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時脈樹和正反器重新散布之共同合成方法 

 

 

學生: 羅琬婷   指導教授: 陳宏明 教授 

國立交通大學 電子工程學系 電子研究所  碩士班 

 

 

摘  要 

在這篇論文中，我們提出了一種優化方法為使用自下而上的群聚

的正反器來降低功耗以及將信號線長最小化。比較以往對於減少正反

器的研究，我們的方法能達到在正反器的功耗和減少信號線長之間的

最佳優化。我們所提出的方法在正反器的功耗和減少信號線長方面優

於[3]和[14]。與[8]比較，我們的方法可以減少 15.8%的信號線長以及

增加 1.8%的正反器功耗。由於自下而上群聚方式的特性，我們提出

的方法對於初始配置能夠達到最小的擾動。                                      

我們進一步改善我們的方法，結合時鐘樹合成，利用 K -means 分

群法識別正反器的群集和更換正反器處於最佳時鐘樹的位置，這樣可

以減少功耗。實驗結果表明，我們的交錯機制可以達到最佳的時鐘樹

功耗。 

我們從所有以前出版的著作[3] [14] [8]獲得執行檔和評估執行結

果使用完全相同的參數。正反器的最終位置轉換為 ISPD2010 標準格

式[13]以及使用 NGSPICE[1]評估最後的時鐘樹合成結果。 
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ABSTRACT

In this thesis, we propose an optimization methodology using agglomerative clus-

tering for flip-flop’s power reduction and signal wirelength minimization. Comparing

to previous works on flip-flop reduction, our method can reach the best optimization

between flip-flop’s power and signal wirelength reduction. Our proposed methodol-

ogy outperforms [3] and [14] in both flip-flop’s power and signal wirelength reduc-

tion. Comparing with [8], our methodology can reduce signal wirelength by 15.8%

with 1.8% increase in flip-flop power consumption. Due to the nature of agglom-

erative clustering, our proposed method also creates least perturbation to original

placement.

We further improve our method by integrating with clock tree synthesis using

k-means clustering to identify cluster of flip-flop and replace flip-flop in an optimal

location such that clock tree power consumption can be reduced. Experimental

result demonstrates that our interleaving mechanism can reach the best clock tree

power consumption.

We obtained binaries from all of the previous published works[3][14][8] and eval-

uate them using exact same parameter. The final location of flip-flop is converted to

ISPD 2010 benchmark format[13] and final result of clock tree synthesis is evaluated

using NGSPICE[1].
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Chapter 1

Introduction

In modern SoC design flow, recent research in industry and academia discovered that

flip-flops in advance technology require less driving power. Less driving power for

flip-flop indicates that a single inverter can drive multiple flip-flop which introduces

the possibility to implement multi-bit flip-flop.

Multi-bit flip-flop has the advantage to share common inverter to reduce power

consumption per bit and allow flip-flop layout area to be more compact. In addition,

implementation of multi-bit flip-flop can reduce both sink number and sink capaci-

tance. The reduction in sink number implies less clock tree wirelength which trans-

lates to lower clock tree power consumption. However, implmentation of multi-bit

flip-flop has the drawback of increasing in flip-flop’s signal wirelength. Experimental

result shows the improvement in power reduction by greedily merging flip-flop will

eventually saturate due to increase in flip-flop’s signal wirelength.

In addition to sink number, placement of flip-flop will also affect clock tree power

consumption. It is shown in [11] that clock tree wirelength can be reduced up to

33% when topology of clock tree is considered during placement stage.
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(a) (b)

Figure 1.1: Inverter sharing using multi-bit flip-flop. (a) are two 1-bit flip-flops. (b)
is a 2-bit flip-flop

1.1 Previous Works

Regarding to previous work on multi-bit flip-flop and flip-flop replacement, previous

work can be categorized to optimization took place during placement and post-

placement stage. Optimization techniques during placement stage including [4] and

[11] relocates flip-flop by constructing pseudo clock tree during placement stage

or integrate multi-bit flip-flop to existing library to reduce sink number. Figure

1.1 illustrates the implementation of a 2-bit flip-flop. A multi-bit flip-flop has the

advantage to share common inverter comparing to 1-bit flip-flop. Figure 1.2 depicts

how sink reduction affects the topology of a clock tree.

Post-placement optimization including [3][14][8] replaces serveral flip-flop with

one multi-bit flip-flop and relocates the multi-bit flip-flop to minimize the total

signal wirelength from all of its connected pins. The valid region for a flip-flop to

be relocated is defined by the slack value from all of its connected pins.
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(a) (b)

Figure 1.2: Reduction of sinks in clock tree. (a) is an illustration of a clock signal
connecting to eight 1-bit flip-flop. (b) is an illustration using multi-bit flip-flop.

1.1.1 Optimization during placement stage

Regarding to flip-flop replacement, Lee et al. [11] integrates a virtual clock tree with

its previously published force-directed placer [9]. In each iteration of placement, a

virtual clock tree will be constructed to identify the topology of clock tree. A

contraction force will then be applied on each flip-flop to motiviate flip-flops to group

into clusters. Eventually, clock tree wirelength can be reduced by reshaping the clock

tree. Final clock tree synthesis is delegated to [10] for final evaluation. Experimental

result shows that modifying sink position can reduce clock tree wirelength by 30%

difference and 7% reduction in dynamic power consumption.

1.1.2 Optimization at post-placement stage

In terms of optimization of flip-flop at post-placement stage, all three of [14][3][8]

shares same objective by optimizing between flip-flop and signal wirelength reduc-

tion. Given a set of flip-flop library, placement density constraint and slack con-

straint, flip-flop reduction is achieved by merging flip-flop to appropriate higher bit

flip-flop. The main difference between the three works lies on selecting groups of

flip-flop to be merged.

Chang et al. [3] solves the problem by applying progressive window-based op-
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timization. As window sweeps across given layout, an intersection graph will be

constructed within the window. The intersection graph is constructed with node

represnting flip-flop and edge represents that two flip-flop can be safely merged

without violating slack constraint. After intersection graph is constructed, maximal

independent set of cliques can be identified. Each set

Similar to [3], Wang et al. [14] also model the given problem as graph problem.

The difference is that [14] applies minimum clique partition problem to identify a

set of non-conflicting cliques. In addition, a clock tree synthesis using [5] is applied

to demonstrate reduction in dynamic power and clock tree wirelength.

In constrast to [14] and [3], Jiang et al. [8] proposed a linear-size sequence repre-

sentation to quickly identify optimal clustering combinations. Based on coordinate

transformation, [8] generate interval graph corresponding to each flip-flop’s feasible

region with both X and Y direction. The X direction interval graph provides deci-

sion points to obtain essential flip-flops and the Y direction interval graph provides

maximal clique for each essential flip-flops. Compare to [14] and [3], [8] can achieve

most flip-flop reduction within fastest runtime.

1.2 Our Contributions

Despite previous effort in flip-flop merging, none considered the chacteristic of clock

tree when determining flip-flop relocation position. It is demonstrated in [11] that

modifying sink position can achieve significant improvement in clock tree power

consumption.

Regarding to [14] [3][8], a trade off between signal wirelength and flip-flop reduc-

tion can be observed. Greedily reducing flip-flop by merging flip-flop will increase

signal wirelength dramatically. Power reduction achieved using multi-bit flip-flop

will eventually be counteracted by increase in signal wirelength power consumption.

4



In [3], both signal wirelength and flip-flop reduction trails behind [8] and [14].

The inherent characteristic of window-based optimization prevents a global view of

the entire problem. In [14], although clock tree synthesis is performed after flip-flop

merging, the location flip-flop is unaffected by the clock tree synthesis. In addition,

the clock tree synthesis performed in [14] is an unbuffered clock tree synthesis which

lacks detail in buffer power consumption and lacks evaluation with spice model.

In [8], although flip-flop number is greatly reduced, it is achieved with a great

expense in increasing in signal wirelength. In addition, more flip-flop reduction

entails higher peturbation to original layout which adds burden to final legalization

stage.

In this thesis, we applied flip-flop merging using agglomerative clustering. In con-

strast to previous work, we merge flip-flop in a bottom-up fashion. Flip-flop merging

is performed by choosing pair of flip-flop with least increase to signal wirelength.

Such approach can guarantee that total increase in signal wirelength is minimized

with equivalent flip-flop number reduction. Unlike [3] and [14], our approach avoids

identifying maximum clique which is unneccessary when given multi-bit flip-flop

library is limited.

To optimize clock tree power consumption, we integrate our implementation of

buffered clock tree synthesis with flip-flop merging, a pseudo clock tree based on

k-means clustering is performed at each iteration of flip-flop merge to determine

optimial relocation position for flip-flop to reduce clock tree wirelength.

All in all, our contribution in this work can be summarized as follows.

• Our agglomerative clustering based flip-flop merging can reach the best opti-

mization bewteen flip-flop’s power reduction and signal wirelength.

• We proposed a k-means based clock tree topology construction to quickly

identify cluster of flip-flops based on their physical location.

5



• We proposed a methodology to interleave clock tree synthesis with flip-flop

merging to optimize clock tree power consumption.

The following sections are organized as follows: Chapter 2 defines problem formu-

lation. Chapter 3 describes agglomerative clustering for flip-flop merging. Chapter

4 introduces a k-means based clock tree topology construction. Chapter 5 describes

the interleaving mechanism of flip-flop merging and clock tree synthesis. Chapter 6

presents the experimental result and finally Chapter 7 concludes the thesis.
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Chapter 2

Problem formulation

The problem of clock tree synthesis considering flip-flop merging can be defined as

follows. Given a set of m-bit flip-flop library in Table 2.1 and a set of flip-flop each

with a slack value, using the given multi-bit flip-flop to reduce sink number and place

the merged flip-flop in position without violating any slack and placement density

constraint. Next, we construct a clock tree with merged flip-flop that minimizes the

total wirelength without violating any slack and placement density constraint.

Table 2.1: Bit, Power and Area for each Flip-Flop Type

Name Bit# Power Area Power/Bit Area/Bit
FF1 1 100 100 100 100
FF2 2 172 192 86 96
FF4 4 299 398 74.75 99.5
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Chapter 3

Agglomerative clustering based
flip-flop merging

When dealing with flip-flop merging, determining which set of flip-flops to be merged

should closely relate to sink merging in clock tree synthesis. Nearest Neighbor

Selection(NNS) proposed by [7] is one of the popular methods to construct topology

of clock tree. NNS first constructs a relation graph that calculates the nearest

neighbor sink to every sink. After relation graph is constructed, edge with smallest

distance between two sinks will be picked and merged as new sink and insert back to

the relation graph. The process iterates until there is only one sink left in the relation

graph. Thus, when a flip-flop selects the best merging candidate, flip-flop within

nearest proximity should be selected. The benefit of such approach is two-fold.

First, wirelength connecting to both merged flip-flop can be minimized. Second, the

relocation position of merged flip-flop will not deviate too much from its original

position.

3.1 Resemblance between agglomerative cluster-

ing and nearest neighbor selection

In short, NNS is a bottom-up approach that constructs a tree by selecting minimum

cost edge in each iteration. The agglomerative(bottom-up) approach in hierarchical

8
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Figure 3.1: The rotate coordinate system to describe flip-flop movable zone(a) de-
picts the rotated coordinate system by 45 degrees. (b) coordinates representation
for rotated rectangle.

clustering takes very similar approach compared to NNS. Agglomerative clustering

iterates and merges two clusters with minimum cost based on certain cost function

until one single cluster that contains all elements is formed. The major difference

between agglomerative clustering and NNS is that graph constructed in agglomera-

tive clustering calculates the distance between every single pair of sinks, while graph

constructed in NNS only shows the nearest neighbor sink for a given sink.

3.2 Overlap graph construction using agglomera-

tive clustering

The slack value for a flip-flop can be treated as a distance budget for a flip-flop. The

farther away flip-flop moved from its original location, the less slack value a flip-flop

has. In this regard, the slack value for a flip-flop can be modeled as a form of wire

delay. The distance in this context refers to Manhattan distance, thus the region a

flip-flop can be relocated without violating the given slack constraint forms a tilted

rectangle region (TRR). The TRR for flip-flop merging takes the same concept of

TRR in clock tree except that TRR in flip-flop merging has radius defined by its

9



Algorithm 1 Segment-Overlap

Segment-Overlap(ni,nj)

1: if min[ni] ≤ min[nj] and min[nj] ≤ max[ni] then
2: return true
3: else
4: return false
5: end if

slack value while the radius for TRR in clock tree is defined by its capacitance load.

If two flip-flop’s TRR overlaps, it implies that two flip-flop can safely be merged

in the overlapping region without violating slack constraint for both flip-flops. In

graph representation, flip-flop is represented by a node and overlapping region of

two flip-flops is represented by an edge. An edge is created between two flip-flops if

and only if there exists an overlapping region between the two flip-flops.

The naive implementation of agglomerative clustering has time complexity O(N2)

which is to compare every node with every other node. However, not every node

has an edge connecting to every other node. A more efficient approach is to sort all

the rectangles on X-coordinate and find overlapping segment in Y-coordinate which

can reduce number of comparisons. This approach is derived from Line Sweep

Method[6]. Red-black tree is also used so that each insertion and deletion of TRR

is guaranteed to be bounded in O(lgN) rather than O(N).

We formulate the flip-flop merging problem as a graph problem. In graph, node

represents a flip-flop movable zone which is a rotated rectangle and edge represents

there exists overlapping region between two nodes it connects. To identify all the

overlapping rectangles, the straight forward method is to compare one rectangle

with every other rectangle. However, it is rare that every rectangle overlaps with

every other rectangle. A more efficient approach is to sort all the rectangles on X-

coordinate and find overlapping segment in Y-coordinate which can reduce number

of comparisons. This approach is commonly known as Line Sweep Method [6],

10



Figure 3.2: The sweep line method first sorts the rectangle based on their X’-
coordinate. When the sweep line touches a rectangle, the rectangle will compare
with all the rectangles stored in the RB-Tree. When a sweep line leaves a rectangle,
that rectangle is removed from the RB-Tree.

which is described in Algorithm 2. Red-black tree is used so that each insertion and

deletion of rectangles is guaranteed to be bounded in O(lgV ) rather than O(V ).

The algorithm first takes all rectangle’s minimum and maximum X-coordinates

and store them in an array. The X-coordinates will then be sorted in non-decreasing

order using heap sort which corresponds to line 1-4 in Algorithm 2. After the array

is sorted, an imaginary line starts to sweep from the beginning of the array. If the X

value is the starting point of a rectangle, the rectangle is stored into a red-black tree

and compare with all the rectangles stored in the red-black tree to check whether

if there exists overlapping region between the two rectangles. Given that rectangles

are already sorted by their X-coordinate, if two rectangles were to be compared, then

it implies that two rectangles must be overlapped in X-coordinate. Hence, checking

whether if two rectangles exist overlapping region only needs to check whether the

segments of two rectangle are overlapped in Y-coordinate, which reduces the problem

11



Algorithm 2 Line Sweep Method to Identify Overlapping Rectangle

1: for ni ∈ Q do
2: X ← X ∪minX[ni] ∪maxX[ni]
3: end for
4: Sort X in non-decreasing order
5: for x ∈ X do
6: if x = lowX then
7: for nj ∈ P do
8: if Segment-Overlap(ni, nj)=true then
9: E ← E ∪ E(ni, nj)

10: end if
11: end for
12: P ← P ∪ni

13: else
14: P ← P - ni

15: end if
16: end for

from 2-dimensional space to 1-dimensional space. The algorithm to check whether

two segments overlap is described in Algorithm 1. If the X value is the ending point

of a rectangle, the rectangle is removed from the red-black tree. When the sweep

line reaches to the end of the list, all the edges can be generated.

Fig. 3.2 demonstrates a simple example using Line Sweep Method. In Fig.

3.2(a), sweep line first enters rectangle A and rectangle A is stored in the red-black

tree. In Fig. 3.2(b), sweep line enters rectangle D. Rectangle D are then compared

with rectangle A and B to check whether if there exist overlapping region. In

Fig. 3.2(c), sweep line leaves rectangle D which is removed from the red-black tree.

Finally, in Fig. 3.2(d), the sweep line leaves rectangle E and rectangle E is removed.

In worst case scenario in which every rectangle overlaps with every other rectan-

gles, the graph representation of such circumstance is a complete graph. The time

complexity for Line Sweep Method in a complete graph is O(N2) since no rectangles

will be removed from red-black tree and every inserted rectangle must compare with

every other rectangles stored in the red-black tree.
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Algorithm 3 Hierarchical Agglomerative Clustering

HAC(Q)

1: while Q!=EMPTY do
2: Edge ← Pop[Q]
3: RB − TREE ← ∅
4: nl ← Left[Edge]
5: nr ← Right[Edge]
6: if (Bit[nl] +Bit[nr]) ∈ FF-Library then
7: nnew = new Node
8: nmergeable ← findCommonNode(nl, nr)
9: Enew = new Edge(nmergeable, nnew)

10: Q← Q ∪ Enew

11: end if
12: end while

3.3 Flip-flop merging

After graph is constructed, the edge with minimum cost will be selected and checked

whether if it is mergeable. For two flip-flop to be mergeable, there must exist

corresponding type in given flip-flop library. For example, if FF-A is 1-bit, FF-B is

2-bit and there is no 3-bit flip-flop available, FF-A and FF-B can not be merged.

In each iteration, each merge will select two flip-flops with least edge cost. If two

flip-flops is successfully merged, new node representing the merged flip-flop will be

created and added to the graph with corresponding edges. Edges connecting to

two original flip-flops will be removed from the graph and new edges connecting to

merged flip-flop will be added.

The algorithm will terminate until there is no more edge left in the graph. In

Fig. 3.3(a), node A and B are picked to be merged, edges connected to node A and

node B are removed. In Fig. 3.3(b), new node MAB is created with two new edges

added to the graph. Fig. 3.3(c) illustrates the same concept of merging node MAB

and node MCD to a 4-bit node MABCD. The algorithm terminates in Fig. 3.3(d)

since there is no more edge in the graph.
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Figure 3.3: Example of agglomerative clustering in flip-flop merging

3.4 Placement of Flip-Flop

3.4.1 Flip-Flop Library

Flip-flop can not be merged to any arbitrary higher bit flip-flops. There are limited

flip-flop types and every single flip-flop must have a corresponding flip-flop type in

the flip-flop library. Table 1 lists all the available flip-flop types in this work.

3.4.2 Slack and Timing Constraint

The location of the clustered flip-flop must be placed in a distance that does not

violate the original slack constraint. There is a slack value for each flip-flop to each

pin it connects to. ffi and pj in (3.1) denotes flip-flop and pin respectively. FF

denotes flip-flop set and Pin denotes pin set connected to a certain flip-flop. For

each connected flip-flop and pin, the distance between the two must not violate the

given slack constraint.

d(ffi, pj) ≤ Slackij , ffi ∈ FF , pj ∈ Pin (3.1)
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Figure 3.4: Placement of Merged Flip-Flop

3.4.3 Placement Density Constraint

When placing flip-flops, density of the circuit must be considered. The given layout

is partitioned into different set of bins, each bin is given with a placement density

constraint and pre-placed combinational logic. The final placement density after

flip-flop clustering must not violate the placement density constraint for all bins. In

(3.2), B is the given set of bins, CAj denotes the combinational area in bin bj, the

summation of all flip-flop area and the combinational logic area in one bin can not

exceed its pre-defined placement density constraint.

∑k

j∈bi
Area(ffj) + CAj

wi · hi

≤ Dmax, for all bi ∈ B (3.2)

For a merged flip-flop to be successfully relocated, three conditions must be

satisfied.

• Slack constraint must be met for all flip-flops.
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• Placement density for all bins can not be violated.

• The position of merged flip-flop must not overlap with other merged flip-flop.

The given layout is partitioned into a set of bins and placement density is calcu-

lated for each bin. When relocating a merged flip-flop, it will first check whether

the relocation point is being occupied and whether the placement density of the

corresponding bin is violated. If violated, a breadth-first search will be conducted

to search for a nearest unoccupied point in which both slack and placement density

are not violated. If such point does not exist, the merged flip-flop will split and

return to its original state.

When flip-flop merge runs stand alone from clock tree synthesis, the mean point

of all the pins connected to merged flip-flop will be selected as the relocation position

of the merged flip-flop. When interleaved with clock tree construction which will be

discussed in Chapter 5, a preferred merge position will be generated from CTS and

fed to flip-flop merging. A breadth-first search will be conducted to search for the

nearest valid point to the preferred merging position.

It should be noted that Nearest Neighbor Selection (NNS) and agglomerative

clustering shares similar quality for wirelength minimization. However, NNS re-

stricts one edge for each node which is not suitable to implement flip-flop merging.

In flip-flop merging, not every pair of sink can be merged due to slack constraint

and limited types of flip-flop in flip-flop library. In addition, to cope with clock tree

synthesis, edge cost is required to update constantly. Agglomerative clustering in

this regard is much more flexible and its high resemblance to NNS making it an

optimal choice for flip-flop merging.
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Chapter 4

K-means based clock tree
synthesis

In this section, a two phase clock tree topology construction based on improved

k-means clustering is proposed. The first phase of clock tree topology construction

is an un-coarsening phase that separates k most distant cluster in each iteration and

terminates until there is less than three sinks in each cluster. The second phase is

a coarsening phase which constructs a binary tree that takes the cluster formed in

first phase and iteratively clusters them together until one single cluster is formed.

The benefit of k-means is that it can quickly identify k pair of sinks that is relatively

close to each other. The k identified pairs can then be fed back to update edge cost

in graph constructed during flip-flip merging.

Despite the apparent difference between k-means and NNS, k-means clustering

shares similar quality compare to NNS. In NNS, a Delaunay triangulation is re-

constructed every time a pair of cluster is merged which guarantees merge in next

iteration will add least amount wirelength to clock tree. In contrast, k-means clus-

tering identifies k centers in each iteration which also maintains a set Delaunay

triangulation.

Delaunay Triangle is equivalent to Voronoi Diagram which guarantees that every

center in each cluster is the closest point to every sink belonging to that cluster.
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Figure 4.1: Illustration of coarsen and un-coarsen methodology to construct topology
of clock tree.

Algorithm 4 Lloyd’s Algorithm

1: Randomly Choose k centers from sink set X
2: repeat
3: Assign sink x ∈ X to nearest center c ∈ C

4: Re-Calculate Center for all c ∈ C

5: until All center c ∈ C is stable

Both NNS and k-means clustering maintains k centers that forms Delaunay Triangle

in each iteration. Fig.4.1(a), 4.1(b) and 4.1(c) illustrates the Voronoi Diagram

for each cluster center during un-coarsening phase. Fig.4.1(d), 4.1(e) and 4.1(f)

illustrates the construction of clock tree during coarsening phase. Once the topology

of clock tree is constructed, Deferred Merge Embedding (DME) [7] for zero skew

minimization using Elmore Delay model is implemented.

4.1 k-means clustering
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The problem of clustering can be defined as follows. Given a set of sinks X =

{x1...xn}, divide the given sinks into k clusters (k ≤ n) and select k centers C =

{c1...ck} to minimize the following potential function.

φ =
∑

x∈X

min
c∈C
‖x− c‖2 (4.1)

4.1.1 Lloyd’s algorithm

The concept of k-means clustering was originally proposed by [12], also known as

Lloyd’s algorithm. Lloyd’s algorithm begins by selecting k centers from given sinks

X at random. After k centers are selected, Lloyd’s algorithm then iterates to reassign

sink to nearest center and re-calculates the center point position. The algorithm

terminates when the position of centers remains stationary. Algorithm 4 describes

detail step for Lloyd’s algorithm and Fig. 4.2 demonstrates a simple example.

Figure 4.2: An example of k-means algorithm. (a) Randomly select 3 means which
are shown in circle. (b) Assign sinks to the nearest means. (c) New centroid of
each cluster are generated. (d) All sinks are reassigned to the new means, and the
partitions which are generated by 3 means represent the Voronoi Diagram.

Although Lloyd’s algorithm is able to quickly identify k independent clusters,

Lloyd’s algorithm suffers deficiency such that it easily resorts to local optimal so-

lution. In this regard, an improved k-means clustering is implemented based on

[2].
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4.2 Improved k-means clustering

In Lloyd’s algorithm, the selection for initial center dominates the quality of entire

cluster and Lloyd’s algorithm is susceptible to select centers that are close to each

other. It is desirable to choose centers that are evenly separated from each other.

Thus, [2] modifies the procedure to select centers at initial phase.

Let D(x) be the shortest distance between a sink x and the nearest center c. The

improved k-means clustering randomly selects one sink as first center, and rest of

k−1 centers is selected based on probability proportional D(x)2. Each time a center

is selected, D(x) will be updated for all sink x. Thus, sinks located farthest away

from all centers will have higher probability being selected. The improved k-means

clustering is described in Algorithm 5 and Fig.4.3.

Figure 4.3: The first phase of improved k-means clustering. (a) The first center
shown in colored square is randomly selected. (b) Calculate each sink probability
with respect to the first center. (c) Select the sink with highest probability to be the
second center. (d) Calculate probability with respect to both centers, then decide
the third center.

Randomness in clustering offers approximation guarantee [2] and enables user

to re-run the algorithm to get the best clustering. According to [2], the improved

k-means clustering has an upper bound error O(logk) which guarantees the quality

of the cluster.
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Algorithm 5 Improved Lloyd’s Algorithm

1: Randomly Choose one center from sink set X
2: for 1 to k − 1 do
3: for each sink x ∈ X do
4: calculate D(xi)
5: end for
6: Random choose y between 0 and

∑
i∈n D(xi)

2

7: Find i such that
∑i

0 D(xj)
2 ≥ y¿

∑i−1
0 D(xj−1)

2

8: Add xi to C

9: end for
10: repeat
11: Assign sink x ∈ X to nearest center c ∈ C

12: Re-Calculate Center for all c ∈ C

13: until All center c ∈ C is stable
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Chapter 5

Interleaving clock tree generation
with flip-flop merging

This section will describe how flip-flop merging in Chapter 3 interleaves with clock

tree synthesis in Chapter 4. In a nutshell, the result generated by improved k-means

clustering will affect the merging priority in flip-flop merging and result produced

by flip-flop merging will feed back to clock tree synthesis which will iterate until sink

position is stable. When sink position is stable, clock tree synthesis will be initiated

to complete the clock tree based on reduced number of sinks.

Figure 5.1: The effect of CTS due to selection of flip-flop merge. (a) is the original
sink distribution (b) consructs the graph in FF-Merge (c) is an example of sink
distribution with uneven load and (d) is an example of sink distribution with even
load.

The objective of flip-flop merging is to maximize every possible merge. However,

greedily merging flip-flop that maximizes utilization of multi-bit flip-flop may neglect

quality of clock tree at global scale. Fig.5.1 illustrates such phenomenon. Assuming
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all sinks have equivalent capacitance load. Fig.5.1(b) merges four sinks in the center.

However, the unbalanced load will result in the additional wirelength in four corner

sinks due to wire snaking for skew minimization. On the other hand, Fig. 5.1(c)

that merges four sinks in the corner is a much more desirable sink topology for clock

tree synthesis.

Thus, the global quality of cluster is essential to clock tree synthesis. Greedy

flip-flop merging is prone to produce undesirable result that requires additional wire

snaking to minimize skew. In addition, the relocation position of merged flip-flop

will also affect the quality of clock tree. In flip-flop merging, merged flip-flop only

needs to be placed in position that does not violate slack constraint. However, in

scope of clock tree synthesis, sink position is preferably to place in position that

requires less wire snaking. Viewed in this light, when determining the relocation

position of the merged flip-flops, the merging point produced by clock tree synthesis

should also be taken into consideration.

5.1 Interleaving procedure

Fig.5.2 demonstrates a simple example that interleaves clock tree synthesis with

flip-flop merging. To begin with, in Fig.5.2(b),(c), flip-flop merging will first process

the input sinks and construct overlapping graph using line sweep method described

in Section 3.1. After graph is constructed, in Fig.5.2(d), the un-coarsening phase

of clock tree will be initiated to iteratively un-coarsen the given sinks until each

cluster have two or less sinks. The un-coarsened cluster will then select clusters with

two sinks and check whether the contained sinks have corresponding edge in graph

constructed during flip-flop merging. If a corresponding edge is found, it represents

that not only both sinks is mergeable in flip-flop merging, it is also preferably to be

merged in clock tree.
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Figure 5.2: An example of interleaving CTS and FF-Merge. (b) draws out the slack-
TRR of all FF. (c) constructs graph according to TRR in (b). (d) performs the
un-coarsening phase in CTS. (e) updates the edge cost (f) performs one iteration of
FF-Merge. (g) performs un-coarsening phase in CTS one more time. (h) constructs
the clock tree based on DME.

If a corresponding edge is found, the edge is then updated with a cost propor-

tional to the distance between two sinks allowing the edge to gain higher merging

priority which is illustrated in Fig. 5.2(e). The merging segment of the parent sink

calculated during clock tree synthesis will also feed to flip-flop merging. When merg-

ing two flip-flops, it will check whether there is a preferred merging point that is

desirable to clock tree. If there exists a preferred merging point, the corresponding

edge will be updated with a new cost.

In Fig. 5.2(f), when all of the edges are updated, one iteration of flip-flop merging

will then be performed. In each iteration of flip-flop merging, sinks can only be

merged once. The reduced number of sinks then becomes the next sink distribution

for next clock tree synthesis iteration. The process iterates until sink number can not

be further reduced. When sink number remains unchanged during flip-flop merging,

clock tree synthesis is then initiated to complete the clock tree which corresponds
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to Fig. 5.2(h).

The proposed interleaving mechanism allows flip-flop merge and clock tree syn-

thesis to cope with one another. Regarding previous work on post placement flip-

flop merging [14][8][3] which all focused on maximizing flip-flop merge and failed

to consider the characteristic of clock tree. In this work, agglomerative clustering

is implemented in flip-flop merging which focuses on wirelength minimization and

k-means clustering considers the general clock tree topology during clock tree syn-

thesis, the clustering characteristic allows both methods to collaborate in coherent

congruency.
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Chapter 6

Experimental results

In this thesis, we compare our algorithm with [3], [14] and [8]. Six testcases(C1∼C6)

are obtained from [3] which are also input benchmark for [14] and [8].

We obtained all of the binary executables from [3], [14] and [8]. Executables

from [14], [8] and our algorithm are performed under Intel Xeon CPU 5160 Cent OS

workstation running at 3.0 GHz. Executable from [3] is performed under Intel Core

i3 CPU 550 Ubuntu workstation running at 3.2 GHz since it is compiled with g++

4.5.4.

An evaluator is implemented to evaluate the flip-flop’s power and signal wire-

length reduction before and after flip-flop merging and examine whether if any of

the given constraints are violated. The evaluated results for all of the obtained

executables are verified with corresponding authors.

To examine clock tree power consumption, flip-flop merging result for all the

executable is converted to 2010 ISPD clock tree format. We then used our imple-

mentation to perform final clock tree synthesis for all of the executables using exact

same parameter. Final clock tree result is evaluated using script released by 2010

ISPD Clock Tree Contest with NGSPICE.

In this chapter, we present our experimental result in 2 sections. Section 6.1 will

compare the detail of flip-flop merging result for all of the obtained executables by
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Illustration of the flip-flop merging result on testcase C3. (a) Original
case(b) Result of [8](c) Result of [14](d) Result of [3](e) Result of Our work without
interleaving(f) Result of Our work with interleaving

analyzing flip-flop number reduction, flip-flop’s signal wirelength minimization and

average displacement of flip-flop. Section 6.2 will present the detail of clock tree by

presenting sink, buffer and clock tree wirelength capacitance for all of testcases.

6.1 Flip-Flop’s Power and Signal Wirelength Re-

duction

Table 6.1 presents the result of flip-flop number reduction. Compared with original

benchmark without flip-flop merging, our algorithm can reduce flip-flop number by

65.66%. In comparison with [3] and [14], our proposed algorithm outperforms by

2.99% and 1.66% respectively. In comparison with [8], our algorithm trails behind

by 2.99%. Figure 6.1 shows the flip-flop merging result of each algorithm.

Flip-flop number reduction in Table 6.1 is translated to flip-flop power reduction

which is describe in Table 6.2. The detail of the given multi-bit flip-flop library

is described in Table 2.1. Higher-bit flip-flop have the advantage of lower power
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consumption and lower area per bit.

In Table 6.2, it can be observed that [8] achieves best flip-flop power reduction

since it has fewest number of flip-flops. However, regarding to total signal wirelength

connecting to each flip-flop, [8] increases most signal wirelength in all 6 testcases. In

contrast, our algorithm trails behind [8] by 1.8% in terms of flip-flop power reduction

but outperforms [8] by nearly 16% in terms of flip-flop’s signal wirelength. Addional

increase signal wirelength implies that flip-flop’s power reduction will be counteract

by increase in dynamic power consumption in signal wirelength. According to our

analysis in 45nm design with 0.0002fC/nm, our algorithm in on par with [8] in terms

total power consumption if average switching activity factor is 0.1 and outperforms

it if switching activity is higher.

In addition to analyzing flip-flop’s power and signal wirelength, we also analyze

average displacement of each merged flip-flop. Table 6.3 presents the result of aver-

age displacement of merged flip-flops for all of the obtained executables. For each

merged flip-flop, we can identify which of the original flip-flops it consists. Then

displacement between flip-flop’s original location and its final relocation position

can be calculated. In all 6 testcases, original flip-flop is given in 1-bit or 2-bit, we

perform analysis on all of the testcases for each executable and present the result

by taking the average displacement for 1-bit and 2-bit flip-flop.

The benefit of merging nearest neighbor flip-flops is two fold, it increases least

signal wirelength and creates least peturbation to original layout. Regarding to

Table 6.3, our algorithm have the least displacement with better flip-flop reduction

comparing to [3] and [14]. Regarding to [8], since it have the most flip-flop reduction,

it also creates most peturbation to original placement.
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6.2 Result of Clock Tree Synthesis After Flip-

Flop Merging

Table 6.4 depicts the clock tree synthesis result of sink, buffer, and wire capacitance.

We apply a DME-based two-stage buffered clock tree synthesis to verify the obtained

results of four algorithms, and the capacitance data is obtained from NGSPICE[1].

Compared with [8], [14], [3], and our results without interleaving technique, 3.68%,

4.96% and 2.51% additional total capacitance are obtained. However, our work

with interleaving technique has 2.58% less total capacitance compared with [8].

Although [8] obtains the best flip-flop reduction rate, the distant merged flip-flops

cause longer clock tree wirelength. In interleaving technique, k-means clustering

tends to concentrate flip-flop merging in each cluster, and reduce clock tree wirlength

at the same time.
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Table 6.1: Comparison on Flip-Flop Number Reduction and Detail of Multi-Bit Flip-Flop For Each Testcase

Circuit Testcase C1 C2 C3 C4 C5 C6 Total Reduction Norm.

Original
# of FFs (1,2,4 bits) 76,22,0 366,57,0 1464,228,0 4378,751,0 9150,1425,0 146400,22800,0 - -

Total Sink# 98 423 1692 5128 10575 169200 187116 100%

[8]
# of FFs (1,2,4 bits) 0,4,28 0,6,117 0,14,473 2,21,1459 2,33,2983 18,113,47939 - -

Total Sink# 32 123 487 1482 3018 48070 53212 29.40%

[14]
# of FFs (1,2,4 bits) 6,7,25 16,30,101 70,125,400 232,402,1211 484,806,2476 7580,13508,39351 - -

Total Sink# 38 147 595 1845 3766 60439 66830 36.00%

[3]
# of FFs (1,2,4 bits) 8,10,23 24,36,96 84,146,386 242,469,1175 480,920,2420 7320,14780,38780 - -

Total Sink# 41 156 616 1886 3820 60880 67399 37.33%

Our
# of FFs (1,2,4 bits) 2,9,25 8,36,100 28,142,402 80,450,1225 160,880,2520 2440,14020,40380 - -

Total Sink# 36 144 572 1755 3560 56840 62907 34.34%
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Table 6.2: Comparison on Flip-Flop’s Power Reduction, Flip-Flop’s Signal Wirelength and Execution Time

Circuit Original [8] [14] [3] Our
# WL(nm) PW WL(nm) PW sec. WL(nm) PW sec. WL(nm) PW sec. WL(nm) PW sec.
C1 8942500 11384 8606500 9424 0 8215500 9604 0 8196500 9696 0.01 8112500 9548 0
C2 34892000 46404 35495000 37356 0 31017000 38272 0.06 33032000 38544 0.03 30534000 38192 0.02
C3 139568000 185616 144232000 149984 0.04 123585000 153300 0.29 132321000 153944 0.07 122790000 152648 0.13
C4 429065500 566972 445319500 459020 0.11 379692500 470176 0.79 405594500 471468 0.2 379287500 467600 0.5
C5 872300000 1160100 911912000 936572 0.25 755695000 959544 1.95 827580000 961280 0.49 769890000 953600 1
C6 13956800000 18561600 14654546000 14978204 3.31 12309247000 15358888 36.45 13245195000 15373520 92.64 12338170000 15254000 21.86

Norm. 1.130 1.233 1.157 1 1 1.002 1.023 11.012 1.065 1.028 27.988 1 1.018 6.604
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Table 6.3: Comparison on Average Displacement Distance of Merged Flip-Flops

Circuit [8] [14] [3] Our
Testcase 1-bit(nm) 2-bit(nm) 1-bit(nm) 2-bit(nm) 1-bit(nm) 2-bit(nm) 1-bit(nm) 2-bit(nm)

C1 37658 49309 41875 19500 41426 22333 38270 19477
C2 40208 47922 38999 19760 38827 21350 36989 18907
C3 40717 48353 39820 19761 38399 21121 37222 18907
C4 41044 48129 40006 20361 38363 21098 37433 19041
C5 41027 48662 39429 20155 38159 21090 37362 18907
C6 41021 48898 39810 20395 38047 21103 37430 18907
Avg. 40279 48546 39990 19989 38870 21349 37451 19027

Table 6.4: Comparison on Clock Tree Synthesis Results including Sink, Buffer and
Wire Capacitors after Multi-Bit Flip-Flop Construction among [8], [14], [3], and Our
Work with and without Interleaving Technique

Circuit Testcase c1(fF) c2(fF) c3(fF) c4(fF) c5(fF) Norm.

Original

Skew 0.2 1.586 2.104 2.069 2.86 -
Sink 398.44 1624.14 6496.56 19844.02 40603.5 -
Buffer 485.8 1927.8 7036.6 31911.1 65983.5 -
Wire 586.426 2604.8 10873.25 34426.621 70841.548 -
Total 1470.666 6156.74 24406.41 86181.741 177428.548 1.556

[8]

Skew 0.408 0.49 0.992 2.063 1.997 -
Sink 327.32 1313.76 5249.44 16065.7 32780.02 -
Buffer 485.8 1763 6377.4 14699.8 38431 -
Wire 397.587 1608.361 6655.228 20600.921 42801.949 -
Total 1210.707 4685.121 18282.068 51366.421 114012.969 1

[14]

Skew 0.252 1.145 0.87 2.834 1.829 -
Sink 336.14 1339.52 5365.5 16456.16 33584 -
Buffer 485.8 1763 6377.4 16183 39883.3 -
Wire 380.335 1788.71 7310.818 21835.078 45611.517 -
Total 1202.275 4891.23 19053.718 54474.238 119078.817 1.037

[3]

Skew 0.037 0.824 0.681 2.796 1.967 -
Sink 339.36 1349.04 5388.04 16501.38 33644.8 -
Buffer 485.8 1763 6377.4 16183 39749.4 -
Wire 399.274 1793.078 7455.872 22734.639 47450.315 -
Total 1224.434 4905.118 19221.312 55419.019 120844.515 1.050

Our work without interleaving

Skew 0.015 1.097 0.716 2.407 1.658 -
Sink 334.18 1336.72 5342.68 16366 33376 -
Buffer 485.8 1763 6377.4 15523.8 39749.4 -
Wire 382.901 1716.058 7079.658 21492.976 45051.305 -
Total 1202.881 4815.778 18799.738 53382.776 118176.705 1.025

Our work with interleaving

Skew 0.297 0.662 2.392 2.324 2.024 -
Sink 334.18 1341.2 5357.24 16392.88 33440 -
Buffer 485.8 1763 4811.8 14123 39749 -
Wire 346.219 1557.159 6342.141 20601.14 42482.96 -
Total 1166.199 4661.359 16511.181 51117.02 115671.96 0.974
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Chapter 7

Conclusions

In this thesis, a co-synthesis method on clustering based flip-flop merging and clock

tree synthesis is presented. According to observation, the proposed flip-flop merging

can achieve roughly 60% in sink reduction. When interleaving with clock tree syn-

thesis, it can reduce total clock tree wirelength by 33% by selecting optimal position

for merged flip-flop. Agglomerative clustering shares common principle as Nearest

Neighbor Selection which guarantees lowest cost to merge all nodes.

In addition to flip-flop merging, we also propose a two-phase clock tree synthesis

based on improved k-means clustering. The selection of initial center based on [2]

guarantees that the result error is bounded. Similar to Nearest Neighbor Selection,

a Delaunay triangulation is maintained in each iteration of clock tree topology con-

struction. Such approach will focus on topology of clock tree while taking wirelength

minimization into consideration. In this regard, agglomerative clustering focus on

local wirelength minimization and K-Means clustering considers global clock tree

topology making both algorithms mutually complement to one another.
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