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Abstract

In this thesis we first proposed a limited feedback system which sends
back only the bit allocation (BA) information. The system will be termed
a BA system. we show that the proposed BA system can achieve full di-
versity order. we will also derive the optimal bit allocation for minimum
bit error rate when the transmission rate is given. Secondly, we develop
low-complexity selection criteria for conventional one-step precoder system
which feedbacks only the precoder information. A two-step system is pro-
posed to reduce the number of searches. In simulations, the usefulness of
the proposed systems will be demonstrated.
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Chapter 1

Introduction

Multiple input multiple output (MIMO) systems with limited feedback have at-
tracted great interest recently [1-4]. These practical systems can improve perfor-
mance metric such as transmission rate or error rate by sending limited amount
of information bits through a reverse channel to transmitter [1]. It is gener-
ally assumed that there is no channel state information at the transmitter and
only the receiver has the perfect.channel knowledge.. To obtain complete channel
knowledge at the transmitter may be unrealistic since it requires infinite number
of bits. In practice the reverse channel can transmit only finite amount of bits
and it is desirable to have feedback.rate as low as possible.

Various methods have been proposed to exploit the use of feedback bits. For
precoded spatial multiplexing systems with finite-rate feedback, the receiver se-
lects a transmitting matrix (or precoder) from a set of matrices (precoder code-
book) known to both transmitter and receiver. Then the corresponding index is
sent back to the transmitter using finite number of bits. Different criteria of pre-
coder selection and unitary precoder codebook designs are developed in [5]. For
the criteria considered in [5], it has been show that with some approximations the
design of optimal codebook can be converted to a problem of Grassmannian sub-
space packing. Randomly generated codebooks known to both transmitter and
receiver is proposed in [6], and the method is called random vector quantization
(RVQ). In [7], Using bit error rate (BER) as a criterion of selecting precoder ma-

trix from the codebook is proposed and the optimal unitary precoder for infinite



feedback rate, i.e., full channel knowledge at transmitter, is given. Generalized
Lloyd algorithm is employed to construct precoder codebooks. An iterative ap-
proach of searching a codebook for maximum mutual information is proposed
in [8]. Capacity loss due to quantized feedback is thoroughly analyzed in [9].
Spatial multiplexing for two substreams using simple rotation is designed in [10].
A special form of precoding systems is the antenna selection system [11,12] that
chooses the best subset of transmitt antennas to minimize BER. In this case
the transmitter possess the advantage of low complexity since the precoder is a
submatrix of the identity matrix.

In addition to precoder information, quantized power allocation information
can be also fed back for improving system performance. In this case there are two
codebooks, one for quantized precoder and one for quantized power allocation.
The index of precoder and the index ‘of power allocation are both sent back to the
transmitter. Usually a higher.feedback rate.is required. In [13], power loading
codebook is designed separately and the performance issignificantly improved. In
[14], based on parameterizations, two efficient methods for precoder quantization
are proposed. Combined with feedback of power loading, the proposed system’s
capacity is very close to the case when full channel state information is available
at the transmitter. In some recent work:-bit-loading information is also sent back
to the transmitter. In [15], the optimal unquantized precoder is factorized via
Given’s rotations and the parameters in the rotation matrices are quantized. Thus
the complexity of precoder quantization is low. Feedback of bit loading, power
loading and precoder is considered in [16] to improve the system throughput. In
these works, bit loading is not quantized.

In most of the previously mentioned works, the number of subchannels (or
substreams) M is fixed and does not change with the channel. Multimode antenna
selection [17] allows the number of sucstreams M or "mode” to vary with the
channel. The transmission bits are uniformly allocated on the M substreams.
It is shown in [17] that with M, feedback bits, the system can achieve diversity
order M, M,;, where M, and M, represent the number of transmit and receive

antenna respectively. Similarly, multimode precoding [18] also allows number of



substreams M to alter in accordance with the channel. Transmission bits are
equally allocated too. In addition, precoder codebooks are constructed for each
modes. With judicious design, multimode precoding can achive diversity order
M, M, with log, M, bits. The design of codebooks for multimode precoding over
spatially correlated channel is developed in [19]. Generalized Lloyd algorithm
is applied to design capacity maximizing codebooks for multimode transmission
in [20]. In [21] a quantized principal component selection precoding scheme for
capacity maximizing is proposed. The achieved performance by [21] can be close
to the capacity obtained with full channel state information.

In this thesis, we consider two feedback scenarios. In the first scenario, the
receiver feedbacks only bit allocation and in the second scenario the receiver
feedbacks only the precoder information. The system that sends back only infor-
mation of bit allocation (BA) is called BA system. Given a channel realization,
receiver selects a bit allocation vector that.minimizes the BER from a bit al-
location codebook whose codewords satisfy the target transmission rate. The
index correspond to this BER-minimizing codeword is sent back to transmitter
through a reverse channel. According tothe feedback information, the transmit-
ter allocates bits to the modulation symbols and perform spatial multiplexing
(precoding) using a unitary precoder known to the transmitter and receiver a
priori. We will show that BA system can achieve full diversity order M, M, using
log, M; bits. Moreover, we will derive the optimal bit allocation that minimizes
the BER when the bit allocation vector is not constrained to be from a codebook
and it can be real nembers. In this case, the BER performance of the BA system
always outperforms the optimal BER-minimizing unitary precoder system which
employs uniform bit loading and has complete channel knowledge at the trans-
mitter. Furthermore, we will show that the unconstrained optimal bit allocation
for BER minimization also minimizes the transmission power for a given error
rate. To reduce the complexity of bit allocation vector selection, we develop an
efficient quantization method. Simulation will be presented to show the useful-
ness of the proposed BA system, especially for MIMO systems with low feedback

rate.



The system that feedbacks only the precoder information is called a precoder
system in this thesis. For a given precoder codebook, we propose a simple selec-
tion criterion whose BER performance is very close to the method in [7] which
requires exact BER computation. In addition, we propose a two-step design. The
design is motivated by crucial properties of the optimal unquantized precoder.
Namely, the total mean squared error (MSE) is minimized and the subchannel
error variances are equalized.

In the proposed two-step design, the precoder F is a product of the form
FyFg. When there is unlimited feedback, Fy and F¢ can be chosen so that F
is the optimal precoder. When the feedback rate is finite, Fy and F are chosen
from their respective codebooks; Fy is chosen to minimize total MSE while F
is chosen to equalize subchannel error variances. The indexes of codewords for
Fy and F are sent back to the transmitter. If the codebooks for Fy and F
contains respectively 2PV and 282 codewords, the réquired number feedback bits
is B = By + Bg, while the number of searches for selecting the precoder is
2Bv 4 2Bq,

Simulation results show that the performance of the proposed two-step design
is comparable to the conventional design for the same feedback rate but the

complexity of selecting precoder is much-lower.

1.1 Outline

e Chapter 2: General system model is presented.

e Chapter 3: Previous works are reviewed in this chapter. Section 3.1 intro-
duces a BER criterion and optimal unitary precoder for precoded spatial
multiplexing system with infinite feedback rate proposed by S. Zhou and
B. Li. In section 3.2, we review multiple antenna selection proposed by R.
W. Heath, Jr. and D. J. Love. Section 3.3 introduces multimode precoding
which is also proposed by R. W. Heath, Jr. and D. J. Love.

e Chapter 4: The proposed BA system is presented in this chapter. In Section



4.1, we give the MIMO system model for BA system. Feedback of bit
allocation is presented in Section 4.2. The diversity order of the proposed
system is given in Section 4.3. Optimal bit allocation for minimum BER
without constraining the bit allocation vector to be from a codebook is
derived in Section 4.4. In Section 4.5, an efficient method of bit allocation

vector selection is discussed.

e Chapter 5: We consider the precoder system in this chapter. Section 5.1
introduces the system model for precoder system and the BER optimal
precoder. Section 5.2 presents two simple selection criterion for precoder

system. Two-step system is given in Section 5.3.
e Chapter 6: Simulation examples are presented in this chapter.

e Chapter 7: A conclusion isigiven in this chapter.

1.2 Notations

1. Bold face upper case letters represents matrices. Bold face lower case letters
represents matrices. The notation A" denotes. transpose-conjugate of A.

The notation AT denotes transpose-of A
2. The function E [y] denotes the expect value of a random variable y.
3. The notation L, is used to represent the m x m identity matrix.

4. The notation W, is used to represent the m x m unitary DF'T matrix given

by,
(Wonlin = \/—%e_j%’m for 0<k,n<m-—1. (1.1)

5. The notation C'(n, k) is used to denote the chosen function of n and k.



Chapter 2

General System Model

The finite-rate feedback M, x M; MIMO system is shown in Fig. 2.1. The channel
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Figure 2.1: MIMO system with limited feedback

bit
stream

is modeled by a M, x M, memoryless matrix with an channel noise vector q

of size M, x 1. It is supposed that the channel is block fading, which means

the channel remains constant over sufficiently long period before independently

taking a new realization. The noise vector q is assumed to be additive white

Gaussian with zero mean and variance Ny. The system can process M substreams,

where M < min(M,, M;). The input vector s is an M X 1 vector which consists

of M modulation symbols. The symbols s, are assumed to be zero mean and

uncorrelated, hence the autocorrelation matrix R, = E[ss'] is a diagonal matrix.



Ry, is the number of bits transmitted during each symbol period. Assume the
total transmission power is Py and the precoder F is an unitary M; x M matrix.
The total transmission power Py = E[x'x] can be written as

M-1

Py = E[x'x] = trace(FRGF") = trace(Rs) = o? (2.1)

Sk
k=0

where we have used the trace property trace(AB) = trace(BA) for two matrices

A and B and the fact that FIF = I,;. The channel output vector r is therefore
r=HFs+q (2.2)

The M x M, receiving matrix G can be zero forcing receiver or minimum mean

square error (MMSE) receiver [22]

(FTH'HF)'FTHI, zero-forcing receiver,
R,FH (HFRFTH" + NoI,,, )~ MMSE receiver.
The error vector e at the output of receive matrix G is
e=§8§—-s=Gr-—s (2.4)
The autocorrelation matrix of error vector Re = Eleel] given by [22] is
R — No(FTH'HF) ™, zero-forcing receiver
°7 | Rs — RFTHI(HFR,F'H! + NoI, ) "HFR,, MMSE receiver
(2.5)

Generally, it is assumed the transmitter has no channel state information and
the channel is perfectly estimated at the receiver. The reverse link can feedback
B bits. At the receiver, transmission information for enhancing desired perfor-
mance is derived from the full channel knowledge. Based on this information, an
index is selected from the codebooks which are known to both the transmitter
and the receiver. Then the index is sent back through the reverse channel to
the transmitter. According to the feedback information, the transmitter adapts
the transmission settings and sends the signals into channel. Transmission infor-
mation extracted from the full CSI at receiver such as precoding matrix, power
loading, and bit allocation are used by different system designs. Using these in-

formation, various performance like BER, capacity and transmission bit rate can

7



be improved. In this thesis, the efficiency between BER performance and the
amount of feedback bits is the main topic of our work.

In the following we discuss the system model for the precoder system (no
bit allocation) and the system model for the BA system (with bit allocation)

separately.

Precoder system. In the precoder system there is no bit allocation, the trans-

mitted bits are assumed to be equally allocated on M symbols. Each modulation

symbol carries % bits and % is assumed to be integer. Assuming QAM modu-

lation, the symbol error rate for k-th subchannel is well approximated by [23]:

1 3
SERy, =4(1— W)Q <\/mﬁk> ) (2.6)

where
Qy) = A= [, e *2dt, 4> 0,

and (3 is the unbiased SNRrof the k-th subchannel. For zeroforcing and MMSE

linear receiver, (3, can be expressed respectively as,

o3

7\ zero-foreing receiver,

_ 9&y,

Be=1q o : (2.7)
Sk =1, “MMSE teceiver.

ek

When Gray code is used, the BER for k-th subchannel can be approximated by

SERy

BE ~ .
% o)

So, when precoder matrix F is used the average BER for a given channel H can
be approximately expressed as

M-1
1 R, 1
BER(F.H) ~ o N i BER: = - " SER. (2.8)

k=0 k=0
Since the bit allocation is set to be uniformly loaded, the error performance is
independent of bit allocation and is decided by the unbiased SNR (. In the
precoder system, the receiver sends back the information of the precoder back to

the transmitter.



BA system. In the BA system, the symbols can carry different number of
bits. Suppose b, bits are carried by the k-th modulation symbols. Thus, the

transmitted bits per channel use is

M-1
Ry=>Y b (2.9)
k=0
Let b = [ by by -+ by_1 }T be the bit allocation vector. When the input

symbols sy are bg-bits QAM symbols, the k-th symbol error rate is approximated
by [23]:

SER, — 4(1 — ﬁ)@ ( (2%73_1)@) . (2.10)

where [, is the unbiased SNR of k-th subchannel (2.7). Using Gray code, the
BER can be approximated by BE Ry~ SER/b,. Given a channel H and the

precoding matrix F, the average BER can be approximately computed using

1 M-—-1 1 M~—1
BER(b,F,H) ~ —= Y by BER~ i > SER. (2.11)
b 4—0,b,£0 b =0,by,£0

In addition, the system without bit ‘allocation can be considered as having a

uniform bit allocation vector b wlhese entries

(2.12)



Chapter 3

Previous Works

In this chapter, previous works for minimizing error performance are reviewed.
Section 3.1 presented a limited feedback precoder ststem with BER selection
criterion and codebook design proposed in.[7]. Optimal unitary precoder for
infinite feedback rate is also derived. In section-3:2:multomode antenna selection

[17] is introduced. Section 3.3'recaps multimode precoding [18].

3.1 Precoder System

This section is organized as follows:"Section 3.1.1 introduces the system model
and presents the BER-based selection eriterion.. Optimal precoder for infinite
feedback rate is given in Section 3.1.2. And Codebook construction is showed in

Section 3.1.3.

3.1.1 System Model

Based on the general system model at chapter 2, the system in [7] assumes the
number of subchannels M is fixed and all M subchannels are used. The system is
without bit allocation design. Thus, the bit loading is uniform and the target bit
rate R, is divisible for M. Each symbol carries % bits. The power is also equally
allocated for each symbols, Rg = %I m- For the reverse channel, it is constrained
to send B bits. In this paper, the feedback information is the precoder matrix.

Therefore, a precoder codebook Cr of size 2P is prepared. After the estimation

10



of forward channel, a precoder matrix is selected using a BER-based selection
criterion from Cr and the corresponding index is fed back to the transmitter.

The BER-based selection criterion will be reviewed as follows.

BER selection criterion. ~ Under the assumption of uniform bit allocation, the
average BER for each precoder matrix in Cp can be computed by (2.8). The

BER-base selection criterion is

A~

F = arg min BER(F,H). (3.1)

FeCp

To choose a precoder matrix by BER selection criterion, we need to compute the
BER formula (2.8) for each precoder matrix in Cp. Therefore, 28 computations

of (2.8) are required to complete BER selection criterion.

3.1.2 Optimal Precoder for infinite-feedback rate

With infinite feedback bits, it.can be-assumed that the-transmitter has full chan-
nel knowledge. The optimal precoder F,,, with BER-based criterion can be
derived directly from H. The optimal precoder F,, can provide a benchmark
performance for finite-rate precoder feedback systemi. Assuming the singular
value decomposition of H = UAV., where U.and 'V are respectively M, x M,
and M; x M, unitary matrices. The M, X M; matrix A is a diagonal matrix whose
diagonal elements are the singular values of H in a nonincreasing order. And let
0Ok be the k-th largest subchannel SNR. The optimal precoders for zero forcing

and MMSE receiver are given respectively as follows.

Zero-forcing case.  Consider a rectangular/square QAM constellation with size

M is applied for b. Constellation-specific threshold I'y, is shown in table 3.1.2.

1. When 8y < Ty, Fopr = Vi, where Vi, is the M, x M matrix obtained by
keeping the first M columns of V.

2. When By > 'y, Fopre = Vi Qar, where Qyy is an M x M unitary that has
equal magnitude property, i.e., |[Qur]mn| = 1/VM, for 0 <m,n < M — 1.

11



3. When conditions in 1 or 2 do not hold, the optimal precoder F,, can’t be
found analytically. Suppose that K; subchannels’ SNR are larger than I';,.
Then one suboptimal precoder that is better than Vj; can be constructed

as

F=Vy {le IMO_k } (3.2)

MMSE case. Consider a rectangular/square QAM constellation with size M is
applied for b. Two constellation-specific thresholds ity I'en o are shown in table

3.1.2.
1. When I'y,; < By and By < Ty, Fopr = Vg
2. When 31 <T'yyor Bar 2> Tinpy Fopr = VrQar.

3. When conditions in 1 or 2'donot hold, the eptimal precoder F,, can’t be
found analytically. Suppose that /K subchannels’ SNR are larger than I'y, p,
and K5 subchannel SNRs"are smaller than I'(th,[). Then one suboptimal

precoder that is better than V; can be constructed as

Qx, 0 0
F=Viy b0 Iy suix, O (3.3)
0 0 Qx,

M| 2 4] 8 16 32 64 128 256
Iy, | 1.5 3]9.01 | 14.93 | 38.46 | 62.50 | 166.7 | 250.0

Table 3.1: Table of I'y,

M |24 8 16 32 64 128 | 256
Ly 0.579 | 0.247 | 0.326 | 0.264 | 0.330 | 0.271
Lipp |00 7.621 | 13.72 | 37.46 | 61.50 | 165.7 | 249.0

(@)
(@)

Table 3.2: Table of I'y,; and 'y, p,

12



3.1.3 Codebook construction

From [5] it is shown that the precoder codebook design problem can be related to
Grassmanian subspace packing. Thus, in [7], generalized Lloyd algorithm is used
to construct a precoder codebook by minimizing a chordal distance cost function.

The chordal distance between two unitary M; by M matrices, F; and F; is
d.(F;, F)) HFFT - FjF}H , (3.4)
F

where || - || denotes Frobenius norm. Suppose that V is an isotropically dis-
tributed M, x M matrix. The following algorithm quantizes V to 27 matrices.
Starting with an initial codebook Cr = {Fo,F1, -+ ,Fys_;} (obtained from ran-
dom computer search or using the currently best codebook if available), the

codebook design steps are as follows.

Ntr'

1. Generate a training set with "V, samples {V;;}."*",.

2. Tterate following steps.until it converges.
(a) Assign V,, to one-of the regions {R; }Z o ! lusing the rule

V, € Ri, i de(V,, Fy) <oV, F;),Vj #i. (3.5)

(b) For each region R;, find the centroid as

quntrozd Z d2 Vn,F (36)

" V,eR;
= > trace(Iyy — F'V,VIF) (3.7)

F tr V0E€R;
= arg max trace(FIRF) (3.8)

where R is defined as
1
R = VI .
o > V.Vi (3.9)
V,ER;

Let the eigendecomposition of R as
R = UgAzUL. (3.10)

13



AR is a diagonal matrix whose diagonal elements are in nonincreasing
order. Tt is easy to show that F¢nroid is a M, x M matrix obtained

by keeping the first M columns of Ug.
(c) Set Cp = {Ffe”tmid}fjl_ !, During each iteration, The codebook will be
record if the minimum chordal distance of Cg

min_ d.(F;, Fy)

0<i<j<2B-1

is larger than the currently best.

3. Go back to 1, generate another training set, then execute the next steps.
The algorithm will stop if there is no further improvement on the minimum

chordal distance.

3.2 Multimode Antenna Selection

This section is organized as“follows. Section 3.2.1 introduces the system model
and the diversity of multimode antenna selection system. Section 3.2.2 presents

the selection criteria.

3.2.1 System Model

Based on the general model in chapter 2, multimode antenna selection design a
system whose number of subchannels M varies according to the channel H and
M < min(M,, M;). Assuming target transmission rate R, is unchanged and in-
dependent of channel H, the bit loading for each subchannel is b, = % and the
power is uniformly divided among M symbols, R; = %IM. For sending M sym-
bols, antenna selection system selects M antennas from M; transmit antennas to
perform transmission. Therefore, there are C'(M;, M) possible antenna combina-
tions. This is equivalent to select a precoder matrix from a set Wy, where the

matrices in W), are generated by choosing M columns from I,;. For example,

14



assume M, = 3,

1 0 0 10 10 00
W, = Of,1{,1]0 0 1 0 0,1 0 ,
0 0 1 00 0 1 0 1
100
and W5 = 010 )
0 01

And WM = {WMJ, WM72, cee >WM,C'(Mt,M)}- For each M, WM,S size is C(Mt, M)
Suppose it is allowed to select from the complete precoder codebook Cp =

(W Hii |, the total number of precoder matrices is
> C(M, M) =2 —1 (3.11)

which requires M, bits to feedback.
Given a channel, the receiver‘decide what the number of subchannels M is
and which precoder should be chosen-from W),;. Then the corresponding index

is sent back to transmitter. The transmission is adapt based on this information.

Diversity. Selection diversity providesfull diversity M, M, [11]. Since selection
diversity is equivalent to selecting a precoder matrix from YV, which is included in
the complete precoder codebook Cr= {WM} 1721, the diversity gain of multimode
antenna selection can only be better than selection diversity system. Thus, the

diversity order of multimode antenna selection is M, M,.

3.2.2 Selection Criteria

Various selection criteria is designed in this paper [17]. Simulations in [17] shows
that these selection criteria all yield approximately identical performance. Here
we introduce a suboptimal, low-complexity selection criterion that is proposed
in this paper. This selection criterion decides M*, number of using subchannels,

first, then selects precoder matrix F* from W,,.

Eigenmode Based Selection. Choose M™* such that

M* =arg max A\, (H)d%, (M, Ry) (3.12)

1<M< M, min

15



where A, (H) is the k-th largest singular value of H, and d2, (M, R;) is the

min

normalized minimun distance in QAM constellation defined as

6
2 —
ryin (M, Ry) = m/M-
After the M* is determined, F* is chosen as
F* = arg max A\*(HF). (3.13)

FeW,
3.3 Multimode Precoding

This section is organized as follows. In Section , we show the system model
and diversity of multimode precoding system. The selection criteria are given in
Section 3.3.2. And Section 3.3.3 reviews the criteria of codebook size allocation

and construction.

3.3.1 System Model

Founded on the general system model in chapter 2, multimode precoding assumes
Ry, is the fix target transmission rate, the bit loading is uniformly allocated by =
%, for k = 1--- M, and transmission power is equally divided for M symbols,
R, = %I u- Similar to multimode antenna selection.in section 3.2, the multimode
precoding system allows the number of subchannels M to vary according to the
channel H and M < min(M,, M;). In addition, a codebook Fy; is prepared
for each mode M. Since multimode precoding requires % to be integer, thus
only some modes can support transmission. The set of these supported modes is
denoted as M. For example, if R, = 8 bits and M, = M; = 4, then M = {1,2,4}.

Based on the channel H, the receiver determines the number of subchannels
M and selects the precoder matrix from the complete precoder codebook Cp =
{F M}%t:r Subsequently, the index represented this selection is fed back to the
transmitter. The transmitter adjusts the transmission setting according to the

feedback information.

Diversity. let Nj; denoted the number of precoder matrices in Fj;. It is proved

in [18] that multimode precoding provides full diversity order M, M, if Ny, the
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codebook size of Fi, is greater than or equal to M; and the vectors in F; span
CMt,  Selecting vector from F; = {fi,f;,---,fy1} is equal to a beamforming
system with finite beamforming feasible set [24]. From [24], we know that such
a beamforming system has full diversity order equal to M, M, if the span of F;
is equal to C™t. Therefore, the multimode precoding has full diversity order if

above mentioned condition is satisfied.

3.3.2 Selection Criteria

Two selection criteria are proposed in this paper. One is for minimizing proba-

bility of error. The other is for maximizing capacity.

Probability of Error Selection Criterion. The selection is divided in two step. For
every M € M, first step selects the F; fromeach precoder codebooks F), using
the following selection criterion,

Fii(H) =arg R R A3 (HF), (3.14)

where A\y(H) is the k-th largest singular value of H. The second step determines
the number of subchannels M* by

N N AHE(H)}
M*(H) = arg max i dzin (M, Ry), (3.15)
where d2, (M, R,) is defined as
2O(M R = — O
win M 80) = From AT )

Capacity Selection Criterion. ~ Assuming uncorrelated Gaussian signaling on each
substream, the mutual information is known to be

P
MN,

Similar to above selection criterion, for every M € M, first step select the F};

from each precoder codebooks F); using the following selection criterion,

) = arg max Cuyr(F). (3.17)
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Then, M* is decided by

M* = arg max Cur (Fy) - (3.18)

3.3.3 Allocation Criterion and Codebook Construction

Given B feedback bits, there are total 28 codewords for complete codebook Cp.
Some criterions are designed in [18] to distribute 27 codewords among the modes
in M. Under the assumption that the probabilities of selecting each mode in M
are equal, the codeword allocation criteria for maximizing capacity and minimiz-

ing probability of error are given as follows.

Probability of Error Allocation Criterion. Define the cost function as
d?nin(Ma Rb) Wftﬁ'l)
ANy, -+, Nag,) 5 ) YEL=Biees =2 N ] (3.19)
Mem

e For B <log,(M; + 1), .86t Nyz= 1and N; = 28— 1.

e For B > log,(M;+1), find the (Ny, -+ -4 Ny, ) that minimizes A(Ny, - -+, Nyy,)
such that Ny > M;, Ny, = 1, and ZMEM N =28 This minimization can
be done using a numerical search or by using convex optimization tech-

niques.

Capacity Allocation Criterion.
e For B <log,(M; +1), set Ny; =1 and N; =28 — 1.

e For B > log,(M;+1), if B <logy(M;(JM]|—1)+1),set Ny, =1, Ny = M,
and Ny = E 2D for k€ M,k # 1, M,. I B > log,(My(|M| — 1) +1),

setNMtzlande:ﬁj—:hforkEM,k#Mt.

After the sizes for each modes’ codebooks are allocated. The codebook for
each mode is construct using the method in [5]. The work in [5] can approximately
convert the problem of precoder codebook construction into Grassmannian sub-

space packing. As a result, the codebook design criteria are presented as follows.
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Probability of Error Design Criterion. From [5], the projection two-norm distance

is defined as
dyroj(Fi, Fj) = |FF] — F;Fl|)5,

where ||-|| denotes 2-norm of a matrix. For minimizing probability of error, design
Far such that

n dpr’oj(Fia F])

Oproi = m
pbroj
F; F;eFy F#F;

is maximized.
Capacity Design Criterion.  The Fubini-Study distance is defined in [5] as
dps(F;, F;) = arccos | det(FIF;)].
For maximizing capacity, design Fj; such that
) = in d Fi, F;
£s Fi,FjeI;lL:FﬁéFj s i)

1s maximized.
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Chapter 4

The Proposed BA system

In this chapter we propose the feedback of only bit allocation (BA) for MIMO
systems with limited feedback. The proposed system will be termed a BA sys-
tem. We show that the proposed BA system.can achieve full diversity order. We
also derive the optimal bit allocation for minimum BER when the transmission
rate is given and the bit allocation vector is not constrained to be from a code-
book. It turns out that the optimal bit allocation that minimizes the BER is also
the optimal solution for minimizing the transmission power. Using the optimal

unconstrained bit allocation,-an efficient method for selection BA is developed.

4.1 System Model

Based on the general system model in chapter 2, we assume the total transmission
power Py is equally divided among all symbols carrying nonzero bits. So s; has

variance given by
o | Fo/My, by >0,
% = { 0. b =0, (4.1)

where M, is the number of symbols carrying nonzero number of bits. As the
power is equally divided among symbols with nonzero bits, the autocorrelation
matrix of the error vector for the MMSE case (2.5) can be simplified. Removing
the symbols with zero bits from s, we obtain a reduced vetor sq of size My x 1.
If we remove the corresponding columns of F, the result is an M; x M, matrix,

say Fy. Then using precoder Fy with input sy gives the same transmitter output
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(x = Fosg = Fs). The vector sy has the autocorrelation matrix Rg, = %IMO.

The autocorrelation matrix of the corresponding error vector ey is

R, — { No(FIHTHF,)™!, zero-forcing receiver, (4.2)

(3 FOHHF + 5h-Th,) 7!, MMSE receiver.

In our proposed system, the precoder matrix F in the transmitter is determined
beforehand. Therefore, when the channel H is given, the average BER formula
in (2.11) depends only on the bit allocation vector b, which can be optimized to

minimize BER.

1 M-1 1 M-1
BER(b,H)z_b 3 kaEszﬁb > SER;, (4.3)
k=0,b), #£0 k=0,by, #0

The receiver feedbacks only the bit allocation vector b to the transmitter. When
the bit allocation vector b has integer-entries, in principle the whole vector can
be sent back to the transmitter using finite-rate feedback. However, in a system
with low feedback rate it may not be-possible to feedback the complete informa-
tion of b without quantization. In this case the bit allocation vector is chosen
from a codebook C, and the‘index of the bit-allocation vector is fed back to the

transmitter as we will see in the next section.

4.2 Feedback of Bit Allocation

In the proposed BA system, only bit allocation will be sent back to the trans-
mitter. The information of the precoder is not fed back to the transmitter. We
discuss the feedback of bit allocation for two cases (i) precoder is square with
M = M, (implicitly M, < M,), and (ii) precoder is rectangular with M < M,
separately in Section 4.2.1 and Section 4.2.2. Although the first case is a special

case of the second, it is more convenient to discuss the simpler case M = M, first.

4.2.1 M = M, Case

In this case the precoding matrix F in the transmitter of the BA system shown in

Fig. 4.1(a) is a fixed M; x M; matrix. When we consider bit allocation in practical
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Figure 4.1: The transmitter of the BA system with (a) precoder F, and (b)
augmented precoder F’

applications, the bits assigned to the symbols are typically integer-valued. When
the number of bits transmitted per channel use R, is given, the components of

the bit allocation vector b satisfies
bo —+ bl + -+ bM—l & Rb, where bz S Z+, (44)

where Z7* denotes the set of nonnegative integers. The number of such nonneg-

ative integer bit allocation vector is-(pp. -337, [25])
C(Rb + M, — 1, Rb), (45)

where C(-,-) denotes the choose function.- Feedback of all these possible bit

allocation vectors requires
By = [logo(C(Ry + My, — 1, Ry)) ], (4.6)

where [z] denotes the smallest integer larger than or equal to x. For example
Ry, =8, M = M, = 4, the required number of feedback bits is By = 8. To reduce

the number of feedback bits, we can quantize the bit allocation vector.

Quantization of bit allocation. Suppose we are given B feedback bits and a
codebook Cy of 2% bit allocation vectors. The vectors in C, satisfy the transmission
rate constraint in (4.4) so that the number of bits transmitted for each channel
use is Ry. We can choose the best bit allocation vector b € C, that minimizes
the BER. The BER expression in (4.3) is a function of bit allocation vector and

we can choose

A~

b = arg lr)rélcrg BER(b,H). (4.7)
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The actual number of transmitted symbols can be smaller than M as some of
the symbols may be assigned with 0 bits. The selection criterion in (4.7) requires
the computation of BER for all possible bit allocation vectors in the codebook,
so BER(b,H) is evaluated 22 times. When the codebook size is small (i.e. low
feedback rate), for example, B = 2,3, the number of searches is small as well. As
we will see in the simulation examples, we can get good BER performance using

a small codebook size.

4.2.2 M < M; Case

For M < M;, we can start off with an augmented initial precoder F’ of size
M; x M. The corresponding augmented input vector s and bit allocation vector
b’ are of size M; x 1. For a given M, we can choose M columns out of F/ to form
the actual M; x M precoder F, i.e.; (M — M) columns of F’ are removed. As we
choose M columns from F’, there are C(Mz; M) possible choices. The entries of
s’ and b’ corresponding to the removed columns of F' are equal to zero. s and b
are M x 1 vectors which is-formed by removing the zero entries of s’ and b’ so
that F's’ = Fs. The transmitter with the augmented-precoder and augmented
input vector s’ is shown in Fig. 4.1(b). The augmented bit allocation vector b’
satisfies

by+ b, +---+0by,_, =Ry, where b €ZT, (4.8)

with the additional constraint that at most M of the components can be nonzero
as it is assumed that the transmitter and receiver can process at most M sub-
streams. In this case the number of symbols transmitted is at most M, carrying
a total of R, bits. To count the number of integer bit allocation vectors satisfy
(4.8), let us first consider the case that b’ has exactly k zeros, where k > M, — M.
Then R, will be distributed among M,; — k symbols, each with at least one bit.
There are C(M;, k)C(R, — 1, My — 1 — k) such combinations [25]. Thus the total

number of possible integer bit allocation vectors satisfying (4.8) is

f: C(My, k)C(Ry — 1, My — 1 — k). (4.9)

k=M;—
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For example, when M; = 4, M = 3 and R, = 8, the number is 130. To feedback
all these vectors requires 8 bits. To have a smaller feedback rate, we can use a
codebook Cj of augmented bit allocation vectors. Each b’ € C] satisfies (4.8).
The BER can be obtained by a slight change of the summation in (4.3),

Mi—1
1
BER(W',H) = — > SER,. (4.10)
b k=0, #0

We can choose the best bit allocation vector from C; to minimize BER,

b’ = arg min BER(W', H). (4.11)
b’eC;

Note that there is no need to feedback the information of the actual precoder
F used. The information is embedded in the augmented bit allocation vector
b’. Fori=0,1,---,M; — 1, the transmitter removes the i-th column from F’ if
b, = 0. The transmitter can thentuse the resulting M; x M, submatrix as the

precoder, where M, is the number of nonzeroentries'in b’'.

The optimal augmented precoder. In the BA system;, the augmented precoder F’
is a fixed square unitary matrix. It does not vary with the channel; only the bit
allocation does. A question that arises naturally-here is'this: What is the optimal
channel-independent augmented precoder? It turns out that any M, x M, unitary
matrix will yield the same performance if the entries of the channel matrix H
are independent, identically distributed circularly symmetric Gaussian random
variables with zero mean. For example, choosing F’ as the normalized DFT
matrix in (1.1) or the identity matrix will give us the same result. To see this let
us view the BA system as having precoder F/ and input s’. (In the case M = M,
F' = F and s’ = s). Let the auto correlation matrix of s’ be Ry. It can be
verified that the corresponding M; x M, error autocorrelation matrix Re can be

obtained from (2.5) by replacing F with F/ and Rg with Ry,

R — No(FTHTHF') 1, zero-forcing receiver,
¢~ | Ry — RyFHI(HFRyFTH' + NIy, )" 'HF'Ry, MMSE receiver.
(4.12)

We see that Re depends on HF’ as a whole. From [26], we know that when

F’ is a deterministic square unitary matrix, HF’ has the same distribution as
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H. That is, the entries of HF are independent, identically distributed circularly
symmetric Gaussian random variables with zero mean. Therefore, for any fixed
unitary F/, HF’ is statistically equivalent to H and hence the same performance

is achieved.

Fixed M, x M precoder. In the above discussion, we have used augmented
initial precoder when M < M,;. The actual precoder F is not a fixed M; x M
matrix. The reason for not using a fixed precoder F is as follows: If the channel
matrix is such that the column space of F is contained in the null space of H,
then there is zero signal power at the receiver. This can be avoided by allowing
F to be an arbitrary M; x M submatrix of F’. There is no such problem for
the case M = M, because the column space of any M, x M, unitary F is CMt,
where CMt is the set of all M, x 1 vectors of complex numbers. Note that with B
feedback bits, for a given channel; using augmented precoder F’ is not guaranteed
to be better than using a fixed ' F. This is because fora given number of feedback
bits B, the codebook Cj for*BA system with-augmented F' is different from C,
for a fixed M; x M precoder. Suppose F is a submatrix of F/. Let us consider
the special case that the codewords of C; is -obtained by inserting appropriate
zeros in the codewords of C,. Then the system with augmented precoder has the
same performance as the one with a fixed precoder, but not better. Nonetheless
the simulations will demonstrate that when M < M, the system of augmented

precoder outperforms the one with a fixed precoder for the same number of
feedback bits.

The case F' = I,;,. When the initial precoder is the identity matrix, the
BA system implicitly employs a form of antenna selection at the transmitter
[12], in which the best M antenna are chosen to minimize the BER. But unlike
conventional antenna selection, the symbols transmitted on the chosen antennas
do not carry the same amount of bits. For the BA system, the feedback of antenna
selection at the transmitter is embedded in the feedback of bit allocation. There
is no need to tell the transmitter which antennas to use other than the index

of bit allocation vector. When F' = I,;,, we can also view the BA system as a
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extension of the multimode antenna selection [17], which also chooses a subset
of transmit antennas, but the number of antenna used is allowed to vary with
the channel. As the bits are uniformly loaded [17], the number of antenna used

should divided Ry. There is no such condition for the BA system.

4.3 Diversity Gain of BA System

In this section, we show that the BA system can achieve diversity order M, M,
for a system with M, receive antennas and M, transmit antennas if the codebook
is properly designed and has at least M; codewords. Let the initial precoder F
be an M; x M,; unitary matrix (F' = F and M = M,). The number of bits to
be transmitted in each channel use is Ry, which is distributed among M symbols
(M < min(M,;, M,.)). The augmented bitrallocation vector b’ is of size M; x 1.
It has at most M nonzero entries and Z?fo_l b= Ry. Suppose the bit allocation
codebook is C;. The minimuni achievable BER is

BERy;,(H) = min BER(b', H), (4.13)
b’eCy

where BER(b’, H) is the BER in (4:3). Assume the bit allocation codebook C}

contains the set of codewords
Cy = {Rveo, Rver, -+, Ryenr,—1 1, (4.14)

where e; are standard vectors of size M, x 1, i.e., [e;; = 1 and [e;]; = 0 for j # 1.
The following theorem shows that the BA system can achieve full diversity order
using the bit allocation vectors in C;. Therefore to achieve a diversity order of
M, M; we can use a codebook of size M,;, which requires only log, M; feedback
bits.

Theorem 1. For a finite-rate feedback MIMO channel with M, receive antennas
and M, transmit antennas, the BA system with an M; X M, augmented unitary
precoder F' achieves diversity order M, M, if the bit allocation codebook Cj; con-

tains the M, vectors in (4.14).
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Proof. As C} is a subset of C}, we have

BERun(H) = min BER(b', H) < min BER(W, H). (4.15)
e ;

b’eC;

The BER averaged over the channel H is denoted as BER = E[BER,(H)].
Using (4.15), it is bounded by

BER < E[min BER(W, H)|.
b

When the bit allocation b’ is chosen from Cj, all the R, bits are allocated
to the same symbol and this becomes a beamforming system. For example,
when b’ = [ R, 0 --- 0]%, the beamforming vector is the 0-th column of
F'. When we choose b’ € C; to minimize the BER, we are actually choos-
ing the best beamforming vector from the columns of F’ to maximize the re-
ceived SNR. In other words, the equivalent-codebook of beamforming vectors
is Cy = {fy,f],--- ,f},_1}, where f is the i-th column of F’'. The zero-forcing
receiver in (2.3) performs maximal ratio-combining. From [24], we know such a
beamforming system has diversity order equal to M, M; if the span of C; is equal
to CMt. Therefore the BA system ‘has diversity order 4/, M, as well. The result
holds as long as the codebookC; contains the simple vectors in (4.14).

We have shown that the BA system achieves full diversity order if the code-
book has the codewords in (4.14). However, when C; has only M; codewords,
the codewords in C; are not necessarily the best choices as we will see in the

simulations.

Alternative proof of Theorem 1. Suppose the initial precoder ¥’ = I,;, and bit
allocation vector is chosen from C;. As F’ has only one nonzero entry in each
column and b’ € C; has only one nonzero entry, only one transmit antenna is
used and this becomes an antenna selection system that chooses only one antenna.
The right hand side of (4.15) corresponds to the BER of the system in which the
transmitter chooses the best transmit antenna and receiver uses maximal ratio

combining. Such a system has been shown to achieve a diversity order equal to
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M, M, [27]. So the BA system with identity F' achieves diversity order M, M.
From the discussion of optimal augmented precoder in the previous section we
know any M; x M, unitary F’ lead to the same average performance. Therefore

we can arrive at the result given in Theorem 1.

4.4 BA system with Unconstrained Bit Alloca-
tion

In this section, we will consider the BA system when there is no integer constraint
on bit allocation. For a given precoder, we will derive the optimal bit allocation
that minimizes the BER when the bit allocation is not constrained. Although
the unconstrained optimal bit allocation requires infinite feedback rate, the corre-
sponding BER performance provides insightful observations as we shall see. The
optimal bit allocation is given .dn section 4.4.1.~The connection of zero-forcing
BA system with M = M, toprecoder system and power-minimizing BA system

are given in Section 4.4.2.

4.4.1 Optimal Bit Allocation

We first consider the case when the precoder F-isa fixed M; x M unitary matrix.
The number of bits transmitted per channel use is R, and by+b;+- - -+by—1 = Ry,.
Assume the transmission rate is high and by, is large enough so that 1-2% ~ 1 and

1 —2% =~ 1, then the symbol error rate expression in (2.10) can be approximated

by

With the high bit rate assumption, b, > 0, for all k£ and thus Ry = Py/M1,,;. For

the convenience of derivation, we define the function

fly)=Q(5), y>0. (4.17)



The function f(y) is monotone increasing and it can be verified that f(y) is
convex for y < 1/3. Using f(-), we can express SE R}, as

20
30k
Therefore the average BER in (4.3) can be written as

SER), ~ 4f(

). (4.18)

M-1

b
BER(b) ~ R% kzo f(??_ﬁk). (4.19)

where we have dropped the dependence of BER function on the channel H for
convenience. Assume the arguments of f(-) are smaller than 1/3 so that the
convexity of f(-) holds (we will see later why this assumption is reasonable).

Using the convexity of f(-), we have

1 i 1 20k
i 2 f(3—ﬂk) > f(M 2 3—k) (4.20)
It follows that

4 1 = 2
BER(b) ~ /3 3 kzzo f (3—@) (4.21)

4 1 2l
Z R/ MV <3M 2 7) (4:22)

, M-1 /M
> (ML (123
(Bo/M) 3\ P

£ BERp,. (4.24)

The second inequality is obtained by using the fact that Ry, = bg+b1+ - -+ by—1

and the AM-GM (arithmetic mean-geometric mean) inequality
B 1/M M1 1/M
1 2 (M ! 2bk> 1
=S 2> (I % =2m/M (T — : (4.25)
[ B o Dk
and also using the monotone increasing property of f(-).

Notice that the lower bound in (4.23) is independent of bit allocation. The
optimal bit allocation is such that the two inequalities in (4.22) and (4.23) become
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equalities. Due to convexity of f(-), the first inequality (4.22) holds if and only
if 2% /(3/3;) are of the same value for all k. The same set of conditions is also
necessary and sufficient for equality to hold in the second inequality as f(-) is
monotone increasing. When both inequalities hold, the lower bound in (4.23) is

achieved. Therefore the optimal bit allocation for minimizing the BER is such
that 2% /3, = 2//M([TY 1 1/8)YM, e,

b = logy(Bk) + — — L Z log, ;. (4.26)

We can see that the symbols with larger SNR ) are allocated with more bits.
We have denoted the BER lower bound in (4.23) as BERp 4, where the subscript
is a reminder which notifies that it is the BER of the BA system. Note that
BERp, is obtained when the bits arerallocated as in (4.26) and there is no in-
teger constraint on bit allocation in the above derivation. The bit allocation by
computed in (4.26) are not integers-in general. Nonetheless BERp4 gives useful
insight on the performance of the BA system and connections with other system

as we will see in Section 4.4.2

Remarks

1. In the above derivation, we have assumed that the argument of f(-) in
(4.19) is larger than 1/3 so that the convexity of f(-) can be used in (4.20).
We now examine the validity of such an assumption. When the argument
2be/(36k) = 1/3, the corresponding SERy, is SERy, =~ 4Q(V/3) ~ 0.17, a large
symbol error rate that may not be useful. In practical applications, it is

more reasonable to have smaller error rate, which requires 2% /(33;) < 1/3.

2. When bits allocated optimally as in (4.26), 2%/% are the same for all k.

This means the symbol error rates are equalized for all transmitted symbols.

3. The actual number of symbols transmitted may be smaller than M if some
symbols are allocates with 0 bits. However the number of bits transmitted

for each channel use will be maintained at Rj.
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Now let us consider the case F is not fixed, but an M, x M, augmented pre-
coder ¥’ (implicitly M < M, in this case). The imput s’ is an augmented M; x 1
vector and bit allocation vector b’ is M; x 1 as in Section 4.2.2. For a given M,
we can choose M columns out of F’ to form the actual M; x M precoder. As
we choose M columns of F', there are C'(M,;, M) possible choices. For each of
these choices, we can compute the optimal bit allocation and the corresponding
BER using (4.23), and choose the best precoder. In this case the BA system
with augmented precoder F' is always better than the BA system with a fixed

precoder F if F us a submatrix of F'.

Bit allocation for optimal number of substreams

In the above discussion of optimal bit allocation, we assumed all symbols
carry nonzero bits and transmission power is loaded on all M symbols. In the
end some of the symbols may be assigned zero bits while take up 1/M of the total
power. To make efficient use.of power, we can allocate power to only the symbols
that carry nonzero bits. To.do this, we can compute the optimal bit allocation
for all possible number of symbols with nonzero bits and choose the best one. To
be more specific, let us illustrate this in another viewpoint. We start out with
an M; x M; initial precoder F' as before.. The precoder F can be any M; x M,
submatrix of F', where My =1,2,---, M. There are 2%0:1 C(M,, My) possible
precoders. We collect all these possible precoder in a set Sg. For each F € Sp,
we can use (4.29) to compute the BER under optimal bit allocation. The error
rate BERp, given in (4.23) depends on the precoder used. For convenience let

us use the notation BERp4(F) to indicate the dependence on F. The best F is
F,, = arg Fr‘rel}S‘I}r BERps(F). (4.27)
The resulting minimum BER is given by
BERpa ot = min BERp4(F). (4.28)
FeSp

When the optimal precoder is obtained this way, all the symbols will carry nonzero

bits. The reason is as follows: Let the optimal precoder F,, be M; x [, and the
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optimal [ x 1 bit allocation be b,,;. Suppose one of the symbols is assigned with
zero bits. The actual number of symbols transmitted is [ — 1. Let us remove from
F,,: the column corresponding to the symbol with zero bit and call the remaining
M; x (I — 1) submatrix Fy. Also remove from by, the element equal to zero and
call the reduced vector by. Then using precoder Fy with bit allocation by gives
a smaller BER for the same transmission power as the power is now distributed
among (I — 1) symbols instead of [ symbols. So F,,; can not be optimal if one
symbol is assigned 0 bits. We can therefore conclude that all symbols carry

nonzero bits in the optimal system that uses F,,; as precoder.

4.4.2 BER performance of Zero-forcing BA system When
M - Mt

In this subsection, we will examine the BER. lower bound BERg, derived in
(4.24) when the receiver is zero forcingrand M = M,;. Connection between the
BA system with two other systems, the precoder system-[7] and power minimizing
BA system, will be studied.

For M = M,, the precoder F is an My X M, unitary matrix. When the receiver
is zero-forcing, the k-th SNR B is equal to Py /(M afm 54), where we have added
a subscript to the error variances to indicate-that these are the error variances in

the BA system. The BER lower bound BERg4 in (4.24) can be written as

4 3Py/M 1
BERBA = Rb/MQ <\/ IRy /M (HM—l 2 )1/M> : (429)

1=0 9¢,,BA

We can see from the above expression that BERg, depends on the geometric
mean of {ng, B A}l]\ia ! which is in turn determined by the given precoder. Al-
though the geometric mean of {agh B A}l]‘ia ! depend on the choice of precoder,
the arithmetic mean does not. This is due to unitary property of the precoder.
To see this, we can use the expression R, = No(FTH'HF)™! given in (4.12) for

zero-forcing receiver. It follows that the average error &, is

M-1
1 1 1 _
Emr = i g O’SZ’BA = thce(Re) = MNotmce(FTHTHF) L (4.30)
1=0
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Using FF' = I, and trace(AB) = trace(BA), we have
1
Ep = MNotrace(HTH)_l. (4.31)

As Ngtrace(H'H)™! does not depend on the precoder F, we come to the con-
clusion that the average error &, does not depend on the precoder. It is the
same quantity for any square unitary precoder regardless of bit allocation. This
property allows us to show that the BER of the BA system is always smaller than

the BER-minimizing precoder system, which is briefly reviewed below.

BER-minimizing precoder system  [7,22]. In the precoder system [7], the precoder
is optimized to minimize BER. Referring to Chapter 3.1, the power and bits
are uniformly loaded on all M symbols (M < min(M;, M,)). Suppose Ry bits
are transmitted using total power Fy:for each channel use; each s, for k =
0,1,---, M—1,is a QAM symbeol with variance Fy/M that carries R,/M bits. Let
the singular value decomposition of H'be UAVI where U and V are respectively
M, x M, and M; x M, unitary matrices. The M, x M, matrix A is diagonal,
whose diagonal elements are singular values of H in a nonincreasing order. From
Section 3.1.2, the optimal M; x M unitary precoder that minimizes the BER for
large SNR is given by [7,22]

Foy INQ (4.32)

where V) is the M; x M matrix obtained by keeping the first M columns of V
and Q is an M x M unitary matrix that has the equal magnitude property.

For the optimal precoder given in (4.32), the subchannel error e, = 5 — sy

2
€k

has the property that variance o7 are equalized [7,22],

o2 =0 =... =07 (4.33)

€0 €1 eM—1"

Now consider the case M = M, and the receiver is zero forcing. We know from
(4.31) that all square unitary precoders lead to the same average error variance.
That is, the BER-minimizing precoder yields the same average error variance
as the BA system. Therefore when the optimal precoder in (4.32) is used, all

error variances are equal to &, given in (4.31) and hence identical BER for all

33



symbols transmitted. Using the approximation in (4.16), the minimized BER of

the precoder system can be expressed as

LI VLT VU
Ry/M 2R/M €,

BER =~ = BER;m"ecoder- (434)

Using the fact that &, is also equal to ; El 0 ael pa and applying AM-GM

inequality to {02 54} 5", we get

1 M—1 l/M
TR S (H) | (4.35)

=0

As Q-function is monotone decreasing we arrive at

4 3P/ M 1
BERprecoder_ W (\/ 2Rb/M %Z;w_l 5 ) (436)

—0. 9, BA

4 3P /M ]
> = BFE 4.
B Rb/MQ (\/ 2Ty Uel,BA)l/M) o (437)

We recognized that the right hand side of the above inequality is the BER of
the BA system given in (4.29). Therefore when M = M, the BA system with

optimal bit allocation and an-arbitrary fixed precoder has a smaller BER than
the precoder system with an optimal precoder-

Unlike the M = M, case, the BER of the BA system for M < M, is not
guaranteed to be smaller than the precoder system. We can see this using the
case M = 1 as an example, i.e., beamforming transmission. When M = 1,
the precoder system corresponds to the beamforming system with maximal ra-
tio transmission [28] at the transmitter and maximal ratio combining at the
receiver, which achieves the smallest error rate among all beamforming systems.
As M =1, all R, bits are loaded on one symbol. For the BA system, all the bits
are allocated to only one symbol as well but the choices of the beamforming vec-
tors are limited to the M; columns of F,. If the number of symbols transmitted
in each channel use can not exceed one, the precoder system is better than BA

system.
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Figure 4.2: MIMO wireless system with M, transmit antennas and M, receive
antennas

Connection with power-minimizing BA system

In Section 4.4 bit allocation is optimized to minimize BER. Suppose, instead
of BER criterion, we optimize the bit allocation to minimize the transmission
power for a given symbol error rate constraint € and transmission rate R,. When
the receiver is zero-forcing, we now show that the optimal bit allocation derived in
Section 4.4 for minimum BER is also optimal for minimizing transmission power.
Consider the MIMO system in Fig.-4.2. Let the total transmission power be Pr.
From (2.1), we have Pp = trace( Flxxi]) =320t o3, . Suppose the k-th symbols
sk is loaded with by and by 4+ by ++* +by—1 = . In the power minimization
problem, we allow Pr and symbol variance afk tovary so that the given symbol
error rate constraint € can be satisfied:~For a zero forcing receiver, the error
variance o7, can be computed using R. = No(FTH'HF)™! in (2.5). If 02 and

Ufk are given, the number of bits that can be loaded is well approximated by [29]

o2
— Sk
bk = 10g2 (1 + ﬁ) ) (438)

where I', called SNR gap, depends on the given symbol error rate e. In our

2
Sk

['(2% — 1)o? , which gives the required symbol variance when the k-th symbol is

e’

problem o2 is not given. Let us rearrange the above equation to get ng =

loaded with by, bits. Using high bit rate assumption 2% — 1 ~ 2% we have

02 A r2%o? . (4.39)
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Using the approximation in (4.39), we have
M-1
Pr~T ) 2%02 . (4.40)
k=0

Applying the AM-GM inequality to the above summation, we get

M-1 M-1 /M M—1 1/M
Pr~T Y 2% > MT (H 2bkg§k> = MT2R/M (H a§k> (4.41)

k=0 k=0 k=0

The right hand side is a lower bound that is independent of bit allocation. The
minimum transmission power can be achieved by allocating the bits by such that
AM-GM inequality becomes an equality, i.e., 2bkagk are equalized. This in turns
means o2 are identical and thus 2%0? /o2 = 2% /(3 are the same for all k. It
follows that by are as given in (4.26). So theoptimal bit allocation for minimizing

BER of zero forcing BA system isialso optimal for minimizing transmission power.

4.5 Efficient Method of Selecting Bit Allocation
Vector

In this section we consider effi¢ient search of bit allocation vector from the code-
book Cj. Suppose the feedback bits s B, so the codebook size is 2. To ob-
tain b’ = arg mingyee; BER(D', H) given in (4.11), exhaustive search can be ap-
plied by computing BER formula (4.3) for each bit allocation vector in Cj, thus
BER(b',H) is evaluated 2P times. When B is large, such an exhaustive search
requires lots of computations. Using the unconstrained optimal bit allocation in
(4.26), an efficient method is developed to reduce the complexity of selecting bit
allocation in C;. The development of our method can be easier to understand if

we explain the basic idea first.

/

Quantization of by, ;.

The basic idea of the proposed method is described as
follows. Rather than evaluating BER formula for 27 bit allocation vectors, we
be the

unconstraint bit allocation that achieves BERp 4 ot in (4.28). From Section 4.4.1,

can compute the optimal unconstrained bit allocation by, first. Let by,
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BERRBa opt is obtained by computing BERp4 for each possible submatrix of the
initial precoder F’. The collection of all these possible submatrices is Sp. The
size of Sp is Z% _, C(My, My). F,p is the best BER-minimizing precoder matrix
in Sp. And by, is the corresponding optimal unconstrained bit allocation when

Fop is used. After b, is computed, we then quantize by, to the integer bit

opt

allocation vectors in C; by minimizing a distance function D(b’, by ,),

b = arg g/nelél, D(b',b,), (4.42)

where D(b', b)) is a measure of the distance between b’ and b/, ,. From the

opt*
remarks in Section 4.4.1, the symbol error rates are equalized when the bits are

optimally allocated,
SER(Y, o) = SERBa, forall b . >0,

where SERps denotes the average SER. From (2:10), when the k-th symbol
carries bj, bits, the SER is

, ] 3
SER(b,) =4(1 = W)Q ( m/@k) :

If b}, > 0,

kopts then SER(b,) > SERpasand-the error rate performance will be

dominated by the worst subchannel. The largest difference between b, and bj,
is corresponded to the worst subchannel symbol error rate, SE R, ,-s:. Moreover,

from (4.10), the BER formula can be upper bound by

M;—1 M
BER(b H)=— >  SER;< _OSEmet, (4.43)

b k=0, #0
where M, is the number of nonzero entries in b’. Thus, we employ the following

distance measure,

D(b', bgy) = [|(b" = 1) [l (4.44)

where || - || denotes infinity norm and the vector (a)* is formed by extracting
the positive entries from the vector a. For example, if a = [ 10 2 -1 }T,

then (a)t =[1 2 }T. Minimizing the distance measure D(b’, b

opt) 18 equal to
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minimizing the worst subchannel’s SER, because (b’ — b/ )™ corresponds to the

opt
SERy which are larger than SERp4 and ||(b" — by,
b, — bf,pt which causes the worst subchannel SER, SER,,.s;. The smaller the

D(b',bl ,), the better the SER,orst- So by is the bit allocation vector in C; that

opt

)T ||oo picks out the largest

minimizes the BER upper bound in (4.43). D(b’, b/ ,) provides a low-complexity

opt

measure for bit allocation vector quantization.

!
opt

tion equation (4.26) needs to be computed 2%0:1 C'(M,;, My) times, since there

Quantization of b/, , .. If we want to obtain by, the unconstrained bit alloca-
are 2%0:1 C(M,, My) possible precoder matrices (submatrices of F’) in Sp. How-
ever not all matrices in Sp are possible precoders. This is because C; may not
contain all possible combination of bit allocation vectors. For example suppose
M, =4, M =4, B=2 and C] is equal to €; in (4.14). The number of possible
precoders is 4 while the number«of matrices in-Sg+is 15. So not all matrices in
Sr have corresponding bit alloeation vectors in C;. Netice that if the optimal BA

vector b, is quantized to b€ C, and b; = 0; it'is likely that b opt 18 also equal to

/
op
zero. That is, the i-th symbol carries zero bits and thus the i-th column of F7/ is
removed in forming the precoder F. Therefore when we compute by, skipping
the matrices in Sr that have no corresponding BA vectors in C, will reduce the
number of searches. Let Sp¢ denotes the collection of precoders that have bit
allocation vectors in C;. Spc is a subset of Sp and the size of Spc is smaller
than 2%0:1 C(My, Mp) in general. We use b, . to represent the unconstrained
bit allocation who achieves the best BERp4 of the precoder matrices in Sp,
minges, . BERpa(F). The subscript C is used to remind that b/, , . is computed

. P : N
from the precoder matrix in Sge. Once by, . is obtained, we quantize b, . to

the closest integer bit allocation vector in Cj,

be = arg min D(b/, bic)- (4.45)

b’eCy

/

opt.c» the number of times (4.26) is computed can be reduced, thus

By using b
the complexity of selecting bit allocation vector is decreased. Simulation result
shows the proposed efficient method provides performance close to the exhaustive

search. The about algorithm is summarized below.
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Efficient method for selecting optimal bit allocation vector.

1.

2.

Compute unconstrained bit allocation by (4.26) for the cases in Spc.

Choose b}, ¢, the unconstrained bit allocation vector whose BERpa is the

smallest among all the unconstraint bit allocations obtained from first step.

Use D(b', by, ) (4.44) as distance measure, and quantize by, - to the bit

allocation vector in C; as in (4.45).
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Chapter 5

Precoder System with Limited
Feedback

In this chapter, we discuss the selection criteria and codebook design of MIMO
precoder systems with limited feedback. ~First; the BER optimal precoder is
presented. Then we will discuss the precoder system in two separate cases: (i)

simple selection criteria and«(ii) propesed two-step system.

5.1 BER minimizing optimal precoder

Referring to the BER optimal precoder, F., =V/Q, in Section 4.4.2, two in-
sightful observations of the BER optimal precoder with infinite-rate are described

as follows.

e Total MSE minimized. V ;T is the optimal unitary matrix of minimiz-
ing total MSE, where T is an arbitrary M x M unitary matrix and the

total mean squared error (MSE) is Zl]\igl o7 = trace(Re).

2

e Error covariance equalized. V,Q equalizes the error covariance o .

1 M-1
2 2 _ _ 2 _ 2
Ocg =0ep = 7" = Oepyy g = M : :Uel’ (51)
=0
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These two properties can be related to the BER formula (2.8). When [ is

sufficiently large, SE Ry can be expressed as a convex function for 037 x- Thus,

M-1 9

>_ =0 ey :
BER(F,H) Rb i ZSER o2) SER(==—") = BERy, (5.2)

Ry

where BFE Ry, denotes the lower bound of BER. The equality of the lower bound in

(5.2) holds if 02 are equalized. The lower bound BERy, is a increasing function

of L Zz 0 O‘ . So BERy, will become smaller if we minimize the total MSE.
The d1ve1"51ty order of the BER optimal precoder is given here.

Diversity of the BER optimal precoder. It was shown in [22], without unitary
constraint, the BER optimal precoder matrix without unitary constraint can be
written as Fopp = VPQ, where P is the water filling power loading matrix,
V; is obtained by keeping the first, M columns.of V.and Q is the equal magnitude
matrix as mentioned in Section 4.4.2.- From [30]; the diversity order of using
F =F 05 are (M, — M + 1)(M, — M +1).-And from [31], the diversity order of
using F =V, is also (M, =M + 1)(M; = M + 1). Since the BER performance
of F, is

BER(Foptws, H) . < BER(F.,,H) < BER(V,;,H).

Thus, we can conclude that the diversity order of BER optimal precoder F., is
(M, — M +1)(M, — M +1).

5.2 Simple Selection Criterion

When the feedback rate is finite in the precoder system, the receiver selects
a precoder from the precoder codebook Cpr and sends the index back to the
transmitter. The codebook Cr is assumed to be known to the transmitter as
well. With the BER-minimizing criterion, the precoder is chosen by (3.1),

F = arg min BER(F, H),

FeCr
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If the codebook size is 2P, we need to compute 27 times the BER formula in

(2.8).
1 M-—1
BER(F,H) Z SER,.
k=0

To reduce the complexity, we propose two selection criteria. One criterion is
for M = M, case (square precoder). the other criterion is for M < M, case

(rectangular precoder).

5.2.1 M = M, case

Since the precoder matrix F is square and unitary, the total MSE, Zl 0 Lo2 s

ey
independent of F as we showed in Section 4.4.2.

As the total MSE is independent of F, from (5.2), the smallest BER is achieved
when the subchannel error covariance o2, are equalized. We propose to find the
precoder matrix in Cp that equalizes the error covariances ng the most. To

indicate the level of equalization, we-employ AM-GM inequality,

= M-1 M
Y gl > <H 03k> (5.3)

since the inequality becomes equality. when all parameters are equalized. The

measure Aqy—cgn is defined as

M-1
Aav—en(®) =[] 2. (5.4)
=0

The larger the measure A ay/_gar, the better the error covariance’s level of equal-
ization. Because the arithmetic mean is the same for all precoder, we only need
to choose the precoder matrix corresponding to the largest product of agk. the

AM-GM selection criterion is
F =arg ]jrﬂne%i Aapi—am(F). (5.5)

The exhaustive search method reviewed in Section 3.1 requires computation of

the BER formula for each precoder matrix in Cr. The complexity of our method
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is lower, since the computation effort of BER formula in (2.11) is higher than
computing the product of afk. Simulation shows that the performance of our

method is very close to the performance of exhaustive search in [7].

5.2.2 M < M, case

Unlike the square precoder case, the total MSE of the rectangular precoder is not
the same for all precoders. Therefore, total MSE and error covariances equaliza-
tion should both be considered in selecting the precoder. We propose to use the
following simple cost function,

M-1
Ass(F (5.6)

1:0
where the subscript S5 is a reminder that it is the summation of the squared

error covariance. Note that thesquared function(+)? is convex. Thus,

Ass(F)= Y (02)2 > <Zl]\°4" ) . (5.7)

The equality of (5.7) holds“if o7 18 equalized. This corresponds to the er-
ror covariance equalizing property of the BER- optimal precoder. In addition,
(oMt 62 2 /M)? is a monotone increasing function of total MSE, SM 0 . And
Ags(F) is a upper bound of (315" o2 /M)?. So minimizing Agg(F) is equal to
minimizing the upper bound of the total MSE, which corresponds to the total
MSE minimizing property in some degree. A selection criterion of squared error

covariance’s summation is
F = arg min Ags(F). (5.8)
FeCp

The computation effort of Agg is the squared function for each ng and the sum-
mation. The complexity is lower than the BER criterion in [7]. The simulation
result will show that the performance of summation of squared error covariance

criterion (SS criterion) is very close to that of the BER criterion.
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Figure 5.1: Two step transmitter

5.3 Two-steps Design of Precoder System

In this subsection, we proposed a two-step system which is modified from the
conventional one-step precoder system [5,7]. The proposed two-steps system can
lower the complexity by reducing themmuumber of searches.

Referring to the system model in Section 5.1, equal bit allocation and uniform
power distribution are assumed. The transmission rate per channel use is R, and
the feedback bits is B. M .is assumed to be smaller than M,;. As depicted in
Fig. 5.1, the spatial multiplexing is performed by two stages of precoding in two-
steps system. Each stage has'a precoding matrix. Fi/is a M; x M unitary matrix
chosen from codebook Cr, and Fgiis.a M x M square unitary matrix selected
from codebook Cr,. Cp, and Cp, are the precoder codebooks designed for Fy
and Fq. The codebook sizes of Cr, and Cp, are respectively 2°v and 259, where
B = By + Bg. Given a channel, the receiver selects Fy from Cp, first. After Fy
is chosen, Fg, is selected from Cp, based on the choice of Fy.. The corresponding
indexes are sent back to the transmitter through the reverse channel together. M
modulation symbols are precoded by the equivalent precoder matrix F = Fy Fq.
Receiving is performed by zero-forcing receiver or MMSE receiver of F as given
in (2.3).

Two-steps system has lower complexity compared to that of one-step system.
For one-step precoder system, the size of codebook Cp is 25. Thus, the number
of searches is 28. For two-steps system, the total amount of matrices in Cr,

and Cp, is 2PV + 252, So the number of searches is 2PV + 252, which is always
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fewer than 2% if By > 0 and Bg > 0. When B bits are equally allocated for
Fy and Fg, By = By = g, the number of searches is the fewest. For example,
when feedback bitts B = 8, conventional one-step system [5,7] requires 2 = 256

searches. For two-steps system, only 25/2 +258/2 = 2 x 24 = 32 searches is needed.

5.3.1 Selection Criteria

Since there are two codebooks in two-steps system, two selection criteria are de-
signed for choosing Fy and Fg. Motivated by the properties of BER optimal
precoder F., = V;,Q, the selection criteria expect to select the total MSE mini-
mizing precoder in Cr, and the error covariance equalizing precoder in Cr,. Let
the BER optimal precoder be written as F = V;TT'Q, where T is an arbitrary

M x M unitary matrix. The selection criterion for each stage is as follows.

e For Fy, we choose the precoder matrix that. achieves the smallest total

MSE, or the trace of Re

o~

Fy =arg min trace(Re). (5.9)

FveCFV
Thus, f‘v is selected to he as close to 'V, T as possible.

o For Fy, after Fy is chosen, we'choose the precoder matrix that equalized
the error covariance the most. Note that the total MSE is the same for all
possible Fg. Let R, denotes the error autocorrelation matrix of F = Fy.
Then,

R. = F,R. . Fq.

Since F¢ is square and unitary, trace(Re) is independent of Fg. Thus, we

can employ the AM-GM criterion (5.5),

M-1

Fgo = arg _max o
FQGCFQ

2
e’

Since f‘v is close to VT, f‘Q is chosen to be as close to TTQ as possible.
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5.3.2 Codebook Design

The codebook designs of Cp, and Cp, are presented in this subsection. By ob-

serving the statistic characteristic of V;, the codebook constructions of Cr, and

Cr

, are given as follows.

Design of Cp,. From [26], the random matrx V), is uniformly distributed in
V(M;, M) and the column space of V), is also uniformly distributed in G(M;, M).
Suppose n > p, V(n, p) is the set of n X p complex unitary matrices and G(M;, M)
is the collection of all column spaces of the matrices in V(n,p). Thus, the code-
book entries can be generated randomly following a uniform distribution. This

is called random vector quantization (RVQ) in [6].

Design of Cp,. The matrix f‘Q is chosen to be as close to TQ as possible,
where T is an arbitrary square unitary matrix.. We assume that T is uniformly
distributed in V(M, M). Tt follows-that TTQ also has a uniform distribution in
V(M, M) [26]. So we can also use a RVQ for design of Cp, .
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Chapter 6

Simulations

In our simulations, the elements of the M, x M; channel matrix H are complex
circularly symmetric Gaussian random variable with zero mean and unit variance.
We have used 10° channel realizations.in.the Monte Carlo simulations. The

receivers are MMSE in all the system considered:

6.1 The BA system

6.1.1 Distribution of Bit Allocation Vectors

M = M, case. In this example M,= 4, My =4 and M = 4. The number
of bits transmitted per channel use is R, = 8. The preocer F is the identity
matrix. Using (4.5), the number of possible integer bit allocation vector is 165.
The codebook contains all 165 integer bit allocation vectors. For a given channel
realization, the best bit allocation vector in the codebook is chosen using the
BER criterion in (4.7). Fig. 6.1 shows the distribution of the bit allocation
vectors, where the indexes of the vectors are ordered so that the probabilities
are in decreasing order. The cumulative distribution function (cdf) is shown in
Fig. 6.2. We can see that some bit allocation vectors are far more probable than
others. The probability of the 43 most probable bit allocation vectors is more
than 99.96%. In the following subsections we will choose the most probable 28
bit allocation vectors obtained in experiments like this example and use them as

codewords when the number of feedback bits is B.

47



0.12

0.17

0.08¢

0.06

0.04¢

0.02} \E
0 n

50 100 150

Figure 6.1: Probability mass function of the bit allocation vectors, where the
indexes of the vectors are ordered so that the probabilities are in nonincreasing
order for M, =4, My =4, M =4 and R, =8
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Figure 6.2: Corresponding CDF
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M < M, case. In this example M, = 3, M, = 4 and M = 3. The number
of bits transmitted per channel use is R, = 8. The augmented preocer F is the
identity matrix. Using (4.9), the number of possible integer bit allocation vector
is 130. The codebook contains all 130 integer bit allocation vectors. For a given
channel realization, the best bit allocation vector in the codebook is chosen using
the BER criterion in (4.7). Fig. 6.3 shows the distribution of the bit allocation
vectors, where the indexes of the vectors are ordered so that the probabilities
are in decreasing order. The cumulative distribution function is shown in Fig.
6.4. We can see that some bit allocation vectors are far more probable than
others. The probability of the 78 most probable bit allocation vectors is more than
99.96%. Like M = M,case, we will choose the most probable 28 bit allocation

vectors and use them as codewords when the number of feedback bits is B.
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Figure 6.3: Probability mass function of the bit allocation vectors, where the
indexes of the vectors are ordered so that the probabilities are in nonincreasing
order for M, =3, My =4, M =3 and R, =8
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Figure 6.4: Corresponding CDF

6.1.2 BER of BA System

Thecase M, =4, M, = 4, M =4 and Ry = 8. The square unitary precoder is the
identity matrix I. Using (4.5), the number of-all possible bit allocation vectors
in this case is 165, which corresponds to 8 bits. The BERs of the BA system for
different B are shown in Fig. 6.5. When the number of feedback bits is equal to
B, the codebook Cy is constructed by choosing the.most probable 27 bit allocation
vectors as mentioned in previous example.- The BER improves as the number of
feedback bits B increases. For the case B = 8, there are 165 vectors in C, and the
best integer bit allocation vector is chosen to minimize the BER. We can see that
the error rate of B = 3 is close to that of B = 8, i.e., the performance of the best
integer bit allocation vector. Observe that the curves correspond to B = 6 and
B = 8, are indistinguishable in the figure. We can understand this by examining
the distribution plot in Fig. 6.2. The cdf is very close to one for k£ > 50. When
we increase B from 6 to 7 to 8, the added codewords are almost never chosen and
there is no improvement. The figure also shows the BER when B = 2 and the
codebook C; in (4.14) is used. The performance is not as good as the case that

use the most probable 4 bit allocation vectors as codewords.
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Figure 6.5: Bit error rate of'BA system for M, =4, M; =4, M =4 and R, = 8

The case M, = 2, M, =4, M =2 and R, = 4. - The augmented precoder
F’ = 1I,. The total number of possible integer bit: allocation vectors computed
using (4.9) is 22. The BERs of the BA system using different number of feedback
bits are shown in Fig. 6.6. The codebooks for different B are generated as we
did in M = M, case. The curves for B = 4,5 are almost identical because when
B goes from 4 to 5 the added codewords have very small probability, like in the
previous example. We also see that the gap between the error rate of B = 3
and that of B = 5 (the performance of the best integer bit allocation vector) is
a small one. For B = 2, the codebook designed by choosing the most probable
bit allocation vectors is the same as C;, so the two curves overlap. In the figure
we have also shown the performance when the precoder is a fixed 4 x 2 matrix
obtained by retaining the first 2 columns of the 4 x 4 normalized unitary DFT
matrix. The performance of augmented precoder is much better than that of a

fixed precoder.
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Figure 6.6: Bit error rate of ‘BA system for M, =2, M; =4, M =2 and R, =4

The case M, = 3, M; = 3; M .= 3 and R, =8. The square unitary precoder
is the identity matrix Is. Using (4:5);-the number of all possible bit allocation
vectors in this case is 45, which corresponds to 6 bits. The BERs of the BA system
for different B are shown in Fig. 6.7. Like previous examples, the codebook
Cy is constructed by choosing the most probable 22 bit allocation vectors as
mentioned in previous example. The BER improves as the number of feedback
bits B increases. For the case B = 6, there are 45 vectors in C, and the best
integer bit allocation vector is chosen to minimize the BER. Observe that the
curves correspond to B = 5 and B = 6, are indistinguishable in the figure. The
figure also shows the BER when B = 2 and the codebook C; in (4.14) is used.
The performance is not as good as the case that use the most probable 4 bit

allocation vectors as codewords.
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Figure 6.7: Bit error rate of"BA system for M, =3, M; =3, M =3 and R, =8

Thecase M, = 3, M; = 4, M = 3and R, = 8 The augmented precoder F' = 1.
The total number of possible integer bit allocation vectors computed using (4.9)
is 130. The BERs of the BA system using different number of feedback bits are
shown in Fig. 6.8. The codebooks for different B are generated as we mentioned
before. The curves for B = 6 to B = 8 are almost identical because when B goes
from 6 to 8 the added codewords have very small probability. We also see that
the gap between the error rate of B = 3 and that of B = 8 (the performance of
the best integer bit allocation vector) is a small one. The performance of using C;
is not as good as using the most probable 4 bit allocation vectors as codewords.
In the figure we have also shown the performance when the precoder is a fixed
4 x 3 matrix obtained by retaining the first 3 columns of the 4 x 4 normalized
unitary DFT matrix. The performance of augmented precoder is much better

than that of a fixed precoder.
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Figure 6.8: Bit error rate of"BA system for' M, =3, M; =4, M =3 and R, = 8

6.1.3 Comparisons of BER

In thisexample we will compare the BA system with the precoding system [7], in
which the feedback is the index of the optimal precoder in the codebook and bits
uniformly loaded on all M symbols transmitted. In addition, we will compare
with multimode antenna selection (MMAS) [17] introduced in Section 3.2, and
multimode precoding (MMP) [18] reviewed in Section 3.3.

Thecase M, =4, My =4, M = 4and R, = 8. The result are shown in Fig 6.9.
The BA, MMAS and MMP systems with finite rate feedback are better than the
precoder system with unquantized optimal precoder (infinite feedback bits). Also
shown in the figure is BA with unquatized bit allocation computed in (4.28). It
is below the curve of the precoder system with unquantized precoder, as shown

in section 4.4.2. The performance of BA system with 3 feedback bits is similar to

that of MMAS with 4 bits of feedback for small SNR, and slightly better for large
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SNR. When there are more feedback bits, e.g., B = 8, MMP system outperforms
the rest.
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Figure 6.9: Comparison 'of BER for M, =4, M, =4, M =4 and R, =8

Thecase M, =2, M; =4, M = 2 and R, = 4. Fig. 6.10 shows the comparison
for M, =2, M, =4, M = 2 and R, = 4. As M < M,, the precoding system
with unquatized precoder can be better than BA system, as we have explained
in section 4.4.2. We see that for low SNR the precoder system with unquantized
precoder is the best among all system shown in the figure. If we consider finite
feedback rate, the BA, MMAS and MMP systems are better. Similar to Fig. 6.9,
the BA system with B = 3 is slightly better than MMAS with B = 4 and the

MMP system outperforms the other 3 systems if more feedback bits are available.
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Figure 6.10: Comparisontof BER for M, = 2. M, =4, M =2 and R, =4

The case M, = 3, M; = 3; M. = 3 and" R, =8./ The result are shown in Fig
6.11. Since Ry is not divisible for A/;-it.is.unrealizable to implement precoder
system with uniform bit loading. The BA; MMAS and MMP systems with finite
rate feedback are present in this figure. Also shown in the figure is BA with
unquatized bit allocation computed in (4.28). The performance of BA system
with B = 3 is similar to that of MMP with B = 6 and is slightly better than
MMP with B = 3 and MMAS with B = 3.
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Figure 6.11: Comparisonof BER for M,. =3, M, =3, M = 3 and R, = 8

The case M, = 3, My = 4, M =3 and R, = 8. The result are shown in Fig
6.12. Since R, is not divisible for. M, it-is-unrealizable to implement precoder
system with uniform bit loading. The BA, MMAS, MMP systems with finite rate
feedback and BA with unquatized bit allocation computed in (4.28) is shown.
The performance of BA system with 3 feedback bits is close to that of MMP
with B = 4 and is better than that of MMAS with B = 4. When there are more
feedback bits, e.g., B = 8, MMP system outperforms the rest.
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Figure 6.12: Comparisontof BERfor M, =3, M, =4, M =3 and R, =8

6.1.4 BER for Different Precoders

The BER plots are given for three different types of M, x M, precoders, (i) the
identity matrix, (ii) the normalized DFT matrix W), and (iii) the precoder is
pulled out one by one from a sequence of M; x M; random unitary matrices
known to both the transmitter and receiver, as in RVQ [6]. In Fig. 6.13, we use
M, =3, My, =3, M = 3 and R, = 8. We can see that the curves of all three
types of precoders overlap for the same B. Fig. 6.14 shows the performance
for M, = 3, M; = 4, M = 3 and R, = 8. We use the same three types of
matrices as initial precoders. Again the performance is the same regardless of
the augmented precoder. The simulation corroborates the result in section 4.2.2
that the performance of the BA system is not affected by the choice of augmented
precoder. To have a lower computational complexity at the transmitter, we can

simply choose the identity matrix.

o8



—&— Identity precoder B=1,2,3,6
—©— DFT precoder B=1,2,3,6
10 —— Random precoder B=1,2,3,6 |
10_2 e \ ‘ ,,,,,,,,,,,,,,,,,,,,,,,, -
o
w
m
10_3““ ........... BN Nt -
10’4,““ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ N -
10°
5 10 15 20 25 30
POIN0

Figure 6.13: BER of the BA system with different precoders for M, = 3, M, = 3,
M=3and R, =8
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Figure 6.14: BER of the BA system with different precoders for M, = 3, M, = 4,
M=3and R, =8

6.1.5 Efficient Method of Selecting Optimal Bit Alloca-
tion Vector

In this example, we show the usefulness of the efficient searching method proposed
in Section 4.5. is also plotted to provide comparison. In figure 6.15, the bit error
rate obtained using the exhaustive search in Section 3.1 is denoted by BA and
that obtained using the efficient method in Section 4.5 is denoted as BA,. The
precoder F = I,. The bit allocation codebook Cj for B is constructed as in
previous examples and the same C, is used for both BA and BA,. Curves in
Fig. 6.15 shows that the quantization loss of our proposed searching method is
small, which can be observed from the small gaps between the BA and BA,.
From Section 4.5, the size of Sp or Spc indicates the number of times (4.26) is
computed. Using the efficient method, the sizes of Sp¢ is 2 for B = 1, 8 for
B =3, and 14 for B =6. If b/ _, is used, the size of S is 15.

opt
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Figure 6.15: BER of the efficient method proposed in Sec. 4.5 for M, = 4,
M, =4, M =4 and R, =8

6.2 Criteria and Two-step Design for Precoder
System

In this subsection, we presented the simulations of the selection criteria and the
two-step system design for the precoder system discussed in section 5.2 and sec-
tion 5.3. The MIMO limited feedback system here is designed to send back
information of precoder matrix. Bits and power is assumed to be equally allo-

cated.

6.2.1 Simple Selection Criteria

Criteria for square precoder.  In this example, various selection criteria for square
precoder are compared. These selection criteria include the AM-GM selection

(AMGM) criterion developed in (5.5), trace function of R, criterion (TrMSE)
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proposed in [5] and the BER-based selection criterion (BER) introduced in section
3.1. The BER optimal unitary precoder with infinite feedback bits is also plotted
to provide benchmark performance. Due to the precoder independent property of
summation of error covariance mentioned in section 4.4.2, the trace function of R
selection criterion can’t pick a precoder matrix from precoder codebook. Thus,
the trace function selection criterion will randomly selects a precoder matrix
from precoder codebook. In Fig. 6.16, M, =4, M; =4, M =4, and R, = 8§, the
feedback bits B = 8 shows that the AM-GM selection criterion and BER-based
criterion both yield BER performance very close to that of infinite feedback case.
Note that the AM-GM selection criterion requires computation of the product of

error covariance.Thus, the complexity is lower compared to BER-based criterion.
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Figure 6.16: BER of different selection criterion for M, =4, M; =4, M = 4 and
R, =38
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Criteria of Rectangular Precoder.  In this example, we compare the criterion of
summation of squared error covariance (SS) in (5.8), selection criterion of trace
function of Re (TrMSE) in [5], and BER-based selection criterion (BER) in [7].
Optimal precoder with infinite feedback bits in (4.32) is also plotted. For feedback
bits B = 6, Fig. 6.17 shows that SS criterion and BER criterion are better than
TrMSE criterion. In addition the BER performance of the lower-complexity SS
criterion is very close to that of using BER criterion. This observation shows the

usefulness of the selection criterion of summation of squared error covariance.

—H— Opt. precoder (e bits)
—&— TrMSE

—>— BER
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Figure 6.17: BER of different selection criterion for M, =4, M, =5, M = 4 and
R,=28
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6.2.2 Proposed Two-step System

In this example, we show the BER performance of two step system in section
5.3. The two step system has separate selection criteria for Fy and Fg. We first
select Fy . The criteria we considered for Fy, are sum of squared error covariance
criterion in (5.8) (SS), trace function of R criterion in [5] (TrMSE) and BER
criterion in [7] (BER). After Fy is chosen, Fy is selected from Cp, for the chosen
Fy. The selection criteria for choosing F¢ include the AM-GM selection criterion
(AMGM), BER criterion, and sum of squared error covariance criterion (SS).
Figure 6.18 shows the BER performance using different selection criterion for F
when Fy, is chosen using TrMSE criterion. In this example M, = 4, M, = 5,
M =4, R, = 8 and By = 4 and By = 4. Both Cp, and Cpg, are generated
by RVQ method [6]. It can be observed that the difference between AM-GM
criterion, BER criterion and SS eriterion is almost negligible. Hence, we can use

the low complexity AM-GM selection-criterion for Fg.
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Figure 6.18: BER of different selection criterion of Fg for M, = 4, M, = 5,
M =4 and R, =8
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The BER performance for different Fy selection criteria is shown in Fig.
6.19. The system has M, = 4, M; = 5, M = 4 and R, = 8. The matrix Fg
is chosen using the AM-GM criterion. The feedback bits B = 8 are equally
divided for Cr, and Cg,, By = 3 and By = 3. We compare sum of squared
error covariance criterion, trace function of R, criterion and BER-based selection
criterion for choosing M; x M precoder matrix Fy. The BER curves are close
but trace function of Re (total MSE) criterion is slightly better than the other
two selection criteria. TrMSE criterion selects the total MSE minimizing Fy
but the other two criteria consider total MSE minimizing and error covariance
equalizing together. Therefore, the AM-GM selection criterion for Cr, combined
with the trace function of Re for Cp, provides a low-complexity design for two

step system.
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Figure 6.19: BER of different selection criterion of Fy, for M, 4 =, M, =5, M =4
and R, =8
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Comparison between one-step and two-step system. In figure 6.20 the BER per-
formance of one-step system and two-step system are compared. In this example
M, =4, M; =5, M = 4 and R, = 8. The feedback bit B = 8. For one-steps
system, a precoder codeook of size 2% from [7] is prepared. The BER criterion
in (3.1) is employed. For two-step system, By = 4 and By = 4. The code-
books Cr, and Cp, are generated using RVQ method [6]. TrMSE criterion is
used for Fy selection and AMGM criterion is used for F¢ selection. A similar
hierarchical system (hierarchical) with two precoder codebooks [32] is also pro-
vided. From [32], the feedback bits allocation of hierarchical system is 6 bits for
one Grassmanian codebook and 2 bits for one rotational based codebook. The
performance of BER optimal precoder with infinite feedback bits is also plotted.
Observing from figure 6.20, the BER optimal precoder has the best BER, and the
curve of the two-step system is closeto that of one-step system. In addition, The
performance of two-steps system is slightly better than hierarchical system. Note
that the number of searches.for two-step system. is 32, the numbers of searches

for one-step system and hietarchical system are respectively 256 and 68.
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Figure 6.20: BER comparison of one-step and two-steps systems for M, = 4,
M, =5 M =4and R, =8
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Chapter 7

Conclusions

In this paper we first proposed to feedback only bit allocation for MIMO systems
with limited feedback and the system is called a BA systems. Secondly, for
precoder system with limited feedback, we.describe two insightful properties of
the BER optimal precoder. Motivated by these two properties, we develop two
selection criteria for conventional one-step system and propose a two-steps design

In proposed BA system, ‘the;augmented precoder is assumed to be known to
both transmitter and receiver. With the BA scheme, the-bits can be nonuniformly
loaded. By allowing general bit allocation, bits can be-allocated according to the
channel. We have also shown that the proposed BA system can achieve diversity
order of M, M, using logs(M;) bits. - The optimal augmented precoder can be
any square unitary matrix. Furthermore, the unconstrained bit allocation is
derived. Using the unconstrained bit allocation, we develop an efficient method
for selecting the BER-minimizing bit allocation vectors from the codebook.

For precoder feedback system, two simple selection criterion are developed for
square and rectangular precoders respectively, and a two-step system is designed
for reducing the complexity. These selection criteria for one-step system are
easy to compute and provide BER performance close to the BER-based selection
criterion. The two-step system contains two precoder matrices in transmitter and
lower the number of searches. Many interesting problem remain to be solved,
such as the design of bit allocation codebook and the feedback bits allocation for

two-step system.
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