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Chapter 1. Introduction 

H.264/AVC [1] has been the state of the art video compression standard of the ITU-T Video 

Coding Experts Group and ISO/IEC Moving Picture Experts Group (MPEG) in current video 

applications. It promises to outperform the earlier MPEG-4 and H.263 standard, employing many 

better innovative technologies such as multiple reference frame, variable block size motion 

estimation, in-loop de-blocking filter and context-based adaptive binary arithmetic decoding. 

H.264/AVC system can save the bit-rate up to 50% compared to the previous video standard such as 

H.263 and MPEG-4 under the same quality. Because of its high quality and compression gain 

technology, the more livelihood application products such as digital camera, video telephony and 

portable DVD player adopt H.264/AVC as its video standard as well. H.264/AVC contains two 

entropy decoders. One is Context-based Adaptive Variable Length Coding (CAVLC), and the other is 

Context-based Adaptive Binary Arithmetic Coding (CABAC) [3]. CABAC can achieve 9% to 14% 

bit-rate saving in average compared with CAVLC. 
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Figure 1. Block Diagram of H.264/AVC Decoder 
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Figure 1 shows the block diagram of H.264/AVC decoder (our system specification shows in 

Appendix A). The H.264/AVC has three profiles such as baseline, main and high for supporting 

varied video applications. The baseline profile adopts VLD to decode the MB information and the 

pixels coefficients which contains the universal variable decoder (UVLD) and the context-based 

adaptive variable length decoder (CAVLD). UVLD is one of VLD in baseline profile. It decodes not 

only the MB information such as the mb_type, coded_block_pattern, intra_pred_mode, and so on, 

but also the MB coefficient such as mvd.  Because the residual data decoding occupies over 50% of 

the entire execution time, the residual coefficients are computed by the CAVLD architecture of the 

more efficiency. When it supports except baseline profile, the decoder has an advance choice except 

VLD. CABAD can be used in place of UVLD and CAVLD. Thus, H.264 system just needs CABAD 

to decode all MB information and pixel data if entropy decoding flag is assigned to CABAD. 

In normal system architecture, the block of syntax parser employs in decoding the bit-stream on 

NAL layer, picture layer, and slice layer, given as Figure 2. Syntax element parser is also the top 

module to control all sub-system such as CABAD, VLD, intra-prediction, inter-prediction, IDCT, and 

so on. Hence, CABAD is the passive unit and is requested by the syntax parser and decodes the 

bit-stream of the macro block layer in Figure 2. The bit-stream is also fetched through the syntax 

element parser gets from bit-stream SRAM. 

Figure 2. Bit-stream structure of H.264/AVC 
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1.1 Overview of CABAC Decoding flow 

 

Figure 3. Block Diagram of CABAC decoding flow 

In this Section 1.1, we introduce each building block of CABAC decoder and the execution flow 

of the CABAC decoder system. Before introducing the decoder, we have to explain the organization 

of bit-stream. In encoder side, all SEs of the H.264/AVC will be transferred into the binary code “bin” 

except flag-type SEs by binarization at first. And then, the transferred bin string encodes to the 

bit-stream by the binary arithmetic coder currently. So, it consists of two level decoders such as 

binary arithmetic decoder (AD), the de-binarization (DB) in decoder side. The binary arithmetic 

decoder has three different types such as regular, bypass, and terminal decoding processes. We don’t 

show the terminal decoding process in Figure 3, because it is seldom applied in CABAC decoder 

system. At the beginning, the entire probabilities of the context model have to be initialized by the 

context model initial table when the new slice starts. In Figure 4 it has two decoding flows among the 

dotted lines. The first decoding flow is the arithmetic decoder which is the first stage of decoding one 

syntax element. It produces the bin value depending on the current range (codlRange) and the current 

value (codlOffset). The second decoding flow is the binarization engine. It reads the bin values to 

judge if the bin string forms the meaningful data. If not, the binarization engine requests the 

arithmetic decoder to decode one bin again and re-judges the bin string until identifying the value of 

the current syntax element. If completing the current slice, codlRange is assigned to “51210” and 

codlOffset is refilled in 9-bit bit-stream from the H.264/AVC system. 
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Figure 4. The flow chart of the CABAC decoding [1] 

2nd level decoding flow 

1st level decoding flow
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On the other hand, we collect all SEs which invoke CABAC decoder and their possible branches 

in Figure 5. Typically, we have four kinds of SEs including slice data, MB layer, (sub) MB pred and 

residual block cabac. Slice data and MB layer produce once time per macro block. (sub) MB pred 

and residual block cabac are produced according to block size. Therefore, we may often change our 

decoding order because of variable macro block type.   

In slice data, we have three syntax elements such as mb_skip_flag, mb_field_decoding_flag and 

end_of_slice_flag. The mb_field_decoding_flag is used to recognize frame and field MB, and we 

produce once per MB pair. The end_of_slice_flag is always symbolized final syntax element of MB, 

and the slice will be finished when end_of_slice_flag equal to one. Besides, if the mb_skip_flag equal 

to one, we directly jump to end_of_slice_flag and skip this MB. 

In MB layer, we have four syntax elements such as mb_type, transform_size_8x8_flag, 

coded_block_pattern and mb_qp_delta. We can recognize current block in which block size by 

mb_type and transform_size_8x8_flag. The mb_qp_delta is a parameter for inverse-quantization, and 

coded_block_pattern are represented zero distribution of residual block.  

After decoding value of mb_type, we can depend on block size to judge the following status 

which will be mb_pred or sub_mb_pred. If we decode in sub_mb_pred, we may produce 

sub_mb_type to recognize sub-block size. And then, we may decode one or more predictor modes 

such as prev_intraNxN_pred_mode_flag, rem_intraNxN_pred_mode, intra_chroma_pred_mode, 

ref_idx_lX and mvd_lX for Intra or Inter predictor. (N8 ,4א; X1 ,0א)   

Finally, we would decode the coefficient (coeff.) block in residual block cabac. The coeff. block 

size can be categorized into 4x4 and 8x8. So, we can get sixteen or four coeff. blocks in macro block. 

Different to residual block cavlc, we have to know zero coeff. position zero early. The 

coded_block_pattern may describe situation of each 8x8 block, and the coded_block_flag may 

describe that current 4x4 block contains all zero or not. After that significant_coeff_flag and 

last_significant_coeff_flag will scan all coeff. positions, and the coeff_abs_level_minusl and 

coeff_sign_flag produce the value of coeff. position which isn’t equal to zero.        
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Figure 5. The flow chart of the syntax elements switching 
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1.2 Motivation and Design Challenges 

However, the bottleneck of CABAC decoder design is the throughput for the H.264/AVC system. 

The arithmetic decoder pipelining is the major task for CABAC decoder. In Figure 6, the next range 

and value depend on current range and offset, and the table is controlled by outputted bin. So, it has 

notably strong data dependency to restrict throughput. Even if a DSP processor can work at 3GHz, it 

would be difficult to achieve the real-time CABAC decoding for HD video at 30 fps. 

 

Figure 6. Block Diagram of CABAC Decoder 

Besides, we go deeply into the realities for data dependency, and we observe all SEs and find out 

three characteristics decreased the performance in Figure 7. First, because SE has flexible code 

length, we can’t know next bin in current SE or next SE clearly. Second, some SEs have several 

branches and judge depended on current SE. Third, context data is updated frequently, and it possibly 

require to spend some time waiting for updated data.  

   
(a) (b) (c) 

Figure 7. (a) Flexible code length (b) SE Branch Selection (c) Data update frequently

Therefore, the RAM-based context model scheduling for fetching and write-back becomes 

important issue in order to apply the pipeline architecture in CABAC decoder. The pipeline problems 

will be overcame in our proposed implementation. 
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Except for drawbacks of CABAC decoder, it still exists a part which can cause performance lost. 

That is communication between SE parser and CABAC decoder. In [6], it calls for syntax element 

switching overhead (SESO). As Figure 8, we make an example for describing what situation can 

cause this overhead, and we use external CPU as SE parser. The case1 is the normal situation, and we 

already know what next SE is. The pipeline flow can be executed correctly. Actually, if we decode in 

the same SE continuously, it is always worked without unexpected stalls. But, as soon as we require 

to switch SE, it has a probability to cause data hazard. We can see in Figure 8(b). The case2 

represents some SEs which have several branches, and we require previous result of SE to judge 

current SE branch selection. Hence, in the general solutions as Figure 8(c), we may stall some cycles 

to avoid data hazard. In simulation result from [6], it has more than two-thirds of probability for 

switching SE, and the performance would be degraded certainly.  

 

(a) Normal case 

 

(b) Data hazard case 

(c) Solve by increasing overhead 
Figure 8. Syntax Element Switching Overhead 
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Above analysis tells us the importance of throughput. And, we should know how many 

throughput is enough to real-time decode full-HD sequence. We consider a working frequency which 

can be accepted by system and show some different cases in Table 1. At first, we test several HD1080 

sequence and find the worst case in gray part. The riverbed has 22.696 million bits/second (s), and 

throughput has to achieve 29.55 million bins/s. Actually, we require to produce 0.29 bin/cycle at 100 

MHz. Second, we assume one frame contains 1 million bits, and encoder can get 1.5 compression 

rate (CR). And, we require to produce 0.45 bin per cycle. Finally, we consider the maximum bit-rate 

from standard, and we should produce 0.93 bin/cycle. It’s mean we can real-time decoding full-HD 

by raising hardware utility even in the worst case.  

Table 1 Design constraints for throughput from standard 

Test Sequence MBits/s CR Mbins/s 
bin/cycle  

@100 MHz @150 MHz 
riverbed 22.696 1.289 29.255 0.29255 0.195035 

1 Mbits/frame 30.000 1.5 45.000 0.45 0.3 

Level [1] 
4.1 @MP 50.000 1.5 75.000 0.75 0.5 

4.1 @HP 62.500 1.5 93.750 0.9375 0.625 

Moreover, the table-base CABAC reduce complexity significantly, but it also raises large table 

which have to include memory. Table 2 shows all kinds of table. However, because some tables 

contain large amount of data and switch frequently, they produce extra overhead to increase cost and 

decrease performance. In our analysis, (1) can be stored in external memory or ROM because it’s 

seldom used and (4) can implement in internal buffer according as contained constant which occupy 

little gate count in hardware. Therefore, the bottleneck of memory becomes (2) and (3), and we will 

improve this problem in our memory system. 

Table 2 Require for including table 

 (1) Initialization 
Table (2) Context Model (3) Neighbour MB 

(4) Range LPS 
& transMPS 
& transLPS 

Utility rate Seldom Very frequently frequently Very frequently 

Max 65.92 kbits 7.21 kbits 
727x(row) bits 

2.048 kbits 
384 / 384 bits Min 30.592 kbits 3.346 kbits 

Contain Constant Variable Variable Constant 
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1.3 Organization of Thesis 

The rest of this thesis is organized as follows. In Chapter 2, we go through rapidly to review the 

specification of CABAC algorithm at first, and we describe the strategies for improvement of 

CABAC decoder and mention some state of the art to make an example. And, we evaluate their 

advantages and disadvantages.  

In Chapter 3, we describe our proposed algorithm including a bin-trend-predictor scheme and 

optimization of memory system, and these methods get the balance with cost and performance. 

According to our proposed algorithm, we also take an in-depth discussion about the challenges of 

integrating architecture in Chapter 4.  

And, we show our simulation results in Chapter 5 including verification of algorithm, 

implementation of architecture and comparison with other works. Finally, we make a brief conclusion 

and future works in the last Chapter 6. 
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Chapter 2. Related Works 
 

 

Figure 9. CABAC decoding algorithm 

In this Chapter, we introduce the basic algorithm of the CABAC decoder in Section 2.1 at first. 

In the binary arithmetic decoder, it is executed by means of the recursive interval subdivision. It has 

to compute the values of rMPS and rLPS and processes the next value of Offset, Range, and the 

probability. After that, it decompresses the bit-stream to the bin value which offers the binarization to 

restore the syntax elements. According to H.264/AVC standard [1], we adopt the low complexity 

algorithm to implement the CABAC decoder circuit.  

However, in order to support real-time high resolution videos, throughput still may be a 

bottleneck of H.264/AVC system. There are some strategies used to raise the throughput: parallel, 

pipeline and prediction. We introduce each of strategies and give an example, and we analyze the 

advantages and disadvantages in Section 2.2. Finally, we make a summary in Section 3.3 to describe 

the proposal in our design. 
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2.1 Traditional CABAC Decoding Flow 

The traditional CABAC decoder engine is the sub-module of syntax element parser. When it is 

invoked, it schedules the timing related to the context model of reading-to and writing-back and 

selecting the arithmetic decoding flows and binarization flows. Figure 10 shows the finite state 

machine (FSM) of the traditional CABAC decoding flow [9]. The first state (state 0) is the stand-by 

state. The decoder waits for the request of the syntax element parser until activating the CABAC 

decoder system, and jumps to state 1. State 1 is required to check the type of AD. If it is the regular 

decoding, the binarization reads the neighbor information from the SRAM, and generates the context 

model index and reads the context model form the context model. And then, FSM jumps to state 2. 

State 2 is a binary tree where we have defined in Section 2.1.2. Based on the bin index (binIdx), the 

bin string is compared with the binary tree. If bin string can’t find the mapped binary, the binarization 

engine increases binIdx and requests AD producing the next bin value to map again until the mapped 

binary and the suitable value of syntax element in state 3. If it finds the mapped binary value, the 

value of binIdx is initialized as “0” and waits for the request of the next syntax element. 

 
Figure 10. Traditional CABAC decoding flow [9] 
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2.1.1 Arithmetic Decoding Flow 

In order to improve the coding efficiency, there are three kinds of the binary arithmetic decoders 

in H.264/AVC system such as the regular, bypass, and terminal decoding flow. We will show whole 

algorithms as follows.  

2.1.1.1 Regular decoding process 
 The first algorithm is the regular decoding process which is shown in Figure 11(a). According to 

the H.264/AVC standard [1], the table-based method is used in place of the multiplication operation. 

In the regular decoding flowchart, codlRangeLPS looks up the table, rangeTabLPS, depending on two 

indexes such as pStateIdx and qCodlRangeIdx. The pState is defined as the probability of MPS ( MPSρ ) 

which gets from the context model. qCodlRangeIdx is the quantized value of the current range 

(codlRange) which is separated to four parts in this table. The second factor of the improved method 

is to estimate the value of MPSρ . The flowchart of Figure 11(a) also shows the table-based method to 

process the probability estimation. It divides into two sub-intervals such as MPS and LPS conditions. 

Depending on the sub-interval, it computes the next probability by the transIdxLPS table when the 

interval division is LPS and by the transIdxMPS table when the interval is MPS. These two 

probability tables are approximated by sixty-four quantized values indexed by the probability of the 

current interval. 

In basis algorithm of binary arithmetic decoding, the interval subdivision is operated under the 

floating-point operation. In practical implementation, this method causes the complexity of the circuit 

to be increased. The advanced algorithm adopts the integer operation for H.264/AVC. The value of 

the next range becomes smaller than the current interval. So we use the renormalization method to 

keep the scales of codlRange and codlOffset. Figure 11(b) shows the flowchart of renormalization. 

The MSB of codlRange always keeps “1” in order to realize the integer operation. If the MSB of 

codlRagne is equal to “0”, the value of codlRagne has to be shifted left until the current bit is equal to 

“1”. Depending on the shifted number of codlRagne, codlOffset fill the bit-stream in the LSB. 
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2.1.1.2 Bypass decoding process 
The second algorithm is the bypass decoding process which is applied by the specified syntax 

elements such as suffix: mvd, coeff_abs_level_minus, and coeff_sign_flag. The probabilities of MPS 

and LPS are fair, that is, both probabilities are 0.5. It is unnecessary to refer to the context model 

during decoding. Figure 12 (a) shows the flowchart of the bypass decoding flow. Compared 

with Figure 11 (a), the bypass decoding process doesn’t estimate the probability of the next interval. 

So we can’t see the probability computation in the bypass decoding. The result of codlRange isn’t 

changed which means that it has no the subdivision action in the bypass decoding. It is just used one 

subtraction to implement this decoding process.  

2.1.1.3 Terminal decoding process 
The third algorithm is the termination decoding process. Figure 12 (b) shows the flowchart of the 

terminal decoding flow. The terminal decoding process is very simple as well, but it has the more 

decoding procedure compared to the bypass decoding process. It doesn’t need the context model to 

refer to the probability. The value of the next codlRange is always to subtract two from the current 

 

(a) 

 

(b) 

Figure 11. Flowchart of the (a) regular decoding and (b) renormalization process [1] 
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codlRange depending on whether the subdivision condition belongs to MPS or not. The final values 

of codlRange and codlOffset are required to renormalize through the RenormD in this figure when it 

branches to the situation which defined as codlOffset smaller than codlRange (MPS condition). The 

flowchart results in composed of one constant subtraction, one comparator, and one renormalization. 

The terminal decoding process is used to trace if the current slice is ended. It occurs one time per 

macro block process which is seldom used during all decoding processes.  

(a) 

 

(b) 

Figure 12. Flowchart of (a) bypass and (b) terminal decoding process [1] 

2.1.2 De-binarization Decoding Flow 

In Section 2.1.2, we focus on the decoding process of the de-binarization. It reads the bin string 

to look up the suitable syntax elements. For H.264/AVC, CABAC decoder adopts five kinds of the 

binarization methods to decode all syntax elements. This section is organized as follows. In Section 

2.1.2.1, the decoding flow of the unary code is shown at the first. The unary code is the basic coding 

method. Section 2.1.2.2 shows the truncated unary code which is the advanced unary coding method. 

It is applied in order to save the unary bit to express the current value. In Section 2.1.2.3, we 

introduce the fixed-length decoding flow. It is the typical binary integer method. Section 2.1.2.4 is 

the Exp-Golomb decoding flow. The Exp-Golomb decoding flow is only used for the residual data 

and the motion vector difference (mvd). Section 2.1.2.5 is the special definition by means of the table 

method. Specifically, we focus on the binary tree of the macroblock type (mb_type) and the 

sub-macroblock type (sub_mb_type). 
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2.1.2.1 Unary (U) binarization Process 
Table 3 is the format of the typical unary code. If the syntax element is equal to “0”, the bin 

outputs single bit “0”. Besides the syntax element equal to “0”, the bin string sends “1” for numSE 

times firstly and one “0” in the end of the binary value. The value of numSE is equal to the syntax 

element. Therefore, we find the string length of the current syntax element bin string is numSE+1. 

Table 3 Example for U 
Syntax Element bin string 

0 0    
1 1 0   
2 1 1 0  
3 1 1 1 0 

binIdx 0 1 2 3 
2.1.2.2 Truncated Unary (TU) binarization Process 

Table 4 is the format of the typical unary code. It is based on the unary code and has an 

additional factor of cMax which is defined as the maximum length of the current bin string. If the 

value of syntax element (valSE) is less than cMax, the TU and U are the same. Otherwise, the number 

“1” of the bin string is equal to cMax and there is no “0” bit to list in the current string.  
Table 4 Example for TU with cMax = 3 

Syntax Element bin string 
0 0    
1 1 0   
2 1 1 0  
3 1 1 1  

binIdx 0 1 2 3 
2.1.2.3 Fixed-length (FL) Binarization Process 

The fixed-length decoding flow has to refer to the value of cMax which defines the number size 

of the current syntax element. Table 5 shows the fixed-length code definition. In this table, the cMax 

equals seven because the maximum value of binIdx is seven. 
Table 5 Example for FL with cMax = 7 

Syntax Element bin string 
0 0 0 0  
1 1 0 0  
2 0 1 0  
3 1 1 0  

binIdx 0 1 2 3 
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2.1.2.4 k-th order Exp-Golomb (UEGk) binarization process 
Table 6 shows the example of UEGk by means of the pseudo code from H.264/AVC [1]. The 

initial value of k is defined as the order of the unary Exp-Golomb coding which are named as UEGk. 

In the binarization decoding engine of CABAC decoder, it only applies two decoding flows such as 

UEG0 and UEG3. UEG0 is used by the suffix part of the residual data decoding process and UEG3 is 

used by the suffix part of motion vector difference one. And, the suffix part of this code doesn’t 

always apply when the value too small.  

Table 6 Example for UEGk with k = 0 
Syntax Element bin string 

0 0      
1 0 1 0    
2 0 1 1    
3 0 0 1 0 0  
4 0 0 1 0 1  
5 0 0 1 1 1  

binIdx 0 1 2 3 4 5 
2.1.2.5 Look up table (LUT) Binarization Process 

All formats of the binarization decoding process are introduced above. But there is still a special 

decoding flow which we don’t describe yet. In order to perform the higher video quality, the 

macroblock and sub-macroblock are divided into many kinds of types such as I, P, B, and SI slices. In 

the four basic types, it also sorts by variable block sizes. These two syntax elements are difficult to 

define by means of the aforementioned decoding flows. In H.264/AVC, it adopts the table-based 

method to define the macro and sub-macro block types. Table 7 shows an example of mb_type for P, 

SP slice, and gray part means suffix part are the same with table of mb_type for I slice. 

Table 7 Example for mb_type (P, SP slice) [1] 
Syntax Element bin string 
0 (P_L0_16x16) 0  0  0       

1 (P_L0_L0_16x8) 0  1  1       

2 (P_L0_L0_8x16) 0  1  0       

3 (P_8x8) 0  0  1       

4 (P_8x8ref0) Na 
5(Intra, prefix only) 0 0 1 1 1  

binIdx 0 1 2 3 4 5 
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2.1.3 CtxIdx Model Index Calculating Flow 

The values of the context model offer the probability value of MPS (pStateIdx) and the historical 

value of bin (MPS) in order to achieve the adaptive performance. In the regular decoding process of 

the arithmetic decoder, we have to prepare the 459 locations of the context model to record all 

decoding results in high profile.  

ݔ݀ܫݔݐܿ ൌ ݐ݁ݏ݂݂ܱݔ݀ܫݔݐܿ  ൅  ܿ݊ܫݔ݀ܫݔݐܿ (Eq. 1) 
ݔ݀ܫݔݐܿ ൌ ݐ݁ݏ݂݂ܱݔ݀ܫݔݐܿ  ൅ ݐ݁ݏ݂݂ܱݐܽܥ݇ܿ݋݈ܤݔ݀ܫݔݐܿ ൅  ܿ݊ܫݔ݀ܫݔݐܿ (Eq. 2) 

It divides into two kinds of the context model index (ctxIdx) methods to allocate the context 

model. (Eq. 1 is one of the index methods. Besides residual data decoding, the context model index is 

equal to the sum of ctxIdxOffset and ctxIdxInc. (Eq. 2 is the index method for residual data decoding. 

We should sum additional ctxIdxBlockCatOffset depend on the type of coefficient block.  

2.1.3.1 ctxBlockCat and ctxIdxBlockOffset 
The value of ctxBlockCat is the block categories for the different coefficient presentations. 

maxNumCoeff means the maximum required coefficient number of the current ctxBlockCat. 

ctxBlockCat is sorted six block categories in Table 8. And, the value of ctxIdxBlockCatOffset is 

defined as Table 9 which is dominated by the parameters of syntax elements and ctxBlockCat. 

Table 8 Specification of ctxBlockCat for the different blocks [1] 
coefficient  type maxNumCoeff ctxBlockCat 

luma DC 16 0 
luma AC 15 1 

Luma 4x4 16 2 
chroma DC 4 3 
chroma AC 15 4 
Luma 8x8 64 5 

 

Table 9 Assignment of ctxIdxBlockCatOffset to ctxBlockCat for SEs [1] 
Syntax element 

of the residual data 
ctxBlockCat 

0 1 2 3 4 5 
coded_block_flag 0 4 8 12 16 0 

significant_coeff_flag 0 15 29 44 47 0 
last_significant_coeff_flag 0 15 29 44 47 0 

coeff_abs_level_minus1 0 10 20 30 39 0 
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2.1.3.2 Calculate for ctxIdxOffset 
In both the residual data and the general decoding, the context model index is dominated by two 

factors such as ctxIdxOffset and ctxIdxInc. So, we merge ctxIdxOffset and ctxBlockCatOffstet and 

collect the results in Table 10. The alphabet of “na” denotes using bypass process. So, we only need 

to consider (Eq. 1. Depending on the syntax element, slice type, ctxBlockCat and some different 

conditions, we can find the value of ctxIdxOffset. And then, as soon as we calculate ctxIdxInc, we 

may compute the current ctxIdx.  

Table 10 Syntax elements and associated types of ctxIdxOffset [1] 
Image layer Syntax element ctxIdxOffset 

slice data 
mb_skip_flag (P slices only) 11

(B slices only) 24
mb_field_decoding_flag 70
end_of_slice_flag 276

macroblock_ 
layer 

mb_type 

(I slices only) 3
prefix (P slices only) 14
suffix 17
prefix (B slices only) 27
suffix 32

transform_size_8x8_flag 399

coded_block_pattern prefix Luma 73
suffix Chroma 77

mb_qp_delta 60

mb_pred 
prev_intraNxN_pred_mode_flag 4x4, 8x8 68
rem_intraNxN_pred_mode 4x4, 8x8 69
intra_chroma_pred_mode 64

mb_pred and 
sub_mb_pred 

ref_idx_l0, ref_idx_l1 54

mvd_l0[ ][ ][ ], mvd_l1[ ][ ][ ] 
prefix x 40
prefix y 47
suffix (uses DecodeBypass) na

sub_mb_pred sub_mb_type (P slices only) 21
(B slices only) 36

residual block 
cabac 

coded_block_flag ALL ( ctxBlockCat < 5) 85
(5 < ctxBlockCat < 9) 460

significant_coeff_flag 
frame (ctxBlockCat < 5) 105

(ctxBlockCat  = =  5) 402

field (ctxBlockCat < 5) 277
(ctxBlockCat  = =  5) 436

last_significant_coeff_flag 
frame (ctxBlockCat < 5) 166

(ctxBlockCat  = =  5) 417

field (ctxBlockCat < 5) 338
(ctxBlockCat  = =  5) 451

coeff_abs_level_minus1 prefix (ctxBlockCat < 5) 227
(ctxBlockCat  = =  5) 426

suffix (uses DecodeBypass) na
coeff_sign_flag (uses DecodeBypass) na
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2.1.3.3 Calculate for ctxIdxInc 
Basically, the value of ctxIdxInc is looked up in Table 11 by referring to the syntax element and 

binIdx. The alphabet of “na” denotes the never happened issue and the word of “Terminal” means 

that the decoding flow enters the terminal decoding process. If the generated bin is equal to “1”, the 

slice has to be stopped and decodes the next slice. However, we observe some SEs has several 

ctxIdxInc in Table 11. In these cases, we should refer to the left and top blocks to define the ctxIdxInc 

of the first binIdx such as mb_type, mb_skip_flag, ref_idx, mb_qp_delta, intra_chroma_pred_mode, 

mb_field_decoding_flag, and coded_block_pattern. According to different SEs, it may follow 

different kinds of principles from standard [1]. Besides, the value of ctxIdxInc in residual data is 

defined as the scanning position or look up table from the standard. 

Table 11 Assignment of ctxIdxInc to binIdx for syntax elements [1] 

Syntax elements 
binIdx 

0 1 2 3 4 5 >= 6 

mb_type (I) 0,1,2 Terminal 3 4 5,6 6,7 7 

mb_skip_flag (P) 0,1,2 na na na na na na 

mb_type (P:prefix)  0 1 2,3 na na na na 

mb_type (P:suffix)  0 Terminal 1 2 2,3 3 3 

sub_mb_type (P) 0 1 2 na na na na 

mb_skip_flag (B) 0,1,2 na na na na na na 

mb_type (B:prefix)  0,1,2 3 4,5 5 5 5 5 

mb_type (B:suffix)  0 Terminal 1 2 2,3 3 3 

sub_mb_type (B) 0 1 2,3 3 3 3 na 

mvd_lX (x:prefix) 0,1,2 3 4 5 6 6 6 

mvd_lX (y:prefix) 0,1,2 3 4 5 6 6 6 

ref_idx_lX 0,1,2,3 4 5 5 5 5 5 

mb_qp_delta 0,1 2 3 3 3 3 3 

intra_chroma_pred_mode 0,1,2 3 3 na na na na 

prev_intraNxN_pred_mode_flag, 0 na na na na na na 

rem_intraNxN_pred_mode, 0 0 0 na na na na 

mb_field_decoding_flag 0,1,2 na na na na na na 

coded_block_pattern (luma:prefix) 0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3 na na na 

coded_block_pattern (chroma:suffix) 0,1,2,3 4,5,6,7 na na na na na 

end_of_slice_flag 0 na na na na na na 

transform_size_8x8_flag 0,1,2 na na na na na na 
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2.2 On-the-fly CABAC Decoding Flow 
In this Section 2.2, we will introduce previous designs of CABAC decoder and use criteria of 

cost and performance to evaluate them. In fact, there are already a few papers which investigated the 

implementation of CABAC decoder such as [10] and [17]. In [17], they show that not only the 

arithmetic engine’s (AE) peak performance but also its utilization is important for high throughput. In 

[10], they take an effort to evaluate several previous works and classify into three strategies: parallel, 

pipeline processing and prediction. In the common architecture, pipeline and parallel processing are 

the general solutions to enhance the throughout. However, the character of table-based CABAC 

algorithm is very difficult to implement parallel and pipeline structure efficiently. So, optimal 

methods and prediction scheme are proposed to improve this deflect. In Figure 13, we classify 

previous works as their strategy. Each strategy represents the major improvement in conventional 

CABAC decoder. Actually, we can’t clearly recognize the strategies in some state-the-art solutions 

because some designs use multi-strategies to progress the performance. Moreover, we will discuss 

the strategies and analyze their benefits and drawbacks in following Section 2.2.1-2.2.3.    

 
Figure 13. Implementation strategies of previous works 
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2.2.1 Pipeline-based CABAC Decoding flow 

According to table-based CABAC algorithm, it requires 4 pipeline stages to support sequential 

memory accesses like Figure 14. As mentioned in [4], [14], the data hazards would be occurred 

according as ctxIdx relate to previous binIdx or bin, not updated context data and next SE type relate 

to current SE type. Those hazards would decrease performance in conventional pipeline structure. 

To eliminate the stalls of pipeline, some previous works provide some improving methods. In [4], 

it parallels partial stages and provides a CM cache to reduce hazards, but it still have stalls by caches 

miss. And, [14] can ease data hazards efficiently by forward paths and duplication of partial CM, but 

it requires large SRAM. Furthermore, prediction scheme also can provide to eliminate the stalls, or 

multi-arithmetic decoding engine can promote throughput for pipeline structure. And, these issues 

will discuss in following section.    

2.2.1.1 Analysis and discussion 
Most of designs may use pipeline structure, because pipeline technology can shorten the critical 

path of design and raise working frequency. But, not all of designs make an effort to eliminate the 

stalls. If pipeline can work smoothly, it will reduce unnecessary overhead. However, raising pipeline 

structure utility may get a limit improvement and unavoidable stalls, and much higher frequency of 

memory accesses occupies large memory bandwidth requirement and SRAM. Therefore, merging 

other strategies is the best solutions for overcoming the bottleneck.  

Figure 14. Pipeline Stages of conventional CABAC Decoder 
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2.2.1.2 Example for pipeline structure  
Figure 15, we take an example [14] - “Pipelined Architecture Design of H.264/AVC 

CABAC Real-Time Decoding” to discuss the implementation of pipeline structure.  

 This works apply two situations and forward path to eliminate stalls. The forward path can be 

prepared for pre-fetching not updated CM data, and the other data hazard can be avoid by two 

situations. First one is used to choose binIdx++ and binIdx=0 by MUX2. Because the CABAC 

decoder may be required to produce one or several SE with flexible bin length, the bin of SE which 

will be complete can’t be known. To overcome these problems, it assumes two statuses. The SE type 

which impact ctxIdxOffset always can be known by SE parser, and each bin all consider as end of SE. 

It applies two context models. One contains full entries, and the other one contains partial entries 

which correlate binIdx=0. And, it prepares two kinds of context data all the time. Later, the correct 

context data can be chosen behind finishing AD process. The second situation is used to consider 

current ctxIdx relate to previous bin. Because ctxIdx always differ 1 in this situation, hazard can be 

eased by preparing both options. Though this adjustment, it can get high performance because of no 

pipeline stalls.   

In   

 
Figure 15. Pipeline architecture [14] 
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2.2.2 Parallel-based CABAC Decoding flow 

Except for pipeline structure, parallel structure is the immediate solution to augment throughput. 

However, as shown in Figure 16(a), two regular bins decoding simultaneously will cause structure 

hazard by multi-access, because we require twice context model data in one cycle. Beside these 

problems, another problem will be caused by long critical path. According to correct codIRange and 

codIOffset, the AEs have to be cascaded. That may increase the challenge of parallel structure. 

Figure 16. (a) Structure Hazard of Multi-bin (b) General Solutions of Multi-bin 

(a) (b) 

 [12] is the first paper proposed parallel-based CABAC decoder, and it supports several paths to 

decode one or two bin per cycle. [7] promotes high performance efficiently according to parallel 

decoding engine (TSBAD) and smooth pipeline flow, but it requires large hardware cost. [18] 

optimizes the critical path for parallel decoding by a symbol-prediction-bases scheme. According as 

above solutions, multi-accesses problem can be solved by including hybrid SRAM or CM cache 

like Figure 16(b), and long critical path also can be shorten by pre-fetch, pre-calculate and etc. 

2.2.2.1 Analysis and discussion 
According to state of the art parallel structure such as [7-8], we can get high improvement for 

throughput significantly. So, we can make sure parallel structure can bring high performance. But, in 

the other hand, it will be increased inevitable hardware cost by the internal buffer and parallel 

arithmetic engine. Even if we can accept the increase cost, the critical path will be another issue. 

Although we can find some methods to optimize the path, it is still longer than single arithmetic 

decoding engine. So, that will be a potential problem for raising working frequency.  
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2.2.2.2 Example for parallel structure 
In Figure 17, we take an example [7] - “A Branch Selection Multi-symbol High Throughput 

CABAC Decoder Architecture for H.264/AVC” to discuss the implementation of parallel structure.  

In this works, the major purpose is decoding two-symbol in one cycle efficiently. Since the CM 

memory is implemented in register in their proposed architecture, the CM loading or storing 

procedure can be merged in the same cycle [7]. By this reason, it can avoid structure hazard for 

multi-access, although it bring large cost. However, the most difficult part to supply multi-symbol is 

preparing the context data for second bin, because the 2nd ctxIdx may depend on 1st bin. Therefore, 

it uses pipeline structure and presents a branch selection scheme to prepare all possible options for 

guaranteeing the performance. Because the 1st bin is either 1 or 0, 2nd context data can be considered 

(1st bin=0) and (1st bin=1). Before decoding bin, TSBAD is inputted 3 context data while one for 1st 

bin and two for 2nd bin. And, two context data which prepare for 2nd bin will be selected correct one 

after decoded 1st bin. By this scheme, it makes a considerable improvement and provided an 

effective parallel-based CABAC decoder.   

 

Figure 17. Parallel architecture [7] 
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2.2.3 Prediction-based CABAC Decoding flow 

In Figure 13, we can’t find the design which is only implemented by the prediction strategy, 

because the prediction scheme is usually an adjustment for pipeline or parallel strategy. Actually, the 

prediction scheme is proposed to speed up the parallel engine or hardware utility. Although the 

reasons for supporting prediction scheme are different for each previous works, they almost predict 

the value of current bin as MPS bin. Because MPS rate of total bin is more than 50% according to 

basic CABAC algorithm, this feature can be used to raise performance. In fact, we can classify 

prediction structures to two purposes: (1) using predicted value to decode multi-bin per cycle, (2) 

using predicted value to pre-calculate ctxIdx. 

At first case, because MPS process is simpler than LPS process in BAD and has a high 

probability of occurrence rate. So, some previous works assume that the MPS bin can be decoded 

continually. According to this assumption, [5] and [13] proposed a hardware to achieve decoding 2 

MPS bin in a cycle. And, [5] increases dual-series bypass paring for speeding up bypass bin. [15] 

exploits all the parallelism in a SE, it can decode 16 bins in a cycle mostly.  

At second case, the predicted bin is used to avoid unexpected stalls. In order to avoid the impact 

of communication with parser and decoder, [6] proposed a SE predictor to determine next SE type by 

itself. The SE predictor can efficiently ease data dependency, but it wouldn’t be available when it 

predicts miss. [16-17] apply the prediction scheme for pre-get-neighbor information, and they can 

avoid some idle times for loading neighbor information.  

2.2.3.1 Analysis and discussion 
According to previous works, prediction scheme plays an important role to balance the 

performance and hardware cost. The parallel structure will increase a few redundancy circuits to 

support multi-bin engine, and the pipeline structure can get much higher hardware utility efficiently. 

However, the accuracy becomes an important issue for prediction scheme. Although MPS bin has 

high probability occurrence rate from 50% to 70%, it may has variable performance by test pattern. 

Besides, even if it has 30% miss rate, the miss penalty will decay performance seriously.   
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2.2.3.2 Example for prediction structure 
In Figure 18, we take an example [6] - “Prediction-based Real-time CABAC Decoder for High 

Definition H.264/AVC” to discuss the implementation of prediction structure.  

This work belongs to second case as mentioned in Section 2.2.3. It discusses the overhead which 

is produced by communication between SE parser and CABAC decoder. To solve this problem, we 

have to obvious on the view of system. Because the order of SE isn’t regular and has high switching 

rate, the overhead can’t be avoided by improving CABAC decoder. Therefore, it applies a SE 

predictor which is controlled by value of bin and SE instead of traditional SE parser. The traditional 

parser can’t understand the meaning of each bin, so it has to wait for the value of SE which may cost 

several pipeline stages. Conversely, the SE predictor can be controlled by value of bin in each 

pipeline stages and can make sure for not only ctxIdxInc but also ctxIdxOffset. However, because of 

MPS-based two-bit predictor included in SE predictor, the accuracy will be impacted by MPS rate. 

Even throughput this deflects of SE predictor become the limit of throughput, it still brings a novel 

thought with the least overhead and most friendly integration solutions for H.264/AVC system. 

 
Figure 18. Prediction architecture [6] 
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2.3 Summary 

Through above descriptions, we review the algorithm of CABAC decoder broadly and analyze 

the strategies for implementation. Actually, we already get high throughput by previous works such 

as [7] [8]. However, although we have some advanced improved strategies, it still has several 

potential problems while integrating to system. For example, [14] will be unavailable by unknown 

ctxIdxOffset and has to occupy large memory bandwidth requirement or internal SRAM size. And, 

the syntax element switching overhead (SESO) may be enhanced by multi-bin engine as shown 

in Figure 19. The larger CM cache adopts, the more miss penalty will be paid. And, the deeper 

pipeline stages is, the more idle times increase.    

(a) 
 

(b) 
Figure 19. (a) Single-bin engine (b )multi-bin engine 

By the state of the art, we shouldn’t keep going to raise much higher throughput. For our purpose, 

we make an effort to design CABAC decoder which is the most suitable strategy for system 

integration and take a balance between throughput and overhead at the premise of the acceptable 

throughput for real-time decoding full-HD sequences. However, systems problem will be more 

complex than single module behavior. It becomes serious problems which include not only 

communicating with SE parser as mention in previous section but also immediately getting 

neighboring information and so on. In fact, the real sequences can be organized by several kinds of 

SE, and the distribution of bin, MPS rate and SE type can be totally different for each sequence. If the 

design just optimize at the special statuses, the real performance will be hard to guarantee. Therefore, 

because of our constraints, we consider the strategy of prediction structure by doing minimum 

adjustment to get maximum reward.   
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According as [6], applying a controllable SE parser can integrate different kinds of situations 

which we can’t improve before, and all possibly data hazard issues can be transferred to accuracy of 

predicted bin. Therefore, we simplify the problems and make a formula for throughput as following: 

Assume 

CycleR, CycleB, CycleT: requirement of executed cycles for regular, bypass and terminal process 

BinR, BinB, BinT: the amount of regular, bypass and terminal bin) 

Stall times: the amount of stalls; Idle times: the amount of interruptions 

Regular Bin rate :the ratio of regular bin in total bin  

Miss Rate: the ratio of prediction miss  

Total Cycle ൌ CycleR ൅ CycleB ൅ CycleT (Eq. 3) 

∵ሺCycleR ൌ BinR ൅ Stall times ൅ Idle times, CycleB ൌ BinB, CycleT ൌ BinT) 

∴                        ൌ BinR ൅ Stall times ൅ Idle times ൅ BinB ൅ BinT (Eq. 4) 

∵ሺTotal Bin ൌ BinR ൅ BinB ൅ BinT) 

∴                        ൌ Total Bin ൅ Stall times ൅ Idle times (Eq. 5) 

First, we can get the formula of total executed cycles by Eq. 5. 

Bin per cycle ሺBPCሻ ൌ
Total Bin

Total Cycle (Eq. 6) 

(Eq.5 substitution) ൌ
Total Bin

Total Bin ൅ Stall times ൅ Idle times (Eq. 7) 

∵ሺStall times ൌ Total Bin ൈ Regular Bin Rate ൈ Miss Rate) 

∴          ൌ
Total Bin

Total Bin ൅ Total Bin ൈ Regular Bin Rate ൈ Miss Rate ൅ Idle times  

          ൌ
1

1 ൅ 1 ൈ Regular Bin Rate ൈ Miss Rate ൅ Idle times
Total Bin

 
(Eq. 8) 

Second, we can get the formula of BPC by Eq. 7. 

Throughput rate ൌ Working Frequency ൈ BPC (Eq. 9) 

(Eq.8 substitution)    ൌ
Working Frequency

1 ൅ Regular Bin Rate ൈ Miss Rate ൅ Idle times
Total Bin

 (Eq. 10) 

Finally, we get the formula of throughout rate by Eq. 10. 
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In (10), we assume the conventional CABAC decoder with prediction scheme and controllable 

SE parser can decode one bin per cycle while no miss penalty, and we shows the formula for 

throughput rate with working frequency, regular bin rate, miss rate, idle times and total bin. The 

working frequency depends on critical path of design, or it could be restricted to rise by system 

constraints such as power consumption. Besides, regular bin rate and amount of total bin are 

depended on test sequence, so they will be unreliable parameters for various video sequences.  

And then, the idle times are often caused by fetching neighboring information. If we apply an 

effective environment to deal with neighboring information accesses, idle times can be ignored while 

(total bin >> idle times). In [11], it has mentioned an improvement for time and storage efficiency by 

taking full use of the new found characters of SEs. Even though we use previous methods, it still has 

an improvement potential specifically for upgrading to full-HD. So, this will be an important issue to 

progress in our design.  

Except for idle times, the major parameter which impacts the efficiency is miss rate. Because all 

the reasons for decayed performance are imputed to accuracy of prediction scheme, the miss rate will 

be the bottleneck of throughput. Although MPS bin has more than 50% hit rate and achieve almost 

70% in test sequence in average, the miss rate still become too high to get acceptable throughput rate. 

Therefore, in order to guarantee the throughput and maintain basic hardware cost, providing a high 

accuracy prediction scheme will be an essential mission we should do in our design. 
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Chapter 3. Proposed Algorithm 

In this chapter, we propose our algorithm to raise hit rate for throughput and reduce the storage 

for extra overhead. Because the bottleneck of throughput depends on the hit rate in the 

prediction-based CABAC decoder, we make the decoding flow more regular except the case we 

should know the decoded bin. First, we apply a SE parser unit without uncertain part and store each 

stage status. So, the uncertain part would be controlled by predicted bin0. And then, we raise a bin 

predictor to produce bin0 during decoding bin1 by AD unit. Finally, we can make AD and CL working 

at the same time. In [6], it proposed a MPS-based two-bit predictor included in SE predictor to 

predict bin for the same problem, and it obtained about 70% hit rate. The 30% miss rate would be the 

critical part decreased the performance. Therefore, we propose three methods to improve the hit rate 

and describe in section 3.1.  

In the other hand, we often produce extra overhead for getting neighbor information and 

requesting data from external memory. The overhead may be hardware cost, delay cycles or memory 

bandwidth requirement. To avoid unexpected performance lost, we optimize our memory system to 

solve this problem. We propose a CtxIdxInc pre-Calculate (CC) stage behind second pipeline stages 

(DB) to pre-calculate and compress the neighbor information like Figure 20. We pre-fetch and 

decompress when we request. And we describe in section 3.2. 

 

Figure 20. Pipeline Stages of Proposed CABAC Decoder 
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3.1 Prediction Process 

Because we shouldn’t need all of next bin when decoding current bin, we collect all status we 

have to predict next bin shown in Figure 21. First, we can categorize total bin to three kinds of bin, 

terminal bin, bypass bin and regular bin. However, we request ctxIdx to access Context Model (CM) 

only if next bin is regular bin. It may not cause pipeline stalls when next bin is bypass or terminal bin. 

So, we will focus on the problem in regular bin. 

Figure 21. Flowchart of Bin Predict Process 
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After that, we still need to classify regular bin by some kinds of different situations. Because 

ctxIdx data of the same syntax element (SE) are located in neighbor, we should make sure if it may 

branch to next SE or not. So, we recognize the current bin which is finished bin according as SE type 

and binIdx. The finished bin means possible last bin in the syntax element. If the current bin isn’t 

finished bin, we can be easy to calculate next ctxIdx by previous ctxIdx or bin. In the other hand, 

some SE have flexible length, and we can’t really sure when the next bin will be branched to next SE. 

Therefore, we may require predicted bin when next bin isn’t sure to SE branch in flexible-length type 

SE. Besides, even if the next bin is sure to branch to next SE, we still have to know what next SE is. 

This problem is often occurred by flag type SE. Flag type SE means this kind of SE has only one bin. 

In this situation, we also require predicted bin to calculate SE branch we may select. Summary, we 

point out two cases we require predicted bin. In the other words, if we get the high hit rate by the 

prediction process, we almost can calculate the ctxIdx without pipeline stalls for data dependency. 

Therefore, in following section we raise some methods to improve the throughput. The Section 3.1.1 

describes how to raise hit rate. Even if we predict miss, we still may not have miss penalty and this 

method describes in the Section 3.1.2. Finally, the Section 3.1.3 describes some optimization to suit 

for our proposed prediction process.    

3.1.1 Raised Hit Rate 

In the Figure 22(a) and Figure 22(b), they shows the traditional arithmetic decoding flow from 

standard [1]. In the beginning, we have current value of Range and Offset. After we read the value of 

LPS range (rLPS), we can know the offset is inside the field of MPS or LPS. Then, we can decode 

bin value which depends on MPS or LPS, and the critical time would be waiting for rLPS from table. 

However, we can recognize the trend that is more possible for MPS or LPS in front of we read rLPS. 

Before we get the rLPS, we already have current Range and Offset. If we observe the difference 

between Range and Offset, we can find out MPS rate will be higher when difference is larger. 

Following this principle, we use two bits according as Figure 23 to recognize which result is mostly 
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happened at each status. Figure 23 shows the example for one of the rLPS table. At this example, we 

use pState equal to 0, 31 and 62 to classify, and the corresponding rLPS may be 128, 29 and 6. The 

difference may be transferred to 2 bit status shown in Figure 23. Actually, we can make sure result at 

status “00” and ‘11”, because the value exceeds the limit of standard. These statuses can significantly 

raise hit rate. Second, we also can use this method to observe current pState like Figure 24. Figure 24 

does the opposite behavior with current pState. At the same example, we calculate rLPS in average 

from 0 to 31, 0 to 63 and 31 to 62, and the corresponding pState may be 13, 23 and 43. So, current 

pState also may be transferred to two bits. After that, we get the extra two bits that can raise hit rate 

when we are at status “01” or “10”. Summary, we can make sure the result at status “00” and “11” 

and have two-bit tips to predict result at status “01” and “10”. Finally, we get over 90% hit rate in our 

simulation results shown in Chapter 5 by the proposed method. 

 

 

 
Figure 22. (a) Before decoded bin (regular process)  

(b) After decoded bin (regular process) (c) Before decoded bin (prediction process) 
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Figure 23. Status of difference 

 
Figure 24. Status of pState 
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3.1.2 Reduced Stall Times 

Furthermore, we try to reduce unnecessary stall times to raise throughput. Because of regular 

decoding flow, our prediction process depends on predicted bin0 to calculate ctxIdx, we may get miss 

penalty when predicting miss. In our analysis, not all of syntax element (SE) branch need previous 

bin and have described what situation we request previous bin at the beginning. Therefore, we collect 

all type of SE to find out their finished bin. The finished-bin location is determined by binarization 

type, and Figure 25 is shown each kinds of binarization.  

As described in Chapter 2, we recognize each kinds of binarization. And then, we may explain 

and use an example to point out where the finished-bin location is in the following paragraph.  

 

Figure 25. Different kinds of finished-bin Location 

 
Binarization 

type 
Example Finished-bin location 

(a) 
Special Case 

(LUT) 
mb_type (I slice) 

 

(b) 
Unary 

(U) 
ref_idx 

 

(c) 
Truncated Unary 

(TU) 
Intra_chroma_mode 

 

(d) 
k-th order 

Exp-Golomb 
(UEGk) 

suffix:mvd_l0 

 

(e) 
Fixed-length 

(FL) 
rem_intraNxN_pred_mode 
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In Figure 25(a), this binarization type is usually occurred in mb_type, sub_mb_type. Because 

these SE only can be decoded by table from standard, we may have to discuss each binIdx to 

recognize the finished-bin location. For example, mb_type in I slice, the finished-bin location may be 

at binIdx equal to 0, 1, 5 or 6, and SE must branch when binIdx equal to 6. Besides, we can recognize 

finished-bin location after decoding 3rd bin of SE. 

In Figure 25(b) and (c), this binarization have similar characteristic. According to the rule of 

binarization, each of bins can be finished-bin location. However, TU have more advantage in 

additional condition. SE must branch when max value equal to cMax. For example, ref_idx, the 

finished-bin location may be at each of binIdx. Intra_chroma_mode may be finished at 1st bin or 2nd 

bin, because cMax equal to three. 

In Figure 25(d), UEGk may be occurred in suffix of mvd and coeff_abs_level_minus1. We may 

change to bypass mode when we use UEGk binarization. Actually, we almost don’t need finished-bin 

location except decoding last bin using UEGk. And, we can know where location is by previous bin. 

For example, suffix mvd_l0; we may get finished-bin location at 14, 16, 18, 20 or 22 from binIdx 

equal to 14, 15, 16, 17 or 18. 

In Figure 25(e), this is most immediately binarization. We can find out the finished-bin location 

just by cMax, and this kind of location is sure to branch. For example, rem_intraNxN_pred_mode, 

the finished-bin location may be binIdx equal to two and SE have to branch at 3rd bin. 

Summary, we collect all relationship between value of SE (valSE) and SE branch shown 

in Figure 26, each of SE with rough border may have SE dependency between current valSE and next 

SE, and the other SE branch can pares next SE type without current valSE. 

Finally, we collect all finished-bin location of each binarization type and selected SE branch to 

know when we really should stall or not. Even if we predict miss, we wouldn’t have miss penalty 

possibly. And then, we merge above method and high accuracy prediction to decrease effect of SE 

dependency.  



 

38 
 

 
Figure 26. Relationship between value of SE and SE branch 



 

39 
 

3.1.3 Solved Data Hazard Problem 

In the other hand, pipeline architecture may cause unavoidable data hazard. When we calculate 

next ctxIdx, we may need SE from neighbor block. With the improvement from traditional decoding 

flow, we avoid the worst case which we must stall to wait for decoded bin. Therefore, the other 

problems which cause data hazard are (1) un-decoded neighbor SE inside other pipeline stages and (2) 

un-updated pState in memory. Forwarding path can solve the first problem and data reuse (used 

buffer to hold on data) can solve the second problem. Therefore, most of data hazard can be solved 

by our proposed algorithm. 

3.1.3.1 Forward path for (1) un-decoded neighbor SE 

 In our proposed pipeline architecture, we have three stages and four statuses. Pr (N) produces 

ctxIdx (address for CM), AD (0) produces bin, DB (1) produces valSE and CC (2) produces 

condTermflag. And, we need one more cycle for register. Therefore, we spend at least four cycles to 

handle each of neighbor information for neighbor block. However, this flow may be unavailable 

when Pr(N) require condTermflag during condTermflag haven’t be finished. For example, 

coded_block_pattern, this SE immediately require neighbor information when decoding bin shown 

in Figure 27(a). So, we provide several forward paths to overcome this problem. We can choose data 

from AD, DB, CC or regular path and select by a multiplexer to cancel data hazard shown in Figure 

27(b). 

Figure 27. (a)Coded block pattern (b)Forwarding path for un-decoded neighbor SE 
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3.1.3.2 Data reuse for (2) un-updated pState 

In the regular path like Figure 28(a), we may load context data by current ctxIdx from context 

model (CM) and update new context data to CM at next pipeline stage frequently. Context data 

include pState and valMPS. However, this path may be unavailable when load the same context data 

repeatedly. Because we should wait for updating new context data and loading new context data 

again, it may produce unnecessary latency by regular path. For that reason, we provide another path 

to deal with this kind of trouble.  

In Figure 27(b), we show the data reuse path when we load in the same context data. Actually, 

we use an internal buffer to hold on updated context data. We obvious ctxIdx continually and store 

updated context data to buffer after decoding bin. If we find out ctxIdx is the same with previous 

ctxIdx, we may choose the data reuse path and use context data from internal buffer certainly until 

loading in different ctxIdx. According to this method, we raise a little overhead to implement, but we 

can reduce unnecessary stalls waiting for context data updated efficiently. 

(a) Regular Path 

 

if (ctxIdx’ != ctxIdx) 
Choose new Context Data 

(pState, valMPS) 

(b) Data Reuse Path 

 

else if( ctxIdx’ == ctxIdx) 
Choose updated Context 
Data (pState, valMPS) 

Figure 28. (a) Regular path (b) data reuse path 
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3.2 Memory System 

In section 1.2 and Table 2, we have mentioned the bottleneck of memory system roughly. The 

major parts are context model and neighbor information storage. Because of our proposed method, 

we use single-bin engine avoiding multi-access problem. And, high hit rate enhance the hardware 

utilization significantly and ease data dependency efficiently. So, we don’t have necessary to deal 

with increased overhead to supply parallel-base decoder. Therefore, we implement a context model 

by a two-port SRAM with 3,360 bits, and we can load and update context date simultaneously.  

However, in the other issue, getting neighbor information may extend the latency when we 

access data from external memory. In Figure 29(a), this is a scheme to exchange neighbor 

information from external memory. But, when we request data from system bus, the latency may 

exceed our timing budget obviously. The reasons could be system clock are asynchronous with 

external memory, other modules occupy memory bandwidth especially for Motion Compensation and 

so on. Therefore, this may be a potential problem for real-time decoding, even if original storage 

aren’t huge than the other modules.  

The immediate solution is to include an internal memory to store all information we need 

like Figure 29(b). In Figure 29(b), we provide a scheme and store a row of MB to exchange neighbor 

information from internal memory. But, this method would get large overhead when we decode HD 

sequences. We should include almost 20 Kbits SRAM even double in MBAFF mode for CABAC 

decoder. So, this is in-efficient method to implement. To overcome these unexpected problems, the 

best solution is to reduce the stored neighbor information.  

Therefore, we pre-calculate SE for neighbor macroblock (MB) to reduce neighbor information 

and describe in Section 3.2.1. And then, we provide a concentrated buffer to reduce redundant 

hardware cost and describe in Section 3.2.2. Finally, we alternately pre-fetch all neighbor information 

of MB to avoid waiting for neighbor information when decoding first bin of SE and describe in 

Section 3.2.3. 
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3.2.1 Reduced Memory Bandwidth Occupation 

To reduce storage, the most efficient way is pre-calculated SE for neighbor block. In our analysis, 

most of SE can be pre-calculated for neighbor MB after decoded value of SE (valSE) except motion 

vector different (mvd). However, mvd is the biggest part of all neighbor information. We need 10 bits 

to store one mvd, and each MB has 16 mvd in the worst case. When we calculate current ctxIdx for 

mvd, we need neighbor mvd (A) and mvd (B) from left and top block. Then, we sum them to 

determine ctxIdxInc as Figure 30(a). However, we may not have to use total 10 bits to calculate 

ctxIdxInc in most of cases. In our simulation results, we find out most of mvd can be represented by 

two bits. So, we can reduce each mvd from 10 bits to 2 bits and use 5 bits to store extra mvd which is 

bigger than 3, as Figure 30 (b). When we need to refer neighbor mvd, we access each 2-bits-mvd and 

several extra-mvd from memory. Finally, we can efficiently reduce about 70% storage in our 

simulation result shown in Chapter 5 by this method.  

 

 
Figure 29. Stored in (a) external memory (b) internal memory 
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( ) ( )mvd A mvd B+

 
 

Figure 30. (a) ctxIdxInc control condition for mvd 
(b) proposed mvd reduction scheme 

Besides, the other SE can be pre-calculated, and we can use one bit to represent neighbor SE. 

Because the total neighbor storage has been reduced considerably, we can pre-fetch all neighbor 

information from neighbor MB we need before decoding the current MB.  

3.2.2 Raised Buffer Efficiency 

Furthermore, when we decode first bin of SE, we should access the same SE at the neighbor 

block that may be located in current MB or neighbor MB such as Figure 31. Figure 31 shows three 

different kinds of reference direction. Immediately, we need two kinds of buffer. The one store the 

data from neighbor MB, and the other one store the data from current MB. Therefore, we pre-fetch all 

storage of MB in the previous work, and both of them may occupy the largest percentage of buffers. 

During above reason, we may combine these two kinds of buffers to raise buffer efficiency.  

 

Figure 31. (a) Both in mbAddr (b) left in CurrMbAddr, top in mbAddr 
(c) both in CurrMbAddr 
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After we read the neighbor information from the memory, the data won’t be always available in 

various block size. When we decode except for 16x16 block size, the neighbor block may be changed 

from neighbor MB to current MB. So, we can reuse the buffer which stored neighbor MB 

information when neighbor blocks are in the current MB.  

 

mb_type: 4 partitions 

All of sub_mb_type: 4 partitions 

*Buffer contain neighbor MB data 

Figure 32. At the beginning of top and left buffer 

In Figure 32, we show an example for a MB with 16 blocks at the beginning. We only require 

left and top buffer which contained 4 blocks size. In Figure 34, we show our schedule for reading and 

writing data in concentrated buffer. At first, current block is 0, and we have to read neighbor 

information from left and top buffer. After reading data, the blocks which are read can be clear to 

update new information. And then, we can write pre-calculate information to the empty buffer. 

However, we may meet terrible by following this principle. Because we change to next block by 

zigzag scan, the data may be covered too early. To reduce this drawback, we adjust the schedule to 

update the data in two buffers. Through our adjustment, the final results are shown in Figure 33. The 

data contained in left buffer can be reused for right MB, and the data contained in top buffer may 

update to SRAM for bottom MB. 

Because of this scheme and accurately scheduling, we can combine these two kinds of buffers to 

reduce hardware cost. 

(*Following discussion don’t include MBAFF mode) 

15
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2 3 6 7
8 9 12 13
10 11 14 15

5
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10 11 14

13
15  

(a) 

After decoding all 
blocks 

 
(b) 

Before decoding  
next MB 

Figure 33. (a) In the end of top and left buffer (b) After decoding MB process 
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Figure 34. Schedule of concentrated buffer 
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3.2.3 Solved Syntax Element Switching Overhead 

In [6], it clearly indicated the effect of SESO that seriously decreased performance. 

Prediction-base decoding flow and jointed parser and decoder are proposed to reduce this overhead. 

However, even if we can take care of SE branch, getting neighbor information may enhance SESO 

when we access data from external memory. So, we pre-calculate SE for neighbor MB described in 

Section 3.2.1 to reduce storage and alternately pre-fetch all neighbor information of MB like Figure 

35 in a concentrated buffer described in Section 3.2.2 to avoid waiting for neighbor information when 

decoding first bin of SE.  

We classify all pre-calculated SE to three kinds according as the order of SE. First kind of SE has 

the highest priority, because they require the neighbor SE at the beginning of MB shown in Figure 35. 

And we store this kind of SE, such as mb_skip_flag, mb_type and etc, in Row Storage 0. Because 

first kind of SE has low storage and high importance, they advise to supply in internal memory.  

Second kind of SE contains Inter predictor mode and coefficient information. We should store 32 

bits 2-bit mvd according as Section 3.2.1 and 16 bits for coefficient type SE, and we store them in 

Row Storage 1. Total 48 bits per MB can suit for 32 bits width bus, and we may only have to transmit 

one or two cycles to memory. This kind of SE can be stored in internal or external memory according 

as system constraint or cost. 

The last kind of SE is about extra 5-bit mvd described in Section 3.2.1, and we store them to 

Row Storage 2. But, because not all of mvd has extra mvd, the total account of extra mvd may 

depend on sequence. Therefore, we should concentrate all separated extra-mvd to promote memory 

utility. Because this kind of SE is the largest part for neighbor information and seldom used, we can 

store them to external memory. 

Finally, through our adjustment, the latency for getting neighbor information reduced to average 

0.868 cycles per MB. Simulation results would show in Chapter 5. 
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Table 12 Total request syntax element of macroblock 

MB Layer
SE

MB Pred
SE

Residual 
SE

Row Storage 2

I
P, B

: READ: WRITE

Row Storage 0

Row Storage 1

Decoding flow

I
P, B

I
P, B

 
Figure 35. Alternate order for all neighbor information of MB 

  Syntax Element Num Trad. Cond. Total bits per MB

RS0 

mb_skip_flag 1 1 1 

8 bits / MB
mb_field_decoding_flag 1 1 1 
mb_type 1 6 1 
intra_chroma_pred_mode 1 2 1 
ref_idx_l0 2 5 1 
ref_idx_l1 2 5 1 

RS1 

mvd_l0 (x, y) 8 10 2 

48 bits /MB

mvd_l1 (x, y) 8 10 2 
transform_size_8x8_flag 1 1 1 
coded_block_pattern (luma) 1 4 2 
coded_block_pattern (chroma) 1 2 2 
coded_block_flag (Y_DC) 1 1 1 
coded_block_flag (Y_AC) 4 1 1 
coded_block_flag (UV_DC) 2 1 1 
coded_block_flag (UV_AC) 4 1 1 

RS2 
mvd_l0 (x, y) 8 10 5 80 bits /MBmvd_l1 (x, y) 8 10 5 
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3.3 Summary 

In our design, we propose a new prediction-based CABAC decoder. We predict bin value instead 

of syntax element and let the design flow more regular. Therefore, we just require two kinds of 

predict result process shown in Figure 36. When we get hit process, we may have smooth pipeline 

without any data hazard. Even though we get miss penalty, we may stall one cycle to calculate correct 

ctxIdx. Furthermore, we propose a high-accuracy prediction process to get more than 90% hit rate. 

Above all, we get a high throughput, because we seldom have miss process. 

Proposed CABAC Decoder 

Hit 
Process 

 

Miss 
Process 

 

Figure 36. Proposed pipeline stage process 

Besides, how to store the neighbor information and fetch them without extra latency may be 

more and more important when we raise the throughput continually. In our work, we reduce the 

storage and store all information of MB we require. So, we can get least increased latency and 

memory size. And, we concentrate internal buffer to reduce hardware cost. Above all, we ease the 

possible situation for performance lost and get the minimum hardware cost. 
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Chapter 4. Proposed Architecture 

This chapter implements our proposed prediction-based CABAC decoder architecture by our 

proposed scheme. Figure 37 shows block diagram of our proposed CABAC decoder.  

First, in order to overcome the fundamental defects of CABAC algorithm for pipeline structure, 

we make an effort to parallel the bin-decoded process and ctxIdx-calculated process by two 

independent paths. Therefore, we combine controlled parser and increase bin predictor to traditional 

CABAC decoder. And, the bin predictor is implemented by our proposed algorithm described in 

Section 3.1. By the high hit rate, we can achieve our purpose successfully. And, the details would be 

described in Section 4.1 

Second, we consider the possibly additional overheads behind system integration. One of them is 

we may produce a large storage and latency for neighbor information. The storage overhead would 

increase hardware cost or memory bandwidth requirement. The latency overhead may cause 

unexpected pipeline stalls. Therefore, we optimize the memory system to reduce storage and 

schedule the scheme for real-time accessing neighbor information. Besides, we get acceptable 

throughput by simple buffer and resource. And, the details would be described in Section 4.2. 

 
Figure 37. Block Diagram of proposed CABAC decoder 
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4.1 Architecture of Prediction Process 

At first, we focus on AD unit, because this is the critical part for throughput. For our purposed, 

we would like calculate current bin and next ctxIdx at the same time. And, we may have 

bin-decoding path and ctxIdx-calculating path to implement. The bin-decoding path inputs current 

values (Range, Offset) and context data (valMPS, pState) to Arithmetic Decode (AD) Unit, and it 

would output current bin to bin buffer. The next values (`Range, `Offset) which are outputted by AD 

may be adjusted by Renormalize Unit and bits. Besides, the ctxIdx-calculating path inputs current 

status and outputs ctxIdx by CtxIdxCalculate Unit. As we can see in Figure 38, we find out 

ctxIdx-calculated process may be affected by bin-decoded process. The reason is we calculate next 

status from decoded current bin. At the traditional decoding flow, the next status may be updated by 

external CPU or system buffer. So, even if we do the best optimization with the traditional CABAC 

decoder, we still may have a limit for throughput rate because of uncontrolled SE parser. This 

dependency may be major part which cause performance lost.  

Figure 38. Traditional Arithmetic Decoder flow 
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Therefore, we try to parallel the bin-decoded process and ctxIdx-calculated process by two 

independent paths. We provide a controlled SE parser and record each status of pipeline stages in 

shift registers to solve SESO, and we described in Section 4.1.1. And, we discuss our bin-decoding 

process and ctxIdx-calculating process in Section 4.1.2 and Section 4.1.3 to become two independent 

paths.  

4.1.1 SE-parsed Process 

 

Figure 39. Traditional syntax element parser 

 In Figure 39, we use external CPU or system parser to determine which SE type may be 

decoded. Although this kind of architecture has the advantage of relatively uncomplicated 

implementation, this also may invoke performance lost significantly due to SESO which hasn’t been 

considered with previous status. So, we provide a controlled SE parser instead of traditional SE 

parser. However, even if we consider all SE branch location, we still may get trouble at some 

situation, for example, the same SE in different block … and so on. As a result of some SE which is 

more than one in different blocks, we should record each status of stages. Hence, we collect the detail 

items of status which we have to store in Table 13. 

 
Figure 40. Controlled SE parser 
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Table 13 The stored status of each stage 

4.1.2 Bin-decoded Process 

Figure 41. Data path of bin-decoded process 

To implement bin-decoded process, we have to apply some components. Arithmetic Decoder unit 

which includes regular mode, terminal mode and bypass mode is made to decode bin described in 

4.1.2.1 and 4.1.2.2. Regular mode Renormalize unit is made to adjust current value (range, offset) 

over correct level by bits. Besides, we may require a bit buffer which is made with FIFO structure to 

deal with flexible accessing bits described in Section 4.1.2.3. And, we also require some internal 

buffers to hold on current value (range, offset) and context data (valMPS, pState). Next value may be 

used soon, and previous context data may be selected to update or reuse described in Section 4.1.2.4. 

Stages Pr (N) AD(0) DB(1) CC(2) 
Stored No Yes Yes Yes 

Status 

ctxIdx V V   
SE_type V V V V 
binIdx V V V V 
mbPartIdx V V V V 
subMbPartIdx V V V V 
ctxBlockCat V V V V 
CoeffBlkIdx V V V V 
UV V V V V 
levelListIdx V V   
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4.1.2.1 Regular process 

Figure 42. Regular process 

According to our analysis, the regular process has more than 70% occurrence rate in total 

decoding process. In addition, it mostly would be the critical path restricted working frequency. 

Hence, we take an effort of shorting the critical path. In our design shown in Figure 42, we use two 

subtractors, two inverters and five 2-to-1 multiplexers. For each regular process, we input current 

codIRange and codIOffset which are changed by previous process repeatedly. So, the current range 

and offset may be updated all the time for most of regular process. Besides, we should know the 

history information by context model. The context data include pState and valMPS. The pState 

represents the index of LPS range table, and the valMPS represents the symbol with most of 

occurrence rate. According to context data, we can get range of LPS and next pState. So, the only 

thing we should do is recognizing the bin. The bin is determined which status is occurred, most 

possibility symbol (MPS) or least possibility symbol (LPS). And, the two statuses are determined by 

context data. Hence, we can find out the critical path in our design is the time we recognized MPS or 

LPS. Different with traditional methods, we use two subtractors, one rLPS table to get the result. This 

may spend much less time compared with using comparer directly.  
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4.1.2.2 Bypass/Terminal process 

Figure 43. (a) Bypass Process (b) Terminal process 

 

(a) 
 

(b) 

In this section describes other decoding process. Bypass process has second high occurrence rate 

about 15% ~ 30% shown in Figure 43(a). Terminal process may occur when decoding the end of MB 

and be seldom used and shown in Figure 43(b). 

Because we don’t require to context data, we can simplify hardware cost and data path visibly. In 

our bypass process, we use only one substrate and multiplexer to implement. We shouldn’t change 

range, but we should update offset all the time. Besides, we output one when offset bigger than range 

and zero when opposite status.  

In the other hand, terminal process is very similar with regular process. The different part may be 

we fix the range of LPS to 2, and we don’t require context data. And, most of terminal process may 

be decoded zero, because one represents to end of slice. In our design, we use two subtractors, one 

inverter and one multiplexer to implement. Furthermore, this process doesn’t have to load data from 

table, and it may have shorter data path than regular process.    

However, these two processes don’t require to access data from memory. Actually, because we 

shouldn’t care about ctxIdx, we never have miss penalty and can make sure of 1 bin per cycle in these 

two processes. 
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4.1.2.3 Context model data reused 
As mentioned in Section 3.1.3.2, we require a internal buffer to control context data. The context 

data can be selected from new or updated one. Actually, we often decode bin by new context data in 

regular pipeline structure, and we store the updated one to buffer for writing context model at next 

stage. Therefore, we can just use a multiplex to pre-load context data just like Figure 44(a), and we 

compare the current ctxIdx with the previous ctxIdx to decide which one. So, we can get no delay 

according to the data reuse, if the address of context model is the same with previous one.   

4.1.2.4 Renormalization process and bit buffer 
In this part, we have to design a bit buffer to overcome flexible bit requirement. The 

renormalization process is used to adjust range and offset. So, the bits may be parsed in bypass 

process or in other process according as the range which is smaller than normalize level. In our 

analysis, we may require 0 ~ 6 bits in regular process, 0 ~ 1 bit in terminal process and 1 bit in bypass 

process for each fetching. The method we used is that we apply a L2 cache with FIFO structure 

shown in Figure 44(b). We always fill the buffer when containing under half of entire. Actually, we 

record the number of bits in buffer and monitor each fetching of requirement. If we find out that we 

aren’t enough bits in buffer after this fetching, we would send a signal to require more bits from 

bit-stream SRAM. Through this buffer, we can support all possible cases for fetching the bits. 

Besides, we use the same renormalize unit in regular process and bypass process to achieve high 

hardware utility efficiently. 

 

(a) 
 

(b) 
Figure 44. (a) Data reuse buffer. (b) The structure of bit buffer [9] 
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4.1.3 CtxIdx-calculated Process 

 
Figure 45. Conventional ctxIdx-calculated process 

In fact, before we calculate ctxIdx, we should know what kind of SE type we decode. The 

conventional method is used external CPU/system parser to handle the complex SE branch. And, 

CABAC decoder may be idle until external host invoked. After that, we may get the SE type and 

decode bin by bit stream. However, as mention in previous, this method may produce some 

unexpected statuses. So, we improve the conventional process to suit our controlled SE parser.  

 

Figure 46. Proposed ctxIdx-calculated process 

The controlled SE parser we has introduced in Section 4.1.1. And, we have to cut off the 

relationship with bin-decoded process and ctxIdx-calculated process. According to prediction unit 

which is made by Section 3.1, we can get the predicted bin0 which can be produced at the same time 

with decoded bin1. Instead of decoded bin1, we use predicted bin0 to get a next status by SE parser. 

And, the next status may have no dependency with decoded bin, but it may have a probability to be 

wrong. We can calculate ctxIdx continually until occurrence of the error predicted bin0. Hence, we 

can ease data dependency, if the probability of the error predicted bin0 is low.  
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4.2 Architecture of Memory System 

After we implement the ctxIdx-calculated process and binIdx-process, we still have some 

problem to be overcome. The major problem is memory issue, and we should include several SRAM 

to support CABAC hardware. As mention in Section 1.2, we have two memories which are difficult 

to handle. One is context model, and the other is neighbor information. Because we can ease data 

dependency by our proposed methods, we just require a two-port SRAM which supports reading and 

writing at the same cycle for context model. Besides, the other problem is about how to access 

neighbor information when we require. In this Section, we provide a technology to access neighbor 

information immediately and increase a little overhead shown in Figure 47. In order to avoid waiting 

for loading neighbor information, we overcome this problem by including left and top neighbor 

buffer. The concentrated buffer has been described in Section 4.2.1. Moreover, we increase one stage 

(ctxIdxInc pre-calculate (CC)) to reduce the information and describe in Section 4.2.2. After we 

construct the pipeline architecture, we may figure out another problem. Because not all of mvd are 

bigger than 3, extra mvd would be too separate to achieve high storage reduction. Therefore, we 

implement a transfer unit described in Section 4.2.3 to reach high data compression. 

 

Figure 47. Memory hierarchy for neighbor information 
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4.2.1 Concentrated Buffer 

 

Figure 48. Combined current and neighbor MB 

 As soon as we decode the first bin of the SE, we may require the neighbor information to 

calculate ctxIdx. However, we can‘t make sure what information would be fetched. So, we usually 

store all information of MB to deal with flexible accessing neighbor information, and it may include 

a large buffer. According to supporting variable block size, we may raise two times buffer size. Hence, 

as mention in Section 3.2.2, we combine the two kinds of buffer and are shown in Figure 48. Actually, 

according as our updated schedule, we can use half of buffers to achieve the same proposed. 

Nevertheless, this method may not be available in some situations. In Section 3.2.2, we assume 

all macroblock have 16 blocks, and we can update smoothly. But, H.264/AVC supports variable 

block size actually. And we may face different block size in neighbor. So, we should discuss this kind 

of situation and make an effort in Section 4.2.1.1. 

On the other hand, when we upgrade over H.264/AVC main profile, and we may support a 

technology, Macroblock-Adaptive Frame-Field Coding (MBAFF) mode. MBAFF means that we can 

allow frame and field type in the same slice. Because we have to adapt for field mode, we should 

classify MB to top and bottom. Therefore, we should consider several possible cases in neighbor, and 

there is much higher complexity for supporting MBAFF mode. So, we may analysis all possible 

situations and discuss in Section 4.2.1.2. 
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4.2.1.1 Various block size 

In H.264/AVC, we can recognize the block size by mb_type and sub_mb_type which are two 

kinds of SE. We may have four types by mb_type shown in Figure 49 (a), and we even may have 

extra four types by sub_mb_type shown in Figure 49 (b). Therefore, when we decode current MB, we 

can understand what block size is. In the other hands, we may have no idea what neighbor block type 

is. To overcome this problem, we should make an effort for writing back information. When we 

decode block type except for 16x16 block size, we should assume all MB which is 16x16 block size. 

And, we extend the decoding block to neighbor blocks like Figure 50. Because we prepare the 

information in each block, we don’t have to care about what block size is in neighborhood. After that, 

we can support various block size by increasing some data path. By the way, because not all of SE 

supports sub-macroblock partition, we just have to increase data path for some special cases.  

 
(a) macroblock partition 

 
(b) sub-macroblock partition 

Figure 49. (a) macroblock partition (b) sub-macroblock partition 

 

Figure 50. Example for block extension
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4.2.1.2 MBAFF mode 

MBAFF is an innovative technology for coding tool, but it also increases high complexity for 

decoding. When we support MBAFF mode, we may consider the different with frame and field. And, 

the address for mapping memory, control conditions and formula from standard would be totally 

different. For example, Figure 51 is a case without MBAFF mode. And, we just should consider left 

and top neighbor MB, because the reference MB (RefMB) and current MB (CurrMB) are either 

frame type or field type. Figure 52 is a case with MBAFF mode, and each RefMB can be frame or 

field type. So, we may consider current MB which is top or bottom MB and also consider current MB 

which is frame or field type. Except for current MB, we also have to consider neighbor MB which is 

frame or field type. Therefore, above situations can change RefMB location, so we should provide 

more buffers to deal with increasing complexity instead of increasing system overhead. In our 

analysis, we should enhance 2.5 times internal buffer for the worst case shown in Figure 52. 

 

Figure 51. Without MBAFF mode 
 

Figure 52. With MBAFF mode 

Table 14. Without MBAFF mode 
Case CurrMB, RefMB 

0 Frame, Frame 
1 Field, Field 

 

Table 15. With MBAFF mode 
Case CurrMB, RefMB 

0 Frame, Frame 
1 Frame, Field 
2 Field, Frame 

3 Field, Field 
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4.2.2 CtxIdxInc pre-Calculate Stage 

 
Figure 53. Incensement of third stage 

To supply pre-calculated method as mention in Section 3.2.1, we provide a ctxIdxInc 

pre-calculate (CC) stage behind second stage shown in Figure 53. And, we output the value of SE 

(valSE) after second stage. It means the third stage which is used to reduce the information wouldn’t 

affect previous pipeline stages.  

In the traditional flow like Figure 54, we have to store all valSE of MB in memory. When we 

require neighbor information, we read them from memory. And, we calculate ctxIdx for CABAC 

decoder. This method may have more requirements for memory bandwidth and memory space.    

In our proposed flow like Figure 55, we reorder the ctxIdxInc calculating flow. Before we store 

the information, we pre-calculate them and store dispersedly according as their utility rate. Hence, 

when we require the information, we can use them directly. And, we can simplify the data path to 

deal with the neighbor information. 

Figure 54. Traditional neighbor information calculating flow 

Figure 55. Proposed neighbor information calculating flow 
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4.2.3 Transfer Unit 

After we support above technologies, we may find out that we can’t get high reduction rate for 

neighbor information because of the dispersive extra mvd which is described in Section 3.2.1. So, we 

try hard to get consideration to high reduction rate and concentrated buffer, and we provide a transfer 

unit to compress the neighbor information. 

In the transfer side, we collect at most 6 extra mvd with 5-bit and fill up from left to right to suit 

for 32-bit width bus shown in Figure 56. And, the transmission times can be changed from fixed 4 to 

variable 0 ~ 4. Because the extra mvd is about 20% of total mvd, we can reduce memory bandwidth 

requirement significantly. In the inverse-transfer side, we may decompress data, when we find out 

that 2-bit mvd equal to 3. After we received the data, we sort them according as 2-bit mvd to suit for 

concentrated buffer.  

Figure 57 is an example for compressing the dispersive extra mvd. Before our process, original 

extra mvd store dispersedly in different blocks, and we can just send or receive them once after our 

transfer process.  

Send/Received : 0 ~ 3

1 2 3

 
Figure 56. Transfer unit 

Send/Received : 1

 
Figure 57. Example for transfer unit 



 

65 
 

4.3 Summary 

After we overcome the problems of sub-unit, we may consider the issues about integration in 

system. We may discuss the situation about integration for each pipeline stage, memory system and 

entire CABAC decoding core. Different with traditional CABAC decoding flow, we combine SE 

parser and decoder. So, as soon as our CABAC decoder is invoked, it may decode continually until 

the end of slice. Besides, we may require an initialization process to initial context model data at the 

beginning of slice. After we finish each process we require, we make a FSM to control initialization 

process and decoding process.   

At first, we integrate our prediction process, bin-decoded process and ctxIdx-calculated process 

in first pipeline stage. And, we input the current values (range and offset) and context data to 

arithmetic decode and prediction unit. Because of our controlled SE parser (described in Section 

4.1.1) and optimization of ctxIdx-calculated process (described in Section 4.1.1), we can decode bin 

and calculate ctxIdx at the same time. And then, the decoded bin may be stored in bin buffer, and the 

ctxIdx may be sent for requiring new context data. Besides, we may get the current values by 

renormalize process and bit buffer (described in Section 4.1.2.2), and the context data can be reused 

by internal buffer (described in Section 4.1.2.1). In Figure 58, we highlight these data paths.  

 
Figure 58. Integration for first pipeline stage   
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However, after finishing above process, we still lack some data for calculating ctxIdx. The data 

is neighbor information. So, we have to supply neighbor information for ctxIdx calculate unit. As 

shown in Figure 59, we provide concentrated buffer (described in Section 4.2.1) and transfer unit 

(described in Section 4.2.3) to prepare neighbor information. And, left block of neighbor information 

can be reused, and top block of neighbor information may be updated with memory.  

 

Figure 59. Integration for memory system 

Second, after finishing first pipeline stage, we integrate de-binarization (DB) process and 

ctxIdxInc pre-calculate (CC) process (described in Section 4.2.2) to our CABAC decoding core. The 

DB process is inputted bins and SE type, and it may be outputted value of SE (valSE) to valSE buffer 

and system buffer. The CC process is inputted valSE and SE type, and it may be outputted 

conditional term flag to concentrated buffer for neighbor blocks. Because we have stored status of 

each stage in buffer of SE parser, we can make sure what SE type is in each pipeline stage. Therefore, 

according to low complexity and no data hazard of DB and CC process, we can implement second 

and third stages easily by some pipeline buffer.  
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Third, we integrate the whole pipeline stage (Part A) and memory system (Part B) to our 

proposed CABAC decoding core which is shown in Figure 60. After that, because this may cause 

data hazard problem in some special cases or SE, for example, coded_block_pattern, we increase a 

forward process to deal with this problem as mentioned in Section 3.1.3.1. Actually, we use 

multiplexer to select regular path or forward path to avoid data hazard problem.  

In the other hand, we should have a process to deal with miss penalty. Because we adopt 

prediction bin0 which has a probability to be wrong in our design, we may increase a risk for 

predicting miss. Therefore, we have to make a process to deal with this situation. Actually, even if we 

get miss penalty, it may be not things by some cases as mentioned in Section 3.1.2. However, we still 

have to stall in the worst case. To avoid occurring miss penalty one after another, we should stall one 

cycle and use previous decoded bin instead of predicted bin to calculate correct ctxIdx. And, the 

status buffer of SE parser shouldn’t be shifted in this situation. 

 

Figure 60. Integration of CABAC decoding core 
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After we finish our decoding process core, we still have to support a process before invoking 

decoding process. That is initialization process as mentioned in Section 2.1. This process is used to 

initial context model, and we should do it at the beginning of slice. Following is the pseudo-code 

from standard [1] for computing the single context model.  

1. preCtxState = Clip3( 1, 126, ( ( m ∗ Clip3( 0, 51, SliceQPY ) ) >> 4 ) + n ) 
 

(Eq. 11) 

2. if( preCtxState  <=  63 ) { 
pStateIdx = 63 - preCtxState 
valMPS = 0  

} else { 
pStateIdx = preCtxState - 64 
valMPS = 1 

} 

(Eq. 12) 

Therefore, for our purpose, we require SliceQPy which is made from header and (m, n) which is 

made from Initialization table to produce initial value. According to the standard [1], the probabilities 

of preCtxState have to be kept between 1 and 126. Figure 61 shows the implementation of the 

context model initialization. It is divided into three stages, and is composed of one multiplier, one 

adder, and one subtractor.  

 

Figure 61. Initialization process [9] 

Thus, the initialization can execute continuously with the pipeline. It depicts the action of three 

stages, and consumes 401 cycles per initialization occurrence. 
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Finally, after we finish our decoding process and initialization process, we may consider how to 

switch these processes and the memory issue. As shown in Figure 62, we supply a FSM about three 

states. The state 0 is supplied to shut down the decoder, when decoder isn’t invoked. The system may 

work at the other entropy decoding in this state.   

After the decoder is invoked, we may transfer to state 1. The state 1 is supplied to initial context 

model at the beginning of slice. We may require initialization table from ROM/external memory as 

shown in Figure 63. As computing each context model, initialization process would read (m, n) from 

initialization table. And, it may compute the initial context data to context model. Therefore, we just 

require working initialization process, reading parameter and writing initial context data. 

As soon as we finish to initial context model, we may transfer to state 2. The state 2 is supplied 

to decode SE. Because of including the controlled SE parser, we shouldn’t wait for external 

assignment. And, we can decode each SE of slice until the end of slice. Besides, we have to read and 

update new context model data from context model repeatedly, and we may change the neighbor 

information for each MB to internal and external memory shown in Figure 64. Finally, after we 

decode end of slice, we may return to state 0 waiting for next invoked.  

Figure 62. FSM for whole CABAC integration 
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Figure 63. State 1 – Initialization Process 

 
Figure 64. State 2 – Decode Process 
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Chapter 5. Simulation Results 

5.1 Prediction Scheme Verification 
To proof our prediction algorithm can adapt in different sequences, we make a simulation that we 

calculate hit rate at each bin of sequences in average with MPS rate. Figure 65 shows average hit rate 

of HD sequences and we get hit rate from 90.75% to 94.27% in all resolution sequences. It represents 

we can keep over 90% hit rate even in the worst case. Besides, we also make a simulation with 

variable QP in Figure 66 (fix QPB,P) and Figure 67(fix QPI). By the way, we put simulation results of 

other resolutions in Appendix B. 

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.) 

Table 16 Hit rate of prediction process for HD sequence 
Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
HIT Rate 

Increased 
Hit Rate 

parkrun 83001685 62474532 76624869 75.27% 92.32% 17.05%
shields 11317592 8733340 10444611 77.17% 92.29% 15.12%
stockholm 10089721 7984117 9373943 79.13% 92.91% 13.77%
riverbed 137403314 107280400 127833147 78.08% 93.03% 14.96%
station 79634578 63939062 74707361 80.29% 93.81% 13.52%
sunflower 85137642 68626372 80255375 80.61% 94.27% 13.66%

 

Figure 65. Hit rate of prediction process for HD sequence 
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(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QPBP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

 

 
Figure 66. Hit rate of prediction process for variable QPI 
Table 17 Hit rate of prediction process for variable QPI 

 HD720p HD1080p 
QP stockholm parkrun stockholm parkrun stockholm parkrun 

0 83.27% 93.72% 79.64% 93.48% 83.21% 93.83% 76.22% 92.53% 79.06% 92.81% 76.82% 92.20%

10 79.91% 93.28% 78.56% 93.29% 80.09% 93.32% 75.57% 92.56% 76.88% 92.55% 75.25% 91.90%

15 77.65% 92.51% 77.39% 92.85% 77.82% 92.64% 75.32% 92.74% 75.61% 92.90% 74.16% 91.75%

20 77.02% 92.49% 76.39% 92.55% 76.77% 92.29% 76.47% 92.34% 76.30% 93.22% 73.96% 91.75%

25 77.12% 92.67% 75.67% 92.38% 76.05% 92.12% 74.52% 92.23% 77.01% 93.26% 73.80% 91.61%

30 77.67% 92.67% 75.37% 92.30% 75.94% 92.10% 74.23% 92.30% 76.79% 93.38% 73.62% 91.56%

35 78.21% 92.73% 75.27% 92.32% 76.14% 92.24% 74.35% 92.47% 77.36% 93.56% 73.61% 91.55%

40 78.61% 92.80% 75.29% 92.33% 76.65% 92.24% 74.67% 92.67% 77.99% 93.87% 73.65% 91.55%

45 78.90% 92.85% 75.33% 92.31% 76.95% 92.23% 74.92% 92.73% 78.59% 93.99% 73.66% 91.57%

50 79.15% 92.92% 75.35% 92.31% 77.17% 92.30% 75.07% 92.74% 79.20% 94.18% 73.66% 91.58%

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 5 10 15 20 25 30 35 40 45 50

H
it 

R
at

e

QPI

Stockholm (HIT Rate)

Parkrun (HIT Rate)

Shields (HIT Rate)

Stockholm (MPS Rate)

Parkrun (MPS Rate)

Shields (MPS Rate)

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 5 10 15 20 25 30 35 40 45 50

H
it 

R
at

e

QPI

Riverbed (HIT Rate)

Station (HIT Rate)

Sunflower (HIT Rate)

Riverbed (MPS Rate)

Station (MPS Rate)

Sunflower (MPS Rate)



 

73 
 

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QPI: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.) 

 

 
Figure 67. Hit rate of prediction process for variable QPB,P 
Table 18 Hit rate of prediction process for variable QPB,P 

 HD720p HD1080p 
QP stockholm parkrun shields sunflower station riverbed 

0 83.38% 93.34% 87.65% 95.64% 82.12% 92.61% 73.34% 92.34% 75.77% 91.13% 81.42% 93.11%

10 77.81% 91.30% 83.72% 93.24% 76.34% 91.51% 74.19% 91.89% 73.08% 92.53% 78.02% 92.42%

15 73.08% 92.77% 78.83% 93.12% 72.83% 92.52% 74.75% 92.88% 74.54% 92.20% 75.54% 92.38%

20 74.30% 91.59% 76.26% 92.10% 73.95% 92.17% 75.48% 91.68% 76.40% 93.38% 75.41% 92.62%

25 76.19% 93.57% 74.66% 92.72% 76.90% 92.32% 72.54% 91.61% 77.11% 92.33% 75.14% 92.08%

30 79.71% 91.88% 76.64% 92.16% 77.58% 92.04% 73.16% 92.14% 75.26% 93.09% 73.52% 91.74%

35 76.66% 92.84% 74.61% 92.58% 75.23% 92.33% 75.17% 92.54% 77.93% 93.63% 73.97% 91.64%

40 77.04% 93.27% 74.57% 92.23% 74.74% 92.67% 77.58% 93.27% 79.33% 93.77% 75.84% 92.01%

45 77.62% 93.39% 75.16% 92.34% 74.99% 92.78% 79.63% 93.79% 79.94% 93.87% 77.91% 92.83%

50 77.92% 93.47% 75.57% 92.49% 75.82% 93.00% 80.81% 94.14% 79.31% 93.77% 79.18% 93.85%
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5.2 Memory System Verification 

In the other works, we reduce the storage and test in full-HD sequences. We count the range 

distribution of mvd in average 30 frames and show our comparison with traditional in Figure 68. And 

then, we get reduction rate from 58.01% to 75.13%. Although, the riverbed sequence has low 

reduction rate, it doesn’t have large mvd to be stored actually. It means we can reduce bandwidth 

requirement or system buffer utilities efficiently. Besides, we also analyze the relationship between 

memory bandwidth requirement and internal SRAM size in Figure 69 and Figure 70. By the way, we 

put simulation results of other resolutions in Appendix C. 

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.) 

 

Figure 68. Max. B.W. of memory system for HD sequences 
Table 19 Max. B.W. of memory system for HD sequences 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2) 

fMVd 
(MVd>2) 

BandWidth@30fps Reduction 
Rate Traditional Optimal 

shields 578866 522504 56362 1736598.00 431862.60 75.13%
stockholm 500732 429883 70849 1502196.00 406712.70 72.93%
parkrun 1405608 1250702 154906 4216824.00 1075723.80 74.49%
riverbed 117080 65599 51481 351240.00 147469.50 58.01%
station 756052 631556 124496 2268156.00 640375.20 71.77%

sunflower 688546 573641 114905 2065638.00 585485.10 71.66%
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(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.) 

 
Figure 69. Max. B.W. of memory system for SRAM size for HD 720p sequences 

Table 20 Max. B.W. of memory system for SRAM size for HD 720p sequences 

SRAM 
size 

HD 720p 
Stockholm Shields Parkrun 

Traditional Optimal Traditional Optimal Traditional Optimal 
0  1,502,196  406,713  1,736,598 1,131,076 4,216,824  1,075,724 

160  1,483,419  390,592  1,714,891 1,128,962 4,164,114  1,028,822 
320  1,464,641  374,471  1,693,183 1,126,848 4,111,403  981,921 
480  1,445,864  358,351  1,671,476 1,124,735 4,058,693  935,020 
640  1,427,086  342,230  1,649,768 1,122,621 4,005,983  888,119 
800  1,408,309  326,110  1,628,061 1,120,508 3,953,273  841,217 
960  1,389,531  309,989  1,606,353 1,118,394 3,900,562  794,316 

1,120  1,370,754  293,868  1,584,646 1,116,281 3,847,852  747,415 
1,280  1,351,976  277,748  1,562,938 1,114,167 3,795,142  700,513 
1,440  1,333,199  261,627  1,541,231 1,112,053 3,742,431  653,612 
1,600  1,314,422  245,507  1,519,523 1,109,940 3,689,721  606,711 
1,760  1,295,644  229,386  1,497,816 1,107,826 3,637,011  559,809 
1,920  1,276,867  213,265  1,476,108 1,105,713 3,584,300  512,908 
2,080  1,258,089  197,145  1,454,401 1,103,599 3,531,590  466,007 
2,240  1,239,312  181,024  1,432,693 1,101,486 3,478,880  419,105 
2,400  1,220,534  164,904  1,410,986 1,099,372 3,426,170  372,204 
2,560  1,201,757  148,783  1,389,278 1,097,258 3,373,459  325,303 
2,960  1,154,813  139,484  1,335,010 1,028,680 3,241,683  304,971 
3,360  1,107,870  130,185  1,280,741 960,101 3,109,908  284,640 
3,760  1,060,926  120,886  1,226,472 891,522 2,978,132  264,308 
4,160  1,013,982  111,587  1,172,204 822,944 2,846,356  243,977 
4,560  967,039  102,288  1,117,935 754,365 2,714,580  223,646 
4,960  920,095  92,989  1,063,666 685,787 2,582,805  203,314 
5,360  873,151  83,690  1,009,398 617,208 2,451,029  182,983 
5,760  826,208  74,391  955,129 548,629 2,319,253  162,651 
6,160  779,264  65,093  900,860 480,051 2,187,477  142,320 
6,560  732,321  55,794  846,592 411,472 2,055,702  121,988 
6,960  685,377  46,495  792,323 342,893 1,923,926  101,657 
7,360  638,433  37,196  738,054 274,315 1,792,150  81,326 
7,760  591,490  27,897  683,785 205,736 1,660,374  60,994 
8,160  544,546  18,598  629,517 137,157 1,528,599  40,663 
8,560  497,602  9,299  575,248 68,579 1,396,823  20,331 
8,960  450,659  0  520,979 0 1,265,047  0 
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(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.) 

 

Figure 70. Max. B.W. of MEM. system for SRAM size for HD 1080p sequences 
Table 21 Max. B.W. of MEM. system for SRAM size for HD 1080p sequences 

SRAM 
size 

HD 1080p 
Riverbed Sunflower Station 

Traditional Optimal Traditional Optimal Traditional Optimal 
0  351,240 147,470  2,065,638 585,485 2,268,156  642,887 

256  346,557 144,846  2,038,096 562,539 2,237,914  617,692 
512  341,874 142,222  2,010,554 539,594 2,207,672  592,496 
768  337,190 139,598  1,983,012 516,648 2,177,430  567,301 

1,024  332,507 136,974  1,955,471 493,703 2,147,188  542,106 
1,280  327,824 134,350  1,927,929 470,757 2,116,946  516,911 
1,536  323,141 131,726  1,900,387 447,811 2,086,704  491,715 
1,792  318,458 129,102  1,872,845 424,866 2,056,461  466,520 
2,048  313,774 126,478  1,845,303 401,920 2,026,219  441,325 
2,304  309,091 123,854  1,817,761 378,974 1,995,977  416,130 
2,560  304,408 121,230  1,790,220 356,029 1,965,735  390,934 
2,816  299,725 118,606  1,762,678 333,083 1,935,493  365,739 
3,072  295,042 115,982  1,735,136 310,137 1,905,251  340,544 
3,328  290,358 113,358  1,707,594 287,192 1,875,009  315,348 
3,584  285,675 110,734  1,680,052 264,246 1,844,767  290,153 
3,840  280,992 108,110  1,652,510 241,301 1,814,525  264,958 
3,840  280,992 108,110  1,652,510 241,301 1,814,525  264,958 
4,480  269,284 100,903  1,583,656 225,214 1,738,920  247,294 
5,120  257,576 93,695  1,514,801 209,127 1,663,314  229,630 
5,760  245,868 86,488  1,445,947 193,040 1,587,709  211,966 
6,400  234,160 79,281  1,377,092 176,954 1,512,104  194,302 
7,040  222,452 72,073  1,308,237 160,867 1,436,499  176,639 
7,680  210,744 64,866  1,239,383 144,780 1,360,894  158,975 
8,320  199,036 57,659  1,170,528 128,694 1,285,288  141,311 
8,960  187,328 50,451  1,101,674 112,607 1,209,683  123,647 
9,600  175,620 43,244  1,032,819 96,520 1,134,078  105,983 

10,240  163,912 36,037  963,964 80,434 1,058,473  88,319 
10,880  152,204 28,829  895,110 64,347 982,868  70,655 
11,520  140,496 21,622  826,255 48,260 907,262  52,992 
12,160  128,788 14,415  757,401 32,173 831,657  35,328 
12,800  117,080 7,207  688,546 16,087 756,052  17,664 
13,440  105,372 0  619,691 0 680,447  0 
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5.3 Hardware Architecture Verification 
The synthesis results of proposed architecture and the performance comparison with previous 

works are shown in Table 22. [7] and [8] use the same algorithm and get an increment throughput 

significantly by the method of branch selection hardware structure. But, they may get large hardware 

cost and still deal with SESO difficultly. Conversely, [5][6] use the high occurrence rate of MPS bin. 

[5] produces two bins per cycle (BPC) at continuous MPS bin and gets 0.86 BPC. And, [6] provides a 

SE predictor to really deal with SESO and has 71.4% of hit rate for overall bin switching.  

The RTL simulation result shows that the proposed design can decode 0.93 BPC in average with 

17k gate counts and 3,360 bits SRAM. However, we can achieve Level 5.0 MP in our estimation. 

Max. thoughput of the proposed design is 239.4 Mbins/s and Maximum working frequency is 232.5 

MHz. In the other hand, we optimize our memory system for getting neighbor information, and we 

only need 0.868 cycle delay for each macro block. By the way, we put simulation results of other 

resolutions in Appendix D. 

Table 22 Comparison of the proposed design and previous works 
  ISCAS 10’ [8] ISCAS 09’ [7] ISCAS 08’[6] CSVT 09’ [5] Proposed 

Spec. 1920x1088@30fps 1920x1088@30fps 1920x1088@25fps 1920x1088@30fps 1920x1088@30fps 

Technology UMC 90nm UMC 90nm N/A TSMC 0.18 um UMC 90nm 

Mechanism Parallel-based Parallel-based Prediction-based Prediction-based Prediction-based 

Frequency  

w/o SE 
parser MAX:264 MHz  MAX:222MHz 

N/A 

105 MHz 
 (MAX:140 MHz) 

150 MHz 
(MAX: 286.5MHz) 

with SE 
parser N/A N/A N/A MAX:232.5 MHz 

Gate 
Count 

w/o Context 
Model, N/A N/A N/A 34,955 17,022 

(19,549@232.5MHz)
with Context 

Model, 42,372 82,400 N/A 76,333 24,407 
(28,150@232.5MHz)

SE Parser N/A N/A N/A N/A 1,699 

MEM. 
System 

Get Neighbor 
Data Delay N/A N/A N/A N/A 0.868 idle/MB 

(*idle : 1 cycle)
Context 
Model Hybrid SRAM Register File N/A SRAM 

(3,528 bits) 
SRAM 

(3,360 bits)
Average 

Bins/Cycle 1.83 1.95 ~ 1.98 0.8333 
(Hit Rate: 71.4%)

0.71(740x480@4Mb/s) 
0.86(1920x1088@60Mb/s) 

0.9295 
(Hit Rate: 91.57%)

Maximum 

Throughput  
483.1 

( @ 264MHz ) 
410.0 

( @ 222MHz ) N/A 120.4 
( @140Mhz ) 

223.6 
( @232.5MHz ) 
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Chapter 6. Conclusion and Future Works 

6.1 Conclusion 
In this works, we apply single-bin engine efficiently to get acceptable throughput by our 

proposed high-accuracy prediction scheme. And, we implement a bin-trend-predicted CABAC 

decoder hardware architecture with the balance of low overhead and acceptable throughput on the 

system point of view and compare with other designs in Figure 71.  

We provide a bin-trend predictor to speculate the bin which is MPS or LPS, and we can get more 

than 90% of hit rate in our simulation results. Besides, we also provide a self-controlled SE parser 

which can output SE type [i+1] by inputting SE type [i] and current bin. After that, we can use the 

predicted bin to break the relationship between bin-decoded and ctxIdx-calculated process. Therefore, 

we can get high hardware utility rate efficiently.  

Furthermore, we also optimize memory system to reduce the overhead for system, and it reduces 

about 70% of information to be stored. And, we also decrease the latency for getting neighbor 

information to avoid unexpected stalls. Finally, we use only 17K gate counts with 3,360 bits two-port 

SRAM to achieve maximum 223.6 Mbins/s throughputs for real-time decoding full-HD sequences.  

 
Figure 71. Comparison of the proposed design and previous works 
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6.2 Future Works 

In order to achieve the QFHD or Ultra-HD videos, the throughput rate may not correspond to the 

requirement. We can estimate the specification of throughput in Table 23. If we should support higher 

resolution, the maximum bitstream would be upgraded. When we assume the average compression 

rate (CR) is 1.5, it means the maximum throughput should get at least 360 Mbins/s for QFHD. 

Furthermore, the ultra-HD will be supported by next standard – H.265/HEVC, and it has high 

probability to continue using CABAD for entropy coding. If we assume H.265/HEVC can save the 

bit-rate up to 50% compared with H.264/AVC, H.265/HEVC requires at least 720 Mbins/s.  

Table 23 The specification [1] for QFHD and Ultra-HD at 30 fps 

Resolution Frame size FPS MBits CR MBins
bin/cycle 

100 MHz 333 MHz 

QFHD 4096x2048 30 240 1.5 360 3.6 1.08 

Ultra-HD 8192x4096 30 *480 1.5 720 7.2 2.16 

However, even if we overcome the miss penalty and idle problems as shown in (Eq. 10), the 

maximum throughput may equal to working frequency by single bin engine as (Eq. 13 ).  

Assume ሺMIissRate ൎ 0, Idle times ا Total Binሻ 

Max. Throughput ሺSingle binሻ ൌ
Working Frequcy

ሺ1 ൅ ReqularModeRate · 0 ൅ 0ሻ 

 

(Eq. 13 )

In other words, the frequency may at least work at 720 MHz for supporting Ultra-HD. Even 

though we don’t care about the critical path of design, the system may not accept this working 

frequency. Therefore, we require an advantage technology to combine the advantage of 

prediction-base and parallel-base CABAC decoder to break the limit of throughput as (Eq. 15 ).  

Max. Throughput ሺSingle binሻ ൌ Working Frequency ൈ 1 (Eq. 14 )

Max. Throughput ሺMulti  binሻ ൌ Working Frequency ൈ N ሺN ൐ 1ሻ (Eq. 15 )

Actually, parallel-based strategy may raise the miss rate and idle times, and the performance 

wouldn’t be double as our estimation when integrating to system. 
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In Figure 72, we show the block diagram with prediction-based and parallel-based techniques. 

We apply a predictor which can predict how many MPS bin will be produced, and the decoder can 

support variable bin rate and high working frequency. Therefore, we separate the status of “11” to 

five sub-intervals, and we depend on sub-intervals to determine which engine will be chose. Besides, 

we prepare four kinds of context model and pre-calculate the context data for continually MPS bin, 

and critical path is no longer than LPS process. After that, we can guarantee to decode 1~4 bin per 

cycle by our prediction process, it can be used to parallel-based decoder actually.  

Figure 72. Combined prediction-based and parallel-based CABAC decoder 
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Appendix A. System Specification 
 

Figure 73. Block Diagram of Si2 H.264/SVC Decoder 
 

 
Table 24. Our H.264/SVC system decoder specification 

Si2 H.264/ SVC Decoder System 
Resolution: 

H.264/AVC  SVC 

HD1080, 30fps 

HD720 – HD1080, 30fps (maximum resolution) 

Others
Ex1: qcif – cif – 4cif – HD720 
Ex2: cif – 4cif – 16cif 

< 352800 MBs/s 
Working Frequency: 

100 MHz  150 MHz 
External Memory and Bus: 
SDRAM 128Mb, 32-bit per entry Bandwidth 32-bit/cycle 
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Appendix B. Simulation Result of Prediction Process 

B.1 All Sequences of QCIF & CIF 

QCIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 
Figure 74. Hit rate of prediction process for QCIF sequences (1/4) 

Table 25 Hit rate of prediction process for QCIF sequences (1/4) 
 Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
Hit Rate 

Increased 
Hit Rate 

akiyo 401188 288254 364849 71.85% 90.94% 19.09% 
carphone 1888711 1336535 1731293 70.76% 91.67% 20.90% 

claire 442900 317544 405973 71.70% 91.66% 19.97% 
coastguard 2050659 1573894 1899053 76.75% 92.61% 15.86% 
container 352983 265334 325270 75.17% 92.15% 16.98% 
foreman 1632549 1175665 1496015 72.01% 91.64% 19.62% 

19.09% 20.90% 19.97%
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QCIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 

Figure 75. Hit rate of prediction process for QCIF sequences (2/4) 
 

Table 26 Hit rate of prediction process for QCIF sequences (2/4)  
Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
Hit Rate 

Increased 
Hit Rate 

glasgow 1483251 1096963 1483251 73.96% 91.57% 17.61%
grandma 756790 550260 756790 72.71% 91.88% 19.17%

hall_monitor 437924 306081 437924 69.89% 91.36% 21.46%
miss_am 136214 98737 136214 72.49% 92.14% 19.65%
mobile 3085784 2222294 3085784 72.02% 91.61% 19.59%

mother_ 
dauguter 

1575658 1129898 1575658 71.71% 91.72% 20.01%

17.61% 19.17%
21.46%

19.65% 19.59% 20.01%
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QCIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 

Figure 76. Hit rate of prediction process for QCIF sequences (3/4) 
 

Table 27 Hit rate of prediction process for QCIF sequences (3/4) 
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Sequence 
Name 

Total bin MPS bin Hit bin MPS Rate
Proposed 
Hit Rate 

Increased 
Hit Rate 

news 711037 500118 651711 70.34% 91.66% 21.32%
paris 1806577 1258482 1645573 69.66% 91.09% 21.43%

salesman 611919 430568 558983 70.36% 91.35% 20.99%
silent 744340 518223 678414 69.62% 91.14% 21.52%
singer 919938 637155 834846 69.26% 90.75% 21.49%
stefan 3845883 2792411 3546934 72.61% 92.23% 19.62%



 

88 
 

QCIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 
Figure 77. Hit rate of prediction process for QCIF sequences (4/4) 

 
Table 28 Hit rate of prediction process for QCIF sequences (4/4) 

Sequence 
Name 

Total bin MPS bin Hit bin MPS Rate
Proposed 
Hit Rate 

Increased 
Hit Rate 

suzie 354026 258335 323976 72.97% 91.51% 18.54%
table 1153592 815668 1055292 70.71% 91.48% 20.77%
trevor 507733 351005 462659 69.13% 91.12% 21.99%
AVG 1185698 853496.4 1087237 71.98% 91.70% 19.88%
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CIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 78. Hit rate of prediction process for CIF sequences (1/4) 

 

Table 29 Hit rate of prediction process for CIF sequences (1/4) 
Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
Hit Rate 

Increased 
Hit Rate 

MadCyclistL 30912062 22612471 28341503 73.15% 91.68% 18.53%
akiyo 781084 576774 722873 73.84% 92.55% 18.70%
bus 6138347 4465976 5665328 72.76% 92.29% 19.54%

canoa 16259037 12069746 14968955 74.23% 92.07% 17.83%
carphone 6955450 5115658 6402589 73.55% 92.05% 18.50%

coastguard 10485846 7942913 9700303 75.75% 92.51% 16.76%
 

18.53% 18.70% 19.54% 17.83% 18.50% 16.76%

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

H
it 

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin



 

90 
 

CIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 79. Hit rate of prediction process for CIF sequences (2/4) 

 

Table 30 Hit rate of prediction process for CIF sequences (2/4) 
Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
Hit Rate 

Increased 
Hit Rate 

container 2562245 1898159 2361878 74.08% 92.18% 18.10%
flower 13027346 9850217 12011075 75.61% 92.20% 16.59%

football 12317558 8806890 11289817 71.50% 91.66% 20.16%
foreman 4130911 3082408 3802422 74.62% 92.05% 17.43%

hall_monitor 2639871 1910072 2419528 72.35% 91.65% 19.30%
mobile 13913132 10223841 12768531 73.48% 91.77% 18.29%

18.10% 16.59%
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CIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 80. Hit rate of prediction process for CIF sequences (3/4) 

Table 31 Hit rate of prediction process for CIF sequences (3/4) 
Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
Hit Rate 

Increased 
Hit Rate 

mother_ 
dauguter 

1220462 898149 1124388 73.59% 92.13% 18.54%

news 2058735 1479086 1891674 71.84% 91.89% 20.04%
paris 16494159 11752391 15067837 71.25% 91.35% 20.10%

sample_int 16021784 12517653 14958343 78.13% 93.36% 15.23%
silent 2313493 1651163 2121392 71.37% 91.70% 20.33%
singer 1928067 1372545 1759814 71.19% 91.27% 20.09%
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CIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

Figure 81. Hit rate of prediction process for CIF sequences (4/4) 
 

Table 32 Hit rate of prediction process for CIF sequences (4/4) 
Sequence 

Name 
Total bin MPS bin Hit bin MPS Rate

Proposed 
Hit Rate 

Increased 
Hit Rate 

stefan 14415583 10652610 13264112 73.90% 92.01% 18.12% 
table 4344952 3155185 3986853 72.62% 91.76% 19.14% 

tempete 9637761 6937195 8821796 71.98% 91.53% 19.55% 
waterfall 2384654 1741221 2194676 73.02% 92.03% 19.02% 

AVG 8679206 6396015 7983895 73.36% 91.99% 18.63% 
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B.2 All Various QPI,B,P  of QCIF & CIF 

QCIF @ jm16.1[2] QPB,P:28 GOP: IBPBP… BR: 240 kbit/s 

 
Figure 82. Hit rate of prediction process for various QPI (QCIF) 

CIF @jm16.1[2] QPB,P:28 GOP: IBPBP…BR: 960 kbit/s 

 
Figure 83. Hit rate of prediction process for various QPI (CIF) 
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Table 33 Hit rate of prediction process for various QPI 
 QCIF CIF 

Seq. coastguard foreman akiyo sample_int stefan paris 
QPI

 MPS Hit MPS Hit MPS Hit MPS Hit MPS Hit MPS Hit 
0 84.29% 94.81% 82.66% 94.09% 81.57% 93.78% 81.11% 93.97% 82.18% 94.37% 82.73% 94.31%
1 83.88% 94.66% 82.24% 93.97% 81.31% 93.81% 80.86% 93.90% 81.97% 94.30% 82.60% 94.28%
2 83.36% 94.43% 81.39% 93.78% 80.61% 93.74% 80.54% 93.84% 81.55% 94.18% 82.08% 94.12%
3 82.84% 94.26% 80.68% 93.66% 79.98% 93.51% 80.24% 93.77% 81.14% 94.09% 81.62% 93.97%
4 82.46% 94.12% 80.16% 93.50% 79.84% 93.46% 80.10% 93.73% 80.85% 93.98% 81.15% 93.84%
5 81.74% 93.87% 79.26% 93.26% 79.10% 93.27% 79.77% 93.61% 80.39% 93.82% 80.56% 93.62%
6 81.13% 93.70% 78.55% 92.99% 78.48% 93.15% 79.53% 93.54% 79.88% 93.67% 79.94% 93.42%
7 80.65% 93.48% 77.85% 92.80% 77.88% 93.00% 79.31% 93.49% 79.55% 93.57% 79.46% 93.32%
8 79.93% 93.21% 77.07% 92.56% 77.26% 92.91% 79.06% 93.42% 79.09% 93.42% 78.73% 93.08%
9 79.37% 93.00% 76.32% 92.37% 77.14% 92.63% 78.79% 93.35% 78.66% 93.31% 78.18% 92.92%

10 78.90% 92.87% 75.71% 92.13% 76.80% 92.49% 78.63% 93.34% 78.35% 93.19% 77.66% 92.74%
11 78.25% 92.74% 75.00% 92.01% 76.53% 92.23% 78.63% 93.34% 77.90% 93.02% 77.01% 92.53%
12 77.85% 92.65% 74.42% 91.84% 76.26% 92.11% 78.58% 93.30% 77.56% 92.89% 76.45% 92.39%
13 77.50% 92.62% 74.10% 91.72% 76.24% 92.02% 78.56% 93.31% 77.31% 92.78% 76.03% 92.26%
14 77.03% 92.57% 73.40% 91.65% 75.72% 91.83% 78.49% 93.30% 76.84% 92.69% 75.48% 92.08%
15 76.70% 92.46% 72.99% 91.68% 75.76% 91.64% 78.43% 93.30% 76.57% 92.57% 74.96% 91.95%
16 76.53% 92.45% 72.49% 91.67% 74.99% 91.42% 78.37% 93.29% 76.23% 92.50% 74.46% 91.83%
17 76.22% 92.48% 72.01% 91.68% 74.41% 91.15% 78.33% 93.32% 75.90% 92.37% 73.95% 91.70%
18 76.07% 92.51% 71.65% 91.58% 73.54% 91.01% 78.30% 93.30% 75.70% 92.32% 73.45% 91.56%
19 75.91% 92.53% 71.35% 91.58% 73.01% 90.79% 78.26% 93.33% 75.47% 92.26% 73.25% 91.50%
20 75.93% 92.44% 71.14% 91.56% 72.37% 90.73% 78.20% 93.34% 75.13% 92.17% 72.79% 91.39%
21 75.82% 92.45% 70.91% 91.55% 72.01% 90.67% 78.21% 93.34% 74.98% 92.09% 72.46% 91.35%
22 75.90% 92.51% 70.66% 91.54% 71.29% 90.86% 78.20% 93.34% 74.78% 92.04% 72.28% 91.32%
23 75.86% 92.42% 70.65% 91.50% 71.13% 90.73% 78.19% 93.34% 74.62% 92.04% 71.92% 91.28%
24 75.98% 92.50% 70.56% 91.50% 70.97% 90.86% 78.19% 93.37% 74.46% 92.01% 71.69% 91.28%
25 76.16% 92.46% 70.40% 91.43% 70.71% 90.93% 78.21% 93.39% 74.36% 91.97% 71.55% 91.27%
26 76.28% 92.52% 70.36% 91.45% 70.36% 90.98% 78.28% 93.41% 74.17% 92.00% 71.35% 91.27%
27 76.24% 92.59% 70.29% 91.42% 70.42% 90.88% 78.23% 93.43% 74.11% 91.98% 71.32% 91.28%
28 76.30% 92.55% 70.30% 91.47% 70.40% 90.81% 78.32% 93.44% 74.05% 92.00% 71.16% 91.27%
29 76.45% 92.50% 70.40% 91.49% 70.38% 91.05% 78.37% 93.44% 73.98% 92.07% 71.26% 91.32%
30 76.67% 92.50% 70.46% 91.44% 70.59% 90.97% 78.37% 93.45% 73.99% 92.13% 71.27% 91.32%
31 76.64% 92.66% 70.48% 91.53% 70.84% 91.06% 78.43% 93.47% 73.91% 92.13% 71.37% 91.34%
32 76.84% 92.67% 70.35% 91.50% 71.22% 90.87% 78.51% 93.50% 73.92% 92.17% 71.47% 91.37%
33 76.99% 92.71% 70.81% 91.42% 71.85% 90.84% 78.57% 93.49% 73.94% 92.18% 71.51% 91.37%
34 77.03% 92.77% 70.55% 91.54% 71.67% 90.90% 78.65% 93.51% 73.96% 92.18% 71.55% 91.43%
35 77.04% 92.72% 70.84% 91.49% 71.96% 91.01% 78.67% 93.50% 74.00% 92.25% 71.57% 91.40%
36 77.05% 92.77% 70.77% 91.57% 72.11% 91.12% 78.69% 93.51% 73.92% 92.22% 71.57% 91.43%
37 77.09% 92.75% 70.80% 91.50% 71.99% 90.94% 78.70% 93.50% 74.03% 92.23% 71.65% 91.49%
38 77.03% 92.74% 70.82% 91.49% 72.05% 90.88% 78.70% 93.51% 73.98% 92.22% 71.58% 91.52%
39 76.98% 92.74% 70.66% 91.60% 72.04% 91.05% 78.67% 93.50% 74.06% 92.22% 71.61% 91.46%
40 77.18% 92.76% 70.71% 91.42% 72.12% 91.00% 78.64% 93.49% 74.05% 92.22% 71.65% 91.46%
41 77.03% 92.71% 70.79% 91.50% 72.12% 91.02% 78.62% 93.49% 74.09% 92.18% 71.60% 91.45%
42 77.04% 92.74% 70.91% 91.60% 72.44% 91.00% 78.54% 93.50% 74.14% 92.15% 71.59% 91.48%
43 77.11% 92.67% 70.85% 91.55% 72.27% 90.91% 78.54% 93.50% 74.11% 92.20% 71.72% 91.49%
44 77.13% 92.73% 70.75% 91.67% 72.35% 91.04% 78.48% 93.49% 74.02% 92.21% 71.64% 91.50%
45 76.87% 92.72% 70.95% 91.60% 72.30% 91.09% 78.46% 93.52% 74.05% 92.19% 71.69% 91.48%
46 76.97% 92.76% 70.77% 91.61% 72.31% 91.19% 78.43% 93.50% 74.08% 92.18% 71.65% 91.52%
47 76.87% 92.69% 70.69% 91.63% 72.26% 91.13% 78.40% 93.49% 74.17% 92.20% 71.51% 91.45%
48 76.96% 92.72% 70.90% 91.59% 72.28% 91.03% 78.29% 93.46% 74.08% 92.19% 71.58% 91.47%
49 77.06% 92.72% 70.81% 91.64% 72.25% 91.12% 78.29% 93.49% 74.10% 92.20% 71.61% 91.50%
50 76.94% 92.69% 70.76% 91.60% 72.35% 91.01% 78.35% 93.48% 74.13% 92.19% 71.59% 91.47%
51 77.04% 92.84% 71.40% 91.78% 72.71% 91.23% 78.39% 93.47% 74.23% 92.22% 71.70% 91.49%
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QCIF@ jm16.1[2] QPI:28 GOP: IBPBP… BR: 240 kbit/s 

 
Figure 84. Hit rate of prediction process for various QPB,P (QCIF) 

CIF@jm16.1[2] QPI:28 GOP: IBPBP…BR: 960 kbit/s 

 

Figure 85. Hit rate of prediction process for various QPB,P (CIF) 
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Table 34 Hit rate of prediction process for various QPB,P  
 QCIF CIF 

Seq. coastguard foreman akiyo sample_int stefan paris 
QPB,P MPS  Hit MPS  Hit MPS  Hit MPS  Hit MPS  Hit MPS  Hit 

0 81.26% 93.39% 74.92% 91.68% 75.21% 92.20% 83.86% 94.02% 82.13% 93.48% 76.96% 92.68%
1 80.72% 93.22% 74.70% 91.85% 75.08% 92.00% 83.40% 93.86% 81.65% 93.28% 77.06% 92.64%
2 79.76% 92.88% 73.91% 91.97% 74.75% 91.88% 82.45% 93.65% 80.81% 92.98% 76.65% 92.56%
3 78.93% 92.46% 72.78% 91.94% 73.81% 91.85% 81.75% 93.49% 79.64% 92.71% 75.62% 92.53%
4 78.27% 92.30% 73.13% 91.96% 74.10% 91.94% 81.28% 93.33% 79.21% 92.51% 75.89% 92.49%
5 77.57% 92.00% 72.74% 91.96% 73.68% 91.99% 80.53% 93.16% 78.18% 92.30% 75.47% 92.38%
6 76.60% 91.82% 72.06% 92.03% 73.38% 91.99% 79.86% 92.99% 77.32% 92.05% 74.93% 92.25%
7 75.96% 91.79% 71.65% 92.07% 73.31% 92.01% 79.26% 92.91% 76.72% 91.98% 74.61% 92.17%
8 75.00% 91.70% 71.90% 92.13% 73.47% 92.04% 78.68% 92.73% 75.89% 91.88% 75.07% 92.06%
9 74.30% 91.75% 71.69% 92.11% 73.26% 92.10% 78.38% 92.66% 75.32% 91.82% 74.80% 92.00%

10 73.95% 91.82% 72.08% 92.13% 73.48% 92.25% 77.90% 92.59% 74.87% 91.90% 74.99% 92.10%
11 73.56% 91.94% 72.47% 92.07% 72.93% 92.16% 77.46% 92.52% 74.27% 91.97% 74.61% 92.10%
12 73.23% 91.99% 72.90% 91.90% 72.21% 91.95% 77.12% 92.47% 73.68% 92.02% 74.04% 91.97%
13 73.15% 92.12% 73.10% 91.84% 71.60% 91.79% 76.87% 92.49% 73.34% 92.11% 73.63% 91.91%
14 73.30% 92.26% 73.58% 91.85% 71.15% 91.82% 76.61% 92.53% 73.14% 92.17% 73.14% 91.97%
15 73.11% 92.29% 73.27% 91.62% 70.94% 91.78% 76.45% 92.55% 72.70% 92.19% 72.67% 91.94%
16 73.40% 92.28% 73.41% 91.53% 70.96% 91.75% 76.30% 92.59% 72.74% 92.18% 72.27% 91.92%
17 73.43% 92.20% 72.95% 91.27% 71.04% 91.67% 76.21% 92.63% 72.59% 92.17% 71.52% 91.93%
18 73.72% 92.17% 72.73% 91.03% 71.22% 91.55% 76.13% 92.67% 72.54% 92.13% 71.06% 91.89%
19 74.05% 92.19% 72.69% 90.95% 71.49% 91.51% 76.08% 92.74% 72.59% 92.17% 71.04% 91.93%
20 74.47% 92.24% 72.30% 90.98% 71.72% 91.31% 76.20% 92.83% 72.97% 92.21% 70.72% 91.92%
21 74.65% 92.21% 72.01% 90.86% 71.84% 91.02% 76.23% 92.84% 72.75% 92.19% 70.63% 91.84%
22 75.10% 92.35% 71.75% 90.85% 71.83% 90.90% 76.40% 92.91% 73.08% 92.27% 70.69% 91.77%
23 75.37% 92.31% 71.13% 90.86% 71.69% 90.81% 76.60% 92.99% 73.21% 92.29% 70.63% 91.66%
24 75.64% 92.37% 71.07% 91.01% 71.67% 90.78% 76.82% 93.06% 73.41% 92.25% 70.83% 91.61%
25 76.09% 92.42% 70.87% 91.18% 71.22% 90.76% 77.04% 93.10% 73.78% 92.21% 70.91% 91.57%
26 76.13% 92.41% 70.41% 91.32% 70.87% 90.81% 77.56% 93.27% 74.02% 92.08% 71.03% 91.42%
27 76.55% 92.51% 70.64% 91.38% 70.41% 90.93% 77.79% 93.32% 74.06% 92.00% 71.08% 91.30%
28 76.30% 92.55% 70.30% 91.47% 70.40% 90.81% 78.32% 93.44% 74.05% 92.00% 71.16% 91.27%
29 76.40% 92.63% 70.39% 91.60% 70.04% 91.04% 78.80% 93.56% 73.82% 91.96% 71.19% 91.23%
30 76.52% 92.77% 70.63% 91.68% 69.83% 91.22% 79.21% 93.67% 73.43% 91.94% 71.24% 91.16%
31 76.65% 92.83% 71.07% 91.79% 69.59% 91.15% 79.53% 93.74% 73.39% 91.94% 71.15% 91.21%
32 76.04% 92.85% 71.43% 91.86% 69.55% 91.35% 80.26% 93.92% 73.02% 91.99% 71.13% 91.23%
33 76.43% 93.02% 71.79% 91.84% 69.83% 91.44% 80.58% 94.02% 73.18% 92.07% 71.16% 91.30%
34 76.05% 92.96% 72.27% 91.93% 69.82% 91.38% 80.99% 94.11% 73.27% 92.08% 71.23% 91.38%
35 75.88% 92.95% 72.75% 91.96% 70.07% 91.52% 81.52% 94.27% 73.48% 92.13% 71.39% 91.50%
36 76.03% 92.91% 73.02% 92.01% 70.29% 91.58% 81.97% 94.41% 73.86% 92.17% 71.50% 91.59%
37 76.09% 92.76% 73.22% 92.10% 70.30% 91.62% 81.97% 94.44% 74.21% 92.17% 71.71% 91.58%
38 76.06% 92.68% 73.51% 92.14% 70.49% 91.61% 82.32% 94.55% 74.55% 92.13% 71.96% 91.65%
39 76.19% 92.70% 73.67% 92.16% 70.65% 91.72% 82.24% 94.58% 74.72% 92.12% 72.12% 91.65%
40 76.09% 92.66% 73.64% 92.11% 70.78% 91.72% 82.45% 94.68% 75.05% 92.10% 72.42% 91.66%
41 76.21% 92.71% 73.74% 92.19% 70.78% 91.71% 82.30% 94.67% 75.11% 92.11% 72.63% 91.70%
42 76.27% 92.84% 73.72% 92.26% 70.91% 91.70% 82.47% 94.74% 75.34% 92.08% 72.74% 91.67%
43 76.21% 92.79% 73.78% 92.38% 70.96% 91.70% 82.06% 94.62% 75.43% 92.06% 72.86% 91.70%
44 76.36% 92.89% 73.71% 92.47% 70.96% 91.70% 82.01% 94.73% 75.50% 92.06% 72.91% 91.73%
45 76.40% 92.88% 73.76% 92.42% 70.97% 91.71% 81.83% 94.69% 75.69% 92.09% 72.97% 91.76%
46 76.43% 92.88% 73.70% 92.43% 71.05% 91.71% 80.91% 94.47% 75.72% 92.09% 72.94% 91.74%
47 76.41% 92.86% 73.68% 92.40% 71.13% 91.60% 80.61% 94.46% 75.77% 92.10% 72.97% 91.75%
48 76.36% 92.82% 73.82% 92.37% 71.12% 91.60% 80.14% 94.34% 75.90% 92.12% 72.95% 91.71%
49 76.45% 92.83% 73.80% 92.38% 71.13% 91.62% 79.79% 94.23% 75.86% 92.06% 72.93% 91.70%
50 76.38% 92.78% 73.90% 92.40% 71.13% 91.62% 79.37% 94.14% 75.86% 92.06% 72.97% 91.69%
51 76.30% 93.39% 73.86% 92.25% 71.14% 91.63% 79.43% 94.27% 75.92% 92.05% 72.95% 91.69%
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Appendix C. Simulation Result of Memory System 

C.1 All Sequence of QCIF & CIF 

QCIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 

Figure 86. Max. B.W. requirement of memory system for QCIF sequences (1/4) 
Table 35 Max. B.W. requirement of memory system for QCIF sequences (1/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2)

fMVd 
(MVd>2)

BandWidth@30fps Reduction 
Rate Traditional Optimal 

akiyo 34412 31573 2839 34412.00 8301.90 75.87% 
carphone 120386 94464 25922 94543.98 29087.59 69.23% 

claire 41964 37416 4548 25484.21 6477.81 74.58% 
coastguard 104128 87067 17061 104128.00 29356.10 71.81% 
container 26504 24941 1563 26504.00 6082.30 77.05% 
foreman 128272 100634 27638 96204.00 29605.05 69.23% 
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QCIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 

Figure 87. Max. B.W. requirement of memory system for QCIF sequences (2/4) 
 

Table 36 Max. B.W. requirement of memory system for QCIF sequences (2/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2)

fMVd 
(MVd>2)

BandWidth@30fps Reduction 
Rate Traditional Optimal 

glasgow 43798 37399 43798 131394.00 35877.30 72.69% 
grandma 78518 73931 78518 27075.17 6205.90 77.08% 

hall_monitor 29950 25921 29950 29950.00 8004.50 73.27% 
miss_am 12960 11559 12960 25920.00 6585.00 74.59% 
mobile 142026 123550 142026 142026.00 37643.20 73.50% 

mother_daughter 152616 135151 152616 47642.87 12254.64 74.28% 
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QCIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 
Figure 88. Max. B.W. requirement of memory system for QCIF sequences (3/4) 

 

Table 37 Max. B.W. requirement of memory system for QCIF sequences (3/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2) 

fMVd 
(MVd>2) 

BandWidth@30fps Reduction 
Rate Traditional Optimal 

news 49112 39552 9560 49112.00 14602.40 70.27% 
paris 104338 89703 14635 78253.50 21138.83 72.99% 

salesman 59302 51492 7810 39622.72 10533.67 73.42% 
silent 53950 41967 11983 53950.00 16781.50 68.89% 
singer 46724 38947 7777 56068.80 15879.96 71.68% 
stefan 152028 122068 29960 152028.00 45385.60 70.15% 
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QCIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 
Figure 89. Max. B.W. requirement of memory system for QCIF sequences (4/4) 

 

Table 38 Max. B.W. requirement of memory system for QCIF sequences (4/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2) 

fMVd 
(MVd>2) 

BandWidth@30fps Reduction 
Rate Traditional Optimal 

suzie 27512 21666 5846 55024.00 16850.80 69.38% 
table 68420 50275 18145 68420.00 22756.50 66.74% 
trevor 36616 29615 7001 73232.00 18847.00 74.26% 
AVG 72073.14 60423.38 11649.76 67190.25 18964.65 72.43% 
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CIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 90. Max. B.W. requirement of memory system for CIF sequences (1/4) 

 

Table 39 Max. B.W. requirement of memory system for CIF sequences (1/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2)

fMVd 
(MVd>2)

BandWidth@30fps Reduction 
Rate Traditional Optimal 

akiyo 66976 59586 7390 66976.00 17090.20 74.48% 
bus 230424 185152 45272 460848.00 137441.60 70.18% 

canoa 271408 188494 82914 370101.82 130552.64 64.73% 
caphone 360848 257972 102876 270636.00 92705.70 65.75% 

coastguard 308228 253134 55094 308228.00 89192.60 71.06% 
container 105124 95822 9302 105124.00 25675.80 75.58% 
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CIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 91. Max. B.W. requirement of memory system for CIF sequences (2/4) 

 

Table 40 Max. B.W. requirement of memory system for CIF sequences (2/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2)

fMVd 
(MVd>2)

BandWidth@30fps Reduction 
Rate Traditional Optimal 

flower 511382 452952 58430 613658.40 157789.68 74.29% 
football 305438 191716 113722 352428.46 136094.54 61.38% 
foreman 277770 214119 63651 277770.00 87379.50 68.54% 

hall_monitor 161218 143602 17616 161218.00 41051.60 74.54% 
MadCyclistL 1108682 886449 222233 369560.67 110950.97 69.98% 

mobile_calendar 510730 429057 81673 510730.00 142982.50 72.00% 
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CIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 92. Max. B.W. requirement of memory system for CIF sequences (3/4) 

 

Table 41 Max. B.W. of memory system for CIF sequences (3/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2)

fMVd 
(MVd>2)

BandWidth@30fps Reduction 
Rate Traditional Optimal 

mother_daughter 107398 86117 21281 107398.00 32120.10 70.09% 
news 130074 102363 27711 130074.00 39870.30 69.35% 
paris 647084 533577 113507 182277.18 52442.34 71.23% 

sample_int 206366 129945 76421 281408.18 108386.86 61.48% 
silent 145992 109777 36215 145992.00 47305.90 67.60% 
singer 118798 94153 24645 142557.60 43298.52 69.63% 
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CIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 93. Max. B.W. requirement of memory system for CIF sequences (4/4) 

 

Table 42 Max. B.W. requirement of memory system for CIF sequences (4/4) 

Sequence 
Name 

Total 
MVd 

hMVd 
(MVd<2) 

fMVd 
(MVd>2) 

BandWidth@30fps Reduction 
Rate Traditional Optimal 

stefan 427456 345333 82123 427456.00 126552.70 70.39% 
table 223420 167266 56154 223420.00 72761.00 67.43% 

tempete 447692 383655 64037 516567.69 140257.96 72.85% 
waterfall 234498 216026 18472 270574.62 64771.85 76.06% 

AVG 313955 251194 62761 286136.57 86212.49 69.94% 
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C.2 Optimization for Memory and Bandwidth 

QCIF @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s 

 

Figure 94. Max. B.W. requirement of memory system for SRAM size for QCIF seq. 

 

Table 43 Max. B.W. requirement of memory system for SRAM size for QCIF seq. 

SRAM 
size 

QCIF 
Claire Table Stefan 

Traditional Optimal Traditional Optimal Traditional Optimal 
0 25484.21 6477.81  68420.00 38821.50 152028.00  45385.60 

32 25020.86 6064.68  67176.00 38491.59 149263.85  43166.18 
64 24557.51 5651.55  65932.00 38161.68 146499.71  40946.76 
96 24094.16 5238.42  64688.00 37831.77 143735.56  38727.35 

128 23630.81 4825.29  63444.00 37501.86 140971.42  36507.93 
160 23167.46 4412.15  62200.00 37171.95 138207.27  34288.51 
192 22704.11 3999.02  60956.00 36842.05 135443.13  32069.09 
224 22240.77 3585.89  59712.00 36512.14 132678.98  29849.67 
256 21777.42 3172.76  58468.00 36182.23 129914.84  27630.25 
288 21314.07 2759.62  57224.00 35852.32 127150.69  25410.84 
320 20850.72 2346.49  55980.00 35522.41 124386.55  23191.42 
352 20387.37 1933.36  54736.00 35192.50 121622.40  20972.00 
352 20387.37 1933.36  54736.00 35192.50 121622.40  20972.00 
432 19229.00 1757.60  51626.00 31993.18 114712.04  19065.45 
512 18070.62 1581.84  48516.00 28793.86 107801.67  17158.91 
592 16912.25 1406.08  45406.00 25594.55 100891.31  15252.36 
672 15753.88 1230.32  42296.00 22395.23 93980.95  13345.82 
752 14595.50 1054.56  39186.00 19195.91 87070.58  11439.27 
832 13437.13 878.80  36076.00 15996.59 80160.22  9532.73 
912 12278.76 703.04  32966.00 12797.27 73249.85  7626.18 
992 11120.38 527.28  29856.00 9597.95 66339.49  5719.64 

1072 9962.01 351.52  26746.00 6398.64 59429.13  3813.09 
1152 8803.64 175.76  23636.00 3199.32 52518.76  1906.55 
1232 7645.26 0.00  20526.00 0.00 45608.40  0.00 
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CIF @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s 

 
Figure 95. Max. B.W. requirement of memory system for SRAM size for CIF seq. 

 
 

Table 44 Max. B.W. requirement of memory system for SRAM size for CIF seq. 

SRAM 
size 

CIF 
Container Sample_int Flower 

Traditional Optimal Traditional Optimal Traditional Optimal 
0 105124.00 25675.80  281408.18 144880.50 613658.40  157789.68 

64 103212.65 23933.58  276291.67 142985.76 602500.97  147907.09 
128 101301.31 22191.36  271175.16 141091.03 591343.55  138024.50 
192 99389.96 20449.15  266058.64 139196.29 580186.12  128141.91 
256 97478.62 18706.93  260942.13 137301.56 569028.70  118259.32 
320 95567.27 16964.71  255825.62 135406.82 557871.27  108376.73 
384 93655.93 15222.49  250709.11 133512.09 546713.85  98494.15 
448 91744.58 13480.27  245592.60 131617.35 535556.42  88611.56 
512 89833.24 11738.05  240476.08 129722.62 524399.00  78728.97 
576 87921.89 9995.84  235359.57 127827.88 513241.57  68846.38 
640 86010.55 8253.62  230243.06 125933.14 502084.15  58963.79 
704 84099.20 6511.40  225126.55 124038.41 490926.72  49081.20 
864 79320.84 5919.45  212335.26 112762.19 463033.16  44619.27 

1024 74542.47 5327.51  199543.98 101485.97 435139.59  40157.35 
1184 69764.11 4735.56  186752.70 90209.75 407246.03  35695.42 
1344 64985.75 4143.62  173961.42 78933.53 379352.47  31233.49 
1504 60207.38 3551.67  161170.14 67657.31 351458.90  26771.56 
1664 55429.02 2959.73  148378.86 56381.10 323565.34  22309.64 
1824 50650.65 2367.78  135587.58 45104.88 295671.77  17847.71 
1984 45872.29 1775.84  122796.30 33828.66 267778.21  13385.78 
2144 41093.93 1183.89  110005.02 22552.44 239884.65  8923.85 
2304 36315.56 591.95  97213.74 11276.22 211991.08  4461.93 
2464 31537.20 0.00  84422.45 0.00 184097.52  0.00 
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Appendix D. Hardware Verification 
Table 45. Simulation result for I slice 

Sequence 

Name 

I Slice 
Total 

Bin 

Total 

Cycle 

Terminal 

Cycle 

Bypass 

Cycle 

Regular Cycle MPS 

bin 

MPS 

rate 
Hit bin Hit rate BPC 

Normal Idle Stall 

Total 221087 237346 495 35149 185443 737 15522 131466 70.89% 169922 91.63% 0.931497

Foreman 29218 31513 99 4398 24721 205 2090 17582 71.12% 22632 91.55% 0.927173

Akiyo 24816 26876 99 3755 20962 148 1912 14292 68.18% 19050 90.88% 0.923352

Carphone 26172 28204 99 3829 22244 175 1857 15349 69.00% 20387 91.65% 0.927953

Stefan 58967 62996 99 9550 49318 100 3929 35410 71.80% 45389 92.03% 0.936044

Mobile 81914 87757 99 13617 68198 109 5734 48833 71.60% 62464 91.59% 0.933418

Table 46. Simulation result for P slice 

Sequence 

Name 

P Slice 
Total 

Bin 

Total 

Cycle 

Terminal 

Cycle 

Bypass 

Cycle 

Regular Cycle MPS 

bin 

MPS 

rate 
Hit bin Hit rate BPC 

Normal Idle Stall 

Total 43950 47462 495 6435 37020 171 3243 27175 73.41% 33778 91.24% 0.926004

Foreman 4981 5365 99 801 4081 27 357 2778 68.07% 3725 91.28% 0.928425

Akiyo 270 371 99 6 165 97 5 141 85.45% 160 96.97% 0.727763

Carphone 5624 6068 99 903 4622 23 421 3304 71.48% 4201 90.89% 0.926829

Stefan 17650 18918 99 2802 14749 17 1251 10888 73.82% 13498 91.52% 0.932974

Mobile 15425 16740 99 1923 13403 7 1209 10064 75.09% 12194 90.98% 0.921446

Table 47. Simulation result for B slice 

Sequence 

Name 

B Slice 
Total 

Bin 

Total 

Cycle 

Terminal 

Cycle 

Bypass 

Cycle 

Regular Cycle MPS 

bin 

MPS 

 rate 
Hit bin Hit rate BPC 

Normal Idle Stall

Total 8184 9112 495 952 6737 381 548 4787 71.06% 6189 91.87% 0.898156

Foreman 1403 1554 99 135 1169 64 88 832 71.17% 1081 92.47% 0.902831

Akiyo 198 299 99 0 99 101 0 99 100.00% 99 100.00% 0.662207

Carphone 1881 2061 99 243 1539 67 113 1116 72.51% 1426 92.66% 0.912664

Stefan 3550 3912 99 444 3007 69 293 2118 70.44% 2714 90.26% 0.907464

Mobile 1152 1286 99 130 923 80 54 622 67.39% 869 94.15% 0.895801

Table 48. Summary of I,P,B slice 
Sequence 

Name 

Total 

Bin 

Total 

Cycle 

Terminal 

Cycle 

Bypass 

Cycle 

Regular Cycle MPS 

bin 

MPS 

 rate 
Hit bin Hit rate BPC 

Normal Idle Stall

Total 273221 293920 1485 42536 229200 1289 19313 163428 71.30% 209889 91.57% 0.929576



 

108 
 

Biography 

 

姓名: 郭明諭 

戶籍地: 台灣 新北市 

出生日期: 1985.02.05 

 

學歷: 2003.09 ~ 2008.06 元智大學 電機工程學系 學士 

2008.09 ~ 2010.12 國立交通大學 電子工程研究所  

系統組 碩士班 

 

發表論文: 

 Ming-Yu Ku, Yao Li, Chen-Yi Lee, “An Area-efficiently High-accuracy 
Prediction-based CABAC Decoder for H.264AVC,” IEEE International 
Symposium on Circuit and System (ISCAS’11), May 2011. 

 

 

 

 

 

  


	Chapter 1. Introduction
	1.1 Overview of CABAC Decoding flow
	1.2 Motivation and Design Challenges
	1.3 Organization of Thesis

	Chapter 2. Related Works
	2.1 Traditional CABAC Decoding Flow
	2.1.1 Arithmetic Decoding Flow
	2.1.1.1 Regular decoding process
	2.1.1.2 Bypass decoding process
	2.1.1.3 Terminal decoding process
	2.1.2 De-binarization Decoding Flow
	2.1.2.1 Unary (U) binarization Process
	2.1.2.2 Truncated Unary (TU) binarization Process
	2.1.2.3 Fixed-length (FL) Binarization Process
	2.1.2.4 k-th order Exp-Golomb (UEGk) binarization process
	2.1.2.5 Look up table (LUT) Binarization Process
	2.1.3 CtxIdx Model Index Calculating Flow
	2.1.3.1 ctxBlockCat and ctxIdxBlockOffset
	2.1.3.2 Calculate for ctxIdxOffset
	2.1.3.3 Calculate for ctxIdxInc

	2.2 On-the-fly CABAC Decoding Flow
	2.2.1 Pipeline-based CABAC Decoding flow
	2.2.1.1 Analysis and discussion
	2.2.1.2 Example for pipeline structure 
	2.2.2 Parallel-based CABAC Decoding flow
	2.2.2.1 Analysis and discussion
	2.2.2.2 Example for parallel structure
	2.2.3 Prediction-based CABAC Decoding flow
	2.2.3.1 Analysis and discussion
	2.2.3.2 Example for prediction structure

	2.3 Summary

	Chapter 3. Proposed Algorithm
	3.1 Prediction Process
	3.1.1 Raised Hit Rate
	3.1.2 Reduced Stall Times
	3.1.3 Solved Data Hazard Problem
	3.1.3.1 Forward path for (1) un-decoded neighbor SE
	3.1.3.2 Data reuse for (2) un-updated pState

	3.2 Memory System
	3.2.1 Reduced Memory Bandwidth Occupation
	3.2.2 Raised Buffer Efficiency
	3.2.3 Solved Syntax Element Switching Overhead

	3.3 Summary

	Chapter 4. Proposed Architecture
	4.1 Architecture of Prediction Process
	4.1.1 SE-parsed Process
	4.1.2 Bin-decoded Process
	4.1.2.1 Regular process
	4.1.2.2 Bypass/Terminal process
	4.1.2.3 Context model data reused
	4.1.2.4 Renormalization process and bit buffer
	4.1.3 CtxIdx-calculated Process

	4.2 Architecture of Memory System
	4.2.1 Concentrated Buffer
	4.2.1.1 Various block size
	4.2.1.2 MBAFF mode
	4.2.2 CtxIdxInc pre-Calculate Stage
	4.2.3 Transfer Unit

	4.3 Summary

	Chapter 5. Simulation Results
	5.1 Prediction Scheme Verification
	5.2 Memory System Verification
	5.3 Hardware Architecture Verification

	Chapter 6. Conclusion and Future Works
	6.1 Conclusion
	6.2 Future Works

	References
	Appendix A. System Specification
	Appendix B. Simulation Result of Prediction Process
	B.1 All Sequences of QCIF & CIF
	B.2 All Various QPI,B,P  of QCIF & CIF
	Appendix C. Simulation Result of Memory System
	C.1 All Sequence of QCIF & CIF
	C.2 Optimization for Memory and Bandwidth
	Appendix D. Hardware Verification
	Biography

