
Multimode Antenna Selection with Reduced
Complexity for Zero-forcing Receiver

Wan-Chen Yeh

Advisor: Dr. Shang-Ho Tsai
Department of Electrical and Control Engineering

National Chiao Tung University

August 8, 2010

Abstract

In this thesis, we proposed reduced-complexity algorithms to select ap-
propriate transmit antennas for MIMO system with zero-forcing receiver.
Two criteria for selecting antennas are derived: achievable data rate max-
imization and average symbol error rate minimization. In addition, bit
allocation is also applied to improve the performance. The computational
complexity can be reduced by simplifying search strategy and matrix in-
version. The computational complexity analysis and simulation results are
given to see that the advantages of the proposed algorithm.
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Chapter 1

Introduction

Multiple-input multiple-output (MIMO) technique have been widely employed in

wireless systems. MIMO systems were first investigated in the 1980s by simula-

tions on computers [1]. MIMO signaling can improve wireless systems mainly in

two aspects: one is diversity [16] and the other is spatial multiplexing.

Diversity To ensure the reliability of a wireless system, the strength of a sin-

gle signal path should be as large as possible. However in practice, this path

may be in a deep fade. When the path is in deep fade, the communication sys-

tem may suffer from errors. The problem can be conquered in spatial domain.

Antenna diversity or spatial diversity, is obtained by placing multiple antennas

at the transmitter or/and receiver which are spaced sufficiently. Multiple-input

single-output (MISO) systems can be used to obtained transmit diversity and

single-input multiple-output (SIMO) systems can be used to obtained receive

diversity. With multiple antennas, independent copies of the same signal are

available, and they are combined into a signal with high quality, even though

there may be some copies of low quality due to fading. Therefore, even in chal-

lenging wireless environments, a high-quality transmission is possible for MIMO

system.

Spatial multiplexing The data stream to be transmitted is demultiplexed into

several substreams modulated independently and transmitted on different trans-

mit antennas [2], [3]. The multiple received antennas with channel knowledge

are used for distinguishing different data streams at receiver. The advantage of
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spatial multiplexing is the transmission rate can be increased by transmitting

independent symbols in different transmit antennas.

Spatial multiplexing shows that the transmission rate can be increased by

transmitting independent data streams in different antennas. To achieve the

maximum capacity, water-filling power allocation can be used [16]. Water-filling

power allocation can be used for different data streams to achieve the maximum

channel capacity. With water-filling power allocation, using all transmit antennas

always leads to the best performance. However, equal power allocation instead of

water-filling power allocation is usually used in practical wireless systems since

it does not require to send back the power allocation table to the transmit side.

Unlike water-filling power allocation, using all transmit antenna in equal power

allocated systems does not always lead to the best performance; that is, some

transmit antennas may have bad conditions, redistributing the power originally

for antennas with bad condition to that with good condition can significantly im-

prove the overall performance, thus selecting proper transmit antennas is needed.

This concept was first discovered in [4]. Similar concept to select proper transmit

antennas to minimize vector symbol error rate (VSER) was proposed by [10];

and the concept to select proper transmit antennas was called multimode an-

tenna selection in [10]. Multimode antenna selection provides additional array

gain. The selection criteria in [10] focus on the minimization of nearest neighbor

union bound (NNUB) to minimize VSER for linear receivers. The constellation

size is the same for each substream, i.e. equal bit allocation. Several related

topics have been discussed for different criteria. In [9], precoding with codebook

design together with multimode antenna selection was proposed to minimize the

probability of error and maximize the mutual information for independent and

identically distributed (i.i.d.) Gaussian signaling. Other topics for multimode

antenna selection such as [5] and [6] were discussed for power control and relay

systems respectively.

In MIMO systems, the problem of maximizing transmission data rate is a

popular topic [8], [9]. However in practice, bit budget is usually given in advance

to assign bits; here the constellation size is adaptive varied by the number of
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assigned bits. This is known as bit allocation or bit loading [15]. With this

technique, the well-behaved channel will be allocated more bits to transmit signal.

Bit allocation is usually designed jointly with transceiver designs for different

kinds of optimization problems. For instance, used in multicarrier or Discrete

Multitone (DMT) systems [11], [12]. For MIMO systems, bit allocation was

considered in [7], [8].

In this thesis, we consider multimode antenna selection for zero-forcing (ZF)

receiver in optimizing the following two criteria: i.) to achieve maximum data

rate, and ii.) to attain minimum symbol error rate (SER). In problem i.), the total

transmission power is fixed and the power for each substream is equal. Therefore,

the achievable data rate can be increased by multimode antenna selection. In

practical systems, bit budget is given in advance by well allocating the given

bits to the selected substreams rather than equally allocating the bits [10] can

further reduce the SER. The optimal bit allocation used in this thesis is water-

filling bit allocation [15]. We investigate the performance of bit allocation for the

selected substreams obtained by problem i.). In problem ii.), the average SER is

minimized by selecting appropriate transmit antennas. By using different design

criteria, the performance of the proposed scheme slightly outperforms that in

[10].

However, for optimal multimode antenna selection for problem i.) and ii.)

mentioned above or even that in [10], there are two issues for computational

complexity. First, the strategy for optimal selection is exhaustive search which

demands large number of iterations. Second, with zero-forcing (ZF) receiver, the

objective functions in each iteration for problem i.) and ii.) need matrix inversion

and matrix multiplications. To simplify the computational complexity: first, in

order to reduce the number of iterations, greedy search [13] is used. The greedy

search determines the locally optimal selection at each stage, and hopes to obtain

the global optimal selection. Second, in order to simplify the matrix multiplica-

tion and matrix inversion, the inversion property of a partitioned matrix in [20]

is applied. Although the computation is simplified, the results of matrix inver-

sion and matrix multiplication can be equally obtained. With greedy search, the

3



simplification of matrix inversion and matrix multiplications in every iterations

can be reduced to vector multiplication and scalar division. The proposed algo-

rithm can greatly reduce the computational complexity with little performance

loss compared to that in exhaustive search. The comparison will be presented in

latter sections by complexity analysis and simulation results.

This thesis is organized as follows. In Chapter 2, we introduce the system

model, the corresponding mathematical models, and some assumptions. Then,

in Chapter 3, we present the proposed algorithms for the problem of maximizing

achievable data rate, and water-filling bit allocation is applied. In Chapter 4,

the proposed algorithm is applied to the problem of minimizing average SER.

Chapter 5 illustrates the performance improvements for the proposed algorithms

in Chapter 3 and 4 via Monte Carlo simulations. In Chapter 6, we make some

conclusions of that we declare in this thesis.

Notations

s : italics denote scalars

v : boldface lower-case letters denotes column vectors

A : boldface upper-case letters denotes matrices

Ai,j : the (i, j)-th element of the matrix A

AH : conjugate transpose matrix of A

A† : pseudo inverse matrix of A

Es[a] : expectation of a with respect to random variable s

CN(µ, σ) : complex Gaussian distribution with mean µ and variance σ
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Chapter 2

System model

Figure 2.1: System model.

Consider a MIMO system withMt-transmit antennas andMr-receive antennas

illustrated in Fig. 1. R bits are transmitted per symbol time. The system consists

of a spatial multiplexer that produces M -dimentional symbol vector, a symbol

mapper that maps the M -dimentional symbol vector to selected antenna subsets,

a matrix that is a function of wireless environment, a ZF receiver and symbol

detector. The low-rate feedback path sends back the information of the number

M of substreams and the index of selected antennas p to spatial multiplexer and

symbol mapper respectively.

There are R bits demultiplexed into M substreams, and modulated indepen-

dently using quadrature-amplitude modulation (QAM). The symbol vector s is
[
s1 s2 . . . sM

]T
, the number of bits of the substreams can be either equal

allocated or allocated by different subchannel status. We assume that the total
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transmit power is normalized to one, and each substream has equal power, i.e.

Es[ss
H ] = (1/M)IM , where IM is an M ×M indentity matrix.

Given the number M of substreams, the symbol vector s is divided into M

substremas and mapped to the corresponding antennas. Let WM be the set of
(
Mt

M

)
submatrices taken by choosing M columns from Mt ×Mt identity matrix.

For each M , WM can be written as
{
WM,1, · · · ,WM,(Mt

M )

}
. WM,p is called

symbol mapper which maps the substreams to the selected antennas and consists

of M column vectors of Mt × Mt identity matrix. The subscripts of WM,p: M

represents the number of substreams, also it is calledmode in [9], [10]; p represents

the index of selected transmit antennas (index of selected columns of H). For a

3 × 3 MIMO system,

W1 =








1
0
0


 ,




0
1
0


 ,




0
0
1





 ,

W2 =








1 0
0 1
0 0


 ,




1 0
0 0
0 1


 ,




0 0
1 0
0 1





 ,

andW3 =








1 0 0
0 1 0
0 0 1





 . (2.1)

The channel H is a matrix with entry hr,q, where r and q represent the indices

of receive and transmit antenna respectively. The entries are modeled as proper

complex Gaussian random variable with distribution CN(0, 1). The received

symbol vector is

y = Heq · s+ n (2.2)

where n =
[
n1 n2 . . . nM

]T
is complex Gaussian distributed with CN(0, N0),

and the equivalent channel after transmit antenna selection is

Heq = HWM,p. (2.3)

At the receiver, we use zero-forcing (ZF) receiver G = (HWM,p)
† [15], to process

the received vector y. The input of symbol detector is G · y and the output is

ŝ = s+G · n.
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In this paper, we assume that the transmitter has no perfect channel knowl-

edge, while the channel H is known perfectly at the receiver. Therefore, the

optimal selection of the mode M∗ (1 ≤ M∗ ≤ Mt) and the index of selected

antenna p(1 ≤ p∗ ≤ (
Mt

M

)
) can be chosen at the receiver and sent back to the

transmitter through a zero-delay limited feedback link.
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Chapter 3

Multimode antenna selection to
maximize achievable data rate

3.1 Problem formulation and optimal solution

In this section, we select the optimal transmit antenna subsets to maximize the

achievable data rate. Suppose that a 2b-bit-QAM symbol with power Es is trans-
mitted through a zero-mean complex additive white Gaussian noise (AWGN)

channel with noise variance N0. A bound for SER of QAM symbol is then given

by [14]

Pe,2b−QAM ≤ 4(1− 1

2b
)Q(

√
3Es

(22b − 1)N0

), (3.1)

where Q(x) = 1√
2π

∫∞
x

exp
(
− τ2

2

)
dτ is Gaussian-Q function. For large number

of 22b and high SNR per bit, the upper bound given in (3.1) is quite tight. By

rearranging (3.1), we obtain the data rate [15]

b = log2


1 +

3 EsN0[
Q−1

(
SER

4(1− 2−b)

)]2


 , (3.2)

The capacity of an additive Gaussian noise channel with power Es and noise

variance N0 is given by [16]

C = log2

(
1 +

Es
N0

)
. (3.3)
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Consider (3.2) and (3.3), the former shows the bit rate that can be safely transmit-

ted without exceeding a given SER for QAM while the latter shows the achievable

bit rate with arbitrarily small error rate. For above equations, the SNR Es/N0

of uncoded QAM symbol in (3.2) should be higher than that in (3.3) if the data

rate in (3.2) is equal to the capacity in (3.3). The reason is that for small enough

SER (SER ≤ 10−2), the factor 3/
[
Q−1

(
SER/4(1− 2−b)

)]2
is less than one [15],

[19]. To achieve capacity for QAM, i.e. b = C, the SNR for QAM should be
[
Q−1

(
SER/4(1− 2−b)

)]2
/3 times larger than that in (3.3), the factor then is

defined as SNR gap:

Γ =
1

3

[
Q−1

(
SER

4(1− 2−b)

)]2
. (3.4)

For small enough error rates, the inverse Q function becomes flat, thus the SNR

gap can be approximated accurately by

Γ =
1

3

[
Q−1

(
SER

4

)]2
. (3.5)

For example, if SER = 10−5 and b is large enough, the factor is then

[Q−1 (SER/4)]
2

3
∼= 6.95 = 8.42dB. (3.6)

In our system model, the maximum achievable data rate for a substream in (3.2)

is a function of the post-processing SNR, which is the SNR at the detector. For

ZF receiver, the post-processing SNR for the i-th substream can be expressed as

[17]

SNR
(ZF )
i = γ0

1[
HH

eqHeq

]−1

i,i

, (3.7)

where γ0 = Es/N0. Therefore, by (3.5) and (3.7), the achievable data rate of the

i-th substream can be written as

bi = log2

(
1 +

SNR
(ZF )
i

Γ

)
= log2


1 +

γ0

Γ
[
HH

eqHeq

]−1

i,i


 . (3.8)

It is worth emphasizing the desired data rate in (3.8) is the same as the following

equation for F = WM,p and G = H†
eq derived in [18],

bi = D − log2 ci − log2[F
HF]i,i − log2[GGH ]i,i, (3.9)
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where F is linear percoder matrix, G is linear equalizer, and ci is given by

ΓN0 =
N0

3

[
Q−1 (SER/4)

]2
. (3.10)

The proof is in Appendix A.

Figure 3.1: A water filling interpretation of the optimal bit allocation.

Let us illustrate (3.9) in Fig. 3.1, which is the bit allocation for a fixed power

and equal substream power. It is like pouring water into a tank. The water level

D in Fig. 3.1 and (3.9) is the logarithm of substream power, i.e. log2(1/M). The

subscripts of a and b represent the indices of substreams. With uneven floor ai

and the water level D, bi bits are allocated to achieve water height D for the i-th

substream. By (3.9), the floor ai for each substream is related to the noise and

the SNR gap, i.e.

ai = log2 ci + log2[F
HF]i,i + log2[GGH ]i,i (3.11)

Therefore, for an arbitrary SER for each substream, the problem of maximizing

the achievable data rate subject to the ZF constraint can be written as follows:

b = max
M=M∗,p=p∗

M∑
i=1

bi

= max
M=M∗,p=p∗

M∑
i=1

log2


1 +

γ0

Γ
[
HH

eqHeq

]−1

i,i


 (3.12)

s.t. G = (HWM∗,p∗)
† (3.13)
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Note that bi is a function of M and p, and p is the indices of selected antennas

defined in (2.3).

With transmit antenna selection by (3.12), the achievable transmission data

rate can be more than that without antenna selection; the reason is that the

transmit power for a data stream is limited to one, and the power of each sub-

stream is averaged and decreased as number of transmit antennas is increased. In

order to allocate the power efficiently to each substream, the worse substreams

are dropped. Then, the power originally for the dropped antennas can be re-

distributed to all the selected antennas to improve the performance.

Exhaustive search. Exhaustive search is a general problem-solving tech-

nique that computes all candidates for the solution and decide which candidate

matches the objective function. For the optimal multimode antenna selection

of maximizing achievable data rate in (3.12), we must calculate all the achiev-

able data rates under the ZF constraint for all possible equivalent channels. The

equivalent channels in (2.3) are calculated by all possible symbol mappers WM,p

from the sets WM , where 1 ≤ M ≤ Mt, e.g. in (2.1). The optimal multimode

antenna selection is obtained from the maximal achievable data rate.

However, the computational complexity is dominated by the number of trans-

mit antennas in O(
√
MMt

t ). As the number of transmit antenna is increased, the

complexity is then prohibited. To overcome the complexity issue, we propose a

simplified algorithm in the following section.

3.2 Proposed multimode antenna selection

3.2.1 Greedy selection algorithm

Instead of using exhaustive search in previous section which demands a huge

computations when Mt is large, we propose a suboptimal greedy search strategy

which has lower computational complexity than exhaustive search. The algorithm

is described in Algorithm 1. The procedure of Algorithm 1 is explained as follows:

In Step 1, S and HS are define as the indices set of transmit antennas and the

channel matrix that contains transmit antennas in set S respectively. The sum
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rate for mode Mt is obtained in Step 2. In Step 4 , we remove one antenna

from present antennas, and corresponding sum rates are calculated to obtain the

maximal sum rate for mode M . In Steps 5-7, if the maximal data rate for mode

M is larger than mode (M+1) is, then the set P is updated to Sm. In Step 8, we

remove one antenna from present antennas according to the result in Step 4 that

leads to maximal sum rate in mode M , and S can be used to the next iteration.

Steps 3-9 are repeated until the number of elements in S is less than two. The

transmit antenna set P is determined in Step 10.

Algorithm 1: Proposed greedy multimode antenna selection to maximize
data rate.

1: Define the transmit antenna indices set S = {1, 2, · · · ,Mt}.
2: Obtain b(S) which is the sum rate for mode M = Mt by (3.2).
3: while |S| ≥ 2 do
4: m = argmax

r
b(Sr), where Sr = S − {r}, r ∈ S.

5: if b(Sm) > b(S) then
6: P = Sm

7: end if
8: S = Sm

9: end while
10: The determined transmit antenna set is P .

3.2.2 Simplified greedy algorithm

For exhaustive search, the matrix inversion in (3.7) should be calculated every

iteration for different transmit antenna sets. Instead of large computational com-

plexity due to matrix inversion in all iterations, we can reduce the computations

of matrix inversion. To solve (3.12) using greedy algorithm, (3.7) must be calcu-

lated for obtaining (3.8). From (2.3), the equivalent channel is a submatrix of H

obtained by extracting M columns from H. Therefore, the relationship among all

the matrix inversions in (3.7) for different transmit antenna sets can be applied

to simplify the computational complexity.

Lemma. 1. Given an m ×m nonsingular matrix A that can be partitioned as
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follow:

A =

[
A11 A12

A21 A22

]
, (3.14)

where A11,A12,A21, and A22 are submatrices of A; A11 and A22 are nonsingular

matrices. We write B = A−1 for notational convenience

B =

[
B11 B12

B21 B22

]
,

where the submatrices of B are the same sizes as the corresponding submatrices

in A. If A11 −A12A
−1
22 A21 and A22 −A21A

−1
11 A12 are nonsingular, we have [20]

B11 =
(
A11 −A12A

−1
22 A21

)−1
,

B22 =
(
A22 −A21A

−1
11 A12

)−1
. (3.15)

¥

Because of the equivalent channel in (2.3) is a submatrix of H, the matrix inver-

sion
[
HH

eqHeq

]−1
is a submatrix of

[
HHH

]−1
and an M ×M nonsingular matrix

(M ≤ Mt) in (3.7). Therefore, we can simplify the matrix inversion computation

by using lemma 1.

Theorem. 1. Consider an Mr ×Mt channel H (Mr = Mt) in (3.7)

[
HHH

]−1
=

[
A11 A12

A21 A22

]
andHHH =

[
B11 B12

B21 B22

]
. (3.16)

If the number of selected transmit antennas is m1 (m1 ≤ Mt), then Heq is an

Mr ×m1 matrix and HH
eqHeq is an m1 ×m1 submatrix of HHH. The inverse of

HH
eqHeq can be obtained from (3.15) and (3.16) given by

[
HH

eqHeq

]−1
= B−1

11 =
(
A11 −A12A

−1
22 A21

)
. (3.17)

Therefore, we can obtain
[
HH

eqHeq

]−1
by the submatrices of

[
HHH

]−1
.

¥
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Because of matrix inversion demands larger computations especially for Mt is

large, we proposed Algorithm 2 based on Theorem 1 and Algorithm 1 for sim-

plifying matrix inversion and exhaustive search respectively. The procedure of

Algorithm 2 is similar to Algorithm 1, except for the matrix inversion compu-

tation. In Step 1, we define HS as the channel matrix that contains transmit

antennas in set S, and let A be
(
HH

S HS
)−1

. Note that A can be partitioned by

Theorem 1:

A =

[
Ar ar

aH
r αr

]
. (3.18)

Because we remove an antenna at a time, αr is a scalar and ar is a column vector.

Ar is an M × M submatrix of A. In Step 4, the matrix Br which is equal to
[
HH

eqHeq

]−1
in (3.8) can be obtained by the submatrices of A without computing

matrix inversion. In Step 5, the maximal bit rate for mode M can be obtained

from Br in Step 4. In Step 9, A is updated to Am for next iteration, and the

subscript m is obtained from Step 5.

Algorithm 2: Proposed multimode antenna selection to maximize data
rate.

1: Define the transmit antenna indices set S = {1, 2, · · · ,Mt},
HS = [h1 h2 · · ·hMt ], and A =

(
HH

S HS
)−1

.
2: Obtain b(S) which is the sum rate for mode M = Mt by (3.2).
3: while |S| ≥ 2 do
4: Br = Ar − 1

αr
ara

H
r , where Sr = S − {r}, r ∈ S.

5: m = argmax
r

b(Sr) = argmax
r

∑M
i=1 log2

(
1 + γ0

ΓBr

)

6: if b(Sm) > b(S) then
7: P = Sm

8: end if
9: S = Sm, and A = Am.

10: end while
11: The determined transmit antenna set is P .

Note that in Algorithm 2, only an Mt × Mt matrix inversion is needed for

initialization. As a result, the computational complexity is dramatically reduced

due to the remove of one antenna at a time.
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3.3 Bit allocation for proposed selections with

fixed bit budget

In previous section, we proposed a suboptimal solution to maximize achievable

data rate. In practice, we have integer bit budget for the data rate, thus bit al-

location is needed. Therefore, we propose a bit allocation scheme for a given bit

budget. The proposed bit allocation aims to equalize the SER for individual sub-

channel. It turns out the equalized SER of each subchannel leads to a significant

VSER improvement. The VSER is the probability that at least one subchannel is

in error. Using the proposed transmit antenna set P obtained in Algorithm 2, the

bits are allocated to subchannels by water-filling algorithm [15] under a fixed bit

budget. Instead of allocating equal number of bits to all the subchannels in [10],

the bits can be allocated dynamically to subchannels in water-filling algorithm.

The water-filling algorithm is described as follow:

Algorithm 3: The water-filling algorithm for optimal bit allocation

1: Define |P| in Algorithm 2. Let ai be calculated from (3.11), and R be the
bit budget.

2: for k = 1 : R do
3: j = argmin

1≤i≤|P|
ai

4: bj ← bj + 1
5: aj ← aj + 1
6: end for
7: The set bj for 1 ≤ i ≤ M is the optimal bit allocation by water-filling.

The procedure of water-filling for optimal bit allocation is described as follows:

Step 1 contains definitions, |P| is the determined mode, the height of floor ai is

obtained from (3.11), and a pre-define bit budget R. In Step 3, the index of the

subchannel which has the lowest floor height is obtained as j. Then in Step 4, the

j-th subchannel is allocated one bit. After adding one bit to the j-th subchannel,

the height of floor aj is added one bit in Step 5. Steps 2-6 are repeated until the

number of allocated bits is equal to the total bit budget.

Fig. 3.2(a) and Fig. 3.2(b) are examples for water-filling bit allocation and

15



(a) (b)

Figure 3.2: (a) Water filling interpretation of optimal bit allocation with R = 12;
(b) Equal bit allocation with R = 12.

equal bit allocation with R = 12 respectively. The power of each substream is

equalized to 1/M no matter how the bits are allocated. From (3.9), we can see

that the water level D which is related to the substream power is (ai + bi). In

Fig. 3.2(a), bi is related to the height of floor ai: by Algorithm 2, (ai + bi) are

nearly the same for all the substreams, which leads nearly the same SER for all

substreams due to the assumption of equal substream power. However in Fig.

3.2(b), every substream has the same allocated bits and it results in the different

water levels, e.g. the fourth substream has much higher floor than that of the

second substream. Thus the water level of the fourth subchannel is much higher

than the second subchannel. The highest water level of fourth subchannel leads

to the highest SER among all the substreams and this degrades VSER.

The advantage of water-filling algorithm described above is that the better

the subchannel is, the more the bits can be allocated to this subchannel. The

tradeoff is that a bit allocation table is required.

3.4 Complexity analysis

In this section, we analyze and compare the computational complexity of exhaus-

tive search and Algorithm 2. We use the number of multiplications to qualify

the complexity of an algorithm. Suppose X and Y are m × n matrices, Z is an

n × p matrix, and W is a q × q nonsingular matrix. The complexity for matrix

16



multiplication and matrix inverse are shown in Table 3.1.

Table 3.1: Complexity orders of matrix operations [21].
Operation Complexity order

Matrix multiplication X · Z O(mnp)
Matrix inverse W−1 O(q3)

3.4.1 Exhaustive search

For exhaustive search mentioned in Sec. 3.1, the number of iterations for search-

ing all the possible transmit antenna sets is

Mt∑

k=1

CMt
k =

Mt∑

k=1

Mt!

k!(Mt − k)!

=
Mt∑

k=1

Mt(Mt − 1) · · · (Mt − k + 1)

k!

=
Mt∑

k=1

O

(
Mk

t

k!

)
(3.19)

The complexity of the optimal solution of (3.12) from (3.8) is dominated by

matrix inversion and multiplication in
[
HH

eqHeq

]−1
. In order to compare the

complexity of exhaustive search with the proposed algorithm, the number of

iterations in (3.19) is multiplied by the complexity order of matrix inversion and

multiplication from Table 3.1, i.e.

Mt∑

k=1

O

(
Mk

t

k!

)
O(k3) =

Mt∑

k=1

O

(
Mk

t

k!
· k3

)

(3.20)

Note that for matrix inversion and multiplication, the order are both O(k3) in

every iteration. Hence the total complexity is O(k3) as well.
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3.4.2 Algorithm 2

For Algorithm 2 mentioned in Sec. 3.2.2, the number of iterations for searching

the possible transmit antenna sets by removing one antenna at a time is given by

Mt∑

k=1

Ck
1 =

Mt∑

k=1

k (3.21)

The computational complexity of Algorithm 2 is also related to the simpli-

fication of matrix inversion and matrix multiplication in (3.15). Note that the

matrix inversion in (3.15) is reduced to a scalar division because we remove one

antenna at a time. Compare to (3.20), the computational complexity of matrix

computations for (3.21) is given by

Mt∑

k=2

k[O(k2)] +O(M3
t )

=
Mt∑

k=2

O(k3) +O(M3
t ). (3.22)

Note that each iteration needs O(k2) multiplications, observed from (3.17). Hence

the first term in line 1 of (3.22) is
∑Mt

k=2 k[O(k2)]. The last term O(M3
t ) in line

1 of (3.22) is because in Algorithm 2, we have to calculate the inversion an of

Mt ×Mt matrix at first.

Fig. 3.3 shows the comparison of computational complexity between exhaus-

tive search in (3.20) and the proposed algorithm in (3.22). Besides, the computa-

tional complexity of greedy search without matrix inverse lemma and exhaustive

search with matrix inverse lemma are also plotted. The computational complex-

ity of exhaustive search with matrix inverse lemma is lower than optimal selection

(exhaustive search without matrix inverse lemma) but higher than greedy search

without matrix inverse lemma. Furthermore, the computational complexity of

Algorithm 2 that greedy search and matrix inverse lemma are both applied is

dramatically reduced compared to optimal selection. Fig. 3.4 is zoom up of (a)

which shows the difference between with/without matrix inverse lemma: when

Mt is large, the difference is larger; e.g. Mt = 20, the difference of the number of

multiplications is about 109.
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Figure 3.3: (a) Comparison of computational complexity for optimal selection
and proposed selection; (b) Zoom up of (a).
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Chapter 4

Multimode antenna selection to
minimize symbol error rate

4.1 Problem formulation and optimal solution

According to the system model in Chapter 2, the input R bits are demultiplexed

into M streams and each substream has equal number of bits (R/M). With

minimum distance dmin between adjacent constellation points, the average power

of a 2b-bit QAM constellation is given by [15]

Eavg,QAM =
(22b − 1)d2min

6
. (4.1)

To adjust the power of each individual substream, dmin can be chosen appro-

priately. The power of each substream is (1/M). Thus, the dmin for desired

substream power can be obtained by arranging (4.1):

dmin =

√
6

M(22b − 1)
. (4.2)

Therefore, the SER of the i-th substream for 2b-bit QAM symbol in (3.1) can be

rewritten as:

Pei = 4

(
1− 1

2R/2M

)
Q



√√√√d2min

2

1[
HH

eqHeq

]−1

i,i
N0


 . (4.3)

Although (4.3) is obtained for square constellations, for large 2R/M it can

be applied for general QAM constellations which are either in rectangular shape
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(even number of bits) or in cross shape (odd number of bits). The above equation

shows that the SER for each substream is related to Heq and the minimum

distance dmin. Our goal is to reduce the average SER. Under equal bit allocation

and ZF constraint, the problem of minimizing average SER can be described as

P̄e,min = min
1≤M≤Mt,1≤p≤(Mt

M )

1

M

M∑
i=1

Pei

s.t.
M∑
i=1

bi = R and G = (HWM∗,p∗)
† (4.4)

Note that the average SER is a function of M and p. The strategy for obtaining

optimal multimode antenna selection is exhaustive search mentioned in Sec. 3.1.

Exhaustive search. For the optimal multimode antenna selection of mini-

mizing average SER in (4.4), we must calculate all the average SER under the ZF

constraint and fixed bit budget for all possible equivalent channels. The equiva-

lent channels in (2.3) are calculated by all possible symbol mappers WM,p from

the sets WM , where 1 ≤ M ≤ Mt, e.g. in (2.1). The optimal multimode antenna

selection is obtained from the minimal average SER.

As in Chapter 3, the computational complexity grows exponentially with the

number of transmit antennas, i.e. O(
√
MMt

t ). As the number of transmit antenna

is increased, the complexity is then prohibited. To overcome the complexity issue,

we propose a simplified algorithm in the following section.

4.2 Proposed multimode antenna selection

The minimization for the average SER is related to the product of substream SNR

and dmin, observed from (4.3). The proposed multimode antenna in ZF receiver

for minimizing SER is described in Algorithm 4. The procedure of Algorithm 4

is similar to Algorithm 2. In Step 1, we define HS as the channel matrix that

contains transmit antennas in set S, and A is
(
HH

S HS
)−1

. Note that the number

of substreams should be chosen appropriately for the reason that the number of

bits (R/M) allocated to each substream is an integer. If (R/M) is not an integer,

then the number of removed antennas v is added one for next iteration. For our
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case, v is either one or two. If (R/M) is an integer, we set v = 1 in Step 11 for

next iteration; otherwise, we set v = 2 in Step 13. For example, if M = 4 and

v = 2, then the set for removed antenna indices is given by

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

In Step 6, the matrix Br which is equal to
[
HH

eqHeq

]−1
in (4.3) can be obtained by

Algorithm 4: Proposed multimode antenna selection to minimize SER.

1: Define the transmit antenna indices set S = {1, 2, · · · ,Mt},
HS = [h1 h2 · · ·hMt ], and A =

(
HH

S HS
)−1

.
2: Obtain Pe(S) which is the sum rate for mode M = Mt by (3.2).
3: while |S| ≥ 2 do
4: M = |S| − 1
5: if (R/M) ∈ N then
6: Br = Ar −AtA

−1
p AH

t , where

{
for v = 1, Sr = S − {r}, r ∈ S, |r| = 1.
for v = 2, Sr = S − {r}, r = (m,n) ∈ S, and m 6= n.

7: m = argmin
r

Pe(Sr) = argmin
r

1
M

∑M
i=14

(
1− 1

2R/2M

)
Q

(√
d2min

2
1

BrN0

)

8: if Pe(Sm) > Pe(S) then
9: P = Sm

10: end if
11: S = Sm, A = Am, and v = 1.
12: else
13: v = 2.
14: end if
15: end while
16: The determined transmit antenna set is P .

the submatrices of A without computing matrix inversion. Note that r represents

the removed elements: for v = 1, |r| = 1; for v = 2, |r| = 2 and the number of

possible sets is
(
M
2

)
. In Step 7, the minimal SER for modeM can be obtained from

Br in Step 6. Note that the transmit antenna set Sr is varied by v. According

to Theorem 1, if we remove one antenna at a time (v = 1), then A in Algorithm

4 can be partitioned as in (3.18); however if we remove two antennas at a time
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(v = 2), then A can be partitioned as:

A =

[
Ar At

AH
t Ap

]
, (4.5)

where Ar is an (M − 2)× (M − 2) submatrix of A, and Ap is a 2× 2 submatrix

of A.

Note that in (4.5), if we remove one antenna at a time, then the matrix

inversion can be reduced to a scalar division as mentioned in (3.18). However,

not all the modes can be applied since (R/M) should be an integer. The number

of removed antennas may be more than one at a time. For instance, an 8 × 8

MIMO system with R = 24, the available modes are {1, 2, 4, 6, 8}. To obtain the

optimal selection for M = 6, we have to remove two antennas from eight transmit

antennas. In this case, A−1
r in (4.5) leads to an 2× 2 matrix inversion. Although

sometimes 2× 2 matrix inversion is needed, the computational complexity is still

lower than optimal selection, since a 2 × 2 matrix inversion only require two

multiplications and one addition.

4.3 Complexity Analysis

Fig. 4.1(a) illustrates the computational complexity for exhaustive search and

proposed algorithm. For exhaustive search , the computational complexity is the

same as (3.20). For the proposed algorithm, there are upper bound and lower

bound of computational complexity because the number of removed antennas may

be one or two at a time. The lower bound is the same as that in Fig. 3.3 which

represents removing one antenna at a time. The upper bound represents removing

two antennas at a time which needs a 2× 2 matrix inversion. The computational

complexity of the proposed algorithm which is in the region between the upper

bound and the lower bound is greatly reduced compared to that of exhaustive

search.
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Figure 4.1: (a) Comparison of computational complexity for exhaustive search
and Algorithm 4; (b) Zoom up of (a).
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Chapter 5

Simulation Results

In this chapter, we show the Monte Carlo simulation results of the proposed algo-

rithm and compare them with the optimal solutions in maximum achievable data

rate and minimum SER mentioned in Chapters 3 and 4 respectively. QAM is ap-

plied and the channel model is i.i.dċomplex Gaussian with distribution CN(0, 1);

10000 MIMO channel realizations were conducted in the simulations.

Experiment 1: In this experiment, we simulated maximum achievable data

rate with and without multimode antenna selection for Mr × Mt (Mr = Mt)

MIMO systems with Mt = {3, · · · , 8} in Figs. 5.1-5.6. The assigned SER for

each substream are 10−4, 10−5, and 10−6. The SNR E/N0 is total power of a

symbol vector over noise power.

The optimal multimode antenna selection for achievable data rate maxi-

mization by exhaustive search is compared to Algorithm 2 and without transmit

antenna selection. We have several interesting observations from the figures: first

the performance with multimode antenna selection greatly outperform that with-

out antenna selection. The improvement becomes more pronounced when Mt is

large. For instance, in Fig. 5.6 for an 8 × 8 MIMO system with SER= 10−4,

the achievable data rate difference between with and without multimode antenna

selection is able to achieve 12 bits. Moreover, the performance with the pro-

posed search in Algorithm 2 is very close to that with the optimal exhaustive

search observed from all the figures of this experiment. Hence the computational

complexity can be greatly reduced using our proposal in Fig. 3.3 with little
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Figure 5.1: Maximization of achievable data rate with antenna selection and
without antenna selection for 3× 3 MIMO system.
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Figure 5.2: Maximization of achievable data rate with antenna selection and
without antenna selection for 4× 4 MIMO system.
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Figure 5.3: Maximization of achievable data rate with antenna selection and
without antenna selection for 5× 5 MIMO system.
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Figure 5.4: Maximization of achievable data rate with antenna selection and
without antenna selection for 6× 6 MIMO system.
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Figure 5.5: Maximization of achievable data rate with antenna selection and
without antenna selection for 7× 7 MIMO system.
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Figure 5.6: Maximization of achievable data rate with antenna selection and
without antenna selection for 8× 8 MIMO system.
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performance loss. Furthermore, when SER is small, the achievable data rate is

limited. This is observed from (3.8).

Experiment 2: In this experiment, we simulated the VSER of water-filling

bit allocation in Algorithm 3 and based on Algorithm 2 and compare it with

that of minimizing the NNUB Criterion 4 in [10]. This experiment contains

3 × 3 and 4 × 4 MIMO system and using different number of bit budget to see

the performance improvement. The x-axies of these plots use SNR per bit, i.e.

Eb/N0 = Es/(N0(R/M)).
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Figure 5.7: Antenna selection with bit allocation and with NNUB for 3×3 MIMO
system, R = 12.

We have several interesting observations from the figures: first, for the VSER

of minimizing NNUB in [10], bi is equal allocated for all substreams. That is

different from our proposed algorithm. The VSER improvement of water-filling

bit allocation can be observed from Figs. 5.7-5.10. Moreover, the performance

is improved especially when R is increased for the same Mt and Mr. It is can

be observed from Fig. 5.8-5.10, 4 × 4 MIMO systems with bit budget R = 8,

R = 12, and R = 16. For R = 16, the performance is observable for high SNR

compared with that of Love, and the diversity is increased. Under reasonable bit
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Figure 5.8: Antenna selection with bit allocation and with NNUB for 4×4 MIMO
system, R = 8.
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Figure 5.9: Antenna selection with bit allocation and with NNUB for 4×4 MIMO
system, R = 12.
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Figure 5.10: Antenna selection with bit allocation and with NNUB for 4 × 4
MIMO system, R = 16.

budget, with more bits budget to be allocated, more bit can be allocated to the

substream which has better condition. Furthermore, in Fig. 5.7 for 3× 3 MIMO

system with R = 12, the VSER improvement for bit allocation compared to that

of Love is observable but the VSER for both are higher than that in Fig. 5.9 for

4 × 4 MIMO system with R = 12. The constellation size affects the error rate

performance.

Experiment 3: In this experiment, the VSER simulations contain the proposed

optimal selection mentioned in Sec. 4.1, Algorithm 4 in Sec. 4.2, and Criterion 4

in [10]. This experiment contains 4×4 and 6×6 MIMO systems with different bit

budgets. The x-axies of these plots use SNR per bit, i.e. Eb/N0 = Es/(N0(R/M)).

We have several interesting observations from the figures: first, the VSER of av-

erage SER minimization by exhaustive search outperforms that of Love’s scheme

in high SNR regime observed by Figs 5.12 and 5.13. Moreover, the VSER of

Algorithm 4 is close to that of exhaustive search in Fig. 5.11. In Figs. 5.12 and

5.13, the VSER of Algorithm 4 has little performance degradation compared to

exhaustive search. Nevertheless, the computational complexity is dramatically
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reduced by Algorithm 4 illustrated in Fig. 4.1. Furthermore, for the same bit

budget, the VSER is reduced when Mt and Mr is large observed by Figs. 5.12

and 5.13.
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Figure 5.11: Minimization of average symbol error rate with antenna selection
for 4× 4 MIMO system with R = 8 and M = {1, 2, 4}.
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Figure 5.12: Minimization of average symbol error rate with antenna selection
for 4× 4 MIMO system with R = 12 and M = {1, 2, 3, 4}.
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Figure 5.13: Minimization of average symbol error rate with antenna selection
for 6× 6 MIMO system with R = 12 and M = {2, 3, 4, 6}.
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Chapter 6

Conclusion

We have presented a low-complexity multimode antenna selection algorithm for

ZF receiver. By greedy search with the simplification of matrix inversion in

Theorem 1, the computational complexity is dramatically reduced and with a

near-optimal performance in maximizing achievable data rate.

It is also found that the improvement of water-filling bit allocation based on

the selection in Algorithm 2. The bit allocation is decided by the relative gains of

all substreams. When the bit budget is large enough, the diversity improvement

is observable.

In Chapter 4 we proposed multimode antenna selection of minimizing the aver-

age of SER which leads to VSER minimization. The relative channel conditions

can be more accurate calculated by averaging the performance of substreams.

The greedy search with Theorem 1 are also applied to the minimization problem

in Algorithm 4.

Fig. 3.3, 3.4 and 4.1 for achievable data rate maximization and average SER

minimization shows the computational complexity improvement for the proposed

algorithms compared to exhaustive search. By removing one or two antennas at

a time, the matrix inversion can be reduced to a scalar division or a 2× 2 matrix

inversion in (3.17). When Mt is large, the order of computational complexity

is grows exponentially with the number of transmit antennas. The proposed

algorithms are suitable especially for large number of antennas.
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Appendix A: Proof of (3.9)

By rewriting (3.8) under the high bit assumption (bi À 1), we can obtain

bi = log2


 Es
Γ
[
HH

eqHeq

]−1

i,i
N0


 = log2 Es − log2

(
Γ
[
HH

eqHeq

]−1

i,i
N0

)
(A-1)

= log2 Es − log2 Γ− log2
[
HH

eqHeq

]−1

i,i
− log2 N0 (A-2)

= log2 Es − log2 N0Γ− log2
[
HH

eqHeq

]−1

i,i
(A-3)

For (3.9), the precoder F is WM,p, and the logarithm of the term
[
FHF

]
i,i
is zero

for all i due to the diagonal terms always are one for F = WM,p. The equalizer

G is the pseudo inverse of Heq given by

G = H†
eq =

(
HH

eqHeq

)−1
HH

eq, (A-4)

the term GGH (3.9) is given by

GGH =
(
HH

eqHeq

)−1
HH

eq

[(
HH

eqHeq

)−1
HH

eq

]H
(A-5)

=
(
HH

eqHeq

)−1
HH

eqHeq

(
HH

eqHeq

)−H
(A-6)

=
(
HH

eqHeq

)−H
(A-7)

=
(
HH

eqHeq

)−1
(A-8)

Therefore, (3.9) for our problem, bi for i− th substream is given by

bi = D − log2 ci − log2
[
HH

eqHeq

]−1

i,i
, (A-9)

where D is the logarithm of substream power, and ci is the product of SNR gap

and noise power mentioned in Sec. 3.2. Therefore, for our problem, (A-3) are the

same as (A-9).
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