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煙霧偵測上的時空分析 

 
 

學生：李鎮宇    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

Chinese Abstract 
摘要 

 

近年來，基於影像式的煙霧偵測技術在智慧型監控系統中受到廣泛的重視與

研究。然而，在給定一個廣大的開放空間中來處理煙霧事件與其他的常見的干擾

物例如行人和車輛，建立一個穩定且有效率的煙霧偵測系統仍難是一個困難且具

有挑戰性的問題。在本篇論文中，我們提出了一個創新與可靠的自動化煙霧偵測

架構。本篇論文提出三種重要的特徵：邊緣模糊化、能量的逐步變化與色彩結構

的逐步變化。接下來，在考量實際火災與煙霧事件的影片與資料的稀少性下，為

了獲得更佳的一般性，我們採用基於支持向量機(Support Vector Machines)的分類

器將三種特徵結合。此系統在各種環境與干擾下執行超過六小時以上，並且證明

在實際防災應用上的穩健性與可靠性。 

本篇論文的目標是在時間域與空間域上分析煙霧的特性，由此系統所得到的

實驗結果將可以提供煙霧偵測領域上更深入的理解，並且有助於處理高誤判率和

較長的反應時間等問題。 
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English Abstract 
ABSTRACT 

 

Visual-based smoke detection techniques in surveillance systems have been 

studied for years. However, given an image in open or large spaces with typical 

smoke and disturbances of commonly moving objects such as pedestrians or vehicles, 

robust and efficient smoke detection is still a challenging problem. In this paper, we 

present a novel and reliable framework for automatic smoke detection. It exploits 

three features: edge blurring, the gradual change of energy and the gradual change of 

chromatic configuration. In order to gain proper generalization ability with respect to 

sparse training samples, the three features are combined using a support vector 

machine based classifier. This system has been run more than 6 hours in various 

conditions to verify the reliability of fire safety in the real world. 

The objective of this paper is to analyze the characteristic of smoke in spatial and 

temporal domains. The results obtained from this novel approach would provide 

better insight to operators in the field of smoke detection to handle the problems of 

high false alarm rate and long reaction time. 
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1 Chapter 1 

Introduction 
 

1.1 Motivation 
In last few years, there were average 5622.8 fire accidents per year according to 

the statistic report from the National Fire Administration. The number of dead and 

injured people was nearly 700 and the property loss was about 2 billion NT dollars 

each year. If the fire accident could be found much earlier, it is more likely to reduce 

the loss of life. 

The process of fire development mostly divided into four periods: Ignition, Fire 

Growth Period, Fully Developed Period and Decay Period as shown in Fig.1-1. 

 

 

Fig. 1-1 Processing diagram of fire development 

 

In general occurrences of fire, a great quantity of thick smoke instead of fire is 

produced in the initial stage. After flashover, fire spreads quickly and burns all spaces 

continuously. If people don’t escape from the scene of a fire before flashover, they 
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probably wouldn’t save their life. Therefore, the duration of flashover is the prime 

time for people to flee from fire. 

Conventional point-based smoke and fire detectors typically detect the presence of 

certain particles generated by smoke and fire by ionization or photometry. An 

important weakness of point detectors is that in large space, it may take a long time 

for smoke particles to reach a detector and they can’t be operated in open spaces such 

as hangers, tunnels, storage, and offshore platform. 

Owing to the limitation of the traditional concept, point-based detectors can’t detect 

fires or smokes in early stage. In recent years, many researches are devoted to video 

smoke detection that doesn’t rely on proximity of smoke to the detector. This enables 

it to incorporate standard video surveillance cameras with sophisticated image 

recognition and processing software to identify the distinctive characteristics of 

smoke patterns. In most cases, smoke usually appears before ignition. Therefore, the 

beginning of fire can be observed soon before it causes any real damage. 

 

1.2 Related Work 
 

 

Fig. 1-2 Four categories of video smoke detection 
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There are four categories of video smoke detection in the literature as shown in Fig. 

1-2. The first category is Motion-Based approaches. Kopilovic et al. [1] observed that 

the irregularities in motion due to non-rigidity of smoke. They apply a multiscale 

optical flow computation and the entropy of the motion distribution in Bayesian 

classifier to detect the special motion of smoke. In order to save computational time, 

Yuan [2] proposed a fast orientation model that produces more effective way to 

extract the motion characteristics. Although significant advances have been made in 

the development of this work, their adoption in general surveillance systems is not 

widely reported. 

The second one is Appearance-Based approaches. Toreyin et al. [3] indicated that 

smoke of an uncontrolled fire expands in time which results in regions with convex 

boundaries. Chen [4] found that airflows will make the shape of smoke to be 

variously changed at any time. Therefore, a disorder measure, the ratio of 

circumference to area for the extracted smoke region, is introduced to analyze shape 

complexity. Growth rate is obtained by increment of smoke pixels due to the diffusion 

process existed in generation of smoke. Two thresholds are determined by the 

statistical data of experiments to verify the real smoke; furthermore, the changing 

unevenness of density distribution is proposed in [5]. The difference image provides a 

natural way to represent the attribute which has more internal information in smoke 

frames than non-smoke frames. While much research has been devoted to these 

techniques, few studies have investigated the situation that smoke and non-smoke 

objects exist in the same time and the presence of moving objects from the outside of 

video scenes. 

The third one is Color-Based approaches. Smoke usually displays grayish colors 

during the burning process [4]. Two thresholds of I (intensity) component of HSI 

color space depend on statistical data and this implies that three components R, G and 
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B of the smoke pixel are equal or so. Since smoke color can’t be represented 

accurately by a single unimodal, the 3D joint probability density function can be 

decomposed in three marginal unidimensional distributions over each color axis to 

accommodate different ranges of color [6]. Independent of the fuel type, smoke 

naturally decreases the chrominance channels U and V values of the candidate region 

[3]. In spite of the early alarm capability, few experimental results have been 

conducted in the range of grayish or dull non-smoke objects. 

The fourth one is Energy-Based approaches. It is well-known that wavelet 

coefficients contain the high frequency information of the original image [7]. Since 

smoke obstructs the texture and edges in the background of an image [3], a decrease 

in wavelet energy is an important clue for smoke detection. Piccinini et al. [8] further 

improved the concept by on-line modeling the ratio between the current input frame 

energy and the background energy. This method performs well in many real cases but 

needs long reaction time and more exact validation of the input data extracted from 

surveillance systems that operate 24 hours a day. 

 

1.3 Thesis Organization 
The remainder of this thesis is organized as follows. Chapter 2 describes system 

overview. Chapter 3 shows smoke detection algorithm including background modeling, 

candidate selection, feature extraction, classification and verification. Chapter 4 shows 

experimental results and comparisons. Finally, the conclusions of this system and future 

work will be presented in chapter 5. 
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2 Chapter 2 

System Overview 
 

The presented system is an ensemble of different modules as depicted in Fig. 2-1. 

The main scope of this paper is the feature extraction and classification with respect to 

candidate region of moving objects. 

Foreground segmentation is achieved by using the background suppression 

approach presented in [9]. After background elimination, foreground is further 

analyzed to identify moving property. Moreover, feature extraction is processed in 

candidate regions. The extracted information by the system is further analyzed to 

detect smoke in the scene. 

 

 

 

Fig. 2-1 System overview 
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3 Chapter 3 

Smoke Detection Algorithm 
 

3.1 Block Processing 
Figure 3-1 is the flow chart of block processing. The input is the gray level image 

sequence, and the output is candidate blocks with moving property. There are two 

common methods for obtaining foreground image. One is temporal difference, the 

other is background subtraction. Temporal difference method is that we subtract frame 

t-1 from frame t, and the regions with a obvious intensity variation are considered as 

foreground region. Background subtraction is also in similar way but we use a 

constructed background image instead of frame t-1.  

Generally, cameras are usually set fixedly by considering surveillance monitoring 

system. Therefore, background subtraction is a better choice for our proposed 

algorithm. Foreground regions can be found by background subtraction, but they 

could also include static objects. Next, temporal difference of two successive frames 

will be calculated. The two methods are combined to further filter out static objects. 

 

 

Fig. 3-1 Block processing 
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3.1.1 Background Modeling 

Gaussian Mixture Model (GMM) [9] is a common and robust method in 

background construction, and we choose GMM to build the background image. It will 

be described as follows. 

Generally speaking, the intensity of each pixel varies in a small interval except the 

region of foreground objects. It is proper to use a Gaussian model to construct the 

background image. But in many surveillance videos, we would observe that there are 

waving leaves, sparking light, etc. In these situations, some background pixels would 

vary in several specific intervals. In other words, using two, three or more Gaussian 

distributions to model a pixel will obtain a better performance. We present the flow 

chart of GMM background construction in Fig. 3-2. 

 

 
Fig. 3-2 GMM background model construction 
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Firstly, we use a low-pass filter to reduce the noise. The GMM method models 

intensity of each pixel with K Gaussian distributions. The probability that a certain 

pixel has a value of tX  at time t can be written as. 

K

, , ,

1

( ) ( , , )t k t t k t k t

k

P X Xηω μ
=

= ⋅ ∑∑              (3.1) 

where K is the number of distributions that we used, ,k tω  represents the weight of 

k-th Gaussian in the mixture at time t, ,k tμ  is the mean of k-th Gaussian in the 

mixture at time t, ,k t∑  is the covariance matrix of the k-th Gaussian in the mixture at 

time t, and η  is a Gaussian probability density function shown in Eq. (3.2) 

( )
1

/ 2 1/ 2

1 1( , , ) exp{ ( ) ( )}
22 | |

T
t t t t t t t tn

t
X X Xη

π
μ μ μ−∑ = − − ∑ −

∑
     (3.2) 

where n is the dimension of data. In order to simplify the computation, it assumed that 

each channel of data are independent and have the same variance, and then can 

assume the covariance matrix as Eq. (3.3): 

2
, Ik t kσ∑ =                          (3.3) 

Temporal difference is applied to extract the possible background regions, and 

update pixels inside these regions. Then, we sort Gaussian distributions by the value 

of /ω σ , and choose the first B distributions to be the background model, i.e. shown 

as Eq. (3.4): 

,

1

arg min( )
b

k t
b k

B Tω
=

= >∑                  (3.4) 

When a new pixel is inputted (intensity is 1tX + ), it will be checked against the K 

distributions by turns. If the probability value is within 2.5 standard deviations, and 

this pixel is considered as background. Then, we update weight, mean, variance by Eq. 

(3.5), (3.6), (3.7): 
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, 1 , , 1(1 ) ( )k t k t k tMω α αω+ += − +               (3.5) 

1 1(1 )t t tXρ ρμ μ+ += − +                  (3.6) 

2 2
1 1 1 11 (1 ) ( ) ( )T

t t t tt t X Xσ ρ σ ρ μ μ+ + + ++ = − + − −         (3.7) 

where α  is a learning rate, , 1k tM +  is 1 for the model which matched and 0 for 

remaining models, and Eq. (3.8) shows the second learning rate ρ . 

1 , ,( | , )t k t k tXρ αη μ σ+=                   (3.8) 

Besides, the remaining Gaussians only update the weight. If there is no any 

distribution is matched, we replace the mean, variance and weight of the last 

distribution by 1tX + , a high variance and a low weight value, respectively. Figure 

3-3 shows the constructed background image by GMM. Figure 3-4 shows the 

foreground image obtained by background subtraction. 

   
(a) Video sequence             (b) GMM Background Image 

Fig. 3-3 Background image construction by GMM 

         

(a) Current image                 (b) Foreground image 
Fig. 3-4 Foreground image obtained by background subtraction 
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3.1.2 Candidate Selection 

Smoke regions come into existence and disappear continuously because of the 

special particle property during ignition and combustion as shown in Fig.3-5. It is 

inefficient to track or analyze the target using object-based method. Block-based 

technique provides a better way to solve this problem. The image will be divided into 

non-overlapped blocks, and each block has the same size in a same image. First, we 

will find out the blocks with a gray-level change. The foreground image will be 

obtained by the GMM approach, and we compute the summation of foreground image 

for each block as shown in Eq. (3.9) 

( ) 1
,

1, , ,

0,
kx y Sk

if foreground x y t T
S

otherwise
∈

⎧
⎡ ⎤ >⎪ ⎣ ⎦= ⎨

⎪
⎩

∑              (3.9) 

where Sk is the kth block and x,y is the coordinates of the scene. T1 is the predefined 

threshold. 

   

   
Fig. 3-5 Smoke regions come into existence and disappear continuously 
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Foreground regions can be found by the GMM approach, but they could also 

include static objects. Next, temporal difference of two successive frames will be 

calculated. In dynamic image analysis, all pixels in the difference image with value 

“1” are considered as moving objects in the scene. As we know, video images usually 

have a great amount of noises due to intrinsic electronic noises and quantification. So 

the difference of two successive frames pixel inevitably produces false segmentation. 

To reduce the disturbance of noises, we also compute its summation for each block to 

determine the moving property. The block difference is defined as 

( ) ( ) 2
,

1, , , , ,

0 ,
kx y Tk

if f x y t f x y t t T
T

otherwise
∈

⎧
⎡ ⎤− − Δ >⎪ ⎣ ⎦= ⎨

⎪
⎩

∑            (3.10) 

where Tk is the kth block and x,y is the coordinates of the scene, f is the input image 

and T2 is the predefined threshold. 

In order to reduce the computational cost, only when the value of background 

subtraction and temporal difference lager than the predefined thresholds will be 

regarded as candidates containing moving objects by Eq. (3.11).  

1, 1
0,

k k
k

if S AND T
B

otherwise
=⎧

= ⎨
⎩

                     (3.11) 

We consider the information of a particular block over time as a “block process” in 

the following sections. Fig.3-6 illustrates some results produced by block processing. 

   

Fig. 3-6 Results of block processing 
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3.2 2-D Spatial Wavelet Analysis 
Although the Fourier transform has been the mainstay of transform-based image 

processing since the late 1950s, a more recent transformation, called the wavelet 

transform, is now making it even easier to compress, transmit, and analyze many 

images. Unlike the Fourier transform, whose basis functions are sinusoids, wavelet 

transforms are based on small waves, called wavelets, of varying frequency and 

limited duration. This allows them to provide the equivalent of a musical score for an 

image, revealing not only what notes (frequencies) to play but also when to play them. 

Conventional Fourier transforms, on the other hand, provide only the notes or 

frequency information; temporal information is lost in the transform process. 

Now we want to transform an image (M by N) into wavelet domain. The whole 2-D 

spatial wavelet transform can be decomposed by the horizontal wavelet transform and 

the vertical wavelet transform. Fig. 3-7 is the diagram of horizontal wavelet transform. 

The direction from left to right is the wavelet decomposition, and the direction from 

left to right is the wavelet synthesis. 

 

Fig. 3-7 Horizontal wavelet transform 
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Each row of the image will be regarded as mutual independent image sequences 

and each independent row will process wavelet transform respectively. Briefly, a 

original image will be decomposed into low-band information on the left side and 

high-band information on the right side after horizontal wavelet transform. We used L 

and H stand for low-band and high-band information, respectively. 

Vertical wavelet transform will process on L and H obtained by horizontal 

transforms and the whole wavelet transform will be done. Fig. 3-8 is the diagram of 

vertical wavelet transform. The direction from left to right is the wavelet 

decomposition, and the direction from right to left is the wavelet synthesis. The data 

on the left side was processed by horizontal wavelet transform but not vertical 

wavelet transform yet. Each column of the image will be regarded as mutual 

independent image sequences and each independent column will process wavelet 

 

 

Fig. 3-8 Vertical wavelet transform 
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transform, respectively. Anyhow, the data can further separate into upside and 

underside after vertical wavelet transform. The upside is the vertical low-band 

information and the underside is the vertical high-band information as shown on the 

right side of Fig. 3-8. To operate in coordination with horizontal transform, the whole 

image data can separate into four regions, which are horizontal low-band vertical 

low-band (LL), horizontal low-band vertical high-band (LH), horizontal high-band 

vertical low-band (HL), and horizontal high-band vertical high -band (HH). 

  It is well-known that wavelet subimages contain the texture and edge information 

of the original image. Edges produce local extreme in wavelet subimages [7]. Wavelet 

subimages LH, HL, and HH contain horizontal, vertical and diagonal high frequency 

information of the original image, respectively. Fig. 3-9 is the original image and its 

single level wavelet subimages. 

 

Fig. 3-9 Original image and its single level wavelet subimages 



 

 15

Because smoke blurs the texture and edges in the background of an image, 

high-frequency information becomes much more invisible when smoke covers part of 

the scene. Therefore, details will be an important indicator of smoke due to the 

decrease in value of high-frequency information. Energy of details is calculated for 

each candidate block: 

( ) ( ) ( ) ( )2 2 2

,
, , , ,

k

k t
x y B

E B I LH x y HL x y HH x y
∈

⎡ ⎤= + +⎣ ⎦∑         (3.12) 

where Bk is the kth block of the scene, It is the input image at time t and the wavelet 

transform coefficients are shown in Fig. 3-10. 

 

 

Fig. 3-10 Two-dimension wavelet transform and its coefficients 

 

Instead of using energy of the input directly, we prefer computing the energy ratio 

of the current frame to the background model due to the cancelation of negative effect 

on different conditions and the capability of impartial measurement in the decrease: 

( ) ( )
( )

,
,
k t

k
k t

E B I
B

E B BG
α =                         (3.13) 

where BGt is the mean value of the distribution with a highest weight in the GMM 

background model. The value of the energy ratio α is our first feature in spatial 

domain, which supports the fact that the texture or edges of the scene observed by the 
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camera are no longer visible as they used to be in the current input frame. It is also 

possible to determine the location of smoke using the wavelet subimages as shown in 

Fig. 3-11. 

(a) Original frame without smoke 

(b) Frame with smoke 

Fig. 3-11 Blurring in the edges is visible by single level wavelet subimages 

 

3.3 1-D Temporal Energy Analysis 
A wave is an oscillating function of time or space and is periodic. In contrast, 

wavelets are localized waves. They have their energy concentrated in time or space 

and are suited to analysis of transient signals. While wavelet transform and STFT 

(Short Time Fourier Transform) use waves to analyze signals, the wavelet transform 

uses wavelets of finite energy (Fig. 3-12). The wavelet analysis is done similar to the 

STFT analysis. The signal to be analyzed is multiplied with a wavelet function just as 

it is multiplied with a window function in STFT, and then the transform is computed  
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(a) (b) 

Fig. 3-12 Demonstration of (a) a Wave and (b) a Wavelet 
 

for each segment generated. However, unlike STFT, in wavelet transform, the width 

of the wavelet function changes with each spectral component. The wavelet transform, 

at high frequencies, gives good time resolution and poor frequency resolution, while 

at low frequencies, the wavelet transform gives good frequency resolution and poor 

time resolution. 

  Here we only use one level of the transform for fast computation. The 1-D wavelet 

transform of a signal x is calculated by passing it through a series of filters. First the 

samples are passed through a low pass filter with impulse response g resulting in a 

convolution of the two: 

[ ] ( ) [ ] [ ][ ]
k

y n x g n x k g n k
∞

=−∞

= ∗ = −∑                (3.14) 

The signal is also decomposed simultaneously using a high-pass filter h. The outputs 

giving the detail coefficients (from the high-pass filter) and approximation 

coefficients (from the low-pass filter). It is important that the two filters are related to 

each other and they are known as a quadrature mirror filter. 

However, since half the frequencies of the signal have now been removed, half the 

samples can be discarded according to Nyquist’s rule. The filter outputs are then 

subsampled by 2. 
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[ ] [ ] [ ]2low
k

y n x k g n k
∞

=−∞

= −∑                     (3.15) 

[ ] [ ] [ ]2 1high
k

y n x k h n k
∞

=−∞

= + −∑                   (3.16) 

This decomposition has halved the time resolution since only half of each filter output 

characterizes the signal. Each output has half the frequency band of the input so the 

frequency resolution has been doubled. 

 

 

Fig. 3-13 Block diagram of 1-D DWT 

 

With the subsampling operator ↓ 

( )[ ] [ ]y k n y kn↓ =                       (3.17) 

the above summation can be written more concisely : 

( ) 2lowy x g= ∗ ↓                        (3.18) 

( ) 2highy x h= ∗ ↓                        (3.19) 

Ordinary moving objects such as pedestrians or vehicles have solid characteristic so 

we can’t see details behind through the bodies. If there is an ordinary moving object 

going through the candidate block then there will be a sudden energy change because 

of the transition from the background to the foreground object. On the contrary, initial 

smoke has semi-transparent nature and becomes less visible as time goes by.  

A gradual change of energy is guaranteed to this process and any abrupt variation 

will be regarded as a noise caused by common disturbance. One-dimension temporal 
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wavelet analysis of energy ratio α provides a proper evaluation of this phenomenon. 

We obtain high-band (details) and low-band (approximations) information by the 1-D 

DWT shown in Fig.3-13. Therefore, the disturbance can be measured by computing 

the summation of details for a predefined time interval. Obviously, ordinary solid 

moving objects produce a great quantity of details in Fig. 3-14(a). Smoke has smooth 

variation in value of energy ratio and produces few details shown in Fig. 3-14(b). The 

likelihood of the candidate block to be a smoke region is in inverse proportion to the 

parameter β  

( )
[ ]n

k

D n
B

n
β =

∑  (3.20)

where D[n] is the high-frequency information of energy ratio α and n is the number of 

time with a non-zero value of details.  

(a) (b) 

Fig. 3-14 Comparison of changes in value of energy ratio at the passage of  
(a) ordinary moving objects (b) smoke 
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3.4 1-D Temporal Chromatic Configuration Analysis 
Smoke can’t be defined by a specific color appearance. However, it is possible to 

characterize smoke by considering its effect on the color appearance of the region on 

which it covers. Besides the gradual change of energy, smoke has the same property 

of color configuration. 

Color analysis is performed in order to identify those pixels in the image that 

respect chromatic properties of smoke. The RGB color space and photometric 

invariant features are considered in the analysis. Photometric invariant features are 

functions describing the color configuration of each image coordinate discounting 

local illumination variations. Hue and saturation in the HSV color space and the 

normalized-RGB color space are two photometric invariant features in common use. 

We decided to use the normalized-RGB color space for its fast computation since it 

can be obtained by dividing the R, G and B coordinates by their total sum. The 

transfer function is given by 

BGR
Bb

BGR
Gg

BGR
Rr

++
=

++
=

++
= ,,

           (3.21)
 

This transformation projects a color vector in the RGB cube into a point on the unit 

plane described by r + g + b = 1.  

From the empirical analysis, smoke lightens or darkens each component in RGB 

color space of the covered point but smoke doesn’t severely change the values of the 

rgb color system. However, the values are likely to change in case of a material 

change. This constrain can be represented by  

( ) ( )
( ) ( )
( ) ( )

, , ,

, , ,

, , ,

k

k

k

r B t r x y t t

g B t g x y t t

b B t b x y t t

≅ + Δ

≅ + Δ

≅ + Δ
                   (3.22)

 

when the candidate blocks covered by smoke region instead of ordinary moving 
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objects. To this end, we draw the RGB color histogram of a specific block in three 

different situations of a video sequence in order to characterize the presence or 

absence of smoke. Obviously, the color histogram distribution in Fig. 3-15 (c) is 

similar to the one in Fig. 3-15 (a). However, the presence of pedestrian produces 

totally different color histogram distributions between Fig. 3-15 (b) and Fig. 3-15 (a). 

 

 (a) 

 

 (b) 

 

 (c) 

Fig. 3-15 RGB color histogram of a specific block (a) original image (b) covered by 
ordinary moving objects (c) covered by smoke 
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The details (high-frequency information) of the three channels in the rgb color 

system are obtained by the 1-D DWT again in Fig. 3-13. We can obviously see that 

ordinary solid moving objects produce a great quantity of details in Fig. 3-16 (a). 

Smoke has smooth variation in rgb color space and produces few details shown in Fig. 

3-16 (b). Therefore, the third feature ρ will be calculated by 

( ) [ ] [ ] [ ]( )
2interval

,,max nDnDnDB bgrnk ∈
=ρ

           (3.23)
 

where Dr[n], Dg[n], and Db[n] stand for details of r, g and b channels respectively and 

the value of r, g and b are averages of candidate blocks. Again, the likelihood of the 

candidate block to be a smoke region is in inverse proportion to the parameter ρ. 

 

 
Fig. 3-16 Comparison of changes in value of details in rgb color space at the passage 

of (a) ordinary moving objects (b) smoke 
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3.5 Classification 
The difficulty in acquiring smoke or fire accident video should be concerned with 

practicality. Consequently, the complementary characteristic of the three features 

extracted from candidate blocks must be learned by a powerful classification model 

with robust generalization ability.  

Support Vector Machines (SVMs) have considerable potential as classifiers of 

sparse training data which are developed to solve the classification and regression 

problems. SVMs have similar roots with neural networks, and it demonstrates the 

well-known ability of being universal approximates of any multivariable function to 

any desired degree of accuracy. This approach is produced by Vapnik et al. using 

some statistical learning theory [10][12][13].  

 

3.5.1 Support Vector Machines 

 

Hard-Margin Support Vector Machines 

SVM is a way which starts with a linear separable problem. First, we discuss 

hard-margin SVMs, in which training data are linearly separable in the input space. 

Then we extend it to the case where training data cannot be linearly separable. 

For classification, the objective of SVM is to separate the two classes by a function 

which is induced from available example. Consider the example in Fig. 3-17, there are 

two classes of data and many possible linear classifiers that can separate these data. 

However, only one of them is the best classifier which can maximize the distance 

between the two classes - margin, this linear classifier is called optimal separating 

hyperplane. 

Given a set of training data { }, , 1, ,i iy i m=x … , where p
i R∈x , { }1, 1iy ∈ + − ,  
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where the associate labels are 1iy =  for class1 and -1 for class2. If the data are 

linearly separable, the decision function can determined by 

( ) Tf b= −x w x                         (3.24) 

4 

Class 1
Class 2

Optimal 
Hyperplane

 

Fig. 3-17 Separating hyperplanes 

 

5  

Fig. 3-18 The optimal separating hyperplane 

 

Let  

0    1

0    1

T
i i

T
i i

b for y

b for y

− > = +

− < = −

w x

w x
                   (3.25) 
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The vector w  is a normal vector; it is perpendicular to the hyperplane. The 

parameter b  determines the offset of the hyperplane from the origin along the 

normal vector w  as shown in Fig. 3-18. 

Because the training data are linearly separable, without error data satisfying 

0T b− =w x , we can select two hyperplanes that maximize the distance between two 

classes. The two hyperplanes include the closest data points which are named support 

vectors, and also called support hyperplanes. Therefore, the problem can be described 

by the following equation, after scaling: 

1   1 

1   1

T
i

T
i

b for y

b for y

− ≥ + = +

− ≤ − = −

w x

w x
                    (3.26) 

The distance between the two support hyperplanes is 2 / w . We want to maximize 

the margin which means to minimize w . Thus, the problem becomes the following 

optimization equations: 

( )

21 ,   minimize 
2

  1 0  i i

choose b to

subject to y b i− − ≥ ∀

w w

wx
                  (3.27) 

In order to solve the above primal problem of the SVM, we using the method of 

Lagrange multipliers (Minoux, 1986), and the function will be constructed: 

( ) ( )2

1

1, , 1
2

m

i i i
i

L b y bα λ
=

= − − −⎡ ⎤⎣ ⎦∑w w wx             (3.28) 

λ  are the Lagrange multipliers. The Lagrangian has to be minimized with respect to 

,bw  and be maximized with respect to 0α ≥ . 

arg : 0iL range Multiplier Condition λ    ≥                 (3.29) 

( ): 1 0T
i i iMomplementary Slackness y bλ ⎡ ⎤  − − =⎣ ⎦w x       (3.30) 

Minimization with respect to w  and b  of Largrangain L  is given by: 

1
0 0

N

i i
i

L yλ
=

∂
=   ⇒  =

∂ ∑w
                      (3.31) 
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1
0

N

i i i
i

L y
b

λ
=

∂
=   ⇒  =

∂ ∑w x                      (3.32) 

Equation (3.29)-(3.32) are called the KKT conditions (Karush- Kuhn- Tucker 

conditions). The points of training data which satisfied KKT conditions are the 

support vectors, and the solution to the problem is given by, 

*

1 1 1

1arg min
2

m m m
T

i j i j i j k
i j k

y y
λ

λ λ λ λ
= = =

= −∑∑ ∑x x          (3.33) 

*

1

m

i i i
i

yλ
=

= ∑w x                                 (3.34) 

* *1 T
i i

i S
b y

S ∈

= −∑ w x                           (3.35) 

S is the set of support vectors. Hence, the classifier is simply, 

( ) ( )* *sgnf b= +x w x                        (3.36) 

 

 

Soft-Margin Support Vector Machines 

However, training data are not linearly separable in most situations as shown in Fig. 

3-19. There are some training data points on the opposite side. In order to correctly 

separate the data, a method of introducing an additional cost function associated with 

misclassification is appropriate as the following equation, where 0iξ ≥ . 

1     1 

1     1

T
i i

T
j i

b for y

b for y

ξ

ξ

− ≥ + − = +

− ≤ − + = −

w x

w x
               (3.37) 

In this situation, the classifier becomes more powerful when the residual value iξ  

becomes smaller, thus we need to minimize the cost function. 

k

i
i

Cost C ξ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                      (3.38) 

Therefore, the problem becomes: 
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( )

21 ,   minimize
2

  1 0  
                 0   

i
i

i i

i

choose b to C

subject to y b i
i

ξ

ξ

+

− − ≥ ∀

≥ ∀

∑w w

wx          (3.39) 

6  

7 

iξ

jξ

 
8  

Fig. 3-19 Inseparable case in a two-dimensional space 
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Fig. 3-20 Transformation of feature space. 

 
 

Mapping to a High-Dimensional Space 

If the training data are not linearly separable, we can enhance the linear separability 

in a feature space by mapping the data from the input space into the high-dimensional 
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feature space. Here we show an example in Fig. 3-20. The resulting algorithm is 

formally similar except that every dot product is replaced by a non-linear kernel 

function k . It allows the algorithm to fit the maximum-margin hyperplane in the 

transformed feature space.  

In the following are some kernels that are in common use with support vector 

machines. 

 

Linear kernels: ( ), ' 'Tk =x x x x  

Polynomial kernels: ( ) ( ), ' '
dTk =x x x x  

Radial basis function kernels: ( ) ( )2', ' exp ,  0k forγ γ= − − >x x x x  

Sigmoid: ( ) ( ), ' tanh 'Tk k c= +x x x x  

 

 

3.5.2 Smoke Classification Using SVMs 

 

In our system, we use the LIBSVM tools [14] to train the classifier for smoke 

detection. The training data are manually labeled for each candidate block and a RBF 

kernel function is chosen. There are two important parameters need to be set, the first 

one is gamma (-g) value of the kernel function, and the second one is the cost (-c) 

value of penalty for misclassified data. Cross-validation is performed to avoid 

over-fitting situation and the parameters for our training data are –g = 8, and –c = 

32768.  

35 support vectors (SVs) are selected for our model according to the training result 

of SVM. Figure 3-21 illustrates the distribution of SVs. 



 

 29

5

10

15

x 10-3

0

0.5

1

1.5

2

x 10-3

0

0.02

0.04

0.06

0.08

0.1

 

Fig. 3-21 Distribution of the support vectors 

 

After off-line training, on-line block-wise output of SVM has shown in Fig. 3-22. 

Yellow blocks stand for possible regions of smoke objects and blue blocks stand for 

possible regions of non-smoke objects. 

 

 

Fig. 3-22 Block-wise output of SVM classifiers 
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3.5 Verification 

3.6.1 Connected Components Labeling 

 

Connectivity between pixels is a fundamental concept that simplifies the definition 

of numerous digital image concepts, such as regions and boundaries. To establish 

whether these two pixels are connected, it is determined by their neighbors and finds 

their gray levels satisfy a specified criterion or similarity [15]. For instance, in binary 

image with values 0 and 1, two pixels maybe 4-neighbors, but they are said to be 

connected only if they have the same value. 

Let V be the set of gray-level values used to define adjacency. In a binary image, V 

= {1} if we are referring to adjacency of pixels with value 1. We consider three types 

of adjacency/connectivity [15]: 

 

1. 4-connectivity 

Two pixels p and q with values from V are 4-connectivity if q is in the set N4(p). 

2. 8-connectivity 

Two pixels p and q with values from V are 8-connectivity if q is in the set N8(p). 

3. m-connectivity 

Two pixel p and q with values from V are m-connectivity if 

(i) q is in N4(p), or 

(ii) q is in ND(p) and the set N4(p) ∩ N4(q) has no pixels whose values are 

from V. 
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Fig. 3-23 (a) Arrangement of pixels (b) pixels that are 4-connectivity (c) pixels that 

are 8-connectivity (d) m-connectivity 

 

Figure 3-23(a) shows a binary image which uses to find the connectivity between 

every pixel. Figure 3-23 (b) shows the 4-connectivity, pixel p has 4-connectivity to its 

neighbor which in horizontal or vertical position and contain V= {1}. If pixel p has 

connectivity to neighbor pixel in horizontal, vertical or diagonal position, it will 

define as 8-connectivity. The last figure is m-connectivity is a modification of 

8-connectivity introduced to eliminate the ambiguities that often arise when 

8-connectivity is used. The three pixels at the top of Fig. 3-23 (c) show ambiguous of 

8-connectivity, as indicated by the dashed lines. This ambiguity is removed by using 

m-connectivity, as shown in Fig. 3-23 (d). 

Connected component works by scanning an image, pixel-by-pixel in order to 

identify connected pixel regions [15]. Its works on binary or gray-level images and 

different measures connectivity are possible. Choice of the connectivity is among 4, 8, 

6, 10, 18, 26 connectivity which are 4 and 8-connectivity for 2D connected 

component extraction and the others for 3D connected component extraction. The 

connected components labeling operator scans an image by moving a row along until 

it comes to a point p where denotes the pixel to be labeled at any stage in the scanning 

process for which V= {1}. When this constrain is satisfied, it examines the four 

neighbors of p which already been encountered in the scan. Based on this information, 
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the labeling of p occurs as follows:  

(i)  If all four neighbors are 0, assign a new label to p, else 

(ii)  If only one neighbors has V={1}, assign its label to p, else 

(iii) If one or more of the neighbors have V = {1}, assign one of the labels to p and 

make a note of the equivalence. For this case, we are labeling p with minimum label 

value. 

 

 

Fig. 3-24 Connected components labeling 

 

Once all groups have been determined, each pixel is labeled with a gray level or a 

color according to the component it was assigned to as shown in Fig. 3-24. 

 

 

3.6.2 Connected Blocks Labeling 

The further verification for the presence of smoke is connected blocks labeling, 

which scans an image and groups its blocks into components based on block 

connectivity which is similar to connected components labeling in section 3.6.1. We 

demonstrate the concept in Fig. 3-25. Different colors stand for different components 

respectively.  
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Fig. 3-25 Regard a block as a pixel unit 

 

Finally, we mark each component with red color when over 25% of its blocks are 

classified as smoke and mark with green color otherwise. 

 

 

Fig. 3-26 Connected blocks labeling 
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3.6.3 Alarm Decision Unit 

Sometimes the camera is set too close to the road in video surveillance systems. In 

this case, the presence of a huge vehicle will produce an adjustment on photo timer, 

which is a photoelectric device that automatically controls photographic exposures 

due to the whole brightness of the circumstance. Figure 3-27 illustrates the 

miscalculation caused by the adjustment on photo timer. 

 

    

Fig. 3-27 The adjustment on photo timer 

 

Because smoke doesn’t suddenly appear or disappear in time sequence, the 

miscalculation could be solved by a smooth filter as shown in Fig. 3-28. This filter 

gathers statistic alarm data in video sequences and calculates the ratio between alarm 

issue and the total number of video sequences. 

 

 

Fig. 3-28 Alarm decision unit 

 

If the alarm presents over 50% for a predefined time interval, the smoke detection 

system will send out a real alarm. This approach can properly deal with sudden photo 
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timer changes or transient noise caused by cameras. Figure 3-29 illustrates the desired 

output after alarm decision unit. It is obviously that miscalculations or transient noise 

will be eliminated by this smooth filter and the enhancement of system stability is 

self-evident. 

 

    

Fig. 3-29 System output after alarm decision unit 
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4 Chapter 4 

Experimental Results 
 

In this chapter, several results of smoke detection will be presented. Our algorithm 

was implemented on the platform of PC with Intel Core2 Duo 2.2GHz and 2GB RAM. 

Borland C++ Builder is our complier and operated on Windows XP. All of our testing 

inputs are uncompressed AVI video files and DVD video data acquired by USB video 

capture. The resolution of video frame is 320*240. 

  In section 4.1, we will show the experimental results of the proposed algorithm on 

different scenes. Besides, accuracy rate and comparison between features are 

demonstrated in section 4.2. In section 4.3, we have a brief discussion of efficiency of 

our proposed algorithm. 

 

4.1 Experimental Results of Smoke Detection 

 

In the following, we use “red” blocks to represent smoke regions and “green” 

blocks represent non-smoke regions. The columns of left side contain original video 

sequence and the columns of right side contain detection results of the proposed 

algorithm.  

Figure 4-1 illustrates the outdoor environment situation. There is no wind in Fig. 

4-1(a). But the wind is blowing hard in Fig. 4-1(b)(c)(d) and the smoke strongly floats 

in the air. Our features wouldn’t be affected by the external environment and smoke 

regions can be detected correctly. 
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(a) 

   

(b) 

   

(c) 

   

(d) 

Fig. 4-1 Outdoor environment 
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Figure 4-2 illustrates the indoor environment situation. Smoke regions can be 

detected correctly. 

   

(a) 

   

(b) 

Fig. 4-2 Indoor environment 

 

Figure 4-3 illustrates the outdoor environment with pedestrians. Smoke regions can 

be detected correctly even when people walk around. 

 

   

(a) 
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(b) 

   

(c) 

Fig. 4-3 Pedestrians 

 

Figure 4-4 illustrates the outdoor environment with vehicles. Smoke regions can be 

detected correctly even when vehicles go through the scene. There are cars, 

motorcycles and bicycles in our testing data. 

 

   

(a) Cars 
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(b) Motorcycles 

   

(c) Bicycles 

Fig. 4-4 Outdoor environment with vehicles 

 

In the following, we will discuss the testing results of real traffic situations in 

tunnels. The input data are acquired from DVD video files by USB video capture. 

There are several traffic conditions in these data including traffic jams and presences 

of huge tourist coaches, etc. The total length of the testing data is 4 hours and smoke 

regions can be detected correctly as well as a small quantity of the false alarm issues 

is in our testing results. 

Figure 4-5(a)(b)(c) illustrate the tunnel environment with smoke objects. The 

proposed algorithm can detect smoke precisely and issue alarms in time. Figure 

4-5(d)(e)(f)(g) show different vehicles presence in a tunnel and they don’t activate the 

alarm system. Figure 4-5(h)(i) show cars in a tunnel at night. Figure 4-5(j)(k) show 

cars in a tunnel in day time. Both situations don’t produce false alarms. 
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(a) Smoke objects in a tunnel 

   

(b) Smoke objects in a tunnel 

   

(c) Smoke objects in a tunnel 

   

(d) Real traffic situations in a tunnel 
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(e) Real traffic situations in a tunnel 

   

(f) Real traffic situations in a tunnel 

   

(g) Real traffic situations in a tunnel 

   

(h) Real traffic situations in a tunnel 
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(i) Real traffic situations in a tunnel 

   

(j) Real traffic situations in a tunnel 

   

(k) Real traffic situations in a tunnel 

Fig. 4-5 Tunnel environment situations 

 

A large variety of conditions are tested including indoor, outdoor and sunlight 

variation each containing smoke events, pedestrians, bicycles, motorcycle, tourist 

coaches, trailers, waving leaves, etc in Table 4-1. In our experiments, there are 18352 

positive samples (smoke events) and 81503 negative samples (ordinary moving 

objects). 
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Table 4-1 Properties of the testing videos 

Movie List Descriptions 
Movie_01 Light smoke with a pedestrian 
Movie_02 Light smoke with pedestrians, bicycles, cars and waving leaves 
Movie_03 Fast smoke with a pedestrian 
Movie_04 Light smoke with a pedestrian and a car 
Movie_05 Pedestrians walk through smoke 
Movie_06 Light smoke with pedestrians and a car 
Movie_07 Dark smoke with pedestrians and a car 
Movie_08 Light smoke with pedestrians 
Movie_09 Smoke in a room 
Movie_10 Smoke in a room with a pedestrian 
Movie_11 Light smoke in tunnel with pedestrians 
Movie_12 Dark smoke in tunnel with pedestrians 
Movie_13 A trailer tow away a truck with pedestrians 
Movie_14 Cars with dark shadow 
Movie_15 Cars in tunnel in day time 
Movie_16 Cars in tunnel at night 
Movie_17 Cars in tunnel with photo timer adjustment 
Movie_18 Cars in tunnel's entrance with sunlight variations 
Movie_19 Cars in tunnel's entrance with sunlight variations 
Movie_20 Cars in tunnel's exit with sunlight variations 

 

 

4.2 Accuracy Discussion 

Data in Table 4-2 show the evaluations of each feature and the global testing result 

without ADU (Alarm Decision Unit). The reaction time is obtained by the ratio 

between frames to detect and frames per second. The detection rate and the false 

alarm rate are calculated as follow: 

detected

smoke

Detection Rate 100%N
N

= ×                   (4.1) 

false detected

non-smoke

False Alarm Rate 100%N
N

= ×                (4.2) 
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2-D spatial wavelet analysis can successfully extract candidate blocks with energy 

drop. However, pedestrians wearing flat clothing or long vehicles with flat roofs also 

produce energy drop. To overcome this drawback, we use 1-D temporal wavelet 

analysis which can express the gradual change of the energy ratio of smoke regions. 

This approach can adequately simulate the temporal characteristic of smoke. In some 

real cases, background model and foreground objects are so flat that there is no 

apparent high frequency information. It is difficult to separate smoke from non-smoke 

regions in this situation so we use the 1-D temporal chromatic configuration analysis 

to further describe the smoke’s behavior and this feature operates properly.  

Although the detection rates are desirable by using three features individually, we 

are not satisfied with the false alarm rates. The SVM classifier can learn the 

complementary relationship among three features and gains the extremely low false 

alarm rate without losing the detection rate. 

 

Table 4-2 Experimental results without ADU based on single frame 

 Detection  
Rate 

False Alarm 
Rate 

Reaction 
Time (sec) 

2-D Spatial Wavelet 
Analysis 

93.5% 38.0% - 

1-D Temporal Wavelet 
Analysis 

91.7% 13.1% - 

1-D Temporal Chromatic 
Configuration Analysis 

85.5% 11.2% - 

Global Analysis 85.2% 1.7% 0.86 

 

Data in Table 4-3 show the global testing result with ADU (Alarm Decision Unit). 

Although the final verification step might lose some detection rate, the false alarm 

rate can further decrease from 1.7% to 0.1%. 
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Table 4-3 Experimental results with ADU based on single frame 

 Detection  
Rate 

False Alarm 
Rate 

Reaction 
Time (sec) 

Global Analysis 85.2% 1.7% 0.86 
Global Analysis + ADU 83.5% 0.1% 1.34 

 

We utilize DVD video files acquired by USB video capture to evaluate execution 

efficiency. The average processing time is 32.27 milliseconds per frame. In other 

words, the proposed algorithm can achieve 30.98 frames per second. 

 

4.3 Comparison 

 

The analysis of experiments implementing the proposed process derived in 

previous sections is presented in this section. Although most of the papers in the 

literature don’t provide experimental data, we implement some approaches and 

calculate the experimental results. The comparison results are presented in Table 4-4. 

We use the same testing video in [2] but not in [5] due to lack of video sources. The 

proposed approach outperforms the method in [2][5] with average detection rates of 

30.1% and 80.1% as well as the false alarm rate of 39.0% and 22.8%.  

This is because the method in [2] utilized the concept of optical flow, which 

calculates the upward motion degree of the moving objects. However, our testing 

samples contain lots of outdoor environments and there is no conspicuous upward 

motion of smoke objects. Besides, there are vehicles pass through from near position 

to far position in tunnel situations and produce upward motion in moving objects as 

shown in Fig. 4-6. Fake alarms are activated and result in high false alarm rate. 

The method in [5] has superior performance than [2] owing to uncomplicated 

testing environments that there is no smoke and non-smoke objects in the same frame. 
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They just shot the smoke in a laboratory without any disturbances or they just shot the 

running people on the playground as non-smoke objects as shown in Fig. 4-7. Both of 

them are not common situation in real surveillance environments. 

 

Table 4-4 Comparison between the proposed method and work in [2][5] 
 Detection  

Rate 
False Alarm 
Rate 

Reaction 
Time (sec) 

Proposed 83.5% 0.1% 1.34 
[2] 30.1% 39.0% 5.56 
[5] 80.1% 22.8% - 

 

  

  
(a)                               (b) 

Fig. 4-6 The experimental result in [2] 

(a) Motion accumulation  (b) Histogram of motion accumulation 
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Fig. 4-7 The experimental result in [5] 
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5 Chapter 5 

Conclusions and Future Work 
 

It is inefficient to track or analyze the target using object-based method. 

Block-based technique provides a better way to solve this problem; 1-D Temporal 

analysis is introduced to express gradual changes of energy and chromatic 

configuration in smoke regions and the features would not be affected by the external 

environment; SVMs have considerable potential as classifiers of sparse training data 

and provide robust generalization ability. 

Most of other’s algorithms are only seeking higher detection rate. It does not 

provide enough information on how accurate the system might be. When considering 

accuracy of smoke detection, people care more about how to decrease the false alarm 

rate and detect smoke events quickly, rather than just increase the detection rate. Here 

the false alarm rate of the proposed system is significantly lower than other’s and the 

reaction time is extremely short. This system can also detect correctly even when both 

smoke and non-smoke objects exist in the same frame due to block processing while 

other systems only detect whether there is smoke existing in the whole video or the 

single frame. 

So far, the proposed smoke detection algorithm can operate well in variant 

conditions in the real environment. However, to further improve the performance of 

our system, some enhancements or trials can be made in the future. Firstly, the 

reflection of light in a wet ground would meet our features and produce smoke alarm 

in our testing samples due to a decrease in energy and the similarity in chromatic 

configuration. Secondly, the presence of too many huge tourist coaches would bring a 

continuous adjustment on exposure and passes alarm decision unit. Therefore, if these 
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problems can be solved, our algorithm will be more applicable. 

This paper demonstrates a robust and efficient system for smoke detection, and it 

involves the spatial and temporal analysis for each candidate block and the SVM 

classifications. Experimental results show the opportunity of the real-time operation 

of surveillance systems and advanced applications. 
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Appendix 
 
Smoke detection results of 20 testing videos. 
 

  2-D Wavelet Analysis 1-D Wavelet Analysis 1-D Chromatic Analysis Global Analysis Global + ADU 

Movie List 
Frame 

Number 

Frame To 

Detect 

Detection 

Rate 

False Alarm 

Rate 

Detection 

Rate 

False Alarm 

Rate 

Detection 

Rate 

False Alarm 

Rate 

Detection 

Rate 

False Alarm 

Rate 

Detection 

Rate 

False Alarm 

Rate 

Movie_01 3303 35 94.0% 4.2% 93.4% 0.0% 87.0% 5.9% 89.0% 0.0% 87.7% 0.0% 

Movie_02 4181 20 99.4% 25.5% 99.1% 3.2% 82.9% 3.2% 91.4% 0.0% 90.8% 0.0% 

Movie_03 5334 31 81.9% 2.6% 79.1% 0.0% 76.0% 7.9% 72.1% 0.0% 69.3% 0.0% 

Movie_04 1757 38 98.4% 27.8% 97.1% 5.2% 93.1% 18.3% 92.6% 0.0% 91.4% 0.0% 

Movie_05 1900 56 98.2% 59.8% 94.6% 12.2% 87.5% 12.2% 88.9% 0.8% 87.2% 0.0% 

Movie_06 1709 68 93.5% 68.7% 91.5% 32.5% 73.3% 7.2% 76.4% 0.6% 73.6% 0.0% 

Movie_07 1834 37 98.4% 24.9% 97.6% 0.0% 93.0% 2.0% 92.4% 0.0% 92.1% 0.0% 

Movie_08 1958 18 99.8% 69.4% 95.3% 24.4% 94.0% 16.3% 89.6% 6.3% 87.5% 0.0% 

Movie_09 2581 76 93.9% - 94.0% - 97.2% - 92.9% - 92.5% - 

Movie_10 2608 21 89.5% - 89.2% - 92.9% - 80.9% - 78.6% - 

Movie_11 3872 31 79.5% - 75.5% - 84.2% - 77.5% - 74.7% - 

Movie_12 4491 69 95.1% - 94.0% - 64.9% - 78.5% - 76.9% - 

Movie_13 10738 - - 55.7% - 51.6% - 9.3% - 7.4% - 2.0% 

Movie_14 440 - - 45.5% - 0.0% - 13.6% - 0.0% - 0.0% 

Movie_15 1936 - - 52.8% - 28.7% - 21.5% - 5.4% - 0.0% 

Movie_16 2930 - - 39.7% - 16.5% - 14.1% - 2.4% - 0.0% 

Movie_17 52500 - - 63.7% - 25.2% - 47.6% - 4.2% - 0.1% 

Movie_18 110000 - - 30.6% - 4.1% - 0.3% - 0.1% - 0.0% 

Movie_19 57000 - - 25.0% - 4.2% - 0.1% - 0.1% - 0.0% 

Movie_20 28000 - - 12.5% - 1.4% - 0.1% - 0.0% - 0.0% 

Avg. 14953.6 41.67  93.5% 38.0% 91.7% 13.1% 85.5% 11.2% 85.2% 1.7% 83.5% 0.1% 
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6 video samples randomly selected for training sample set which doesn’t included 

in testing samples. In our experiment, there are 500 positive samples (smoke blocks) 

and 500 negative samples (non-smoke blocks). After feature extraction and manually 

labeling, the three-tuple { }, ,X α β ρ=  are used to train SVMs with RBF kernel 

function. We use 10-fold cross-validation for training and preventing from over-fitting. 

The training and testing results of SVMS have shown below: 

 
Block-Based Training and Testing Results of SVMs 

Training Samples Testing Samples 
Accuracy Rate 88.1% 93.3% 

 
 
 

 

Three-tuple feature { }, ,X α β ρ=  

are extracted block by block 
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