
I

Contents
Chapter 1. Introduction .. 1

1.1 Overview of CABAC Decoding flow .. 3

1.2 Motivation and Design Challenges .. 7

1.3 Organization of Thesis ... 10

Chapter 2. Related Works ... 11

2.1 Traditional CABAC Decoding Flow .. 12

2.1.1 Arithmetic Decoding Flow ... 13

2.1.2 De-binarization Decoding Flow ... 15

2.1.3 CtxIdx Model Index Calculating Flow ... 18

2.2 On-the-fly CABAC Decoding Flow ... 21

2.2.1 Pipeline-based CABAC Decoding flow ... 22

2.2.2 Parallel-based CABAC Decoding flow .. 24

2.2.3 Prediction-based CABAC Decoding flow ... 26

2.3 Summary .. 28

Chapter 3. Proposed Algorithm ... 31

3.1 Prediction Process .. 32

3.1.1 Raised Hit Rate ... 33

3.1.2 Reduced Stall Times ... 36

3.1.3 Solved Data Hazard Problem ... 39

3.2 Memory System ... 41

3.2.1 Reduced Memory Bandwidth Occupation ... 42

3.2.2 Raised Buffer Efficiency .. 43

3.2.3 Solved Syntax Element Switching Overhead ... 48

3.3 Summary .. 50

II

Chapter 4. Proposed Architecture ... 51

4.1 Architecture of Prediction Process ... 52

4.1.1 SE-parsed Process .. 53

4.1.2 Bin-decoded Process .. 54

4.1.3 CtxIdx-calculated Process .. 58

4.2 Architecture of Memory System .. 59

4.2.1 Concentrated Buffer ... 60

4.2.2 CtxIdxInc pre-Calculate Stage ... 63

4.2.3 Transfer Unit .. 64

4.3 Summary .. 65

Chapter 5. Simulation Results .. 71

5.1 Prediction Scheme Verification .. 71

5.2 Memory System Verification ... 74

5.3 Hardware Architecture Verification ... 77

Chapter 6. Conclusion and Future Works .. 78

6.1 Conclusion .. 78

6.2 Future Works .. 79

References ... 81

Appendix A. System Specification ... 84

Appendix B. Simulation Result of Prediction Process ... 85

Appendix C. Simulation Result of Memory System .. 97

Appendix D. Hardware Verification ... 107

Biography .. 108

III

List of Figures
Figure 1. Block Diagram of H.264/AVC Decoder ... 1

Figure 2. Bit-stream structure of H.264/AVC ... 2

Figure 3. Block Diagram of CABAC decoding flow .. 3

Figure 4. The flow chart of the CABAC decoding [1] ... 4

Figure 5. The flow chart of the syntax elements switching ... 6

Figure 6. Block Diagram of CABAC Decoder ... 7

Figure 7. (a) Flexible code length (b) SE Branch Selection (c) Data update frequently 7

Figure 8. Syntax Element Switching Overhead ... 8

Figure 9. CABAC decoding algorithm ... 11

Figure 10. Traditional CABAC decoding flow [9] ... 12

Figure 11. Flowchart of the (a) regular decoding and (b) renormalization process [1] ... 14

Figure 12. Flowchart of (a) bypass and (b) terminal decoding process [1] 15

Figure 13. Implementation strategies of previous works .. 21

Figure 14. Pipeline Stages of conventional CABAC Decoder .. 22

Figure 15. Pipeline architecture [14] .. 23

Figure 16. (a) Structure Hazard of Multi-bin (b) General Solutions of Multi-bin 24

Figure 17. Parallel architecture [7] ... 25

Figure 18. Prediction architecture [6] .. 27

Figure 19. (a) Single-bin engine (b)multi-bin engine.. 28

Figure 20. Pipeline Stages of Proposed CABAC Decoder .. 31

Figure 21. Flowchart of Bin Predict Process ... 32

Figure 22. (a) Before decoded bin (regular process) ... 34

(b) After decoded bin (regular process) (c) Before decoded bin (prediction process) 34

Figure 23. Status of difference ... 35

Figure 24. Status of pState ... 35

Figure 25. Different kinds of finished-bin Location .. 36

IV

Figure 26. Relationship between value of SE and SE branch .. 38

Figure 27. (a)Coded block pattern (b)Forwarding path for un-decoded neighbor SE 39

Figure 28. (a) Regular path (b) data reuse path .. 40

Figure 29. Stored in (a) external memory (b) internal memory .. 42

Figure 30. (a) ctxIdxInc control condition for mvd ... 43

(b) proposed mvd reduction scheme ... 43

Figure 31. (a) Both in mbAddr (b) left in CurrMbAddr, top in mbAddr 43

(c) both in CurrMbAddr .. 43

Figure 32. At the beginning of top and left buffer ... 44

Figure 33. (a) In the end of top and left buffer (b) After decoding MB process 44

Figure 34. Schedule of concentrated buffer ... 47

Figure 35. Alternate order for all neighbor information of MB .. 49

Figure 36. Proposed pipeline stage process .. 50

Figure 37. Block Diagram of proposed CABAC decoder ... 51

Figure 38. Traditional Arithmetic Decoder flow ... 52

Figure 39. Traditional syntax element parser .. 53

Figure 40. Controlled SE parser ... 53

Figure 41. Data path of bin-decoded process ... 54

Figure 42. Regular process .. 55

Figure 44. (a) Data reuse buffer. (b) The structure of bit buffer [9] 57

Figure 45. Conventional ctxIdx-calculated process ... 58

Figure 46. Proposed ctxIdx-calculated process ... 58

Figure 47. Memory hierarchy for neighbor information ... 59

Figure 48. Combined current and neighbor MB ... 60

Figure 49. (a) macroblock partition (b) sub-macroblock partition 61

Figure 50. Example for block extension ... 61

Figure 51. Without MBAFF mode .. 62

Figure 52. With MBAFF mode ... 62

V

Figure 53. Incensement of third stage .. 63

Figure 54. Traditional neighbor information calculating flow .. 63

Figure 55. Proposed neighbor information calculating flow .. 63

Figure 56. Transfer unit ... 64

Figure 57. Example for transfer unit .. 64

Figure 58. Integration for first pipeline stage .. 65

Figure 59. Integration for memory system .. 66

Figure 60. Integration of CABAC decoding core .. 67

Figure 61. Initialization process [9] .. 68

Figure 62. FSM for whole CABAC integration ... 69

Figure 63. State 1 – Initialization Process .. 70

Figure 64. State 2 – Decode Process .. 70

Figure 65. Hit rate of prediction process for HD sequence .. 71

Figure 66. Hit rate of prediction process for variable QPI ... 72

Figure 67. Hit rate of prediction process for variable QPB,P .. 73

Figure 68. Max. B.W. of memory system for HD sequences .. 74

Figure 69. Max. B.W. of memory system for SRAM size for HD 720p sequences 75

Figure 70. Max. B.W. of MEM. system for SRAM size for HD 1080p sequences 76

Figure 71. Comparison of the proposed design and previous works 78

Figure 72. Combined prediction-based and parallel-based CABAC decoder 80

Figure 73. Block Diagram of Si2 H.264/SVC Decoder .. 84

Figure 74. Hit rate of prediction process for QCIF sequences (1/4) 85

Figure 75. Hit rate of prediction process for QCIF sequences (2/4) 86

Figure 76. Hit rate of prediction process for QCIF sequences (3/4) 87

Figure 77. Hit rate of prediction process for QCIF sequences (4/4) 88

Figure 78. Hit rate of prediction process for CIF sequences (1/4) 89

Figure 79. Hit rate of prediction process for CIF sequences (2/4) 90

Figure 80. Hit rate of prediction process for CIF sequences (3/4) 91

VI

Figure 81. Hit rate of prediction process for CIF sequences (4/4) 92

Figure 82. Hit rate of prediction process for various QPI (QCIF) 93

Figure 83. Hit rate of prediction process for various QPI (CIF) .. 93

Figure 84. Hit rate of prediction process for various QPB,P (QCIF) 95

Figure 85. Hit rate of prediction process for various QPB,P (CIF) 95

Figure 86. Max. B.W. requirement of memory system for QCIF sequences (1/4) 97

Figure 87. Max. B.W. requirement of memory system for QCIF sequences (2/4) 98

Figure 88. Max. B.W. requirement of memory system for QCIF sequences (3/4) 99

Figure 89. Max. B.W. requirement of memory system for QCIF sequences (4/4) 100

Figure 90. Max. B.W. requirement of memory system for CIF sequences (1/4) 101

Figure 91. Max. B.W. requirement of memory system for CIF sequences (2/4) 102

Figure 92. Max. B.W. requirement of memory system for CIF sequences (3/4) 103

Figure 93. Max. B.W. requirement of memory system for CIF sequences (4/4) 104

Figure 94. Max. B.W. requirement of memory system for SRAM size for QCIF seq. .. 105

Figure 95. Max. B.W. requirement of memory system for SRAM size for CIF seq. 106

VII

List of Tables
Table 1 Design constraints for throughput from standard .. 9

Table 2 Require for including table .. 9

Table 3 Example for U ... 16

Table 4 Example for TU with cMax = 3 ... 16

Table 5 Example for FL with cMax = 7 ... 16

Table 6 Example for UEGk with k = 0 ... 17

Table 7 Example for mb_type (P, SP slice) [1] .. 17

Table 8 Specification of ctxBlockCat for the different blocks [1] 18

Table 9 Assignment of ctxIdxBlockCatOffset to ctxBlockCat for SEs [1] 18

Table 10 Syntax elements and associated types of ctxIdxOffset [1] 19

Table 11 Assignment of ctxIdxInc to binIdx for syntax elements [1] 20

Table 12 Total request syntax element of macroblock ... 49

Table 13 The stored status of each stage .. 54

Table 14. Without MBAFF mode ... 62

Table 15. With MBAFF mode ... 62

Table 16 Hit rate of prediction process for HD sequence ... 71

Table 17 Hit rate of prediction process for variable QPI.. 72

Table 18 Hit rate of prediction process for variable QPB,P .. 73

Table 19 Max. B.W. of memory system for HD sequences ... 74

Table 20 Max. B.W. of memory system for SRAM size for HD 720p sequences 75

Table 21 Max. B.W. of MEM. system for SRAM size for HD 1080p sequences 76

Table 22 Comparison of the proposed design and previous works 77

Table 23 The specification [1] for QFHD and Ultra-HD at 30 fps 79

Table 24. Our H.264/SVC system decoder specification .. 84

Table 25 Hit rate of prediction process for QCIF sequences (1/4) 85

Table 26 Hit rate of prediction process for QCIF sequences (2/4) 86

VIII

Table 27 Hit rate of prediction process for QCIF sequences (3/4) 87

Table 28 Hit rate of prediction process for QCIF sequences (4/4) 88

Table 29 Hit rate of prediction process for CIF sequences (1/4) .. 89

Table 30 Hit rate of prediction process for CIF sequences (2/4) .. 90

Table 31 Hit rate of prediction process for CIF sequences (3/4) .. 91

Table 32 Hit rate of prediction process for CIF sequences (4/4) .. 92

Table 33 Hit rate of prediction process for various QPI ... 94

Table 34 Hit rate of prediction process for various QPB,P .. 96

Table 35 Max. B.W. requirement of memory system for QCIF sequences (1/4) 97

Table 36 Max. B.W. requirement of memory system for QCIF sequences (2/4) 98

Table 37 Max. B.W. requirement of memory system for QCIF sequences (3/4) 99

Table 38 Max. B.W. requirement of memory system for QCIF sequences (4/4) 100

Table 39 Max. B.W. requirement of memory system for CIF sequences (1/4) 101

Table 40 Max. B.W. requirement of memory system for CIF sequences (2/4) 102

Table 41 Max. B.W. of memory system for CIF sequences (3/4) 103

Table 42 Max. B.W. requirement of memory system for CIF sequences (4/4) 104

Table 43 Max. B.W. requirement of memory system for SRAM size for QCIF seq. 105

Table 44 Max. B.W. requirement of memory system for SRAM size for CIF seq. 106

Table 45. Simulation result for I slice ... 107

Table 46. Simulation result for P slice .. 107

Table 47. Simulation result for B slice .. 107

Table 48. Summary of I,P,B slice .. 107

IX

Abbreviations
CABAC Context-based Adaptive Binary Arithmetic Coding

CAVLC Context-based Adaptive Variable Length Coding

CBR Constant Bit Rate

CPB Coded Picture Buffer

DPB Decoded Picture Buffer

DUT Decoder under test

FIFO First-In, First-Out

HRD Hypothetical Reference Decoder

HSS Hypothetical Stream Scheduler

IDR Instantaneous Decoding Refresh

LSB Least Significant Bit

MB Macroblock

MBAFF Macroblock-Adaptive Frame-Field Coding

MSB Most Significant Bit

NAL Network Abstraction Layer

RBSP Raw Byte Sequence Payload

SEI Supplemental Enhancement Information

SODB String Of Data Bits

SVC Scalable Video Coding

UUID Universal Unique Identifier

VBR Variable Bit Rate

VCL Video Coding Layer

VLC Variable Length Coding

VUI Video Usability Information

1

Chapter 1. Introduction

H.264/AVC [1] has been the state of the art video compression standard of the ITU-T Video

Coding Experts Group and ISO/IEC Moving Picture Experts Group (MPEG) in current video

applications. It promises to outperform the earlier MPEG-4 and H.263 standard, employing many

better innovative technologies such as multiple reference frame, variable block size motion

estimation, in-loop de-blocking filter and context-based adaptive binary arithmetic decoding.

H.264/AVC system can save the bit-rate up to 50% compared to the previous video standard such as

H.263 and MPEG-4 under the same quality. Because of its high quality and compression gain

technology, the more livelihood application products such as digital camera, video telephony and

portable DVD player adopt H.264/AVC as its video standard as well. H.264/AVC contains two

entropy decoders. One is Context-based Adaptive Variable Length Coding (CAVLC), and the other is

Context-based Adaptive Binary Arithmetic Coding (CABAC) [3]. CABAC can achieve 9% to 14%

bit-rate saving in average compared with CAVLC.

Deblocking
Filter

AHB Master/Slave Interface & SVC Arbiter

CAVLD
IQ IT

Motion
Compensation

Intra
Prediction

MC info.

coef.

Intra info.

Residue

Filtered
Pixels

SVC
Bitstream

CABAD
+

Pred.

Pred.

Figure 1. Block Diagram of H.264/AVC Decoder

2

Figure 1 shows the block diagram of H.264/AVC decoder (our system specification shows in

Appendix A). The H.264/AVC has three profiles such as baseline, main and high for supporting

varied video applications. The baseline profile adopts VLD to decode the MB information and the

pixels coefficients which contains the universal variable decoder (UVLD) and the context-based

adaptive variable length decoder (CAVLD). UVLD is one of VLD in baseline profile. It decodes not

only the MB information such as the mb_type, coded_block_pattern, intra_pred_mode, and so on,

but also the MB coefficient such as mvd. Because the residual data decoding occupies over 50% of

the entire execution time, the residual coefficients are computed by the CAVLD architecture of the

more efficiency. When it supports except baseline profile, the decoder has an advance choice except

VLD. CABAD can be used in place of UVLD and CAVLD. Thus, H.264 system just needs CABAD

to decode all MB information and pixel data if entropy decoding flag is assigned to CABAD.

In normal system architecture, the block of syntax parser employs in decoding the bit-stream on

NAL layer, picture layer, and slice layer, given as Figure 2. Syntax element parser is also the top

module to control all sub-system such as CABAD, VLD, intra-prediction, inter-prediction, IDCT, and

so on. Hence, CABAD is the passive unit and is requested by the syntax parser and decodes the

bit-stream of the macro block layer in Figure 2. The bit-stream is also fetched through the syntax

element parser gets from bit-stream SRAM.

Figure 2. Bit-stream structure of H.264/AVC

3

1.1 Overview of CABAC Decoding flow

Figure 3. Block Diagram of CABAC decoding flow

In this Section 1.1, we introduce each building block of CABAC decoder and the execution flow

of the CABAC decoder system. Before introducing the decoder, we have to explain the organization

of bit-stream. In encoder side, all SEs of the H.264/AVC will be transferred into the binary code “bin”

except flag-type SEs by binarization at first. And then, the transferred bin string encodes to the

bit-stream by the binary arithmetic coder currently. So, it consists of two level decoders such as

binary arithmetic decoder (AD), the de-binarization (DB) in decoder side. The binary arithmetic

decoder has three different types such as regular, bypass, and terminal decoding processes. We don’t

show the terminal decoding process in Figure 3, because it is seldom applied in CABAC decoder

system. At the beginning, the entire probabilities of the context model have to be initialized by the

context model initial table when the new slice starts. In Figure 4 it has two decoding flows among the

dotted lines. The first decoding flow is the arithmetic decoder which is the first stage of decoding one

syntax element. It produces the bin value depending on the current range (codlRange) and the current

value (codlOffset). The second decoding flow is the binarization engine. It reads the bin values to

judge if the bin string forms the meaningful data. If not, the binarization engine requests the

arithmetic decoder to decode one bin again and re-judges the bin string until identifying the value of

the current syntax element. If completing the current slice, codlRange is assigned to “51210” and

codlOffset is refilled in 9-bit bit-stream from the H.264/AVC system.

4

Figure 4. The flow chart of the CABAC decoding [1]

2nd level decoding flow

1st level decoding flow

5

On the other hand, we collect all SEs which invoke CABAC decoder and their possible branches

in Figure 5. Typically, we have four kinds of SEs including slice data, MB layer, (sub) MB pred and

residual block cabac. Slice data and MB layer produce once time per macro block. (sub) MB pred

and residual block cabac are produced according to block size. Therefore, we may often change our

decoding order because of variable macro block type.

In slice data, we have three syntax elements such as mb_skip_flag, mb_field_decoding_flag and

end_of_slice_flag. The mb_field_decoding_flag is used to recognize frame and field MB, and we

produce once per MB pair. The end_of_slice_flag is always symbolized final syntax element of MB,

and the slice will be finished when end_of_slice_flag equal to one. Besides, if the mb_skip_flag equal

to one, we directly jump to end_of_slice_flag and skip this MB.

In MB layer, we have four syntax elements such as mb_type, transform_size_8x8_flag,

coded_block_pattern and mb_qp_delta. We can recognize current block in which block size by

mb_type and transform_size_8x8_flag. The mb_qp_delta is a parameter for inverse-quantization, and

coded_block_pattern are represented zero distribution of residual block.

After decoding value of mb_type, we can depend on block size to judge the following status

which will be mb_pred or sub_mb_pred. If we decode in sub_mb_pred, we may produce

sub_mb_type to recognize sub-block size. And then, we may decode one or more predictor modes

such as prev_intraNxN_pred_mode_flag, rem_intraNxN_pred_mode, intra_chroma_pred_mode,

ref_idx_lX and mvd_lX for Intra or Inter predictor. (N8 ,4א; X1 ,0א)

Finally, we would decode the coefficient (coeff.) block in residual block cabac. The coeff. block

size can be categorized into 4x4 and 8x8. So, we can get sixteen or four coeff. blocks in macro block.

Different to residual block cavlc, we have to know zero coeff. position zero early. The

coded_block_pattern may describe situation of each 8x8 block, and the coded_block_flag may

describe that current 4x4 block contains all zero or not. After that significant_coeff_flag and

last_significant_coeff_flag will scan all coeff. positions, and the coeff_abs_level_minusl and

coeff_sign_flag produce the value of coeff. position which isn’t equal to zero.

6

Figure 5. The flow chart of the syntax elements switching

7

1.2 Motivation and Design Challenges

However, the bottleneck of CABAC decoder design is the throughput for the H.264/AVC system.

The arithmetic decoder pipelining is the major task for CABAC decoder. In Figure 6, the next range

and value depend on current range and offset, and the table is controlled by outputted bin. So, it has

notably strong data dependency to restrict throughput. Even if a DSP processor can work at 3GHz, it

would be difficult to achieve the real-time CABAC decoding for HD video at 30 fps.

Figure 6. Block Diagram of CABAC Decoder

Besides, we go deeply into the realities for data dependency, and we observe all SEs and find out

three characteristics decreased the performance in Figure 7. First, because SE has flexible code

length, we can’t know next bin in current SE or next SE clearly. Second, some SEs have several

branches and judge depended on current SE. Third, context data is updated frequently, and it possibly

require to spend some time waiting for updated data.

(a) (b) (c)

Figure 7. (a) Flexible code length (b) SE Branch Selection (c) Data update frequently

Therefore, the RAM-based context model scheduling for fetching and write-back becomes

important issue in order to apply the pipeline architecture in CABAC decoder. The pipeline problems

will be overcame in our proposed implementation.

8

Except for drawbacks of CABAC decoder, it still exists a part which can cause performance lost.

That is communication between SE parser and CABAC decoder. In [6], it calls for syntax element

switching overhead (SESO). As Figure 8, we make an example for describing what situation can

cause this overhead, and we use external CPU as SE parser. The case1 is the normal situation, and we

already know what next SE is. The pipeline flow can be executed correctly. Actually, if we decode in

the same SE continuously, it is always worked without unexpected stalls. But, as soon as we require

to switch SE, it has a probability to cause data hazard. We can see in Figure 8(b). The case2

represents some SEs which have several branches, and we require previous result of SE to judge

current SE branch selection. Hence, in the general solutions as Figure 8(c), we may stall some cycles

to avoid data hazard. In simulation result from [6], it has more than two-thirds of probability for

switching SE, and the performance would be degraded certainly.

(a) Normal case

(b) Data hazard case

(c) Solve by increasing overhead
Figure 8. Syntax Element Switching Overhead

9

Above analysis tells us the importance of throughput. And, we should know how many

throughput is enough to real-time decode full-HD sequence. We consider a working frequency which

can be accepted by system and show some different cases in Table 1. At first, we test several HD1080

sequence and find the worst case in gray part. The riverbed has 22.696 million bits/second (s), and

throughput has to achieve 29.55 million bins/s. Actually, we require to produce 0.29 bin/cycle at 100

MHz. Second, we assume one frame contains 1 million bits, and encoder can get 1.5 compression

rate (CR). And, we require to produce 0.45 bin per cycle. Finally, we consider the maximum bit-rate

from standard, and we should produce 0.93 bin/cycle. It’s mean we can real-time decoding full-HD

by raising hardware utility even in the worst case.

Table 1 Design constraints for throughput from standard

Test Sequence MBits/s CR Mbins/s
bin/cycle

@100 MHz @150 MHz
riverbed 22.696 1.289 29.255 0.29255 0.195035

1 Mbits/frame 30.000 1.5 45.000 0.45 0.3

Level [1]
4.1 @MP 50.000 1.5 75.000 0.75 0.5

4.1 @HP 62.500 1.5 93.750 0.9375 0.625

Moreover, the table-base CABAC reduce complexity significantly, but it also raises large table

which have to include memory. Table 2 shows all kinds of table. However, because some tables

contain large amount of data and switch frequently, they produce extra overhead to increase cost and

decrease performance. In our analysis, (1) can be stored in external memory or ROM because it’s

seldom used and (4) can implement in internal buffer according as contained constant which occupy

little gate count in hardware. Therefore, the bottleneck of memory becomes (2) and (3), and we will

improve this problem in our memory system.

Table 2 Require for including table

 (1) Initialization
Table (2) Context Model (3) Neighbour MB

(4) Range LPS
& transMPS
& transLPS

Utility rate Seldom Very frequently frequently Very frequently

Max 65.92 kbits 7.21 kbits
727x(row) bits

2.048 kbits
384 / 384 bits Min 30.592 kbits 3.346 kbits

Contain Constant Variable Variable Constant

10

1.3 Organization of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we go through rapidly to review the

specification of CABAC algorithm at first, and we describe the strategies for improvement of

CABAC decoder and mention some state of the art to make an example. And, we evaluate their

advantages and disadvantages.

In Chapter 3, we describe our proposed algorithm including a bin-trend-predictor scheme and

optimization of memory system, and these methods get the balance with cost and performance.

According to our proposed algorithm, we also take an in-depth discussion about the challenges of

integrating architecture in Chapter 4.

And, we show our simulation results in Chapter 5 including verification of algorithm,

implementation of architecture and comparison with other works. Finally, we make a brief conclusion

and future works in the last Chapter 6.

11

Chapter 2. Related Works

Figure 9. CABAC decoding algorithm

In this Chapter, we introduce the basic algorithm of the CABAC decoder in Section 2.1 at first.

In the binary arithmetic decoder, it is executed by means of the recursive interval subdivision. It has

to compute the values of rMPS and rLPS and processes the next value of Offset, Range, and the

probability. After that, it decompresses the bit-stream to the bin value which offers the binarization to

restore the syntax elements. According to H.264/AVC standard [1], we adopt the low complexity

algorithm to implement the CABAC decoder circuit.

However, in order to support real-time high resolution videos, throughput still may be a

bottleneck of H.264/AVC system. There are some strategies used to raise the throughput: parallel,

pipeline and prediction. We introduce each of strategies and give an example, and we analyze the

advantages and disadvantages in Section 2.2. Finally, we make a summary in Section 3.3 to describe

the proposal in our design.

12

2.1 Traditional CABAC Decoding Flow

The traditional CABAC decoder engine is the sub-module of syntax element parser. When it is

invoked, it schedules the timing related to the context model of reading-to and writing-back and

selecting the arithmetic decoding flows and binarization flows. Figure 10 shows the finite state

machine (FSM) of the traditional CABAC decoding flow [9]. The first state (state 0) is the stand-by

state. The decoder waits for the request of the syntax element parser until activating the CABAC

decoder system, and jumps to state 1. State 1 is required to check the type of AD. If it is the regular

decoding, the binarization reads the neighbor information from the SRAM, and generates the context

model index and reads the context model form the context model. And then, FSM jumps to state 2.

State 2 is a binary tree where we have defined in Section 2.1.2. Based on the bin index (binIdx), the

bin string is compared with the binary tree. If bin string can’t find the mapped binary, the binarization

engine increases binIdx and requests AD producing the next bin value to map again until the mapped

binary and the suitable value of syntax element in state 3. If it finds the mapped binary value, the

value of binIdx is initialized as “0” and waits for the request of the next syntax element.

Figure 10. Traditional CABAC decoding flow [9]

13

2.1.1 Arithmetic Decoding Flow

In order to improve the coding efficiency, there are three kinds of the binary arithmetic decoders

in H.264/AVC system such as the regular, bypass, and terminal decoding flow. We will show whole

algorithms as follows.

2.1.1.1 Regular decoding process
 The first algorithm is the regular decoding process which is shown in Figure 11(a). According to

the H.264/AVC standard [1], the table-based method is used in place of the multiplication operation.

In the regular decoding flowchart, codlRangeLPS looks up the table, rangeTabLPS, depending on two

indexes such as pStateIdx and qCodlRangeIdx. The pState is defined as the probability of MPS (MPSρ)

which gets from the context model. qCodlRangeIdx is the quantized value of the current range

(codlRange) which is separated to four parts in this table. The second factor of the improved method

is to estimate the value of MPSρ . The flowchart of Figure 11(a) also shows the table-based method to

process the probability estimation. It divides into two sub-intervals such as MPS and LPS conditions.

Depending on the sub-interval, it computes the next probability by the transIdxLPS table when the

interval division is LPS and by the transIdxMPS table when the interval is MPS. These two

probability tables are approximated by sixty-four quantized values indexed by the probability of the

current interval.

In basis algorithm of binary arithmetic decoding, the interval subdivision is operated under the

floating-point operation. In practical implementation, this method causes the complexity of the circuit

to be increased. The advanced algorithm adopts the integer operation for H.264/AVC. The value of

the next range becomes smaller than the current interval. So we use the renormalization method to

keep the scales of codlRange and codlOffset. Figure 11(b) shows the flowchart of renormalization.

The MSB of codlRange always keeps “1” in order to realize the integer operation. If the MSB of

codlRagne is equal to “0”, the value of codlRagne has to be shifted left until the current bit is equal to

“1”. Depending on the shifted number of codlRagne, codlOffset fill the bit-stream in the LSB.

14

2.1.1.2 Bypass decoding process
The second algorithm is the bypass decoding process which is applied by the specified syntax

elements such as suffix: mvd, coeff_abs_level_minus, and coeff_sign_flag. The probabilities of MPS

and LPS are fair, that is, both probabilities are 0.5. It is unnecessary to refer to the context model

during decoding. Figure 12 (a) shows the flowchart of the bypass decoding flow. Compared

with Figure 11 (a), the bypass decoding process doesn’t estimate the probability of the next interval.

So we can’t see the probability computation in the bypass decoding. The result of codlRange isn’t

changed which means that it has no the subdivision action in the bypass decoding. It is just used one

subtraction to implement this decoding process.

2.1.1.3 Terminal decoding process
The third algorithm is the termination decoding process. Figure 12 (b) shows the flowchart of the

terminal decoding flow. The terminal decoding process is very simple as well, but it has the more

decoding procedure compared to the bypass decoding process. It doesn’t need the context model to

refer to the probability. The value of the next codlRange is always to subtract two from the current

(a)

(b)

Figure 11. Flowchart of the (a) regular decoding and (b) renormalization process [1]

15

codlRange depending on whether the subdivision condition belongs to MPS or not. The final values

of codlRange and codlOffset are required to renormalize through the RenormD in this figure when it

branches to the situation which defined as codlOffset smaller than codlRange (MPS condition). The

flowchart results in composed of one constant subtraction, one comparator, and one renormalization.

The terminal decoding process is used to trace if the current slice is ended. It occurs one time per

macro block process which is seldom used during all decoding processes.

(a)

(b)

Figure 12. Flowchart of (a) bypass and (b) terminal decoding process [1]

2.1.2 De-binarization Decoding Flow

In Section 2.1.2, we focus on the decoding process of the de-binarization. It reads the bin string

to look up the suitable syntax elements. For H.264/AVC, CABAC decoder adopts five kinds of the

binarization methods to decode all syntax elements. This section is organized as follows. In Section

2.1.2.1, the decoding flow of the unary code is shown at the first. The unary code is the basic coding

method. Section 2.1.2.2 shows the truncated unary code which is the advanced unary coding method.

It is applied in order to save the unary bit to express the current value. In Section 2.1.2.3, we

introduce the fixed-length decoding flow. It is the typical binary integer method. Section 2.1.2.4 is

the Exp-Golomb decoding flow. The Exp-Golomb decoding flow is only used for the residual data

and the motion vector difference (mvd). Section 2.1.2.5 is the special definition by means of the table

method. Specifically, we focus on the binary tree of the macroblock type (mb_type) and the

sub-macroblock type (sub_mb_type).

16

2.1.2.1 Unary (U) binarization Process
Table 3 is the format of the typical unary code. If the syntax element is equal to “0”, the bin

outputs single bit “0”. Besides the syntax element equal to “0”, the bin string sends “1” for numSE

times firstly and one “0” in the end of the binary value. The value of numSE is equal to the syntax

element. Therefore, we find the string length of the current syntax element bin string is numSE+1.

Table 3 Example for U
Syntax Element bin string

0 0
1 1 0
2 1 1 0
3 1 1 1 0

binIdx 0 1 2 3
2.1.2.2 Truncated Unary (TU) binarization Process

Table 4 is the format of the typical unary code. It is based on the unary code and has an

additional factor of cMax which is defined as the maximum length of the current bin string. If the

value of syntax element (valSE) is less than cMax, the TU and U are the same. Otherwise, the number

“1” of the bin string is equal to cMax and there is no “0” bit to list in the current string.
Table 4 Example for TU with cMax = 3

Syntax Element bin string
0 0
1 1 0
2 1 1 0
3 1 1 1

binIdx 0 1 2 3
2.1.2.3 Fixed-length (FL) Binarization Process

The fixed-length decoding flow has to refer to the value of cMax which defines the number size

of the current syntax element. Table 5 shows the fixed-length code definition. In this table, the cMax

equals seven because the maximum value of binIdx is seven.
Table 5 Example for FL with cMax = 7

Syntax Element bin string
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0

binIdx 0 1 2 3

17

2.1.2.4 k-th order Exp-Golomb (UEGk) binarization process
Table 6 shows the example of UEGk by means of the pseudo code from H.264/AVC [1]. The

initial value of k is defined as the order of the unary Exp-Golomb coding which are named as UEGk.

In the binarization decoding engine of CABAC decoder, it only applies two decoding flows such as

UEG0 and UEG3. UEG0 is used by the suffix part of the residual data decoding process and UEG3 is

used by the suffix part of motion vector difference one. And, the suffix part of this code doesn’t

always apply when the value too small.

Table 6 Example for UEGk with k = 0
Syntax Element bin string

0 0
1 0 1 0
2 0 1 1
3 0 0 1 0 0
4 0 0 1 0 1
5 0 0 1 1 1

binIdx 0 1 2 3 4 5
2.1.2.5 Look up table (LUT) Binarization Process

All formats of the binarization decoding process are introduced above. But there is still a special

decoding flow which we don’t describe yet. In order to perform the higher video quality, the

macroblock and sub-macroblock are divided into many kinds of types such as I, P, B, and SI slices. In

the four basic types, it also sorts by variable block sizes. These two syntax elements are difficult to

define by means of the aforementioned decoding flows. In H.264/AVC, it adopts the table-based

method to define the macro and sub-macro block types. Table 7 shows an example of mb_type for P,

SP slice, and gray part means suffix part are the same with table of mb_type for I slice.

Table 7 Example for mb_type (P, SP slice) [1]
Syntax Element bin string
0 (P_L0_16x16) 0 0 0

1 (P_L0_L0_16x8) 0 1 1

2 (P_L0_L0_8x16) 0 1 0

3 (P_8x8) 0 0 1

4 (P_8x8ref0) Na
5(Intra, prefix only) 0 0 1 1 1

binIdx 0 1 2 3 4 5

18

2.1.3 CtxIdx Model Index Calculating Flow

The values of the context model offer the probability value of MPS (pStateIdx) and the historical

value of bin (MPS) in order to achieve the adaptive performance. In the regular decoding process of

the arithmetic decoder, we have to prepare the 459 locations of the context model to record all

decoding results in high profile.

ݔ݀ܫݔݐܿ ൌ ݐ݁ݏ݂݂ܱݔ݀ܫݔݐܿ ൅ ܿ݊ܫݔ݀ܫݔݐܿ (Eq. 1)
ݔ݀ܫݔݐܿ ൌ ݐ݁ݏ݂݂ܱݔ݀ܫݔݐܿ ൅ ݐ݁ݏ݂݂ܱݐܽܥ݇ܿ݋݈ܤݔ݀ܫݔݐܿ ൅ ܿ݊ܫݔ݀ܫݔݐܿ (Eq. 2)

It divides into two kinds of the context model index (ctxIdx) methods to allocate the context

model. (Eq. 1 is one of the index methods. Besides residual data decoding, the context model index is

equal to the sum of ctxIdxOffset and ctxIdxInc. (Eq. 2 is the index method for residual data decoding.

We should sum additional ctxIdxBlockCatOffset depend on the type of coefficient block.

2.1.3.1 ctxBlockCat and ctxIdxBlockOffset
The value of ctxBlockCat is the block categories for the different coefficient presentations.

maxNumCoeff means the maximum required coefficient number of the current ctxBlockCat.

ctxBlockCat is sorted six block categories in Table 8. And, the value of ctxIdxBlockCatOffset is

defined as Table 9 which is dominated by the parameters of syntax elements and ctxBlockCat.

Table 8 Specification of ctxBlockCat for the different blocks [1]
coefficient type maxNumCoeff ctxBlockCat

luma DC 16 0
luma AC 15 1

Luma 4x4 16 2
chroma DC 4 3
chroma AC 15 4
Luma 8x8 64 5

Table 9 Assignment of ctxIdxBlockCatOffset to ctxBlockCat for SEs [1]
Syntax element

of the residual data
ctxBlockCat

0 1 2 3 4 5
coded_block_flag 0 4 8 12 16 0

significant_coeff_flag 0 15 29 44 47 0
last_significant_coeff_flag 0 15 29 44 47 0

coeff_abs_level_minus1 0 10 20 30 39 0

19

2.1.3.2 Calculate for ctxIdxOffset
In both the residual data and the general decoding, the context model index is dominated by two

factors such as ctxIdxOffset and ctxIdxInc. So, we merge ctxIdxOffset and ctxBlockCatOffstet and

collect the results in Table 10. The alphabet of “na” denotes using bypass process. So, we only need

to consider (Eq. 1. Depending on the syntax element, slice type, ctxBlockCat and some different

conditions, we can find the value of ctxIdxOffset. And then, as soon as we calculate ctxIdxInc, we

may compute the current ctxIdx.

Table 10 Syntax elements and associated types of ctxIdxOffset [1]
Image layer Syntax element ctxIdxOffset

slice data
mb_skip_flag (P slices only) 11

(B slices only) 24
mb_field_decoding_flag 70
end_of_slice_flag 276

macroblock_
layer

mb_type

(I slices only) 3
prefix (P slices only) 14
suffix 17
prefix (B slices only) 27
suffix 32

transform_size_8x8_flag 399

coded_block_pattern prefix Luma 73
suffix Chroma 77

mb_qp_delta 60

mb_pred
prev_intraNxN_pred_mode_flag 4x4, 8x8 68
rem_intraNxN_pred_mode 4x4, 8x8 69
intra_chroma_pred_mode 64

mb_pred and
sub_mb_pred

ref_idx_l0, ref_idx_l1 54

mvd_l0[][][], mvd_l1[][][]
prefix x 40
prefix y 47
suffix (uses DecodeBypass) na

sub_mb_pred sub_mb_type (P slices only) 21
(B slices only) 36

residual block
cabac

coded_block_flag ALL (ctxBlockCat < 5) 85
(5 < ctxBlockCat < 9) 460

significant_coeff_flag
frame (ctxBlockCat < 5) 105

(ctxBlockCat = = 5) 402

field (ctxBlockCat < 5) 277
(ctxBlockCat = = 5) 436

last_significant_coeff_flag
frame (ctxBlockCat < 5) 166

(ctxBlockCat = = 5) 417

field (ctxBlockCat < 5) 338
(ctxBlockCat = = 5) 451

coeff_abs_level_minus1 prefix (ctxBlockCat < 5) 227
(ctxBlockCat = = 5) 426

suffix (uses DecodeBypass) na
coeff_sign_flag (uses DecodeBypass) na

20

2.1.3.3 Calculate for ctxIdxInc
Basically, the value of ctxIdxInc is looked up in Table 11 by referring to the syntax element and

binIdx. The alphabet of “na” denotes the never happened issue and the word of “Terminal” means

that the decoding flow enters the terminal decoding process. If the generated bin is equal to “1”, the

slice has to be stopped and decodes the next slice. However, we observe some SEs has several

ctxIdxInc in Table 11. In these cases, we should refer to the left and top blocks to define the ctxIdxInc

of the first binIdx such as mb_type, mb_skip_flag, ref_idx, mb_qp_delta, intra_chroma_pred_mode,

mb_field_decoding_flag, and coded_block_pattern. According to different SEs, it may follow

different kinds of principles from standard [1]. Besides, the value of ctxIdxInc in residual data is

defined as the scanning position or look up table from the standard.

Table 11 Assignment of ctxIdxInc to binIdx for syntax elements [1]

Syntax elements
binIdx

0 1 2 3 4 5 >= 6

mb_type (I) 0,1,2 Terminal 3 4 5,6 6,7 7

mb_skip_flag (P) 0,1,2 na na na na na na

mb_type (P:prefix) 0 1 2,3 na na na na

mb_type (P:suffix) 0 Terminal 1 2 2,3 3 3

sub_mb_type (P) 0 1 2 na na na na

mb_skip_flag (B) 0,1,2 na na na na na na

mb_type (B:prefix) 0,1,2 3 4,5 5 5 5 5

mb_type (B:suffix) 0 Terminal 1 2 2,3 3 3

sub_mb_type (B) 0 1 2,3 3 3 3 na

mvd_lX (x:prefix) 0,1,2 3 4 5 6 6 6

mvd_lX (y:prefix) 0,1,2 3 4 5 6 6 6

ref_idx_lX 0,1,2,3 4 5 5 5 5 5

mb_qp_delta 0,1 2 3 3 3 3 3

intra_chroma_pred_mode 0,1,2 3 3 na na na na

prev_intraNxN_pred_mode_flag, 0 na na na na na na

rem_intraNxN_pred_mode, 0 0 0 na na na na

mb_field_decoding_flag 0,1,2 na na na na na na

coded_block_pattern (luma:prefix) 0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3 na na na

coded_block_pattern (chroma:suffix) 0,1,2,3 4,5,6,7 na na na na na

end_of_slice_flag 0 na na na na na na

transform_size_8x8_flag 0,1,2 na na na na na na

21

2.2 On-the-fly CABAC Decoding Flow
In this Section 2.2, we will introduce previous designs of CABAC decoder and use criteria of

cost and performance to evaluate them. In fact, there are already a few papers which investigated the

implementation of CABAC decoder such as [10] and [17]. In [17], they show that not only the

arithmetic engine’s (AE) peak performance but also its utilization is important for high throughput. In

[10], they take an effort to evaluate several previous works and classify into three strategies: parallel,

pipeline processing and prediction. In the common architecture, pipeline and parallel processing are

the general solutions to enhance the throughout. However, the character of table-based CABAC

algorithm is very difficult to implement parallel and pipeline structure efficiently. So, optimal

methods and prediction scheme are proposed to improve this deflect. In Figure 13, we classify

previous works as their strategy. Each strategy represents the major improvement in conventional

CABAC decoder. Actually, we can’t clearly recognize the strategies in some state-the-art solutions

because some designs use multi-strategies to progress the performance. Moreover, we will discuss

the strategies and analyze their benefits and drawbacks in following Section 2.2.1-2.2.3.

Figure 13. Implementation strategies of previous works

22

2.2.1 Pipeline-based CABAC Decoding flow

According to table-based CABAC algorithm, it requires 4 pipeline stages to support sequential

memory accesses like Figure 14. As mentioned in [4], [14], the data hazards would be occurred

according as ctxIdx relate to previous binIdx or bin, not updated context data and next SE type relate

to current SE type. Those hazards would decrease performance in conventional pipeline structure.

To eliminate the stalls of pipeline, some previous works provide some improving methods. In [4],

it parallels partial stages and provides a CM cache to reduce hazards, but it still have stalls by caches

miss. And, [14] can ease data hazards efficiently by forward paths and duplication of partial CM, but

it requires large SRAM. Furthermore, prediction scheme also can provide to eliminate the stalls, or

multi-arithmetic decoding engine can promote throughput for pipeline structure. And, these issues

will discuss in following section.

2.2.1.1 Analysis and discussion
Most of designs may use pipeline structure, because pipeline technology can shorten the critical

path of design and raise working frequency. But, not all of designs make an effort to eliminate the

stalls. If pipeline can work smoothly, it will reduce unnecessary overhead. However, raising pipeline

structure utility may get a limit improvement and unavoidable stalls, and much higher frequency of

memory accesses occupies large memory bandwidth requirement and SRAM. Therefore, merging

other strategies is the best solutions for overcoming the bottleneck.

Figure 14. Pipeline Stages of conventional CABAC Decoder

23

2.2.1.2 Example for pipeline structure
Figure 15, we take an example [14] - “Pipelined Architecture Design of H.264/AVC

CABAC Real-Time Decoding” to discuss the implementation of pipeline structure.

 This works apply two situations and forward path to eliminate stalls. The forward path can be

prepared for pre-fetching not updated CM data, and the other data hazard can be avoid by two

situations. First one is used to choose binIdx++ and binIdx=0 by MUX2. Because the CABAC

decoder may be required to produce one or several SE with flexible bin length, the bin of SE which

will be complete can’t be known. To overcome these problems, it assumes two statuses. The SE type

which impact ctxIdxOffset always can be known by SE parser, and each bin all consider as end of SE.

It applies two context models. One contains full entries, and the other one contains partial entries

which correlate binIdx=0. And, it prepares two kinds of context data all the time. Later, the correct

context data can be chosen behind finishing AD process. The second situation is used to consider

current ctxIdx relate to previous bin. Because ctxIdx always differ 1 in this situation, hazard can be

eased by preparing both options. Though this adjustment, it can get high performance because of no

pipeline stalls.

In

Figure 15. Pipeline architecture [14]

24

2.2.2 Parallel-based CABAC Decoding flow

Except for pipeline structure, parallel structure is the immediate solution to augment throughput.

However, as shown in Figure 16(a), two regular bins decoding simultaneously will cause structure

hazard by multi-access, because we require twice context model data in one cycle. Beside these

problems, another problem will be caused by long critical path. According to correct codIRange and

codIOffset, the AEs have to be cascaded. That may increase the challenge of parallel structure.

Figure 16. (a) Structure Hazard of Multi-bin (b) General Solutions of Multi-bin

(a) (b)

 [12] is the first paper proposed parallel-based CABAC decoder, and it supports several paths to

decode one or two bin per cycle. [7] promotes high performance efficiently according to parallel

decoding engine (TSBAD) and smooth pipeline flow, but it requires large hardware cost. [18]

optimizes the critical path for parallel decoding by a symbol-prediction-bases scheme. According as

above solutions, multi-accesses problem can be solved by including hybrid SRAM or CM cache

like Figure 16(b), and long critical path also can be shorten by pre-fetch, pre-calculate and etc.

2.2.2.1 Analysis and discussion
According to state of the art parallel structure such as [7-8], we can get high improvement for

throughput significantly. So, we can make sure parallel structure can bring high performance. But, in

the other hand, it will be increased inevitable hardware cost by the internal buffer and parallel

arithmetic engine. Even if we can accept the increase cost, the critical path will be another issue.

Although we can find some methods to optimize the path, it is still longer than single arithmetic

decoding engine. So, that will be a potential problem for raising working frequency.

25

2.2.2.2 Example for parallel structure
In Figure 17, we take an example [7] - “A Branch Selection Multi-symbol High Throughput

CABAC Decoder Architecture for H.264/AVC” to discuss the implementation of parallel structure.

In this works, the major purpose is decoding two-symbol in one cycle efficiently. Since the CM

memory is implemented in register in their proposed architecture, the CM loading or storing

procedure can be merged in the same cycle [7]. By this reason, it can avoid structure hazard for

multi-access, although it bring large cost. However, the most difficult part to supply multi-symbol is

preparing the context data for second bin, because the 2nd ctxIdx may depend on 1st bin. Therefore,

it uses pipeline structure and presents a branch selection scheme to prepare all possible options for

guaranteeing the performance. Because the 1st bin is either 1 or 0, 2nd context data can be considered

(1st bin=0) and (1st bin=1). Before decoding bin, TSBAD is inputted 3 context data while one for 1st

bin and two for 2nd bin. And, two context data which prepare for 2nd bin will be selected correct one

after decoded 1st bin. By this scheme, it makes a considerable improvement and provided an

effective parallel-based CABAC decoder.

Figure 17. Parallel architecture [7]

26

2.2.3 Prediction-based CABAC Decoding flow

In Figure 13, we can’t find the design which is only implemented by the prediction strategy,

because the prediction scheme is usually an adjustment for pipeline or parallel strategy. Actually, the

prediction scheme is proposed to speed up the parallel engine or hardware utility. Although the

reasons for supporting prediction scheme are different for each previous works, they almost predict

the value of current bin as MPS bin. Because MPS rate of total bin is more than 50% according to

basic CABAC algorithm, this feature can be used to raise performance. In fact, we can classify

prediction structures to two purposes: (1) using predicted value to decode multi-bin per cycle, (2)

using predicted value to pre-calculate ctxIdx.

At first case, because MPS process is simpler than LPS process in BAD and has a high

probability of occurrence rate. So, some previous works assume that the MPS bin can be decoded

continually. According to this assumption, [5] and [13] proposed a hardware to achieve decoding 2

MPS bin in a cycle. And, [5] increases dual-series bypass paring for speeding up bypass bin. [15]

exploits all the parallelism in a SE, it can decode 16 bins in a cycle mostly.

At second case, the predicted bin is used to avoid unexpected stalls. In order to avoid the impact

of communication with parser and decoder, [6] proposed a SE predictor to determine next SE type by

itself. The SE predictor can efficiently ease data dependency, but it wouldn’t be available when it

predicts miss. [16-17] apply the prediction scheme for pre-get-neighbor information, and they can

avoid some idle times for loading neighbor information.

2.2.3.1 Analysis and discussion
According to previous works, prediction scheme plays an important role to balance the

performance and hardware cost. The parallel structure will increase a few redundancy circuits to

support multi-bin engine, and the pipeline structure can get much higher hardware utility efficiently.

However, the accuracy becomes an important issue for prediction scheme. Although MPS bin has

high probability occurrence rate from 50% to 70%, it may has variable performance by test pattern.

Besides, even if it has 30% miss rate, the miss penalty will decay performance seriously.

27

2.2.3.2 Example for prediction structure
In Figure 18, we take an example [6] - “Prediction-based Real-time CABAC Decoder for High

Definition H.264/AVC” to discuss the implementation of prediction structure.

This work belongs to second case as mentioned in Section 2.2.3. It discusses the overhead which

is produced by communication between SE parser and CABAC decoder. To solve this problem, we

have to obvious on the view of system. Because the order of SE isn’t regular and has high switching

rate, the overhead can’t be avoided by improving CABAC decoder. Therefore, it applies a SE

predictor which is controlled by value of bin and SE instead of traditional SE parser. The traditional

parser can’t understand the meaning of each bin, so it has to wait for the value of SE which may cost

several pipeline stages. Conversely, the SE predictor can be controlled by value of bin in each

pipeline stages and can make sure for not only ctxIdxInc but also ctxIdxOffset. However, because of

MPS-based two-bit predictor included in SE predictor, the accuracy will be impacted by MPS rate.

Even throughput this deflects of SE predictor become the limit of throughput, it still brings a novel

thought with the least overhead and most friendly integration solutions for H.264/AVC system.

Figure 18. Prediction architecture [6]

28

2.3 Summary

Through above descriptions, we review the algorithm of CABAC decoder broadly and analyze

the strategies for implementation. Actually, we already get high throughput by previous works such

as [7] [8]. However, although we have some advanced improved strategies, it still has several

potential problems while integrating to system. For example, [14] will be unavailable by unknown

ctxIdxOffset and has to occupy large memory bandwidth requirement or internal SRAM size. And,

the syntax element switching overhead (SESO) may be enhanced by multi-bin engine as shown

in Figure 19. The larger CM cache adopts, the more miss penalty will be paid. And, the deeper

pipeline stages is, the more idle times increase.

(a)

(b)
Figure 19. (a) Single-bin engine (b)multi-bin engine

By the state of the art, we shouldn’t keep going to raise much higher throughput. For our purpose,

we make an effort to design CABAC decoder which is the most suitable strategy for system

integration and take a balance between throughput and overhead at the premise of the acceptable

throughput for real-time decoding full-HD sequences. However, systems problem will be more

complex than single module behavior. It becomes serious problems which include not only

communicating with SE parser as mention in previous section but also immediately getting

neighboring information and so on. In fact, the real sequences can be organized by several kinds of

SE, and the distribution of bin, MPS rate and SE type can be totally different for each sequence. If the

design just optimize at the special statuses, the real performance will be hard to guarantee. Therefore,

because of our constraints, we consider the strategy of prediction structure by doing minimum

adjustment to get maximum reward.

29

According as [6], applying a controllable SE parser can integrate different kinds of situations

which we can’t improve before, and all possibly data hazard issues can be transferred to accuracy of

predicted bin. Therefore, we simplify the problems and make a formula for throughput as following:

Assume

CycleR, CycleB, CycleT: requirement of executed cycles for regular, bypass and terminal process

BinR, BinB, BinT: the amount of regular, bypass and terminal bin)

Stall times: the amount of stalls; Idle times: the amount of interruptions

Regular Bin rate :the ratio of regular bin in total bin

Miss Rate: the ratio of prediction miss

Total Cycle ൌ CycleR ൅ CycleB ൅ CycleT (Eq. 3)

∵ሺCycleR ൌ BinR ൅ Stall times ൅ Idle times, CycleB ൌ BinB, CycleT ൌ BinT)

∴ ൌ BinR ൅ Stall times ൅ Idle times ൅ BinB ൅ BinT (Eq. 4)

∵ሺTotal Bin ൌ BinR ൅ BinB ൅ BinT)

∴ ൌ Total Bin ൅ Stall times ൅ Idle times (Eq. 5)

First, we can get the formula of total executed cycles by Eq. 5.

Bin per cycle ሺBPCሻ ൌ
Total Bin

Total Cycle (Eq. 6)

(Eq.5 substitution) ൌ
Total Bin

Total Bin ൅ Stall times ൅ Idle times (Eq. 7)

∵ሺStall times ൌ Total Bin ൈ Regular Bin Rate ൈ Miss Rate)

∴ ൌ
Total Bin

Total Bin ൅ Total Bin ൈ Regular Bin Rate ൈ Miss Rate ൅ Idle times

 ൌ
1

1 ൅ 1 ൈ Regular Bin Rate ൈ Miss Rate ൅ Idle times
Total Bin

(Eq. 8)

Second, we can get the formula of BPC by Eq. 7.

Throughput rate ൌ Working Frequency ൈ BPC (Eq. 9)

(Eq.8 substitution) ൌ
Working Frequency

1 ൅ Regular Bin Rate ൈ Miss Rate ൅ Idle times
Total Bin

 (Eq. 10)

Finally, we get the formula of throughout rate by Eq. 10.

30

In (10), we assume the conventional CABAC decoder with prediction scheme and controllable

SE parser can decode one bin per cycle while no miss penalty, and we shows the formula for

throughput rate with working frequency, regular bin rate, miss rate, idle times and total bin. The

working frequency depends on critical path of design, or it could be restricted to rise by system

constraints such as power consumption. Besides, regular bin rate and amount of total bin are

depended on test sequence, so they will be unreliable parameters for various video sequences.

And then, the idle times are often caused by fetching neighboring information. If we apply an

effective environment to deal with neighboring information accesses, idle times can be ignored while

(total bin >> idle times). In [11], it has mentioned an improvement for time and storage efficiency by

taking full use of the new found characters of SEs. Even though we use previous methods, it still has

an improvement potential specifically for upgrading to full-HD. So, this will be an important issue to

progress in our design.

Except for idle times, the major parameter which impacts the efficiency is miss rate. Because all

the reasons for decayed performance are imputed to accuracy of prediction scheme, the miss rate will

be the bottleneck of throughput. Although MPS bin has more than 50% hit rate and achieve almost

70% in test sequence in average, the miss rate still become too high to get acceptable throughput rate.

Therefore, in order to guarantee the throughput and maintain basic hardware cost, providing a high

accuracy prediction scheme will be an essential mission we should do in our design.

31

Chapter 3. Proposed Algorithm

In this chapter, we propose our algorithm to raise hit rate for throughput and reduce the storage

for extra overhead. Because the bottleneck of throughput depends on the hit rate in the

prediction-based CABAC decoder, we make the decoding flow more regular except the case we

should know the decoded bin. First, we apply a SE parser unit without uncertain part and store each

stage status. So, the uncertain part would be controlled by predicted bin0. And then, we raise a bin

predictor to produce bin0 during decoding bin1 by AD unit. Finally, we can make AD and CL working

at the same time. In [6], it proposed a MPS-based two-bit predictor included in SE predictor to

predict bin for the same problem, and it obtained about 70% hit rate. The 30% miss rate would be the

critical part decreased the performance. Therefore, we propose three methods to improve the hit rate

and describe in section 3.1.

In the other hand, we often produce extra overhead for getting neighbor information and

requesting data from external memory. The overhead may be hardware cost, delay cycles or memory

bandwidth requirement. To avoid unexpected performance lost, we optimize our memory system to

solve this problem. We propose a CtxIdxInc pre-Calculate (CC) stage behind second pipeline stages

(DB) to pre-calculate and compress the neighbor information like Figure 20. We pre-fetch and

decompress when we request. And we describe in section 3.2.

Figure 20. Pipeline Stages of Proposed CABAC Decoder

32

3.1 Prediction Process

Because we shouldn’t need all of next bin when decoding current bin, we collect all status we

have to predict next bin shown in Figure 21. First, we can categorize total bin to three kinds of bin,

terminal bin, bypass bin and regular bin. However, we request ctxIdx to access Context Model (CM)

only if next bin is regular bin. It may not cause pipeline stalls when next bin is bypass or terminal bin.

So, we will focus on the problem in regular bin.

Figure 21. Flowchart of Bin Predict Process

33

After that, we still need to classify regular bin by some kinds of different situations. Because

ctxIdx data of the same syntax element (SE) are located in neighbor, we should make sure if it may

branch to next SE or not. So, we recognize the current bin which is finished bin according as SE type

and binIdx. The finished bin means possible last bin in the syntax element. If the current bin isn’t

finished bin, we can be easy to calculate next ctxIdx by previous ctxIdx or bin. In the other hand,

some SE have flexible length, and we can’t really sure when the next bin will be branched to next SE.

Therefore, we may require predicted bin when next bin isn’t sure to SE branch in flexible-length type

SE. Besides, even if the next bin is sure to branch to next SE, we still have to know what next SE is.

This problem is often occurred by flag type SE. Flag type SE means this kind of SE has only one bin.

In this situation, we also require predicted bin to calculate SE branch we may select. Summary, we

point out two cases we require predicted bin. In the other words, if we get the high hit rate by the

prediction process, we almost can calculate the ctxIdx without pipeline stalls for data dependency.

Therefore, in following section we raise some methods to improve the throughput. The Section 3.1.1

describes how to raise hit rate. Even if we predict miss, we still may not have miss penalty and this

method describes in the Section 3.1.2. Finally, the Section 3.1.3 describes some optimization to suit

for our proposed prediction process.

3.1.1 Raised Hit Rate

In the Figure 22(a) and Figure 22(b), they shows the traditional arithmetic decoding flow from

standard [1]. In the beginning, we have current value of Range and Offset. After we read the value of

LPS range (rLPS), we can know the offset is inside the field of MPS or LPS. Then, we can decode

bin value which depends on MPS or LPS, and the critical time would be waiting for rLPS from table.

However, we can recognize the trend that is more possible for MPS or LPS in front of we read rLPS.

Before we get the rLPS, we already have current Range and Offset. If we observe the difference

between Range and Offset, we can find out MPS rate will be higher when difference is larger.

Following this principle, we use two bits according as Figure 23 to recognize which result is mostly

34

happened at each status. Figure 23 shows the example for one of the rLPS table. At this example, we

use pState equal to 0, 31 and 62 to classify, and the corresponding rLPS may be 128, 29 and 6. The

difference may be transferred to 2 bit status shown in Figure 23. Actually, we can make sure result at

status “00” and ‘11”, because the value exceeds the limit of standard. These statuses can significantly

raise hit rate. Second, we also can use this method to observe current pState like Figure 24. Figure 24

does the opposite behavior with current pState. At the same example, we calculate rLPS in average

from 0 to 31, 0 to 63 and 31 to 62, and the corresponding pState may be 13, 23 and 43. So, current

pState also may be transferred to two bits. After that, we get the extra two bits that can raise hit rate

when we are at status “01” or “10”. Summary, we can make sure the result at status “00” and “11”

and have two-bit tips to predict result at status “01” and “10”. Finally, we get over 90% hit rate in our

simulation results shown in Chapter 5 by the proposed method.

Figure 22. (a) Before decoded bin (regular process)

(b) After decoded bin (regular process) (c) Before decoded bin (prediction process)

35

Figure 23. Status of difference

Figure 24. Status of pState

36

3.1.2 Reduced Stall Times

Furthermore, we try to reduce unnecessary stall times to raise throughput. Because of regular

decoding flow, our prediction process depends on predicted bin0 to calculate ctxIdx, we may get miss

penalty when predicting miss. In our analysis, not all of syntax element (SE) branch need previous

bin and have described what situation we request previous bin at the beginning. Therefore, we collect

all type of SE to find out their finished bin. The finished-bin location is determined by binarization

type, and Figure 25 is shown each kinds of binarization.

As described in Chapter 2, we recognize each kinds of binarization. And then, we may explain

and use an example to point out where the finished-bin location is in the following paragraph.

Figure 25. Different kinds of finished-bin Location

Binarization

type
Example Finished-bin location

(a)
Special Case

(LUT)
mb_type (I slice)

(b)
Unary

(U)
ref_idx

(c)
Truncated Unary

(TU)
Intra_chroma_mode

(d)
k-th order

Exp-Golomb
(UEGk)

suffix:mvd_l0

(e)
Fixed-length

(FL)
rem_intraNxN_pred_mode

37

In Figure 25(a), this binarization type is usually occurred in mb_type, sub_mb_type. Because

these SE only can be decoded by table from standard, we may have to discuss each binIdx to

recognize the finished-bin location. For example, mb_type in I slice, the finished-bin location may be

at binIdx equal to 0, 1, 5 or 6, and SE must branch when binIdx equal to 6. Besides, we can recognize

finished-bin location after decoding 3rd bin of SE.

In Figure 25(b) and (c), this binarization have similar characteristic. According to the rule of

binarization, each of bins can be finished-bin location. However, TU have more advantage in

additional condition. SE must branch when max value equal to cMax. For example, ref_idx, the

finished-bin location may be at each of binIdx. Intra_chroma_mode may be finished at 1st bin or 2nd

bin, because cMax equal to three.

In Figure 25(d), UEGk may be occurred in suffix of mvd and coeff_abs_level_minus1. We may

change to bypass mode when we use UEGk binarization. Actually, we almost don’t need finished-bin

location except decoding last bin using UEGk. And, we can know where location is by previous bin.

For example, suffix mvd_l0; we may get finished-bin location at 14, 16, 18, 20 or 22 from binIdx

equal to 14, 15, 16, 17 or 18.

In Figure 25(e), this is most immediately binarization. We can find out the finished-bin location

just by cMax, and this kind of location is sure to branch. For example, rem_intraNxN_pred_mode,

the finished-bin location may be binIdx equal to two and SE have to branch at 3rd bin.

Summary, we collect all relationship between value of SE (valSE) and SE branch shown

in Figure 26, each of SE with rough border may have SE dependency between current valSE and next

SE, and the other SE branch can pares next SE type without current valSE.

Finally, we collect all finished-bin location of each binarization type and selected SE branch to

know when we really should stall or not. Even if we predict miss, we wouldn’t have miss penalty

possibly. And then, we merge above method and high accuracy prediction to decrease effect of SE

dependency.

38

Figure 26. Relationship between value of SE and SE branch

39

3.1.3 Solved Data Hazard Problem

In the other hand, pipeline architecture may cause unavoidable data hazard. When we calculate

next ctxIdx, we may need SE from neighbor block. With the improvement from traditional decoding

flow, we avoid the worst case which we must stall to wait for decoded bin. Therefore, the other

problems which cause data hazard are (1) un-decoded neighbor SE inside other pipeline stages and (2)

un-updated pState in memory. Forwarding path can solve the first problem and data reuse (used

buffer to hold on data) can solve the second problem. Therefore, most of data hazard can be solved

by our proposed algorithm.

3.1.3.1 Forward path for (1) un-decoded neighbor SE

 In our proposed pipeline architecture, we have three stages and four statuses. Pr (N) produces

ctxIdx (address for CM), AD (0) produces bin, DB (1) produces valSE and CC (2) produces

condTermflag. And, we need one more cycle for register. Therefore, we spend at least four cycles to

handle each of neighbor information for neighbor block. However, this flow may be unavailable

when Pr(N) require condTermflag during condTermflag haven’t be finished. For example,

coded_block_pattern, this SE immediately require neighbor information when decoding bin shown

in Figure 27(a). So, we provide several forward paths to overcome this problem. We can choose data

from AD, DB, CC or regular path and select by a multiplexer to cancel data hazard shown in Figure

27(b).

Figure 27. (a)Coded block pattern (b)Forwarding path for un-decoded neighbor SE

40

3.1.3.2 Data reuse for (2) un-updated pState

In the regular path like Figure 28(a), we may load context data by current ctxIdx from context

model (CM) and update new context data to CM at next pipeline stage frequently. Context data

include pState and valMPS. However, this path may be unavailable when load the same context data

repeatedly. Because we should wait for updating new context data and loading new context data

again, it may produce unnecessary latency by regular path. For that reason, we provide another path

to deal with this kind of trouble.

In Figure 27(b), we show the data reuse path when we load in the same context data. Actually,

we use an internal buffer to hold on updated context data. We obvious ctxIdx continually and store

updated context data to buffer after decoding bin. If we find out ctxIdx is the same with previous

ctxIdx, we may choose the data reuse path and use context data from internal buffer certainly until

loading in different ctxIdx. According to this method, we raise a little overhead to implement, but we

can reduce unnecessary stalls waiting for context data updated efficiently.

(a) Regular Path

if (ctxIdx’ != ctxIdx)
Choose new Context Data

(pState, valMPS)

(b) Data Reuse Path

else if(ctxIdx’ == ctxIdx)
Choose updated Context
Data (pState, valMPS)

Figure 28. (a) Regular path (b) data reuse path

41

3.2 Memory System

In section 1.2 and Table 2, we have mentioned the bottleneck of memory system roughly. The

major parts are context model and neighbor information storage. Because of our proposed method,

we use single-bin engine avoiding multi-access problem. And, high hit rate enhance the hardware

utilization significantly and ease data dependency efficiently. So, we don’t have necessary to deal

with increased overhead to supply parallel-base decoder. Therefore, we implement a context model

by a two-port SRAM with 3,360 bits, and we can load and update context date simultaneously.

However, in the other issue, getting neighbor information may extend the latency when we

access data from external memory. In Figure 29(a), this is a scheme to exchange neighbor

information from external memory. But, when we request data from system bus, the latency may

exceed our timing budget obviously. The reasons could be system clock are asynchronous with

external memory, other modules occupy memory bandwidth especially for Motion Compensation and

so on. Therefore, this may be a potential problem for real-time decoding, even if original storage

aren’t huge than the other modules.

The immediate solution is to include an internal memory to store all information we need

like Figure 29(b). In Figure 29(b), we provide a scheme and store a row of MB to exchange neighbor

information from internal memory. But, this method would get large overhead when we decode HD

sequences. We should include almost 20 Kbits SRAM even double in MBAFF mode for CABAC

decoder. So, this is in-efficient method to implement. To overcome these unexpected problems, the

best solution is to reduce the stored neighbor information.

Therefore, we pre-calculate SE for neighbor macroblock (MB) to reduce neighbor information

and describe in Section 3.2.1. And then, we provide a concentrated buffer to reduce redundant

hardware cost and describe in Section 3.2.2. Finally, we alternately pre-fetch all neighbor information

of MB to avoid waiting for neighbor information when decoding first bin of SE and describe in

Section 3.2.3.

42

3.2.1 Reduced Memory Bandwidth Occupation

To reduce storage, the most efficient way is pre-calculated SE for neighbor block. In our analysis,

most of SE can be pre-calculated for neighbor MB after decoded value of SE (valSE) except motion

vector different (mvd). However, mvd is the biggest part of all neighbor information. We need 10 bits

to store one mvd, and each MB has 16 mvd in the worst case. When we calculate current ctxIdx for

mvd, we need neighbor mvd (A) and mvd (B) from left and top block. Then, we sum them to

determine ctxIdxInc as Figure 30(a). However, we may not have to use total 10 bits to calculate

ctxIdxInc in most of cases. In our simulation results, we find out most of mvd can be represented by

two bits. So, we can reduce each mvd from 10 bits to 2 bits and use 5 bits to store extra mvd which is

bigger than 3, as Figure 30 (b). When we need to refer neighbor mvd, we access each 2-bits-mvd and

several extra-mvd from memory. Finally, we can efficiently reduce about 70% storage in our

simulation result shown in Chapter 5 by this method.

Figure 29. Stored in (a) external memory (b) internal memory

43

() ()mvd A mvd B+

Figure 30. (a) ctxIdxInc control condition for mvd
(b) proposed mvd reduction scheme

Besides, the other SE can be pre-calculated, and we can use one bit to represent neighbor SE.

Because the total neighbor storage has been reduced considerably, we can pre-fetch all neighbor

information from neighbor MB we need before decoding the current MB.

3.2.2 Raised Buffer Efficiency

Furthermore, when we decode first bin of SE, we should access the same SE at the neighbor

block that may be located in current MB or neighbor MB such as Figure 31. Figure 31 shows three

different kinds of reference direction. Immediately, we need two kinds of buffer. The one store the

data from neighbor MB, and the other one store the data from current MB. Therefore, we pre-fetch all

storage of MB in the previous work, and both of them may occupy the largest percentage of buffers.

During above reason, we may combine these two kinds of buffers to raise buffer efficiency.

Figure 31. (a) Both in mbAddr (b) left in CurrMbAddr, top in mbAddr
(c) both in CurrMbAddr

44

After we read the neighbor information from the memory, the data won’t be always available in

various block size. When we decode except for 16x16 block size, the neighbor block may be changed

from neighbor MB to current MB. So, we can reuse the buffer which stored neighbor MB

information when neighbor blocks are in the current MB.

mb_type: 4 partitions

All of sub_mb_type: 4 partitions

*Buffer contain neighbor MB data

Figure 32. At the beginning of top and left buffer

In Figure 32, we show an example for a MB with 16 blocks at the beginning. We only require

left and top buffer which contained 4 blocks size. In Figure 34, we show our schedule for reading and

writing data in concentrated buffer. At first, current block is 0, and we have to read neighbor

information from left and top buffer. After reading data, the blocks which are read can be clear to

update new information. And then, we can write pre-calculate information to the empty buffer.

However, we may meet terrible by following this principle. Because we change to next block by

zigzag scan, the data may be covered too early. To reduce this drawback, we adjust the schedule to

update the data in two buffers. Through our adjustment, the final results are shown in Figure 33. The

data contained in left buffer can be reused for right MB, and the data contained in top buffer may

update to SRAM for bottom MB.

Because of this scheme and accurately scheduling, we can combine these two kinds of buffers to

reduce hardware cost.

(*Following discussion don’t include MBAFF mode)

15

0 1 4 5
2 3 6 7
8 9 12 13
10 11 14 15

5
7

10 11 14

13
15

(a)

After decoding all
blocks

(b)

Before decoding
next MB

Figure 33. (a) In the end of top and left buffer (b) After decoding MB process

45

At the beginning …

 READ CLEAR WRITE ADJUEST

0

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

0

1
0 1 4 5
2 3 6 7
8 9 12 13
10 11 14 15

0

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

0

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

0 1

1 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

0 1

2

1 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

0 1

1 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

12

3

1 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

12

1 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

2 3

3
1 0 1 4 5

2 3 6 7
8 9 12 13

10 11 14 15

2 3

4
1 0 1 4 5

2 3 6 7
8 9 12 13

10 11 14 15

2 3

3

1 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

2 3

3
1 0 1 4 5

2 3 6 7
8 9 12 13

10 11 14 15

2 3

3

4

46

5
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

1
3

2 3 4

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

1
3

2 3 4

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

2 3 4 5

5

6
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

2 3 4 5

5

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

2 3 4 5

5 0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

2 3 5

5

6

7
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

2 3 5

5

6

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

2 3 5

5

6

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

2 3

5

6 7

7

8
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

2 3

5

6 7

7

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

2 3

5

6 7

7
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

5

6 7

7

8

9
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

5

6 7

7

8

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

3

5

6 7

7

8

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7

8 9

9

10
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7

8 9

9

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7

8 9

9

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7

9

9

10

47

11
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7

9

9

10

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7

9

9

10

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7
9

10 11

11

12
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7
9

10 11

11

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

6 7

7
9

10 11

11

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

7

7
9

10 11

11

12

13

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5

7

7
9

10 11

11

12

14

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5
7

10 11

11

12 13

13

15
0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5
7

10 11

11

14 13

13

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5
7

10 11

11

14 13

13

15

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5
7

10 11 14

13
15

15

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

5
7

10 11 14

13
15

In the end of top and
left buffer

After decoding MB
process

Figure 34. Schedule of concentrated buffer

48

3.2.3 Solved Syntax Element Switching Overhead

In [6], it clearly indicated the effect of SESO that seriously decreased performance.

Prediction-base decoding flow and jointed parser and decoder are proposed to reduce this overhead.

However, even if we can take care of SE branch, getting neighbor information may enhance SESO

when we access data from external memory. So, we pre-calculate SE for neighbor MB described in

Section 3.2.1 to reduce storage and alternately pre-fetch all neighbor information of MB like Figure

35 in a concentrated buffer described in Section 3.2.2 to avoid waiting for neighbor information when

decoding first bin of SE.

We classify all pre-calculated SE to three kinds according as the order of SE. First kind of SE has

the highest priority, because they require the neighbor SE at the beginning of MB shown in Figure 35.

And we store this kind of SE, such as mb_skip_flag, mb_type and etc, in Row Storage 0. Because

first kind of SE has low storage and high importance, they advise to supply in internal memory.

Second kind of SE contains Inter predictor mode and coefficient information. We should store 32

bits 2-bit mvd according as Section 3.2.1 and 16 bits for coefficient type SE, and we store them in

Row Storage 1. Total 48 bits per MB can suit for 32 bits width bus, and we may only have to transmit

one or two cycles to memory. This kind of SE can be stored in internal or external memory according

as system constraint or cost.

The last kind of SE is about extra 5-bit mvd described in Section 3.2.1, and we store them to

Row Storage 2. But, because not all of mvd has extra mvd, the total account of extra mvd may

depend on sequence. Therefore, we should concentrate all separated extra-mvd to promote memory

utility. Because this kind of SE is the largest part for neighbor information and seldom used, we can

store them to external memory.

Finally, through our adjustment, the latency for getting neighbor information reduced to average

0.868 cycles per MB. Simulation results would show in Chapter 5.

49

Table 12 Total request syntax element of macroblock

MB Layer
SE

MB Pred
SE

Residual
SE

Row Storage 2

I
P, B

: READ: WRITE

Row Storage 0

Row Storage 1

Decoding flow

I
P, B

I
P, B

Figure 35. Alternate order for all neighbor information of MB

 Syntax Element Num Trad. Cond. Total bits per MB

RS0

mb_skip_flag 1 1 1

8 bits / MB
mb_field_decoding_flag 1 1 1
mb_type 1 6 1
intra_chroma_pred_mode 1 2 1
ref_idx_l0 2 5 1
ref_idx_l1 2 5 1

RS1

mvd_l0 (x, y) 8 10 2

48 bits /MB

mvd_l1 (x, y) 8 10 2
transform_size_8x8_flag 1 1 1
coded_block_pattern (luma) 1 4 2
coded_block_pattern (chroma) 1 2 2
coded_block_flag (Y_DC) 1 1 1
coded_block_flag (Y_AC) 4 1 1
coded_block_flag (UV_DC) 2 1 1
coded_block_flag (UV_AC) 4 1 1

RS2
mvd_l0 (x, y) 8 10 5 80 bits /MBmvd_l1 (x, y) 8 10 5

50

3.3 Summary

In our design, we propose a new prediction-based CABAC decoder. We predict bin value instead

of syntax element and let the design flow more regular. Therefore, we just require two kinds of

predict result process shown in Figure 36. When we get hit process, we may have smooth pipeline

without any data hazard. Even though we get miss penalty, we may stall one cycle to calculate correct

ctxIdx. Furthermore, we propose a high-accuracy prediction process to get more than 90% hit rate.

Above all, we get a high throughput, because we seldom have miss process.

Proposed CABAC Decoder

Hit
Process

Miss
Process

Figure 36. Proposed pipeline stage process

Besides, how to store the neighbor information and fetch them without extra latency may be

more and more important when we raise the throughput continually. In our work, we reduce the

storage and store all information of MB we require. So, we can get least increased latency and

memory size. And, we concentrate internal buffer to reduce hardware cost. Above all, we ease the

possible situation for performance lost and get the minimum hardware cost.

51

Chapter 4. Proposed Architecture

This chapter implements our proposed prediction-based CABAC decoder architecture by our

proposed scheme. Figure 37 shows block diagram of our proposed CABAC decoder.

First, in order to overcome the fundamental defects of CABAC algorithm for pipeline structure,

we make an effort to parallel the bin-decoded process and ctxIdx-calculated process by two

independent paths. Therefore, we combine controlled parser and increase bin predictor to traditional

CABAC decoder. And, the bin predictor is implemented by our proposed algorithm described in

Section 3.1. By the high hit rate, we can achieve our purpose successfully. And, the details would be

described in Section 4.1

Second, we consider the possibly additional overheads behind system integration. One of them is

we may produce a large storage and latency for neighbor information. The storage overhead would

increase hardware cost or memory bandwidth requirement. The latency overhead may cause

unexpected pipeline stalls. Therefore, we optimize the memory system to reduce storage and

schedule the scheme for real-time accessing neighbor information. Besides, we get acceptable

throughput by simple buffer and resource. And, the details would be described in Section 4.2.

Figure 37. Block Diagram of proposed CABAC decoder

52

4.1 Architecture of Prediction Process

At first, we focus on AD unit, because this is the critical part for throughput. For our purposed,

we would like calculate current bin and next ctxIdx at the same time. And, we may have

bin-decoding path and ctxIdx-calculating path to implement. The bin-decoding path inputs current

values (Range, Offset) and context data (valMPS, pState) to Arithmetic Decode (AD) Unit, and it

would output current bin to bin buffer. The next values (`Range, `Offset) which are outputted by AD

may be adjusted by Renormalize Unit and bits. Besides, the ctxIdx-calculating path inputs current

status and outputs ctxIdx by CtxIdxCalculate Unit. As we can see in Figure 38, we find out

ctxIdx-calculated process may be affected by bin-decoded process. The reason is we calculate next

status from decoded current bin. At the traditional decoding flow, the next status may be updated by

external CPU or system buffer. So, even if we do the best optimization with the traditional CABAC

decoder, we still may have a limit for throughput rate because of uncontrolled SE parser. This

dependency may be major part which cause performance lost.

Figure 38. Traditional Arithmetic Decoder flow

53

Therefore, we try to parallel the bin-decoded process and ctxIdx-calculated process by two

independent paths. We provide a controlled SE parser and record each status of pipeline stages in

shift registers to solve SESO, and we described in Section 4.1.1. And, we discuss our bin-decoding

process and ctxIdx-calculating process in Section 4.1.2 and Section 4.1.3 to become two independent

paths.

4.1.1 SE-parsed Process

Figure 39. Traditional syntax element parser

 In Figure 39, we use external CPU or system parser to determine which SE type may be

decoded. Although this kind of architecture has the advantage of relatively uncomplicated

implementation, this also may invoke performance lost significantly due to SESO which hasn’t been

considered with previous status. So, we provide a controlled SE parser instead of traditional SE

parser. However, even if we consider all SE branch location, we still may get trouble at some

situation, for example, the same SE in different block … and so on. As a result of some SE which is

more than one in different blocks, we should record each status of stages. Hence, we collect the detail

items of status which we have to store in Table 13.

Figure 40. Controlled SE parser

54

Table 13 The stored status of each stage

4.1.2 Bin-decoded Process

Figure 41. Data path of bin-decoded process

To implement bin-decoded process, we have to apply some components. Arithmetic Decoder unit

which includes regular mode, terminal mode and bypass mode is made to decode bin described in

4.1.2.1 and 4.1.2.2. Regular mode Renormalize unit is made to adjust current value (range, offset)

over correct level by bits. Besides, we may require a bit buffer which is made with FIFO structure to

deal with flexible accessing bits described in Section 4.1.2.3. And, we also require some internal

buffers to hold on current value (range, offset) and context data (valMPS, pState). Next value may be

used soon, and previous context data may be selected to update or reuse described in Section 4.1.2.4.

Stages Pr (N) AD(0) DB(1) CC(2)
Stored No Yes Yes Yes

Status

ctxIdx V V
SE_type V V V V
binIdx V V V V
mbPartIdx V V V V
subMbPartIdx V V V V
ctxBlockCat V V V V
CoeffBlkIdx V V V V
UV V V V V
levelListIdx V V

55

4.1.2.1 Regular process

Figure 42. Regular process

According to our analysis, the regular process has more than 70% occurrence rate in total

decoding process. In addition, it mostly would be the critical path restricted working frequency.

Hence, we take an effort of shorting the critical path. In our design shown in Figure 42, we use two

subtractors, two inverters and five 2-to-1 multiplexers. For each regular process, we input current

codIRange and codIOffset which are changed by previous process repeatedly. So, the current range

and offset may be updated all the time for most of regular process. Besides, we should know the

history information by context model. The context data include pState and valMPS. The pState

represents the index of LPS range table, and the valMPS represents the symbol with most of

occurrence rate. According to context data, we can get range of LPS and next pState. So, the only

thing we should do is recognizing the bin. The bin is determined which status is occurred, most

possibility symbol (MPS) or least possibility symbol (LPS). And, the two statuses are determined by

context data. Hence, we can find out the critical path in our design is the time we recognized MPS or

LPS. Different with traditional methods, we use two subtractors, one rLPS table to get the result. This

may spend much less time compared with using comparer directly.

56

4.1.2.2 Bypass/Terminal process

Figure 43. (a) Bypass Process (b) Terminal process

(a)

(b)

In this section describes other decoding process. Bypass process has second high occurrence rate

about 15% ~ 30% shown in Figure 43(a). Terminal process may occur when decoding the end of MB

and be seldom used and shown in Figure 43(b).

Because we don’t require to context data, we can simplify hardware cost and data path visibly. In

our bypass process, we use only one substrate and multiplexer to implement. We shouldn’t change

range, but we should update offset all the time. Besides, we output one when offset bigger than range

and zero when opposite status.

In the other hand, terminal process is very similar with regular process. The different part may be

we fix the range of LPS to 2, and we don’t require context data. And, most of terminal process may

be decoded zero, because one represents to end of slice. In our design, we use two subtractors, one

inverter and one multiplexer to implement. Furthermore, this process doesn’t have to load data from

table, and it may have shorter data path than regular process.

However, these two processes don’t require to access data from memory. Actually, because we

shouldn’t care about ctxIdx, we never have miss penalty and can make sure of 1 bin per cycle in these

two processes.

57

4.1.2.3 Context model data reused
As mentioned in Section 3.1.3.2, we require a internal buffer to control context data. The context

data can be selected from new or updated one. Actually, we often decode bin by new context data in

regular pipeline structure, and we store the updated one to buffer for writing context model at next

stage. Therefore, we can just use a multiplex to pre-load context data just like Figure 44(a), and we

compare the current ctxIdx with the previous ctxIdx to decide which one. So, we can get no delay

according to the data reuse, if the address of context model is the same with previous one.

4.1.2.4 Renormalization process and bit buffer
In this part, we have to design a bit buffer to overcome flexible bit requirement. The

renormalization process is used to adjust range and offset. So, the bits may be parsed in bypass

process or in other process according as the range which is smaller than normalize level. In our

analysis, we may require 0 ~ 6 bits in regular process, 0 ~ 1 bit in terminal process and 1 bit in bypass

process for each fetching. The method we used is that we apply a L2 cache with FIFO structure

shown in Figure 44(b). We always fill the buffer when containing under half of entire. Actually, we

record the number of bits in buffer and monitor each fetching of requirement. If we find out that we

aren’t enough bits in buffer after this fetching, we would send a signal to require more bits from

bit-stream SRAM. Through this buffer, we can support all possible cases for fetching the bits.

Besides, we use the same renormalize unit in regular process and bypass process to achieve high

hardware utility efficiently.

(a)

(b)
Figure 44. (a) Data reuse buffer. (b) The structure of bit buffer [9]

58

4.1.3 CtxIdx-calculated Process

Figure 45. Conventional ctxIdx-calculated process

In fact, before we calculate ctxIdx, we should know what kind of SE type we decode. The

conventional method is used external CPU/system parser to handle the complex SE branch. And,

CABAC decoder may be idle until external host invoked. After that, we may get the SE type and

decode bin by bit stream. However, as mention in previous, this method may produce some

unexpected statuses. So, we improve the conventional process to suit our controlled SE parser.

Figure 46. Proposed ctxIdx-calculated process

The controlled SE parser we has introduced in Section 4.1.1. And, we have to cut off the

relationship with bin-decoded process and ctxIdx-calculated process. According to prediction unit

which is made by Section 3.1, we can get the predicted bin0 which can be produced at the same time

with decoded bin1. Instead of decoded bin1, we use predicted bin0 to get a next status by SE parser.

And, the next status may have no dependency with decoded bin, but it may have a probability to be

wrong. We can calculate ctxIdx continually until occurrence of the error predicted bin0. Hence, we

can ease data dependency, if the probability of the error predicted bin0 is low.

59

4.2 Architecture of Memory System

After we implement the ctxIdx-calculated process and binIdx-process, we still have some

problem to be overcome. The major problem is memory issue, and we should include several SRAM

to support CABAC hardware. As mention in Section 1.2, we have two memories which are difficult

to handle. One is context model, and the other is neighbor information. Because we can ease data

dependency by our proposed methods, we just require a two-port SRAM which supports reading and

writing at the same cycle for context model. Besides, the other problem is about how to access

neighbor information when we require. In this Section, we provide a technology to access neighbor

information immediately and increase a little overhead shown in Figure 47. In order to avoid waiting

for loading neighbor information, we overcome this problem by including left and top neighbor

buffer. The concentrated buffer has been described in Section 4.2.1. Moreover, we increase one stage

(ctxIdxInc pre-calculate (CC)) to reduce the information and describe in Section 4.2.2. After we

construct the pipeline architecture, we may figure out another problem. Because not all of mvd are

bigger than 3, extra mvd would be too separate to achieve high storage reduction. Therefore, we

implement a transfer unit described in Section 4.2.3 to reach high data compression.

Figure 47. Memory hierarchy for neighbor information

60

4.2.1 Concentrated Buffer

Figure 48. Combined current and neighbor MB

 As soon as we decode the first bin of the SE, we may require the neighbor information to

calculate ctxIdx. However, we can‘t make sure what information would be fetched. So, we usually

store all information of MB to deal with flexible accessing neighbor information, and it may include

a large buffer. According to supporting variable block size, we may raise two times buffer size. Hence,

as mention in Section 3.2.2, we combine the two kinds of buffer and are shown in Figure 48. Actually,

according as our updated schedule, we can use half of buffers to achieve the same proposed.

Nevertheless, this method may not be available in some situations. In Section 3.2.2, we assume

all macroblock have 16 blocks, and we can update smoothly. But, H.264/AVC supports variable

block size actually. And we may face different block size in neighbor. So, we should discuss this kind

of situation and make an effort in Section 4.2.1.1.

On the other hand, when we upgrade over H.264/AVC main profile, and we may support a

technology, Macroblock-Adaptive Frame-Field Coding (MBAFF) mode. MBAFF means that we can

allow frame and field type in the same slice. Because we have to adapt for field mode, we should

classify MB to top and bottom. Therefore, we should consider several possible cases in neighbor, and

there is much higher complexity for supporting MBAFF mode. So, we may analysis all possible

situations and discuss in Section 4.2.1.2.

61

4.2.1.1 Various block size

In H.264/AVC, we can recognize the block size by mb_type and sub_mb_type which are two

kinds of SE. We may have four types by mb_type shown in Figure 49 (a), and we even may have

extra four types by sub_mb_type shown in Figure 49 (b). Therefore, when we decode current MB, we

can understand what block size is. In the other hands, we may have no idea what neighbor block type

is. To overcome this problem, we should make an effort for writing back information. When we

decode block type except for 16x16 block size, we should assume all MB which is 16x16 block size.

And, we extend the decoding block to neighbor blocks like Figure 50. Because we prepare the

information in each block, we don’t have to care about what block size is in neighborhood. After that,

we can support various block size by increasing some data path. By the way, because not all of SE

supports sub-macroblock partition, we just have to increase data path for some special cases.

(a) macroblock partition

(b) sub-macroblock partition

Figure 49. (a) macroblock partition (b) sub-macroblock partition

Figure 50. Example for block extension

62

4.2.1.2 MBAFF mode

MBAFF is an innovative technology for coding tool, but it also increases high complexity for

decoding. When we support MBAFF mode, we may consider the different with frame and field. And,

the address for mapping memory, control conditions and formula from standard would be totally

different. For example, Figure 51 is a case without MBAFF mode. And, we just should consider left

and top neighbor MB, because the reference MB (RefMB) and current MB (CurrMB) are either

frame type or field type. Figure 52 is a case with MBAFF mode, and each RefMB can be frame or

field type. So, we may consider current MB which is top or bottom MB and also consider current MB

which is frame or field type. Except for current MB, we also have to consider neighbor MB which is

frame or field type. Therefore, above situations can change RefMB location, so we should provide

more buffers to deal with increasing complexity instead of increasing system overhead. In our

analysis, we should enhance 2.5 times internal buffer for the worst case shown in Figure 52.

Figure 51. Without MBAFF mode

Figure 52. With MBAFF mode

Table 14. Without MBAFF mode
Case CurrMB, RefMB

0 Frame, Frame
1 Field, Field

Table 15. With MBAFF mode
Case CurrMB, RefMB

0 Frame, Frame
1 Frame, Field
2 Field, Frame

3 Field, Field

63

4.2.2 CtxIdxInc pre-Calculate Stage

Figure 53. Incensement of third stage

To supply pre-calculated method as mention in Section 3.2.1, we provide a ctxIdxInc

pre-calculate (CC) stage behind second stage shown in Figure 53. And, we output the value of SE

(valSE) after second stage. It means the third stage which is used to reduce the information wouldn’t

affect previous pipeline stages.

In the traditional flow like Figure 54, we have to store all valSE of MB in memory. When we

require neighbor information, we read them from memory. And, we calculate ctxIdx for CABAC

decoder. This method may have more requirements for memory bandwidth and memory space.

In our proposed flow like Figure 55, we reorder the ctxIdxInc calculating flow. Before we store

the information, we pre-calculate them and store dispersedly according as their utility rate. Hence,

when we require the information, we can use them directly. And, we can simplify the data path to

deal with the neighbor information.

Figure 54. Traditional neighbor information calculating flow

Figure 55. Proposed neighbor information calculating flow

64

4.2.3 Transfer Unit

After we support above technologies, we may find out that we can’t get high reduction rate for

neighbor information because of the dispersive extra mvd which is described in Section 3.2.1. So, we

try hard to get consideration to high reduction rate and concentrated buffer, and we provide a transfer

unit to compress the neighbor information.

In the transfer side, we collect at most 6 extra mvd with 5-bit and fill up from left to right to suit

for 32-bit width bus shown in Figure 56. And, the transmission times can be changed from fixed 4 to

variable 0 ~ 4. Because the extra mvd is about 20% of total mvd, we can reduce memory bandwidth

requirement significantly. In the inverse-transfer side, we may decompress data, when we find out

that 2-bit mvd equal to 3. After we received the data, we sort them according as 2-bit mvd to suit for

concentrated buffer.

Figure 57 is an example for compressing the dispersive extra mvd. Before our process, original

extra mvd store dispersedly in different blocks, and we can just send or receive them once after our

transfer process.

Send/Received : 0 ~ 3

1 2 3

Figure 56. Transfer unit

Send/Received : 1

Figure 57. Example for transfer unit

65

4.3 Summary

After we overcome the problems of sub-unit, we may consider the issues about integration in

system. We may discuss the situation about integration for each pipeline stage, memory system and

entire CABAC decoding core. Different with traditional CABAC decoding flow, we combine SE

parser and decoder. So, as soon as our CABAC decoder is invoked, it may decode continually until

the end of slice. Besides, we may require an initialization process to initial context model data at the

beginning of slice. After we finish each process we require, we make a FSM to control initialization

process and decoding process.

At first, we integrate our prediction process, bin-decoded process and ctxIdx-calculated process

in first pipeline stage. And, we input the current values (range and offset) and context data to

arithmetic decode and prediction unit. Because of our controlled SE parser (described in Section

4.1.1) and optimization of ctxIdx-calculated process (described in Section 4.1.1), we can decode bin

and calculate ctxIdx at the same time. And then, the decoded bin may be stored in bin buffer, and the

ctxIdx may be sent for requiring new context data. Besides, we may get the current values by

renormalize process and bit buffer (described in Section 4.1.2.2), and the context data can be reused

by internal buffer (described in Section 4.1.2.1). In Figure 58, we highlight these data paths.

Figure 58. Integration for first pipeline stage

66

However, after finishing above process, we still lack some data for calculating ctxIdx. The data

is neighbor information. So, we have to supply neighbor information for ctxIdx calculate unit. As

shown in Figure 59, we provide concentrated buffer (described in Section 4.2.1) and transfer unit

(described in Section 4.2.3) to prepare neighbor information. And, left block of neighbor information

can be reused, and top block of neighbor information may be updated with memory.

Figure 59. Integration for memory system

Second, after finishing first pipeline stage, we integrate de-binarization (DB) process and

ctxIdxInc pre-calculate (CC) process (described in Section 4.2.2) to our CABAC decoding core. The

DB process is inputted bins and SE type, and it may be outputted value of SE (valSE) to valSE buffer

and system buffer. The CC process is inputted valSE and SE type, and it may be outputted

conditional term flag to concentrated buffer for neighbor blocks. Because we have stored status of

each stage in buffer of SE parser, we can make sure what SE type is in each pipeline stage. Therefore,

according to low complexity and no data hazard of DB and CC process, we can implement second

and third stages easily by some pipeline buffer.

67

Third, we integrate the whole pipeline stage (Part A) and memory system (Part B) to our

proposed CABAC decoding core which is shown in Figure 60. After that, because this may cause

data hazard problem in some special cases or SE, for example, coded_block_pattern, we increase a

forward process to deal with this problem as mentioned in Section 3.1.3.1. Actually, we use

multiplexer to select regular path or forward path to avoid data hazard problem.

In the other hand, we should have a process to deal with miss penalty. Because we adopt

prediction bin0 which has a probability to be wrong in our design, we may increase a risk for

predicting miss. Therefore, we have to make a process to deal with this situation. Actually, even if we

get miss penalty, it may be not things by some cases as mentioned in Section 3.1.2. However, we still

have to stall in the worst case. To avoid occurring miss penalty one after another, we should stall one

cycle and use previous decoded bin instead of predicted bin to calculate correct ctxIdx. And, the

status buffer of SE parser shouldn’t be shifted in this situation.

Figure 60. Integration of CABAC decoding core

68

After we finish our decoding process core, we still have to support a process before invoking

decoding process. That is initialization process as mentioned in Section 2.1. This process is used to

initial context model, and we should do it at the beginning of slice. Following is the pseudo-code

from standard [1] for computing the single context model.

1. preCtxState = Clip3(1, 126, ((m ∗ Clip3(0, 51, SliceQPY)) >> 4) + n)

(Eq. 11)

2. if(preCtxState <= 63) {
pStateIdx = 63 - preCtxState
valMPS = 0

} else {
pStateIdx = preCtxState - 64
valMPS = 1

}

(Eq. 12)

Therefore, for our purpose, we require SliceQPy which is made from header and (m, n) which is

made from Initialization table to produce initial value. According to the standard [1], the probabilities

of preCtxState have to be kept between 1 and 126. Figure 61 shows the implementation of the

context model initialization. It is divided into three stages, and is composed of one multiplier, one

adder, and one subtractor.

Figure 61. Initialization process [9]

Thus, the initialization can execute continuously with the pipeline. It depicts the action of three

stages, and consumes 401 cycles per initialization occurrence.

69

Finally, after we finish our decoding process and initialization process, we may consider how to

switch these processes and the memory issue. As shown in Figure 62, we supply a FSM about three

states. The state 0 is supplied to shut down the decoder, when decoder isn’t invoked. The system may

work at the other entropy decoding in this state.

After the decoder is invoked, we may transfer to state 1. The state 1 is supplied to initial context

model at the beginning of slice. We may require initialization table from ROM/external memory as

shown in Figure 63. As computing each context model, initialization process would read (m, n) from

initialization table. And, it may compute the initial context data to context model. Therefore, we just

require working initialization process, reading parameter and writing initial context data.

As soon as we finish to initial context model, we may transfer to state 2. The state 2 is supplied

to decode SE. Because of including the controlled SE parser, we shouldn’t wait for external

assignment. And, we can decode each SE of slice until the end of slice. Besides, we have to read and

update new context model data from context model repeatedly, and we may change the neighbor

information for each MB to internal and external memory shown in Figure 64. Finally, after we

decode end of slice, we may return to state 0 waiting for next invoked.

Figure 62. FSM for whole CABAC integration

70

Figure 63. State 1 – Initialization Process

Figure 64. State 2 – Decode Process

71

Chapter 5. Simulation Results

5.1 Prediction Scheme Verification
To proof our prediction algorithm can adapt in different sequences, we make a simulation that we

calculate hit rate at each bin of sequences in average with MPS rate. Figure 65 shows average hit rate

of HD sequences and we get hit rate from 90.75% to 94.27% in all resolution sequences. It represents

we can keep over 90% hit rate even in the worst case. Besides, we also make a simulation with

variable QP in Figure 66 (fix QPB,P) and Figure 67(fix QPI). By the way, we put simulation results of

other resolutions in Appendix B.

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

Table 16 Hit rate of prediction process for HD sequence
Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
HIT Rate

Increased
Hit Rate

parkrun 83001685 62474532 76624869 75.27% 92.32% 17.05%
shields 11317592 8733340 10444611 77.17% 92.29% 15.12%
stockholm 10089721 7984117 9373943 79.13% 92.91% 13.77%
riverbed 137403314 107280400 127833147 78.08% 93.03% 14.96%
station 79634578 63939062 74707361 80.29% 93.81% 13.52%
sunflower 85137642 68626372 80255375 80.61% 94.27% 13.66%

Figure 65. Hit rate of prediction process for HD sequence

17.05% 15.12% 13.77% 14.96% 13.52% 13.66%

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

parkrun shields stockholm riverbed station sunflower

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

72

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QPBP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

Figure 66. Hit rate of prediction process for variable QPI
Table 17 Hit rate of prediction process for variable QPI

 HD720p HD1080p
QP stockholm parkrun stockholm parkrun stockholm parkrun

0 83.27% 93.72% 79.64% 93.48% 83.21% 93.83% 76.22% 92.53% 79.06% 92.81% 76.82% 92.20%

10 79.91% 93.28% 78.56% 93.29% 80.09% 93.32% 75.57% 92.56% 76.88% 92.55% 75.25% 91.90%

15 77.65% 92.51% 77.39% 92.85% 77.82% 92.64% 75.32% 92.74% 75.61% 92.90% 74.16% 91.75%

20 77.02% 92.49% 76.39% 92.55% 76.77% 92.29% 76.47% 92.34% 76.30% 93.22% 73.96% 91.75%

25 77.12% 92.67% 75.67% 92.38% 76.05% 92.12% 74.52% 92.23% 77.01% 93.26% 73.80% 91.61%

30 77.67% 92.67% 75.37% 92.30% 75.94% 92.10% 74.23% 92.30% 76.79% 93.38% 73.62% 91.56%

35 78.21% 92.73% 75.27% 92.32% 76.14% 92.24% 74.35% 92.47% 77.36% 93.56% 73.61% 91.55%

40 78.61% 92.80% 75.29% 92.33% 76.65% 92.24% 74.67% 92.67% 77.99% 93.87% 73.65% 91.55%

45 78.90% 92.85% 75.33% 92.31% 76.95% 92.23% 74.92% 92.73% 78.59% 93.99% 73.66% 91.57%

50 79.15% 92.92% 75.35% 92.31% 77.17% 92.30% 75.07% 92.74% 79.20% 94.18% 73.66% 91.58%

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 5 10 15 20 25 30 35 40 45 50

H
it

R
at

e

QPI

Stockholm (HIT Rate)

Parkrun (HIT Rate)

Shields (HIT Rate)

Stockholm (MPS Rate)

Parkrun (MPS Rate)

Shields (MPS Rate)

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 5 10 15 20 25 30 35 40 45 50

H
it

R
at

e

QPI

Riverbed (HIT Rate)

Station (HIT Rate)

Sunflower (HIT Rate)

Riverbed (MPS Rate)

Station (MPS Rate)

Sunflower (MPS Rate)

73

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QPI: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

Figure 67. Hit rate of prediction process for variable QPB,P
Table 18 Hit rate of prediction process for variable QPB,P

 HD720p HD1080p
QP stockholm parkrun shields sunflower station riverbed

0 83.38% 93.34% 87.65% 95.64% 82.12% 92.61% 73.34% 92.34% 75.77% 91.13% 81.42% 93.11%

10 77.81% 91.30% 83.72% 93.24% 76.34% 91.51% 74.19% 91.89% 73.08% 92.53% 78.02% 92.42%

15 73.08% 92.77% 78.83% 93.12% 72.83% 92.52% 74.75% 92.88% 74.54% 92.20% 75.54% 92.38%

20 74.30% 91.59% 76.26% 92.10% 73.95% 92.17% 75.48% 91.68% 76.40% 93.38% 75.41% 92.62%

25 76.19% 93.57% 74.66% 92.72% 76.90% 92.32% 72.54% 91.61% 77.11% 92.33% 75.14% 92.08%

30 79.71% 91.88% 76.64% 92.16% 77.58% 92.04% 73.16% 92.14% 75.26% 93.09% 73.52% 91.74%

35 76.66% 92.84% 74.61% 92.58% 75.23% 92.33% 75.17% 92.54% 77.93% 93.63% 73.97% 91.64%

40 77.04% 93.27% 74.57% 92.23% 74.74% 92.67% 77.58% 93.27% 79.33% 93.77% 75.84% 92.01%

45 77.62% 93.39% 75.16% 92.34% 74.99% 92.78% 79.63% 93.79% 79.94% 93.87% 77.91% 92.83%

50 77.92% 93.47% 75.57% 92.49% 75.82% 93.00% 80.81% 94.14% 79.31% 93.77% 79.18% 93.85%

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 5 10 15 20 25 30 35 40 45 50

H
it

R
at

e

QPB,P

Shields (HIT Rate)

Stockholm (HIT Rate)

Parkrun (HIT Rate)

Shields (MPS Rate)

Stockholm (MPS Rate)

Parkrun (MPS Rate)

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 5 10 15 20 25 30 35 40 45 50

H
it

R
at

e

QPB,P

Riverbed (HIT Rate)

Station (HIT Rate)

Sunflower (HIT Rate)

Riverbed (MPS Rate)

Station (MPS Rate)

Sunflower (MPS Rate)

74

5.2 Memory System Verification

In the other works, we reduce the storage and test in full-HD sequences. We count the range

distribution of mvd in average 30 frames and show our comparison with traditional in Figure 68. And

then, we get reduction rate from 58.01% to 75.13%. Although, the riverbed sequence has low

reduction rate, it doesn’t have large mvd to be stored actually. It means we can reduce bandwidth

requirement or system buffer utilities efficiently. Besides, we also analyze the relationship between

memory bandwidth requirement and internal SRAM size in Figure 69 and Figure 70. By the way, we

put simulation results of other resolutions in Appendix C.

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

Figure 68. Max. B.W. of memory system for HD sequences
Table 19 Max. B.W. of memory system for HD sequences

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

shields 578866 522504 56362 1736598.00 431862.60 75.13%
stockholm 500732 429883 70849 1502196.00 406712.70 72.93%
parkrun 1405608 1250702 154906 4216824.00 1075723.80 74.49%
riverbed 117080 65599 51481 351240.00 147469.50 58.01%
station 756052 631556 124496 2268156.00 640375.20 71.77%

sunflower 688546 573641 114905 2065638.00 585485.10 71.66%

75.13% 72.93% 74.49%

58.01%

71.77% 71.66%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000
4,500,000

shields stockholm parkrun riverbed station sunflower

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

75

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

Figure 69. Max. B.W. of memory system for SRAM size for HD 720p sequences

Table 20 Max. B.W. of memory system for SRAM size for HD 720p sequences

SRAM
size

HD 720p
Stockholm Shields Parkrun

Traditional Optimal Traditional Optimal Traditional Optimal
0 1,502,196 406,713 1,736,598 1,131,076 4,216,824 1,075,724

160 1,483,419 390,592 1,714,891 1,128,962 4,164,114 1,028,822
320 1,464,641 374,471 1,693,183 1,126,848 4,111,403 981,921
480 1,445,864 358,351 1,671,476 1,124,735 4,058,693 935,020
640 1,427,086 342,230 1,649,768 1,122,621 4,005,983 888,119
800 1,408,309 326,110 1,628,061 1,120,508 3,953,273 841,217
960 1,389,531 309,989 1,606,353 1,118,394 3,900,562 794,316

1,120 1,370,754 293,868 1,584,646 1,116,281 3,847,852 747,415
1,280 1,351,976 277,748 1,562,938 1,114,167 3,795,142 700,513
1,440 1,333,199 261,627 1,541,231 1,112,053 3,742,431 653,612
1,600 1,314,422 245,507 1,519,523 1,109,940 3,689,721 606,711
1,760 1,295,644 229,386 1,497,816 1,107,826 3,637,011 559,809
1,920 1,276,867 213,265 1,476,108 1,105,713 3,584,300 512,908
2,080 1,258,089 197,145 1,454,401 1,103,599 3,531,590 466,007
2,240 1,239,312 181,024 1,432,693 1,101,486 3,478,880 419,105
2,400 1,220,534 164,904 1,410,986 1,099,372 3,426,170 372,204
2,560 1,201,757 148,783 1,389,278 1,097,258 3,373,459 325,303
2,960 1,154,813 139,484 1,335,010 1,028,680 3,241,683 304,971
3,360 1,107,870 130,185 1,280,741 960,101 3,109,908 284,640
3,760 1,060,926 120,886 1,226,472 891,522 2,978,132 264,308
4,160 1,013,982 111,587 1,172,204 822,944 2,846,356 243,977
4,560 967,039 102,288 1,117,935 754,365 2,714,580 223,646
4,960 920,095 92,989 1,063,666 685,787 2,582,805 203,314
5,360 873,151 83,690 1,009,398 617,208 2,451,029 182,983
5,760 826,208 74,391 955,129 548,629 2,319,253 162,651
6,160 779,264 65,093 900,860 480,051 2,187,477 142,320
6,560 732,321 55,794 846,592 411,472 2,055,702 121,988
6,960 685,377 46,495 792,323 342,893 1,923,926 101,657
7,360 638,433 37,196 738,054 274,315 1,792,150 81,326
7,760 591,490 27,897 683,785 205,736 1,660,374 60,994
8,160 544,546 18,598 629,517 137,157 1,528,599 40,663
8,560 497,602 9,299 575,248 68,579 1,396,823 20,331
8,960 450,659 0 520,979 0 1,265,047 0

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0
35

2
70

4
10

56
14

08
17

60
21

12
24

64
31

20
40

00
48

80
57

60
66

40
75

20
84

00

M
ax

. B
an

dw
id

th

R
eq

ue
st

(b
its

/s
)

SRAM Size(bits)

Op. Stockholm

Op. Shields

Op. Parkrun

Trad. Stockholm

Trad. Shields

Trad. Parkrun

76

(*Below simulations are tested by JM 16.1[2] with 4:2:0 color format,QP: 28, GOP: IBPBP…, Max video bit-rate and frame rate of 30 fps.)

Figure 70. Max. B.W. of MEM. system for SRAM size for HD 1080p sequences
Table 21 Max. B.W. of MEM. system for SRAM size for HD 1080p sequences

SRAM
size

HD 1080p
Riverbed Sunflower Station

Traditional Optimal Traditional Optimal Traditional Optimal
0 351,240 147,470 2,065,638 585,485 2,268,156 642,887

256 346,557 144,846 2,038,096 562,539 2,237,914 617,692
512 341,874 142,222 2,010,554 539,594 2,207,672 592,496
768 337,190 139,598 1,983,012 516,648 2,177,430 567,301

1,024 332,507 136,974 1,955,471 493,703 2,147,188 542,106
1,280 327,824 134,350 1,927,929 470,757 2,116,946 516,911
1,536 323,141 131,726 1,900,387 447,811 2,086,704 491,715
1,792 318,458 129,102 1,872,845 424,866 2,056,461 466,520
2,048 313,774 126,478 1,845,303 401,920 2,026,219 441,325
2,304 309,091 123,854 1,817,761 378,974 1,995,977 416,130
2,560 304,408 121,230 1,790,220 356,029 1,965,735 390,934
2,816 299,725 118,606 1,762,678 333,083 1,935,493 365,739
3,072 295,042 115,982 1,735,136 310,137 1,905,251 340,544
3,328 290,358 113,358 1,707,594 287,192 1,875,009 315,348
3,584 285,675 110,734 1,680,052 264,246 1,844,767 290,153
3,840 280,992 108,110 1,652,510 241,301 1,814,525 264,958
3,840 280,992 108,110 1,652,510 241,301 1,814,525 264,958
4,480 269,284 100,903 1,583,656 225,214 1,738,920 247,294
5,120 257,576 93,695 1,514,801 209,127 1,663,314 229,630
5,760 245,868 86,488 1,445,947 193,040 1,587,709 211,966
6,400 234,160 79,281 1,377,092 176,954 1,512,104 194,302
7,040 222,452 72,073 1,308,237 160,867 1,436,499 176,639
7,680 210,744 64,866 1,239,383 144,780 1,360,894 158,975
8,320 199,036 57,659 1,170,528 128,694 1,285,288 141,311
8,960 187,328 50,451 1,101,674 112,607 1,209,683 123,647
9,600 175,620 43,244 1,032,819 96,520 1,134,078 105,983

10,240 163,912 36,037 963,964 80,434 1,058,473 88,319
10,880 152,204 28,829 895,110 64,347 982,868 70,655
11,520 140,496 21,622 826,255 48,260 907,262 52,992
12,160 128,788 14,415 757,401 32,173 831,657 35,328
12,800 117,080 7,207 688,546 16,087 756,052 17,664
13,440 105,372 0 619,691 0 680,447 0

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0
51

2
10

24
15

36
20

48
25

60
30

72
35

84
44

00
56

80
69

60
82

40
95

20
10

80
0

12
08

0
13

36
0

M
ax

. B
an

dw
id

th

R
eq

ue
st

(b
its

/s
)

SRAM Size(bits)

Op. Riverbed

Op. Sunflower

Op. Station

Trad. Riverbed

Trad. Sunflower

Trad. Station

77

5.3 Hardware Architecture Verification
The synthesis results of proposed architecture and the performance comparison with previous

works are shown in Table 22. [7] and [8] use the same algorithm and get an increment throughput

significantly by the method of branch selection hardware structure. But, they may get large hardware

cost and still deal with SESO difficultly. Conversely, [5][6] use the high occurrence rate of MPS bin.

[5] produces two bins per cycle (BPC) at continuous MPS bin and gets 0.86 BPC. And, [6] provides a

SE predictor to really deal with SESO and has 71.4% of hit rate for overall bin switching.

The RTL simulation result shows that the proposed design can decode 0.93 BPC in average with

17k gate counts and 3,360 bits SRAM. However, we can achieve Level 5.0 MP in our estimation.

Max. thoughput of the proposed design is 239.4 Mbins/s and Maximum working frequency is 232.5

MHz. In the other hand, we optimize our memory system for getting neighbor information, and we

only need 0.868 cycle delay for each macro block. By the way, we put simulation results of other

resolutions in Appendix D.

Table 22 Comparison of the proposed design and previous works
 ISCAS 10’ [8] ISCAS 09’ [7] ISCAS 08’[6] CSVT 09’ [5] Proposed

Spec. 1920x1088@30fps 1920x1088@30fps 1920x1088@25fps 1920x1088@30fps 1920x1088@30fps

Technology UMC 90nm UMC 90nm N/A TSMC 0.18 um UMC 90nm

Mechanism Parallel-based Parallel-based Prediction-based Prediction-based Prediction-based

Frequency

w/o SE
parser MAX:264 MHz MAX:222MHz

N/A

105 MHz
 (MAX:140 MHz)

150 MHz
(MAX: 286.5MHz)

with SE
parser N/A N/A N/A MAX:232.5 MHz

Gate
Count

w/o Context
Model, N/A N/A N/A 34,955 17,022

(19,549@232.5MHz)
with Context

Model, 42,372 82,400 N/A 76,333 24,407
(28,150@232.5MHz)

SE Parser N/A N/A N/A N/A 1,699

MEM.
System

Get Neighbor
Data Delay N/A N/A N/A N/A 0.868 idle/MB

(*idle : 1 cycle)
Context
Model Hybrid SRAM Register File N/A SRAM

(3,528 bits)
SRAM

(3,360 bits)
Average

Bins/Cycle 1.83 1.95 ~ 1.98 0.8333
(Hit Rate: 71.4%)

0.71(740x480@4Mb/s)
0.86(1920x1088@60Mb/s)

0.9295
(Hit Rate: 91.57%)

Maximum

Throughput
483.1

(@ 264MHz)
410.0

(@ 222MHz) N/A 120.4
(@140Mhz)

223.6
(@232.5MHz)

78

Chapter 6. Conclusion and Future Works

6.1 Conclusion
In this works, we apply single-bin engine efficiently to get acceptable throughput by our

proposed high-accuracy prediction scheme. And, we implement a bin-trend-predicted CABAC

decoder hardware architecture with the balance of low overhead and acceptable throughput on the

system point of view and compare with other designs in Figure 71.

We provide a bin-trend predictor to speculate the bin which is MPS or LPS, and we can get more

than 90% of hit rate in our simulation results. Besides, we also provide a self-controlled SE parser

which can output SE type [i+1] by inputting SE type [i] and current bin. After that, we can use the

predicted bin to break the relationship between bin-decoded and ctxIdx-calculated process. Therefore,

we can get high hardware utility rate efficiently.

Furthermore, we also optimize memory system to reduce the overhead for system, and it reduces

about 70% of information to be stored. And, we also decrease the latency for getting neighbor

information to avoid unexpected stalls. Finally, we use only 17K gate counts with 3,360 bits two-port

SRAM to achieve maximum 223.6 Mbins/s throughputs for real-time decoding full-HD sequences.

Figure 71. Comparison of the proposed design and previous works

79

6.2 Future Works

In order to achieve the QFHD or Ultra-HD videos, the throughput rate may not correspond to the

requirement. We can estimate the specification of throughput in Table 23. If we should support higher

resolution, the maximum bitstream would be upgraded. When we assume the average compression

rate (CR) is 1.5, it means the maximum throughput should get at least 360 Mbins/s for QFHD.

Furthermore, the ultra-HD will be supported by next standard – H.265/HEVC, and it has high

probability to continue using CABAD for entropy coding. If we assume H.265/HEVC can save the

bit-rate up to 50% compared with H.264/AVC, H.265/HEVC requires at least 720 Mbins/s.

Table 23 The specification [1] for QFHD and Ultra-HD at 30 fps

Resolution Frame size FPS MBits CR MBins
bin/cycle

100 MHz 333 MHz

QFHD 4096x2048 30 240 1.5 360 3.6 1.08

Ultra-HD 8192x4096 30 *480 1.5 720 7.2 2.16

However, even if we overcome the miss penalty and idle problems as shown in (Eq. 10), the

maximum throughput may equal to working frequency by single bin engine as (Eq. 13).

Assume ሺMIissRate ൎ 0, Idle times ا Total Binሻ

Max. Throughput ሺSingle binሻ ൌ
Working Frequcy

ሺ1 ൅ ReqularModeRate · 0 ൅ 0ሻ

(Eq. 13)

In other words, the frequency may at least work at 720 MHz for supporting Ultra-HD. Even

though we don’t care about the critical path of design, the system may not accept this working

frequency. Therefore, we require an advantage technology to combine the advantage of

prediction-base and parallel-base CABAC decoder to break the limit of throughput as (Eq. 15).

Max. Throughput ሺSingle binሻ ൌ Working Frequency ൈ 1 (Eq. 14)

Max. Throughput ሺMulti binሻ ൌ Working Frequency ൈ N ሺN ൐ 1ሻ (Eq. 15)

Actually, parallel-based strategy may raise the miss rate and idle times, and the performance

wouldn’t be double as our estimation when integrating to system.

80

In Figure 72, we show the block diagram with prediction-based and parallel-based techniques.

We apply a predictor which can predict how many MPS bin will be produced, and the decoder can

support variable bin rate and high working frequency. Therefore, we separate the status of “11” to

five sub-intervals, and we depend on sub-intervals to determine which engine will be chose. Besides,

we prepare four kinds of context model and pre-calculate the context data for continually MPS bin,

and critical path is no longer than LPS process. After that, we can guarantee to decode 1~4 bin per

cycle by our prediction process, it can be used to parallel-based decoder actually.

Figure 72. Combined prediction-based and parallel-based CABAC decoder

81

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG&ITU-T VCEG, “Joint Draft ITU-T Rec.

H.264 | ISO/IEC 14496-10/Amd.3 Scalable video coding,” Jul. 2007.

[2] Joint Video Team (JVT) Reference Software JM 16.

[3] Detlev Marpe, Heiko Schwarz and Thomas Wiegand, “Context-Based Adaptive Binary

Arithmetic Coding in the H.264/AVC Video Compression Standard,” IEEE Trans. on

Circuits and System for Video Technology, vol. 13, pp. 620-636, Jul. 2003.

[4] Yongseok Yi and In-Cheol Park, “High-Speed H.264/AVC CABAC Decoding,” IEEE

Trans. on Circuits and System for Video Technology, vol. 17, pp. 490-494, Apr. 2007.

[5] Yao-Chang Yang and Jiun-In Guo, “High-Throughput H.264/AVC High-Profile CABAC

Decoder for HDTV Applications,” IEEE Trans. on Circuits and System for Video

Technology, vol. 19, pp. 1395-1399, Sep. 2009.

[6] Won-Hee Son and In-Cheol Park, “Prediction-based Real-time CABAC Decoder for High

Definition H.264/AVC,” IEEE International Symposium on Circuits and Systems, pp.

33-36, May 2008.

[7] Pin-Chih Lin, Tzu-Der Chuang and Liang-Gee Chen, “A Branch Selection Multi-symbol

High Throughput CABAC Decoder Architecture for H.264/AVC,” IEEE International

Symposium on Circuits and Systems, pp. 365-368, May 2009.

[8] Yuan-Hsin Liao, Gwo-Long Li and Tian-Sheuan Chang, “A High Throughput VLSI Design

with Hybrid Memory Architecture for H.264/AVC CABAC Decoder,” IEEE International

Symposium on Circuits and Systems, pp. 2007–2010, May 2010.

[9] Yi-Hong Huang, “Context Adaptive Binary Arithmetic Decoder of H264/AVC for Digital

TV application,” Master thesis, Hsinchu, Taiwan, Jul. 2005.

82

[10] Weiyi Xia, Xiaoliang Chen and Xiaofeng Lu, “Implementation strategies for CABAC

decoder of H.264 for HD resolution video,” IEEE International Symposium on Circuits

and Systems, pp. 596-600, Apr. 2010.

[11] Yan Zheng, Shibao Zheng, Zhonghua Huang and Ziliang Zhao, “A Time and Storage

Optimized Hardware Design for Context-Based Adaptive Binary Arithmetic Decoding in

H.264/AVC,” IEEE International Conference on Multimedia & Expo, pp. 1567-1570, Jul.

2007.

[12] Wei Yu and Yun He, “A high performance CABAC decoding architecture,＂IEEE Trans.

on Consumer Electronics, Vol. 51, No. 4, pp. 1352-1359, Nov. 2005.

[13] Chung-Hyo Kim and In-Cheol Park, “High speed decoding of context-based adaptive

binary arithmetic codes using most probable symbol prediction,＂IEEE International

Symposium on Circuits and Systems, pp. 1707-1710, May 2006.

[14] Bing Shi, Wei Zheng, Hoang-Son Lee, Dong-Xiao Li and Ming Zhang, “Pipelined

Architecture Design of H.264/AVC CABAC Real-Time Decoding,” IEEE International

Conference on Circuits & Systems for Communication8, pp. 492-496, May 2008.

[15] Peng Zhang, Don Xie and Wen Gao, “Variable-Bin-Rate CABAC Engine for H.264/AVC

High Definition Real-Time Decoding,” IEEE Trans. on Very Large Scale Integration

Systems, vol. 17, pp. 417-426, Mar. 2009.

[16] Jian-Wen Chen and Youn-Long Lin, ”A high-performance hardwired CABAC decoder for

ultra-high resolution video,” IEEE Trans. on Consumer Electronics, vol. 55, issue 3, pp.

1614-1622, Aug. 2009.

[17] Kai-Hsiang Chang and Youn-Long Lin, ”A very high throughput fully hardwired CABAC

decoder,” International Symposium on Intelligent Signal Processing and Communications

Systems, pp.200-203, Jan. 2009.

83

[18] Yu Hong, Peilin Liu, Hang Zhang, Zongyuan You, Dajiang Zhou and Goto S, “A

360Mbin/s CABAC decoder for H.264/AVC level 5.1 applications,” International SoC

Design Conference, pp. 71-74, Nov. 2009.

[19] Xu Mei-hua, Cheng Yu-lan, Ran Feng, and Chen Zhang-jin, “Optimizing Design and FPGA

Implementation for CABAC Decoder,” High Density packaging and Microsystem

Integration, pp. 1-5, Jun. 2007.

[20] Yuan-Teng Chang, “A novel pipeline architecture for H.264/AVC CABAC decoder,” High

Density packaging and Microsystem Integration, pp. 308-311, Nov. 2008.

84

Appendix A. System Specification

Figure 73. Block Diagram of Si2 H.264/SVC Decoder

Table 24. Our H.264/SVC system decoder specification

Si2 H.264/ SVC Decoder System
Resolution:

H.264/AVC SVC

HD1080, 30fps

HD720 – HD1080, 30fps (maximum resolution)

Others
Ex1: qcif – cif – 4cif – HD720
Ex2: cif – 4cif – 16cif

< 352800 MBs/s
Working Frequency:

100 MHz 150 MHz
External Memory and Bus:
SDRAM 128Mb, 32-bit per entry Bandwidth 32-bit/cycle

85

Appendix B. Simulation Result of Prediction Process

B.1 All Sequences of QCIF & CIF

QCIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 74. Hit rate of prediction process for QCIF sequences (1/4)

Table 25 Hit rate of prediction process for QCIF sequences (1/4)
 Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
Hit Rate

Increased
Hit Rate

akiyo 401188 288254 364849 71.85% 90.94% 19.09%
carphone 1888711 1336535 1731293 70.76% 91.67% 20.90%

claire 442900 317544 405973 71.70% 91.66% 19.97%
coastguard 2050659 1573894 1899053 76.75% 92.61% 15.86%
container 352983 265334 325270 75.17% 92.15% 16.98%
foreman 1632549 1175665 1496015 72.01% 91.64% 19.62%

19.09% 20.90% 19.97%
15.86% 16.98%

19.62%

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

86

QCIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 75. Hit rate of prediction process for QCIF sequences (2/4)

Table 26 Hit rate of prediction process for QCIF sequences (2/4)
Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
Hit Rate

Increased
Hit Rate

glasgow 1483251 1096963 1483251 73.96% 91.57% 17.61%
grandma 756790 550260 756790 72.71% 91.88% 19.17%

hall_monitor 437924 306081 437924 69.89% 91.36% 21.46%
miss_am 136214 98737 136214 72.49% 92.14% 19.65%
mobile 3085784 2222294 3085784 72.02% 91.61% 19.59%

mother_
dauguter

1575658 1129898 1575658 71.71% 91.72% 20.01%

17.61% 19.17%
21.46%

19.65% 19.59% 20.01%

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

87

QCIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 76. Hit rate of prediction process for QCIF sequences (3/4)

Table 27 Hit rate of prediction process for QCIF sequences (3/4)

21.32% 21.43% 20.99% 21.52% 21.49%
19.62%

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

news paris salesman silent singer stefan

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

Sequence
Name

Total bin MPS bin Hit bin MPS Rate
Proposed
Hit Rate

Increased
Hit Rate

news 711037 500118 651711 70.34% 91.66% 21.32%
paris 1806577 1258482 1645573 69.66% 91.09% 21.43%

salesman 611919 430568 558983 70.36% 91.35% 20.99%
silent 744340 518223 678414 69.62% 91.14% 21.52%
singer 919938 637155 834846 69.26% 90.75% 21.49%
stefan 3845883 2792411 3546934 72.61% 92.23% 19.62%

88

QCIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 77. Hit rate of prediction process for QCIF sequences (4/4)

Table 28 Hit rate of prediction process for QCIF sequences (4/4)

Sequence
Name

Total bin MPS bin Hit bin MPS Rate
Proposed
Hit Rate

Increased
Hit Rate

suzie 354026 258335 323976 72.97% 91.51% 18.54%
table 1153592 815668 1055292 70.71% 91.48% 20.77%
trevor 507733 351005 462659 69.13% 91.12% 21.99%
AVG 1185698 853496.4 1087237 71.98% 91.70% 19.88%

18.54% 20.77% 21.99%
19.88%

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

suzie table trevor AVG

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

89

CIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 78. Hit rate of prediction process for CIF sequences (1/4)

Table 29 Hit rate of prediction process for CIF sequences (1/4)
Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
Hit Rate

Increased
Hit Rate

MadCyclistL 30912062 22612471 28341503 73.15% 91.68% 18.53%
akiyo 781084 576774 722873 73.84% 92.55% 18.70%
bus 6138347 4465976 5665328 72.76% 92.29% 19.54%

canoa 16259037 12069746 14968955 74.23% 92.07% 17.83%
carphone 6955450 5115658 6402589 73.55% 92.05% 18.50%

coastguard 10485846 7942913 9700303 75.75% 92.51% 16.76%

18.53% 18.70% 19.54% 17.83% 18.50% 16.76%

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

90

CIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 79. Hit rate of prediction process for CIF sequences (2/4)

Table 30 Hit rate of prediction process for CIF sequences (2/4)
Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
Hit Rate

Increased
Hit Rate

container 2562245 1898159 2361878 74.08% 92.18% 18.10%
flower 13027346 9850217 12011075 75.61% 92.20% 16.59%

football 12317558 8806890 11289817 71.50% 91.66% 20.16%
foreman 4130911 3082408 3802422 74.62% 92.05% 17.43%

hall_monitor 2639871 1910072 2419528 72.35% 91.65% 19.30%
mobile 13913132 10223841 12768531 73.48% 91.77% 18.29%

18.10% 16.59%
20.16%

17.43% 19.30% 18.29%

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

91

CIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 80. Hit rate of prediction process for CIF sequences (3/4)

Table 31 Hit rate of prediction process for CIF sequences (3/4)
Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
Hit Rate

Increased
Hit Rate

mother_
dauguter

1220462 898149 1124388 73.59% 92.13% 18.54%

news 2058735 1479086 1891674 71.84% 91.89% 20.04%
paris 16494159 11752391 15067837 71.25% 91.35% 20.10%

sample_int 16021784 12517653 14958343 78.13% 93.36% 15.23%
silent 2313493 1651163 2121392 71.37% 91.70% 20.33%
singer 1928067 1372545 1759814 71.19% 91.27% 20.09%

18.54% 20.04% 20.10%

15.23%

20.33% 20.09%

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

92

CIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 81. Hit rate of prediction process for CIF sequences (4/4)

Table 32 Hit rate of prediction process for CIF sequences (4/4)
Sequence

Name
Total bin MPS bin Hit bin MPS Rate

Proposed
Hit Rate

Increased
Hit Rate

stefan 14415583 10652610 13264112 73.90% 92.01% 18.12%
table 4344952 3155185 3986853 72.62% 91.76% 19.14%

tempete 9637761 6937195 8821796 71.98% 91.53% 19.55%
waterfall 2384654 1741221 2194676 73.02% 92.03% 19.02%

AVG 8679206 6396015 7983895 73.36% 91.99% 18.63%

18.12% 19.14% 19.55% 19.02% 18.63%

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

stefan table tempete waterfall AVG

H
it

R
at

e

Sequence Name

MPS Rate Incresed HitRate Total bin

93

B.2 All Various QPI,B,P of QCIF & CIF

QCIF @ jm16.1[2] QPB,P:28 GOP: IBPBP… BR: 240 kbit/s

Figure 82. Hit rate of prediction process for various QPI (QCIF)

CIF @jm16.1[2] QPB,P:28 GOP: IBPBP…BR: 960 kbit/s

Figure 83. Hit rate of prediction process for various QPI (CIF)

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 3 6 9 1215182124273033363942454851

H
it

R
at

e

QPI

Coastguard (HIT Rate)

Foreman (HIT Rate)

Akiyo (HIT Rate)

Coastguard(MPS Rate)

Foreman (MPS Rate)

Akiyo (MPS Rate)

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 3 6 9 1215182124273033363942454851

H
it

R
at

e

QPI

Paris (HIT Rate)

Sample_int (HIT Rate)

Stefan (HIT Rate)

Paris (MPS Rate)

Sample_int(MPS Rate)

Stefan (MPS Rate)

94

Table 33 Hit rate of prediction process for various QPI
 QCIF CIF

Seq. coastguard foreman akiyo sample_int stefan paris
QPI

 MPS Hit MPS Hit MPS Hit MPS Hit MPS Hit MPS Hit
0 84.29% 94.81% 82.66% 94.09% 81.57% 93.78% 81.11% 93.97% 82.18% 94.37% 82.73% 94.31%
1 83.88% 94.66% 82.24% 93.97% 81.31% 93.81% 80.86% 93.90% 81.97% 94.30% 82.60% 94.28%
2 83.36% 94.43% 81.39% 93.78% 80.61% 93.74% 80.54% 93.84% 81.55% 94.18% 82.08% 94.12%
3 82.84% 94.26% 80.68% 93.66% 79.98% 93.51% 80.24% 93.77% 81.14% 94.09% 81.62% 93.97%
4 82.46% 94.12% 80.16% 93.50% 79.84% 93.46% 80.10% 93.73% 80.85% 93.98% 81.15% 93.84%
5 81.74% 93.87% 79.26% 93.26% 79.10% 93.27% 79.77% 93.61% 80.39% 93.82% 80.56% 93.62%
6 81.13% 93.70% 78.55% 92.99% 78.48% 93.15% 79.53% 93.54% 79.88% 93.67% 79.94% 93.42%
7 80.65% 93.48% 77.85% 92.80% 77.88% 93.00% 79.31% 93.49% 79.55% 93.57% 79.46% 93.32%
8 79.93% 93.21% 77.07% 92.56% 77.26% 92.91% 79.06% 93.42% 79.09% 93.42% 78.73% 93.08%
9 79.37% 93.00% 76.32% 92.37% 77.14% 92.63% 78.79% 93.35% 78.66% 93.31% 78.18% 92.92%

10 78.90% 92.87% 75.71% 92.13% 76.80% 92.49% 78.63% 93.34% 78.35% 93.19% 77.66% 92.74%
11 78.25% 92.74% 75.00% 92.01% 76.53% 92.23% 78.63% 93.34% 77.90% 93.02% 77.01% 92.53%
12 77.85% 92.65% 74.42% 91.84% 76.26% 92.11% 78.58% 93.30% 77.56% 92.89% 76.45% 92.39%
13 77.50% 92.62% 74.10% 91.72% 76.24% 92.02% 78.56% 93.31% 77.31% 92.78% 76.03% 92.26%
14 77.03% 92.57% 73.40% 91.65% 75.72% 91.83% 78.49% 93.30% 76.84% 92.69% 75.48% 92.08%
15 76.70% 92.46% 72.99% 91.68% 75.76% 91.64% 78.43% 93.30% 76.57% 92.57% 74.96% 91.95%
16 76.53% 92.45% 72.49% 91.67% 74.99% 91.42% 78.37% 93.29% 76.23% 92.50% 74.46% 91.83%
17 76.22% 92.48% 72.01% 91.68% 74.41% 91.15% 78.33% 93.32% 75.90% 92.37% 73.95% 91.70%
18 76.07% 92.51% 71.65% 91.58% 73.54% 91.01% 78.30% 93.30% 75.70% 92.32% 73.45% 91.56%
19 75.91% 92.53% 71.35% 91.58% 73.01% 90.79% 78.26% 93.33% 75.47% 92.26% 73.25% 91.50%
20 75.93% 92.44% 71.14% 91.56% 72.37% 90.73% 78.20% 93.34% 75.13% 92.17% 72.79% 91.39%
21 75.82% 92.45% 70.91% 91.55% 72.01% 90.67% 78.21% 93.34% 74.98% 92.09% 72.46% 91.35%
22 75.90% 92.51% 70.66% 91.54% 71.29% 90.86% 78.20% 93.34% 74.78% 92.04% 72.28% 91.32%
23 75.86% 92.42% 70.65% 91.50% 71.13% 90.73% 78.19% 93.34% 74.62% 92.04% 71.92% 91.28%
24 75.98% 92.50% 70.56% 91.50% 70.97% 90.86% 78.19% 93.37% 74.46% 92.01% 71.69% 91.28%
25 76.16% 92.46% 70.40% 91.43% 70.71% 90.93% 78.21% 93.39% 74.36% 91.97% 71.55% 91.27%
26 76.28% 92.52% 70.36% 91.45% 70.36% 90.98% 78.28% 93.41% 74.17% 92.00% 71.35% 91.27%
27 76.24% 92.59% 70.29% 91.42% 70.42% 90.88% 78.23% 93.43% 74.11% 91.98% 71.32% 91.28%
28 76.30% 92.55% 70.30% 91.47% 70.40% 90.81% 78.32% 93.44% 74.05% 92.00% 71.16% 91.27%
29 76.45% 92.50% 70.40% 91.49% 70.38% 91.05% 78.37% 93.44% 73.98% 92.07% 71.26% 91.32%
30 76.67% 92.50% 70.46% 91.44% 70.59% 90.97% 78.37% 93.45% 73.99% 92.13% 71.27% 91.32%
31 76.64% 92.66% 70.48% 91.53% 70.84% 91.06% 78.43% 93.47% 73.91% 92.13% 71.37% 91.34%
32 76.84% 92.67% 70.35% 91.50% 71.22% 90.87% 78.51% 93.50% 73.92% 92.17% 71.47% 91.37%
33 76.99% 92.71% 70.81% 91.42% 71.85% 90.84% 78.57% 93.49% 73.94% 92.18% 71.51% 91.37%
34 77.03% 92.77% 70.55% 91.54% 71.67% 90.90% 78.65% 93.51% 73.96% 92.18% 71.55% 91.43%
35 77.04% 92.72% 70.84% 91.49% 71.96% 91.01% 78.67% 93.50% 74.00% 92.25% 71.57% 91.40%
36 77.05% 92.77% 70.77% 91.57% 72.11% 91.12% 78.69% 93.51% 73.92% 92.22% 71.57% 91.43%
37 77.09% 92.75% 70.80% 91.50% 71.99% 90.94% 78.70% 93.50% 74.03% 92.23% 71.65% 91.49%
38 77.03% 92.74% 70.82% 91.49% 72.05% 90.88% 78.70% 93.51% 73.98% 92.22% 71.58% 91.52%
39 76.98% 92.74% 70.66% 91.60% 72.04% 91.05% 78.67% 93.50% 74.06% 92.22% 71.61% 91.46%
40 77.18% 92.76% 70.71% 91.42% 72.12% 91.00% 78.64% 93.49% 74.05% 92.22% 71.65% 91.46%
41 77.03% 92.71% 70.79% 91.50% 72.12% 91.02% 78.62% 93.49% 74.09% 92.18% 71.60% 91.45%
42 77.04% 92.74% 70.91% 91.60% 72.44% 91.00% 78.54% 93.50% 74.14% 92.15% 71.59% 91.48%
43 77.11% 92.67% 70.85% 91.55% 72.27% 90.91% 78.54% 93.50% 74.11% 92.20% 71.72% 91.49%
44 77.13% 92.73% 70.75% 91.67% 72.35% 91.04% 78.48% 93.49% 74.02% 92.21% 71.64% 91.50%
45 76.87% 92.72% 70.95% 91.60% 72.30% 91.09% 78.46% 93.52% 74.05% 92.19% 71.69% 91.48%
46 76.97% 92.76% 70.77% 91.61% 72.31% 91.19% 78.43% 93.50% 74.08% 92.18% 71.65% 91.52%
47 76.87% 92.69% 70.69% 91.63% 72.26% 91.13% 78.40% 93.49% 74.17% 92.20% 71.51% 91.45%
48 76.96% 92.72% 70.90% 91.59% 72.28% 91.03% 78.29% 93.46% 74.08% 92.19% 71.58% 91.47%
49 77.06% 92.72% 70.81% 91.64% 72.25% 91.12% 78.29% 93.49% 74.10% 92.20% 71.61% 91.50%
50 76.94% 92.69% 70.76% 91.60% 72.35% 91.01% 78.35% 93.48% 74.13% 92.19% 71.59% 91.47%
51 77.04% 92.84% 71.40% 91.78% 72.71% 91.23% 78.39% 93.47% 74.23% 92.22% 71.70% 91.49%

95

QCIF@ jm16.1[2] QPI:28 GOP: IBPBP… BR: 240 kbit/s

Figure 84. Hit rate of prediction process for various QPB,P (QCIF)

CIF@jm16.1[2] QPI:28 GOP: IBPBP…BR: 960 kbit/s

Figure 85. Hit rate of prediction process for various QPB,P (CIF)

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

1 4 7 101316192225283134374043464952

H
it

R
at

e

QPB,P

Coastguard (HIT Rate)

Foreman (HIT Rate)

Akiyo (HIT Rate)

Coastguard(MPS Rate)

Foreman (MPS Rate)

Akiyo (MPS Rate)

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 4 7 101316192225283134374043464952

H
it

R
at

e

QPB,P

Sample_int (HIT Rate)

Stefan (HIT Rate)

Paris (HIT Rate)

Sample_int(MPS Rate)

Stefan (MPS Rate)

Paris (MPS Rate)

96

Table 34 Hit rate of prediction process for various QPB,P
 QCIF CIF

Seq. coastguard foreman akiyo sample_int stefan paris
QPB,P MPS Hit MPS Hit MPS Hit MPS Hit MPS Hit MPS Hit

0 81.26% 93.39% 74.92% 91.68% 75.21% 92.20% 83.86% 94.02% 82.13% 93.48% 76.96% 92.68%
1 80.72% 93.22% 74.70% 91.85% 75.08% 92.00% 83.40% 93.86% 81.65% 93.28% 77.06% 92.64%
2 79.76% 92.88% 73.91% 91.97% 74.75% 91.88% 82.45% 93.65% 80.81% 92.98% 76.65% 92.56%
3 78.93% 92.46% 72.78% 91.94% 73.81% 91.85% 81.75% 93.49% 79.64% 92.71% 75.62% 92.53%
4 78.27% 92.30% 73.13% 91.96% 74.10% 91.94% 81.28% 93.33% 79.21% 92.51% 75.89% 92.49%
5 77.57% 92.00% 72.74% 91.96% 73.68% 91.99% 80.53% 93.16% 78.18% 92.30% 75.47% 92.38%
6 76.60% 91.82% 72.06% 92.03% 73.38% 91.99% 79.86% 92.99% 77.32% 92.05% 74.93% 92.25%
7 75.96% 91.79% 71.65% 92.07% 73.31% 92.01% 79.26% 92.91% 76.72% 91.98% 74.61% 92.17%
8 75.00% 91.70% 71.90% 92.13% 73.47% 92.04% 78.68% 92.73% 75.89% 91.88% 75.07% 92.06%
9 74.30% 91.75% 71.69% 92.11% 73.26% 92.10% 78.38% 92.66% 75.32% 91.82% 74.80% 92.00%

10 73.95% 91.82% 72.08% 92.13% 73.48% 92.25% 77.90% 92.59% 74.87% 91.90% 74.99% 92.10%
11 73.56% 91.94% 72.47% 92.07% 72.93% 92.16% 77.46% 92.52% 74.27% 91.97% 74.61% 92.10%
12 73.23% 91.99% 72.90% 91.90% 72.21% 91.95% 77.12% 92.47% 73.68% 92.02% 74.04% 91.97%
13 73.15% 92.12% 73.10% 91.84% 71.60% 91.79% 76.87% 92.49% 73.34% 92.11% 73.63% 91.91%
14 73.30% 92.26% 73.58% 91.85% 71.15% 91.82% 76.61% 92.53% 73.14% 92.17% 73.14% 91.97%
15 73.11% 92.29% 73.27% 91.62% 70.94% 91.78% 76.45% 92.55% 72.70% 92.19% 72.67% 91.94%
16 73.40% 92.28% 73.41% 91.53% 70.96% 91.75% 76.30% 92.59% 72.74% 92.18% 72.27% 91.92%
17 73.43% 92.20% 72.95% 91.27% 71.04% 91.67% 76.21% 92.63% 72.59% 92.17% 71.52% 91.93%
18 73.72% 92.17% 72.73% 91.03% 71.22% 91.55% 76.13% 92.67% 72.54% 92.13% 71.06% 91.89%
19 74.05% 92.19% 72.69% 90.95% 71.49% 91.51% 76.08% 92.74% 72.59% 92.17% 71.04% 91.93%
20 74.47% 92.24% 72.30% 90.98% 71.72% 91.31% 76.20% 92.83% 72.97% 92.21% 70.72% 91.92%
21 74.65% 92.21% 72.01% 90.86% 71.84% 91.02% 76.23% 92.84% 72.75% 92.19% 70.63% 91.84%
22 75.10% 92.35% 71.75% 90.85% 71.83% 90.90% 76.40% 92.91% 73.08% 92.27% 70.69% 91.77%
23 75.37% 92.31% 71.13% 90.86% 71.69% 90.81% 76.60% 92.99% 73.21% 92.29% 70.63% 91.66%
24 75.64% 92.37% 71.07% 91.01% 71.67% 90.78% 76.82% 93.06% 73.41% 92.25% 70.83% 91.61%
25 76.09% 92.42% 70.87% 91.18% 71.22% 90.76% 77.04% 93.10% 73.78% 92.21% 70.91% 91.57%
26 76.13% 92.41% 70.41% 91.32% 70.87% 90.81% 77.56% 93.27% 74.02% 92.08% 71.03% 91.42%
27 76.55% 92.51% 70.64% 91.38% 70.41% 90.93% 77.79% 93.32% 74.06% 92.00% 71.08% 91.30%
28 76.30% 92.55% 70.30% 91.47% 70.40% 90.81% 78.32% 93.44% 74.05% 92.00% 71.16% 91.27%
29 76.40% 92.63% 70.39% 91.60% 70.04% 91.04% 78.80% 93.56% 73.82% 91.96% 71.19% 91.23%
30 76.52% 92.77% 70.63% 91.68% 69.83% 91.22% 79.21% 93.67% 73.43% 91.94% 71.24% 91.16%
31 76.65% 92.83% 71.07% 91.79% 69.59% 91.15% 79.53% 93.74% 73.39% 91.94% 71.15% 91.21%
32 76.04% 92.85% 71.43% 91.86% 69.55% 91.35% 80.26% 93.92% 73.02% 91.99% 71.13% 91.23%
33 76.43% 93.02% 71.79% 91.84% 69.83% 91.44% 80.58% 94.02% 73.18% 92.07% 71.16% 91.30%
34 76.05% 92.96% 72.27% 91.93% 69.82% 91.38% 80.99% 94.11% 73.27% 92.08% 71.23% 91.38%
35 75.88% 92.95% 72.75% 91.96% 70.07% 91.52% 81.52% 94.27% 73.48% 92.13% 71.39% 91.50%
36 76.03% 92.91% 73.02% 92.01% 70.29% 91.58% 81.97% 94.41% 73.86% 92.17% 71.50% 91.59%
37 76.09% 92.76% 73.22% 92.10% 70.30% 91.62% 81.97% 94.44% 74.21% 92.17% 71.71% 91.58%
38 76.06% 92.68% 73.51% 92.14% 70.49% 91.61% 82.32% 94.55% 74.55% 92.13% 71.96% 91.65%
39 76.19% 92.70% 73.67% 92.16% 70.65% 91.72% 82.24% 94.58% 74.72% 92.12% 72.12% 91.65%
40 76.09% 92.66% 73.64% 92.11% 70.78% 91.72% 82.45% 94.68% 75.05% 92.10% 72.42% 91.66%
41 76.21% 92.71% 73.74% 92.19% 70.78% 91.71% 82.30% 94.67% 75.11% 92.11% 72.63% 91.70%
42 76.27% 92.84% 73.72% 92.26% 70.91% 91.70% 82.47% 94.74% 75.34% 92.08% 72.74% 91.67%
43 76.21% 92.79% 73.78% 92.38% 70.96% 91.70% 82.06% 94.62% 75.43% 92.06% 72.86% 91.70%
44 76.36% 92.89% 73.71% 92.47% 70.96% 91.70% 82.01% 94.73% 75.50% 92.06% 72.91% 91.73%
45 76.40% 92.88% 73.76% 92.42% 70.97% 91.71% 81.83% 94.69% 75.69% 92.09% 72.97% 91.76%
46 76.43% 92.88% 73.70% 92.43% 71.05% 91.71% 80.91% 94.47% 75.72% 92.09% 72.94% 91.74%
47 76.41% 92.86% 73.68% 92.40% 71.13% 91.60% 80.61% 94.46% 75.77% 92.10% 72.97% 91.75%
48 76.36% 92.82% 73.82% 92.37% 71.12% 91.60% 80.14% 94.34% 75.90% 92.12% 72.95% 91.71%
49 76.45% 92.83% 73.80% 92.38% 71.13% 91.62% 79.79% 94.23% 75.86% 92.06% 72.93% 91.70%
50 76.38% 92.78% 73.90% 92.40% 71.13% 91.62% 79.37% 94.14% 75.86% 92.06% 72.97% 91.69%
51 76.30% 93.39% 73.86% 92.25% 71.14% 91.63% 79.43% 94.27% 75.92% 92.05% 72.95% 91.69%

97

Appendix C. Simulation Result of Memory System

C.1 All Sequence of QCIF & CIF

QCIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 86. Max. B.W. requirement of memory system for QCIF sequences (1/4)
Table 35 Max. B.W. requirement of memory system for QCIF sequences (1/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

akiyo 34412 31573 2839 34412.00 8301.90 75.87%
carphone 120386 94464 25922 94543.98 29087.59 69.23%

claire 41964 37416 4548 25484.21 6477.81 74.58%
coastguard 104128 87067 17061 104128.00 29356.10 71.81%
container 26504 24941 1563 26504.00 6082.30 77.05%
foreman 128272 100634 27638 96204.00 29605.05 69.23%

75.87%
69.23%

74.58% 71.81%
77.05%

69.23%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

20,000

40,000

60,000

80,000

100,000

120,000

akiyo carphone claire coastguard container foreman

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

98

QCIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 87. Max. B.W. requirement of memory system for QCIF sequences (2/4)

Table 36 Max. B.W. requirement of memory system for QCIF sequences (2/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

glasgow 43798 37399 43798 131394.00 35877.30 72.69%
grandma 78518 73931 78518 27075.17 6205.90 77.08%

hall_monitor 29950 25921 29950 29950.00 8004.50 73.27%
miss_am 12960 11559 12960 25920.00 6585.00 74.59%
mobile 142026 123550 142026 142026.00 37643.20 73.50%

mother_daughter 152616 135151 152616 47642.87 12254.64 74.28%

72.69%
77.08%

73.27% 74.59% 73.50% 74.28%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

99

QCIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 88. Max. B.W. requirement of memory system for QCIF sequences (3/4)

Table 37 Max. B.W. requirement of memory system for QCIF sequences (3/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

news 49112 39552 9560 49112.00 14602.40 70.27%
paris 104338 89703 14635 78253.50 21138.83 72.99%

salesman 59302 51492 7810 39622.72 10533.67 73.42%
silent 53950 41967 11983 53950.00 16781.50 68.89%
singer 46724 38947 7777 56068.80 15879.96 71.68%
stefan 152028 122068 29960 152028.00 45385.60 70.15%

70.27%
72.99% 73.42%

68.89%
71.68% 70.15%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

news paris salesman silent singer stefan

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

100

QCIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 89. Max. B.W. requirement of memory system for QCIF sequences (4/4)

Table 38 Max. B.W. requirement of memory system for QCIF sequences (4/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

suzie 27512 21666 5846 55024.00 16850.80 69.38%
table 68420 50275 18145 68420.00 22756.50 66.74%
trevor 36616 29615 7001 73232.00 18847.00 74.26%
AVG 72073.14 60423.38 11649.76 67190.25 18964.65 72.43%

69.38%
66.74%

74.26% 72.43%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

suzie table trevor AVG

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

101

CIF (1/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 90. Max. B.W. requirement of memory system for CIF sequences (1/4)

Table 39 Max. B.W. requirement of memory system for CIF sequences (1/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

akiyo 66976 59586 7390 66976.00 17090.20 74.48%
bus 230424 185152 45272 460848.00 137441.60 70.18%

canoa 271408 188494 82914 370101.82 130552.64 64.73%
caphone 360848 257972 102876 270636.00 92705.70 65.75%

coastguard 308228 253134 55094 308228.00 89192.60 71.06%
container 105124 95822 9302 105124.00 25675.80 75.58%

74.48%

70.18%

64.73%
65.75%

71.06%

75.58%

58.00%

60.00%

62.00%

64.00%

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

102

CIF (2/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 91. Max. B.W. requirement of memory system for CIF sequences (2/4)

Table 40 Max. B.W. requirement of memory system for CIF sequences (2/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

flower 511382 452952 58430 613658.40 157789.68 74.29%
football 305438 191716 113722 352428.46 136094.54 61.38%
foreman 277770 214119 63651 277770.00 87379.50 68.54%

hall_monitor 161218 143602 17616 161218.00 41051.60 74.54%
MadCyclistL 1108682 886449 222233 369560.67 110950.97 69.98%

mobile_calendar 510730 429057 81673 510730.00 142982.50 72.00%

74.29%

61.38%

68.54%

74.54%
69.98% 72.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

103

CIF (3/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 92. Max. B.W. requirement of memory system for CIF sequences (3/4)

Table 41 Max. B.W. of memory system for CIF sequences (3/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

mother_daughter 107398 86117 21281 107398.00 32120.10 70.09%
news 130074 102363 27711 130074.00 39870.30 69.35%
paris 647084 533577 113507 182277.18 52442.34 71.23%

sample_int 206366 129945 76421 281408.18 108386.86 61.48%
silent 145992 109777 36215 145992.00 47305.90 67.60%
singer 118798 94153 24645 142557.60 43298.52 69.63%

70.09%
69.35%

71.23%

61.48%

67.60%

69.63%

56.00%

58.00%

60.00%

62.00%

64.00%

66.00%

68.00%

70.00%

72.00%

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

104

CIF (4/4) @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 93. Max. B.W. requirement of memory system for CIF sequences (4/4)

Table 42 Max. B.W. requirement of memory system for CIF sequences (4/4)

Sequence
Name

Total
MVd

hMVd
(MVd<2)

fMVd
(MVd>2)

BandWidth@30fps Reduction
Rate Traditional Optimal

stefan 427456 345333 82123 427456.00 126552.70 70.39%
table 223420 167266 56154 223420.00 72761.00 67.43%

tempete 447692 383655 64037 516567.69 140257.96 72.85%
waterfall 234498 216026 18472 270574.62 64771.85 76.06%

AVG 313955 251194 62761 286136.57 86212.49 69.94%

70.39%

67.43%

72.85%

76.06%

69.94%

62.00%

64.00%

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

0

100,000

200,000

300,000

400,000

500,000

600,000

stefan table tempete waterfall AVG

M
ax

. B
an

dw
id

th
 R

eq
ue

st

Sequence Name

Optimal Reduce Reduce Rate

105

C.2 Optimization for Memory and Bandwidth

QCIF @ jm16.1[2] QP:28 GOP: IBPBP… BR: 240 kbit/s

Figure 94. Max. B.W. requirement of memory system for SRAM size for QCIF seq.

Table 43 Max. B.W. requirement of memory system for SRAM size for QCIF seq.

SRAM
size

QCIF
Claire Table Stefan

Traditional Optimal Traditional Optimal Traditional Optimal
0 25484.21 6477.81 68420.00 38821.50 152028.00 45385.60

32 25020.86 6064.68 67176.00 38491.59 149263.85 43166.18
64 24557.51 5651.55 65932.00 38161.68 146499.71 40946.76
96 24094.16 5238.42 64688.00 37831.77 143735.56 38727.35

128 23630.81 4825.29 63444.00 37501.86 140971.42 36507.93
160 23167.46 4412.15 62200.00 37171.95 138207.27 34288.51
192 22704.11 3999.02 60956.00 36842.05 135443.13 32069.09
224 22240.77 3585.89 59712.00 36512.14 132678.98 29849.67
256 21777.42 3172.76 58468.00 36182.23 129914.84 27630.25
288 21314.07 2759.62 57224.00 35852.32 127150.69 25410.84
320 20850.72 2346.49 55980.00 35522.41 124386.55 23191.42
352 20387.37 1933.36 54736.00 35192.50 121622.40 20972.00
352 20387.37 1933.36 54736.00 35192.50 121622.40 20972.00
432 19229.00 1757.60 51626.00 31993.18 114712.04 19065.45
512 18070.62 1581.84 48516.00 28793.86 107801.67 17158.91
592 16912.25 1406.08 45406.00 25594.55 100891.31 15252.36
672 15753.88 1230.32 42296.00 22395.23 93980.95 13345.82
752 14595.50 1054.56 39186.00 19195.91 87070.58 11439.27
832 13437.13 878.80 36076.00 15996.59 80160.22 9532.73
912 12278.76 703.04 32966.00 12797.27 73249.85 7626.18
992 11120.38 527.28 29856.00 9597.95 66339.49 5719.64

1072 9962.01 351.52 26746.00 6398.64 59429.13 3813.09
1152 8803.64 175.76 23636.00 3199.32 52518.76 1906.55
1232 7645.26 0.00 20526.00 0.00 45608.40 0.00

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

M
ax

. B
an

dw
id

th

R
eq

ue
st

(b
its

/s
)

SRAM Size(bits)

Trad. Claire

Trad. Table

Trad. Stefan

Op. Claire

Op. Table

Op. Stefan

106

CIF @ jm16.1[2] QP:28 GOP: IBPBP… BR: 960 kbit/s

Figure 95. Max. B.W. requirement of memory system for SRAM size for CIF seq.

Table 44 Max. B.W. requirement of memory system for SRAM size for CIF seq.

SRAM
size

CIF
Container Sample_int Flower

Traditional Optimal Traditional Optimal Traditional Optimal
0 105124.00 25675.80 281408.18 144880.50 613658.40 157789.68

64 103212.65 23933.58 276291.67 142985.76 602500.97 147907.09
128 101301.31 22191.36 271175.16 141091.03 591343.55 138024.50
192 99389.96 20449.15 266058.64 139196.29 580186.12 128141.91
256 97478.62 18706.93 260942.13 137301.56 569028.70 118259.32
320 95567.27 16964.71 255825.62 135406.82 557871.27 108376.73
384 93655.93 15222.49 250709.11 133512.09 546713.85 98494.15
448 91744.58 13480.27 245592.60 131617.35 535556.42 88611.56
512 89833.24 11738.05 240476.08 129722.62 524399.00 78728.97
576 87921.89 9995.84 235359.57 127827.88 513241.57 68846.38
640 86010.55 8253.62 230243.06 125933.14 502084.15 58963.79
704 84099.20 6511.40 225126.55 124038.41 490926.72 49081.20
864 79320.84 5919.45 212335.26 112762.19 463033.16 44619.27

1024 74542.47 5327.51 199543.98 101485.97 435139.59 40157.35
1184 69764.11 4735.56 186752.70 90209.75 407246.03 35695.42
1344 64985.75 4143.62 173961.42 78933.53 379352.47 31233.49
1504 60207.38 3551.67 161170.14 67657.31 351458.90 26771.56
1664 55429.02 2959.73 148378.86 56381.10 323565.34 22309.64
1824 50650.65 2367.78 135587.58 45104.88 295671.77 17847.71
1984 45872.29 1775.84 122796.30 33828.66 267778.21 13385.78
2144 41093.93 1183.89 110005.02 22552.44 239884.65 8923.85
2304 36315.56 591.95 97213.74 11276.22 211991.08 4461.93
2464 31537.20 0.00 84422.45 0.00 184097.52 0.00

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

0 96 19
2

28
8

38
4

48
0

57
6

67
2

78
4

10
24

12
64

15
04

17
44

19
84

22
24

24
64

M
ax

. B
an

dw
id

th

R
eq

ue
st

(b
its

/s
)

SRAM Size(bits)

Trad. Container

Trad. Table

Trad. Flower

Op. Container

Op. Table

Op. Flower

107

Appendix D. Hardware Verification
Table 45. Simulation result for I slice

Sequence

Name

I Slice
Total

Bin

Total

Cycle

Terminal

Cycle

Bypass

Cycle

Regular Cycle MPS

bin

MPS

rate
Hit bin Hit rate BPC

Normal Idle Stall

Total 221087 237346 495 35149 185443 737 15522 131466 70.89% 169922 91.63% 0.931497

Foreman 29218 31513 99 4398 24721 205 2090 17582 71.12% 22632 91.55% 0.927173

Akiyo 24816 26876 99 3755 20962 148 1912 14292 68.18% 19050 90.88% 0.923352

Carphone 26172 28204 99 3829 22244 175 1857 15349 69.00% 20387 91.65% 0.927953

Stefan 58967 62996 99 9550 49318 100 3929 35410 71.80% 45389 92.03% 0.936044

Mobile 81914 87757 99 13617 68198 109 5734 48833 71.60% 62464 91.59% 0.933418

Table 46. Simulation result for P slice

Sequence

Name

P Slice
Total

Bin

Total

Cycle

Terminal

Cycle

Bypass

Cycle

Regular Cycle MPS

bin

MPS

rate
Hit bin Hit rate BPC

Normal Idle Stall

Total 43950 47462 495 6435 37020 171 3243 27175 73.41% 33778 91.24% 0.926004

Foreman 4981 5365 99 801 4081 27 357 2778 68.07% 3725 91.28% 0.928425

Akiyo 270 371 99 6 165 97 5 141 85.45% 160 96.97% 0.727763

Carphone 5624 6068 99 903 4622 23 421 3304 71.48% 4201 90.89% 0.926829

Stefan 17650 18918 99 2802 14749 17 1251 10888 73.82% 13498 91.52% 0.932974

Mobile 15425 16740 99 1923 13403 7 1209 10064 75.09% 12194 90.98% 0.921446

Table 47. Simulation result for B slice

Sequence

Name

B Slice
Total

Bin

Total

Cycle

Terminal

Cycle

Bypass

Cycle

Regular Cycle MPS

bin

MPS

 rate
Hit bin Hit rate BPC

Normal Idle Stall

Total 8184 9112 495 952 6737 381 548 4787 71.06% 6189 91.87% 0.898156

Foreman 1403 1554 99 135 1169 64 88 832 71.17% 1081 92.47% 0.902831

Akiyo 198 299 99 0 99 101 0 99 100.00% 99 100.00% 0.662207

Carphone 1881 2061 99 243 1539 67 113 1116 72.51% 1426 92.66% 0.912664

Stefan 3550 3912 99 444 3007 69 293 2118 70.44% 2714 90.26% 0.907464

Mobile 1152 1286 99 130 923 80 54 622 67.39% 869 94.15% 0.895801

Table 48. Summary of I,P,B slice
Sequence

Name

Total

Bin

Total

Cycle

Terminal

Cycle

Bypass

Cycle

Regular Cycle MPS

bin

MPS

 rate
Hit bin Hit rate BPC

Normal Idle Stall

Total 273221 293920 1485 42536 229200 1289 19313 163428 71.30% 209889 91.57% 0.929576

108

Biography

姓名: 郭明諭

戶籍地: 台灣 新北市

出生日期: 1985.02.05

學歷: 2003.09 ~ 2008.06 元智大學 電機工程學系 學士

2008.09 ~ 2010.12 國立交通大學 電子工程研究所

系統組 碩士班

發表論文:

 Ming-Yu Ku, Yao Li, Chen-Yi Lee, “An Area-efficiently High-accuracy
Prediction-based CABAC Decoder for H.264AVC,” IEEE International
Symposium on Circuit and System (ISCAS’11), May 2011.

	Chapter 1. Introduction
	1.1 Overview of CABAC Decoding flow
	1.2 Motivation and Design Challenges
	1.3 Organization of Thesis

	Chapter 2. Related Works
	2.1 Traditional CABAC Decoding Flow
	2.1.1 Arithmetic Decoding Flow
	2.1.1.1 Regular decoding process
	2.1.1.2 Bypass decoding process
	2.1.1.3 Terminal decoding process
	2.1.2 De-binarization Decoding Flow
	2.1.2.1 Unary (U) binarization Process
	2.1.2.2 Truncated Unary (TU) binarization Process
	2.1.2.3 Fixed-length (FL) Binarization Process
	2.1.2.4 k-th order Exp-Golomb (UEGk) binarization process
	2.1.2.5 Look up table (LUT) Binarization Process
	2.1.3 CtxIdx Model Index Calculating Flow
	2.1.3.1 ctxBlockCat and ctxIdxBlockOffset
	2.1.3.2 Calculate for ctxIdxOffset
	2.1.3.3 Calculate for ctxIdxInc

	2.2 On-the-fly CABAC Decoding Flow
	2.2.1 Pipeline-based CABAC Decoding flow
	2.2.1.1 Analysis and discussion
	2.2.1.2 Example for pipeline structure
	2.2.2 Parallel-based CABAC Decoding flow
	2.2.2.1 Analysis and discussion
	2.2.2.2 Example for parallel structure
	2.2.3 Prediction-based CABAC Decoding flow
	2.2.3.1 Analysis and discussion
	2.2.3.2 Example for prediction structure

	2.3 Summary

	Chapter 3. Proposed Algorithm
	3.1 Prediction Process
	3.1.1 Raised Hit Rate
	3.1.2 Reduced Stall Times
	3.1.3 Solved Data Hazard Problem
	3.1.3.1 Forward path for (1) un-decoded neighbor SE
	3.1.3.2 Data reuse for (2) un-updated pState

	3.2 Memory System
	3.2.1 Reduced Memory Bandwidth Occupation
	3.2.2 Raised Buffer Efficiency
	3.2.3 Solved Syntax Element Switching Overhead

	3.3 Summary

	Chapter 4. Proposed Architecture
	4.1 Architecture of Prediction Process
	4.1.1 SE-parsed Process
	4.1.2 Bin-decoded Process
	4.1.2.1 Regular process
	4.1.2.2 Bypass/Terminal process
	4.1.2.3 Context model data reused
	4.1.2.4 Renormalization process and bit buffer
	4.1.3 CtxIdx-calculated Process

	4.2 Architecture of Memory System
	4.2.1 Concentrated Buffer
	4.2.1.1 Various block size
	4.2.1.2 MBAFF mode
	4.2.2 CtxIdxInc pre-Calculate Stage
	4.2.3 Transfer Unit

	4.3 Summary

	Chapter 5. Simulation Results
	5.1 Prediction Scheme Verification
	5.2 Memory System Verification
	5.3 Hardware Architecture Verification

	Chapter 6. Conclusion and Future Works
	6.1 Conclusion
	6.2 Future Works

	References
	Appendix A. System Specification
	Appendix B. Simulation Result of Prediction Process
	B.1 All Sequences of QCIF & CIF
	B.2 All Various QPI,B,P of QCIF & CIF
	Appendix C. Simulation Result of Memory System
	C.1 All Sequence of QCIF & CIF
	C.2 Optimization for Memory and Bandwidth
	Appendix D. Hardware Verification
	Biography

