

National Chiao Tung University

Department of Electronics Engineering

Master Thesis

Design of A Low Power Inverse Integer Transform for H.264/AVC

Decoding Applications

 Student : Hüseyin Demirkaya

 Advisor : Prof. Chen-Yi Lee

July 2011

http://tr.wikipedia.org/wiki/%C3%9C_(harf)

Design of A Low Power Inverse Integer Transform for

H.264/AVC Decoding Applications

 研 究 生：王英杰 Student：Hüseyin Demirkaya

指導教授：李鎮宜 Advisor：Prof. Chen-Yi Lee

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

July 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月

http://tr.wikipedia.org/wiki/%C3%9C_(harf)
javascript:__doPostBack('s3_1','0')
javascript:__doPostBack('s1','')

Design of A Low Power Inverse Integer

Transform for H.264/AVC Decoding Applications

Student：Hüseyin Demirkaya

Advisor：Prof. Chen-Yi Lee

Department of Electronics Engineering

National Chiao Tung University

ABSTRACT

In this thesis, we adopted various new fast butterfly algorithms and hardware architectures

for low power Inverse Integer Transform (IIT) in H.264/AVC Main/High Profile video decoding.

In our new fast algorithms we use matrix decomposition method to reduce the complexity of

inverse integer transforms to reduce the power consumption, hardware cost and raise hardware

efficiency in H.264/AVC Main/High Profile video decoding. Matrix decomposition utilizes the

permutation matrices. The proposed design supports 4x4, 2x2/4x4 Hadamard and 8x8 inverse

transforms.

We integrate the same parts of the three transforms to reduce the power consumption and

hardware area and the cost. Finally, we can use the proposed hardware design to handle the video

coding with the 1080 HD @30fps and also QFHD @30fps video format. The proposed hardware

architectures achieve power consumption and hardware cost for 4x4, Hadamard, 8x8 inverse

integer transform and hardware sharing design at 56.45µW, 46.85µW, 0.21mW, 0.31mW, and

for the area 0.9k, 0.87k, 4.2k, 4.6k, respectively.

http://tr.wikipedia.org/wiki/%C3%9C_(harf)
javascript:__doPostBack('s3_1','0')

Acknowledgements

First of all, I want to thank Prof. Chen-Yi Lee for very valuable comment and initiating an

interesting research project and for providing excellent support.

Next, I would like to thank my fellow researchers in the Si2 laboratory. It has been a great

pleasure working with them for the past two years. I would like to thank to my all Lab. People

especially Yao Li for all their support and help. I wish them all great success in their future

academic and professional lives.

I am also beholden to the Department of Electronics Engineering for providing support in

the form of an assistantship. I also greatly appreciate the support of Himax Technologies Inc.

i

Contents

Chapter 1 Introduction .. 1

1.1 Introduction of H.264/AVC decoding flow ... 3

1.2 Motivation & Design Challenges .. 5

1.3 Thesis Organization ... 6

Chapter 2 Related Works ... 7

2.1 Inverse Integer Transform Algorithm .. 7

2.1.1 Overview of the Inverse Integer Transforms.. 7

2.1.2 Traditional 4x4 Inverse Integer Transform ... 11

2.1.3 Traditional Inverse Hadamard Integer Transform ... 12

2.1.4 Traditional 8x8 Inverse Integer Transform .. 13

2.1.5 Traditional Hardware Sharing Design .. 16

2.2 H.264 Profiles and Levels .. 18

2.3 Previous Works ... 21

2.3.1 Parallel 4x4 transform and inverse transform Architecture for MPEG-4

AVC/H.264 [5] .. 21

2.3.2 Low Cost Hardware sharing Architecture of Fast Inverse Transforms for

H.264/AVC and AVS Applications [8] .. 22

2.3.3 A High Performance Inverse integer Transform Architecture for the

H.264/AVC Decoder[12] .. 23

2.3.4 Configurable, Low-power Design for Inverse Integer Transform in

H.264/AVC[16] ... 24

2.3.5 A Reconfigurable IDCT Architecture for Universal Video Decoders[17] 26

2.4 Summary ... 29

Chapter 3 Proposed Algorithm & Architecture .. 31

3.1 Fast 4x4 Inverse Integer Transform ... 31

ii

3.1.1 Fast 4x4 Inverse Integer Transform Algorithm ... 31

3.1.2 Fast 4x4 Inverse Integer Transform Architecture ... 34

3.2 Fast Inverse Hadamard Integer Transform .. 35

3.2.1 Inverse Hadamard Integer Transform Algorithm ... 35

3.2.2 Inverse Hadamard Integer Transform Hardware Architecture 36

3.3 Fast 8x8 Inverse Integer Transform ... 38

3.3.1 Fast 8x8 Inverse Integer Transform Algorithm ... 38

3.3.2 Fast 8x8 Inverse Integer Transform Hardware Architecture 42

3.4 Hardware Sharing Algorithm & Architecture .. 45

3.4.1 Comparison And Implementation Of Hardware Sharing Architecture 46

3.5 Summary and Comparison With Related Works ... 48

Chapter 4 System Integration ... 52

4.1 System Specification ... 52

4.2 The Integration with H.264/AVC System ... 53

Chapter 5 Conclusion and Future Works ... 56

5.1 Conclusion ... 56

5.2 Future Work ... 57

References 58

iii

Figure Index

Figure 1. System architecture of H.264/AVC decoder ... 1

Figure 2. Bit-stream structure of H.264/AVC ... 2

Figure 3. Block diagram of H.264/AVC decoder .. 3

Figure 4. Residuals (prediction errors) between current and reconstructed frame 7

Figure 5. Scanning order of residual blocks within a macroblock ... 9

Figure 6. H.264/AVC Encoding/Decoding flow diagram ... 9

Figure 7.Traditional 4x4 inverse integer transform... 12

Figure 8.Traditional 4x4 inverse Hadamard integer transform ... 13

Figure 9. Traditional 8x8 inverse integer transform .. 15

Figure 10. Traditional hardware sharing design [19] .. 16

Figure 11. High profile classification and features ... 18

Figure 12.H.264 decoder profiling results ... 19

Figure 13. (Re-designed) parallel transform architecture ... 21

Figure 14. Block diagram of the proposed hardware sharing architecture of fast 2x2, 4x4

and 8x8 inverse transforms for H.264/AVC and AVS with four pipeline phases [8] 22

Figure 15. 4x4 inverse transform hardware architecture [12] .. 23

Figure 16. Functional block diagram: Configurable inverse integer transform unit. [16] .. 24

Figure 17. Data flow diagram for (a) M1, (b) M2, (c) M3, and (d) M4 cases. 25

Figure 18. Data flow diagram for (a) CM14, (b) CM24 and (c) CM34. 26

Figure 19. Block diagram of reconfigurable inverse integer transform 27

Figure 20. Architecture of reconfigurable one dimensional inverse integer transform 27

iv

Figure 21. Architecture of adder kernel a) Even part and b) odd part 27

Figure 22. Implementation strategies of previous works .. 30

Figure 23. Pipeline hardware architecture for fast 4x4 inverse integer transform. 34

Figure 24. New fast algorithm of 4x4 inverse integer transform. ... 35

Figure 25. Pipeline hardware architecture for fast Hadamard inverse integer transform. . 36

Figure 26. New fast algorithm of 4x4 Hadamard inverse integer transform. 37

Figure 27. Pipeline hardware architecture for fast 8x8 inverse integer transform. 43

Figure 28. New fast algorithm of 8x8 inverse integer transform. ... 43

Figure 29. Hardware sharing architecture for fast 8x8, 4x4 and Hadamard inverse integer

transform. .. 46

Figure 30. The Integration with H.264/AVC system block diagram 53

v

Table Index

Table 1. Motivation comparison of standards .. 5

Table 2.Coding tools in different profiles of H.264/AVC standard ... 20

Table 3. Supporting features comparison ... 29

Table 4. Architecture Comparisons for Fast Inverse Integer Transforms 47

Table 5. Normalization of Power consumption to UMC 0.18um and TSMC 0.18um 49

Table 6. Synthesis results and Comparison .. 50

Table 7.The specification of Video decoder .. 52

Table 8. Time required to decoding full HD and HDTV frame with different MB.

Frame with YUV420 is used. .. 55

1

Chapter 1

Introduction

H.264/AVC is the state-of-the-art video compression standard of the ITU-T Video Coding

Experts Group and ISO/IEC Moving Picture Experts Group (MPEG) in current video

applications and is often exploited in electronics devices to achieve better video compression

performance. The objective of the H.264/AVC is to deliver high quality video at lower bit rates

than the previous standards. One of the tools being adopted is inverse integer discrete cosine

transform. The video compression efficiency achieved in H.264/AVC standard is not a result of

any single feature but a combination of a number of codec tools. As it is shown in system

architecture block diagram of an H.264/AVC decoder in Figure 1, the inverse integer transform

algorithm [2] is one of the coding tools.

IIT

Figure 1. System architecture of H.264/AVC decoder

To quickly compress video data in spatial domain, H.264/AVC employs 4x4 integer

transforms which use only integer arithmetic with signed additions and shifts to replace the

costly multiplication. Small block-size transform tends to reduce the computational complexity

2

and ringing artifacts. However, for high-quality video, large block-size transform must be used

not only to preserve fine details of the image but also to obtain the better energy compaction.

High-definition (HD) applications adopt main profile, extended profile and high profile in

H.264/AVC, and they require complicated design. Also, H.264/AVC offers various scalabilities

to be adapted to the receipt condition of the data and the various multimedia applications [3].

Transform process of H.264 requires 8x8 transforms for high-definition applications, and 4x4

transforms for general applications. To meet scalabilities, transform module must process both

8x8 integer transform operations and 4x4 integer transform operations. Therefore, design of 8x8

transforms and 4x4 transforms into unified block is an important issue in H.264/AVC coder.

High profile in H.264/AVC Fidelity Range Extension (FRExt), which is a new amendment added

in H.264 standard, includes 8x8 integer transform and allows the decoder to adaptively choose

between 4x4 and 8x8transform for luma samples on MB level [4]. Based on the symmetric

property of the integer transform matrix and matrix operations, which denote the row-column

permutations and the matrix decompositions, the efficient fast 4x4 and 8x8 inverse transform

developed [6]-[8]. For early-stage H.264/AVC such as the baseline or main profile, researchers

mainly focused on developing the fast algorithm of 4x4 and 8x8 transforms and its

implementation to improve performance with minimal area overhead in [10]-[13].

NAL Layer
NAL

Syntax

Element
NAL unit NAL unit

NAL

Syntax

Element
NAL unit

NAL

Syntax

Element

NAL

Unit

Header
SPS-RBSP

NAL

Unit

Header
PPS-RBSP

NAL

Unit

Header
Slice Layer-RBSP

Slice

Header
Slice Data

Macro

block 0

Macro

block 1

Macro

block 2

Macro

block N

Sub-

macro

block

Prediction

Residual

Data

Residual

Data

NAL

Syntax

Element

Macroblock Layer

Slice Layer

Picture Layer

Sub-

macro

block

Prediction

Figure 2. Bit-stream structure of H.264/AVC

3

In normal system architecture, the block of syntax parser employs in decoding the bit-stream

on NAL layer, picture layer, and slice layer, given as Figure 2. Syntax element parser is also the

top module to control all sub-system such as inverse integer transform, CABAD, VLD, intra-

prediction, inter-prediction, and so on.

1.1 Introduction of H.264/AVC decoding flow

In common with earlier coding standards, H.264 does not explicitly define a CODEC

(encoder/decoder pair) but rather defines the syntax of an encoded video bitstream together with

the method of decoding this bitstream. In practice, a compliant decoders are likely to include the

functional elements shown in Figure 3.With the exception of the deblocking filter, most of the

basic functional elements (prediction, inverse transform and inverse quantization) are present in

previous standards (MPEG-1, MPEG-2, MPEG-4, H.261, H.263) but the important changes in

H.264 occur in the details of each functional block.

Reference

frame
MC

Intra

prediction

Current

frame
(reconstructed)

Filter IIT Q
-1

Reorder
Entropy

decode
NAL

P

Inter

Intra

INTER prediction

Dn
+

+

XFn

Figure 3. Block diagram of H.264/AVC decoder

The decoder receives a compressed bitstream from the NAL and entropy decodes the data

elements to produce a set of quantized coefficients X. These are scaled and inverse transformed

to give Dn. Using the header information decoded from the bitstream, the decoder creates a

4

prediction block (PRED), identical to the original prediction formed in the encoder. PRED is

added to Dn to produce Fn which is filtered to create each decoded block (Current frame).

5

1.2 Motivation & Design Challenges

The transform process that converts image or motion compensated residual data into another

domain. H.264 supports several inverse integer transforms. Table 1 shows the motivation

comparison with the previous standard. Our target is to reduce the complexity of inverse integer

transform and make it fast. If we can reduce transform complexity, we can also reduce power

consumption and hardware cost, moreover, increase the throughput. By applying the concept of

hardware sharing, power-area requirement for the hardware implementation of the inverse

integer transform will be reduced by sharing the hardware resources. Optimizing 4x4, 8x8 and

Hadamard inverse transforms algorithm of the H.264/AVC decoder, we obtain low power

consumption, high performance and small area design. To reduce power consumption and

enhance performance of the transform with a minimum area overhead remain the design

challenges in H.264/AVC video standard.

Table 1. Motivation comparison of standards

Feature/Standard MPEG-1 MPEG-2 MPEG-4 part 2 H.264/MPEG

part 10

Macro block size 16x16

16x16 (frame mode)

16x8 (field mode)

16x16

16x16

Block size 8x8 8x8 16x16, 16x8, 8x8

16x16, 8x16, 16x8,

8x8,4x8, 8x4, 4x4

Inverse transform 8x8 DCT 8x8 DCT 8x8 DCT/Wavelet

4x4, ,8x8, Hadamard

Integer transform

6

1.3 Thesis Organization

An introduction of H.264/AVC video coding standards are given in this section. The rest of

this thesis is organized as follows. Chapter 2 describes the related works for inverse integer

transforms, the overview of H.264/AVC profiles and previous works. In Chapter 3, we describe

our proposed algorithm and hardware architecture for 4x4, Hadamard and 8x8 inverse integer

transform. In this chapter, we also implement the hardware sharing algorithm & architecture, and

take an in-depth discussion about Comparison and implementation of hardware sharing

architecture. Moreover, we show 4 kinds of Inverse integer transform module design including

hardware sharing and according to our proposed algorithm, system integration architecture and

comparison of the proposed design with others shows in 0. Finally, we make the conclusion and

future works in the last Chapter 5.

7

Chapter 2

Related Works

In this chapter, we will describe the overview of the H.264/AVC traditional inverse integer

transform algorithm for 4x4, Hadamard and 8x8 MB.

2.1 Inverse Integer Transform Algorithm

2.1.1 Overview of the Inverse Integer Transforms

H.264/AVC uses a macroblock (MB) as a basic data unit. Our input includes coefficients and

flags decoded by the entropy decoder (CAVLC or CABAC). It contains luma part and chroma

part. The inter-prediction or intra prediction module finds a macroblock which is similar to

current one from reference or present frames. However, the founded MB usually does not

perfectively match with the current one, and the differences are called residuals (or prediction

error) as shown in Figure 4. The residuals are inversely transformed which are then reordered

and entropy encoded. At the decoder side, these entropy-encoded coefficients are decoded back

to coefficients. After reordering, coefficients are inversely transformed to residuals data. Finally

the residuals are combined with prediction data to reconstruct a MB.

(a.) Current Frame

(b.) Predicted Frame

(c.) Residuals

Figure 4. Residuals (prediction errors) between current and reconstructed frame

There are one 16x16 luma block and two 8x8 chroma blocks (Cb, Cr) within a macroblock.

A 16x16 luma block can be divided into four 8x8 blocks, and each consists of four 4x4 blocks. A

chroma 8x8 block contains four 4x4 blocks. In Figure 4, every 4x4 (or 2x2) block is numbered

8

according to decoding order. If a macroblock is coded by intra 16x16 prediction mode as shown

in Figure 5(a), block -1 which contains DC coefficients of every 4x4 luma block will be

processed first. The DC coefficients are filled back to upper-left corner of each 4x4 block in

a16x16 luma block. Next, the luma residual blocks 0-15 are processed. After luma block is

decoded, chroma DC blocks 16 and 17 are processed, and filled back to upper-left corner of each

4x4 block in an 8x8 chroma block. Finally, chroma residual blocks 18-25 are processed. If

current macroblock type is non-intra 16x16, the processing order is the same except that it has no

luma DC block as shown in Figure 5(b).

Cb

Cr

Luma

(a) Intra 16x16 macroblock

Cb

Cr

Luma

(b) Non-Intra 16x16 macroblock

9

Figure 5. Scanning order of residual blocks within a macroblock

Three kinds of inverse integer transform are adopted depending on the type of residual

blocks: 4x4 Hadamard transform for luma DC block (block -1), 2x2 Hadamard transform for

chroma DC block (block16, 17), and 4x4 integer transform for all other types of 4x4 blocks

(block 0-15, 18-25).Figure 6 shows the decoding flow diagram. We will emphasize on the

decoder side.

DC

4x4 blockIntra

16x16

Current Predicted

Residual

16x16 Luma

8x8 Cb, Cr

Reconstructed

8x8 Cb, Cr

16x16 Luma

Residual Predicted

Encoder

Decoder

Figure 6. H.264/AVC Encoding/Decoding flow diagram

If 4x4 inverse transform is employed, the luma part is divided into one luma DC 4x4 block

and 16 luma AC 4x4 blocks. On the other hand, if 8x8 transform is applied, the luma part is

divided into four 8x8 blocks. The chroma part is divided into two chroma DC 2x2 blocks and

eight chroma AC 4x4 blocks in both cases.

10

In the following sub-sections, we will describe the traditional 4x4, Hadamard and 8x8

inverse integer transform algorithms.

11

2.1.2 Traditional 4x4 Inverse Integer Transform

In the H.264/AVC standard, the inverse integer transform operates on 4x4 blocks of

residual data after motion-compensated prediction or intra prediction [4]. However, only two

types of 4x4 inverse transforms are defined for the H.264/AVC decoder. The first type is the 4x4

inverse integer transform, which is defined as Eq. 2.1, where the 4x4 inverse integer transform

coefficient matrix
4 i

A defined as Eq. 2.2

4 4 4 4
()

T
T

i i i i i
X A Y E A A FA  

Eq. 2.1

4 4

1 1 1 1/2

1 1/2 -1 -1

1 -1/2 -1 1

1 -1 1 -1/2

T

i i
A A

 
 
  
 
 
  ,

2 2

2 2

2 2

2 2

i

a ab a ab

ab b ab b
E

a ab a ab

ab b ab b

 
 
 
 
 
 

and
i

F Y E 

Eq. 2.2

Then
4 i

A and
i

E are given by and where a=1/2 and b= 2 5 . The “  ” means each

element of Y is multiplied by the scaling factor in the same position in matrix
i

E

[3]. Since the

scaling matrix
i

E

could be merged into the inverse quantization and pre-scaled process to reduce

the number of multiplication process. Figure 7 show the traditional 4x4 inverse integer transform

algorithm.

12

Figure 7.Traditional 4x4 inverse integer transform

2.1.3 Traditional Inverse Hadamard Integer Transform

The second type is the 4x4 inverse Hadamard transform (also known as the luma DC

transform). The inverse Hadamard transform is defined as Eq. 2.3, where XD is the 4x4 DC

component of a 16x16 intra mode macroblock.

T

D 4i D 4iW = H X H Eq. 2.3

The 4x4 inverse Hadamard integer transform coefficient matrix H4i defined as Eq. 2.4

and Figure 8 shows the traditional two dimensional inverse Hadamard fast algorithm.

4i

1 1 1 1

1 1 -1 -1
H =

1 -1 -1 1

1 -1 1 -1

 
 
 
 
 
 

 Eq. 2.4

The 2x2 Hadamard transform use the same formula for inverse integer transform as Eq. 2.5

13

T

D 2i D 2iX = H W H
, with

2i

1 1
H =

1 -1

 
 
 

Eq. 2.5

In the H.264/AVC standard, the 2x2 chroma DC transform is also defined. Since it is

implied in the 4x4 inverse Hadamard transform.

Figure 8.Traditional 4x4 inverse Hadamard integer transform

2.1.4 Traditional 8x8 Inverse Integer Transform

The 8x8 forward and inverse integer transforms can be performed in a similar with 4x4 manner.

8x8 forward integer transform can be realized by the following equivalent form as Eq. 2.6, where

~

fE is the scaling matrix. Meanwhile, 8x8 inverse integer transform is described as Eq. 2.7,

where
~

iE is the scaling matrix.

 
~

8 8

T
ff fY C XC E 

Eq. 2.6

14

 
~

8 8 8 8

T T
i

i i i i
X C Y E C C YC  

Eq. 2.7

The
8 i

C is the corresponding 8x8 inverse transform matrix and we note that
8 8

T

i f
C C .

Coefficient of 8x8 inverse integer transform for high profile is shown in Eq. 2.8. The 8x8

transforms are only applied to luma blocks.

8

8 12 8 10 8 6 4 3

8 10 4 3 8 12 8 6

8 6 4 12 8 3 8 10

8 3 8 6 8 10 4 12

8 3 8 6 8 10 4 12

8 6 4 12 8 3 8 10

8 10 4 3 8 12 8 6

8 12 8 10 8 6 4 3

i

 
     
 

   
 

    
    
 

     
   
 

    

C Eq. 2.8

15

Figure 9. Traditional 8x8 inverse integer transform

In the previous section, we already know the H.264 integer inverse transform (4x4,

Hadamard, 8x8) their principle and algorithms. For the implementation, the first one dimensional

inverse integer transform block executes the transformation of row pixels and the second one

dimensional inverse integer transform block performs the transformations of column pixels. Such

as, Figure 9 is that the traditional 8x8 inverse integer transform method for implementation of

hardware algorithm.

16

2.1.5 Traditional Hardware Sharing Design

Figure 10. Traditional hardware sharing design [19]

In order to reduce the gate count required for the two different transform processors, using

multi transform (hardware sharing) algorithm that combine the three transform units into one

multiple function transform processor which can execute all the three transform operations in

H.264. In traditional hardware sharing architecture shown in Figure 10, the one dimensional

transform can be any type of the transform. By the observation of Figure 7and Figure 8, we can

find that every one-dimensional transform contains 8 arithmetical operations. In order to get a

clear view of how to achieve hardware sharing transforms in a single design, we overlap Figure 7,

Figure 8, and Figure 9 together. In Figure 10, all the adders have three inputs. It means that a

17

common input which is not changed by the transform type exists. Furthermore, Figure 10 is the

fully extended of [19] into 64 pixels.

18

2.2 H.264 Profiles and Levels

H.264/AVC defines four profiles: baseline, extended, main and high profile. Baseline profile

is usually used in low bit-rate applications. Extended profile, also called streaming profile, is

designed for internet communication. Main profile is suitable for broadcast and storage

applications. High profile, also called Fidelity Range Extension (FRExt), is intended for high

resolution applications characterized by large block transform and large prediction blocks.

The high profile is further classified into four sub-profiles: High, High 10, High 4:2:2 and

High 4:4:4, as depicted in Figure 11. These features include 8x8 luma transform, 8x8 spatial

luma prediction, custom scaling matrix, deeper sample bits and lossless coding. Among them,

the 8x8 luma transform is the key.

Main

Profile

 8x8 Luma Transform

 8x8 Spartial Luma Prediction

 Perceptual Scaling Matrices

 Monochrome Format

 High

Sample

Bit Depth:

8-10

High 4:2:2

Sample

Bit Depth:

8-12
4:2:2

Chroma

Format

High 10 4:4:4

Chroma

Format

Residual Color

Transform

Lossless Coding

High 4:4:4

Figure 11. High profile classification and features

Figure 12 shows the profiling result of decoding a high profile video sequence. The inverse

integer transform consumes about 17% to 20% of CPU time. Therefore, we design a low power

inverse integer transform for integration into H.264/AVC decoder depicted in Figure 1.

19

Some important H.264 profiles and their special features are:

Baseline Profile: Only I and P type slices are present, only frame mode (progressive) picture

types are present, Only CAVLC is supported.

Main Profile: Only I, P, and B type slices are present, Frame and field picture modes (in

progressive and interlaced, modes) picture types are present, Both CAVLC and CABAC are

supported, ASO is not supported, FMO is not supported.

High Profile: Only I, P, and B type slices are present, Frame and field picture modes (in

progressive and interlaced modes) picture types are present, Both CAVLC and CABAC are

supported, ASO is not supported, FMO is not supported, 8x8 transform supported, Scaling

matrices supported.

Figure 12.H.264 decoder profiling results

All of these profiles also support mono chroma coded video sequences, in addition to typical

4:2:0 video. The difference in capability among these profiles is primarily in terms of supported

sample bit depths and chroma formats. However, the high 4:4:4 profile additionally supports the

20

residual color transform and predictive lossless coding features are not found in any other

profiles. The detailed capabilities of these profiles are show in Table 2.

Table 2.Coding tools in different profiles of H.264/AVC standard

Coding Tools Baseline Main Extend High High 10
High
4:2:2

High
4:4:4

4:2:0 Chroma formats Yes Yes Yes Yes Yes Yes Yes

Monochrome video format (4:0:0) No No No Yes Yes Yes Yes

4:2:2 Chroma Format No No No No No Yes Yes

4:4:4 Chroma Format No No No No No No Yes

8 Bit Sample Bit Depth Yes Yes Yes Yes Yes Yes Yes

9 and 10 Bit Sample Depth No No No No Yes Yes Yes

11 to 12 Bit Sample Depth No No No No No No Yes

8x8 vs. 4x4 transform adaptivity No No No Yes Yes Yes Yes

Quantization scaling matrices No No No Yes Yes Yes Yes

Separate Cb and Cr QP control No No No Yes Yes Yes Yes

Residual Color Transform No No No No No No Yes

Predictive Lossless Coding No No No No No No Yes

Flexible Macroblock Ordering (FMO) Yes Yes No No No No No

Arbitrary Slice Ordering (ASO) Yes Yes No No No No No

21

2.3 Previous Works

In recent years, many researchers proposed a number of optimized algorithms to compute the

transforms used in H.264/AVC. The major focus of the research has been to develop fast

algorithms for the transform unit.

2.3.1 Parallel 4x4 transform and inverse transform

Architecture for MPEG-4 AVC/H.264 [5]

The multi-transform approach is good for low power and saving the hardware area. Chen’s

design [5] is the first multi-transform architecture. They proposed a low power multi-transform

architecture. They analyze residuals characteristics and propose a switching power suppression

technique for saving data transition power. The design outputs four values every cycle. Their

design achieves throughput of eight pixels per cycle and consumes 14.40mW at 200MHz.

Figure 13. (Re-designed) parallel transform architecture

This architecture is very compact for the 4x4 inverse transform, the gate count is only 4983.

The processing speed can be achieved to 1Gpixels/sec at 200MHz. It is sufficient for the existing

video formats including HDTV formats. But this architecture is very limited because it can only

support 4x4 block. Moreover, if we want to use this architecture and extend to 8x8, it will have

almost 4 times overhead. Therefore, this will cost large power consumption and hardware cost.

This design still exists some way to accelerate the processing speed and reduce the hardware cost.

22

2.3.2 Low Cost Hardware sharing Architecture of Fast

Inverse Transforms for H.264/AVC and AVS

Applications [8]

The 1-D fast algorithms and their hardware sharing design for the 1-D inverse transforms of

H.264/AVC and AVS are proposed by using the symmetric property of the integer DCT matrix

and the matrix decompositions. In this paper hardware-sharing architecture for H.264/AVC and

AVS is realized by the offset computations and the pipelined design. Thus, the hardware cost of

the proposed sharing architecture for H.264/AVC and AVS is smaller than that of the individual

and separate realizations. This design implemented by pipeline stage to increase the performance

of inverse transform.

Figure 14. Block diagram of the proposed hardware sharing architecture of fast 2x2, 4x4 and 8x8

inverse transforms for H.264/AVC and AVS with four pipeline phases [8]

In this paper, the 1-D transform is further divided into two smaller matrix-vector operations

by even-symmetric or odd-symmetric. Therefore, its size is smaller. But the latency is increased

23

to 22 cycles because it only consumes one coefficient every cycle. Then the power consumptions

of the 8x8 inverse integer at H.264/AVC mode and the 8x8 inverse at AVS mode at 62.5 MHz

are 34.266mW and 37.785mW, respectively. Because of the supporting two video standards,

need to add extra adding offset computations that use extra registers to completely satisfy two

video standards. Therefore the area overhead and power consumption still need to be improved.

This design still exists some way to reduce the hardware cost and power consumption.

2.3.3 A High Performance Inverse integer Transform

Architecture for the H.264/AVC Decoder[12]

In this paper, a high-performance inverse transform architecture for the H.264/AVC decoder

is proposed. The proposed architecture utilizes the block multiplication and permutation matrices.

This architecture uses the matrix decomposition method to reduce the complexity of 4x4 inverse

transform. By applying permutation matrices, the inverse transform matrix is regularized and the

inverse Hadamard transform is merged into inverse transform with a minor modification.

Figure 15. 4x4 inverse transform hardware architecture [12]

24

This design has higher throughput for computing inverse transform and inverse Hadamard

transform. It has also higher hardware efficiency through the measure of DTUA for computing

inverse transform and inverse Hadamard transform. In hardware architecture in each block A2,

B2, C2, D2, they use traditional 4x4 inverse transform algorithm for implementation and too

much extra logic was required to completely satisfy H.264/AVC standard. Therefore area and

power consumption still need to be improved.

2.3.4 Configurable, Low-power Design for Inverse Integer

Transform in H.264/AVC[16]

This paper presented a configurable, low-power design for the inverse integer transform in

H.264/AVC. The power consumption is drastically reduced by employing an input block-type

aware algorithm with variable number of operations for the computation of the inverse integer

transform. This algorithm takes advantage of significant number of zero-valued transformed

coefficients in a typical input block. Additionally, the area overhead was reduced by designing

basic configurable processing blocks in order to share the hardware resources (adders) for

different input block types.

Figure 16. Functional block diagram: Configurable inverse integer transform unit. [16]

25

The internal organization of this block is depicted in Figure 16. Since the processing block

M1-M3 are derived from M4 (Figure 17) and have the similar structure, therefore, we can design

a configurable processing units (CM14, CM24, and CM34) with overlapped functionality to

reduce the hardware resource requirement for its implementation.

The configurable processing units (CM14, CM24, and CM34) as the name suggest can be

configured to provide processing for either (M1, M4), (M2, M4), or (M3, M4) using the

appropriate control signal.

Figure 17. Data flow diagram for (a) M1, (b) M2, (c) M3, and (d) M4 cases.

The internal architecture for these configurable units is depicted in Figure 18(a)-(c).

Therefore, no additional (34) adders are required anymore because of configurable processing

units. Furthermore, the input registers (in CM24) are also shared among processing for data

vectors.

26

Figure 18. Data flow diagram for (a) CM14, (b) CM24 and (c) CM34.

The new algorithm is derived from the fast one dimensional inverse integer transform. This

paper focuses on the low power design that consumes significantly less dynamic power (up to 80%

reduction) when compared with existing conventional design for the inverse integer transform. In

some blocks, they use traditional 4x4 inverse transform algorithm and this architecture

processing speed is very slow that can’t achieve the high resolution such as full HD in

H.264/AVC.

2.3.5 A Reconfigurable IDCT Architecture for Universal

Video Decoders[17]

The reconfigurable architecture has become more and more popular. It not only decreases the

time of research and development but also saves fabrication cost. Moreover, the proposed

reconfigurable inverse integer transform architecture can support 3 different video standards such

as VC-1, MPEG and H.264/AVC. The block diagram is shown in Figure 19.

27

Figure 19. Block diagram of reconfigurable inverse integer transform

Figure 20. Architecture of reconfigurable one dimensional inverse integer transform

a)

b)

Figure 21. Architecture of adder kernel a) Even part and b) odd part

28

They propose the reconfigurable one dimensional inverse integer transform architecture

combined from two modes in Figure 20 in order to meet the requirements of various video

standards. Adder kernel unit, we can find that any combinations of the input signals are

composed of {00~11} or {0000~1111}. Therefore the computational results in every row can be

generated by adder kernel even and odd part in figure 21. We can simplify the adder kernel into

thirteen adders only: two adders in the even parts, figure 21a, and eleven adders in the odd part,

figure 21b. Routing network is for VC-1 inverse integer transform. Stage 3 is the shifter and

adder tree unit, using two’s complement concept to implement the total sums. Stage 4 is the post-

adders. Reconfigurable inverse integer transform architecture is implemented for universal video

decoders. It is the key point of this paper to reinforce the high throughput and to reduce power

consumption and improve the throughout utilizing parallelism. This architecture can support 3

different video standards. The power consumption is 3.4mW at 100MHz, hardware cost is 11.6k

and the throughput rate is 800Mpixels/sec. but throughput is still lower than the state of the art

such as [7], [10], [12]. In this paper, what kind of fast algorithm that used is not clear and in

order to achieve different video standards that use too much extra registers therefore hardware

cost still need to be improved.

29

2.4 Summary

Table 3 summarized the above approaches. Each has distinct strength and weakness. We take

4x4 transform supporting, 8x8 transform supporting, Hadamard transform supporting, power

consumption, hardware cost, DTUA, and throughput as our comparison items.

Table 3. Supporting features comparison

 Hwangbo Su

[8]

Liu

[9]

Chen

[10]

Cheng

[11]

Su

[13]

Shia

[14]

Lin

[15]

Lai

[17]
[7] [12]

4x4

transform
Y Y Y Y Y Y N Y Y Y

8x8

transform
Y N Y N N N Y Y Y N

Hadamard Y Y Y N Y Y N N N Y

low power N N N N Y N N N N Y

low area N N Y Y N N Y Y Y N

High DTUA N Y N N N N N N N N

High

Throughput
Y Y N N N Y N N N N

We also take an effort to evaluate several previous works and classify into three strategies: Low

power aware, low hardware cost aware and high throughput aware. In Figure 22, we classify

previous works as their strategy. Each strategy represents the major improvement in conventional

inverse integer transform decoder. Each strategy represents the major improvement in

conventional inverse integer transform decoder.

30

Figure 22. Implementation strategies of previous works

31

Chapter 3

Proposed Algorithm & Architecture

In this chapter, we propose our 4x4, Hadamard and 8x8 inverse integer transform fast one

dimensional butterfly algorithms, pipeline hardware architectures and in Section 3.4 proposed

their hardware-sharing design for 4x4, Hadamard and 8x8 inverse integer transforms of H.264

video decoder. In our algorithms we use matrix decomposition method to reduce the complexity

of inverse integer transforms to reduce the power consumption, hardware cost and raise the

throughput and hardware efficiency in H.264/AVC. Matrix decomposition utilizes the

permutation matrices. All Inverse integer transforms Hardware architecture designs are

implemented with pipelined architecture. Thus, our design’s power consumption and hardware

cost are smaller when comparing to previous works.

The area overhead for the inverse integer transforms unit can be reduced by sharing the

hardware resources between the independent processing units by designing the new fast butterfly

algorithm. In next sub-sections, we will discuss more details about new fast 4x4, Hadamard, 8x8

butterfly algorithms.

3.1 Fast 4x4 Inverse Integer Transform

3.1.1 Fast 4x4 Inverse Integer Transform Algorithm

Fast 4x4 inverse integer transform algorithm is proposed in this part. First we will derive the

formulas then algorithms which will be implemented in hardware design. We know that from the

previous chapter 4x4 inverse integer transform coefficient matrix (Eq. 3.1) is follows,

4

1 1 1 1/2

1 1/2 -1 -1

1 -1/2 -1 1

1 -1 1 -1/2

i
A

 
 
 
 
 
 

Eq. 3.1

32

We will use the matrix decomposition method to reduce the complexity of inverse integer

transform which also means reduce the power consumption, hardware cost in terms of gate count.

Therefore we define two permutation matrices Tc and Tr as described below,

1 0 0 0

0 1 0 0
=

0 0 0 1

0 0 1 0

c
T

 
 
 
 
 
 

r
T

    
    
 
    
 
    

 Eq. 3.2

And where

4 4
() () , () () T T T T

c c c c r r r r
T T T T I T T T T I    Eq. 3.3

I4 is an identity matrix of order 4. By using these permutation matrices then we will get a

new matrix

~

4 i
A , where the

~

4 i
A matrix is described as follows,

~

4 4() ()i c i rA T A T

1 1 1 1 2

1 1 2 1 1

1 1 2 1 1

1 1 1 1 2

            
     
         
     
              
     
              

1 1 1 1/ 2

1 1 1/ 2 1

1 1 1 1/ 2

1 1 1/ 2 1

 
 

 
 
  
 

  

Eq. 3.4

We can re-write the inverse integer transform coefficient matrix from Eq.3.4 matrix

multiplication,

33

~

4 4
() ()T T

i c i r
A T A T

Eq. 3.5

Then if we can use
~

4 i
A matrix to represent with 2x2 matrix form (Eq. 3.6)

~
2

4

2

1 1 1 1/ 2

1 1 1/ 2 1
=

1 1 1 1/ 2

1 1 1/ 2 1

i
A

    
                      
          

H Q

H Q
 Eq. 3.6

Where
2

H

and Q are

1 1

1 1

 
   

2
Η

1 1/ 2

1/ 2 1

 
   

Q Eq. 3.7

Then we use the matrix operation rule to derive one of the following equations (Eq. 3.8);

  
 

   
 

2 2

A B
H I A B

A -B

Where
2

1 0

0 1

 
  
 

I Eq. 3.8

And where  denotes the Kronecker product, matrix operation as follows (Eq. 3.9). Assume

that the dimension of the matrix A is NxP, B is MxQ,

PQMNNPNN

P

P

aaa

aaa

aaa























BBB

BBB

BBB

BA









21

22221

11211

Eq. 3.9

Another means the direct sum operation which matrix operation express as follows (Eq. 3.10),

NN 22
0

0













B

A
BA

Eq. 3.10

34

If we apply Eq. 3.8 matrix operation rule to Eq. 3.5 then we can re-derive 4x4 inverse integer

transform coefficient matrix,
4 i

A re-expressed as follows,

  
~

4 4 2
() ()T T T T

i c i r c r
A T A T   

2 2 2
T H I H Q T Eq. 3.11

3.1.2 Fast 4x4 Inverse Integer Transform Architecture

According to Eq. 3.11, the first stage of the hardware design
T

r
T and the last stage

T

c
T

permutations are just wire connection which represents no arithmetic computation. We use 2

pipeline stages to finish the operation. Figure 23 shows pipeline hardware architecture to

represent the 4x4 inverse integer transform and we use the pipeline stages to help us simplify the

design and speed up the hardware to achieve the higher resolution such as HD 1080,

QFHD(4*HD 1080) @ 30fps.

Figure 23. Pipeline hardware architecture for fast 4x4 inverse integer transform.

35

In pipeline hardware architecture we use fast butterfly algorithm data flow like Figure 24 to

implement 4x4 inverse integer transform. The complexity of this proposed fast 4x4 inverse

integer transform needs 2 shift operations and 8 additions.

Figure 24. New fast algorithm of 4x4 inverse integer transform.

3.2 Fast Inverse Hadamard Integer Transform

3.2.1 Inverse Hadamard Integer Transform Algorithm

The Hadamard inverse integer transform is given by;

T

D 4i D 4i
W = H X H

Eq. 3.12

We know that from the previous chapter Hadamard inverse integer transform coefficient

matrix, H4i as follows,

4i

1 1 1 1

1 1 -1 -1
H =

1 -1 -1 1

1 -1 1 -1

 
 
 
 
 
 

 Eq. 3.13

The Hadamard inverse integer transform can be performed in a similar manner. For the

Hadamard inverse integer transform, we use the same permutation matrices,
r

T

and

c
T ,

36

T T

c r
T T

 
  

 

2 2

4i

2 2

H H
H

H -H

Eq. 3.14

 2 2 2 2
()()T T

c r
  T H I H H T

Eq. 3.15

WhereH2 is the same matrix given in (Eq. 3.7) before. The first stage of the Hadamard

inverse integer transform hardware design T

r
T and the last stage T

c
T permutations are just wire

connection which represents no arithmetic computation.

3.2.2 Inverse Hadamard Integer Transform Hardware

Architecture

Figure 25 shows 2 pipeline hardware architectures to represent the 4x4 Hadamard inverse

integer transform that we use the pipeline stages to help us simplify the design and speed up the

hardware.

T

rT
4x4

Input
4x4

Output T

cT

means pipelined register array

pipelined

stage 1
pipelined

stage 2

(
)


2

2
H

H

(
)


2

2
H

I

Figure 25. Pipeline hardware architecture for fast Hadamard inverse integer transform.

37

Figure 26 shows 4x4 Hadamard inverse integer transform implemented by using new fast

butterfly algorithm data flow. The complexity of this proposed fast 4x4 Hadamard inverse

integer transform needs just 8 additions without any shift operation.

Figure 26. New fast algorithm of 4x4 Hadamard inverse integer transform.

38

3.3 Fast 8x8 Inverse Integer Transform

3.3.1 Fast 8x8 Inverse Integer Transform Algorithm

As we know from the previous chapter 8x8 transform coefficient matrix as follows,

8

8 12 8 10 8 6 4 3

8 10 4 3 8 12 8 6

8 6 4 12 8 3 8 10

8 3 8 6 8 10 4 12
/8

8 3 8 6 8 10 4 12

8 6 4 12 8 3 8 10

8 10 4 3 8 12 8 6

8 12 8 10 8 6 4 3

i

 
     
 

   
 

    
    
 

     
   
 

    

C

Eq. 3.16

According to the fast computations in [2], the fast 8x8 inverse integer transform that we use

further matrix decomposition into 3 stage matrix multiplication as below,

1 2 3

8 8 8 8
. .

i i i i
C C C C

Eq. 3.17

These 3 matrices
1

8 i
C

2

8 i
C ,

3

8 i
C are,

1

8

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0

i

 
 
 
 
 
 
 
 

 
 
 

  

C Eq. 3.18

39

2

8

1 0 1 0 0 0 0 1

0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0

1 0 1 0 0 1 0 0

3
0 0 0 0 0 1 0

2

3
0 1 0 0 1 0 1

2

3
0 0 1 0 1 0 1

2

3
0 0 0 0 0 1 1

2

i

 
 
 
 
 

 
 
 

  
 

 
 
  
 
 
 
 

C Eq. 3.19

3

8

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1
0 0 1 0 0 0 0

2

1
0 0 0 0 0 1 0

2

1
0 1 0 0 0 0 0

4

1
0 0 0 1 0 0 0

4

1
0 0 0 0 1 0 0

4

1
0 0 0 0 0 0 1

4

i

 
 


 
 
 
 
 
 
 

  
 
 

 
 
 
 
 
 


  

C

Eq. 3.20

Eq. 3.18,
1

8 i
C can be further decomposed into,

 1

8 2
.

i
 

~
T

c 4
C T H I

Eq. 3.21

40

Where
4

I identity matrix with order 4 and permutation matrix

~

c
T is defined by;





















1000

0100

0010

0001

4
I Eq. 3.22

~

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

c

 
 
 
 
 
 
 
 
 
 
 
  

T

Eq. 3.23

Eq. 3.19,
2

8 i
C can be further decomposed into,

~
2

8i 2 2 2 2 1[()()] T   C I I H I Q
Eq. 3.24

Where
2

I identity matrix with order 2 and permutation matrix

~

2
I and 1Q is equal to as below;

2

1 0

0 1
I

 
  
  ,

~

2

0 1

1 0
I

 
  
 

1

3
1 1 0

2

3
1 0 1

2

3
1 0 1

2

3
0 1 1

2

 
 
 
  
 

  
 
 
 

 
 

Q

Eq. 3.25

41

In Eq. 3.25, 3x/2 can be decomposed to x+(x>>1). (x>>1) means 1 bit right shift. Eq. 3.20,
3

8 i
C

can be further decomposed into,

~ ~
3 3

8 8

T

i i r C C T
Eq. 3.26

Where
~

r
T

is,

~

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

r

 
 
 
 
 
 
 
 
 
 
 
  

T

Eq. 3.27

And where

~
3

8iC can be further decomposed into,

3

8 2 2 3
() T

i
  C H Q Q

~

Eq. 3.28

Where in (Eq. 3.28) Q2 and Q3, defined as,

2

1
1

2
 and

1
1

2

 
 

  
 
  

Q

3

1
1 0 0

4

1
0 1 0

4

1
0 1 0

4

1
0 0 1

4

 
 
 
 
 

  
 
 
 

 
 

Q

Eq. 3.29

Finally
3

8 i
C will be equal to as below;

42

~
3

8 2 3[()]T T

i r   
2

C H Q Q T
Eq. 3.30

Similarly, in Eq. 3.29, x/2 and x/4 can be replaced by 1 bit right shifter (x>>1) and 2 bit right

shifter (x>>2) respectively.

Then we can rewrite the 8x8 inverse integer transform matrix,
8 i

C can become as follows;

1 2 3

8 8 8 8

~ ~~

2 4 2 2 2 2 1 2 2 3() {[()()] } [()]

i i i i

T T T T

c r

  

          

C C C C

T H I I I H I Q H Q Q T

Eq. 3.31

3.3.2 Fast 8x8 Inverse Integer Transform Hardware

Architecture

Same as 4x4 inverse integer transform, the first stage of the 8x8 inverse integer transform

hardware design
T

r
T permutation and the last stage

T

c
T that need no arithmetic computation to be

implemented by hard-wire connection. We use 4 pipeline stages to implement the 8x8 inverse

integer transform operation. Figure 27 shows pipeline hardware architecture to represent the 8x8

inverse integer transform. We use the pipeline stages to simplify the design and speed up the

hardware to achieve the higher resolution such as HD 1080, QFHD (4*HD 1080) @ 30fps.

43

~
T

rT

1

T
Q 3

T
Q

8x 8

Output 8x8

Input

means pipelined register array

Pipelined

stage 1

Pipelined

stage 2
Pipelined

stage 3

Pipelined

stage 4

~
T

cT

Figure 27. Pipeline hardware architecture for fast 8x8 inverse integer transform.

x0

x1

x2

x3

x4

x5

x6

x7

-1

1/2
1/2

-1

-1/4

1/4

1/4

1/4 2
1

2
1

2
1

2
1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

y0

y1

y2

y3

y4

y5

y6

y7-1

Figure 28. New fast algorithm of 8x8 inverse integer transform.

44

Figure 28 shows 8x8 inverse integer transform by using new fast butterfly algorithm data

flow. Total complexities of proposed fast 8x8 inverse integer transform are just 10 shift and 32

addition operations. In the next section, we will discuss about hardware sharing architecture of

inverse integer transform for H.264/AVC decoder.

45

3.4 Hardware Sharing Algorithm & Architecture

First of all, we make all these 4x4 inverse integer transform, Hadamard inverse transform and

8x8 inverse integer transform into one group. It can be found that the inverse transform process

is slightly similar. In order to achieve low power and hardware saving for the inverse integer

transform unit, sharing the hardware resources between the independent processing units is

investigated. For the Hardware sharing design, we have listed all inverse integer transform

equations from (Eq. 3.11), (Eq. 3.15), (Eq. 3.31) as follows,

  4

T T

i c r
  

2 2 2
A T H I H Q T

4 2 2 2 2()()T T

i c r  H T H I H H T

~ ~~

8 2 4 2 2 2 2 1 2 2 3() {[()()] } [()]T T T T

i c r          C T H I I I H I Q H Q Q T

From the above three equations, it can be found that in all these operations have  
2 2

H I

same blocks. In this block, we will be able to do hardware sharing. Other 3 blocks which are

2


2
H Q , 2 2H H and 2 2H Q need to be operated in one hardware block. Since

2
Q is

the main hardware block, for Hadamard we need to use shift in the input circuit (scaling) will

meet the
2

H which is defined in Eq.3.7 in order to save the hardware cost, for 4x4 inverse

integer transform that doesn’t need any scaling in the input circuit because of
2

Q =Q in (Eq.

3.29) and (Eq.3.7). Figure 29 shows the hardware sharing architecture for the fast 4x4,

Hadamard, 8x8 inverse integer transforms. The hardware sharing part of the fast inverse integer

transforms is 2 2 2 2()() H I H Q in Figure 29.

46

3.4.1 Comparison And Implementation Of Hardware

Sharing Architecture

~ T

rT

3

T
Q

T

cT

MUX

T

rTT

cT

sel_1, sel_0

Sel_0=0 , 4x 4 mode

Sel_1=0 , 4x 4 /

Hadamard

Input

4x 4 / hadamard

Output

8x8
Output 8x8

Input

11

10 >> 1

00

Sel_0=0 , hadamard mode

Sel_1=1 ,

Sel_0=1 , 8x 8 mode

Sel_1=1 ,

T

a
Q

1

8x 8 mode: pipeline 1

4x 4 mode: pipeline 1

8x 8 mode: pipeline 2

4x 4 mode: pipeline 2

8x 8 mode: pipeline 3

4x 4 mode: pipeline 3

8x 8 mode: pipeline 4

T

b
Q

1

Hadamard pipeline 1Hadamard : pipeline 2Hadamard pipeline 3

~

Figure 29. Hardware sharing architecture for fast 8x8, 4x4 and Hadamard inverse integer

 transform.

In Figure 29, the proposed hardware sharing architectures, which are low power consumption

to support 3 inverse integer transform modes, need 12 shifters, 32 additions and a simple MUX

in implementations. In order to achieve the purpose of hardware sharing, an additional simple

multiplexer is needed for implementation of the fast 4x4, Hadamard, 8x8 inverse integer

transform. In Figure 29, the module)Q(H
22

 needs 4 additions and 2 shifters, the module

)I(H
42

 needs 8 additions, the module)I(H
22

 needs 4 additions, the module
T

3
Q needs

4 additions and 4 shifters. In Figure 27,
T

1
Q requires 12 additions and 4 shifters. For low power

and high processing speed, we cut into two pipeline operation in Figure 29. The first pipeline is

47

1

T

a
Q which requires 8 additions and 4 shift registers. The second is

1

T

b
Q stage pipeline requires

just 4 additions. In Table 4, it shows the architecture comparisons for new fast inverse integer

transforms. The pipelined phases of hardware sharing architectures are also noted with dotted

lines in Figure 29.

Table 4. Architecture Comparisons for Fast Inverse Integer Transforms

Architectures of

Inverse Integer

Transforms

Number

of

Shifters

Number

of

Adders

Supporting

Transform

Mode

4x4 Only 2 8 4x4

8x8 Only 10 32 8x8

Hadamard only 0 8 Hadamard

Direct Three-mode 12 48
4x4 , 8x8 , Hadamard

inverse

Proposed

Hardware Sharing

Design

12 32
4x4 , 8x8 , 2x2/4x4 Hadamard

inverse

The computational complexity of the proposed one dimensional fast 4x4 and 8x8 inverse

integer transform is equivalent to that of the fast algorithm of the state-of-the-art [14], where the

fast computation needs for 4x4 inverse, 2 shift, 8 addition and for 8x8 inverse 10 shift and 32

addition operations.

48

3.5 Summary and Comparison With Related Works

Based on matrix decomposition algorithm the low power and the most hardware efficiency

architecture new fast 4x4, 8x8 and Hadamard inverse integer transforms can be derived. New

fast 4x4, Hadamard, 8x8 and hardware sharing inverse transform algorithms and hardware

implementations, are developed by utilizing matrix decomposition for H.264/AVC applications.

By applying the concept of hardware sharing, the proposed hardware schemes for fast inverse

integer transforms need a smaller number of shifters and adders than the direct three mode

realization architecture, where the direct architecture just implements the individual 4x4,

individual Hadamard, individual 8x8 inverse integer transforms independently (Table 4).

For the throughput, actually we already get high throughput by previous works such as [10]

[12]. By the state of the art, we shouldn’t keep going to raise much higher throughput. For our

purpose, we make an effort to design inverse integer transform decoder which is the most

suitable strategy for system integration and take a balance between throughput and overhead at

the promise of the acceptable throughput for real-time decoding full-HD sequences.

Therefore, we simplify and make a formula for throughput as following:

First, we can get the formula of total executed cycles,

 PPC

In Table 5 also shows the throughput of our designs for 4x4, Hadamard, and 8x8 inverse

integer transform and Hardware sharing design.

In our design, we apply pipeline architecture efficiently to get acceptable throughput by our

proposed IIT scheme.

49

On the other hand, we use umc 90nm technology process which is different technology

process from previous works such as tsmc 0.18um, umc 0.18um. for the normalization of our

works to tsmc 0.18um and umc 0.18um, the normalization result will be the same for tsmc

0.18um and umc 0.18um because of supply voltage is the same 1.8Volt. In order to make fair

comparison, in table 5 shows the normalization in terms of the power consumption.

Table 5. Normalization of Power consumption to UMC 0.18um and TSMC 0.18um

 Technology Processing Unit
Operating frequency(MHz)

/Power consumption (mW)

 IIT IIT IIT

Gordon[2]’04 N/A 8x8 125MHz / 2.76mW

Chen[10]’05 UMC 0.18um 4x4 100MHz / 9.91mW

Hwangbo[12]’07 UMC 0.18um 4x4 203MHz / N/A

Fan[13]’07 TSMC 0.18um 4x4,8x8 62.5MHz / 2.39mW

Su [8]*’08 TSMC 0.18um
4x4, 8x8,

Hadamard,AVS
100MHz / 34.2mW

Su [8]*’09 TSMC 0.18um 8x8 125MHz / 2.79mW

Hwangbo[7]’10 UMC 0.18um 4x4,Hadamard,8x8 200MHz / 86.9mW

Lai [17]’10 UMC 90nm
MPEG, VC, H.264

8x8
100MHz / 3.4mW

Proposed

UMC 90nm

4x4 150MHz / 182.9 µW

Proposed Hadamard 150MHz / 151.8 µW

Proposed 8x8 150Mhz / 0.68 mW

Proposed HW Sharing
4x4, Hadamard,

8x8
150MHz / 1.1 mW

The synthesis results of proposed architecture and the performance comparison with

previous works are shown in Table 6. We focus on the power consumption, hardware area and

hardware efficiency. Our hardware schemes by applying the concept of hardware sharing for

50

inverse integer transforms need smaller number of shifters and adders than the direct realization

architecture, where the direct realization architecture just implements the individual transforms

independently. Through the comparison, the proposed inverse integer transforms design requires,

saving more power consumption and performs better hardware efficiency than the state-of-the-art

existing design.

Table 6. Synthesis results and Comparison

 Technology

Area

(Nand2

Cmos)

Processing Unit

Critical Path

Delay (ns)

Operating frequency(MHz)

/ Power consumption (mW)

Throughput

(pixels/sec)

DTUA

(Pix./sec/g

ate)

 IIT
IIT

IIT
IIT IIT IIT IIT

Gordon[2]’04 N/A
6139

8x8
N/A 125MHz / 2.76mW N/A N/A

Chen[10]’05 UMC 0.18um
7497

4x4
N/A 100MHz / 9.91mW 2.66G 354.8k

Hwangbo[12]’07 UMC 0.18um
5639

4x4
4.92 203MHz / N/A 3.25G 576.3k

Fan[13]’07 TSMC 0.18um
6.5k

4x4,8x8
N/A 62.5MHz / 2.39mW N/A N/A

Su [8]*’08 TSMC 0.18um
9.03k 4x4, 8x8,

Hadamard,AVS

N/A 100MHz / 34.2mW N/A N/A

Su [8]*’09 TSMC 0.18um
7.03k

8x8
N/A 125MHz / 2.79mW N/A N/A

Hwangbo[7]’10 UMC 0.18um
63.6k 4x4,Hadamard,

8x8

N/A 200MHz / 86.9mW 3.2G 50.3k

Lai [17]’10 UMC 90nm
11.6k MPEG, VC,

H.264 8x8

N/A 100MHz / 3.4mW 800M 68.9k

Proposed

UMC 90nm

0.9k
4x4

1.46 150MHz / 56.45 µW 2.7G 3M

0.53 1.49GHz / 405.41 µW (Max.) 5.96G 6.6M

Proposed
0.87k

Hadamard

1.48 150MHz / 46.85 µW 2.7G 3.08M

0.55 1.53GHz / 401.43 µW (Max.) 5.79G
6.5M

Proposed
4.2k

8x8

2.11 150Mhz / 0.21 mW 3.8G 904.7k

0.64 1.31GHz / 1.46 mW (Max.) 5.12G
1.2G

Proposed HW

Sharing

4.6k 4x4, Hadamard,

8x8

2.23 150MHz / 0.31 mW 3.6G 783.6k

0.63 625MHz / 1.30 mW (Max.) 5.19
1.1G

51

In our design, we apply matrix decomposition method to get low power consumption by our

4x4, Hadamard, 8x8 and hardware sharing design scheme. Our hardware architecture power

consumption and hardware cost for 4x4, Hadamard, 8x8 inverse integer transform at 56.45µW,

46.85µW, 0.21mW, and for the area 0.9k, 0.87k, 4.2k at 150MHz, respectively. For the Hardware

sharing design our power consumption and hardware cost is just 0.31mW and 4.6k, respectively.

Our four designs are better power consumption design than the previous works. According to

Hardware efficiency index for 4x4, Hadamard, 8x8 and hardware sharing schemes in Table 6,

our design is most efficient than existing designs. For the Full HD system speed requirements for

each size is 1920x1080 @ 30fps. 4x4, Hadamard, 8x8 and hardware sharing design is suitable

for H.264/AVC High Profile.

52

Chapter 4

System Integration

4.1 System Specification

The specifications of the proposed architecture are described in Table 7 for H.264 video

decoder. The proposed architecture is synthesized with UMC 90-nm CMOS standard-cell library

and operated at 150MHz. 4x4, 8x8 and 16x16 block size can be supported. Our H.264 decoder,

the processing capability for 4x4, Hadamard and 8x8 inverse integer transform are

HD1080p/HD720p/QFHD@30fps. In the future trend the higher video resolution is necessary.

Therefore our proposed architecture and algorithm can support the higher video resolution than

H.264 supported.

Table 7. The specification of Video decoder

H.264/AVC decoder

Process technology : UMC 90nm

Block size: 4x4, 8x8, 16x16

Throughput: 4 – 8 pixels/cycle

Processing capability: 4x4 inverse transform HD1080p,720p, QFHD

Hadamard inverse transform HD1080p,720p, QFHD

8x8 inverse transform HD1080p,720p, QFHD

Decoding capability: H.264/AVC: HDTV, 1080p HD, QFHD @30fps

SVC: 720p– 1080p HD @30fps

Working Frequency:

H.264/AVC: 100 MHz

SVC: 150 MHz

53

4.2 The Integration with H.264/AVC System

In Figure 5, each residual macroblock is transformed, quantized and coded. Previous

standards such as MPEG-1, MPEG-2, MPEG-4 and H.263 made use of the 8x8 inverse integer

transform as the basic transform. The “baseline” profile of H.264 uses three inverse transforms

depending on the type of residual data that is to be coded. A transform for the 4x4 array of luma

DC coefficients in intra macroblock (predicted in 16x16 mode), a transform for the 2x2 array of

chroma DC coefficients (in any macroblock) and a transform for all other 4x4 blocks in the

residual data. If the optional “adaptive block size transform” mode is used, further inverse

transforms are chosen depending on the motion compensation block size (4x4, 8x8).

Data within a macroblock are transmitted in the order also shown in Figure 5. If the

macroblock is coded in 16x16 Intra mode, then the block labeled “-1” is transmitted first,

containing the DC coefficient of each 4x4 luma block. Next, the luma residual blocks 0-15 are

transmitted in the order shown (with the DC coefficient set to zero in a 16x16 Intra macroblock).

Blocks 16 and 17 contain a 2x2 array of DC coefficients from the Cb and Cr chroma components

respectively. Finally, chroma residual blocks 18-25 (with zero DC coefficients) are sent.

Figure 30. The Integration with H.264/AVC system block diagram

54

 In Figure 30, block diagram shows the integration of inverse integer transform with

H.264/AVC video decoder system. Our design architecture can process 4 pixels or 8 pixels per

cycle with a low power and small gate count. The input of the inverse transform is from the

inverse quantization function followed by a two dimensional 4x4 or 8x8 inverse integer

transform depends on the selection mode in hardware sharing design. Then output of the inverse

integer transform residual data will be input of the de-blocking filter.

Table 8 shows the timing analysis for different MB. Thus, for the timing analysis, the

calculation of time required to process a whole frame is as follows,

frame blockblock per frame
T =N xT

pixel per frame

block

pixel per block

N
= xT

N

pixel per frame

cycle cycle

pixel per block

N
= xN xT

N

Eq. 5.1

Where Ncycle and Tcycle indicate the number of cycles and time required per cycle, respectively.

55

Table 8. Time required to decoding full HD and HDTV frame with different MB. Frame with

YUV420 is used.

Frequency Format 4x4 MB

(ms)

Hadamard

(ms)

8x8MB

(ms)

150MHz

HD 1080

(1920x1080)

4.53

4.6

5.4

HD 720

(1280x768)

2.14

2.18

3.1

625MHz
QFHD

(4*HD 1080)

17.3

17.3

18

THD_4x4MB (4.53ms) is 7.35, THD_Hadamard (4.6ms) is 7.23, THD_8X8MB (5.4ms) is 6.1 times faster

than the 33.3ms standard time required for processing each HD frame decoding. Same way for

the HDTV frame, THDTV_4x4MB (2.14ms) is 15.5, THDTV_Hadamard (2.18ms) is 15.27, THDTV_8x8MB

(3.1ms) is 10.7 times faster and for QFHD is almost 2 times faster. Thus, the proposed inverse

transforms architectures meet the real-time constraints for HD1080 and QFHD video signal.

Therefore this module can perform 1080 HD and QFHD @ 30fps in real-time.

56

Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this works, we implement 4x4, Hadamard, 8x8 inverse integer transforms and Hardware

sharing design. We first proposed fast algorithm for 4x4 and 8x8 macroblock and use with

pipeline to reduce the inverse transform complexity which means saved power consumption,

significant reduce hardware area and enhance the performance of the hardware. Our hardware

architecture power consumption and hardware cost for 4x4, Hadamard, and 8x8 inverse integer

transforms are only 56.45µW, 46.85µW, and 0.21mW at 150MHz and for the area 0.9k, 0.87k,

4.2k, respectively. For the Hardware sharing design our power consumption is just 0.31mW and

hardware cost is just 4.6k. Our four designs are better power consumption design than the

previous works. For the Full HD system speed requirements for each size is 1920x1080 @ 30fps.

Our comparisons power consumption, hardware cost in terms of gate count, critical path delay,

throughput and hardware efficiency which achieves better (783.6k) than the previous works.

DTUA is used to evaluate the hardware efficiency. It is defined as the ratio of data throughput

rate over hardware cost in terms of the gate count. The higher the DTUA is, the more efficient

the design. According to the DTUA in Table 6, our four designs are the most hardware efficient

design than other designs. In Table 6, the proposed hardware sharing design for fast 4x4,

Hadamard, 8x8 inverse transforms of H.264/AVC requires smaller gate counts (i.e., 4.602 gates)

than the individual 4x4 and 8x8 inverse integer transforms without the hardware share (i.e.,

904+873+4209=5986 gates).This component can be used in H.264 high profile decoder design

and its inversion can be used in encoder design as well.

57

5.2 Future Work

In the future, we will more focus on new algorithms to reduce the number of adder and

shifter that saving more power consumption and keep improving the performance and to further

reduce hardware area of our design. We will also employ voltage scaling technique to further

reduce power consumption and furthermore employ gated clock and multiple clock technique to

save the clock power. Meanwhile, we will try to support other standard inverse transforms in the

same algorithms.

58

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG&ITU-T VCEG, “Joint Draft ITU-T Rec. H.264 |

ISO/IEC 14496-10 Scalable video coding,” July 2007.

[2] S.Gordon, D.Marple, and T. Wiegand, “Simplified use of 8x8 Transforms – Update Proposal

and results,” JVT-K028,11
th

 Meeting,Munich,Germany,15-19, Mar. 2004.

[3] lain E. G. Richardson, H264 and MPEG-4 Video Compression-Video Coding for Next-

generation Multimedia, John Wiley &Sons Ltd, 2003.

[4] D.Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions: Tools,

profiles, performance, and application areas,” IEEE International Conference of Image

Processing, pp. I-593-I-596, Sep. 2005.

[5] T. C. Wang et al., “Parallel 4x4 2D transform and inverse transform architecture for MPEG-4

AVC/H.264,” IEEE International Symposium on Circuits and Systems, pp.800-803, May

2003.

[6] C. P. Fan “Efficient Fast 1-D 8x8 Inverse Integer Transform for VC-1 Application,” IEEE

Transactions on Circuits and Systems for Video Technology, vol.19, no.4, pp.584-590, April

2009.

[7] W. Hwangbo, J. Kim and C.M. Kyung, “A Multi Transform Architecture for H.264/AVC

High-Profile Coders, IEEE international transactions on multimedia, Vol. 12, No.3, pp.157-

167, Apr. 2010.

[8] G. A. Su, “Low-Cost Hardware Sharing Architecture of Fast 1-D Inverse Transforms for

H.264/AVC and AVS Applications,” IEEE Transactions on Circuits and Systems, Part II,

vol.55, no.12, pp.1249-1253, Dec. 2008.

[9] L. Z. Liu et al., “A 2-D forward/inverse integer transform processor ofH.264 based on

highly-parallel architecture,” IEEE International Workshop on System-on Chip for Real-Time

Applications, pp.158-161, July 2004.

59

[10] K. H. Chen, J. I.Guo, et al., “A high-performance low power direct 2-D transform coding

IP design for MPEG-4 AVC/H.264 with a switching power suppression technique,” IEEE

VLSI-TSA International Symposium on VLSI Design, Automation and Test, pp.291-294, Apr.

2005.

[11] Z. Y. Cheng et al., “High throughput 2-D transform architectures for H.264 advanced

video coders,” IEEE Asia-Pacific Conference on Circuits and Systems, pp.1141-1144, Dec.

2004.

[12] W. Hwangbo, J. Kim and C.M Kyung, “A High-Performance 2-D Inverse Transform

Architecture for the H.264/AVC Decoder,” IEEE International Symposium of Circuits and

Systems, 2007. ISCAS 2007, pp.1613-1616, May 2007.

[13] G.A. Su et al., “Cost Effective Hardware Sharing Architecture for Fast 1-D 8x8 Forward

and Inverse Integer Transforms of H.264/AVC High Profile,” IEEE Asia Pacific Conference

of Circuits and Systems, 2008. APCCAS 2008, pp.1332-1335, 2008.

[14] M.L. Hsia, and T.C.C. Oscal, “Low-complexity inverse integer transform in H.264/AVC,”

International Conference of Multimedia and Expo (ICME), pp.826-830, 2010.

[15] Y.K Lin, Y.Z Liao, and T.S. Chang “An area-efficient Design for Integer Transform in

H.264/AVC FRExt,” The 17
th

 VLSI Design/CAD symposium, 2006.

[16] M.Nadeem et al., “Configurable, Low Power Design for Inverse integer Transform in

H.264/AVC,” 8
th

International Conference on Frontiers of Information Technology (FIT),

no.8, Dec. 2010.

[17] Y. K. Lai, and Y. F. Lai, “A Reconfigurable IDCT Architecture for Universal Video

Decoders,” IEEE Transactions on Consumer Electronics, vol.56, no.3, pp.1872-1879,

August 2010.

[18] H.S. Malvar, A. Hallapuro, M. Karaczewicz, and L. Kerofsky, “Low-Complexity

Transform and Quantization in H.264/AVC,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 13, no. 7, pp.598-603, July 2003.

60

[19] N.T. Ngo, T.T.T. Do, T.M. Le, “ASIP-controlled Inverse Integer Transform for

 H.264/AVC Compression”, The 19th IEEE/IFIP International Symposium, pp.158-164,

 June 2008.

[20] C. P. Fan, and Y. L. Cheng, “Unified and Fast 2-Dimension 4x4 Transform Design for

 H.264/AVC Texture Coding”, IEEE International Symposium on Intelligent Signal

 Processing and Communication Systems, pp.473-476, December 2005.

[21] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. New York: Cambridge Univ.

 Press, 1991, pp. 239-267.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4550866

