
 
National Chiao Tung University 

 

 

Department of Electronics Engineering 
 

 

Master Thesis 
 
 

 

 

 

Design of A Low Power Inverse Integer Transform for H.264/AVC 

Decoding Applications 

 

 

 

 

 

 Student : Hüseyin Demirkaya 

               Advisor : Prof. Chen-Yi Lee 

 

 

 

 

 

July 2011 

 

http://tr.wikipedia.org/wiki/%C3%9C_(harf)


Design of A Low Power Inverse Integer Transform for 

H.264/AVC Decoding Applications 
 

 

 

 

 

  研 究 生：王英杰          Student：Hüseyin Demirkaya 

指導教授：李鎮宜          Advisor：Prof. Chen-Yi Lee 

 

 

 

國 立 交 通 大 學 

電子工程學系 電子研究所 碩士班 

碩 士 論 文 

 

 
A Thesis 

Submitted to Department of Electronics Engineering & Institute of Electronics 

College of Electrical and Computer Engineering 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of Master 

in 

 

Electronics Engineering 

 

July 2011 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國一百年七月 

 

  

http://tr.wikipedia.org/wiki/%C3%9C_(harf)
javascript:__doPostBack('s3_1','0')
javascript:__doPostBack('s1','')


Design of A Low Power Inverse Integer 

Transform for H.264/AVC Decoding Applications  

 

 
Student：Hüseyin Demirkaya 

 

Advisor：Prof. Chen-Yi Lee 
 

 

Department of Electronics Engineering 

National Chiao Tung University 

ABSTRACT 

 

In this thesis, we adopted various new fast butterfly algorithms and hardware architectures 

for low power Inverse Integer Transform (IIT) in H.264/AVC Main/High Profile video decoding. 

In our new fast algorithms we use matrix decomposition method to reduce the complexity of 

inverse integer transforms to reduce the power consumption, hardware cost and raise hardware 

efficiency in H.264/AVC Main/High Profile video decoding. Matrix decomposition utilizes the 

permutation matrices. The proposed design supports 4x4, 2x2/4x4 Hadamard and 8x8 inverse 

transforms. 

We integrate the same parts of the three transforms to reduce the power consumption and 

hardware area and the cost. Finally, we can use the proposed hardware design to handle the video 

coding with the 1080 HD @30fps and also QFHD @30fps video format. The proposed hardware 

architectures achieve power consumption and hardware cost for 4x4, Hadamard, 8x8 inverse 

integer transform and hardware sharing design at 56.45µW, 46.85µW, 0.21mW, 0.31mW, and 

for the area 0.9k, 0.87k, 4.2k, 4.6k, respectively.  
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Chapter 1  

Introduction 
 

H.264/AVC is the state-of-the-art video compression standard of the ITU-T Video Coding 

Experts Group and ISO/IEC Moving Picture Experts Group (MPEG) in current video 

applications and is often exploited in electronics devices to achieve better video compression 

performance. The objective of the H.264/AVC is to deliver high quality video at lower bit rates 

than the previous standards. One of the tools being adopted is inverse integer discrete cosine 

transform. The video compression efficiency achieved in H.264/AVC standard is not a result of 

any single feature but a combination of a number of codec tools. As it is shown in system 

architecture block diagram of an H.264/AVC decoder in Figure 1, the inverse integer transform 

algorithm [2] is one of the coding tools. 

IIT

 
 

Figure 1. System architecture of H.264/AVC decoder 

To quickly compress video data in spatial domain, H.264/AVC employs 4x4 integer 

transforms which use only integer arithmetic with signed additions and shifts to replace the 

costly multiplication. Small block-size transform tends to reduce the computational complexity 
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and ringing artifacts. However, for high-quality video, large block-size transform must be used 

not only to preserve fine details of the image but also to obtain the better energy compaction. 

High-definition (HD) applications adopt main profile, extended profile and high profile in 

H.264/AVC, and they require complicated design. Also, H.264/AVC offers various scalabilities 

to be adapted to the receipt condition of the data and the various multimedia applications [3]. 

Transform process of H.264 requires 8x8 transforms for high-definition applications, and 4x4 

transforms for general applications. To meet scalabilities, transform module must process both 

8x8 integer transform operations and 4x4 integer transform operations. Therefore, design of 8x8 

transforms and 4x4 transforms into unified block is an important issue in H.264/AVC coder. 

High profile in H.264/AVC Fidelity Range Extension (FRExt), which is a new amendment added 

in H.264 standard, includes 8x8 integer transform and allows the decoder to adaptively choose 

between 4x4 and 8x8transform for luma samples on MB level [4]. Based on the symmetric 

property of the integer transform matrix and matrix operations, which denote the row-column 

permutations and the matrix decompositions, the efficient fast 4x4 and 8x8 inverse transform 

developed [6]-[8]. For early-stage H.264/AVC such as the baseline or main profile, researchers 

mainly focused on developing the fast algorithm of 4x4 and 8x8 transforms and its 

implementation to improve performance with minimal area overhead in [10]-[13]. 
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Figure 2. Bit-stream structure of H.264/AVC 
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In normal system architecture, the block of syntax parser employs in decoding the bit-stream 

on NAL layer, picture layer, and slice layer, given as Figure 2. Syntax element parser is also the 

top module to control all sub-system such as inverse integer transform, CABAD, VLD, intra-

prediction, inter-prediction, and so on. 

 

1.1 Introduction of H.264/AVC decoding flow 

In common with earlier coding standards, H.264 does not explicitly define a CODEC 

(encoder/decoder pair) but rather defines the syntax of an encoded video bitstream together with 

the method of decoding this bitstream. In practice, a compliant decoders are likely to include the 

functional elements shown in Figure 3.With the exception of the deblocking filter, most of the 

basic functional elements (prediction, inverse transform and inverse quantization) are present in 

previous standards (MPEG-1, MPEG-2, MPEG-4, H.261, H.263) but the important changes in 

H.264 occur in the details of each functional block. 
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Figure 3. Block diagram of H.264/AVC decoder 

The decoder receives a compressed bitstream from the NAL and entropy decodes the data 

elements to produce a set of quantized coefficients X. These are scaled and inverse transformed 

to give Dn. Using the header information decoded from the bitstream, the decoder creates a 
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prediction block (PRED), identical to the original prediction formed in the encoder. PRED is 

added to Dn to produce Fn which is filtered to create each decoded block (Current frame).  
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1.2 Motivation & Design Challenges 

The transform process that converts image or motion compensated residual data into another 

domain. H.264 supports several inverse integer transforms. Table 1 shows the motivation 

comparison with the previous standard. Our target is to reduce the complexity of inverse integer 

transform and make it fast. If we can reduce transform complexity, we can also reduce power 

consumption and hardware cost, moreover, increase the throughput. By applying the concept of 

hardware sharing, power-area requirement for the hardware implementation of the inverse 

integer transform will be reduced by sharing the hardware resources. Optimizing 4x4, 8x8 and 

Hadamard inverse transforms algorithm of the H.264/AVC decoder, we obtain low power 

consumption, high performance and small area design. To reduce power consumption and 

enhance performance of the transform with a minimum area overhead remain the design 

challenges in H.264/AVC video standard. 

 

Table 1. Motivation comparison of standards 
 

Feature/Standard MPEG-1 MPEG-2 MPEG-4 part 2 H.264/MPEG  

part 10 

Macro block size 16x16 

16x16 (frame mode) 

16x8 (field mode) 

 

16x16 

 

16x16 

 

Block size 8x8 8x8 16x16, 16x8, 8x8 

16x16, 8x16, 16x8, 

8x8,4x8, 8x4, 4x4 

 

Inverse transform 8x8 DCT 8x8 DCT 8x8 DCT/Wavelet 

 

4x4, ,8x8, Hadamard 

Integer transform 
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1.3 Thesis Organization 

An introduction of H.264/AVC video coding standards are given in this section. The rest of 

this thesis is organized as follows. Chapter 2 describes the related works for inverse integer 

transforms, the overview of H.264/AVC profiles and previous works. In Chapter 3, we describe 

our proposed algorithm and hardware architecture for 4x4, Hadamard and 8x8 inverse integer 

transform. In this chapter, we also implement the hardware sharing algorithm & architecture, and 

take an in-depth discussion about Comparison and implementation of hardware sharing 

architecture. Moreover, we show 4 kinds of Inverse integer transform module design including 

hardware sharing and according to our proposed algorithm, system integration architecture and 

comparison of the proposed design with others shows in 0. Finally, we make the conclusion and 

future works in the last Chapter 5. 
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Chapter 2  

Related Works 

In this chapter, we will describe the overview of the H.264/AVC traditional inverse integer 

transform algorithm for 4x4, Hadamard and 8x8 MB. 

 

2.1 Inverse Integer Transform Algorithm 

2.1.1 Overview of the Inverse Integer Transforms 

H.264/AVC uses a macroblock (MB) as a basic data unit. Our input includes coefficients and 

flags decoded by the entropy decoder (CAVLC or CABAC). It contains luma part and chroma 

part. The inter-prediction or intra prediction module finds a macroblock which is similar to 

current one from reference or present frames. However, the founded MB usually does not 

perfectively match with the current one, and the differences are called residuals (or prediction 

error) as shown in Figure 4. The residuals are inversely transformed which are then reordered 

and entropy encoded. At the decoder side, these entropy-encoded coefficients are decoded back 

to coefficients. After reordering, coefficients are inversely transformed to residuals data. Finally 

the residuals are combined with prediction data to reconstruct a MB. 

   
 

(a.) Current Frame 

 

(b.) Predicted Frame 

 

(c.) Residuals 

 

Figure 4. Residuals (prediction errors) between current and reconstructed frame 

 

There are one 16x16 luma block and two 8x8 chroma blocks (Cb, Cr) within a macroblock. 

A 16x16 luma block can be divided into four 8x8 blocks, and each consists of four 4x4 blocks. A 

chroma 8x8 block contains four 4x4 blocks. In Figure 4, every 4x4 (or 2x2) block is numbered 
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according to decoding order. If a macroblock is coded by intra 16x16 prediction mode as shown 

in Figure 5(a), block -1 which contains DC coefficients of every 4x4 luma block will be 

processed first. The DC coefficients are filled back to upper-left corner of each 4x4 block in 

a16x16 luma block. Next, the luma residual blocks 0-15 are processed. After luma block is 

decoded, chroma DC blocks 16 and 17 are processed, and filled back to upper-left corner of each 

4x4 block in an 8x8 chroma block. Finally, chroma residual blocks 18-25 are processed. If 

current macroblock type is non-intra 16x16, the processing order is the same except that it has no 

luma DC block as shown in Figure 5(b). 

 

 

 
 

Cb 

 
 

Cr 

Luma   

 

(a) Intra 16x16 macroblock 

  
 

Cb 

 
 

Cr 

Luma   

 

(b) Non-Intra 16x16 macroblock 

 



9 

 

Figure 5. Scanning order of residual blocks within a macroblock 

 

Three kinds of inverse integer transform are adopted depending on the type of residual 

blocks: 4x4 Hadamard transform for luma DC block (block -1), 2x2 Hadamard  transform for 

chroma DC block (block16, 17), and 4x4 integer transform for all  other types of  4x4 blocks 

(block 0-15, 18-25).Figure 6 shows the decoding flow diagram. We will emphasize on the 

decoder side. 
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4x4 blockIntra
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16x16 Luma

Residual Predicted

Encoder
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Figure 6. H.264/AVC Encoding/Decoding flow diagram 

 

If 4x4 inverse transform is employed, the luma part is divided into one luma DC 4x4 block 

and 16 luma AC 4x4 blocks. On the other hand, if 8x8 transform is applied, the luma part is 

divided into four 8x8 blocks. The chroma part is divided into two chroma DC 2x2 blocks and 

eight chroma AC 4x4 blocks in both cases.  
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In the following sub-sections, we will describe the traditional 4x4, Hadamard and 8x8 

inverse integer transform algorithms. 
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2.1.2 Traditional 4x4 Inverse Integer Transform 

In the H.264/AVC standard, the inverse integer transform operates on 4x4 blocks of 

residual data after motion-compensated prediction or intra prediction [4]. However, only two 

types of 4x4 inverse transforms are defined for the H.264/AVC decoder. The first type is the 4x4 

inverse integer transform, which is defined as Eq. 2.1, where the 4x4 inverse integer transform 

coefficient matrix 
4 i

A defined as Eq. 2.2 

4 4 4 4
( )

T
T

i i i i i
X A Y E A A FA  

 
 

Eq. 2.1 

4 4

1 1 1 1/2

1 1/2 -1 -1

1 -1/2 -1 1

1 -1 1 -1/2

T

i i
A A

 
 
  
 
 
  ,    

2 2

2 2

2 2

2 2

i

a ab a ab

ab b ab b
E

a ab a ab

ab b ab b

 
 
 
 
 
   

 

and  
i

F Y E   

Eq. 2.2 

Then 
4 i

A and 
i

E  are given by and where a=1/2 and b= 2 5 . The “  ” means each 

element of Y is multiplied by the scaling factor in the same position in matrix 
i

E
 
[3]. Since the 

scaling matrix 
i

E
 
could be merged into the inverse quantization and pre-scaled process to reduce 

the number of multiplication process. Figure 7 show the traditional 4x4 inverse integer transform 

algorithm.  
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Figure 7.Traditional 4x4 inverse integer transform 

 

 

2.1.3 Traditional Inverse Hadamard Integer Transform 

The second type is the 4x4 inverse Hadamard transform (also known as the luma DC 

transform). The inverse Hadamard transform is defined as Eq. 2.3, where XD is the 4x4 DC 

component of a 16x16 intra mode macroblock. 

T

D 4i D 4iW = H X H  Eq. 2.3 

The 4x4 inverse Hadamard integer transform coefficient matrix H4i defined as Eq. 2.4 

and Figure 8 shows the traditional two dimensional inverse Hadamard fast algorithm. 

4i

1 1 1 1

1 1 -1 -1
H =

1 -1 -1 1

1 -1 1 -1

 
 
 
 
 
 

 Eq. 2.4 

 

The 2x2 Hadamard transform  use the same formula for inverse integer transform as Eq. 2.5 
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T

D 2i D 2iX = H W H
,   with 

  

2i

1 1
H =

1 -1

 
 
 

 
Eq. 2.5 

In the H.264/AVC standard, the 2x2 chroma DC transform is also defined. Since it is 

implied in the 4x4 inverse Hadamard transform. 

 
 

Figure 8.Traditional 4x4 inverse Hadamard integer transform 

 

2.1.4 Traditional 8x8 Inverse Integer Transform 

The 8x8 forward and inverse integer transforms can be performed in a similar with 4x4 manner. 

8x8 forward integer transform can be realized by the following equivalent form as Eq. 2.6, where 

~

fE is the scaling matrix. Meanwhile, 8x8 inverse integer transform is described as Eq. 2.7, 

where 
~

iE is the scaling matrix. 

 

 
~

8 8

T
ff fY C XC E   

Eq. 2.6 
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 
~

8 8 8 8

T T
i

i i i i
X C Y E C C YC  

 
Eq. 2.7 

The 
8 i

C  is the corresponding 8x8 inverse transform matrix and we note that 
8 8

T

i f
C C . 

Coefficient of 8x8 inverse integer transform for high profile is shown in Eq. 2.8. The 8x8 

transforms are only applied to luma blocks. 

 

8

8 12 8 10 8 6 4 3

8 10 4 3 8 12 8 6

8 6 4 12 8 3 8 10

8 3 8 6 8 10 4 12

8 3 8 6 8 10 4 12

8 6 4 12 8 3 8 10

8 10 4 3 8 12 8 6

8 12 8 10 8 6 4 3

i

 
     
 

   
 

    
    
 

     
   
 

    

C  Eq. 2.8 
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Figure 9. Traditional 8x8 inverse integer transform 
 

In the previous section, we already know the H.264 integer inverse transform (4x4, 

Hadamard, 8x8) their principle and algorithms. For the implementation, the first one dimensional 

inverse integer transform block executes the transformation of row pixels and the second one 

dimensional inverse integer transform block performs the transformations of column pixels. Such 

as, Figure 9 is that the traditional 8x8 inverse integer transform method for implementation of 

hardware algorithm. 
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2.1.5 Traditional Hardware Sharing Design 

 

 
Figure 10. Traditional hardware sharing design [19] 

In order to reduce the gate count required for the two different transform processors, using 

multi transform (hardware sharing) algorithm that combine the three transform units into one 

multiple function transform processor which can execute all the three transform operations in 

H.264. In traditional hardware sharing architecture shown in Figure 10, the one dimensional 

transform can be any type of the transform. By the observation of Figure 7and Figure 8, we can 

find that every one-dimensional transform contains 8 arithmetical operations. In order to get a 

clear view of how to achieve hardware sharing transforms in a single design, we overlap Figure 7, 

Figure 8, and Figure 9 together. In Figure 10, all the adders have three inputs. It means that a 
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common input which is not changed by the transform type exists. Furthermore, Figure 10 is the 

fully extended of [19] into 64 pixels. 
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2.2 H.264 Profiles and Levels 

H.264/AVC defines four profiles: baseline, extended, main and high profile. Baseline profile 

is usually used in low bit-rate applications. Extended profile, also called streaming profile, is 

designed for internet communication. Main profile is suitable for broadcast and storage 

applications. High profile, also called Fidelity Range Extension (FRExt), is intended for high 

resolution applications characterized by large block transform and large prediction blocks. 

The high profile is further classified into four sub-profiles: High, High 10, High 4:2:2 and 

High 4:4:4, as depicted in Figure 11. These features include 8x8 luma transform, 8x8 spatial 

luma prediction, custom scaling matrix, deeper sample bits and lossless coding. Among them, 

the 8x8 luma transform is the key. 

 

 

Main 

Profile

  8x8 Luma Transform

   8x8 Spartial Luma Prediction

   Perceptual Scaling Matrices

  Monochrome Format

            High

Sample 

Bit Depth:

8-10

High 4:2:2
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Bit Depth:

8-12
4:2:2

Chroma

Format

High 10 4:4:4

Chroma

Format

Residual Color

Transform

Lossless Coding

High 4:4:4

 

 

 

Figure 11. High profile classification and features 

 

 

Figure 12 shows the profiling result of decoding a high profile video sequence. The inverse 

integer transform consumes about 17% to 20% of CPU time. Therefore, we design a low power 

inverse integer transform for integration into H.264/AVC decoder depicted in Figure 1. 
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Some important H.264 profiles and their special features are:  

Baseline Profile: Only I and P type slices are present, only frame mode (progressive) picture 

types are present, Only CAVLC is supported. 

Main Profile: Only I, P, and B type slices are present, Frame and field picture modes (in 

progressive and interlaced, modes) picture types are present, Both CAVLC and CABAC are 

supported, ASO is not supported, FMO is not supported. 

High Profile: Only I, P, and B type slices are present, Frame and field picture modes (in 

progressive and interlaced modes) picture types are present, Both CAVLC and CABAC are 

supported, ASO is not supported, FMO is not supported, 8x8 transform supported, Scaling 

matrices supported. 

 

 

 

Figure 12.H.264 decoder profiling results 

 

 

All of these profiles also support mono chroma coded video sequences, in addition to typical 

4:2:0 video. The difference in capability among these profiles is primarily in terms of supported 

sample bit depths and chroma formats. However, the high 4:4:4 profile additionally supports the 
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residual color transform and predictive lossless coding features are not found in any other 

profiles. The detailed capabilities of these profiles are show in Table 2. 

 

Table 2.Coding tools in different profiles of H.264/AVC standard 

 

Coding Tools Baseline Main Extend High High 10 
High 
4:2:2 

High 
4:4:4 

4:2:0 Chroma formats Yes Yes Yes Yes Yes Yes Yes 

Monochrome video format (4:0:0) No No No Yes Yes Yes Yes 

4:2:2 Chroma Format No No No No No Yes Yes 

4:4:4 Chroma Format No No No No No No Yes 

8 Bit Sample Bit Depth Yes Yes Yes Yes Yes Yes Yes 

9 and 10 Bit Sample Depth No No No No Yes Yes Yes 

11 to 12 Bit Sample Depth No No No No No No Yes 

8x8 vs. 4x4 transform adaptivity No No No Yes Yes Yes Yes 

Quantization scaling matrices No No No Yes Yes Yes Yes 

Separate Cb and Cr QP control No No No Yes Yes Yes Yes 

Residual Color Transform No No No No No No Yes 

Predictive Lossless Coding No No No No No No Yes 

Flexible Macroblock Ordering (FMO) Yes Yes No No No No No 

Arbitrary Slice Ordering (ASO) Yes Yes No No No No No 
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2.3 Previous Works 

In recent years, many researchers proposed a number of optimized algorithms to compute the 

transforms used in H.264/AVC. The major focus of the research has been to develop fast 

algorithms for the transform unit. 

2.3.1 Parallel 4x4  transform and  inverse transform 

Architecture for MPEG-4 AVC/H.264 [5] 

The multi-transform approach is good for low power and saving the hardware area. Chen’s 

design [5] is the first multi-transform architecture. They proposed a low power multi-transform 

architecture. They analyze residuals characteristics and propose a switching power suppression 

technique for saving data transition power. The design outputs four values every cycle. Their 

design achieves throughput of eight pixels per cycle and consumes 14.40mW at 200MHz. 

 
Figure 13. (Re-designed) parallel transform architecture 

This architecture is very compact for the 4x4 inverse transform, the gate count is only 4983. 

The processing speed can be achieved to 1Gpixels/sec at 200MHz. It is sufficient for the existing 

video formats including HDTV formats. But this architecture is very limited because it can only 

support 4x4 block. Moreover, if we want to use this architecture and extend to 8x8, it will have 

almost 4 times overhead. Therefore, this will cost large power consumption and hardware cost. 

This design still exists some way to accelerate the processing speed and reduce the hardware cost. 
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2.3.2 Low Cost Hardware sharing Architecture of Fast 

Inverse Transforms for H.264/AVC and AVS 

Applications [8] 
 

The 1-D fast algorithms and their hardware sharing design for the 1-D inverse transforms of 

H.264/AVC and AVS are proposed by using the symmetric property of the integer DCT matrix 

and the matrix decompositions. In this paper hardware-sharing architecture for H.264/AVC and 

AVS is realized by the offset computations and the pipelined design. Thus, the hardware cost of 

the proposed sharing architecture for H.264/AVC and AVS is smaller than that of the individual 

and separate realizations. This design implemented by pipeline stage to increase the performance 

of inverse transform. 

 
Figure 14. Block diagram of the proposed hardware sharing architecture of fast 2x2, 4x4 and 8x8 

inverse transforms for H.264/AVC and AVS with four  pipeline phases [8] 

In this paper, the 1-D transform is further divided into two smaller matrix-vector operations 

by even-symmetric or odd-symmetric. Therefore, its size is smaller. But the latency is increased 
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to 22 cycles because it only consumes one coefficient every cycle. Then the power consumptions 

of the 8x8 inverse integer at H.264/AVC mode and the 8x8 inverse at AVS mode at 62.5 MHz 

are 34.266mW and 37.785mW, respectively. Because of the supporting two video standards, 

need to add extra adding offset computations that use extra registers to completely satisfy two 

video standards. Therefore the area overhead and power consumption still need to be improved. 

This design still exists some way to reduce the hardware cost and power consumption. 

 

2.3.3 A High Performance Inverse integer Transform 

Architecture for the H.264/AVC Decoder[12] 

In this paper, a high-performance inverse transform architecture for the H.264/AVC decoder 

is proposed. The proposed architecture utilizes the block multiplication and permutation matrices. 

This architecture uses the matrix decomposition method to reduce the complexity of 4x4 inverse 

transform. By applying permutation matrices, the inverse transform matrix is regularized and the 

inverse Hadamard transform is merged into inverse transform with a minor modification. 

 
Figure 15. 4x4 inverse transform hardware architecture [12] 
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This design has higher throughput for computing inverse transform and inverse Hadamard 

transform. It has also higher hardware efficiency through the measure of DTUA for computing 

inverse transform and inverse Hadamard transform. In hardware architecture in each block A2, 

B2, C2, D2, they use traditional 4x4 inverse transform algorithm for implementation and too 

much extra logic was required to completely satisfy H.264/AVC standard. Therefore area and 

power consumption still need to be improved. 

 

2.3.4 Configurable, Low-power Design for Inverse Integer 

Transform in H.264/AVC[16] 

This paper presented a configurable, low-power design for the inverse integer transform in 

H.264/AVC. The power consumption is drastically reduced by employing an input block-type 

aware algorithm with variable number of operations for the computation of the inverse integer 

transform. This algorithm takes advantage of significant number of zero-valued transformed 

coefficients in a typical input block. Additionally, the area overhead was reduced by designing 

basic configurable processing blocks in order to share the hardware resources (adders) for 

different input block types. 

 
Figure 16. Functional block diagram: Configurable inverse integer transform unit. [16] 
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The internal organization of this block is depicted in Figure 16. Since the processing block 

M1-M3 are derived from M4 (Figure 17) and have the similar structure, therefore, we can design 

a configurable processing units (CM14, CM24, and CM34) with overlapped functionality to 

reduce the hardware resource requirement for its implementation. 

The configurable processing units (CM14, CM24, and CM34) as the name suggest can be 

configured to provide processing for either (M1, M4), (M2, M4), or (M3, M4) using the 

appropriate control signal. 

 
Figure 17. Data flow diagram for (a) M1, (b) M2, (c) M3, and (d) M4 cases. 

The internal architecture for these configurable units is depicted in Figure 18(a)-(c). 

Therefore, no additional (34) adders are required anymore because of configurable processing 

units. Furthermore, the input registers (in CM24) are also shared among processing for data 

vectors. 
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Figure 18. Data flow diagram for (a) CM14, (b) CM24 and (c) CM34. 

The new algorithm is derived from the fast one dimensional inverse integer transform. This 

paper focuses on the low power design that consumes significantly less dynamic power (up to 80% 

reduction) when compared with existing conventional design for the inverse integer transform. In 

some blocks, they use traditional 4x4 inverse transform algorithm and this architecture 

processing speed is very slow that can’t achieve the high resolution such as full HD in 

H.264/AVC.  

 

2.3.5 A Reconfigurable IDCT Architecture for Universal 

Video Decoders[17] 

The reconfigurable architecture has become more and more popular. It not only decreases the 

time of research and development but also saves fabrication cost. Moreover, the proposed 

reconfigurable inverse integer transform architecture can support 3 different video standards such 

as VC-1, MPEG and H.264/AVC. The block diagram is shown in Figure 19. 
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Figure 19. Block diagram of reconfigurable inverse integer transform 

 

 

 
Figure 20. Architecture of  reconfigurable one dimensional inverse integer transform 

 

 

 

 
 

a) 

 

 
b) 

Figure 21. Architecture of  adder kernel a) Even part and b) odd part 
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They propose the reconfigurable one dimensional inverse integer transform architecture 

combined from two modes in Figure 20 in order to meet the requirements of various video 

standards. Adder kernel unit, we can find that any combinations of the input signals are 

composed of {00~11} or {0000~1111}. Therefore the computational results in every row can be 

generated by adder kernel even and odd part in figure 21. We can simplify the adder kernel into 

thirteen adders only: two adders in the even parts, figure 21a, and eleven adders in the odd part, 

figure 21b. Routing network is for VC-1 inverse integer transform. Stage 3 is the shifter and 

adder tree unit, using two’s complement concept to implement the total sums. Stage 4 is the post-

adders. Reconfigurable inverse integer transform architecture is implemented for universal video 

decoders. It is the key point of this paper to reinforce the high throughput and to reduce power 

consumption and improve the throughout utilizing parallelism. This architecture can support 3 

different video standards. The power consumption is 3.4mW at 100MHz, hardware cost is 11.6k 

and the throughput rate is 800Mpixels/sec. but throughput is still lower than the state of the art 

such as [7], [10], [12]. In this paper, what kind of fast algorithm that used is not clear and in 

order to achieve different video standards that use too much extra registers therefore hardware 

cost still need to be improved. 
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2.4 Summary 

Table 3 summarized the above approaches. Each has distinct strength and weakness. We take 

4x4 transform supporting, 8x8 transform supporting, Hadamard transform supporting, power 

consumption, hardware cost, DTUA, and throughput as our comparison items. 

 

Table 3. Supporting features comparison 

 Hwangbo Su 

[8] 

Liu 

[9] 

Chen 

[10] 

Cheng 

[11] 

Su 

[13] 

Shia 

[14] 

Lin 

[15] 

Lai 

[17] 
[7] [12] 

4x4 

transform 
Y Y Y Y Y Y N Y Y Y 

8x8 

transform 
Y N Y N N N Y Y Y N 

Hadamard Y Y Y N Y Y N N N Y 

low power N N N N Y N N N N Y 

low area  N N Y Y N N Y Y Y N 

High DTUA N Y N N N N N N N N 

High 

Throughput 
Y Y N N N Y N N N N 

 

We also take an effort to evaluate several previous works and classify into three strategies: Low 

power aware, low hardware cost aware and high throughput aware. In Figure 22, we classify 

previous works as their strategy. Each strategy represents the major improvement in conventional 

inverse integer transform decoder. Each strategy represents the major improvement in 

conventional inverse integer transform decoder. 
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Figure 22. Implementation strategies of previous works 
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Chapter 3  

Proposed Algorithm & Architecture 

In this chapter, we propose our 4x4, Hadamard and 8x8 inverse integer transform fast one 

dimensional butterfly algorithms, pipeline hardware architectures and in Section 3.4 proposed 

their hardware-sharing design for 4x4, Hadamard and 8x8 inverse integer transforms of H.264 

video decoder. In our algorithms we use matrix decomposition method to reduce the complexity 

of inverse integer transforms to reduce the power consumption, hardware cost and raise the 

throughput and hardware efficiency in H.264/AVC. Matrix decomposition utilizes the 

permutation matrices. All Inverse integer transforms Hardware architecture designs are 

implemented with pipelined architecture. Thus, our design’s power consumption and hardware 

cost are smaller when comparing to previous works. 

The area overhead for the inverse integer transforms unit can be reduced by sharing the 

hardware resources between the independent processing units by designing the new fast butterfly 

algorithm. In next sub-sections, we will discuss more details about new fast 4x4, Hadamard, 8x8 

butterfly algorithms. 

 

3.1 Fast 4x4 Inverse Integer Transform 

3.1.1 Fast 4x4 Inverse Integer Transform Algorithm 

Fast 4x4 inverse integer transform algorithm is proposed in this part. First we will derive the 

formulas then algorithms which will be implemented in hardware design. We know that from the 

previous chapter 4x4 inverse integer transform coefficient matrix (Eq. 3.1) is follows, 

4

1 1 1 1/2

1 1/2 -1 -1

1 -1/2 -1 1

1 -1 1 -1/2

i
A

 
 
 
 
 
 

 

 

 

 

Eq. 3.1 
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We will use the matrix decomposition method to reduce the complexity of inverse integer 

transform which also means reduce the power consumption, hardware cost in terms of gate count. 

Therefore we define two permutation matrices Tc and Tr as described below, 

1 0 0 0

0 1 0 0
=

0 0 0 1

0 0 1 0

c
T

 
 
 
 
 
      

r
T

    
    
 
    
 
    

 Eq. 3.2 

And where 

4 4
( ) ( )  , ( ) ( )  T T T T

c c c c r r r r
T T T T I T T T T I     Eq. 3.3 

I4 is an identity matrix of order 4. By using these permutation matrices then we will get a 

new matrix

~

4 i
A , where the 

~

4 i
A matrix is described as follows, 

~

4 4( ) ( )i c i rA T A T

 

 

          

1 1 1 1 2

1 1 2 1 1

1 1 2 1 1

1 1 1 1 2

            
     
         
     
              
     
              

  

            

1 1 1 1/ 2

1 1 1/ 2 1

1 1 1 1/ 2

1 1 1/ 2 1

 
 

 
 
  
 

  

 

Eq. 3.4 

We can re-write the inverse integer transform coefficient matrix from Eq.3.4 matrix 

multiplication,  
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~

4 4
( ) ( )T T

i c i r
A T A T  

Eq. 3.5 

Then if we can use
~

4 i
A matrix to represent with 2x2 matrix form (Eq. 3.6) 

~
2

4

2

1 1 1 1/ 2

1 1 1/ 2 1
=

1 1 1 1/ 2

1 1 1/ 2 1

i
A

    
                      
          

H Q

H Q
 Eq. 3.6 

Where 
2

H
 
and Q are 

1 1

1 1

 
   

2
Η

1 1/ 2

1/ 2 1

 
   

Q  Eq. 3.7 

Then we use the matrix operation rule to derive one of the following equations (Eq. 3.8); 

  
 

   
 

2 2

A B
H I A B

A -B
 

 

Where 
2

1 0

0 1

 
  
 

I  Eq. 3.8 

And where  denotes the Kronecker product, matrix operation as follows (Eq. 3.9). Assume 

that the dimension of the matrix A is NxP, B is MxQ, 

 

PQMNNPNN

P

P

aaa

aaa

aaa























BBB

BBB

BBB

BA









21

22221

11211

 
Eq. 3.9 

Another means the direct sum operation which matrix operation express as follows (Eq. 3.10), 

 

NN 22
0

0













B

A
BA  

Eq. 3.10 
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If we apply Eq. 3.8 matrix operation rule to Eq. 3.5 then we can re-derive 4x4 inverse integer 

transform coefficient matrix, 
4 i

A re-expressed as follows, 

  
~

4 4 2
( ) ( )T T T T

i c i r c r
A T A T   

2 2 2
T H I H Q T  Eq. 3.11 

 

3.1.2 Fast 4x4 Inverse Integer Transform Architecture 

According to Eq. 3.11, the first stage of the hardware design 
T

r
T  and the last stage 

T

c
T

permutations are just wire connection which represents no arithmetic computation. We use 2 

pipeline stages to finish the operation. Figure 23 shows pipeline hardware architecture to 

represent the 4x4 inverse integer transform and we use the pipeline stages to help us simplify the 

design and speed up the hardware to achieve the higher resolution such as HD 1080, 

QFHD(4*HD 1080)  @ 30fps. 

 
Figure 23. Pipeline hardware architecture for fast 4x4 inverse integer transform. 
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In pipeline hardware architecture we use fast butterfly algorithm data flow like Figure 24 to 

implement 4x4 inverse integer transform. The complexity of this proposed fast 4x4 inverse 

integer transform  needs 2 shift operations and 8 additions. 

 

 

 
 

Figure 24. New fast algorithm of 4x4 inverse integer transform. 

 

3.2 Fast Inverse Hadamard Integer Transform 

3.2.1 Inverse Hadamard Integer Transform Algorithm 

The Hadamard inverse integer transform is given by; 

 
T

D 4i D 4i
W = H X H  

Eq. 3.12 

We know that from the previous chapter Hadamard inverse integer transform coefficient 

matrix, H4i  as follows, 

4i

1 1 1 1

1 1 -1 -1
H =

1 -1 -1 1

1 -1 1 -1

 
 
 
 
 
 

 Eq. 3.13 

The Hadamard inverse integer transform can be performed in a similar manner. For the 

Hadamard inverse integer transform, we use the same permutation matrices, 
r

T
 
and  

c
T  , 
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T T

c r
T T

 
  

 

2 2

4i

2 2

H H
H

H -H
 

 

Eq. 3.14 

                          2 2 2 2
( )( )T T

c r
  T H I H H T

 
Eq. 3.15 

WhereH2 is the same matrix given in (Eq. 3.7) before. The first stage of the Hadamard 

inverse integer transform hardware design T

r
T  and the last stage T

c
T  permutations are just wire 

connection which represents no arithmetic computation. 

3.2.2 Inverse Hadamard Integer Transform Hardware 

Architecture 

Figure 25 shows 2 pipeline hardware architectures to represent the 4x4 Hadamard inverse 

integer transform that we use the pipeline stages to help us simplify the design and speed up the 

hardware. 

 

T

rT
4x4 

Input
4x4 

Output T

cT

means pipelined register array

pipelined 

stage 1
pipelined 

stage 2

(
)


2

2
H

H

(
)


2

2
H

I

 
 

Figure 25. Pipeline hardware architecture for fast Hadamard inverse integer transform. 
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Figure 26 shows 4x4 Hadamard inverse integer transform implemented by using new fast 

butterfly algorithm data flow. The complexity of this proposed fast 4x4 Hadamard inverse 

integer transform needs just 8 additions without any shift operation. 

 

 
 

Figure 26. New fast algorithm of 4x4 Hadamard inverse integer transform. 
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3.3 Fast 8x8 Inverse Integer Transform 

3.3.1 Fast 8x8 Inverse Integer Transform Algorithm 

As we know from the previous chapter 8x8 transform coefficient matrix as follows, 

8

8 12 8 10 8 6 4 3

8 10 4 3 8 12 8 6

8 6 4 12 8 3 8 10

8 3 8 6 8 10 4 12
/8

8 3 8 6 8 10 4 12

8 6 4 12 8 3 8 10

8 10 4 3 8 12 8 6

8 12 8 10 8 6 4 3

i

 
     
 

   
 

    
    
 

     
   
 

    

C
 

Eq. 3.16 

 

According to the fast computations in [2], the fast 8x8 inverse integer transform that we use 

further matrix decomposition into 3 stage matrix multiplication as below, 

 

1 2 3

8 8 8 8
. .

i i i i
C C C C  

Eq. 3.17 

 

These 3 matrices
1

8 i
C  

2

8 i
C , 

3

8 i
C  are, 

1

8

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0

i

 
 
 
 
 
 
 
 

 
 
 
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C  Eq. 3.18 
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2

8

1 0 1 0 0 0 0 1

0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0

1 0 1 0 0 1 0 0

3
0 0 0 0 0 1 0

2

3
0 1 0 0 1 0 1

2

3
0 0 1 0 1 0 1
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0 0 0 0 0 1 1

2
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 

C  Eq. 3.19 

 

3

8

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1
0 0 1 0 0 0 0

2

1
0 0 0 0 0 1 0

2

1
0 1 0 0 0 0 0

4

1
0 0 0 1 0 0 0

4

1
0 0 0 0 1 0 0

4

1
0 0 0 0 0 0 1

4

i

 
 


 
 
 
 
 
 
 

  
 
 

 
 
 
 
 
 


  

C

 

Eq. 3.20 

 

Eq. 3.18, 
1

8 i
C  can be further decomposed into, 

 1

8 2
.

i
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~
T

c 4
C T H I  

Eq. 3.21 
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Where 
4

I identity matrix with order 4 and permutation matrix 

~

c
T  is defined by; 





















1000

0100

0010
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4
I  Eq. 3.22 

  

~
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0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
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0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0
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 
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T
 

Eq. 3.23 

Eq. 3.19, 
2

8 i
C  can be further decomposed into, 

~
2

8i 2 2 2 2 1[( )( )] T   C I I H I Q  
Eq. 3.24 

Where 
2

I identity matrix with order 2 and permutation matrix

~

2
I  and 1Q is equal to as below; 

2

1 0

0 1
I

 
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           ,         

~

2

0 1

1 0
I

 
  
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Eq. 3.25 
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In Eq. 3.25, 3x/2 can be decomposed to x+(x>>1). (x>>1) means 1 bit right shift. Eq. 3.20, 
3

8 i
C  

can be further decomposed into, 

~ ~
3 3

8 8

T

i i r C C T  
Eq. 3.26 

Where 
~

r
T

 
is,   

~

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

r

 
 
 
 
 
 
 
 
 
 
 
  

T
 

Eq. 3.27 

And where 

~
3

8iC  can be further decomposed into, 

3

8 2 2 3
( ) T

i
  C H Q Q

~

 
Eq. 3.28 

 

Where in (Eq. 3.28) Q2 and Q3, defined as,  

2

1
1

2
   and

1
1

2

 
 

  
 
  

Q

  

3

1
1 0 0

4

1
0 1 0

4

1
0 1 0

4

1
0 0 1

4

 
 
 
 
 

  
 
 
 

 
 

Q
 

Eq. 3.29 

Finally 
3

8 i
C will be equal to as below; 
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~
3

8 2 3[( ) ]T T

i r   
2

C H Q Q T  
Eq. 3.30 

Similarly, in Eq. 3.29, x/2 and x/4 can be replaced by 1 bit right shifter (x>>1) and 2 bit right 

shifter (x>>2) respectively. 

Then we can rewrite the 8x8 inverse integer transform matrix, 
8 i

C  can become as follows; 

1 2 3

8 8 8 8

~ ~~

2 4 2 2 2 2 1 2 2 3( ) {[( )( )] } [( ) ]

i i i i

T T T T

c r

  

          

C C C C

T H I I I H I Q H Q Q T

 

Eq. 3.31 

3.3.2 Fast 8x8 Inverse Integer Transform Hardware 

Architecture 

Same as 4x4 inverse integer transform, the first stage of the 8x8 inverse integer transform 

hardware design 
T

r
T permutation and the last stage 

T

c
T  that need no arithmetic computation to be 

implemented by hard-wire connection. We use 4 pipeline stages to implement the 8x8 inverse 

integer transform operation. Figure 27 shows pipeline hardware architecture to represent the 8x8 

inverse integer transform. We use the pipeline stages to simplify the design and speed up the 

hardware to achieve the higher resolution such as HD 1080, QFHD (4*HD 1080) @ 30fps. 
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Figure 27. Pipeline hardware architecture for fast 8x8 inverse integer transform. 
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Figure 28. New fast algorithm of 8x8 inverse integer transform. 
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Figure 28 shows 8x8 inverse integer transform by using new fast butterfly algorithm data 

flow. Total complexities of proposed fast 8x8 inverse integer transform are just 10 shift and 32 

addition operations. In the next section, we will discuss about hardware sharing architecture of 

inverse integer transform for H.264/AVC decoder. 
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3.4 Hardware Sharing Algorithm & Architecture 

First of all, we make all these 4x4 inverse integer transform, Hadamard inverse transform and 

8x8 inverse integer transform into one group. It can be found that the inverse transform process 

is slightly similar. In order to achieve low power and hardware saving for the inverse integer 

transform unit, sharing the hardware resources between the independent processing units is 

investigated. For the Hardware sharing design, we have listed all inverse integer transform 

equations from (Eq. 3.11), (Eq. 3.15), (Eq. 3.31) as follows, 

  4

T T

i c r
  

2 2 2
A T H I H Q T

 
 

4 2 2 2 2( )( )T T

i c r  H T H I H H T
 

 

~ ~~

8 2 4 2 2 2 2 1 2 2 3( ) {[( )( )] } [( ) ]T T T T

i c r          C T H I I I H I Q H Q Q T

 

 

From the above three equations, it can be found that in all these operations have  
2 2

H I  

same blocks. In this block, we will be able to do hardware sharing. Other 3 blocks which are

2


2
H Q  , 2 2H H  and 2 2H Q  need to be operated in one hardware block. Since 

2
Q is 

the main hardware block,  for Hadamard we need to use shift in the input circuit (scaling) will 

meet the 
2

H which is defined in Eq.3.7 in order to save the hardware cost, for 4x4 inverse 

integer transform that doesn’t need any scaling in the input circuit because of  
2

Q =Q   in (Eq. 

3.29) and (Eq.3.7). Figure 29 shows the hardware sharing architecture for the fast 4x4, 

Hadamard, 8x8 inverse integer transforms. The hardware sharing part of the fast inverse integer 

transforms is 2 2 2 2( )( ) H I H Q  in Figure 29. 
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3.4.1 Comparison And Implementation Of Hardware 

Sharing Architecture 

 

~ T
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T
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Figure 29. Hardware sharing architecture for fast 8x8, 4x4 and Hadamard inverse integer                 

 transform. 

 

In Figure 29, the proposed hardware sharing architectures, which are low power consumption 

to support 3 inverse integer transform modes, need 12 shifters, 32 additions and a simple MUX 

in implementations. In order to achieve the purpose of hardware sharing, an additional simple 

multiplexer is needed for implementation of the fast 4x4, Hadamard, 8x8 inverse integer 

transform. In Figure 29, the module )Q(H
22

  needs 4 additions and 2 shifters, the module 

)I(H
42

  needs 8 additions, the module )I(H
22

  needs 4 additions, the module 
T

3
Q needs 

4 additions and 4 shifters. In Figure 27, 
T

1
Q  requires 12 additions and 4 shifters. For low power 

and high processing speed, we cut into two pipeline operation in Figure 29. The first pipeline is 
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1

T

a
Q  which requires 8 additions and 4 shift registers. The second is 

1

T

b
Q stage pipeline requires 

just 4 additions. In Table 4, it shows the architecture comparisons for new fast inverse integer 

transforms. The pipelined phases of hardware sharing architectures are also noted with dotted 

lines in Figure 29. 

 

Table 4. Architecture Comparisons for Fast Inverse Integer Transforms 

Architectures of 

Inverse Integer 

Transforms 

Number 

of 

Shifters 

Number 

of 

Adders 

Supporting 

Transform 

Mode 

4x4 Only 2 8 4x4 

8x8 Only 10 32 8x8 

Hadamard only 0 8 Hadamard 

Direct Three-mode 12 48 
4x4 , 8x8 , Hadamard 

inverse 

Proposed 

Hardware Sharing 

Design 

12 32 
4x4 , 8x8 , 2x2/4x4 Hadamard 

inverse 
 

 

 

The computational complexity of the proposed one dimensional fast 4x4 and 8x8 inverse 

integer transform is equivalent to that of the fast algorithm of the state-of-the-art [14], where the 

fast computation needs for 4x4 inverse, 2 shift, 8 addition and for 8x8 inverse 10 shift and 32 

addition operations.  
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3.5 Summary and Comparison With Related Works 

Based on matrix decomposition algorithm the low power and the most hardware efficiency 

architecture new fast 4x4, 8x8 and Hadamard inverse integer transforms can be derived. New 

fast 4x4, Hadamard, 8x8 and hardware sharing inverse transform algorithms and hardware 

implementations, are developed by utilizing matrix decomposition for H.264/AVC applications. 

By applying the concept of hardware sharing, the proposed hardware schemes for fast inverse 

integer transforms need a smaller number of shifters and adders than the direct three mode  

realization architecture, where the direct architecture just implements the individual 4x4, 

individual Hadamard, individual 8x8 inverse integer transforms independently (Table 4).  

For the throughput, actually we already get high throughput by previous works such as [10] 

[12]. By the state of the art, we shouldn’t keep going to raise much higher throughput. For our 

purpose, we make an effort to design inverse integer transform decoder which is the most 

suitable strategy for system integration and take a balance between throughput and overhead at 

the promise of the acceptable throughput for real-time decoding full-HD sequences.        

Therefore, we simplify and make a formula for throughput as following: 

First, we can get the formula of total executed cycles, 

                      
           

           
 

                                          PPC 

In Table 5 also shows the throughput of our designs for 4x4, Hadamard, and 8x8 inverse 

integer transform and Hardware sharing design. 

In our design, we apply pipeline architecture efficiently to get acceptable throughput by our 

proposed IIT scheme. 

 



49 

 

On the other hand, we use umc 90nm technology process which is different technology 

process from previous works such as tsmc 0.18um, umc 0.18um. for the normalization of our 

works to tsmc 0.18um and umc 0.18um, the normalization result will be the same for tsmc 

0.18um and umc 0.18um because of supply voltage is the same 1.8Volt. In order to make fair 

comparison, in table 5 shows the normalization in terms of the power consumption. 

Table 5. Normalization of Power consumption to UMC 0.18um and TSMC 0.18um 

 Technology Processing Unit 
Operating frequency(MHz)  

/Power consumption (mW) 

 IIT IIT IIT 

Gordon[2]’04 N/A 8x8 125MHz  /  2.76mW 

Chen[10]’05 UMC 0.18um 4x4 100MHz  /  9.91mW 

Hwangbo[12]’07 UMC 0.18um  4x4 203MHz  /  N/A 

Fan[13]’07 TSMC 0.18um  4x4,8x8 62.5MHz  / 2.39mW 

Su [8]*’08 TSMC 0.18um 
4x4, 8x8, 

Hadamard,AVS 
100MHz  /  34.2mW 

Su [8]*’09 TSMC 0.18um 8x8 125MHz  /  2.79mW 

Hwangbo[7]’10 UMC 0.18um 4x4,Hadamard,8x8 200MHz  / 86.9mW 

Lai [17]’10 UMC 90nm 
MPEG, VC, H.264 

8x8 
100MHz / 3.4mW 

Proposed 

UMC 90nm 

4x4 150MHz  / 182.9 µW 

Proposed Hadamard 150MHz / 151.8 µW 

Proposed 8x8 150Mhz  / 0.68 mW 

Proposed HW Sharing 
4x4, Hadamard, 

8x8 
150MHz / 1.1 mW 

 

 

The synthesis results of proposed architecture and the performance comparison with 

previous works are shown in Table 6. We focus on the power consumption, hardware area and 

hardware efficiency. Our hardware schemes by applying the concept of hardware sharing for 
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inverse integer transforms need smaller number of shifters and adders than the direct realization 

architecture, where the direct realization architecture just implements the individual transforms 

independently. Through the comparison, the proposed inverse integer transforms design requires, 

saving more power consumption and performs better hardware efficiency than the state-of-the-art 

existing design.  

Table 6. Synthesis results and Comparison 

 Technology 

Area 

(Nand2 

Cmos) 

Processing Unit 

Critical Path 

Delay (ns) 

Operating frequency(MHz) 

/ Power consumption (mW) 

Throughput 

(pixels/sec) 

DTUA 

(Pix./sec/g

ate) 

 IIT 
IIT 

IIT 
IIT IIT  IIT IIT 

Gordon[2]’04 N/A 
6139 

8x8 
N/A 125MHz  /  2.76mW N/A N/A 

Chen[10]’05 UMC 0.18um 
7497 

4x4 
N/A 100MHz  /  9.91mW 2.66G 354.8k 

Hwangbo[12]’07 UMC 0.18um  
5639 

4x4 
4.92 203MHz  /  N/A 3.25G 576.3k 

Fan[13]’07 TSMC 0.18um  
6.5k 

4x4,8x8 
N/A 62.5MHz  / 2.39mW N/A N/A 

Su [8]*’08 TSMC 0.18um 
9.03k 4x4, 8x8, 

Hadamard,AVS 

N/A 100MHz  /  34.2mW N/A N/A 

Su [8]*’09 TSMC 0.18um 
7.03k 

8x8 
N/A 125MHz  /  2.79mW N/A N/A 

Hwangbo[7]’10 UMC 0.18um 
63.6k 4x4,Hadamard,

8x8 

N/A 200MHz  / 86.9mW 3.2G 50.3k 

Lai [17]’10 UMC 90nm 
11.6k MPEG, VC, 

H.264 8x8 

N/A 100MHz / 3.4mW 800M 68.9k 

Proposed 

UMC 90nm 

0.9k 
4x4 

1.46 150MHz  / 56.45 µW 2.7G 3M 

0.53 1.49GHz /  405.41 µW (Max.) 5.96G 6.6M 

Proposed 
0.87k 

Hadamard 

1.48 150MHz / 46.85 µW 2.7G 3.08M 

0.55 1.53GHz / 401.43 µW (Max.) 5.79G 
6.5M 

Proposed 
4.2k 

8x8 

2.11 150Mhz  / 0.21 mW 3.8G 904.7k 

0.64 1.31GHz / 1.46 mW (Max.) 5.12G 
1.2G 

Proposed HW 

Sharing 

4.6k 4x4, Hadamard, 

8x8 

2.23 150MHz / 0.31 mW 3.6G 783.6k 

0.63 625MHz / 1.30  mW (Max.) 5.19 
1.1G 
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In our design, we apply matrix decomposition method to get low power consumption by our 

4x4, Hadamard, 8x8 and hardware sharing design scheme. Our hardware architecture power 

consumption and hardware cost for 4x4, Hadamard, 8x8 inverse integer transform at 56.45µW, 

46.85µW, 0.21mW, and for the area 0.9k, 0.87k, 4.2k at 150MHz, respectively. For the Hardware 

sharing design our power consumption and hardware cost is just 0.31mW and 4.6k, respectively. 

Our four designs are better power consumption design than the previous works. According to 

Hardware efficiency index for 4x4, Hadamard, 8x8 and hardware sharing schemes in Table 6, 

our design is most efficient than existing designs. For the Full HD system speed requirements for 

each size is 1920x1080 @ 30fps. 4x4, Hadamard, 8x8 and hardware sharing design is suitable 

for H.264/AVC High Profile. 
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Chapter 4  

System Integration 

 

4.1 System Specification 

The specifications of the proposed architecture are described in Table 7 for H.264 video 

decoder. The proposed architecture is synthesized with UMC 90-nm CMOS standard-cell library 

and operated at 150MHz. 4x4, 8x8 and 16x16 block size can be supported. Our H.264 decoder, 

the processing capability for 4x4, Hadamard and 8x8 inverse integer transform are 

HD1080p/HD720p/QFHD@30fps. In the future trend the higher video resolution is necessary. 

Therefore our proposed architecture and algorithm can support the higher video resolution than 

H.264 supported. 

Table 7. The specification of Video decoder 

H.264/AVC decoder 

Process technology : UMC 90nm 

Block size: 4x4, 8x8, 16x16 

Throughput: 4 – 8 pixels/cycle 

Processing capability: 4x4 inverse transform HD1080p,720p, QFHD 

Hadamard inverse transform  HD1080p,720p, QFHD 

8x8 inverse transform HD1080p,720p, QFHD 

Decoding capability: H.264/AVC: HDTV, 1080p HD, QFHD @30fps 

SVC:  720p– 1080p HD @30fps 

Working Frequency: 

H.264/AVC: 100 MHz 

SVC: 150 MHz 
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4.2 The Integration with H.264/AVC System 

In Figure 5, each residual macroblock is transformed, quantized and coded. Previous 

standards such as MPEG-1, MPEG-2, MPEG-4 and H.263 made use of the 8x8 inverse integer 

transform as the basic transform. The “baseline” profile of H.264 uses three inverse transforms 

depending on the type of residual data that is to be coded. A transform for the 4x4 array of luma 

DC coefficients in intra macroblock (predicted in 16x16 mode), a transform for the 2x2 array of 

chroma DC coefficients (in any macroblock) and a transform for all other 4x4 blocks in the 

residual data. If the optional “adaptive block size transform” mode is used, further inverse 

transforms are chosen depending on the motion compensation block size (4x4, 8x8). 

Data within a macroblock are transmitted in the order also shown in Figure 5. If the 

macroblock is coded in 16x16 Intra mode, then the block labeled “-1” is transmitted first, 

containing the DC coefficient of each 4x4 luma block. Next, the luma residual blocks 0-15 are 

transmitted in the order shown (with the DC coefficient set to zero in a 16x16 Intra macroblock). 

Blocks 16 and 17 contain a 2x2 array of DC coefficients from the Cb and Cr chroma components 

respectively. Finally, chroma residual blocks 18-25 (with zero DC coefficients) are sent.  

 
 

Figure 30. The Integration with H.264/AVC system block diagram 
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 In Figure 30, block diagram shows the integration of inverse integer transform with 

H.264/AVC video decoder system. Our design architecture can process 4 pixels or 8 pixels per 

cycle with a low power and small gate count. The input of the inverse transform is from the 

inverse quantization function followed by a two dimensional 4x4 or 8x8 inverse integer 

transform depends on the selection mode in hardware sharing design. Then output of the inverse 

integer transform residual data will be input of the de-blocking filter.  

Table 8 shows the timing analysis for different MB. Thus, for the timing analysis, the 

calculation of time required to process a whole frame is as follows, 

 

frame blockblock per frame
T =N xT  

           

pixel per frame

block

pixel per block

N
= xT

N
 

                    

pixel per frame

cycle cycle

pixel per block

N
= xN xT

N
 

 

 

 

 

Eq. 5.1 

Where Ncycle and Tcycle indicate the number of cycles and time required per cycle, respectively. 
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Table 8. Time required to decoding full HD and HDTV frame with different MB. Frame with 

YUV420 is used. 

Frequency Format 4x4 MB 

(ms) 

Hadamard  

(ms) 

8x8MB 

(ms) 

150MHz 

HD 1080 

(1920x1080) 

 

4.53 

 

4.6 

 

5.4 

HD 720 

(1280x768) 

 

2.14 

 

2.18 

 

3.1 

625MHz 
QFHD 

(4*HD 1080) 

 

17.3 

 

17.3 

 

18 
 

 

THD_4x4MB (4.53ms) is 7.35, THD_Hadamard (4.6ms) is 7.23, THD_8X8MB (5.4ms) is 6.1 times faster 

than the 33.3ms standard time required for processing each HD frame decoding. Same way for 

the HDTV frame, THDTV_4x4MB (2.14ms) is 15.5, THDTV_Hadamard (2.18ms) is 15.27, THDTV_8x8MB 

(3.1ms) is 10.7 times faster and for QFHD is almost 2 times faster. Thus, the proposed inverse 

transforms architectures meet the real-time constraints for HD1080 and QFHD video signal. 

Therefore this module can perform 1080 HD and QFHD @ 30fps in real-time. 
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Chapter 5  

Conclusion and Future Works 
 

5.1 Conclusion 

In this works, we implement 4x4, Hadamard, 8x8 inverse integer transforms and Hardware 

sharing design. We first proposed fast algorithm for 4x4 and 8x8 macroblock and use with 

pipeline to reduce the inverse transform complexity which means saved power consumption, 

significant reduce hardware area and enhance the performance of the hardware. Our hardware 

architecture power consumption and hardware cost for 4x4, Hadamard, and 8x8 inverse integer 

transforms are only 56.45µW, 46.85µW, and 0.21mW at 150MHz and for the area 0.9k, 0.87k, 

4.2k, respectively. For the Hardware sharing design our power consumption is just 0.31mW and 

hardware cost is just 4.6k. Our four designs are better power consumption design than the 

previous works. For the Full HD system speed requirements for each size is 1920x1080 @ 30fps. 

Our comparisons power consumption, hardware cost in terms of gate count, critical path delay, 

throughput and hardware efficiency which achieves better (783.6k) than the previous works. 

DTUA is used to evaluate the hardware efficiency. It is defined as the ratio of data throughput 

rate over hardware cost in terms of the gate count. The higher the DTUA is, the more efficient 

the design. According to the DTUA in Table 6, our four designs are the most hardware efficient 

design than other designs. In Table 6, the proposed hardware sharing design for fast 4x4, 

Hadamard, 8x8 inverse transforms of H.264/AVC requires smaller gate counts (i.e., 4.602 gates) 

than the individual 4x4 and 8x8 inverse integer transforms without the hardware share (i.e., 

904+873+4209=5986 gates).This component can be used in H.264 high profile decoder design 

and its inversion can be used in encoder design as well. 
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5.2 Future Work 

In the future, we will more focus on new algorithms to reduce the number of adder and 

shifter that saving more power consumption and keep improving the performance and to further 

reduce hardware area of our design. We will also employ voltage scaling technique to further 

reduce power consumption and furthermore employ gated clock and multiple clock technique to 

save the clock power. Meanwhile, we will try to support other standard inverse transforms in the 

same algorithms. 
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