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多輸入多輸出系統之位元配置有限回饋 

 

學生：鄭人予 指導教授：林源倍 

國立交通大學電控工程研究所碩士班 

 

摘要 

本論文包含兩個部分，在第一個部分我們提出一個有限回饋

位元配置的多輸入多輸出系統。我們會證明此系統可以達到

全多樣性。在傳輸速率固定的假設下，我們推算出能達到最

小錯誤率的最佳位元配置，並證明達到最小錯誤率的位元配

置也是使用最低傳輸能量的位元配置。模擬結果顯示我們所

提出的系統可以使用較少的回饋位元達到低錯誤率。在第二

個部分我們針對傳統單階預先編碼器的有限回饋系統設計

低複雜度的編碼器選擇準則。我們也提出一個可以降低複雜

度的二階預先編碼器系統。模擬結果會展示出我們所設計的

系統的可用性。 
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Abstract

In this thesis we first proposed a limited feedback system which sends
back only the bit allocation (BA) information. The system will be termed
a BA system. we show that the proposed BA system can achieve full di-
versity order. we will also derive the optimal bit allocation for minimum
bit error rate when the transmission rate is given. Secondly, we develop
low-complexity selection criteria for conventional one-step precoder system
which feedbacks only the precoder information. A two-step system is pro-
posed to reduce the number of searches. In simulations, the usefulness of
the proposed systems will be demonstrated.
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Chapter 1

Introduction

Multiple input multiple output (MIMO) systems with limited feedback have at-

tracted great interest recently [1–4]. These practical systems can improve perfor-

mance metric such as transmission rate or error rate by sending limited amount

of information bits through a reverse channel to transmitter [1]. It is gener-

ally assumed that there is no channel state information at the transmitter and

only the receiver has the perfect channel knowledge. To obtain complete channel

knowledge at the transmitter may be unrealistic since it requires infinite number

of bits. In practice the reverse channel can transmit only finite amount of bits

and it is desirable to have feedback rate as low as possible.

Various methods have been proposed to exploit the use of feedback bits. For

precoded spatial multiplexing systems with finite-rate feedback, the receiver se-

lects a transmitting matrix (or precoder) from a set of matrices (precoder code-

book) known to both transmitter and receiver. Then the corresponding index is

sent back to the transmitter using finite number of bits. Different criteria of pre-

coder selection and unitary precoder codebook designs are developed in [5]. For

the criteria considered in [5], it has been show that with some approximations the

design of optimal codebook can be converted to a problem of Grassmannian sub-

space packing. Randomly generated codebooks known to both transmitter and

receiver is proposed in [6], and the method is called random vector quantization

(RVQ). In [7], Using bit error rate (BER) as a criterion of selecting precoder ma-

trix from the codebook is proposed and the optimal unitary precoder for infinite
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feedback rate, i.e., full channel knowledge at transmitter, is given. Generalized

Lloyd algorithm is employed to construct precoder codebooks. An iterative ap-

proach of searching a codebook for maximum mutual information is proposed

in [8]. Capacity loss due to quantized feedback is thoroughly analyzed in [9].

Spatial multiplexing for two substreams using simple rotation is designed in [10].

A special form of precoding systems is the antenna selection system [11,12] that

chooses the best subset of transmitt antennas to minimize BER. In this case

the transmitter possess the advantage of low complexity since the precoder is a

submatrix of the identity matrix.

In addition to precoder information, quantized power allocation information

can be also fed back for improving system performance. In this case there are two

codebooks, one for quantized precoder and one for quantized power allocation.

The index of precoder and the index of power allocation are both sent back to the

transmitter. Usually a higher feedback rate is required. In [13], power loading

codebook is designed separately and the performance is significantly improved. In

[14], based on parameterizations, two efficient methods for precoder quantization

are proposed. Combined with feedback of power loading, the proposed system’s

capacity is very close to the case when full channel state information is available

at the transmitter. In some recent work, bit loading information is also sent back

to the transmitter. In [15], the optimal unquantized precoder is factorized via

Given’s rotations and the parameters in the rotation matrices are quantized. Thus

the complexity of precoder quantization is low. Feedback of bit loading, power

loading and precoder is considered in [16] to improve the system throughput. In

these works, bit loading is not quantized.

In most of the previously mentioned works, the number of subchannels (or

substreams) M is fixed and does not change with the channel. Multimode antenna

selection [17] allows the number of sucstreams M or ”mode” to vary with the

channel. The transmission bits are uniformly allocated on the M substreams.

It is shown in [17] that with Mt feedback bits, the system can achieve diversity

order MrMt, where Mr and Mt represent the number of transmit and receive

antenna respectively. Similarly, multimode precoding [18] also allows number of

2



substreams M to alter in accordance with the channel. Transmission bits are

equally allocated too. In addition, precoder codebooks are constructed for each

modes. With judicious design, multimode precoding can achive diversity order

MrMt with log2 Mt bits. The design of codebooks for multimode precoding over

spatially correlated channel is developed in [19]. Generalized Lloyd algorithm

is applied to design capacity maximizing codebooks for multimode transmission

in [20]. In [21] a quantized principal component selection precoding scheme for

capacity maximizing is proposed. The achieved performance by [21] can be close

to the capacity obtained with full channel state information.

In this thesis, we consider two feedback scenarios. In the first scenario, the

receiver feedbacks only bit allocation and in the second scenario the receiver

feedbacks only the precoder information. The system that sends back only infor-

mation of bit allocation (BA) is called BA system. Given a channel realization,

receiver selects a bit allocation vector that minimizes the BER from a bit al-

location codebook whose codewords satisfy the target transmission rate. The

index correspond to this BER-minimizing codeword is sent back to transmitter

through a reverse channel. According to the feedback information, the transmit-

ter allocates bits to the modulation symbols and perform spatial multiplexing

(precoding) using a unitary precoder known to the transmitter and receiver a

priori. We will show that BA system can achieve full diversity order MrMt using

log2 Mt bits. Moreover, we will derive the optimal bit allocation that minimizes

the BER when the bit allocation vector is not constrained to be from a codebook

and it can be real nembers. In this case, the BER performance of the BA system

always outperforms the optimal BER-minimizing unitary precoder system which

employs uniform bit loading and has complete channel knowledge at the trans-

mitter. Furthermore, we will show that the unconstrained optimal bit allocation

for BER minimization also minimizes the transmission power for a given error

rate. To reduce the complexity of bit allocation vector selection, we develop an

efficient quantization method. Simulation will be presented to show the useful-

ness of the proposed BA system, especially for MIMO systems with low feedback

rate.
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The system that feedbacks only the precoder information is called a precoder

system in this thesis. For a given precoder codebook, we propose a simple selec-

tion criterion whose BER performance is very close to the method in [7] which

requires exact BER computation. In addition, we propose a two-step design. The

design is motivated by crucial properties of the optimal unquantized precoder.

Namely, the total mean squared error (MSE) is minimized and the subchannel

error variances are equalized.

In the proposed two-step design, the precoder F is a product of the form

FV FQ. When there is unlimited feedback, FV and FQ can be chosen so that F

is the optimal precoder. When the feedback rate is finite, FV and FQ are chosen

from their respective codebooks; FV is chosen to minimize total MSE while FQ

is chosen to equalize subchannel error variances. The indexes of codewords for

FV and FQ are sent back to the transmitter. If the codebooks for FV and FQ

contains respectively 2BV and 2BQ codewords, the required number feedback bits

is B = BV + BQ, while the number of searches for selecting the precoder is

2BV + 2BQ.

Simulation results show that the performance of the proposed two-step design

is comparable to the conventional design for the same feedback rate but the

complexity of selecting precoder is much lower.

1.1 Outline

• Chapter 2: General system model is presented.

• Chapter 3: Previous works are reviewed in this chapter. Section 3.1 intro-

duces a BER criterion and optimal unitary precoder for precoded spatial

multiplexing system with infinite feedback rate proposed by S. Zhou and

B. Li. In section 3.2, we review multiple antenna selection proposed by R.

W. Heath, Jr. and D. J. Love. Section 3.3 introduces multimode precoding

which is also proposed by R. W. Heath, Jr. and D. J. Love.

• Chapter 4: The proposed BA system is presented in this chapter. In Section
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4.1, we give the MIMO system model for BA system. Feedback of bit

allocation is presented in Section 4.2. The diversity order of the proposed

system is given in Section 4.3. Optimal bit allocation for minimum BER

without constraining the bit allocation vector to be from a codebook is

derived in Section 4.4. In Section 4.5, an efficient method of bit allocation

vector selection is discussed.

• Chapter 5: We consider the precoder system in this chapter. Section 5.1

introduces the system model for precoder system and the BER optimal

precoder. Section 5.2 presents two simple selection criterion for precoder

system. Two-step system is given in Section 5.3.

• Chapter 6: Simulation examples are presented in this chapter.

• Chapter 7: A conclusion is given in this chapter.

1.2 Notations

1. Bold face upper case letters represents matrices. Bold face lower case letters

represents matrices. The notation A† denotes transpose-conjugate of A.

The notation AT denotes transpose of A.

2. The function E [y] denotes the expect value of a random variable y.

3. The notation Im is used to represent the m × m identity matrix.

4. The notation Wm is used to represent the m×m unitary DFT matrix given

by,

[Wm]kn = 1√
m

e−j 2π
m

kn for 0 ≤ k, n ≤ m − 1. (1.1)

5. The notation C(n, k) is used to denote the chosen function of n and k.

5



Chapter 2

General System Model

The finite-rate feedback Mr×Mt MIMO system is shown in Fig. 2.1. The channel

bits to
symbols
mapping

F G
symbols
to bits

demap
ping

-HMt Mr
M M

bit
stream

bit
stream

full CSI

index
selection

B bits feedback link
Transmission

setting

Transmitter Receiver

sbs

Figure 2.1: MIMO system with limited feedback

is modeled by a Mr × Mt memoryless matrix with an channel noise vector q

of size Mr × 1. It is supposed that the channel is block fading, which means

the channel remains constant over sufficiently long period before independently

taking a new realization. The noise vector q is assumed to be additive white

Gaussian with zero mean and variance N0. The system can process M substreams,

where M ≤ min(Mr, Mt). The input vector s is an M × 1 vector which consists

of M modulation symbols. The symbols sk are assumed to be zero mean and

uncorrelated, hence the autocorrelation matrix Rs = E[ss†] is a diagonal matrix.
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Rb is the number of bits transmitted during each symbol period. Assume the

total transmission power is P0 and the precoder F is an unitary Mt ×M matrix.

The total transmission power P0 = E[x†x] can be written as

P0 = E[x†x] = trace(FRsF
†) = trace(Rs) =

M−1∑

k=0

σ2
sk

, (2.1)

where we have used the trace property trace(AB) = trace(BA) for two matrices

A and B and the fact that F†F = IM . The channel output vector r is therefore

r = HFs + q (2.2)

The M × Mr receiving matrix G can be zero forcing receiver or minimum mean

square error (MMSE) receiver [22]

G =

{
(F†H†HF)−1F†H†, zero-forcing receiver,
RsF

†H†(HFRsF
†H† + N0IMr

)−1, MMSE receiver.
(2.3)

The error vector e at the output of receive matrix G is

e = ŝ− s = Gr − s (2.4)

The autocorrelation matrix of error vector Re = E[ee†] given by [22] is

Re =

{
N0(F

†H†HF)−1, zero-forcing receiver
Rs −RsF

†H†(HFRsF
†H† + N0IMr

)−1HFRs, MMSE receiver
(2.5)

Generally, it is assumed the transmitter has no channel state information and

the channel is perfectly estimated at the receiver. The reverse link can feedback

B bits. At the receiver, transmission information for enhancing desired perfor-

mance is derived from the full channel knowledge. Based on this information, an

index is selected from the codebooks which are known to both the transmitter

and the receiver. Then the index is sent back through the reverse channel to

the transmitter. According to the feedback information, the transmitter adapts

the transmission settings and sends the signals into channel. Transmission infor-

mation extracted from the full CSI at receiver such as precoding matrix, power

loading, and bit allocation are used by different system designs. Using these in-

formation, various performance like BER, capacity and transmission bit rate can

7



be improved. In this thesis, the efficiency between BER performance and the

amount of feedback bits is the main topic of our work.

In the following we discuss the system model for the precoder system (no

bit allocation) and the system model for the BA system (with bit allocation)

separately.

Precoder system. In the precoder system there is no bit allocation, the trans-

mitted bits are assumed to be equally allocated on M symbols. Each modulation

symbol carries Rb

M
bits and Rb

M
is assumed to be integer. Assuming QAM modu-

lation, the symbol error rate for k-th subchannel is well approximated by [23]:

SERk = 4(1 − 1

2Rb/2M
)Q

(√
3

(2Rb/M − 1)
βk

)
, (2.6)

where

Q(y) = 1√
2π

∫∞
y

e−t2/2dt, y ≥ 0,

and βk is the unbiased SNR of the k-th subchannel. For zeroforcing and MMSE

linear receiver, βk can be expressed respectively as,

βk =






σ2
sk

σ2
ek

, zero-forcing receiver,
σ2
sk

σ2
ek

− 1, MMSE receiver.
(2.7)

When Gray code is used, the BER for k-th subchannel can be approximated by

BERk ≈ SERk

(Rb/M)
.

So, when precoder matrix F is used the average BER for a given channel H can

be approximately expressed as

BER(F,H) ≈ 1

Rb

M−1∑

k=0

Rb

M
BERk =

1

M

M−1∑

k=0

SERk. (2.8)

Since the bit allocation is set to be uniformly loaded, the error performance is

independent of bit allocation and is decided by the unbiased SNR βk. In the

precoder system, the receiver sends back the information of the precoder back to

the transmitter.

8



BA system. In the BA system, the symbols can carry different number of

bits. Suppose bk bits are carried by the k-th modulation symbols. Thus, the

transmitted bits per channel use is

Rb =

M−1∑

k=0

bk. (2.9)

Let b =
[

b0 b1 · · · bM−1

]T
be the bit allocation vector. When the input

symbols sk are bk-bits QAM symbols, the k-th symbol error rate is approximated

by [23]:

SERk = 4(1 − 1

2bk/2
)Q

(√
3

(2bk − 1)
βk

)
. (2.10)

where βk is the unbiased SNR of k-th subchannel (2.7). Using Gray code, the

BER can be approximated by BERk ≈ SERk/bk. Given a channel H and the

precoding matrix F, the average BER can be approximately computed using

BER(b,F,H) ≈ 1

Rb

M−1∑

k=0,bk 6=0

bkBERk =
1

Rb

M−1∑

k=0,bk 6=0

SERk. (2.11)

In addition, the system without bit allocation can be considered as having a

uniform bit allocation vector b whose entries

b0 = b1 = · · · = bM−1 =
Rb

M
. (2.12)
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Chapter 3

Previous Works

In this chapter, previous works for minimizing error performance are reviewed.

Section 3.1 presented a limited feedback precoder ststem with BER selection

criterion and codebook design proposed in [7]. Optimal unitary precoder for

infinite feedback rate is also derived. In section 3.2 multomode antenna selection

[17] is introduced. Section 3.3 recaps multimode precoding [18].

3.1 Precoder System

This section is organized as follows: Section 3.1.1 introduces the system model

and presents the BER-based selection criterion. Optimal precoder for infinite

feedback rate is given in Section 3.1.2. And Codebook construction is showed in

Section 3.1.3.

3.1.1 System Model

Based on the general system model at chapter 2, the system in [7] assumes the

number of subchannels M is fixed and all M subchannels are used. The system is

without bit allocation design. Thus, the bit loading is uniform and the target bit

rate Rb is divisible for M . Each symbol carries Rb

M
bits. The power is also equally

allocated for each symbols, Rs = P0

M
IM . For the reverse channel, it is constrained

to send B bits. In this paper, the feedback information is the precoder matrix.

Therefore, a precoder codebook CF of size 2B is prepared. After the estimation

10



of forward channel, a precoder matrix is selected using a BER-based selection

criterion from CF and the corresponding index is fed back to the transmitter.

The BER-based selection criterion will be reviewed as follows.

BER selection criterion. Under the assumption of uniform bit allocation, the

average BER for each precoder matrix in CF can be computed by (2.8). The

BER-base selection criterion is

F̂ = arg min
F∈CF

BER(F,H). (3.1)

To choose a precoder matrix by BER selection criterion, we need to compute the

BER formula (2.8) for each precoder matrix in CF . Therefore, 2B computations

of (2.8) are required to complete BER selection criterion.

3.1.2 Optimal Precoder for infinite-feedback rate

With infinite feedback bits, it can be assumed that the transmitter has full chan-

nel knowledge. The optimal precoder Fopt with BER-based criterion can be

derived directly from H. The optimal precoder Fopt can provide a benchmark

performance for finite-rate precoder feedback system. Assuming the singular

value decomposition of H = UΛV†, where U and V are respectively Mr × Mr

and Mt×Mt unitary matrices. The Mr×Mt matrix Λ is a diagonal matrix whose

diagonal elements are the singular values of H in a nonincreasing order. And let

βk be the k-th largest subchannel SNR. The optimal precoders for zero forcing

and MMSE receiver are given respectively as follows.

Zero-forcing case. Consider a rectangular/square QAM constellation with size

M is applied for b̄. Constellation-specific threshold Γth is shown in table 3.1.2.

1. When β1 ≤ Γth, Fopt = VM , where VM is the Mt × M matrix obtained by

keeping the first M columns of V.

2. When βM ≥ Γth, Fopt = VMQM , where QM is an M ×M unitary that has

equal magnitude property, i.e., |[QM ]m,n| = 1/
√

M , for 0 ≤ m, n ≤ M − 1.

11



3. When conditions in 1 or 2 do not hold, the optimal precoder Fopt can’t be

found analytically. Suppose that K1 subchannels’ SNR are larger than Γth.

Then one suboptimal precoder that is better than VM can be constructed

as

F = VM

[
QK1 0
0 IM−k1

]
(3.2)

MMSE case. Consider a rectangular/square QAM constellation with size M is

applied for b̄. Two constellation-specific thresholds Γth,l, Γth,h are shown in table

3.1.2.

1. When Γth,l ≤ βM and β1 ≤ Γth,h, Fopt = VM .

2. When β1 ≤ Γth,l or βM ≥ Γth,h, Fopt = VMQM .

3. When conditions in 1 or 2 do not hold, the optimal precoder Fopt can’t be

found analytically. Suppose that K1 subchannels’ SNR are larger than Γth,h

and K2 subchannel SNRs are smaller than Γ(th, l). Then one suboptimal

precoder that is better than VM can be constructed as

F = VM




QK1 0 0
0 IM−K1−K2 0
0 0 QK2



 (3.3)

M 2 4 8 16 32 64 128 256
Γth 1.5 3 9.01 14.93 38.46 62.50 166.7 250.0

Table 3.1: Table of Γth

M 2 4 8 16 32 64 128 256
Γth,l 0 0 0.579 0.247 0.326 0.264 0.330 0.271
Γth,h 0 0 7.621 13.72 37.46 61.50 165.7 249.0

Table 3.2: Table of Γth,l and Γth,h
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3.1.3 Codebook construction

From [5] it is shown that the precoder codebook design problem can be related to

Grassmanian subspace packing. Thus, in [7], generalized Lloyd algorithm is used

to construct a precoder codebook by minimizing a chordal distance cost function.

The chordal distance between two unitary Mt by M matrices, Fi and Fj is

dc(Fi,Fj) =
1√
2

∥∥∥FiF
†
i − FjF

†
j

∥∥∥
F

, (3.4)

where ‖ · ‖F denotes Frobenius norm. Suppose that V is an isotropically dis-

tributed Mt × M matrix. The following algorithm quantizes V to 2B matrices.

Starting with an initial codebook CF = {F0,F1, · · · ,F2B−1} (obtained from ran-

dom computer search or using the currently best codebook if available), the

codebook design steps are as follows.

1. Generate a training set with Ntr samples {Vn}Ntr

n=1.

2. Iterate following steps until it converges.

(a) Assign Vn to one of the regions {Ri}2B−1
i=0 using the rule

Vn ∈ Ri, if dc(Vn,Fi) < dc(Vn,Fj), ∀j 6= i. (3.5)

(b) For each region Ri, find the centroid as

Fcentroid
i = arg min

F

1

Ntr

∑

Vn∈Ri

d2
c(Vn,F) (3.6)

= arg min
F

1

Ntr

∑

Vn∈Ri

trace(IM − F†VnV
†
nF) (3.7)

= arg max
F

trace(F†RF) (3.8)

where R is defined as

R =
1

Ntr

∑

Vn∈Ri

VnV
†
n. (3.9)

Let the eigendecomposition of R as

R = URΛRU†
R. (3.10)
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ΛR is a diagonal matrix whose diagonal elements are in nonincreasing

order. It is easy to show that Fcentroid
i is a Mt × M matrix obtained

by keeping the first M columns of UR.

(c) Set CF = {Fcentroid
i }2B−1

i=1 . During each iteration, The codebook will be

record if the minimum chordal distance of CF

min
0≤i<j≤2B−1

dc(Fi,Fj)

is larger than the currently best.

3. Go back to 1, generate another training set, then execute the next steps.

The algorithm will stop if there is no further improvement on the minimum

chordal distance.

3.2 Multimode Antenna Selection

This section is organized as follows. Section 3.2.1 introduces the system model

and the diversity of multimode antenna selection system. Section 3.2.2 presents

the selection criteria.

3.2.1 System Model

Based on the general model in chapter 2, multimode antenna selection design a

system whose number of subchannels M varies according to the channel H and

M ≤ min(Mr, Mt). Assuming target transmission rate Rb is unchanged and in-

dependent of channel H, the bit loading for each subchannel is bk = Rb

M
and the

power is uniformly divided among M symbols, Rs = P0

M
IM . For sending M sym-

bols, antenna selection system selects M antennas from Mt transmit antennas to

perform transmission. Therefore, there are C(Mt, M) possible antenna combina-

tions. This is equivalent to select a precoder matrix from a set WM , where the

matrices in WM are generated by choosing M columns from IMt
. For example,
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assume Mt = 3,

W1 =









1
0
0



 ,




0
1
0



 ,




0
0
1








 ,W2 =









1 0
0 1
0 0



 ,




1 0
0 0
0 1



 ,




0 0
1 0
0 1








 ,

and W3 =









1 0 0
0 1 0
0 0 1








 .

And WM = {WM,1,WM,2, · · · ,WM,C(Mt,M)}. For each M , WM ’s size is C(Mt, M).

Suppose it is allowed to select from the complete precoder codebook CF =

{WM}Mt

M=1, the total number of precoder matrices is

Mt)∑

m=1

C(Mt, M) = 2Mt − 1 (3.11)

which requires Mt bits to feedback.

Given a channel, the receiver decide what the number of subchannels M is

and which precoder should be chosen from WM . Then the corresponding index

is sent back to transmitter. The transmission is adapt based on this information.

Diversity. Selection diversity provides full diversity MrMt [11]. Since selection

diversity is equivalent to selecting a precoder matrix from W1 which is included in

the complete precoder codebook CF = {WM}Mt

M=1, the diversity gain of multimode

antenna selection can only be better than selection diversity system. Thus, the

diversity order of multimode antenna selection is MrMt.

3.2.2 Selection Criteria

Various selection criteria is designed in this paper [17]. Simulations in [17] shows

that these selection criteria all yield approximately identical performance. Here

we introduce a suboptimal, low-complexity selection criterion that is proposed

in this paper. This selection criterion decides M∗, number of using subchannels,

first, then selects precoder matrix F∗ from WM .

Eigenmode Based Selection. Choose M∗ such that

M∗ = arg max
1≤M≤Mt

λ2
M(H)d2

min(M, Rb) (3.12)
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where λk(H) is the k-th largest singular value of H, and d2
min(M, Rb) is the

normalized minimun distance in QAM constellation defined as

d2
min(M, Rb) =

6

(2Rb/M − 1)
/M.

After the M∗ is determined, F∗ is chosen as

F∗ = arg max
F∈WM∗

λ2(HF). (3.13)

3.3 Multimode Precoding

This section is organized as follows. In Section , we show the system model

and diversity of multimode precoding system. The selection criteria are given in

Section 3.3.2. And Section 3.3.3 reviews the criteria of codebook size allocation

and construction.

3.3.1 System Model

Founded on the general system model in chapter 2, multimode precoding assumes

Rb is the fix target transmission rate, the bit loading is uniformly allocated bk =
Rb

M
, for k = 1 · · ·M , and transmission power is equally divided for M symbols,

Rs = P0

M
IM . Similar to multimode antenna selection in section 3.2, the multimode

precoding system allows the number of subchannels M to vary according to the

channel H and M ≤ min(Mr, Mt). In addition, a codebook FM is prepared

for each mode M . Since multimode precoding requires Rb

M
to be integer, thus

only some modes can support transmission. The set of these supported modes is

denoted as M. For example, if Rb = 8 bits and Mr = Mt = 4, then M = {1, 2, 4}.
Based on the channel H, the receiver determines the number of subchannels

M and selects the precoder matrix from the complete precoder codebook CF =

{FM}Mt

M=1. Subsequently, the index represented this selection is fed back to the

transmitter. The transmitter adjusts the transmission setting according to the

feedback information.

Diversity. let NM denoted the number of precoder matrices in FM . It is proved

in [18] that multimode precoding provides full diversity order MrMt, if N1, the
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codebook size of F1, is greater than or equal to Mt and the vectors in F1 span

CMt . Selecting vector from F1 = {f1, f2, · · · , fN1} is equal to a beamforming

system with finite beamforming feasible set [24]. From [24], we know that such

a beamforming system has full diversity order equal to MrMt if the span of F1

is equal to CMt . Therefore, the multimode precoding has full diversity order if

above mentioned condition is satisfied.

3.3.2 Selection Criteria

Two selection criteria are proposed in this paper. One is for minimizing proba-

bility of error. The other is for maximizing capacity.

Probability of Error Selection Criterion. The selection is divided in two step. For

every M ∈ M, first step selects the F ∗
M from each precoder codebooks FM using

the following selection criterion,

F ∗
M(H) = arg max

F∈FM

λ2
M(HF), (3.14)

where λk(H) is the k-th largest singular value of H. The second step determines

the number of subchannels M∗ by

M∗(H) = arg max
M∈M

λ2
M{HF∗

M(H)}
M

d2
min(M, Rb), (3.15)

where d2
min(M, Rb) is defined as

d2
min(M, Rb) =

6

M(2Rb/M − 1)
.

Capacity Selection Criterion. Assuming uncorrelated Gaussian signaling on each

substream, the mutual information is known to be

CUT (FM) = log2 det

(
IM +

P0

MN0
F†

MH†HFM

)
. (3.16)

Similar to above selection criterion, for every M ∈ M, first step select the F ∗
M

from each precoder codebooks FM using the following selection criterion,

F∗
M = arg max

F∈FM

CUT (F). (3.17)
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Then, M∗ is decided by

M∗ = arg max
M∈M

CUT (F∗
M ) . (3.18)

3.3.3 Allocation Criterion and Codebook Construction

Given B feedback bits, there are total 2B codewords for complete codebook CF .

Some criterions are designed in [18] to distribute 2B codewords among the modes

in M. Under the assumption that the probabilities of selecting each mode in M
are equal, the codeword allocation criteria for maximizing capacity and minimiz-

ing probability of error are given as follows.

Probability of Error Allocation Criterion. Define the cost function as

A(N1, · · · , NMt
) =

∑

M∈M

d2
min(M, Rb)

M
N

−2
Mt(Mt+1)

M (3.19)

• For B ≤ log2(Mt + 1), set NMt = 1 and N1 = 2B − 1.

• For B > log2(Mt+1), find the (N1, · · · , NMt
) that minimizes A(N1, · · · , NMt

)

such that N1 ≥ Mt, NMt
= 1, and

∑
M∈M NM = 2B This minimization can

be done using a numerical search or by using convex optimization tech-

niques.

Capacity Allocation Criterion.

• For B ≤ log2(Mt + 1), set NMt = 1 and N1 = 2B − 1.

• For B > log2(Mt +1), if B ≤ log2(Mt(|M|−1)+1), set NMt
= 1, N1 = Mt,

and Nk = (2B−Mt−1)
|M|−2

, for k ∈ M, k 6= 1, Mt. If B > log2(Mt(|M| − 1) + 1),

set NMt
= 1 and Nk = 2B−1

|M−1| for k ∈ M, k 6= Mt.

After the sizes for each modes’ codebooks are allocated. The codebook for

each mode is construct using the method in [5]. The work in [5] can approximately

convert the problem of precoder codebook construction into Grassmannian sub-

space packing. As a result, the codebook design criteria are presented as follows.
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Probability of Error Design Criterion. From [5], the projection two-norm distance

is defined as

dproj(Fi,Fj) = ‖FiF
†
i − FjF

†
j‖2,

where ‖·‖ denotes 2-norm of a matrix. For minimizing probability of error, design

FM such that

δproj = min
Fi,Fj∈FM :Fi 6=Fj

dproj(Fi,Fj)

is maximized.

Capacity Design Criterion. The Fubini-Study distance is defined in [5] as

dFS(Fi,Fj) = arccos | det(F†
iFj)|.

For maximizing capacity, design FM such that

δFS = min
Fi,Fj∈FM :Fi 6=Fj

dFS(Fi,Fj)

is maximized.
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Chapter 4

The Proposed BA system

In this chapter we propose the feedback of only bit allocation (BA) for MIMO

systems with limited feedback. The proposed system will be termed a BA sys-

tem. We show that the proposed BA system can achieve full diversity order. We

also derive the optimal bit allocation for minimum BER when the transmission

rate is given and the bit allocation vector is not constrained to be from a code-

book. It turns out that the optimal bit allocation that minimizes the BER is also

the optimal solution for minimizing the transmission power. Using the optimal

unconstrained bit allocation, an efficient method for selection BA is developed.

4.1 System Model

Based on the general system model in chapter 2, we assume the total transmission

power P0 is equally divided among all symbols carrying nonzero bits. So sk has

variance given by

σ2
s

=

{
P0/M0, bk > 0,
0. bk = 0,

(4.1)

where M0 is the number of symbols carrying nonzero number of bits. As the

power is equally divided among symbols with nonzero bits, the autocorrelation

matrix of the error vector for the MMSE case (2.5) can be simplified. Removing

the symbols with zero bits from s, we obtain a reduced vetor s0 of size M0 × 1.

If we remove the corresponding columns of F, the result is an Mt × M0 matrix,

say F0. Then using precoder F0 with input s0 gives the same transmitter output
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(x = F0s0 = Fs). The vector s0 has the autocorrelation matrix Rs0 = P0

M0
IM0.

The autocorrelation matrix of the corresponding error vector e0 is

Re0 =

{
N0(F

†
0H

†HF0)
−1, zero-forcing receiver,

( 1
N0

F†
0H

†HF0 + 1
P0/M0

IM0)
−1, MMSE receiver.

(4.2)

In our proposed system, the precoder matrix F in the transmitter is determined

beforehand. Therefore, when the channel H is given, the average BER formula

in (2.11) depends only on the bit allocation vector b, which can be optimized to

minimize BER.

BER(b,H) ≈ 1

Rb

M−1∑

k=0,bk 6=0

bkBERk =
1

Rb

M−1∑

k=0,bk 6=0

SERk, (4.3)

The receiver feedbacks only the bit allocation vector b to the transmitter. When

the bit allocation vector b has integer entries, in principle the whole vector can

be sent back to the transmitter using finite-rate feedback. However, in a system

with low feedback rate it may not be possible to feedback the complete informa-

tion of b without quantization. In this case the bit allocation vector is chosen

from a codebook Cb and the index of the bit allocation vector is fed back to the

transmitter as we will see in the next section.

4.2 Feedback of Bit Allocation

In the proposed BA system, only bit allocation will be sent back to the trans-

mitter. The information of the precoder is not fed back to the transmitter. We

discuss the feedback of bit allocation for two cases (i) precoder is square with

M = Mt (implicitly Mt ≤ Mr), and (ii) precoder is rectangular with M ≤ Mt,

separately in Section 4.2.1 and Section 4.2.2. Although the first case is a special

case of the second, it is more convenient to discuss the simpler case M = Mt first.

4.2.1 M = Mt Case

In this case the precoding matrix F in the transmitter of the BA system shown in

Fig. 4.1(a) is a fixed Mt×Mt matrix. When we consider bit allocation in practical
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Figure 4.1: The transmitter of the BA system with (a) precoder F, and (b)
augmented precoder F′

applications, the bits assigned to the symbols are typically integer-valued. When

the number of bits transmitted per channel use Rb is given, the components of

the bit allocation vector b satisfies

b0 + b1 + · · ·+ bM−1 = Rb, where bi ∈ Z+, (4.4)

where Z+ denotes the set of nonnegative integers. The number of such nonneg-

ative integer bit allocation vector is (pp. 337, [25])

C(Rb + Mt − 1, Rb), (4.5)

where C(·, ·) denotes the choose function. Feedback of all these possible bit

allocation vectors requires

B0 = ⌈log2(C(Rb + Mt − 1, Rb))⌉ , (4.6)

where ⌈x⌉ denotes the smallest integer larger than or equal to x. For example

Rb = 8, M = Mt = 4, the required number of feedback bits is B0 = 8. To reduce

the number of feedback bits, we can quantize the bit allocation vector.

Quantization of bit allocation. Suppose we are given B feedback bits and a

codebook Cb of 2B bit allocation vectors. The vectors in Cb satisfy the transmission

rate constraint in (4.4) so that the number of bits transmitted for each channel

use is Rb. We can choose the best bit allocation vector b̂ ∈ Cb that minimizes

the BER. The BER expression in (4.3) is a function of bit allocation vector and

we can choose

b̂ = arg min
b∈Cb

BER(b,H). (4.7)
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The actual number of transmitted symbols can be smaller than M as some of

the symbols may be assigned with 0 bits. The selection criterion in (4.7) requires

the computation of BER for all possible bit allocation vectors in the codebook,

so BER(b,H) is evaluated 2B times. When the codebook size is small (i.e. low

feedback rate), for example, B = 2, 3, the number of searches is small as well. As

we will see in the simulation examples, we can get good BER performance using

a small codebook size.

4.2.2 M ≤ Mt Case

For M ≤ Mt, we can start off with an augmented initial precoder F′ of size

Mt ×Mt. The corresponding augmented input vector s′ and bit allocation vector

b′ are of size Mt ×1. For a given M , we can choose M columns out of F′ to form

the actual Mt ×M precoder F, i.e., (M −Mt) columns of F′ are removed. As we

choose M columns from F′, there are C(Mt, M) possible choices. The entries of

s′ and b′ corresponding to the removed columns of F′ are equal to zero. s and b

are M × 1 vectors which is formed by removing the zero entries of s′ and b′ so

that F′s′ = Fs. The transmitter with the augmented precoder and augmented

input vector s′ is shown in Fig. 4.1(b). The augmented bit allocation vector b′

satisfies

b′0 + b′1 + · · ·+ b′M−1 = Rb, where b′i ∈ Z+, (4.8)

with the additional constraint that at most M of the components can be nonzero

as it is assumed that the transmitter and receiver can process at most M sub-

streams. In this case the number of symbols transmitted is at most M , carrying

a total of Rb bits. To count the number of integer bit allocation vectors satisfy

(4.8), let us first consider the case that b′ has exactly k zeros, where k ≥ Mt−M .

Then Rb will be distributed among Mt − k symbols, each with at least one bit.

There are C(Mt, k)C(Rb − 1, Mt − 1− k) such combinations [25]. Thus the total

number of possible integer bit allocation vectors satisfying (4.8) is

Mt−1∑

k=Mt−M

C(Mt, k)C(Rb − 1, Mt − 1 − k). (4.9)
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For example, when Mt = 4, M = 3 and Rb = 8, the number is 130. To feedback

all these vectors requires 8 bits. To have a smaller feedback rate, we can use a

codebook C′
b of augmented bit allocation vectors. Each b′ ∈ C′

b satisfies (4.8).

The BER can be obtained by a slight change of the summation in (4.3),

BER(b′,H) =
1

Rb

Mt−1∑

k=0,b′
k
6=0

SERk. (4.10)

We can choose the best bit allocation vector from C′
b to minimize BER,

b̂′ = arg min
b′∈C′

b

BER(b′,H). (4.11)

Note that there is no need to feedback the information of the actual precoder

F used. The information is embedded in the augmented bit allocation vector

b′. For i = 0, 1, · · · , Mt − 1, the transmitter removes the i-th column from F′ if

b′i = 0. The transmitter can then use the resulting Mt × M0 submatrix as the

precoder, where M0 is the number of nonzero entries in b′.

The optimal augmented precoder. In the BA system, the augmented precoder F′

is a fixed square unitary matrix. It does not vary with the channel; only the bit

allocation does. A question that arises naturally here is this: What is the optimal

channel-independent augmented precoder? It turns out that any Mt×Mt unitary

matrix will yield the same performance if the entries of the channel matrix H

are independent, identically distributed circularly symmetric Gaussian random

variables with zero mean. For example, choosing F′ as the normalized DFT

matrix in (1.1) or the identity matrix will give us the same result. To see this let

us view the BA system as having precoder F′ and input s′. (In the case M = Mt,

F′ = F and s′ = s). Let the auto correlation matrix of s′ be Rs′. It can be

verified that the corresponding Mt ×Mt error autocorrelation matrix Re′ can be

obtained from (2.5) by replacing F with F′ and Rs with Rs′,

Re′ =

{
N0(F

′†H†HF′)−1, zero-forcing receiver,
Rs′ − Rs′F

′†H†(HF′Rs′F
′†H† + N0IMr

)−1HF′Rs′, MMSE receiver.
(4.12)

We see that Re′ depends on HF′ as a whole. From [26], we know that when

F′ is a deterministic square unitary matrix, HF′ has the same distribution as
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H. That is, the entries of HF′ are independent, identically distributed circularly

symmetric Gaussian random variables with zero mean. Therefore, for any fixed

unitary F′, HF′ is statistically equivalent to H and hence the same performance

is achieved.

Fixed Mt × M precoder. In the above discussion, we have used augmented

initial precoder when M < Mt. The actual precoder F is not a fixed Mt × M

matrix. The reason for not using a fixed precoder F is as follows: If the channel

matrix is such that the column space of F is contained in the null space of H,

then there is zero signal power at the receiver. This can be avoided by allowing

F to be an arbitrary Mt × M submatrix of F′. There is no such problem for

the case M = Mt because the column space of any Mt × Mt unitary F is CMt ,

where CMt is the set of all Mt ×1 vectors of complex numbers. Note that with B

feedback bits, for a given channel, using augmented precoder F′ is not guaranteed

to be better than using a fixed F. This is because for a given number of feedback

bits B, the codebook C′
b for BA system with augmented F′ is different from Cb

for a fixed Mt × M precoder. Suppose F is a submatrix of F′. Let us consider

the special case that the codewords of C′
b is obtained by inserting appropriate

zeros in the codewords of Cb. Then the system with augmented precoder has the

same performance as the one with a fixed precoder, but not better. Nonetheless

the simulations will demonstrate that when M < Mt the system of augmented

precoder outperforms the one with a fixed precoder for the same number of

feedback bits.

The case F′ = IMt
. When the initial precoder is the identity matrix, the

BA system implicitly employs a form of antenna selection at the transmitter

[12], in which the best M antenna are chosen to minimize the BER. But unlike

conventional antenna selection, the symbols transmitted on the chosen antennas

do not carry the same amount of bits. For the BA system, the feedback of antenna

selection at the transmitter is embedded in the feedback of bit allocation. There

is no need to tell the transmitter which antennas to use other than the index

of bit allocation vector. When F′ = IMt
, we can also view the BA system as a
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extension of the multimode antenna selection [17], which also chooses a subset

of transmit antennas, but the number of antenna used is allowed to vary with

the channel. As the bits are uniformly loaded [17], the number of antenna used

should divided Rb. There is no such condition for the BA system.

4.3 Diversity Gain of BA System

In this section, we show that the BA system can achieve diversity order MrMt

for a system with Mr receive antennas and Mt transmit antennas if the codebook

is properly designed and has at least Mt codewords. Let the initial precoder F′

be an Mt × Mt unitary matrix (F′ = F and M = Mt). The number of bits to

be transmitted in each channel use is Rb, which is distributed among M symbols

(M ≤ min(Mt, Mr)). The augmented bit allocation vector b′ is of size Mt × 1.

It has at most M nonzero entries and
∑Mt−1

i=0 b′i = Rb. Suppose the bit allocation

codebook is C′
b. The minimum achievable BER is

BERmin(H) = min
b′∈C′

b

BER(b′,H), (4.13)

where BER(b′,H) is the BER in (4.3). Assume the bit allocation codebook C′
b

contains the set of codewords

C∗
b = {Rbe0, Rbe1, · · · , RbeMt−1}, (4.14)

where ei are standard vectors of size Mt × 1, i.e., [ei]i = 1 and [ei]j = 0 for j 6= i.

The following theorem shows that the BA system can achieve full diversity order

using the bit allocation vectors in C∗
b . Therefore to achieve a diversity order of

MrMt we can use a codebook of size Mt, which requires only log2 Mt feedback

bits.

Theorem 1. For a finite-rate feedback MIMO channel with Mr receive antennas

and Mt transmit antennas, the BA system with an Mt × Mt augmented unitary

precoder F′ achieves diversity order MrMt if the bit allocation codebook C′
b con-

tains the Mt vectors in (4.14).
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Proof. As C∗
b is a subset of C′

b, we have

BERmin(H) = min
b′∈C′

b

BER(b′,H) ≤ min
b′∈C∗

b

BER(b′,H). (4.15)

The BER averaged over the channel H is denoted as BER = E[BERmin(H)].

Using (4.15), it is bounded by

BER ≤ E[min
b′∈C∗

b

BER(b′,H)].

When the bit allocation b′ is chosen from C∗
b , all the Rb bits are allocated

to the same symbol and this becomes a beamforming system. For example,

when b′ = [ Rb 0 · · · 0 ]T , the beamforming vector is the 0-th column of

F′. When we choose b′ ∈ C∗
b to minimize the BER, we are actually choos-

ing the best beamforming vector from the columns of F′ to maximize the re-

ceived SNR. In other words, the equivalent codebook of beamforming vectors

is Cf = {f ′0, f ′1, · · · , f ′Mt−1}, where f ′i is the i-th column of F′. The zero-forcing

receiver in (2.3) performs maximal ratio combining. From [24], we know such a

beamforming system has diversity order equal to MrMt if the span of Cf is equal

to CMt . Therefore the BA system has diversity order MrMt as well. The result

holds as long as the codebook C′
b contains the simple vectors in (4.14).

�

We have shown that the BA system achieves full diversity order if the code-

book has the codewords in (4.14). However, when C′
b has only Mt codewords,

the codewords in C∗
b are not necessarily the best choices as we will see in the

simulations.

Alternative proof of Theorem 1. Suppose the initial precoder F′ = IMt
and bit

allocation vector is chosen from C∗
b . As F′ has only one nonzero entry in each

column and b′ ∈ C∗
b has only one nonzero entry, only one transmit antenna is

used and this becomes an antenna selection system that chooses only one antenna.

The right hand side of (4.15) corresponds to the BER of the system in which the

transmitter chooses the best transmit antenna and receiver uses maximal ratio

combining. Such a system has been shown to achieve a diversity order equal to
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MrMt [27]. So the BA system with identity F′ achieves diversity order MrMt.

From the discussion of optimal augmented precoder in the previous section we

know any Mt × Mt unitary F′ lead to the same average performance. Therefore

we can arrive at the result given in Theorem 1.

4.4 BA system with Unconstrained Bit Alloca-

tion

In this section, we will consider the BA system when there is no integer constraint

on bit allocation. For a given precoder, we will derive the optimal bit allocation

that minimizes the BER when the bit allocation is not constrained. Although

the unconstrained optimal bit allocation requires infinite feedback rate, the corre-

sponding BER performance provides insightful observations as we shall see. The

optimal bit allocation is given in section 4.4.1. The connection of zero-forcing

BA system with M = Mt to precoder system and power-minimizing BA system

are given in Section 4.4.2.

4.4.1 Optimal Bit Allocation

We first consider the case when the precoder F is a fixed Mt×M unitary matrix.

The number of bits transmitted per channel use is Rb and b0+b1+· · ·+bM−1 = Rb.

Assume the transmission rate is high and bk is large enough so that 1−2
bk
2 ≈ 1 and

1− 2bk ≈ 1, then the symbol error rate expression in (2.10) can be approximated

by

SERk ≈ 4Q

(√
3

2bk
βk

)
. (4.16)

With the high bit rate assumption, bk > 0, for all k and thus Rs = P0/MIM . For

the convenience of derivation, we define the function

f(y) = Q( 1√
y
), y > 0. (4.17)
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The function f(y) is monotone increasing and it can be verified that f(y) is

convex for y ≤ 1/3. Using f(·), we can express SERk as

SERk ≈ 4f(
2bk

3βk
). (4.18)

Therefore the average BER in (4.3) can be written as

BER(b) ≈ 4

Rb

M−1∑

k=0

f(
2bk

3βk

). (4.19)

where we have dropped the dependence of BER function on the channel H for

convenience. Assume the arguments of f(·) are smaller than 1/3 so that the

convexity of f(·) holds (we will see later why this assumption is reasonable).

Using the convexity of f(·), we have

1

M

M−1∑

k=0

f(
2bk

3βk
) ≥ f(

1

M

M−1∑

k=0

2bk

3βk
). (4.20)

It follows that

BER(b) ≈ 4

(Rb/M)

1

M

M−1∑

k=0

f

(
2bk

3βk

)
(4.21)

≥ 4

(Rb/M)
f

(
1

3M

M−1∑

k=0

2bk

βk

)
(4.22)

≥ 4

(Rb/M)
f



2Rb/M

3

(
M−1∏

k=0

1

βk

)1/M


 (4.23)

, BERBA. (4.24)

The second inequality is obtained by using the fact that Rb = b0 + b1 + · · ·+ bM−1

and the AM-GM (arithmetic mean-geometric mean) inequality

1

M

M−1∑

k=0

2bk

βk

≥
(

M−1∏

k=0

2bk

βk

)1/M

= 2Rb/M

(
M−1∏

k=0

1

βk

)1/M

. (4.25)

and also using the monotone increasing property of f(·).
Notice that the lower bound in (4.23) is independent of bit allocation. The

optimal bit allocation is such that the two inequalities in (4.22) and (4.23) become
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equalities. Due to convexity of f(·), the first inequality (4.22) holds if and only

if 2bk/(3βk) are of the same value for all k. The same set of conditions is also

necessary and sufficient for equality to hold in the second inequality as f(·) is

monotone increasing. When both inequalities hold, the lower bound in (4.23) is

achieved. Therefore the optimal bit allocation for minimizing the BER is such

that 2bk/βk = 2Rb/M(
∏M−1

l=1 1/βl)
1/M , i.e.,

bk = log2(βk) +
Rb

M
− 1

M

M−1∑

l=0

log2 βl. (4.26)

We can see that the symbols with larger SNR βk are allocated with more bits.

We have denoted the BER lower bound in (4.23) as BERBA, where the subscript

is a reminder which notifies that it is the BER of the BA system. Note that

BERBA is obtained when the bits are allocated as in (4.26) and there is no in-

teger constraint on bit allocation in the above derivation. The bit allocation bk

computed in (4.26) are not integers in general. Nonetheless BERBA gives useful

insight on the performance of the BA system and connections with other system

as we will see in Section 4.4.2

Remarks

1. In the above derivation, we have assumed that the argument of f(·) in

(4.19) is larger than 1/3 so that the convexity of f(·) can be used in (4.20).

We now examine the validity of such an assumption. When the argument

2bk/(3βk) = 1/3, the corresponding SERk is SERk ≈ 4Q(
√

3) ≈ 0.17, a large

symbol error rate that may not be useful. In practical applications, it is

more reasonable to have smaller error rate, which requires 2bk/(3βk) < 1/3.

2. When bits allocated optimally as in (4.26), 2bk/βk are the same for all k.

This means the symbol error rates are equalized for all transmitted symbols.

3. The actual number of symbols transmitted may be smaller than M if some

symbols are allocates with 0 bits. However the number of bits transmitted

for each channel use will be maintained at Rb.
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Now let us consider the case F is not fixed, but an Mt × Mt augmented pre-

coder F′ (implicitly M < Mt in this case). The imput s′ is an augmented Mt × 1

vector and bit allocation vector b′ is Mt × 1 as in Section 4.2.2. For a given M ,

we can choose M columns out of F′ to form the actual Mt × M precoder. As

we choose M columns of F′, there are C(Mt, M) possible choices. For each of

these choices, we can compute the optimal bit allocation and the corresponding

BER using (4.23), and choose the best precoder. In this case the BA system

with augmented precoder F′ is always better than the BA system with a fixed

precoder F if F us a submatrix of F′.

Bit allocation for optimal number of substreams

In the above discussion of optimal bit allocation, we assumed all symbols

carry nonzero bits and transmission power is loaded on all M symbols. In the

end some of the symbols may be assigned zero bits while take up 1/M of the total

power. To make efficient use of power, we can allocate power to only the symbols

that carry nonzero bits. To do this, we can compute the optimal bit allocation

for all possible number of symbols with nonzero bits and choose the best one. To

be more specific, let us illustrate this in another viewpoint. We start out with

an Mt × Mt initial precoder F′ as before. The precoder F can be any Mt × M0

submatrix of F′, where M0 = 1, 2, · · · , M . There are
∑M

M0=1 C(Mt, M0) possible

precoders. We collect all these possible precoder in a set SF . For each F ∈ SF ,

we can use (4.29) to compute the BER under optimal bit allocation. The error

rate BERBA given in (4.23) depends on the precoder used. For convenience let

us use the notation BERBA(F) to indicate the dependence on F. The best F is

Fopt = arg min
F∈SF

BERBA(F). (4.27)

The resulting minimum BER is given by

BERBA,opt = min
F∈SF

BERBA(F). (4.28)

When the optimal precoder is obtained this way, all the symbols will carry nonzero

bits. The reason is as follows: Let the optimal precoder Fopt be Mt × l, and the
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optimal l × 1 bit allocation be bopt. Suppose one of the symbols is assigned with

zero bits. The actual number of symbols transmitted is l−1. Let us remove from

Fopt the column corresponding to the symbol with zero bit and call the remaining

Mt × (l − 1) submatrix F0. Also remove from bopt the element equal to zero and

call the reduced vector b0. Then using precoder F0 with bit allocation b0 gives

a smaller BER for the same transmission power as the power is now distributed

among (l − 1) symbols instead of l symbols. So Fopt can not be optimal if one

symbol is assigned 0 bits. We can therefore conclude that all symbols carry

nonzero bits in the optimal system that uses Fopt as precoder.

4.4.2 BER performance of Zero-forcing BA system When

M = Mt

In this subsection, we will examine the BER lower bound BERBA derived in

(4.24) when the receiver is zero forcing and M = Mt. Connection between the

BA system with two other systems, the precoder system [7] and power minimizing

BA system, will be studied.

For M = Mt, the precoder F is an Mt×Mt unitary matrix. When the receiver

is zero-forcing, the k-th SNR βk is equal to P0/(Mσ2
ek ,BA), where we have added

a subscript to the error variances to indicate that these are the error variances in

the BA system. The BER lower bound BERBA in (4.24) can be written as

BERBA =
4

Rb/M
Q

(√
3P0/M

2Rb/M

1

(
∏M−1

l=0 σ2
el,BA)1/M

)

. (4.29)

We can see from the above expression that BERBA depends on the geometric

mean of {σ2
el,BA}M−1

l=0 , which is in turn determined by the given precoder. Al-

though the geometric mean of {σ2
el,BA}M−1

l=0 depend on the choice of precoder,

the arithmetic mean does not. This is due to unitary property of the precoder.

To see this, we can use the expression Re = N0(F
†H†HF)−1 given in (4.12) for

zero-forcing receiver. It follows that the average error Err is

Err =
1

M

M−1∑

l=0

σ2
el,BA =

1

M
trace(Re) =

1

M
N0trace(F†H†HF)−1. (4.30)
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Using FF† = IM and trace(AB) = trace(BA), we have

Err =
1

M
N0trace(H†H)−1. (4.31)

As N0trace(H†H)−1 does not depend on the precoder F, we come to the con-

clusion that the average error Err does not depend on the precoder. It is the

same quantity for any square unitary precoder regardless of bit allocation. This

property allows us to show that the BER of the BA system is always smaller than

the BER-minimizing precoder system, which is briefly reviewed below.

BER-minimizing precoder system [7,22]. In the precoder system [7], the precoder

is optimized to minimize BER. Referring to Chapter 3.1, the power and bits

are uniformly loaded on all M symbols (M ≤ min(Mt, Mr)). Suppose Rb bits

are transmitted using total power P0 for each channel use; each sk, for k =

0, 1, · · · , M−1, is a QAM symbol with variance P0/M that carries Rb/M bits. Let

the singular value decomposition of H be UΛV†, where U and V are respectively

Mr × Mr and Mt × Mt unitary matrices. The Mr × Mt matrix Λ is diagonal,

whose diagonal elements are singular values of H in a nonincreasing order. From

Section 3.1.2, the optimal Mt ×M unitary precoder that minimizes the BER for

large SNR is given by [7, 22]

Feq = VMQ, (4.32)

where VM is the Mt × M matrix obtained by keeping the first M columns of V

and Q is an M × M unitary matrix that has the equal magnitude property.

For the optimal precoder given in (4.32), the subchannel error ek = ŝk − sk

has the property that variance σ2
ek

are equalized [7, 22],

σ2
e0

= σ2
e1

= · · · = σ2
eM−1

. (4.33)

Now consider the case M = Mt and the receiver is zero forcing. We know from

(4.31) that all square unitary precoders lead to the same average error variance.

That is, the BER-minimizing precoder yields the same average error variance

as the BA system. Therefore when the optimal precoder in (4.32) is used, all

error variances are equal to Err given in (4.31) and hence identical BER for all
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symbols transmitted. Using the approximation in (4.16), the minimized BER of

the precoder system can be expressed as

BER ≈ 4

Rb/M
Q




√

3P0/M

2Rb/M

1

Err



 , BERprecoder. (4.34)

Using the fact that Err is also equal to 1
M

∑M−1
l=0 σ2

el,BA and applying AM-GM

inequality to {σ2
el,BA}M−1

l=0 , we get

Err =
1

M

M−1∑

l=0

σ2
el,BA ≥

(
M−1∏

l=0

σ2
el,BA

)1/M

. (4.35)

As Q-function is monotone decreasing we arrive at

BERprecoder =
4

Rb/M
Q

(√
3P0/M

2Rb/M

1
1
M

∑M−1
l=0 σ2

el,BA

)
(4.36)

≥ 4

Rb/M
Q

(√
3P0/M

2Rb/M

1

(
∏M−1

l=0 σ2
el,BA)1/M

)
= BERBA (4.37)

We recognized that the right hand side of the above inequality is the BER of

the BA system given in (4.29). Therefore when M = Mt the BA system with

optimal bit allocation and an arbitrary fixed precoder has a smaller BER than

the precoder system with an optimal precoder.

Unlike the M = Mt case, the BER of the BA system for M < Mt is not

guaranteed to be smaller than the precoder system. We can see this using the

case M = 1 as an example, i.e., beamforming transmission. When M = 1,

the precoder system corresponds to the beamforming system with maximal ra-

tio transmission [28] at the transmitter and maximal ratio combining at the

receiver, which achieves the smallest error rate among all beamforming systems.

As M = 1, all Rb bits are loaded on one symbol. For the BA system, all the bits

are allocated to only one symbol as well but the choices of the beamforming vec-

tors are limited to the Mt columns of F′. If the number of symbols transmitted

in each channel use can not exceed one, the precoder system is better than BA

system.
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Figure 4.2: MIMO wireless system with Mt transmit antennas and Mr receive
antennas

Connection with power-minimizing BA system

In Section 4.4 bit allocation is optimized to minimize BER. Suppose, instead

of BER criterion, we optimize the bit allocation to minimize the transmission

power for a given symbol error rate constraint ǫ and transmission rate Rb. When

the receiver is zero-forcing, we now show that the optimal bit allocation derived in

Section 4.4 for minimum BER is also optimal for minimizing transmission power.

Consider the MIMO system in Fig. 4.2. Let the total transmission power be PT .

From (2.1), we have PT = trace(E[xx†]) =
∑M−1

k=0 σ2
sk

. Suppose the k-th symbols

sk is loaded with bk and b0 + b1 + · · · + bM−1 = Rb. In the power minimization

problem, we allow PT and symbol variance σ2
sk

to vary so that the given symbol

error rate constraint ǫ can be satisfied. For a zero forcing receiver, the error

variance σ2
ek

can be computed using Re = N0(F
†H†HF)−1 in (2.5). If σ2

sk
and

σ2
ek

are given, the number of bits that can be loaded is well approximated by [29]

bk = log2

(
1 +

σ2
sk

σ2
ek

Γ

)
, (4.38)

where Γ, called SNR gap, depends on the given symbol error rate ǫ. In our

problem σ2
sk

is not given. Let us rearrange the above equation to get σ2
sk

=

Γ(2bk − 1)σ2
ek

, which gives the required symbol variance when the k-th symbol is

loaded with bk bits. Using high bit rate assumption 2bk − 1 ≈ 2bk , we have

σs2
k
≈ Γ2bkσ2

ek
. (4.39)
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Using the approximation in (4.39), we have

PT ≈ Γ

M−1∑

k=0

2bkσ2
ek

. (4.40)

Applying the AM-GM inequality to the above summation, we get

PT ≈ Γ
M−1∑

k=0

2bkσ2
ek

≥ MΓ

(
M−1∏

k=0

2bkσ2
ek

)1/M

= MΓ2Rb/M

(
M−1∏

k=0

σ2
ek

)1/M

(4.41)

The right hand side is a lower bound that is independent of bit allocation. The

minimum transmission power can be achieved by allocating the bits bk such that

AM-GM inequality becomes an equality, i.e., 2bkσ2
ek

are equalized. This in turns

means σ2
sk

are identical and thus 2bkσ2
ek

/σ2
sk

= 2bk/βk are the same for all k. It

follows that bk are as given in (4.26). So the optimal bit allocation for minimizing

BER of zero forcing BA system is also optimal for minimizing transmission power.

4.5 Efficient Method of Selecting Bit Allocation

Vector

In this section we consider efficient search of bit allocation vector from the code-

book C ′
b. Suppose the feedback bits is B, so the codebook size is 2B. To ob-

tain b̂′ = arg minb′∈C′

b
BER(b′,H) given in (4.11), exhaustive search can be ap-

plied by computing BER formula (4.3) for each bit allocation vector in C′
b, thus

BER(b′,H) is evaluated 2B times. When B is large, such an exhaustive search

requires lots of computations. Using the unconstrained optimal bit allocation in

(4.26), an efficient method is developed to reduce the complexity of selecting bit

allocation in C′
b. The development of our method can be easier to understand if

we explain the basic idea first.

Quantization of b′
opt. The basic idea of the proposed method is described as

follows. Rather than evaluating BER formula for 2B bit allocation vectors, we

can compute the optimal unconstrained bit allocation b′
opt first. Let b′

opt be the

unconstraint bit allocation that achieves BERBA,opt in (4.28). From Section 4.4.1,
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BERBA,opt is obtained by computing BERBA for each possible submatrix of the

initial precoder F′. The collection of all these possible submatrices is SF . The

size of SF is
∑M

M0=1 C(Mt, M0). Fopt is the best BER-minimizing precoder matrix

in SF . And b′
opt is the corresponding optimal unconstrained bit allocation when

Fopt is used. After b′
opt is computed, we then quantize b′

opt to the integer bit

allocation vectors in C′
b by minimizing a distance function D(b′,b′

opt),

b̂ = arg min
b′∈C′

b

D(b′,b′
opt), (4.42)

where D(b′,b′
opt) is a measure of the distance between b′ and b′

opt. From the

remarks in Section 4.4.1, the symbol error rates are equalized when the bits are

optimally allocated,

SERk(b
′
k,opt) = SERBA, for all b′k,opt > 0 ,

where SERBA denotes the average SER. From (2.10), when the k-th symbol

carries b′k bits, the SER is

SERk(b
′
k) = 4(1 − 1

2b′
k
/2

)Q

(√
3

(2b′
k − 1)

βk

)
.

If b′k > b′k,opt, then SERk(b
′
k) > SERBA, and the error rate performance will be

dominated by the worst subchannel. The largest difference between b′k and b′k,opt

is corresponded to the worst subchannel symbol error rate, SERworst. Moreover,

from (4.10), the BER formula can be upper bound by

BER(b′,H) =
1

Rb

Mt−1∑

k=0,b′
k
6=0

SERk ≤ M0

Rb
SERworst, (4.43)

where M0 is the number of nonzero entries in b′. Thus, we employ the following

distance measure,

D(b′,b′
opt) = ‖(b′ − b′

opt)
+‖∞, (4.44)

where ‖ · ‖∞ denotes infinity norm and the vector (a)+ is formed by extracting

the positive entries from the vector a. For example, if a =
[

1 0 2 −1
]T

,

then (a)+ =
[

1 2
]T

. Minimizing the distance measure D(b′,b′
opt) is equal to
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minimizing the worst subchannel’s SER, because (b′ −b′
opt)

+ corresponds to the

SERk which are larger than SERBA and ‖(b′ − b′
opt)

+‖∞ picks out the largest

b′
k − b′

opt which causes the worst subchannel SER, SERworst. The smaller the

D(b′,b′
opt), the better the SERworst. So bq is the bit allocation vector in C′

b that

minimizes the BER upper bound in (4.43). D(b′,b′
opt) provides a low-complexity

measure for bit allocation vector quantization.

Quantization of b′
opt,C . If we want to obtain b′

opt, the unconstrained bit alloca-

tion equation (4.26) needs to be computed
∑M

M0=1 C(Mt, M0) times, since there

are
∑M

M0=1 C(Mt, M0) possible precoder matrices (submatrices of F′) in SF . How-

ever not all matrices in SF are possible precoders. This is because C′
b may not

contain all possible combination of bit allocation vectors. For example suppose

Mt = 4, M = 4, B = 2 and C′
b is equal to C∗

b in (4.14). The number of possible

precoders is 4 while the number of matrices in SF is 15. So not all matrices in

SF have corresponding bit allocation vectors in C′
b. Notice that if the optimal BA

vector b′
opt is quantized to b̂ ∈ C′

b and b̂i = 0, it is likely that b′i,opt is also equal to

zero. That is, the i-th symbol carries zero bits and thus the i-th column of F′ is

removed in forming the precoder F. Therefore when we compute b′
opt, skipping

the matrices in SF that have no corresponding BA vectors in Cb will reduce the

number of searches. Let SF,C denotes the collection of precoders that have bit

allocation vectors in C′
b. SF,C is a subset of SF and the size of SF,C is smaller

than
∑M

M0=1 C(Mt, M0) in general. We use b′
opt,C to represent the unconstrained

bit allocation who achieves the best BERBA of the precoder matrices in SF,C,

minF∈SF,C
BERBA(F). The subscript C is used to remind that b′

opt,C is computed

from the precoder matrix in SF,C. Once b′
opt,C is obtained, we quantize b′

opt,C to

the closest integer bit allocation vector in C′
b,

b̂C = arg min
b′∈C′

b

D(b′,b′
opt,C). (4.45)

By using b′
opt,C, the number of times (4.26) is computed can be reduced, thus

the complexity of selecting bit allocation vector is decreased. Simulation result

shows the proposed efficient method provides performance close to the exhaustive

search. The about algorithm is summarized below.
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Efficient method for selecting optimal bit allocation vector.

1. Compute unconstrained bit allocation by (4.26) for the cases in SF,C.

2. Choose b′
opt,C, the unconstrained bit allocation vector whose BERBA is the

smallest among all the unconstraint bit allocations obtained from first step.

3. Use D(b′,b′
opt,C) (4.44) as distance measure, and quantize b′

opt,C to the bit

allocation vector in C′
b as in (4.45).
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Chapter 5

Precoder System with Limited
Feedback

In this chapter, we discuss the selection criteria and codebook design of MIMO

precoder systems with limited feedback. First, the BER optimal precoder is

presented. Then we will discuss the precoder system in two separate cases: (i)

simple selection criteria and (ii) proposed two-step system.

5.1 BER minimizing optimal precoder

Referring to the BER optimal precoder, Feq = VMQ, in Section 4.4.2, two in-

sightful observations of the BER optimal precoder with infinite-rate are described

as follows.

• Total MSE minimized. VMT is the optimal unitary matrix of minimiz-

ing total MSE, where T is an arbitrary M × M unitary matrix and the

total mean squared error (MSE) is
∑M−1

l=0 σ2
el

= trace(Re).

• Error covariance equalized. VMQ equalizes the error covariance σ2
ek

.

σ2
e0

= σ2
e1

= · · · = σ2
eM−1

=
1

M

M−1∑

l=0

σ2
el
, (5.1)
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These two properties can be related to the BER formula (2.8). When βk is

sufficiently large, SERk can be expressed as a convex function for σ2
e,k. Thus,

BER(F,H) =
M

Rb

1

M

M−1∑

l=0

SERk(σ
2
el
) ≥ M

Rb
SER(

∑M−1
l=0 σ2

el

M
) = BERlb, (5.2)

where BERlb denotes the lower bound of BER. The equality of the lower bound in

(5.2) holds if σ2
ek

are equalized. The lower bound BERlb is a increasing function

of 1
M

∑M−1
l=0 σ2

e,l. So BERlb will become smaller if we minimize the total MSE.

The diversity order of the BER optimal precoder is given here.

Diversity of the BER optimal precoder. It was shown in [22], without unitary

constraint, the BER optimal precoder matrix without unitary constraint can be

written as Fopt,wf = VMPQ, where P is the water filling power loading matrix,

VM is obtained by keeping the first M columns of V and Q is the equal magnitude

matrix as mentioned in Section 4.4.2. From [30], the diversity order of using

F = Fopt,wf are (Mr −M +1)(Mt −M +1). And from [31], the diversity order of

using F = VM is also (Mr − M + 1)(Mt − M + 1). Since the BER performance

of Feq is

BER(Fopt,wf ,H) < BER(Feq,H) < BER(VM ,H).

Thus, we can conclude that the diversity order of BER optimal precoder Feq is

(Mr − M + 1)(Mt − M + 1).

5.2 Simple Selection Criterion

When the feedback rate is finite in the precoder system, the receiver selects

a precoder from the precoder codebook CF and sends the index back to the

transmitter. The codebook CF is assumed to be known to the transmitter as

well. With the BER-minimizing criterion, the precoder is chosen by (3.1),

F̂ = arg min
F∈CF

BER(F,H),
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If the codebook size is 2B, we need to compute 2B times the BER formula in

(2.8).

BER(F,H) =
1

M

M−1∑

k=0

SERk.

To reduce the complexity, we propose two selection criteria. One criterion is

for M = Mt case (square precoder). the other criterion is for M < Mt case

(rectangular precoder).

5.2.1 M = Mt case

Since the precoder matrix F is square and unitary, the total MSE,
∑M−1

l=0 σ2
el
, is

independent of F as we showed in Section 4.4.2.

As the total MSE is independent of F, from (5.2), the smallest BER is achieved

when the subchannel error covariance σ2
e,k are equalized. We propose to find the

precoder matrix in CF that equalizes the error covariances σ2
ek

the most. To

indicate the level of equalization, we employ AM-GM inequality,

1

M

M−1∑

l=0

σ2
ek

≥
(

M−1∏

l=0

σ2
ek

)1/M

(5.3)

since the inequality becomes equality when all parameters are equalized. The

measure AAM−GM is defined as

AAM−GM(F) =

M−1∏

l=0

σ2
el
. (5.4)

The larger the measure AAM−GM , the better the error covariance’s level of equal-

ization. Because the arithmetic mean is the same for all precoder, we only need

to choose the precoder matrix corresponding to the largest product of σ2
ek

. the

AM-GM selection criterion is

F̂ = arg max
F∈CF

AAM−GM(F). (5.5)

The exhaustive search method reviewed in Section 3.1 requires computation of

the BER formula for each precoder matrix in CF . The complexity of our method
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is lower, since the computation effort of BER formula in (2.11) is higher than

computing the product of σ2
ek

. Simulation shows that the performance of our

method is very close to the performance of exhaustive search in [7].

5.2.2 M < Mt case

Unlike the square precoder case, the total MSE of the rectangular precoder is not

the same for all precoders. Therefore, total MSE and error covariances equaliza-

tion should both be considered in selecting the precoder. We propose to use the

following simple cost function,

ASS(F) =

M−1∑

l=0

(σ2
el
)2, (5.6)

where the subscript SS is a reminder that it is the summation of the squared

error covariance. Note that the squared function (·)2 is convex. Thus,

ASS(F) =
M−1∑

l=0

(σ2
el
)2 ≥

(∑M−1
l=0 σ2

el

M

)2

. (5.7)

The equality of (5.7) holds if σ2
ek

is equalized. This corresponds to the er-

ror covariance equalizing property of the BER optimal precoder. In addition,

(
∑M−1

l=0 σ2
el
/M)2 is a monotone increasing function of total MSE,

∑M−1
l=0 σ2

el
. And

ASS(F) is a upper bound of (
∑M−1

l=0 σ2
el
/M)2. So minimizing ASS(F) is equal to

minimizing the upper bound of the total MSE, which corresponds to the total

MSE minimizing property in some degree. A selection criterion of squared error

covariance’s summation is

F̂ = arg min
F∈CF

ASS(F). (5.8)

The computation effort of ASS is the squared function for each σ2
ek

and the sum-

mation. The complexity is lower than the BER criterion in [7]. The simulation

result will show that the performance of summation of squared error covariance

criterion (SS criterion) is very close to that of the BER criterion.
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M M Mt

Figure 5.1: Two step transmitter

5.3 Two-steps Design of Precoder System

In this subsection, we proposed a two-step system which is modified from the

conventional one-step precoder system [5,7]. The proposed two-steps system can

lower the complexity by reducing the number of searches.

Referring to the system model in Section 5.1, equal bit allocation and uniform

power distribution are assumed. The transmission rate per channel use is Rb and

the feedback bits is B. M is assumed to be smaller than Mt. As depicted in

Fig. 5.1, the spatial multiplexing is performed by two stages of precoding in two-

steps system. Each stage has a precoding matrix. FV is a Mt×M unitary matrix

chosen from codebook CFQ
and FQ is a M × M square unitary matrix selected

from codebook CFQ
. CFV

and CFQ
are the precoder codebooks designed for FV

and FQ. The codebook sizes of CFV
and CFQ

are respectively 2BV and 2BQ , where

B = BV + BQ. Given a channel, the receiver selects FV from CFV
first. After FV

is chosen, FQ is selected from CFQ
based on the choice of FV . The corresponding

indexes are sent back to the transmitter through the reverse channel together. M

modulation symbols are precoded by the equivalent precoder matrix F = FV FQ.

Receiving is performed by zero-forcing receiver or MMSE receiver of F as given

in (2.3).

Two-steps system has lower complexity compared to that of one-step system.

For one-step precoder system, the size of codebook CF is 2B. Thus, the number

of searches is 2B. For two-steps system, the total amount of matrices in CFV

and CFQ
is 2BV + 2BQ. So the number of searches is 2BV + 2BQ , which is always
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fewer than 2B if BV > 0 and BQ > 0. When B bits are equally allocated for

FV and FQ, BV = BQ = B
2
, the number of searches is the fewest. For example,

when feedback bitts B = 8, conventional one-step system [5,7] requires 2B = 256

searches. For two-steps system, only 2B/2 +2B/2 = 2×24 = 32 searches is needed.

5.3.1 Selection Criteria

Since there are two codebooks in two-steps system, two selection criteria are de-

signed for choosing FV and FQ. Motivated by the properties of BER optimal

precoder Feq = VMQ, the selection criteria expect to select the total MSE mini-

mizing precoder in CFV
and the error covariance equalizing precoder in CFQ

. Let

the BER optimal precoder be written as F = VMTT†Q, where T is an arbitrary

M × M unitary matrix. The selection criterion for each stage is as follows.

• For FV , we choose the precoder matrix that achieves the smallest total

MSE, or the trace of Re

F̂V = arg min
FV ∈CFV

trace(Re). (5.9)

Thus, F̂V is selected to be as close to VMT as possible.

• For FQ, after FV is chosen, we choose the precoder matrix that equalized

the error covariance the most. Note that the total MSE is the same for all

possible FQ. Let Re,v denotes the error autocorrelation matrix of F = F̂V .

Then,

Re = F†
QRe,vFQ.

Since FQ is square and unitary, trace(Re) is independent of FQ. Thus, we

can employ the AM-GM criterion (5.5),

F̂Q = arg max
FQ∈CFQ

M−1∏

l=0

σ2
el
.

Since F̂V is close to VMT, F̂Q is chosen to be as close to T†Q as possible.
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5.3.2 Codebook Design

The codebook designs of CFV
and CFQ

are presented in this subsection. By ob-

serving the statistic characteristic of VM , the codebook constructions of CFV
and

CFQ
are given as follows.

Design of CFV
. From [26], the random matrx VM is uniformly distributed in

V(Mt, M) and the column space of VM is also uniformly distributed in G(Mt, M).

Suppose n ≥ p, V(n, p) is the set of n×p complex unitary matrices and G(Mt, M)

is the collection of all column spaces of the matrices in V(n, p). Thus, the code-

book entries can be generated randomly following a uniform distribution. This

is called random vector quantization (RVQ) in [6].

Design of CFV
. The matrix F̂Q is chosen to be as close to TQ as possible,

where T is an arbitrary square unitary matrix. We assume that T is uniformly

distributed in V(M, M). It follows that T†Q also has a uniform distribution in

V(M, M) [26]. So we can also use a RVQ for design of CFV
.
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Chapter 6

Simulations

In our simulations, the elements of the Mr × Mt channel matrix H are complex

circularly symmetric Gaussian random variable with zero mean and unit variance.

We have used 106 channel realizations in the Monte Carlo simulations. The

receivers are MMSE in all the system considered.

6.1 The BA system

6.1.1 Distribution of Bit Allocation Vectors

M = Mt case. In this example Mr = 4, Mt = 4 and M = 4. The number

of bits transmitted per channel use is Rb = 8. The preocer F is the identity

matrix. Using (4.5), the number of possible integer bit allocation vector is 165.

The codebook contains all 165 integer bit allocation vectors. For a given channel

realization, the best bit allocation vector in the codebook is chosen using the

BER criterion in (4.7). Fig. 6.1 shows the distribution of the bit allocation

vectors, where the indexes of the vectors are ordered so that the probabilities

are in decreasing order. The cumulative distribution function (cdf) is shown in

Fig. 6.2. We can see that some bit allocation vectors are far more probable than

others. The probability of the 43 most probable bit allocation vectors is more

than 99.96%. In the following subsections we will choose the most probable 2B

bit allocation vectors obtained in experiments like this example and use them as

codewords when the number of feedback bits is B.
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Figure 6.1: Probability mass function of the bit allocation vectors, where the
indexes of the vectors are ordered so that the probabilities are in nonincreasing
order for Mr = 4, Mt = 4, M = 4 and Rb = 8
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Figure 6.2: Corresponding CDF
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M < Mt case. In this example Mr = 3, Mt = 4 and M = 3. The number

of bits transmitted per channel use is Rb = 8. The augmented preocer F is the

identity matrix. Using (4.9), the number of possible integer bit allocation vector

is 130. The codebook contains all 130 integer bit allocation vectors. For a given

channel realization, the best bit allocation vector in the codebook is chosen using

the BER criterion in (4.7). Fig. 6.3 shows the distribution of the bit allocation

vectors, where the indexes of the vectors are ordered so that the probabilities

are in decreasing order. The cumulative distribution function is shown in Fig.

6.4. We can see that some bit allocation vectors are far more probable than

others. The probability of the 78 most probable bit allocation vectors is more than

99.96%. Like M = Mtcase, we will choose the most probable 2B bit allocation

vectors and use them as codewords when the number of feedback bits is B.
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Figure 6.3: Probability mass function of the bit allocation vectors, where the
indexes of the vectors are ordered so that the probabilities are in nonincreasing
order for Mr = 3, Mt = 4, M = 3 and Rb = 8
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Figure 6.4: Corresponding CDF

6.1.2 BER of BA System

The case Mr = 4, Mt = 4, M = 4 and Rb = 8. The square unitary precoder is the

identity matrix I4. Using (4.5), the number of all possible bit allocation vectors

in this case is 165, which corresponds to 8 bits. The BERs of the BA system for

different B are shown in Fig. 6.5. When the number of feedback bits is equal to

B, the codebook Cb is constructed by choosing the most probable 2B bit allocation

vectors as mentioned in previous example. The BER improves as the number of

feedback bits B increases. For the case B = 8, there are 165 vectors in Cb and the

best integer bit allocation vector is chosen to minimize the BER. We can see that

the error rate of B = 3 is close to that of B = 8, i.e., the performance of the best

integer bit allocation vector. Observe that the curves correspond to B = 6 and

B = 8, are indistinguishable in the figure. We can understand this by examining

the distribution plot in Fig. 6.2. The cdf is very close to one for k ≥ 50. When

we increase B from 6 to 7 to 8, the added codewords are almost never chosen and

there is no improvement. The figure also shows the BER when B = 2 and the

codebook C∗
b in (4.14) is used. The performance is not as good as the case that

use the most probable 4 bit allocation vectors as codewords.
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Figure 6.5: Bit error rate of BA system for Mr = 4, Mt = 4, M = 4 and Rb = 8

The case Mr = 2, Mt = 4, M = 2 and Rb = 4. The augmented precoder

F′ = I4. The total number of possible integer bit allocation vectors computed

using (4.9) is 22. The BERs of the BA system using different number of feedback

bits are shown in Fig. 6.6. The codebooks for different B are generated as we

did in M = Mt case. The curves for B = 4, 5 are almost identical because when

B goes from 4 to 5 the added codewords have very small probability, like in the

previous example. We also see that the gap between the error rate of B = 3

and that of B = 5 (the performance of the best integer bit allocation vector) is

a small one. For B = 2, the codebook designed by choosing the most probable

bit allocation vectors is the same as C∗
b , so the two curves overlap. In the figure

we have also shown the performance when the precoder is a fixed 4 × 2 matrix

obtained by retaining the first 2 columns of the 4 × 4 normalized unitary DFT

matrix. The performance of augmented precoder is much better than that of a

fixed precoder.
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Figure 6.6: Bit error rate of BA system for Mr = 2, Mt = 4, M = 2 and Rb = 4

The case Mr = 3, Mt = 3, M = 3 and Rb = 8. The square unitary precoder

is the identity matrix I3. Using (4.5), the number of all possible bit allocation

vectors in this case is 45, which corresponds to 6 bits. The BERs of the BA system

for different B are shown in Fig. 6.7. Like previous examples, the codebook

Cb is constructed by choosing the most probable 2B bit allocation vectors as

mentioned in previous example. The BER improves as the number of feedback

bits B increases. For the case B = 6, there are 45 vectors in Cb and the best

integer bit allocation vector is chosen to minimize the BER. Observe that the

curves correspond to B = 5 and B = 6, are indistinguishable in the figure. The

figure also shows the BER when B = 2 and the codebook C∗
b in (4.14) is used.

The performance is not as good as the case that use the most probable 4 bit

allocation vectors as codewords.
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Figure 6.7: Bit error rate of BA system for Mr = 3, Mt = 3, M = 3 and Rb = 8

The case Mr = 3, Mt = 4, M = 3 and Rb = 8. The augmented precoder F′ = I4.

The total number of possible integer bit allocation vectors computed using (4.9)

is 130. The BERs of the BA system using different number of feedback bits are

shown in Fig. 6.8. The codebooks for different B are generated as we mentioned

before. The curves for B = 6 to B = 8 are almost identical because when B goes

from 6 to 8 the added codewords have very small probability. We also see that

the gap between the error rate of B = 3 and that of B = 8 (the performance of

the best integer bit allocation vector) is a small one. The performance of using C∗
b

is not as good as using the most probable 4 bit allocation vectors as codewords.

In the figure we have also shown the performance when the precoder is a fixed

4 × 3 matrix obtained by retaining the first 3 columns of the 4 × 4 normalized

unitary DFT matrix. The performance of augmented precoder is much better

than that of a fixed precoder.

53



5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
0
/N

0

B
E

R

 

 
BA B=2 (Cb*)
fixed B=6
BA B=1
BA B=2
BA B=3
BA B=6
BA B=8

Figure 6.8: Bit error rate of BA system for Mr = 3, Mt = 4, M = 3 and Rb = 8

6.1.3 Comparisons of BER

In thisexample we will compare the BA system with the precoding system [7], in

which the feedback is the index of the optimal precoder in the codebook and bits

uniformly loaded on all M symbols transmitted. In addition, we will compare

with multimode antenna selection (MMAS) [17] introduced in Section 3.2, and

multimode precoding (MMP) [18] reviewed in Section 3.3.

The case Mr = 4, Mt = 4, M = 4 and Rb = 8. The result are shown in Fig 6.9.

The BA, MMAS and MMP systems with finite rate feedback are better than the

precoder system with unquantized optimal precoder (infinite feedback bits). Also

shown in the figure is BA with unquatized bit allocation computed in (4.28). It

is below the curve of the precoder system with unquantized precoder, as shown

in section 4.4.2. The performance of BA system with 3 feedback bits is similar to

that of MMAS with 4 bits of feedback for small SNR, and slightly better for large
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SNR. When there are more feedback bits, e.g., B = 8, MMP system outperforms

the rest.
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Figure 6.9: Comparison of BER for Mr = 4, Mt = 4, M = 4 and Rb = 8

The case Mr = 2, Mt = 4, M = 2 and Rb = 4. Fig. 6.10 shows the comparison

for Mr = 2, Mt = 4, M = 2 and Rb = 4. As M < Mt, the precoding system

with unquatized precoder can be better than BA system, as we have explained

in section 4.4.2. We see that for low SNR the precoder system with unquantized

precoder is the best among all system shown in the figure. If we consider finite

feedback rate, the BA, MMAS and MMP systems are better. Similar to Fig. 6.9,

the BA system with B = 3 is slightly better than MMAS with B = 4 and the

MMP system outperforms the other 3 systems if more feedback bits are available.
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Figure 6.10: Comparison of BER for Mr = 2, Mt = 4, M = 2 and Rb = 4

The case Mr = 3, Mt = 3, M = 3 and Rb = 8. The result are shown in Fig

6.11. Since Rb is not divisible for M , it is unrealizable to implement precoder

system with uniform bit loading. The BA, MMAS and MMP systems with finite

rate feedback are present in this figure. Also shown in the figure is BA with

unquatized bit allocation computed in (4.28). The performance of BA system

with B = 3 is similar to that of MMP with B = 6 and is slightly better than

MMP with B = 3 and MMAS with B = 3.
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Figure 6.11: Comparison of BER for Mr = 3, Mt = 3, M = 3 and Rb = 8

The case Mr = 3, Mt = 4, M = 3 and Rb = 8. The result are shown in Fig

6.12. Since Rb is not divisible for M , it is unrealizable to implement precoder

system with uniform bit loading. The BA, MMAS, MMP systems with finite rate

feedback and BA with unquatized bit allocation computed in (4.28) is shown.

The performance of BA system with 3 feedback bits is close to that of MMP

with B = 4 and is better than that of MMAS with B = 4. When there are more

feedback bits, e.g., B = 8, MMP system outperforms the rest.

57



5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
0
/N

0

B
E

R

 

 
MMP (B=4)
MMP (B=8)
MMAS (B=4)
BA (B=3)
BA (unquantized)

Figure 6.12: Comparison of BER for Mr = 3, Mt = 4, M = 3 and Rb = 8

6.1.4 BER for Different Precoders

The BER plots are given for three different types of Mt × Mt precoders, (i) the

identity matrix, (ii) the normalized DFT matrix WMt
and (iii) the precoder is

pulled out one by one from a sequence of Mt × Mt random unitary matrices

known to both the transmitter and receiver, as in RVQ [6]. In Fig. 6.13, we use

Mr = 3, Mt = 3, M = 3 and Rb = 8. We can see that the curves of all three

types of precoders overlap for the same B. Fig. 6.14 shows the performance

for Mr = 3, Mt = 4, M = 3 and Rb = 8. We use the same three types of

matrices as initial precoders. Again the performance is the same regardless of

the augmented precoder. The simulation corroborates the result in section 4.2.2

that the performance of the BA system is not affected by the choice of augmented

precoder. To have a lower computational complexity at the transmitter, we can

simply choose the identity matrix.
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Figure 6.13: BER of the BA system with different precoders for Mr = 3, Mt = 3,
M = 3 and Rb = 8
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Figure 6.14: BER of the BA system with different precoders for Mr = 3, Mt = 4,
M = 3 and Rb = 8

6.1.5 Efficient Method of Selecting Optimal Bit Alloca-

tion Vector

In this example, we show the usefulness of the efficient searching method proposed

in Section 4.5. is also plotted to provide comparison. In figure 6.15, the bit error

rate obtained using the exhaustive search in Section 3.1 is denoted by BA and

that obtained using the efficient method in Section 4.5 is denoted as BA2. The

precoder F = I4. The bit allocation codebook Cb for B is constructed as in

previous examples and the same Cb is used for both BA and BA2. Curves in

Fig. 6.15 shows that the quantization loss of our proposed searching method is

small, which can be observed from the small gaps between the BA and BA2.

From Section 4.5, the size of SF or SF,C indicates the number of times (4.26) is

computed. Using the efficient method, the sizes of SF,C is 2 for B = 1, 8 for

B = 3, and 14 for B = 6. If b′
opt is used, the size of SF is 15.
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Figure 6.15: BER of the efficient method proposed in Sec. 4.5 for Mr = 4,
Mt = 4, M = 4 and Rb = 8

6.2 Criteria and Two-step Design for Precoder

System

In this subsection, we presented the simulations of the selection criteria and the

two-step system design for the precoder system discussed in section 5.2 and sec-

tion 5.3. The MIMO limited feedback system here is designed to send back

information of precoder matrix. Bits and power is assumed to be equally allo-

cated.

6.2.1 Simple Selection Criteria

Criteria for square precoder. In this example, various selection criteria for square

precoder are compared. These selection criteria include the AM-GM selection

(AMGM) criterion developed in (5.5), trace function of Re criterion (TrMSE)
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proposed in [5] and the BER-based selection criterion (BER) introduced in section

3.1. The BER optimal unitary precoder with infinite feedback bits is also plotted

to provide benchmark performance. Due to the precoder independent property of

summation of error covariance mentioned in section 4.4.2, the trace function of Re

selection criterion can’t pick a precoder matrix from precoder codebook. Thus,

the trace function selection criterion will randomly selects a precoder matrix

from precoder codebook. In Fig. 6.16, Mr = 4, Mt = 4, M = 4, and Rb = 8, the

feedback bits B = 8 shows that the AM-GM selection criterion and BER-based

criterion both yield BER performance very close to that of infinite feedback case.

Note that the AM-GM selection criterion requires computation of the product of

error covariance.Thus, the complexity is lower compared to BER-based criterion.
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Figure 6.16: BER of different selection criterion for Mr = 4, Mt = 4, M = 4 and
Rb = 8
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Criteria of Rectangular Precoder. In this example, we compare the criterion of

summation of squared error covariance (SS) in (5.8), selection criterion of trace

function of Re (TrMSE) in [5], and BER-based selection criterion (BER) in [7].

Optimal precoder with infinite feedback bits in (4.32) is also plotted. For feedback

bits B = 6, Fig. 6.17 shows that SS criterion and BER criterion are better than

TrMSE criterion. In addition the BER performance of the lower-complexity SS

criterion is very close to that of using BER criterion. This observation shows the

usefulness of the selection criterion of summation of squared error covariance.
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Figure 6.17: BER of different selection criterion for Mr = 4, Mt = 5, M = 4 and
Rb = 8
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6.2.2 Proposed Two-step System

In this example, we show the BER performance of two step system in section

5.3. The two step system has separate selection criteria for FV and FQ. We first

select FV . The criteria we considered for FV are sum of squared error covariance

criterion in (5.8) (SS), trace function of Re criterion in [5] (TrMSE) and BER

criterion in [7] (BER). After FV is chosen, FQ is selected from CFQ
for the chosen

FV . The selection criteria for choosing FQ include the AM-GM selection criterion

(AMGM), BER criterion, and sum of squared error covariance criterion (SS).

Figure 6.18 shows the BER performance using different selection criterion for FQ

when FV is chosen using TrMSE criterion. In this example Mr = 4, Mt = 5,

M = 4, Rb = 8 and BV = 4 and BQ = 4. Both CFV
and CFQ

are generated

by RVQ method [6]. It can be observed that the difference between AM-GM

criterion, BER criterion and SS criterion is almost negligible. Hence, we can use

the low complexity AM-GM selection criterion for FQ.
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Figure 6.18: BER of different selection criterion of FQ for Mr = 4, Mt = 5,
M = 4 and Rb = 8

64



The BER performance for different FV selection criteria is shown in Fig.

6.19. The system has Mr = 4, Mt = 5, M = 4 and Rb = 8. The matrix FQ

is chosen using the AM-GM criterion. The feedback bits B = 8 are equally

divided for CFV
and CFQ

, BV = 3 and BQ = 3. We compare sum of squared

error covariance criterion, trace function of Re criterion and BER-based selection

criterion for choosing Mt × M precoder matrix FV . The BER curves are close

but trace function of Re (total MSE) criterion is slightly better than the other

two selection criteria. TrMSE criterion selects the total MSE minimizing FV

but the other two criteria consider total MSE minimizing and error covariance

equalizing together. Therefore, the AM-GM selection criterion for CFQ
combined

with the trace function of Re for CFV
provides a low-complexity design for two

step system.
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Figure 6.19: BER of different selection criterion of FV for Mr4 =, Mt = 5, M = 4
and Rb = 8
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Comparison between one-step and two-step system. In figure 6.20 the BER per-

formance of one-step system and two-step system are compared. In this example

Mr = 4, Mt = 5, M = 4 and Rb = 8. The feedback bit B = 8. For one-steps

system, a precoder codeook of size 2B from [7] is prepared. The BER criterion

in (3.1) is employed. For two-step system, BV = 4 and BQ = 4. The code-

books CFV
and CFQ

are generated using RVQ method [6]. TrMSE criterion is

used for FV selection and AMGM criterion is used for FQ selection. A similar

hierarchical system (hierarchical) with two precoder codebooks [32] is also pro-

vided. From [32], the feedback bits allocation of hierarchical system is 6 bits for

one Grassmanian codebook and 2 bits for one rotational based codebook. The

performance of BER optimal precoder with infinite feedback bits is also plotted.

Observing from figure 6.20, the BER optimal precoder has the best BER, and the

curve of the two-step system is close to that of one-step system. In addition, The

performance of two-steps system is slightly better than hierarchical system. Note

that the number of searches for two-step system is 32, the numbers of searches

for one-step system and hierarchical system are respectively 256 and 68.
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Figure 6.20: BER comparison of one-step and two-steps systems for Mr = 4,
Mt = 5, M = 4 and Rb = 8
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Chapter 7

Conclusions

In this paper we first proposed to feedback only bit allocation for MIMO systems

with limited feedback and the system is called a BA systems. Secondly, for

precoder system with limited feedback, we describe two insightful properties of

the BER optimal precoder. Motivated by these two properties, we develop two

selection criteria for conventional one-step system and propose a two-steps design

In proposed BA system, the augmented precoder is assumed to be known to

both transmitter and receiver. With the BA scheme, the bits can be nonuniformly

loaded. By allowing general bit allocation, bits can be allocated according to the

channel. We have also shown that the proposed BA system can achieve diversity

order of MrMt using log2(Mt) bits. The optimal augmented precoder can be

any square unitary matrix. Furthermore, the unconstrained bit allocation is

derived. Using the unconstrained bit allocation, we develop an efficient method

for selecting the BER-minimizing bit allocation vectors from the codebook.

For precoder feedback system, two simple selection criterion are developed for

square and rectangular precoders respectively, and a two-step system is designed

for reducing the complexity. These selection criteria for one-step system are

easy to compute and provide BER performance close to the BER-based selection

criterion. The two-step system contains two precoder matrices in transmitter and

lower the number of searches. Many interesting problem remain to be solved,

such as the design of bit allocation codebook and the feedback bits allocation for

two-step system.
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