

4 24 8 

5 22 10 

6 20 12 

7 18 14 

8 16 16 

9 14 18 

10 12 20 

11 10 22 

12 8 24 

13 6 26 

14 4 28 

15 2 30 
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BLPOSm = BLm >> 4            (2.2) 

Where BLm is the derived term in Eg. (2.1) In addition, the target interpolation phases 

are also derived according to BLm 

 BLPHSm = BLm & 15            (2.3) 

For an enhancement layer position m, its corresponding 4-tap poly-phase filtering 

equation is  

P = Sp(BLPOSm – 1) × C-1(BLPHSm) + Sp(BLPOSm) × C0(BLPHSm) 

 +Sp(BLPOSm + 1) × C1(BLPHSm) + Sp(BLPOSm + 2) × C2(BLPHSm)  (2.4) 

where Sp(x) is the sample value in absolute position x and Cn(y) is the nth coefficient to 

phase index y. SVC adopts the interpolation in Eq. (2.4) in horizontal and vertical 

dimensions to produce the texture prediction. The process fully takes advantage of the 

corresponding parameters derived from CCSP with concept of position mapping. 

From related experimental results, the poly-phase filter indeed holds good prediction 

performance with prediction generation. 

2.3.4. Inter-layer Residual Prediction 

The prediction generation of Inter-layer residual prediction (ILRP) is similar to 

ILIP. Being a little different, ILRP adopts bi-linear filter to interpolate both luma and 

chroma samples. Moreover, because discrete cosine transform (DCT) is based on 4×4 

or 8×8 blocks, filtering will not take place in transform block boundaries in SVC 

standard. The block-wise interpolation equation is listed below 

P = ( Transformblock(BLPOSm) == Transformblock(BLPOSm+1) )    ? 

( Sp(BLPOSm) × C0(BLPHSm) +Sp(BLPOSm + 1) × C1(BLPHSm) )  : 

[ (BLPHSm < 8 ) ? ( Sp(BLPOSm) <<5 ) : ( Sp(BLPOSm + 1) <<5 ) ]   (2.5) 

From Eq. (2.5), we can observe the filtering will be skipped if the input pairs of 

bi-linear filter are within different transform blocks. 
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2.3.5. Inter-layer Motion Prediction 

Motion vector is another information which delivers the similarity between 

spatial layers. As a result, inter-layer motion prediction (ILMP) mechanism uses the 

scaled motion vectors to acquire the better solution in temporal locality. The 

upsampling of motion vectors can be divided to several steps as followings. 

1) Find the corresponding motion vectors 

ILMP generates all 4×4 blocks in current macroblock with up-sampled motion 

vectors. The spatial mapping of successive layers is also shown in Fig. 2.7. The 

sixteen corresponding positions are located at sixteen corresponding 4×4 blocks which 

should contains motion vectors in every block. However, if the corresponding block is 

located at Intra or IntraBL region, there is no motion vector available. Thus, SVC 

adopts hierarchical strategy to fill the corresponding motion vectors of un-available 

regions. Fig.2.8 shows the 4×4-based and 8×8-based mapping. Motion vector filling is 

processed first in 4×4 level. Single un-available block applies the neighboring motion 

vectors in priority of horizontal, vertical, and diagonal directions. If all of the motion 

vectors inside 8×8 are not available, 8×8-based processing is further applied. After the 

filling process, these base layer motion vectors at co-located blocks are going to be 

upsampled then. 

   

1

3 2

 

(a)                   (b) 

Fig.2.8. Filling strategy for un-available blocks: (a) 4×4 process; (b) 8×8 process 
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2) Motion vector upsampling 

The motion vector upsampling equation is shown as below 

MVEL ＝ (MVBL × Dmv +32768) >>16        (2.5) 

where MVBL is the reference motion vector value in base layer, and Dmv is the spatial 

parameter which represents the ratio between layers. MVEL is the target derived 

motion vector in the current macroblock.  

3) Refinements of reference index and motion vector 

Two level steps are needed to refine the scaled motion vectors and the reference 

indexes. Reference indexes are used to indicate the reference direction (forward or 

backward) in motion compensation which is in a 8×8 block set. However, upsampled 

motion vectors with reference indexes from base layer may cause the inconsistency. 

Thus, reference indexes are further reorganized in the reference list domain with the 

priority shown in Fig. 2.8 (a).  

The second level refinement is the motion vector integration technique. SVC 

averages “similar” motion vectors of adjacent 4×4 blocks within the same reference 

indexes to generate a new motion vector as shown in Fig. 2.9. The definite threshold 

of the term “similar” is represented by Eq. (2.6).  

︱MVx0 – MVx1︱+ ︱MVy0 – MVy1︱≤  1       (2.6) 

With this process, block partitions are further integrated and become simpler.  

 
Fig. 2.9. Example of motion vector integration 
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2.4. Related Works 
 Since SVC has been standardized in 2007 [2], more and more researches and 

analysis about SVC architecture are published recently. Memory storage is an 

important issue which is caused by additional data dependency of SVC. For memory 

architecture analysis, [13] analyzed the spatial layer decoding flow in consideration of 

inter-layer prediction data. In this research, frame-base decoding flow is most efficient 

for spatial layer decoding with memory characteristics. [14] also proposed a memory 

architecture for SVC which focus on the size reduction of on-chip memory. For 

inter-layer prediction, the most different part from H.264/AVC, [15] proposed a 

cost-efficient residual prediction hardware architecture for encoder. However, it does 

not mention the detail implementation of residual prediction. For the whole chip 

integration, designs [3] ~ [7] implemented and optimized H.264/AVC decoder already 

by focusing on the power consumption, on-chip memory demand, or gate count issues. 

[16] is the first published work about the integration of a SVC decoder which will be 

compared with this work later.  
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Chapter 3. Framework of SVC Decoder 

In this Chapter, the analysis and architecture of the proposed SVC decoder chip 

will be demonstrated as follows. We first consider the most appropriate decoding flow 

among three dimensions: spatial layer, quality layer and texture padding procedure. 

Each dimension is analyzed in consideration of memory bandwidth, decoding time or 

area cost. Afterward, the overall 4-stage pipeline architecture will be presented with 

design methodologies. There are architecture optimization and comparison to improve 

the area cost of this work. Then the external memory access system with the efficient 

data transaction will be introduced in the final section.  

3.1. Design Specification 
In Chapter 2, we have introduced the profiles with coding tools of H.264/AVC 

Scalable extension. To achieve high performance in video decoding, the proposed 

SVC decoder supports main features in Scalable High Profile. Because of the support 

to high throughput decoding for high definition applications, the limited resources are 

hardly able to cope with infinite scalabilities. With restrictions to the layers of 

scalabilities, specifications of the proposed SVC decoder chip are listed as follows. 

(a) Supports bitstreams of H.264/AVC High Profile. 

(b) Supports at most 3 spatial layers from QCIF to HD1080p. 

(c) Supports at most 3 quality layers.  

(d) Supports all GOP sizes under 8. 

(e) Supports arbitrary resolution ratios between spatial layers with ESS.  

Under the restrictions mentioned above, the proposed SVC decoder successfully 
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reconstructs the Scalable High profile bit-streams encoded by reference software 

JSVM 9.14 [17]. In addition, the critical specification of this work is to 

simultaneously support 3 spatial layers (CIF-SD480p-HD1080p) and 3 quality layers 

decoding at 60 frames per second, which is under the working frequency of 135MHz.  

3.2. Decoding Flow Analysis 
With the additional feature of multiple-domain scalabilities, the traditional 

decoding flow of H.264/AVC is no longer appropriate for scalable extension. 

Therefore, an efficient decoding flow must be investigated to deal with the additional 

complexity from SVC. Moreover, memory bandwidth is a typical issue for video 

chip design and significantly influenced by the processing procedure. In this section, 

some strategies of decoding flow will be analyzed in consideration of memory access. 

A most efficient decoding procedure will be utilized for the proposed SVC decoder. 

Finally, we will introduce the memory controller protocol which plays an important 

role in external data access. 

3.2.1. Spatial Layer Decoding 

Spatial scalability is the most distinct part between H.264/AVC and SVC. With 

utilization of inter-layer prediction, data dependency exists between spatial layers. 

Among the related researches, [13] has analyzed the spatial decoding flow based on 

memory access from H.264/AVC to SVC. From this research, frame-based spatial 

decoding flow has better characteristics than other strategies with appropriate memory 

partition  

3.2.2. Quality Layer Decoding 

In SVC, quality scalability is achieved by using coarse-grain scalability (CGS) or 

medium-grain scalability (MGS). Coefficients in enhancement layer are reconstructed 

by the sum coefficients from base layer and delta coefficients from entropy decoder. 
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With quality scalability, the reconstruction capability of SVC decoder is challenged by 

the increasing amount of quality layers. To deal with all quality layer coefficients, the 

decoding flow plays an important role in both processing time and memory access 

aspects.  

1) Frame-based quality decoding 

In traditional flow [2], quality layer decoding proceeds in frame-level approach as 

shown in Fig. 3.1. Enhancement layer frames are reconstructed after the previously 

decoded frame in base layer. However, this flow introduces significant external 

memory accesses. For one thing, reference data for prediction generation must be 

loaded if necessary (I/P slice in top spatial layer). In this case, external memory access 

for prediction reference data doubles with multiple quality layers. For the other, 

coefficients in base layer are also stored for being referenced in enhancement layer. 

This amount of quality coefficients is too large to store in internal memory. For 

example, memory space of 8160×384×2 bytes are totally needed for the frame size of 

HD1080p. Therefore, considerable external memory access occurs for processing 

every quality layer. Table. 3.1 lists the external memory bandwidth requirement in 

frame-based quality decoding flow. In Table. 3.1, the “others” item means the write 

out data which includes inter-layer data or frame pixels.  

 

Fig. 3.1. Frame-based quality layer decoding flow 
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Table. 3.1. Memory bandwidth requirement in frame-based quality decoding flow 

Item/Sequence Blue-Sky Tractor Pedestrian-area 

Prediction Reference  31.51MBps 33.14MBps 33.31MBps 

Quality Coefficients 160.9MBps 160.9MBps 160.9MBps 

 Others 43.48MBps 43.53MBps 43.32MBps 

Total 235.89MBps 237.57MBps 237.53MBps 

* GOP : 8 / Frame-rate : 30fps / QP: 12-22-32 / Frame-size : CIF-480p 

2) MB-based quality decoding 

MB-based decoding is another approach for quality decoding. Coefficients from 

different quality layers are reconstructed within the same macroblock in successive 

order, as shown in Fig. 3.2. It is not necessary to put the quality coefficients out 

because they will be referenced within the same macroblock process. Instead, internal 

memory can handle the amount of coefficients (384×2 bytes). As a result, no external 

memory access for quality coefficients is required in MB-based quality layer 

decoding. The only data to be accessed from external memory is the reference data for 

prediction generation. The external memory bandwidth requirement of MB-based 

quality decoding flow is listed as Table. 3.2.  

 

Fig. 3.2. MB-based quality layer decoding flow 
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Table. 3.2. Memory bandwidth requirement in MB-based quality decoding flow 

Item/Sequence Blue-Sky Tractor Pedestrian-area 

Prediction Reference  31.51MBps 33.14MBps 33.31MBps 

Quality Coefficients 0 0 0 

 Others 43.48MBps 43.53MBps 43.32MBps 

Total 74.99MBps 76.67MBps 76.63MBps 

* GOP : 8 / Frame-rate : 30fps / QP: 12-22-32 / Frame-size : CIF-480p 

3) One-Pass quality decoding 

Although the access of external memory time is saved, the long decoding time 

for quality layers is still a problem in MB-based decoding. The long latency comes 

from the entropy decoding for DCT coefficients and the reconstruction path for 

residuals which increases by the quality layers. Fortunately, because the entropy 

decoding process of each quality layer is independent with others, all of the 

coefficients in each quality layer can be parses separately. Thus, the parallel entropy 

decoding is utilized to achieve higher throughput. In addition, with the combined 

scalability concept, the residual reconstruction path can be merged into single 

macroblock processing [11]. Thus, at most 66% macroblock processing cycles can be 

saved for the 3-quality-layer application as shown in Fig. 3.3.  

Besides, because quality layers are processed in parallel, the prediction 

generation can be parallel processed with residual reconstruction. That means only 

single-loop is required for prediction generation. Thus, prediction reference data (i.e. 

reference pixels for motion compensation, base layer texture, base layer residual, etc.) 

from external memory are only fetched once in single macroblock processing. As a 

result, memory bandwidth can be further reduced as listed in Table. 3.3. 
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Fig. 3.3. Proposed one-pass quality layer decoding flow 

Table. 3.3. Memory bandwidth requirement in One-Pass quality decoding flow 

Item/Sequence Blue-Sky Tractor Pedestrian-area 

Prediction Reference  24.83MBps 25.63MBps 25.59MBps 

 Others 43.48MBps 43.53MBps 43.32MBps 

Total 68.31MBps 69.16MBps 68.91MBps 

* GOP : 8 / Frame-rate : 30fps / QP: 12-22-32 / Frame-size : CIF-480p 

3.2.3. Texture Padding 

Inter-layer intra prediction (ILIP) is one of the inter-layer prediction schemes as 

described in Chapter 2. The prediction in spatial enhancement layer is generated by 

upsampled texture in base layer. However, with the utilization of single-loop decoding 

flow, there might be un-available regions in the reference layer. That is because with 

this flow, it is not necessary to reconstruct pixels in Inter-coded macroblocks during 

spatial base layer processing. Thus, extensions for un-available regions in base layer 

are generated in case of invalid reference during upsampling. Fig. 3.4. shows the 

example of extensive padding for reference layer. In Fig. 3.4 (a). and Fig. 3.4. (b), the 

un-available region only needs to be constantly extended for both vertical and 

horizontal borders. In Fig. 3.4 (c). and Fig. 3.4. (d), diagonal down-right-like padding 
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is required for filling the referenced un-available region.  

 

Fig. 3.4. Padding of intra macroblocks before upsampling [9] 

In the traditional upsampling flow of ILIP [2], the padding action is processed in 

spatial enhancement level. The first step of upsampling in IntraBL macroblocks is to 

determine the reference co-located region in base layer. Once the reference region is 

determined, required reference texture from base layer would be fetched. For those 

regions cannot be reconstructed, they could be filled by padding process as shown in 

Fig. 3.4. After that, reference pixels with border extension will be upsampled by linear 

filter to be the prediction of enhancement layer. However, critical issue exists in the 

traditional upsampling flow. The most significant problem is that the padding 

complexity grows when the reference region gets larger or more arbitrarily organized. 

With the bit-stream where ILIP appears frequently, latency of padding may however 

be the burden of video decoding. As a result, we proposed the “BL-level” padding 

flow to solve problems mentioned above.  

We move the padding procedure from enhancement layer to base layer, from 

IntraBL macroblocks to Inter macroblocks as shown in Fig. 3.5. In the proposed flow, 

macroblocks pre-pad in base layer to extend the reconstruction border and fills up the 

un-available Inter-coded regions. Fig. 3.6 shows the padding example within a base 

layer frame. With the pre-padding step, there will be no extension procedure in 

enhancement layer and time consumption can be obviously saved. Furthermore, the 
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padding procedure causes no additional time repaid in base layer decoding. For one 

thing, because Inter-coded macroblocks would not be reconstructed to pixel samples 

in spatial base layer with single-loop decoding concept, deblocking filter would also 

not be utilized in these macroblocks. Thus, conceptually, pre-padding for un-available 

region can be processed instead of deblocking during Inter-coded macroblocks. For 

another, deblocking filter component is commonly organized as an isolated pipeline 

data path in video decoder design. If we combine padding and deblocking in the same 

stage, the padding time can be hidden without additional penalty. From simulation 

results, 26% decoding time can be saved for IntraBL macroblocks.  

  

Fig. 3.5. Proposed BL-level padding 

 

(a)                              (b) 

Fig. 3.6. Example of padding in base layer: (a) CIF frame; (b) local enlarge 
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3.3. Proposed Framework  
Based on the appropriate flow previously described, a novel framework of SVC 

decoder will be demonstrated in this section. An architecture overview of this work 

will be firstly introduced with the basic components of SVC decoder. After that, we 

will present the architecture optimization which lowers the complexity in decoding.  

3.3.1.  Overview of Architecture 

To improve the decoding/encoding speed and lower the power consumption, 

partition the entire system into several pipeline stages is a common methodology for 

video CODEC chip design [18][19][20]. In this work, we adopt the 4-stage pipeline 

architecture to achieve high throughput decoding. Fig. 3.7 shows the overall 

architecture of the proposed SVC decoder and the organization of every stage is 

briefly demonstrated as follows.  

The 1st stage is composed of parallel processing entropy decoding components 

and the syntax parser. As mentioned in previous section, at most 3 DCT coefficients 

from 3 quality layers are parsed in this stage. Fortunately, with the improvement of 

decoding throughput [21], only 2 set of CAVLD/CABAD decoder is required which 

did not cause too much gate count overhead. Besides, motion vector difference (MVD) 

is also produced by entropy decoding. The syntax parser delivers parsed parameters 

which are required for the following stages.  

The 2nd stage is composed of the residual reconstruction path, the inter-layer 

predictor, the motion vector generator and other reconstruction elements. Coefficients 

from 1st stage1 are reconstructed to residual in this stage. The residual reconstruction 

path basically includes the pipeline chain with the process of inverse quantization, 

coefficients refinement, inverse transform, and residual accumulation. In this path, 

triple sets of this pipeline chain produce different quality residuals in parallel. The ILP 
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module generates inter-layer predictions by upsampling information from base layer 

which includes motion vectors, reconstructed pixels and residuals. If residual 

prediction mode is applied to current macroblock, ILP interpolator will be involved in 

the pipeline chain to obtain the final residual. Besides, MV Generator generates the 

motion vectors for bi-directional reference of current macroblock. With the derived 

motion vectors and partition sizes, reference pixel for motion compensation can be 

fetched at once.  

Sample prediction of both Inter-coded and Intra-coded modes is generated in the 

3rd stage. This stage includes interpolators which accomplish the 6-tap and bi-liner 

filtering for motion compensation and the prediction generator with all 4×4, 8×8, and 

16×16 Intra modes. The produced prediction is then added with residuals from 2nd 

stage and forms the pre-deblocking samples. The final 4th stage is composed of 

deblocking filter and texture padding module. The deblocked data is passed to 

padding module to acquire the extension for inter-layer upsampling.  

In this work, each pipeline stage is separated by pipeline ping-pong buffers. Ports 

of current and next stages are read/write in interleave way to avoid the access 

conflicts. To simply the control logic, we adopt synchronous approach to deliver the 

pipeline register which means the macroblock changes simultaneously for each stage. 

For external memory access, memory controller is utilized as the interface of decoder 

design and system bus.  

Besides, under the target specification described in Section 3.1, averaging 227 

cycles are mostly consumed for single macroblock decoding. It comes from the 

equation listed below.  

227  =  (135 × 106 ) / [ (396 + 1350 + 8160) × 60 ]        (3.1) 

          Frequency     Total MBs in one frame    Frame rate 
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Fig. 3.7. Architecture of proposed SVC decoder 

3.3.2.  Optimization 

1) Reconstruction path 

In H.264/AVC decoding process, the code words with residual information will 

be reconstructed by entropy decoding, inverse quantization, and inverse transform. 

This reconstruction path is used to provide the dedicate prediction errors. However, 

the residual reconstruction path in SVC is different and more complex than 

H.264/AVC. 

 Complexity issue in SVC 

For one thing, SVC supports the quality scalability by involving the code words 

with transform coefficients of different QPs. Coefficients in enhancement layer are 

usually reconstructed by adding the sum of delta coefficients in the previous layers. 

This multi-level coefficients stratification makes the video quality scalable for 

different requirements. For the other, inter-layer residual accumulation is added in 

SVC. It further lowers the bit-rate by removing the redundancy in residual level. With 

the utilization of residual prediction, upsampled data must be added to the results of 

inverse transform. The two steps mentioned above are newly involved in SVC 

standard and the reconstruction flow is shown in Fig. 3.8. 
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 Fig. 3.8. Residual reconstruction flow with SNR scalability 

 Shared interpolation components 

Both inter-layer intra and inter-layer residual predictions utilize the poly-phase 

filter to generate the prediction samples. To further improve the efficiency of 

hardware utilization, the interpolation components of inter-layer intra and inter-layer 

residual prediction can be shared. First of all, we develop the 2-tap/4-tap switching 

basic interpolator, which can be reused for residual and texture upsampling (will be 

further described in Chapter 4). Thus, only one set of interpolator is required to 

process texture and residual upsampling.  

In addition, the external memory buffer can be shared. It is used to restore the 

reference residual and texture from base layer. Inter-layer texture prediction needs the 

size of 19×19 luma pixel buffers and two 9×9 chroma pixel buffers to contain the 

maximum external data. Besides, inter-layer residual prediction needs 17×17 luma 

residual buffers and two 9×9 buffers to restore the reference residual. With the buffer 

reusing strategy, 47.2% buffer usage can be reduced.  

Inter-layer intra and inter-layer residual prediction never exist during the same 

macroblock process except for InterBL macroblock type. Thus, for the InterBL type, 

processing intervals of texture prediction and residual prediction must be staggered to 

avoid the resource hazard from the shared interpolator and memory buffers. 
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 Pipeline chain of residual reconstruction  

The residual construction flow is also commonly implemented by pipelining in 

video chip design. For SVC decoder, quality refinement and residual accumulation are 

added as shown in Fig. 3.8. Thus, these two steps are further involved in the pipeline 

chain. Fig. 3.9 shows the timing diagram of the residual reconstruction with 

pipelining. Each pipeline stage deals with a block of samples and then passes the 

result to next stage in every cycle. After the first 4 cycles, residuals from the same 

block are generated in successive cycles. The more samples within one block (more 

processing throughput), the less reconstruction time is needed. However, that is the 

trade-off result against the computation complexity of every stage.  

Fig. 3.9 Pipeline chain of residual reconstruction in SVC 

Taking the numerous (at most 3 in this work) layers of SNR scalability into 

consideration, the scheduling and arrangement of residual reconstruction is a novel 

issue worth discussing. Therefore, two scheduling strategies will be analyzed here and 

one of them will be chosen for this work.  

i. Serial-pipeline quality processing 

In this strategy, quality coefficients from different layers are reconstructed in 

serial order within different timing intervals as shown in Fig. 3.10. Only one set of 

pipeline processing unit is required which is reused by every quality layer. A size of 

384×2 bytes coefficients refinements buffer is required to restore the coefficients of 

quality base layer. Besides, with the shared interpolation component scheme, 
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inter-layer intra prediction is processed after the residual reconstruction flow with the 

same throughput. To meet the constraint of cycle budget (227 cycles), the processing 

parallelism is set to 8. 

 Fig. 3.10. Serial-pipeline chain quality processing 

ii. Parallel-pipeline quality processing 

Unlike the serial-pipeline strategy with one pipeline chain, parallel-pipeline 

strategy triples the pipeline chain to separately reconstruct the residual form different 

quality layers. However, quality enhancement layers need the coefficients from base 

layer during the coefficients refinement stage. The absolutely parallel reconstruction 

may cause hazards between layers because of the data dependency. Therefore, we 

delay the reconstruction procedure between layers with one cycle so that the 

coefficients can be passed across layers. Fig. 3.11 shows the scheduling of 

parallel-pipeline quality processing with the throughput of 4.  

 Fig. 3.11. Parallel-pipeline chain quality processing 
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iii. Comparison 

 The processing time consumption of these two strategies is very close and both 

of them are under the constraint of cycle budget. Thus, with the similar timing 

characteristics, complexity issue dominates the performance. Table. 3.4 lists the 

synthesis gate counts and memory requirements of major components with both 

strategies. From Table 3.4, although components such as inverse quantization are 

tripled for different quality layers, components of inter-layer prediction are not tripled 

in parallel-pipeline strategy. That is because with the combined scalability, all quality 

layers use the same contents as their prediction. Thus, only one set of interpolator is 

required for the parallel reconstruction of different quality layers. Compared to the 

high throughput of serial-pipeline chain, gate counts of interpolator are lowered with 

the smaller processing throughput in parallel pipeline chain. By simplifying the most 

complex part, total gate counts are significantly lowered by simplified inter-layer 

interpolator in spite of the increasing gate counts of other pipeline components. 

Furthermore, memory usage is saved in parallel-pipeline strategy with the coefficient 

passing technique. As a result, parallel-pipeline is more efficient strategy form 

comparison and would be adopted in this SVC decoder work.  

Table. 3.4 Comparison of serial and parallel pipeline strategy 

Item Serial-pipeline Parallel-pipeline 

Inverse Quantization 9,327 4,724 × 3 

Coefficients Refinement 314 155 × 3 

Inverse Transform 23,124 12,137 × 3 

 Residual Accumulation   314  155 × 2 

Residual/Texture  

Interpolation 

Input Selector 5,901 × 20 5,901 × 16 

Basic Interpolator Ver. 1,281 × 20 Ver. 1,281 × 16 
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Hor. 1,816 × 8 Hor. 1,816 × 4 

Total 191,247 173,379 

 Memory Requirement 768 Bytes 0 

            * Synthesized by UMC90 at 135MHz 

2) Inter-layer Predictor 

Inter-layer prediction (ILP) is an additional novel mechanism in SVC which 

spreads on three domains: inter-layer texture prediction, inter-layer residual prediction 

and inter-layer motion prediction. Prediction tools mentioned above significantly 

improve the coding efficiency but introduce much more coding complexity. It brings 

the overhead of hardware cost and power consumption. Not only for SVC encoder but 

also decoder suffers from the complexity of prediction generation. To light these 

burdens, we made efforts to simplify the architecture of ILP mechanism. 

 Centralized accumulation-based CCSP engine 

The first issue comes from “calculation of corresponding positions (CCSP)” 

where the mechanism has been mentioned in Chapter 2. From the reconstruction flow 

of ILP in Fig. 2.5, we can observe some functional blocks need CCSP to achieve the 

spatial scalability. However, the derivation of CCSP also introduces the complexity 

and decoding time overhead. First of all, the functional equation has listed in the Eq. 

(2.1) with arithmetic terms in addition, shift and multiplication. Generally, the 

multiplications are avoided for circuit designs which cost much more area than other 

arithmetic components. For the second, the ILP construction flow process CCSP in 

different forms repeatedly. For example, the InterBL macroblock type with ILRP 

totally process CCSP five times in the decoding flow which may cause considerable 

timing repaid. As a result, we proposed a centralized accumulation-based calculation 

CCSP engine to process to solve the problems mentioned above. 
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i.  Use accumulators to replace multipliers 

Despite there are many terms and complicated calculations in Eq. (2.1), [12] has 

introduced the opportunity to optimize the equation. Obviously, the terms of Dm, Am, 

Sm, and dm which are derived from inter-layer ratios, can be determined before coding 

the first macroblock in enhancement. Without spatial resolution changes, these terms 

will remain unchanged in following macroblock coding procedures. Thus, even 

though there seem many variables in CCSP derivation process, the difference between 

successive corresponding samples is actually a constant. This feature can be derived 

from  

BLm+1 － BLm 

    ＝     { { [ ( m+1) × Dm ＋ Am ] >> (Sm－ 4) }－ dm}－  

{ { [  m   × Dm  ＋ Am ] >> (Sm－ 4) }－ dm } 

＝     [ ( m + 1 － m ) × Dm ] >> (Sm－ 4) 

＝     Dm >> (Sm － 4)          (3.2) 

From Eq. (3.2), BLm+1 can be derived by adding a constant Dm  >> (Sm－4) from 

BLm. In other words, for the purposes of getting the next corresponding sample 

position, the only operation is adding a constant from current corresponding sample 

position. Thus, in hardware aspect, the needed multiplier in Eq. (3.2) can be replaced 

by a register plus an adder in the form of accumulator. Finally, the area cost of CCSP 

can be reduced by the substitution from multipliers to accumulators, which is a more 

efficient way in hardware architecture design. 

ii. Centralized CCSP  

 In the traditional flow, CCSP of different inter-layer predictions types are 

separately processed as shown in Fig. 3.12 (a). However, calculation redundancy may 
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conceal in the traditional flow because the calculation of spatial parameters is similar 

for inter-layer predictions. The spatial parameters here are the interpolation phase, 

corresponding motion vectors… etc, which are related to the spatial relationship 

between two layers and originated from CCSP. In order to remove this redundancy 

and improve the decoding efficiency, a centralized CCSP concept is proposed as 

shown in Fig. 3.12 (b). Noticeably, the interpolation parameters (phase and BLPos) of 

inter-layer intra and inter-layer residual prediction are the same and also can be shared. 

In the proposed strategy, all spatial parameters from different prediction mechanisms 

are simultaneously derived by the centralized CCSP engine. The accumulation-based 

calculation is executed once instead of repeated operations. Some derived parameters 

are further restored, such as the interpolation phase or the corresponding macroblock 

partitioning. The buffering makes the prediction flow flexible because all of the 

inter-layer prediction modules can access the spatial parameters at any time without 

recalculation of CCSP. Some spatial parameters such as the corresponding motion 

vector positions and the range of reference texture can be integrated as the external 

memory requests. In summary, the proposed centralized accumulation-based CCSP 

engine not only reduces the hardware complexity but also further simplify the 

decoding flow of inter-layer prediction.  

        

     (a)                             (b) 

Fig. 3.12. Inter-layer prediction flows with (a) separated CCSP; (b) centralized CCSP 
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 Temporal Results Reuse 

In Chapter 1, we have already introduced the equation of ILTP and ILRP, which 

are mainly composed of the upsampling interpolators to generate the prediction 

samples. To achieve high prediction throughputs, upsampling interpolators can be 

numerously established in parallel. However, complexity problem also exits in 

hardware architecture of upsampling interpolator. The complexity gap by the 

parallelism of interpolator has been previously described. It comes from the 

poly-phase basic interpolator and the input group selection module. Basic 

interpolators with various look-up table and multiplications bring out the intensity of 

hardware cost. The function of a basic interpolator has been listed in Eq. (2.4) and Eq. 

(2.5). Besides, every basic interpolators need to select its input groups from the 

external buffers. This action cause high complexity because of the large location 

range of input groups.  

The target processing throughput is four pixels per cycle as previously described. 

Under this satiation, the requirement of reference data and basic interpolator for 4-tap 

filter is shown in Fig. 3.11. 

 
Fig. 3.13 4-tap poly-phase filtering process 
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 Because of the limited critical path, the two dimensional interpolation is divided 

to a couple of successive cycles. For a group of four predicted samples, it requires 

16(4×4) interpolators to generate the temporal result in vertical dimension. These 

temporal results are restored in temporal buffers as the inputs of the horizontal 

interpolation in next cycle. In the two dimensional procedure, total sixteen vertical 

basic interpolators and four horizontal basic interpolators are required for the dotted 

region in Fig. 3.13. This amount of basic interpolators may cause area overhead. To 

lower the gate counts, we adopt the temporal result reusing scheme, which reduces the 

usage amount of vertical basic interpolators.  

 We observed that if the target sample groups are in successive order toward 

specific (horizontal or vertical) direction, some part of temporal results can be reused 

in successive cycles. Fig. 3.14 shows the overlapped region of temporal result in 

horizontal interpolation order. In cycle n+1, the value of temporal results in those 

overlapped region stay unchanged compared with previous cycle. That means with 

value reusing, there are only 4 newly temporal results must be created in cycle n+1. In 

other words, the amount of vertical basic interpolators can be reduced to 4. The gate 

count reductions by temporal result reuse is 70.6% as listed on Table. 3.5.  

4
5
6
7

Temporal Result 
Overlapped

0

2
3

Temporal Result 
Newly Created

1

 

Fig. 3.14. Temporal results reusing scheme 
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Table. 3.5. Gate count savings from temporal result reusing 

Item Without Reuse With Reuse Reduction 

Input Selector 94,416 23,604 75% 

Vertical Interpolator 20,496 5,124 75% 

Horizontal Interpolator 7,264 7,264 0% 

Total 12,2176 35,992 70.6% 

3.4. External Memory Access 
 External memory access is an important issue for video chips which dominates 

the performance of power consumption and coding throughput. In this section, the 

overview of memory system will be introduced at first. Then, the proposed memory 

request protocol will be presented to support the external memory access in SVC.  

3.4.1.  System Integration 

 Fig. 3.15 shows the system integration of external memory access. Designs 

within the 4-stage pipeline architecture can propose their request individually. In order 

to handle the data communication between design and DRAM, a memory controller 

module is established. The components inside the memory controller module are 

listed as follows:  

 Data/Address manager, the major component in memory controller, receives the 

requests and transforms them to corresponding addresses to DRAM. Also, it 

integrates the proper data in the data communication interface. Because of the large 

amount of external memory data in SVC, several processing units might propose their 

request simultaneously. Under this situation, an arbitrator is required to solve the 

request conflicts. Besides, FIFO buffer and busy signal are utilized to restore those 
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non-top priority requests and uncertain delays respectively. In this work, a packaged 

DDR400 DRAM SystemC model is utilized to co-simulate with the proposed design.  

    

Fig. 3.15. System integration of external memory accessing 

3.4.2.  Memory Request Protocol 

With the added data in spatial and quality scalability, SVC standard access the 

external memory more frequently than H.264/AVC. One group of the extra data is 

composed of residual data and motion vectors for inter-layer prediction, and the other 

is the reconstructed pixels from different quality layers for “key picture concept”. 

These extra data make the memory access more complicated in SVC. To deal with the 

significant and various external data access efficiently, fixed-length instruction-based 

request protocol for external memory access is utilized.  

1) Request Format 

The proposed protocol is composed of two parts: one is the MCM_RQST and the 

other is MCM_INST. The previous part is the enable signal from the 4-stage decoder 

design, which represents that the request of external memory access occurs. 

MCM_INST is the data with instruction format which can be parsed to identify the 
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feature of requests. Table. 3.6 shows the 45-bit length general format of MCM_INST. 

The first 10 bits are the global identifiers which lower the parsing complexity for 

memory controller with the fixed form among all request types. The following 35 bits 

are specified request content which depends on the request types.  

Table. 3.6. General request format 

Item Bit Length Function 

Write 1 Write enable 

Type 3 0 : MV data 

1 : Reconstructed data 

2 : Residual data 

3 : Bitstream (Read only) 

4 : Original picture (Encoder only) 

Did 2 Dependency ID (0~2) 

Frame_num 4 Frame number (0~8) 

Content 35 Request dependent contents 

Write is used to identify the read/write operation. Type represents the operation 

types with five different sources from external memory. Did and Frame_num indicate 

the target spatial layer and frame number of the accessed data, respectively. Except for 

the above global items, the rest bit-length is composed of Content, which is the 

request content depends on operation types. This fixed-length format simplifies the 

decoding complexity of memory controller.  

2) Transaction 

 Read operation 

When a read request occurs, MCM_RQST is pulled up by the 4-stage pipeline 

decoder with the request instruction MCM_INST. By signaling of the enable symbol, 

MCM_INST will be then loaded into the FIFO of memory controller module. After 
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several cycles from the processing of DRAM latency, required data will be returned 

with a valid-bit. Fig. 3.16 (a) shows the timing diagram of read request in proposed 

protocol. The handshaking mechanism is globally controlled within the memory 

controller level. Thus, it is delivers efficient memory transaction without stalling the 

processing components for waiting the request acceptation.  

 Write operation 

 In write operation, the write data from 4-stage pipeline design must hold until the 

pulling-up of written signal from external memory. Once the Written symbol is 

signaled, other MCM_RQSTs can be proposed immediately. Fig. 3.16 (b) shows the 

timing diagram of write request in proposed protocol. 

CLK

MCM_INST INST0

Written

MCM_RQST

Write Data W_Data0

INST1

W_Data1

DRAM Access Latency

CLK

MCM_INST INST0

Data Valid

MCM_RQST

Read Data R_Data0

DRAM Access Latency

INST1

R_Data1

 

(a)                                (b) 

Fig. 3.16. Timing diagram: (a) read request; (b) write request 

3.5. Summary 
 In this chapter, the decoding flow of SNR scalability is analyzed based on three 

strategies: frame-based, MB-based, and the proposed One-pass quality decoding. To 

summarize the simulation result, Fig. 3.17 shows comparison of the memory 

bandwidth and processing macroblocks among those decoding flows. The One-Pass 

quality decoding performs well from its parallel decoding strategy in addition to 

MB-based quality decoding. For architecture design, 4-stage synchronous pipeline 

architecture is utilized for this work. The residual reconstruction path in 2nd stage is 
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the most complicated part in SVC. Thus, we propose the parallel-pipeline 

reconstruction flow and temporal results reusing scheme to lower the gate count. The 

gate count saving is summarized as Fig. 3.18.  

 Besides, the BL-level padding flow is proposed to accelerate the texture padding 

process which has 26% improvement in IntraBL-coded macroblocks. To improve the 

area cost and the coding flexibility of inter-layer prediction, a centralized 

accumulation-based CCSP scheme is utilized. Finally, the external memory access in 

this work is introduced with the specified protocol.  

 

 

(a)                               (b) 

Fig. 3.17. Comparison of quality decoding flows in (a) memory bandwidth; 

 (b) MB processing cycles 

Fig. 3.18. Gate count savings of residual reconstruction path 
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Chapter 4. Module Design 

Detail implementation methodology and optimization strategy of SVC decoder 

modules are introduced in this Chapter. At first, the physical implementation of 

inter-layer content upsampler will be presented. Afterward, the intra-reconstruction 

component in this work will be mentioned with the proposed low-complexity plane 

generator. Components of entropy decoding, motion compensation, deblocking filter 

will be briefly introduced then. At last, there will be the research and refined 

architecture of the memory controller module arbitrator. 

4.1. Inter-layer Prediction 
 Three components of inter-layer prediction are introduced in this Section: 

poly-phase interpolator, texture padding module, and MV upsampler.  

4.1.1. Poly-phase Interpolator Design 

The major complexity of a basic interpolator comes from the various combination 

of filtering coefficients. This variety introduces a large amount of arithmetic 

components and complex control circuits. To lighten hardware burden, we propose a 

hybrid interpolator architecture to implement both of 4-tap and bi-linear interpolations. 

Through our design, the adders can be shared by these two interpolation processes and 

consequently lowers the hardware cost. The details of our designs are describes as 

follows.  

1) Simplification of coefficients table 

To reduce the control complexity, the most important thing is to simplify the 

variety of coefficient combinations. From the coefficient table, the symmetries in the 
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filter coefficient table as shown in Table. 4.1 can be observed directly. For example, 

supposed that 4-tap filter is used and the interpolation phase is 13, circuits whose 

phase equal to three can be shared by only exchanging C-1 for C2, and C0 for C1.  Thus, 

half of contents in the table can be reduced by exchanging inputs with symmetric 

coefficient columns in the table. 

Table.4.1. Symmetry of coefficients table 

(a) Bi-linear filter 

coefficients phase coefficients 

C1 C0 C0 C1

─ ─ 0 32 0
2 30 15 1 30 2

4 28 14 2 28 4

6 26 13 3 26 6

8 24 12 4 24 8

10 22 11 5 22 10

12 20 10 6 20 12

14 18 9 7 18 14

─ ─ 8 16 16

(b) 4-tap filter 

coefficients     phase coefficients 

C-1 C0 C1 C2 C-1 C0 C1 C2 

─ ─ ─ ─ 0 0 32 0 0 
-1 2 32 -1 15 1 -1 32 2 -1 

-1 4 31 -2 14 2 -2 31 4 -1 

-1 6 30 -3 13 3 -3 30 6 -1 

-1 8 28 -3 12 4 -3 28 8 -1 

-1 11 26 -4 11 5 -4 26 11 -1 

-2 14 24 -4 10 6 -4 24 14 -2 

-3 16 22 -3 9 7 -3 22 16 -3 

─ ─ ─ ─ 8 -3 19 19 -3 
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2)  Simple adder-tree architecture 

Fig. 4.1 shows our proposed hybrid interpolation module. In Stage I, reference 

samples are rearranged according to interpolation phase and filtering mode. This step 

takes the advantage of coefficient table symmetry as previously described. In Stage II, 

scaling engine produces scaled elements and classifies them to three sets. The 

classifying strategy is to group minimum scaled elements in every set, thus the input 

selection for adders can be efficiently simplified. The proposed scaled element 

classification is listed in Table. 4.2 in detail. Finally, the data path in stage III is 

basically composed of simple two-level adder-tree architecture. This architecture 

makes the circuits simpler without complex control signals. 

 Fig. 4.1. Architecture of the proposed interpolator  

Table. 4.2. Input selection and classification for adders 

Mode Phase 
adder A adder B adder C adder D 

in0 in1 in2 in0 in1 in2 in0 in1 in0 in1 in2

0 0 16b 16b 0 0 0 0 0 0 A B C 

0 1 16b 16b 0 2c 0 0 -a -d A B C 

0 2 16b 16b -b 0 4c 0 -2a -d A B C 

0 3 16b 16b -2b 2c 4c -d -a -2a A B C 

0 4 16b 16b -4b 0 8c -d -a -2a A B C 

0 5 16b 16b 2b 2c 8c c -4a -d A B C 

0 6 16b 16b 0 2c 8c 4c -4a -2d A B C 

0 7 16b 16b 0 2d 16c -d -a -2a A B C 
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0 8 C 2C 16B 0 b c -a -d A B 2B

1 0 16b 16b 0 0 0 0 0 0 A B C 

1 1 16b 16b -2b 0 0 2c 0 0 A B C 

1 2 16b 8b 4b 4c 0 0 0 0 A B C 

1 3 16b 8b 2b 4c 0 2c 0 0 A B C 

1 4 16b 8b 0 0 8c 0 0 0 A B C 

1 5 16b 2b 4b 0 8c 2c 0 0 A B C 

1 6 16b 0 4b 4c 8c 0 0 0 A B C 

1 7 16b 2b 0 4c 8c 2c 0 0 A B C 

1 8 8b 0 0 0 8c 0 0 0 A B C 

 Set A Set B Set C  

 

 The synthesis result and the comparison of proposed method and direct 

implementations is listed in Table. 4.3. The gate counts saving from switched method 

is 14.7% by combining bi-linear and 4-tap filter together. Additional 28.8% gate 

counts can be further saved by the proposed simple poly-phase interpolator design.  

Table. 4.3. Synthesis results of horizontal basic interpolator 

Method  Gate counts 

4-tap (Direct) 2,119 

Bi-linear (Direct) 873 

Switched (Direct) 2,551 

Proposed 1,816 

       * Synthesized by UMC90 at 135MHz 

4.1.2. Texture Padding 

In Chapter 3, we have mentioned the proposed BL-level flow for texture padding 

for inter-layer intra prediction. In this section, the detail module design of texture 

padding will be introduced. Fig. 4.2 shows the detail of texture padding. The dotted 
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region is the target region, and the texts in the right side indicate the padding function. 

~A means region A is not reconstructed (Inter-coded region in base layer), so as ~B, 

~C. The different types of neighboring macroblocks affect the operations of the target 

8×8 block  which is divided to three regions with different cases. The operation 

functions “ddr”, “ver”, “hor” mean the down-diagonal right, vertical, horizontal 

extrapolations respectively. Therefore, the target 8×8 block can be padded if the 

neighboring macroblock types and neighboring pixels (a, b, and c) are determined.  

With the data dependency from neighboring pixels and macroblock types, the 

target region of macroblock-based texture padding is special where the padded region 

is not a real macroblock. It is a macroblock-size region which composed of 4 8×8 

blocks at the up-left side of current macroblock. Fig. 4.2 also shows the target 4 8×8 

blocks within the dotted line which can be simultaneously determined. 

The determination function is presented as follows: If the current macroblock is 

reconstruct-able, the deblocked samples in block X will be regarded as neighboring 

pixels for other three blocks. Otherwise, the block X will be padded where the 

neighboring information is derived and ready for use. Also, other three blocks (A, B 

and C in Fig. 4.2) can be determined in the same way with block X. Fig. 4.3 (a) 

illustrates the padding status with the macroblock-based processing. The deblocked 

cross stripe at the macroblock boundaries are referenced for padding the four 

neighboring 8×8 blocks. This texture padding order works successively without data 

hazards from neighboring information.  

 Besides, extra buffers are needed to restore the neighboring samples as shown in 

Fig. 4.3 (b). Parts of deblocked data from current macroblock processing are picked 

into buffers to be referenced in texture padding. In summary, padding buffers can be 

classified to three types: current MB buffer, column buffer, and row buffer. Current 

MB buffer restores the deblocked samples for the texture padding with current 
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macroblock processing. Column buffer and row buffer is used to buffer the reference 

samples for the next and the next-row macroblock processing, respectively. Fig. 4.3 (a) 

also shows the usage of padding buffers with the cross stripe in different colors. The 

capacity requirement of padding buffers is listed in Table. 4.3.  

X

(1) Case(~A, ~B, ~C)
R(I) = R(II) = R(III) = 0

(2) Case(A, ~B, ~C)
R(I) = R(II) = R(III) = a

(3) Case(A, B, C)
R(I) = ddr(b), R(II) = ddr(a), R(III) = ddr(c)

(4) Case(~A, B, C)
R(I) = ddr(b), R(II) = (b0+c0+1)/2, R(III) = ddr(c)

(5) Case(A, B, ~C) or Case(~A, B, ~C)
R(I) = R(II) = R(III) = ver(b)

(6) Case(A, ~B, C) or Case(~A, ~B, C)
R(I) = R(II) = R(III) = hor(c)

a

A B

C

Macroblock Boundary

b

c

Curr. 
MB

 Fig. 4.2. Detail of texture padding 

     

(a)                                 (b) 

Fig. 4.3. Texture Padding: (a) Process status; (b) Neighboring pixel buffering 

Table. 4.3. Capacity requirement of padding buffers 

Item Current MB Column Row 

Luma 37  15 8 × 120 

Cb + Cr 21 + 21 7 + 7 0 

Total 79 29 960 

                                                      *Unit: Byte 
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4.1.3. MV Upsampler 

The flow of motion vector upsampling is mentioned in Chapter 2 with its 

refinement actions. From Eq. (2.5), because of the multiplier term, motion vector 

from base layer is not a constant. Thus, multiplications cannot be avoided by 

adder-tree architecture or accumulator. In the proposed MV upsampler, two 

multipliers are established for the MVx and MVy. Thus, total 16 cycles are needed to 

scale the motion vectors in a reference list. This throughput is acceptable with 

minimum hardware cost in the proposed architecture. In addition, MV Merge 

component is required to integrate the motion vector refinements. One MV Merge 

module is utilized in this work to average the similar motion vectors and derive the 

new sub-partition type. The averaging and partitioning strategy is listed in Fig. 4.4. 

Motion vectors in a 4×4 block are required to further profile their similarity 

characteristics. Then the macroblock partitioning can be derived under the 

combinations among those similarity sets. Finally, three partition types lead to 

different adding combinations of motion vectors with reused adder units.  

Furthermore, the MV upsampling is accelerated by the identification of 

direct_8x8_inference_flag.  This term is an optional flag signaled from encoder, 

which represents the other three motion vectors within a 8×8 block are set equal to the 

corner one in B_Slice. This configuration make the macroblock partition size limited 

to beyond-8×8. Thus, the identification of direct_8x8_inference_flag can remove 

additional steps from general cases. Under this flag, only 8 motion vectors are 

required to be upsampled and the MV merge step is skipped because the motion 

vectors are already integrated.  

Fig. 4.5. shows the timing schedule of proposed MV upsampler determined by 

the slice type and inference_8×8_flag. The processing time is saved by the adaptive 

scheduling with flag identification.  
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Fig. 4.4. MV and Sub-macroblock type derivation 

 

Fig. 4.5. Timing schedule of MV upsampler 

4.2. Intra Prediction 
Intra-frame prediction is a commonly seen prediction mechanism which widely 

used in image/video coding standards. In the Intra-coded macroblocks, prediction 

samples are generated from padding the spatial neighboring pixels. Because pixels in 

natural scenes are likely similar to other pixels around, Intra prediction achieve good 

compression performance.  

4.2.1. Architecture 

In this work, Intra prediction generator is arranged in the 3rd pipeline stage. 

Residual data within at most two qualities are read from previous stage and being 

reconstructed to sample pixels in this stage. The lower quality residual is used to 

reconstruct the lowest quality samples, which are regarded as the prediction data to 

the quality enhancement layer. The architecture of proposed Intra predictor is shown 

in Fig. 4.6.  
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To restore the needed data from neighboring macroblocks, two neighboring data 

SRAMs are established for luma and chroma respectively. Because the maximum 

frame size of this work is 1080p which contains 120 macroblocks in a frame row, the 

entries 0 to 119 are used to buffer the neighboring data from upper line. In addition, 

the entry 120 is for the left neighboring line data. The illustration of the neighboring 

data SRAM is shown in Fig. 4.7. 16 luma neighboring sample pixels and 4 

neighboring prediction modes are grouped to 144 bits as a memory column. Besides, 

8 cb and 8 cr samples are also grouped as chroma neighboring data.  

With the required neighboring data, prediction of current macroblock can be 

generated in sequential order. The prediction data would be added to residuals to form 

the reconstructed pixels. During the reconstruction process, the minimum quality 

layer reconstructed data will be updated to neighboring buffer for the un-processed 

blocks. Besides, with the minimum reconstructed samples, maximum quality layer 

residuals can be formed by simple accumulation. The residuals with different quality 

layers are accessed in parallel in this work, thus reconstruction of two different quality 

layers can be processed within the same cycle.  

Fig. 4.6. Data path of Intra Prediction 
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Fig. 4.7. Neighboring data SRAM 

        
(a)                                   (b) 

Fig. 4.8 Intra Prediction: (a) Processing order; (b) Processing flow 

4.2.2. Processing Flow 

Trading off by hardware cost and the cycle budget, this work takes 4 pixels 

parallelism as the processing throughput. Fig. 4.8. (a) shows the reconstruction order 

for the luma samples and the arrows indicate the next processing row. No matter what 

prediction modes, 4 samples within each 4×1 row are reconstructed in the same cycle. 

Consequently, there are total 64 luma rows and 32 chroma processing rows for an 

Intra-coded macroblock. Fig. 4.8 (b) shows the processing flow of the proposed Intra 

predictor. The reconstruction of luma samples and neighboring buffer update are 

firstly processed according to the block-based prediction modes. The state of luma 
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sample procedure is repeated according to the prediction mode, I_4×4, I_8×8, and 

I_16×16. After the luma loop, chroma reconstruction can be process then with the 

refreshed neighboring data from chroma neighboring data SRAM. The reconstruction 

of macroblock will be done in 121~145 cycles depends on the intra prediction modes.  

4.2.3. Plane Mode Generator 

Plane mode is the most complex mode among the Intra prediction modes. Some 

encoder design removes this mode because of the major problem, significant area cost. 

Fig. 4.9 shows the function of plane mode, which needs distinctive calculation 

compared with other prediction modes in Intra prediction. The Intra predictor supports 

all prediction modes in H.264/AVC in this work. To reduce the complexity overhead, 

we proposed an area efficient scheme to implement the plane mode generator.  

 

(a)                           (b) 

Fig. 4.9. Intra plane mode prediction (a) intra 16×16; (b) chroma 
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1) Weight Derivation 

At first, the horizontal and vertical plane “Pre_Weight” H and V can be generated 

by the accumulation buffer and scaling-addition combinations. Fig. 4.10. shows the 

derivation circuit. In0 and In1 are the input pair which selected for subtraction. The 

timing schedule and scaled term for weight derivation is listed in Table. 4.4. The cycle 

counter can be the index of the input pair and scaling coefficients. Acc_Buf is used to 

restore the temp relay pre-weight which will be accumulated later. During the 9th 

cycle, the plane weight α or β will be further derived to by shifting and adding by the 

final accumulation result. With the accumulation based weight derivation, 9 cycles 

and 5 cycles are needed to process one directional weight derivation for luma and 

chroma respectively.   

In0

0

0

0

- <<1

<<2

<<3

Acc_Buf

Cnt[0]

Cnt[1]

Cnt[2]

~(|cnt)&Luma

Pre_Weight

In1

 

Fig. 4.10. Wight derivation circuit 

 

 
Fig. 4.11. Proposed plane sample generator 
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Table. 4.4. Timing scheduling (a) luma; (b) chroma 

(a) 

Cycles 1 2 3 4 5 6 7 8 9 

Cnt 0 1 2 3 4 5 6 7 (Acc_buf×

5+16) 

>>6 

In0 p15 p8 p9 p10 p11 p12 p13 p14 

In1 pUL p6 p5 p4 p3 p2 p1 p0 

Scaled 8 1 2 3 4 5 6 7 

(b) 

Cycles 1 2 3 4 5 

Cnt 0 1 2 3 (Acc_buf 

×5+16) 

>>6 

In0 p7 p4 p5 p6 

In1 pUL p2 p1 p0 

Scaled 4 1 2 3 

2) Coefficients combination 

After the previous step, calculated plane weights will be involved with 

position-related linear combination then. The coefficient weight for every position is 

listed in Table.4.4. 

Pred(h,v) = [ α + β × (h - D) + γ × (v - D) + 16 ] >> 5 

D = 7 for luma, D = 3 for chroma         (4.1) 

Because 4 prediction samples which output per every successive cycle is in the same 

row in this work, the γ × (v - D) term can be reuse for these 4 samples (the same v). 

Moreover, These 4 samples are in successive order in horizontal direction. Once the 

term β × (h - D) of the left most sample is derived, other 3 samples can be derived by 

adding the scalings of constant β. With this characteristic, the coefficient index can be 

reduced to quarter in horizontal direction. Fig. 4.11 illustrates the proposed plane 

sample generator. 
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4.2.4. Synthesis Result 

 The synthesis result of Intra predictor is listed as Table. 4.5. From Table. 4.5, this 

work is competitive with [20] in the gate count and internal memory usage aspect. 

Table. 4.5. Synthesis results of Intra predictor 

Item [20] Proposed 

Process 0.18um 0.09um 

Frequency 120MHz 135MHz 

Specification H.264/AVC Decoder SVC Decoder 

Pixel Parallelism  4 pixels 4 pixels 

Internal Memory 4.93KBytes 4.12KBytes 

Gate counts 28,707 28,326 

  - Neighboring Pixel Buffer N/A 7,490 

  - I16 / Plane Mode N/A 3,556 / 2,889 

  - I4 N/A 2,167 

  - I8 N/A 4,345 

  - IChroma(Not including plane mode) N/A 1,680 

  - Control & Arithmetic N/A 8,108 

  - Reconstruction N/A 980 
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Chapter 5. Implementation Result  

In this chapter, implementation results of this work are summarized which 

includes the synthesized gate counts and memory requirement. The proposed Scalable 

High profile video decoder architecture is implemented in Verilog HDL with UMC 

90nm 1P9M CMOS technology.  

5.1. Design Flow 
 Fig. 5.1 shows the design flow in this work. After certainly defining the target 

system specification, the corresponding C-model is generated then. It is convenient to 

develop the coding algorithms by software-based approach. Once the algorithm is 

confirmed, the hardware architecture can be implemented in verilog HDL. The RTL 

verification of functional and timing behaviors starts by simulation with golden 

C-model. SystemC model is introduced to co-simulate with verilog models for higher 

level design. Comparisons from synthesis results direct the refinement loop to an 

appropriate architecture design.  

 
Fig. 5.1. Design Flow in this work 

5.2. Gate Count 
 For 135 MHz synthesis frequency (clock period is set to 7.4 ns), the total gate 

count of this work is about 565 k. The gate count of each component is listed in 
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Table. 5.1.  

Table. 5.1. List of gate count for proposed SVC decoder 

Module Gate counts 

Entropy Decoder + Syntax Parser 213,638 

Motion Compensation  107,080 

Deblocking Filter 24,573 

Inter-layer Prediction 87,778 

    - Centralized CCSP 14,312 

    - Texture/Residual Upsample 43,032 

    - MV Upsample  6,703 

    - External Data Buffer 23,131 

Residual Reconstruction 56,184 

    - Inverse DCT & Hadamard Transform 36,117 

    - Inverse Quantization 15,972 

    - Reconstruction + Control  4,095 

Intra Prediction 28,326 

    - Prediction Generator + Control 20,836 

    - Neighboring Pixel Buffer 7,490 

Texture Padding 9,870 

    - Padding Unit 4,398 

    - Neighboring Pixel Buffer 5,472 

Memory Controller 12,678 

System Control 2,001 

Total 541,527 

                   * Synthesized by UMC90 at 135MHz 

5.3. Memory Organization 
 With the numerous quality and spatial scalabilities provided by SVC, memory 

demand is also significantly increasing among other standards. To balance the on-chip 
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memory demand and processing throughput, partitioning the data stream into internal 

(high speed) and external (large capacity) storage elements is needed. The 

requirement and organization of external and internal memory usage are presented in 

this sub-section.  

1) External memory 

The detail of external memory data is listed in Table. 5.2. With the MB-based 

spatial layer decoding flow, inter-layer prediction data is placed into the external 

memory. Because the inter-layer prediction data is not referenced across frame 

boundary (see Fig. 2.5), only one frame size is required. Noticeably, motion vector is 

defined as a 42-bit data with two reference lists in this work. Thus, 84 bytes are 

required to restore motion vectors in one macroblock. In the target (top enhancement) 

spatial layer, deblocked pixel samples are wrote to external memory to be referenced 

or displayed. Two quality layers in key pictures are restored according to key picture 

concept. Besides, in the lowest spatial layer, column motion vectors in list1 frames are 

restored for B_Direct mode. The total external memory requirement in this work is 

44178.75 Kbytes (about 43Mbytes). 

Table. 5.2. List of DRAM requirement for proposed SVC decoder 

Module DRAM Requirement

Inter-layer Prediction 7171.875 

    - Motion Vector 669.375  

    - Residual 3442.5  

    - Texture 3060  

MC Reference/Display 33660 

Column Motion Vector 3346.875 

Total 44178.75 

                          Unit: Kbytes 
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2) Internal memory 

 Table 5.3 lists the internal memory requirement among components and pipeline 

stages. For inter-layer intra and residual prediction, the transform size and 

reconstruct-able symbol of corresponding macroblocks in base layer are restored in 

SRAM. For deblocking filter, motion compensation, and Intra prediction, SRAMs are 

used to buffering the neighboring data from left or the upper line macroblocks. 

However, because two quality reconstruction pixels need to be deblocked in the key 

picture, SRAM requirement is also doubled. Similar situations exist in the pipeline 

stage buffer, which pass coefficients, residuals, and reconstructed pixels with two 

qualities to next stage. In summary, the total internal memory requirement in this is 

39.66 Kbytes. 

Table. 5.3. List of SRAM requirement for proposed SVC decoder 

Module SRAM Requirement 

Single Port Dual/Two Port 

Entropy Decoder + Syntax Parser 2.039 3.411

Motion Compensation 2.461

Deblocking Filter 7.461 1.218

    - Neighboring Pixels (Q0+Qmax) 7.374

    - Others 0.087 1.218

Inter-layer Prediction 4

Intra Prediction 4.116

    - Luma Neighboring Data 2.179

    - Chroma Neighboring Pixels 1.937

Texture Padding 0.937

Pipeline Ping-pong Buffer 12.893 1.125

    - Stage1 4.269

           -_Coefficients 4.113

           - MVDs 0.156
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    - Stage2 6.968 1.125

           - Residuals (Q0+Qmax) 0.562 1.125

           - MC Reference Pixels 6.250

           - MVs 0.156

    - Stage3 1.656

           -_Reconstructed_Pixels 1.50

           - MVs 0.156

Total 33.907 5.754

Total (Single port + Two/Dual port) 39.661

                                                        * Unit: Kbytes 

5.4. Comparison 
 The comparison of this and other state-of-art video decoders are listed in Table. 

5.4. Because there is only one published design of H.264/AVC scalable extension so 

far [16], H.264/AVC HD decoders [4] [5] are listed in the comparison table. Generally, 

the gate count cost for SVC decoder is larger than H.264/AVC due to the additional 

scalabilities. It majorly comes from the inter-layer prediction which introduces high 

arithmetic complexity and numerous external data buffers. Also, SVC applications 

have more external memory requirements as well. With the equal standard, Scalable 

High profile, although [16] has better capability in decoding single scalability, this 

work can provide superior Max Throughput for multiple scalabilities. Max 

Throughput represents the processing competence for combined spatial and quality 

scalability as defined in Table. 5.4. To normalize the performance, Gate Efficiency 

and SRAM Efficiency are utilized which mean the Max throughput per kilo gates and 

Max Throughput per kilo bytes, respectively. This work has better performance in 

Gate Efficiency. However, the relative high internal memory requirement causes the 

drop of SRAM Efficiency.  



  

  62 

 

Table. 5.4. Comparison with other state-of-art video decoders 

 [4] [5] [16] Proposed 

Technology 0.18 um 0.18 um 0.09 um 0.09 um 

Max Clock Rate 100MHz 120MHz 210MHz 135MHz 

Profile MPEG-2 SP@ML

H.264 BL@L4 

H.264 

Baseline/Main

SVC High 

MVC High 

SVC High @ L5 

Max Spec. 

 (H.264) 

1920×1088 

 @ 30fps 

1920×1088 

@30fps 

4096×2160  

@24fps 

1920×1088 

@60fps 

Max Spec. 

(SVC) 

N/A N/A SL: 1920×1088 + 

1280×720 @ 30fps

QL: 1920×1088  

w/ 4 QLs @30fps 

   1920×1088 + 

   720×480 + 

   352×288 

 w/ 3 QLs @60fps 

Gate Count 303.78 K 160 K 414.28 K 541.52 K 

Internal Memory 22.75 Kbtyes 4.5 Kbtyes 8.99 Kbtyes 39.66 Kbtyes 

External Memory 8MB DRAM N/A N/A 43MB DRAM 

Max Throughput  244800 MB/s 244800 MB/s 979200 MB/s 1783080 MB/s 

Gate Efficiency 805.84 

MB/Kgates-s 

1530 

MB/Kgates-s

2363.62 

MB/Kgates-s 

3292.68 

MB/Kgates-s 

SRAM  

Efficiency  

10760 

MB/Kbytes-s 

54400 

MB/Kbytes-s

108921 

MB/Kbytes-s 

44959 

MB/Kbytes-s 

* Max Throughput = Frame rate × Processing MBs in (Spatial + Quality) layers 
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Chapter 6. Conclusion and Future Work  

6.1. Conclusion 
 In this thesis, a complete design methodology for SVC decoder is presented from 

decoding flow analysis to module implementation. From simulation results, the 

proposed One-pass quality decoding further reduces 71% memory bandwidth and at 

most 66% macroblock processing time. For the padding issue before texture 

upsampling, the proposed BL-level scheme can save 26% time consumption for the 

IntraBL macroblocks. This work also analyzes and optimizes the architecture design 

of SVC decoder. For the residual reconstruction path, parallel-pipeline architecture 

saves 9.1% gate count cost and 100% memory cost compared with the other one. 

Temporal result reusing scheme reduces 75% required basic vertical interpolations, 

which lowers 70.6% gate counts in interpolator design. The parallel-pipeline 

architecture and temporal result reusing scheme can be combined and lead to 54% 

gate count savings in residual reconstruction path. This thesis also introduced the 

architecture design of external memory access and inter-layer prediction. For 

inter-layer module design, the proposed basic interpolator reduces 28.8% hardware 

complexity. The gate counts of MV upsampler and texture padder are 6.7k and 4.4k 

respectively.  

 Finally, the proposed a Scalable high profile decoder can successfully support 3 

spatial layers and 3 quality layers simultaneously. It meets the specification which 

combines CIF, SD480p, and HD1080p with 3 quality layers at 60 frames per second. 

The total gate counts and internal memory usage in this work are 541.52k and 39.66 

Kbytes, respectively.  
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6.2. Future Work 
 The power consumption issue is not mentioned in this work. Although the 

simplified complexity basically helps the power reduction, specific power saving 

strategies may further help the power performance in this work. In addition, because 

this work is based on the result of gate-level simulation, physical layout and chip 

testing are not included. For further verification or power testing, the back-end design 

flow is required in the future.  
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