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Abstract

As advanced technology scales;digital circuits benefit from advanced technologies
for faster operation and lower power.-On the contrary, designing high performance ana-
log circuits in the advanced technologies becomes more challenging due to the reduced
supply voltage, low intrinsic gains and low output impedances, etc. For example, it is
difficult to design a linear enough residue amplifier in‘advanced CMOS technologies for
pipelined ADCs. To address these challenges, many recent researches focus on devel-
oping digital calibration schemes. Their "digital-assist analog circuit design" concept
is to alleviate the hard analog design work with the help of robust digital circuits.

This thesis presents a novel digital background multi-correlation estimation (MCE)
method that can accurately estimate multiple-order nonlinear terms of the residue am-
plifiers’ transfer functions in pipelined ADCs. By injecting several random sequences of
different amplitudes alternatively, the proposed estimation method accurately extracts
the information of the nonlinearity through a correlation mechanism in the digital do-
main. The proposed estimation scheme can be implemented with simple digital circuits
and effectively reduces the complexity of the required analog circuit designs.

We use a 14-bit 100MS/s pipelined ADC with a multiple-odd-order nonlinearity
residue amplifier in the first pipeline stage as an example. Simulation results show that

before calibration, the ADC only has an effective number of bits (ENOB) of 4.9 bits, an

il



SNDR of 31.2 dB, an SFDR of 45.2 dBc, INL values within +165.50/-166.25 LSB, and
DNL values within +11.61/-1.00 LSB. After calibration, its ENOB becomes 13.1 bits.
A significant 8.2-bit ENOB improvement is achieved. The SNDR and SFDR are 80.4
dB and 94.7 dBc, respectively. The calibrated INL and DNL are +0.66/-0.50 LSB and
+0.55/-0.59 LSB, respectively. Simulation results also show that the same model of
the pipelined ADC but with a multiple-order (contained with even-order nonlinearity)
nonlinear residue amplifier in the first stage before calibration only has an ENOB of
6.4 bits, an SNDR of 40.1 dB, an SFDR of 54.5 dBc, INL values within +89.97/-
55.81 LSB and DNL values within +6.13/-1.00 LSB. After calibration, the pipelined
ADC has an ENOB of 13.9 bits, an SNDR of 85.5 dB, an SFDR of 123.5 dBc, INL
values within +0.46/-0.49 LSB and DNL values within +0.46/-0.73 LSB. The simulation
results validate that the proposed scheme does have a significant improvement on the
pipelined ADC’s performance.

This thesis also discusses the circuit-implementationof a digital background calibra-
tion processor [2| for a 12-bit 100MS /s pipelined ADC prototype with open-loop residue
amplifiers [1|. The simulation results of this prototype show a great improvement on

the pipelined ADC’s performance with the digital calibration technique.

v



Contents

Abstract iii
Contents A
List of Figures ix
List of Tables xii
1 INTRODUCTION 1
1.1 Motivation . . . . .. .0 LT 1
1.2 Overview . . . . . . 00 0o o s A 2
1.3  Chapter Organization . .« .w. . . . . v oo o 4
2 PIPELINED ADC OVERVIEW 6
2.1 ADC Performance Metrics . . . . . . . . .. ... ... ... ... .. 6
2.1.1 Static Characterization . . . . . . . . . ... ... ... ... .. 8
2.1.1.1 Offset Error . . . . . ... .. ... 8
2.1.1.2 Gain Error . . . .. ... o 8

2.1.1.3 Integral Nonlinearity (INL) and Differential Nonlinear-
ity (DNL) . . .. .. 9
2.1.2  Dynamic Characterization . . . . . . . ... .. ... ... ... 9
2.1.2.1 Signal-to-Noise-Ratio (SNR) . . . . . . ... ... ... 10
2.1.2.2  Signal-to-Noise-and-Distortion-Ratio (SNDR) . . . . . 11
2.1.2.3  Effective Number of Bits (ENOB) . . . . ... ... .. 11
2.2 Fundamentals of the Pipelined ADC . . .. ... ... .. ....... 12



2.3 Error Sources in a Pipeline Stage . . . . . .. .. ... 13

PRIOR ARTS ON DIGITAL BACKGROUND CALIBRATION SCHEMES 16

3.1 Statistic-Based Distance Estimation Method . . . . . . .. .. ... .. 17
3.2 Correlation-Based Estimation Method . . . . . . ... ... ... ... 19
3.3 Harmonic Distortion Correction Method . . . . . . . .. ... ... .. 21
3.4 Multi-Correlation Estimation (MCE) Method . . . . . .. .. ... .. 24
ADAPTIVE SIGNAL PROCESSING 29
4.1 Adaptive Systems . . . . . ... 29
4.2 Adaptive Linear Combiner . . . . . . . . . . . ... ... ... ... 30
4.3 The Performance Function . . . . . . . . . ... ... ... ... ... . 32
4.4 Searching the Performance Surface . . . . ... .. .. ... ... ... 34

4.4.1 Stability and Convergence . . .o . ... 36

4.4.2 Time Constant v & .l L0 0L 38
4.5 The Least-Mean-Square (LMS) Algorithm . . . . .. ... ... ... 38

4.5.1 Stability and.Convergenee . . ... . . . ... ... 40

CIRCUIT IMPLEMENTATION OF THE DIGITAL BACKGROUND
CALIBRATION PROCESSOR FOR A 12-BIT 100MS/S PIPELINED
ADC PROTOTYPE WITH OPEN-LOOP RESIDUE AMPLIFIERS 41
5.1 A 12-bit 100MS/s Pipelined ADC Prototype with Open-Loop Residue

Amplifiers . . . . .. 41

5.2 Digital Circuit Implementation . . . . .. .. ... ... ... ... .. 43
5.2.1 The Pipeline Stage under Calibration . . . . . . .. .. ... .. 43
5.2.2 The MCE Algorithm . . . . ... ... ... ... ... ..... 44
5.2.3 LMS Loop Analysis . . . . . . .. ... .. ... ... 46
5.2.3.1 Stability and Convergence . . . . . . .. .. ... ... 48

5.2.3.2 Time Constant . . . . . .. ... .. ... ... .... 48

5.2.4  Samples of Each Correlation . . . . . ... ... ... ... ... 48
5.2.5 Discussion . . . . . ..o 49

vi



6 SIMULATION RESULTS OF THE 12-BIT 100MS/S PIPELINED

ADC PROTOTYPE 51
6.1 Simulation Setup . . . . .. ... 51
6.2 Simulated ADC Performance . . . . . . . ... ... ... ... .. ... 52
6.3 LMS Loop Convergence . . . . . . . . . . ... ... ... .. ..... 60

7 PROPOSED DIGITAL BACKGROUND MCE METHOD FOR ES-
TIMATING MULTIPLE-ORDER NONLINEARITY OF THE RESIDUE

AMPLIFIERS 65

7.1 Proposed MCE Method for Estimating Multiple-Odd-Order Nonlinear
Terms of the Residue Amplifiers . . . . . . . ... ... .. ... ... 66
7.1.1 Discussion . . . . . ... Lo 71

7.2 Proposed MCE Method for Estimating Multiple-Order Nonlinear Terms

of the Residue Amplifiers . . . oovv o v o o L0 Lo 72

7.2.1 Discussion . s/ .ol D U e 74

7.3 LMS Loop Analysisw . . .. . o 00 L e 76
7.3.1 Stability and Convergence o . 0 L Lo Lo L L 76

7.3.2 Time Constant ™ . o . . . . . . Lo 7

8 SIMULATION RESULTS 78

8.1 Simulation Results of the Proposed MCE Method for Estimating Multiple-

0Odd-Order Nonlinear Terms of the Residue Amplifiers . . . . . .. .. 78
8.1.1 Simulation Setup . . . . . . ... ... 78
8.1.2 Simulated ADC Performance . . .. ... ... .. ... .... 79
8.1.3 LMS Loop Convergence . . . . . .. .. .. .. ... .. .... 87
8.2 Simulation Results of the Proposed MCE Method for Estimating Multiple-
Order Nonlinear Terms of the Residue Amplifiers . . . . . . .. .. .. 91
8.2.1 Simulation Setup . . . . . ... ... L 91
8.2.2 Simulated ADC Performance . . .. ... ... ... .. ... .. 91
8.2.3 LMS Loop Convergence . . . . . .. ... .. ... ....... 99

vil



9 CONCLUSION AND FUTURE WORKS
9.1 Conclusion . . . . . . . .

9.2 Future Works . . . . . . .,

viil



List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

ADCs research tendency. . . . . ... ..

Ideal input-output characteristics of a 3-bit ADC. . . . . . ... .. ..
Offset error of a 3-bit ADC. . . . . . . . .. .. ... .. .. ......
Gain error of a 3-bit ADC. . . . . . ...
INL and DNL of a 3-bit ADC. oo, oo oo
Probability density funetion of the quantization noise. . . . . . . . . ..
Pipelined ADC block'diagram. . . .« .00 . 0L ...
Concept of the pipelined ADC conversion. . . . . . . .. .. ... ...

The model of the residue amplifier in & pipeline stage. . . . . . . . ..

Pipeline stage with two residue-transfer characteristics. . . . . . . ..
Input-output characteristic for linear and nonlinear residue amplifier.
Equivalent model of a pipeline stage including a nonlinear amplifier.
HDC technique. . . . . . . . . ..
The model of the nonlinear residue amplifier. . . . . . ... ... ...

MCE technique. . . . . . . . . . ...

The open-loop adaption. . . . . . . ... ... ... ... ... ....
The closed-loop adaption. . . . . . ... .. ... .. ... .......
Adaptive system modeling. . . . . . .. ...
Linear combiner with desired response and error signal. . . . . .. ..
A two-dimensional quadratic performance surface. . . . . ... .. ..

Gradient search of univariable performance surface. . . . . . . . .. ..

X

10
10
12
13
14



4.7

5.1
5.2
2.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

7.1
7.2

7.3

8.1
8.2
8.3
8.4
8.5

Parameter adjustment for different valuesof . . . . . ... .. .. .. 38

A 12-bit 100MS/s pipelined ADC prototype. . . . . . . . . . .. . ... 42
Model of the j-th pipeline stage under calibration. . . . . . . . . .. .. 43
LMS loop. . . . . . 46

An equivalent adaptive system model of (a) Eq.(5.9) and (b) Eq. (5.10). 47

INL without calibration. . . . . . . .. ... .. ... . 23
INL with calibration. . . . . . . . ... ... ... ... ... ... .. 54
DNL without calibration. . . . . . . . . . .. ... ... L. 55
DNL with calibraiton. . . . . . . ... ... ... 0oL 56
INL and DNL with calibration . . . . . . .. .. ... ... ... .... o7
FFT without calibration. . . . . . . .. ... ... ... ... .. .... 58
FFT with calibration. .« o ca 00000 o 59
LMS loop convergence.of the-first pipeline stage. . . . . . . . . . .. .. 61
LMS loop convergenee of the second pipeline stage. . . . . . . . . . .. 62

Behaviroal vs. RTL-simulation result of the LMS loop convergence of
the first pipeline stage. . ... 0. o Lcic il L L L 63
Behaviroal vs. RTL simulation result.of the LMS loop convergence of

the second pipeline stage. . . .°.0.0 0. oo oo 64

Model of the j-th pipeline stage under calibration . . . . . . .. .. .. 66
Equivalent model of the calibration scheme for multiple-odd-order non-
linear terms. . . . . . ... 70

Equivalent model of the calibration scheme for multiple-order nonlinear

terms. . ... oL 73
INL without calibration. . . . . . . .. ... .. ... ... .. ... 80
INL with calibration. . . . . . . . . . . . ... 81
DNL without calibration. . . . . . . . . ... ... ... 0L 82
DNL with calibration. . . . .. .. .. ... ... L 83
INL and DNL with calibration. . . . . . . ... ... ... ... .... 84



8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

FFT without calibration. . . . . . . . . . . . . . . ... 85

FFT with calibration. . . . . . ... ... ... ... ... .. ..... 86
P1 convergence. . . . . . . . .. L 88
P3 convergence. . . . . . ..o 89
P5 convergence. . . . . .. ..o 90
INL without calibration. . . . . . . . .. ... .. .. ... ... ..., 92
INL with calibration. . . . . . . . .. . ... . 93
DNL without calibration. . . . . . . . . ... ... ... L. 94
DNL with calibration. . . . . . . ... ... ... oL 95
INL and DNL with calibration. . . . . . .. .. ... ... ... .... 96
FFT without calibration. . . . . . .. ... ... ... ... .. .... 97
FFT with calibration. . . . . . . .. ... ... ... ... ..., 98
P1 convergence. . . . . oo U 99
P2 convergence. . . .0 e L L0 o 100
P3 convergence. . . i oL oL s 101

x1



List of Tables

4.1

6.1
6.2
6.3

7.1

7.2

8.1
8.2
8.3
8.4

9.1

Effect of p of the gradient search process. . . . . . . .. ... ... ... 37
Open-loop residue amplifier parameters. . . . . . . ... ... ... .. 52
ADC performance. . . . . . . ... 53
LMS loop parameters. . . . . . . . . ... 60
Coefficients C,; of the MCE method forthe estimation of the odd-order

nonliner terms if the ratios of the calibration signals are geometric series
of2. .. .. ... I \=. .. ... . ... ... 71
Coeflicients C; of the MCE method for the estimation of the even-order

nonliner terms if the ratios of the calibration signals are geometric series

of 2. . ... PN . . ... 75
Open-loop residue amplifier parameters. . . . . . . ... ... ... .. 78
ADC performance. . . . .. .. 79
Open-loop residue amplifier parameters. . . . . . . . .. .. ... ... 91
ADC performance. . . . .. ..o 92
Comparison of the estimation techniques . . . . . . .. .. ... .. .. 103

x1i



Chapter 1

INTRODUCTION

1.1 Motivation

Fuelled by aggressive device scaling”down in medern fabrication technology, digital
circuits become smaller, less power consuming, and capable of operating at a high
speed. On the contrary, analeg circuits suffer from limited supply voltage headroom
and low intrinsic device gains. Due to the challenge of designing high performance
analog circuits in deep submicron technology, digital-assist analog design become a
vital solution [3].

Data converters are key elements in many mixed-signal applications. Among differ-
ent analog-to-digital converters (ADCs), pipelined ADCs are widely used in the appli-
cations that need medium to high resolution (10-bit to 16-bit) and a bandwidth in the
range from tens to hundred MHz such as video imaging systems, portable devices, in-
strumentations, broadband communication transceivers and so on [4]. Generally speak-
ing, pipelined ADCs are popular when the required signal bandwidth is too high for
the oversampling sigma-delta ADCs to achieve, and the required resolution is too high
for flash ADCs to be efficient [5].

Within the scope of pipelined ADC researches, the focus has been taken on the
techniques to reduce the power consumption. The key building blocks in a pipelined
ADC are the residue amplifiers because they need to meet the severe speed, noise,

and linearity requirements. As a result, the power of the residue amplifiers usually



dominate the overall power dissipation of the pipelined ADC. Conventional approaches
to reduce the power consumption include opamp sharing [6]-[9], switched opamp [10,
11|, power-efficient opamp topologies|3|,[12]-[16], etc. Due to replacing the power-
hungry amplifiers by the power-efficient ones, the linearity becomes a critical issue which
may limit the resolution of the pipelined ADCs. In fact, a pipelined ADC design usually
requires some linearity enhancement techniques to achieve an effective resolution higher
than 12 bits [17]. As a result, self-calibration techniques which compensate errors from

the residue amplifiers for pipelined ADCs have attracted more attention nowadays.

1.2 Overview

Recent researches in low power pipelined ADC design can be classified into two cate-
gories according to the targets of the ADCs. The first category consists of the pipelined
ADCs with medium resolution (about-10-bit) and very low power consumption (several
mW). The researches belonging to this category usually replaces the traditional opamp-
based multiplying digital-to-analog converter (MDAC) with a novel circuit topology
such as dynamic source follower residue amplifiers [12].* The other one focuses on the
design of the pipelined ADCs with high resolution (above 12-bit) and low power con-
sumption (hundred mW). These pipeline" ADC designs are usually implemented with
opamp-based MDACs and adding some self-calibration schemes [18, 4|. Figure 1.1
shows the statistical results of ADC research from 1997 to 2009 with respect to their
speed and power (versus resolution).

In general, self-calibration methods can be considered from two different points of

view [19]:
e How the methods correct the errors:

— Analog domain: trimming the circuit components or eliminating their re-

sulting errors.

— Digital domain: by processing the raw bits in the digital domain.

e When the calibration process takes place:
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— Background calibration: the calibration process operates simultaneously with

data conversion operation.

— Foreground calibration: dedicating a special time slot for the purpose of

calibration before the normal data conversion operation of the ADC.

The calibration methods in digital domain are more popular than those in analog
domain due to the ease and the low cost of implementing the calibration algorithms
digitally. Digital calibration methods also require less additional analog components.
On the other hand, analog-domain calibrations usually have to use complex analog
circuits and the conversion speed is often reduced.

Background calibrations are more attractive than foreground calibrations due to
background calibrations can continuously calibrate their internal pipeline stages to track
environmental changes without interrupting the normal ADC conversion.

This thesis is concerned with improving the pipelined ADC performance with a
digital background calibration technigue to hayve high resolution, high speed, and low

power consumption. This thesis comprises two major parts:

e A circuit implementation of the digital background calibration processor [2| for a

12-bit 100MS/s pipelined ADC prototype with open-loop residue amplifiers [1].

e A novel digital background multi-correlation estimation (MCE) method for esti-
mating multiple-order nonlinear terms of the residue amplifiers in pipelined ADCs

is proposed.

1.3 Chapter Organization

The Organization of this thesis is given as follow:

e Chapter 2 describes the ADC performance metrics and a brief discussion about

the fundamentals and the error sources of the pipelined ADC.

e Chapter 3 reviews previous proposed digital background calibration schemes and

gives analysis on their limitations.



Chapter 4 introduces the adaptive signal processing and the LMS algorithm.

Chapter 5 describes the circuit implementation of the digital background calibra-
tion processor [2| for a 12-Bit 100MS/s Pipelined ADC prototype with open-loop

residue amplifiers [1].
Chapter 6 gives the simulation results of the prototype.

Chapter 7 aim at giving comprehension of the proposed digital background MCE
method for estimating multiple-order nonlinear terms of the residue amplifiers in

pipelined ADCs.

Chapter 8 gives the simulation results that validate the proposed scheme. From
the simulation results, we have shown a great improvement on the ADC’s perfor-

mance with the proposed scheme.

Chapter 9 gives conclusions and recommendations for future works.



Chapter 2

PIPELINED ADC OVERVIEW

The ADC plays an important role in many mixed-signal systems because it connects
the “real world” with the “digital world”, There’re different types of ADCs such as the
sigma-delta ADC, the flash ADC; the successive-approximation-register (SAR) ADC,
and the pipelined ADC. Among various structures, the pipelined ADC is the most
popular one because it can simultaneously achieve a high speed and high resolution.
This chapter introduces the performance metrics of ADCs and gives a review about the

fundamentals of the pipelined ADC and the error sources in a pipeline stage.

2.1 ADC Performance Metrics

To characterize ADCs, some performance metrics must be defined. The discussion of the
ADC’s characterizations is separated into two parts including the static characterization
and the dynamic characterization in the following [20, 21].

Figure 2.1 shows the input-output (I/O) characteristic for an ideal 3-bit ADC. The
input voltage is from 0 to Vzgr and converts to the corresponding output codes. The

least significant bit (LSB) voltage step of the input voltage is defined as

y
Visp = % (2.1)

where N is the number of the output bits of the ADC. Every two adjacent digital output



codes have one LSB difference as shown in Fig. 2.1.
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Figure 2.1: Ideal input-output characteristics of a 3-bit ADC.

The difference between the infinite resolution characteristic and the ideal 3-bits char-
acteristic is called the quantization noise (or quantization error) of the ADC. Beneath
Fig. 2.1 is the quantization noise plot as a function of the input. It’s obvious that the

quantization error lies between £0.5LSB.



2.1.1 Static Characterization

The static characterization of ADCs is signal-independent and based on the I/O char-
acteristic of ADCs. The primary characteristics that define the static performance of
an ADC are the offset error, the gain error, the integral nonlinearity (INL), and the
differential nonlinearity (DNL).

2.1.1.1 Offset Error
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Figure 2.2: Offset error of a 3-bit ADC.

In Fig. 2.2, the offset error of an ADC is defined as the horizontal difference between

the actual characteristic and the ideal characteristic that passed through the origin.

2.1.1.2 Gain Error

The gain error of an ADC is defined as the difference between the actual characteristic
and the ideal characteristic which is proportional to the magnitude of the input signal
as shown in Fig. 2.3. Measuring the horizontal difference in LSBs between the actual
characteristic and the ideal characteristic located at the maximum code obtains the

gain error of the ADC.
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Figure 2.3: Gain error of a 3-bit ADC.

2.1.1.3 Integral Nonlinearity (INL) and Differential Nonlinearity (DNL)

After both the offset and gain errors are removed, the INL is defined as the deviation of
the actual characteristic from.the ideal one. That is, the separation of the code center
between the actual one and the'ideal one. A conservative measure of INL is to use the
endpoints of the converter’s transfer response-and an alternative definition is to find
the best-fit line such that the maximum difference is minimized.

The DNL is defined as the variation in analog step sizes away from 1 LSB,

‘/actual (n + 1) - V;wtual(n)

DNL(n) = v

— 1LSB. (2.2)

Therefore, if DNL=-1 LSB, that means a code is missing. These two definitions are

illustrated in Fig. 2.4.

2.1.2 Dynamic Characterization

The dynamic characterization is signal-dependent. The dynamic characteristics are also
an important part of the characterization of ADCs. The primary dynamic characteriza-

tion of ADCs is the signal-to-noise-ratio (SNR), the signal-to-noise-and-distortion-ratio
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Figure 2.4: INL and DNL of a 3-bit ADC.

(SNDR), and the effective number of bits (ENOB).

2.1.2.1 Signal-to-Noise-Ratio (SNR)

The SNR is defined as the power ratio of the signal to that of the quantization noise.
By stochastic approach, the quantization noise is varying rapidly as shown in Fig. 2.1
such that it can be considered as a random variable uniformly distributed between
+0.5Vsp. The probability density function (PDF) fo(z) of the quantization noise is
shown in Fig. 2.5.

X
=

Figure 2.5: Probability density function of the quantization noise.
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The root mean square (rms) value of the quantization noise can be found by

9] 1/2
Vorms = (/_ xzfQ(:c)d:c> = V\/L%B. (2.3)

If the input signal is a sawtooth with a height of Vzpp or a random signal uniformly

distributed between 0 and Vzgp, then the SNR can be shown to be

: V12
SNR = 20log (V"’"> = 20log Veer/VI2\ 6 0on aB. (2.4)
Q.rms Visp/V12

A more commonly used case is to assume a sinusoidal input signal with an amplitude

of Vrgr/2. The SNR equation is changed to

. 9/
SNR = 20log <V”’”) L obtog [ 222N 6 00N 4 17648, (2.5)
Q,rms VLSB/\/ 12

2.1.2.2 Signal-to-Noise-and-Distortion-Ratio (SNDR)

The SNDR is defined as the power.ratio of the signal to the sum of the total noise caused
by both quantization noise and the harmonie distortions. In practice, given a single tone
sinusoidal input signal to an ADC causes the ADC have an output spectrum containing
not only the input signal component but also some harmonic distortions. The measured

SNDR is usually less than the measured SNR.

2.1.2.3 Effective Number of Bits (ENOB)

The ENOB of an ADC is defined as

SNR —1.76
ENOB = —— 2.6
6.02 (26)

according to (2.5).
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2.2 Fundamentals of the Pipelined ADC
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Figure 2.6:. Pipelined ADC block diagram.

Figure 2.6 shows a general block diagram of a pipelined ADC which is formed by
cascading several pipeline stages. Within each pipeline stage, the input signal is first
sample-and-hold (S/H) and then quantized by a sub-ADC to generate an N-bit digital
output code, where vy, in Fig. “2.6: denotes the-quantization error of the sub-ADC.
The digital output code is then converted back to a corresponding analog signal by a
sub-DAC. The summation node subtracts this quantized analog signal from the input
signal and yields the quantization error. The quantization error is then amplified by
2NV to recover to the original full scale by a residue amplifier and passed to the next
pipeline stage for the same signal processing. Its transfer curve is also shown in the
figure. If it resolves two bits per stage, i.e., the transfer curve has four segments. The
concept of the pipelined ADC conversion is illustrated in Fig. 2.7 which is an example
that each pipeline stage is a 2-bit/stage configuration and the interstage gain is 2. In
switched-capacitor (SC) implementation, the functions of S/H, sub-DAC conversion,
subtraction and amplification are usually combined together using a circuit called the
multiplying-DAC (MDAC).

Finally, the overall digital output code D,,; can be obtained by recombining the
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digital raw codes of each pipeline stage using the following expression

n

D; : .
Dyt = Z —, (Go = 1 for primary input) (2.7)

%

=116
=0

J=

, whereD; and G; denote the digital raw codes and the gain of the residue amplifier in
each pipeline stage and n is the total number of pipeline stages.

The number of bits for a single pipeline stage to convert depends on the applications.
It’s a tradeoff between speed and resolution. For a high speed requirement, a low
number of bits per stage may be a better choice since the gain of each pipeline stage
would be lower which allows a higher bandwidth. On the other hand, low-speed and

high-resolution applications tend to have a larger number of bits per stage [22].

+V e Vin V1=4(Vin=D1) [V =4(V1 -D2) V3 =4(\, -Dy)
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D,,=(01), +% (01 % (112)34& (03) =(01,01,11;01)

Figure 2.7: Concept of the pipelined ADC conversion.

2.3 Error Sources in a Pipeline Stage

Major error sources in a pipeline stage consist of the sub-ADC offset, the sub-DAC
error, the gain error and the nonlinearity of the residue amplifier.
Variability in MOSFETSs’ threshold voltages leads to a comparator offset error in the

sub-ADC. This error can be mitigated in the digital domain by using over-range codes,
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called digital error correction (DEC) [23]. A detailed analysis of the DEC technique
can be found in [2, 24].

The sub-DAC error in a pipeline stage is mainly due to the mismatched capacitors.
The DNL of the sub-DAC due to the mismatched capacitors is inversely proportional to
the square root of the total capacitance value in the sub-DAC [25]. If the capacitance
values are chosen high enough to meet the k7'/C' consideration [26], there’s no need to
have a calibration scheme to overcome this problem. Furthermore, the dynamic element
matching (DEM) technique [27] is extensively used in DACs to improve their SFDR.
The DEM method tries to equalize the usage probabilities of the components in the
DAC so as to spread the power of the harmonic distortion into a white noise. The idea
is similar to the concept of spread spectrum in communication systems. As a result,
the errors of the sub-DAC can be alleviated substantially.

According to (2.7), if the residue amplifier has & gain error or nonlinearity, the lin-
earity of the pipelined ADC would be greatly affected. Impairments of components
and the variations in ambient operating conditions such as temperature and the supply
voltage may make the gain deviate far from the design target. Consequently, the linear-
ity of a pipelined stage strongly depends on that of the residue amplifier. The transfer
function of a practical residue amplifier.usually ecan be expressed as a polynomial of the

input v, which is shown

Vout = f(v:c) = Zawvj:y (28)
w=1

where a,, is the coefficient of the wth-order term and v,,; is the output of the residue

amplifier, respectively.

Figure 2.8: The model of the residue amplifier in a pipeline stage.

Therefore, if we want to have a high performance pipelined ADC, the errors in the
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residue amplifier need to be corrected. The last decade have seen growing importance
placed on research in calibrating the linear and nonlinear gain errors of the residue
amplifier. The following chapter will give a review about the research which focus on
background calibration scheme that corrects the linear and nonlinear gain errors of the

residue amplifier in digital domain.
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Chapter 3

PRIOR ARTS ON DIGITAL
BACKGROUND CALIBRATION
SCHEMES

In order to implement high resolution and low power consumption pipelined ADCs,
many digital background calibration schemes have been proposed. The main idea of
these calibration schemes is to translate the analog precision problems into the digital
ones to relax the challenge of designing precision analog components and to save the
power.

The digital background calibration schemes are popular as they enable continuous
ADC operation [2]-[5],[4],[28]-[37]. Among various approaches of digital background
calibration schemes, the correlation-based error estimation methods [2, 5, 4],[28]-[31]
attract much attention because they provide true background calibration.

Correlation-based error estimation methods inject at least a pseudo-random (dither)
signal as a part of the pipelined ADC’s signal. The injected signal usually has the
properties of a zero mean and being uncorrelated with the ADC’s input signal. At the
output side, a digital post-processor extracts the response of the injected signal from
the output of the ADC based on a correlation mechanism. The response provides the
characterizations of the analog components of our interests.

As has been discussed in the previous chapter, the key component in a pipeline stage
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is the residue amplifier. Since the implementation of the residue amplifier is usually
fully differential, even-order nonlinear terms of the residue amplifier are less significant.
Therefore, the dominant nonlinearity source comes from the odd-order nonlinear terms
of the residue amplifier’s transfer function.

This chapter gives a review of prior arts on digital background calibration schemes
that focus on the calibration of the gain error and the 3rd-order nonlinear term of the

residue amplifier.

3.1 Statistic-Based Distance Estimation Method

Vin1 : \4 resl
Sub-ADC Sub-DAC T—
— Logic T
T ____ MODEO

RNG  Dp = - - _- MODE1
*VRer R 0 (Q I i
s A ’ ! .
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Vig ————»

Figure 3.1: Pipeline stage with two residue transfer characteristics.

The first research about cancelling the nonlinear gain error of a residue amplifier in
a pipelined ADC is published in 2003 [3]. The pipeline stage in the article is shown in
Fig. 3.1. A binary random number generator (RNG) logic block is added between the
sub-ADC and sub-DAC to switch the operation mode of the pipeline stage. That is,
the output randomly alternates between the solid line and the dash line shown in Fig.
3.1. Redundant comparators are added to provide different comparator decision levels.

To estimate the errors, the calibration processor estimates the residue differences hq
and hy shown in Fig. 3.2 for the two specific input levels near the center and the edge

of the segment, respectively. If the residue amplifier is linear, h; equals hy. On the
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Figure 3.2: Input-output characteristic for linear and nonlinear residue amplifier.
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contrary, the transfer curve of a nonlinear residue amplifier may have some deviation
from the ideal one resulting in hy # hs. Hence, one can reveal the nonlinear coefficient
of the residue amplifier by estimating the distance between h; and hs. Notice that
the distance between h; and hy is the most significant at the edge of the segment,
it implies taking one of the specific input level close to the edge of the segment is a
good choice. After cancelling the nonlinear term, both h; and hs on the new transfer
curve are precisely 1/2 of the transition height which directly relates to the required
information for linear gain error correction.

The reference proposed a statistic based estimation method to estimate the distance
between h; and hy. The statistical method counts the code hits to represent the heights
of hi and hsy. Therefore, the calibration scheme cannot operate properly if the input
signal is not “busy” enough around the codes of interest. The reason is that the input
signal would not hits enough times around the specific codes and thus the cumulative
histogram becomes flat. Moreover, this-scheme needs a‘huge counter array to count the

number of samples seen in the backend less than or equal to the specific codes.

3.2 Correlation-Based Estimation Method

A correlation-based estimation method for estimating the nonlinearity of the residue
amplifier in a pipelined ADC was presented in 2005 [28]. The proposed technique allows
faster convergence and has less dependence on input signal’s statistical properties than
the technique proposed in [3].

In [28], a calibration signal is added at the location between the sub-ADC and the
sub-DAC to form D; (the output of the sub-DAC) in Fig. 3.3, and D; can be expressed
as

Dy = Dy + RADy, (3.1)

where D, = (1/2)(D14 + D;_), D1y and D;_ are the levels of sub-DAC, AD; =
(1/2)|D14 — D1—|, and R € {41, —1} is a random sequence uncorrelated to the ADC’s

input signal.
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Considering Fig. 3.3,

1
Yo = D1 + o (y1 + b1y}), (3.2)
1

where (71 is the linear gain of the residue amplifier and b; determines the magnitude of
the 3rd-order nonlinear gain error relative to the linear gain error. If the amplifier is

only weakly nonlinear y; ~ Dgp, (3:2) ¢an be modified to be

D ~ D, +1h(Dpg+bD%)

=D =~ yo(l Fep)=Diem+miG(by— b)) (yo — Dy)?, (3.3)

where by is an estimate of b; , D is the ADC’s primary digital output (the digitized yo),
and e, = mlm;lml is the relative error in estimating m; of m; = 1/Gj.
Taking 2 = D — D, an estimation of the nonlinearity of the residue amplifier can

be shown as

= E[(R2)z*] — 3E|R2|E[%"] (3.4)

=B = —gebADlezy27 (35)
where e, = G3m, 51 —b), Y =y — D1, and Ky2y2 is the variance of Y?2.
1

To find by, an approach is using the least-mean-square (LMS) algorithm [38]. (Chap-
ter 4 will introduce the LMS algorithm in detail.) The following equation show how to
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implement the LMS algorithm to find the optimum b;.
bulk + 1] = by[K] + ju.BIK (3.6)

Once the coefficient b is obtained, b;(Dpg)?® can be compensated in the digital domain
to correct the nonlinearity of the residue amplifier.

After cancelling the nonlinearity of the residue amplifier, (3.2) becomes

1
=D . 3.7
Yo 1+ G1y1 (3.7)

Now, taking the correlation of R and z
E[Rz] = —ADsey, (3.8)

leads to a result proportional to. = (= m;). Therefore, it can be regarded as a noisy
estimate for the error in the ‘coefficient m; and used to adjust m; to be closer to its

target my. The iteration equation for estimating m, using LMS is
mak 4 = mq[k] + pmR[k]z[k]. (3.9)

The pp and p,, in (3.6) and (3.9) are step sizes used to determine the tracking rates
and the steady-state errors of the LMS loops.

However, the nonlinearity estimation functions only when the amplifier is weakly
nonlinear. If not, the estimation of nonlinear coefficient fails if a static input is applied

since Kyz2y2 = 0 according to (3.5).

3.3 Harmonic Distortion Correction Method

Reference [5] proposed another correlation-based technique called harmonic distortion
correction (HDC) that solves the main issues of [3] and [28], but still has some limita-

tions.
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Figure 3.4 shows the pipeline stage under calibration in [5]. A set of w uncorre-
lated, two-level, pseudo-random, digital calibration values of amplitude +£/\ which is
zero mean and independent of the pipelined ADC’s input signal is injected before the
sub-DAC to calibrate the wth-order nonlinear term of the residue amplifier. All the

notations in Fig. 3.4 are shown as the following equations from (3.10) to (3.13).

R
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Figure 3.4: HDC technique.
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v1(nTs) = —vgaln] — Zti [n], (3.10)

i=1
where T is the sampling period, v,[n] is the quantization error of sub-ADC, and

Z ti[n] is the calibration sequence.
i=1

ri[n] = v1(nTs) + a,vy(nTs) + Gijvqb[n], (3.11)

where a,,v}’(nT}) is the wth-order nonlinear term relative to the linear gain G; of the

residue amplifier as Fig. 3.5, and vy [n] is the quantization error of the backend ADC.
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Figure 3.5: The model of the nonlinear residue amplifier.

y1[n] in Fig. 3.4 is

y1[n] = vin(nTs) + a,vy’ (nTs) + Gijvqb[n]. (3.12)

Combine (3.10) and (3.11), s1[n] can be written as

sin] = rin] & Zti[”]

1
=5 vl apv) (P )+ qub[n]. (3.13)

J
The purpose of HDC logieis to estimate @,v}’ (nT5) in (3.13). By expanding (3.13),
it’s easy to find that there’s a term (w!)t;[n]ta[n]...tu[n]. Taking the correlations of
si1[n] and ti[n]ts[n]...t,[n], resultsin a.value of (w!)A?"a,,. The HDC logic multiplies

the output of the average by 3, = ; to obtain 7, which is an estimate of a,.

1
A2y

Nevertheless, if any of the a, for z > w is not negligible, the HDC cannot accurately
estimate a, due to the expansion of the higher-order nonlinear terms of the residue
amplifier will have several cross terms that are correlated to the estimation of the
lower-order coefficients. Therefore, a compensated matrix needs to be added to cancel
these unwanted terms. The dimension of this matrix depends on the non-negligible
terms of a, where z > w. If there’re many higher order nonlinear terms cannot be
neglected, the matrix will go larger. For instance, if the residue amplifier contains the
linear gain error, the 3rd-order nonlinear term and the 5th-order nonlinear term, a 3 x 3
compensation matrix is needed.

In Fig. 3.4, it’s obvious that ri(nT}) is used to be an approximation of vy[n]. Actu-

ally, the expansion of r{’[n] contains several significant terms due to the nonlinearity of
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the residue amplifier. These errors may limit the calibration effectiveness and the reso-
lution of the pipelined ADC. This issue will be severer if more non-negligible nonlinear
terms of the residue amplifier exist. As a result, the range of successful calibration is
mightily limited.

It follows from Fig. 3.4, the calibration sequences are summed up and applied to the
sub-DAC. Therefore, to calibrate higher order nonlinear terms of the residue amplifier,
more calibration signals are needed. It implies that a larger headroom is needed for
the calibration signals to be added if more nonlinear terms of the residue amplifier are
not negligible. Moreover, the number of samples is 232 for each HDC. That is, at a
sampling rate of 100 MHz, the estimation of each coefficient a; needs approximately 43
seconds to converge. If the residue amplifier contains linear gain error and 3rd-order
nonlinear gain error, it takes 1.5 minute to converge. The convergence time may be too

long to track the ambient variation.

3.4 Multi-Correlation Estimation (MCE) Method

A novel estimation method called multi-correlation estimation (MCE) is proposed in
2006 [2]. This method is free of all the main issues‘mentioned in the previous sections.

Fig. 3.6 shows a pipeline stage under calibration in [2]. A pseudo-random sequence
is applied to the sub-DAC as in most correlation based techniques. Here, the residue
amplifier is also modeled to have linear and 3rd-order nonlinear gain errors. The digi-
tized residuum Dy; can be written as the following equation when the random sequence

is applied.

Dbi = I (Ux) + G'B(Ua:)g + Vgb

= al(—vqa — Rivdi) + CL3<—Uqa — Rﬂjdi)g + Uqb,i - {1, 2}, (314)

where vy, is the quantization error of the sub-ADC, vy, is the quantization error of
the backend-ADC, and R; € {—1,1} is a pseudo-random number sequence which has

a uniform distribution and is uncorrelated to the ADC’s input signal. Let vg; be the
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amplitudes of the two calibration signals, where

Ryvar € {+va1, —va1 },

Rovas € {+Va2, —va2}.
Taking the correlations of Dy; and R;, we have
E[R;Dyi| = Elai(—Rivge — vai) + a3(—Riv§’a — 3U§avdi — 3Rivqav§i —v3) + Rivg). (3.15)

Because R;,i € {1,2} are uncorrelated with the input signal, the correlations of R;
and the quantization errors vy, vy are all zero. Equation (3.15) can be further reduced
to

E[R;Dy;] = a1 (—=uvg) + ag(—?ﬂ)gaﬂdi — %) (3.16)

A technique called multi-correlation estimation (MCE) was proposed to eliminate
the term a;(—vg) in Eq. (3:6), results in an-output proportional to ag. If making

Va1 = Va2/2 = Visp/4 (of theslocal sub-ADC),
3 4
€3EE[R1Db1] — QE[RQDI;Q] S —Zagvdl. (317)

Let’s define two arguments p; and ps which are the correction parameters to compensate
for the linear and nonlinear gain errors respectively. Their optimum values can be

expressed as

Qa

P3,0opt = _ga (318)
ay

pl,opt = a. (319)

A calibration mechanism is applied to calibrate the nonlinear gain error of the

residue amplifier [3]

-1 ™ 1 Db
e(Dy) = Dy — 24/ —cos | = + —cos™!
(Dy) = Dy 3ps 33 2,/

p3

(3.20)
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A detailed derivation of equation (3.20) can be found in Appendix A.

If the correction function (3.20) is applied, equation (3.17) can be rewritten as

3

€3 = _Zazlj’vSl(pS,om - p3)- (3-21>

According to this result, an iterative functions, e.g., LMS algorithm, can be applied to
minimize the deviation so as to obtain the ideal value of ps.
When the nonlinear gain error has been removed, the resulting correlation is pro-

portional to a; since ag = 0 in (3.16). Therefore, (3.16) becomes
€1EE[R1D1)1] = al(—vdl), (322)

it represents the linear gain error information: In order to be merged in the LMS loop,
€1 is modified as

6’152 + War= = PlaphP) pl)vdl, (3.23)

pP1 P1
p1 will approaches to py o, when €} = 0 by using LMS algorithm.
The convergence of p; and-p; are implemented by using the LMS algorithm. The

following two equations show the implementations

p3(k+1) = ps(k) — pses
pik+1) = pi(k) — e, (3.24)

where p3 and p; are the step sizes used to control the convergence speeds and the
steady-state errors of the LMS loops.

The MCE have many important advantages over the prior works. First, it works
for any pipelined ADC input signal level while [3] requires a “busy” enough input. Sec-
ond, it doesn’t have restrictions with respect to dc input signal but [28] does. Third,
its calibration signal is added alternatively. Therefore, the reserved headroom for the
calibrations signals to be added is smaller than [5] and the number of calibration sig-

nals is less than [5]. Furthermore, the number of samples for each correlation is 2'7.
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At a sampling rate 100 MHz, it only takes 0.3 seconds to convergent the correction
parameters. It’s 256 times faster than [5]. Fourth, it provides the widest calibration
range since no approximation assumption is made during the derivation of (3.20). The
MCE can calibrate the extreme nonlinear amplifier as long as the inverse function of
the nonlinear transfer function exist. The implementation of this MCE method and a
detailed analysis of the LMS loops used in this MCE method will be given in chapter
5.

We see that the LMS algorithm is popular in many estimation methods [2, 3, 28|
which is usually used to update and track the correction parameters. In the following
chapter, we will give a brief introduction to the adaptive signal processing and the LMS

algorithm.
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Chapter 4

ADAPTIVE SIGNAL PROCESSING

4.1 Adaptive Systems

An adaptive system is alterable or adjustable in a-way such that its behavior or perfor-
mance improves through contaet with-its environment{38]. Adaptive systems can be

classified into the open-loop adaptation and the closed-loop adaptation.

S

| _nput —e¢—Pp|  Processor —P QUtDUt

signal signal
P> Adaptation

Other —p algorithm

data

Figure 4.1: The open-loop adaption.

The open-loop adaptive process, shown in Fig. 4.1, involves making measurements
of the input or environmental characteristics. Then, it applies the measured information
to a formula or to a computational algorithm and sets the adjustments of the adaptive

system according to the results.
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Figure 4.2: The closed-loop_ adaption.

The closed-loop adaptation; shownin Fig: 4.2 involves automatic experimentation
with the adjustments and knowledge of their outcomes inorder to optimize a measured
system performance.

The closed-loop adaptation has the advantages of being workable when no analytic
synthesis procedure either exists or is'known, when systems are nonlinear or time vari-
able, when signals are non-stationary, and so on [38]. Due to these reasons, the closed-
loop adaption is widely used for estimating the nonlinear coefficients of the residue
amplifier for a pipelined ADC |2, 3, 28].

The following sections in this chapter focus on the closed-loop processes utilizing

performance feedback.

4.2 Adaptive Linear Combiner

Figure 4.3 depicts the model of the adaptive system. The aim is to estimate the
parameters of the adaptive linear combiner, P(z), of a target T'(z) [39]. A certain input
x(n) is applied to both the target and the adaptive linear combiner. The error signal

e(n) is obtained by subtracting the output of the adaptive linear combiner y(n) from
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Figure 4.3: Adaptive system modeling.

the target’s output (desired respense) d(n). Theny the error signal is fed back to P(z)
in order to update the parameters of the adaptive linear combiner so as to minimize
the error signal. When the parameters are adjusted to be the same as the targets, the

error signal will be zero.

Adaptive linear combiner

Figure 4.4: Linear combiner with desired response and error signal.

The block of the adaptive linear combiner in Fig. 4.3 is spread and shown in Fig.
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4.4. The input vector is given by

x(n) = [z(n) z(n —1) --- z(n — N+ 1)]. (4.1)
The adaptive liner combiner with the parameters, pg, p1,...,pn_1, are
_ T
P=I[pop1 - PNl - (4.2)

Therefore, the output of the adaptive system y(n) can be expressed as

() = 3 pialn = ) = p"x(n) = x" (m)p. (4.3)

e(n) = d(n) — g(n) =dn) -~ p"*(n) =d(n) - x" (n)p. (4.4)

4.3 The Performance: Function

We now proceed to a discussion of the-performance function based on the error signal

just described. Let’s square (4.4) to obtain the instantaneous squared error
e*(n) = d*(n) + p'x(n)x" (n)p — 2d(n)x" (n)p. (4.5)

Assume that e(n), d(n), x(n) are statistically stationary and take the mean-square-error

(MSE) over n:
Ele*(n)] = E[d*(n)] + p" E[x(n)x" (n)]p — 2Ed(n)x" (n)]p. (4.6)

Define the “input correlation matrix” C by
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Tnn Tnn—1 e Tnn—N+1
Tn—1,n Tp—1,n—1 e Tp—1n—N+1
_— , (4.7)
Tn—N+1n Tn—N+1n-1 °°° Tn—N+4+1ln—N+1

where x,,,, denotes x(n)xz(n) and so forth. The diagonal entries are the mean squares of
the input components, and the cross terms are the cross correlations among the input

components. Let U be defined as the column vector
U=E[d(n)x(n)] = Eld(n)z(n) d@n)z(n~-1) --- d(n)z(n— N +1)]". (4.8)
Now define the MSE in (4.6) to be£ and expressed it in terms of (4.7) and (4.8) as
MSE- ¢ = Bld*(n)| +p"Cp ~2U"p. (4.9)

It’s clear from (4.9) that £ is a quadratic function of p with a single global minimum
due to C is a positive defined matriz (p? Cp > 0).

An example of a typical two-dimensional MSE function is illustrated in Fig. 4.5.
The horizontal axes are the values of the two parameters and the vertical axis is the
MSE. The quadratic performance surface is a paraboloid. This surface must be concave
upward (positive defined) because the result of the MSE is always positive. The optimal
parameter vector occurs at the bottom of the “bowl” because the MSE is minimum.

Now, taking the gradient of the MSE, we have
vé = V(E[d*(n)] + p'Cp — 2U"p) = 2(Cp — U). (4.10)

Equation (4.10) will be zero when
Cp = U. (4.11)

33



BT NARRRRIASS
R
N

. (0
IR
\\§\\\§§§\‘§§§\\“\“

Figure 4.5: A two-dimensional quadratic performance surface.

Equation (4.11) is known as the: Wiener-Hopf equation:” Therefore, the optimal param-

eter vector can be expressed as (4:12) if C is anonsingular matrix.
Popt = C7'U, (4.12)

where po,: is the optimal parameter vector.

4.4 Searching the Performance Surface

In order to find the optimal parameter vector, directly solving the Wiener-Hopf equation
is an straightforward approach but the required computation may be very complicated.
Instead, an iterative search method in which starting with an initial guess for p(0),
a recursive search method that may require many iterations to converge to pgp: is
commonly used because the computation is much simpler. A search method called

steepest-descent consists of the following four steps [39]:
1. Start with an initial guess of the parameters.

2. Find the gradient of the function with respect to these parameters at the present
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point.

3. Update the parameters by taking a step in the opposite direction of the gradient

vector obtained in step 2.

4. Repeat step 2 and 3 until no further significant change is observed in the param-

eters.

The steepest descent method is expressed by (4.13) in which p represents the step size

and p(k) denotes the parameter vector at the k-th iteration.

p(k+ 1) = p(k) — pVE (4.13)
An example of gradient search of univariable performance surface is illustrated in Fig.

A

MSE

l initial
: I guess
————————— [
optimal setting A : | ,/
: —>>
popt -~ p(1) p(0) parameter

Figure 4.6: Gradient search of univariable performance surface.

4.6. Actually, Fig. 4.6 can be regarded as one of the parabola in Fig. 4.5 that go
through the bottom of the bowl. This is a helpful example to understand the steepest
descent algorithm described by (4.13). Let’s start with the initial guess of the point
p(0) on the figure, the gradient at this point is a positive value toward the direction
of the optimal parameter. As a result, the next update of the parameter will be more
close to the optimum. Repeat the procedure, finally the updated parameter reaches the
bottom of the parabola and the gradient becomes zero. It means the parameter can be

set to the optimal value after several iterations.
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From (4.10) and (4.12), equation (4.13) can be further expressed as

p(k+1) = p(k) —2uCp(k) + 24Cp,,
= pk+1) —popr = pP(k) —2uCp(k) + 2uCp,p; — Popt

=pk+1)—popr = I—2uC)(p(k) — Popt), (4.14)

where I is an identity matrix (unit matrix). Now, let’s define the parameter-error vector

by v(k) = p(k) — popt- Equation (4.14) can be rewritten as
vik+1)=I-2uC)v(k). (4.15)
Since C is a symmetric matrix, it is orthogonally diagonalizable
C =QAQ7, (4.16)

where A is a diagonal matrix-consisting of the eigenvalues Ay, A\1,...,Ay_1 of C, and
the columns of Q contain theeorresponding orthonormal-eigenvectors. Combing (4.15)
and (4.16) gives

vik +1) 2(QQE—2AQAQ" v (k). (4.17)

where I = QQ”. Define v/(k) = QTv(k) which transforms v (k) to v/(k). Multiplying
QT on both sides of (4.17), we have

v'(k) = (I —2uA)V' (k). (4.18)

4.4.1 Stability and Convergence

Equation (4.18) can be separated into scalar recursively,

vi(k +1) = (1 — 2u\)vi(k), for i =0,1,--- ,N — 1. (4.19)
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Starting with a set of initial values v (0), v1(0), - - - ,vly_,(0) and iterating (4.19) k times,
we get

vi(k) = (1 — 2uX\)*}(0), fori =0,1,--- /N — 1. (4.20)

Equation (4.20) implies that v’ converges to zero if and only if
11 —2uN| <1, fori=0,1,--- ,N—1. (4.21)
Furthermore, (4.21) can be expanded as

1
0</L</\—, fori=0,1,--- ,N —1, (4.22)
which ensures the steepest descent algorithm to be stable. In fact, the convergence

(stability) of the steepest descent algorithm-is guaranteed only when

1
< p=<=——, (4.23)

Asitax

where A\.x is the maximal eigenvalue.

A larger 4 in the range of (4.23)"leads to a faster convergence speed but with a
larger dither. In general, a wider spread of the eigenvalues, i.e. large Apax/Amin, where
Amin 18 the minimal eigenvalue, results in a slower convergence of the steepest descent
algorithm. The effects of the different choices of ;1 are summarized in Table 4.1 and Fig.
4.7 . The five cases shown in Table 4.1 depict the distinct ranges of pu, corresponding to
the stable, overdamped, critically damped, underdamped, and unstable cases [38, 39].

Table 4.1: Effect of v of the gradient search process.

Stable (convergent) 0<pu<s
Overdamped O<pu< 2—%\2

Critically damped W= 2L/\L
Underdamped % <p< /\i

Unstable (not convergent) p > /\% or <0
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Figure 4.7: Parameter adjustment for different values of p.

4.4.2 Time Constant

Recall (4.20), the time constant of the MSE convergence is defined as * the time (it-
erations) at which the initial eondition of vector v has decayed to a value of 1/e times

mitial value.”

v(0)e™ = w0) (1 — 2u\)"

= —1 = 7in(1—2up\). (4.24)
Since 2uA < 1, In(1 — 2uX) = —2pA. Thus, the time constant can be expressed as

~ (4.25)

4.5 The Least-Mean-Square (LMS) Algorithm

Steepest-descent method needs to estimate the gradient. The direct estimation pro-
cedure can be quite complex and hard to implement. In 1960, Widrow and Hoff de-
veloped a simpler algorithm for descending on the performance surface, known as the

least-mean-square (LMS) algorithm. The LMS algorithm has the following advantages:
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e Simplicity in implementation.
e Ease of computation.
e Doesn’t require off-line gradient estimation.

e Stable and robust performance against different signal conditions.

Consequently, LMS is a widely used adaptive filtering algorithm in practice.
To develop the LMS algorithm, we take the square of the error signal e*(n) as an

estimate of £. By (4.4), the gradient of e*(n) is

9e?(n) Oe(n)

X 9po 9po

V(n) = : = 2e(n) : = —2e(n)x(n). (4.26)
9e?(n) Oe(n)
OpN_1 OpN—1

From (4.13), we obtain the LMS recursion,

plkt 1) = plk)=pV(k)
= p(k)+2ue(k)x(k). (4.27)

To examine the convergence of the LMS algorithm, we first note that the gradient
estimate in (4.26) can readily be shown to be unbiased when the parameter vector is

held constant [38]|. The expected value of (4.26) is

E[V(k)] = —2Ele(k)x(k)]
= —2BE[d(k)x(k) — x(k)x" (k)w]
= 2(Cp—1U). (4.28)

Since the expected value of V(k) is equal to the true gradient of & (4.10), V(k) is an
unbiased estimate. Due to the gradient estimate being unbiased, the LMS algorithm
behaves just like the steepest descent algorithm on average. Therefore, the conclusion

of the stability and time constant discussed in the previous sections can be applied to

the LMS algorithm as well.
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4.5.1 Stability and Convergence

The stability requirement of the LMS algorithm seems to be the same as that of the
steepest-descent algorithm. However, the use of a stochastic gradient in the LMS
algorithm makes it more sensitive to the value of its step size p. Therefore, the bound
of the LMS algorithm is much lower than the corresponding bound in the case of the

steepest-descent algorithm. The LMS algorithm remains stable when

0<p< (4.29)

1
3tr[C]’

N-1
where tr[C] is the trace of the input correlation matrix C, i.e., tr[C] = Z Ai. A detailed

=0

derivation of (4.29) can be found in [39].
The following chapter will give the eircuit implementation of the MCE method [2]
and an analysis of the LMS loop used in the MCE method.
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Chapter 5

CIRCUIT IMPLEMENTATION OF
THE DIGITAL BACKGROUND
CALIBRATION PROCESSOR FOR
A 12-BIT 100MS/S PIPELINED ADC
PROTOTYPE WITH OPEN-LOOP
RESIDUE AMPLIFIERS

5.1 A 12-bit 100MS/s Pipelined ADC Prototype with
Open-Loop Residue Amplifiers

In conventional pipelined ADC, a closed-loop opamp based MDAC is implemented in
a pipeline stage. Because the feedback topology desensitizes the environmental varia-
tion, the pipeline stage can be highly linear and more robust. However, these advan-
tages come from a high open-loop gain OPAMP and it costs large power dissipation.
Moreover, designing precise analog components is very challenging in advanced CMOS

technology.
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On the contrary, an open-loop residue amplifier can provide a similar gain. With
the open-loop topology, the demand for a high open-loop gain amplifier is no longer
necessary and the power dissipation drops as well [2]. The benefits of using the open-
loop residue amplifier in the pipelined ADC is recognized and demonstrated in [3, 40,
41]. However, because the absence of the feedback no longer assists desensitizing the
environmental variations, some calibration scheme must be used to address the linearity
issue of the pipeline stage.

Reference [1] proposes a pipelined ADC using open-loop residue amplifiers in con-
junction with a digital background calibration scheme [2| to simultaneously achieve the

requirements of a high speed, high resolution, and low power consumption.

Under calibration

Vin o e
oo e T | W o
/M= 1ES) XY
Estimation Estimation
A A
: 4 % 4 \ 4 ;
Doy < Calibration  |«¢q—] Calibration |

Figure 5.1: A 12-bit 100MS/s pipelined ADC prototype.

The ADC prototype is shown in Fig. 5.1. The 12-bit 100MS\s pipelined ADC has
the same (3+1)-bit open-loop structure for the first and the second pipeline stages. A
6-bit flash ADC follows the second pipeline stage as the backend ADC. The function

of each block will be described in the following section.
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5.2 Digital Circuit Implementation

5.2.1 The Pipeline Stage under Calibration

Nonlinear
residue amplifier

resj-1

Sub-ADC Sub-DAC

(1 T_ Backend

+ ® (H—> ADC
D. i B : qu é Vob

I
j 1 1
Va A | DEM N i Cen !
1 1
1 R. 1 )
I:] Analog \ 4 : T 1 PNG : Db|//
zZ= - e 1 PCSG I
C_Diwital | P22 - - - - b e——i i- ---F---
Fa ] Ps

Di—
< i D« 1 _Calibration |«

Figure 5.2: Model of the j-th pipeline stage under calibration.

Figure 5.2 shows the model of the j-th pipeline stage under calibration.

e A nonlinear residue amplifier G;: the nonlinear residue amplifier is assumed to
have a transfer function of v,.s; = G;(v:) = a1(vs) + az(v,)?. Since the open-loop
residue amplifier in each stage is fully differential, the even-order nonlinear terms

are less significant and thus are ignored.

e DEC: using over-range codes to alleviate the influence of the sub-ADC’s offset.

A detailed analysis is presented in [1].

e PCSG: Pseudo-random calibration sequence generator formed by the following

three blocks.

— N, 1 € {1,2} : for selecting one of the two calibration signals.

43



— DEM: to ensure the ratio of the calibration signals accurate enough.

— PNG: pseudo-random number generator to generate R; € {+1,—1}, ¢ €

{1,2}.
e Estimation: to provide the calibration parameters P, and Ps.

—1 1 Dy;
e (Calibration: use a function 24/ —cos il + —cos™? b
3P 3 3 9 [ =1
27P;

linear term of the residue amplifier [3|. For the practical case, it’s almost a gain

to recover the

compressive transfer function (P; < 0). Moreover, the Dy; is designed between
+0.5 to avoid a complex form. In our practical implementation, the required
two-dimensional calibration function is precomputed and stored in a lookup table

made of a ROM.

5.2.2 The MCE Algorithm

The MCE algorithm [2] has b¢en described in section 3.4. Using two different modulated
sequences, it results in the residue having-different distributions. As a result, using the
statistical results associated with the residues to find the error information. Then, the
error information can be applied to LMS loops to track the correction parameters.
For practical implementation, a stricter derivation must be considered. In order to

distinguish the analog signals from the digital signals, we modify (3.14)

a1 az Ugb Vob
Dy, = (—vga — Rivai) + ——(—0ga — Rivgi)® + — + —=
Uref Uref Uref Uref
3
(Y Vdi (% Vdi v v
= a <_ qa Rz’ di ) + asvzef <_ qa Rz’ di ) + qb + ob ,
Uref Uref Uref Uref Uref Uref

(5.1)

where v,.s is the converter’s reference voltage and here we take the offset v,, of the
backend ADC into account. Let the normalized analog signals to be Ny, = vgq/Uref,

Nygp = Vgp/Vref, Nob = Vob/Vref, Nai = Vai/Vrer, A1 = a1, and Az = agvfef. Substituting
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these notations into (5.1), the result is

Dbi = Al(_Nqa - Rszz) + A3(_Nqa - RiNdi)S + Nqb + Nob
= Al(_Nqa - Rszz) +
A3(=N3, = 3N2,R;Nygi — 3Ny N3 — RiNJ) + Ny + Nop. (5.2)

Based on the properties of the R; as mentioned in section 3.4, taking the correlations

of R; and Dy, results in
E[R;Dy] = A1(—Ng;) + A3(—3N_,Nai — Nj;). (5.3)

This finding reveals the quantization error and the offset of the backend ADC doesn’t
affect the accuracy of the estimation compared with [3].
A similar derivation as mentioned in section 3.4 can be shown that the estimations

of the 3rd-order nonlinear term and the linear gain error of the residue amplifier are

3
3 = E[RlNdl] — 2E[R2Nd2] — _ZAi)Ngl(P?),Opt — Pg), (54)
e1 = E[RiNul=4,(-Nau), (5.5)
As . : /
where P3,optEF. In order to save the divider in Eq. (3.23), we modify the ¢} to be
1

ei=e1+ PNy = —Na1 (Propt — P1), (5.6)

where P ,s=A;. After getting the error information for linear gain error and 3rd-order
nonlinear gain error of the residue amplifier, the correction parameters can be found
by the LMS algorithm. Based on the LMS algorithm depicted in the previous chapter,

two recursions are constructed with respect to €3 and ¢} and shown in Fig. 5.3.

Py(k+1) = P3(k) — pses, (5.7)
Pk1) = Pi(k)— e, 58)
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Figure-5.3: LMS loop.

5.2.3 LMS Loop Analysis

Substituting(5.4) and (5.5) into (5.7) and (5.8), respectively, the two recursions (LMS

loops) can be expressed as:

3
Pg(]{? + 1) = Pg(k) -+ ,UB(PB,opt — P3)ZA:13N31

3

= PJ(k) + 2”3(P3,opt - P3)§A?N51a (59)
Pi(k+1) = Py(k)+ p(Prop — P1)Na
N,

= Pi(k) + 2p1(Pypopt — Pl)%. (5.10)

Recall (4.4) and (4.27), if the input signal is a scalar, considering univariable pa-
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rameter, (4.27) can be rewritten as

plk+1) = p(k)+2uex
= p(k) +2p(d — px)x
= p(k) + 20(pope — p)*
(k)

= p(k) + 2u(popt — P)A. (5.11)

Since the input signal is a scalar, tr[C] = 22 = X\. Comparing (5.10) and (5.9) with
(5.11), an equivalent adaptive system model of the recursions is illustrated in Fig. 5.4.

3
It’s obvious that the eigenvalue of the P3-LMS-loop is A\3 = gA:{’N 2 and the eigenvalue

N,
of the P;-LMS-loop is A\ = %.

wl Nle W
Ll Lpl g

@ (b)

Figure 5.4: An equivalent adaptive system model of (a) Eq.(5.9) and (b) Eq. (5.10).

Based on the analysis of the LMS algorithm in the previous chapter, the stability

and time constants of theses two LMS loops can be given as follow.
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5.2.3.1 Stability and Convergence

In the LMS loop, the step size determines the convergent speed and stability of the
loop. By (4.29), the range of the step size should be

O<u3<3—i\3

= O<M3<9A;le’ (5.12)
O<ul<3—1\1

= O<u1<3]3d1, (5.13)

to ensure the two LMS loops to be convergent and stable.
It’s worthy noting that the results are necessary condition rather than effective ones.

In reality, the step size is far smaller than the upper bound.

5.2.3.2 Time Constant

The time constants of the two LMSdoops‘can be determined by Eq. (4.25) which are

1 4
& = 5.14
73 2,[13)\3 3/11314?]\75’1 7 ( )
1 1
T1 = (515)

2#1)\1 B NlNdl‘

5.2.4 Samples of Each Correlation

From a system point of view, the injected calibration signals N is an additional noise
to the pipelined ADC. The embedded signal R; Ny causes a fluctuation in D,; within a
uniform distribution between +0.5v,.¢ (when R; Ny is injected). The resulting digital
output Djy; is taken only after M cycles (samples) of each correlation. The Law of Large

Numbers theorem|42, 43| tells

o?[x], (5.16)
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where my is the M-sample expectation of an infinite-long random variable x and o?

denotes the variance. Hence, the variance of E[R;Dy;| can be expressed as

2
1 Uref

1
UQ(E[RZD()Z]) = _02(RiDbi) = Mﬁ

- (5.17)

To estimate the required sample numbers of each correlation, let the standard deviation
of the calibration signals less than one half of the backend ADC’s LSB voltage step Vi sp
[4, 44|, results in

M > % x 228 o2 92B-1 (5.18)

where B is the number of bits of the backend ADC. From (5.18), the first pipeline stage
in this prototype needs M = 2'7 samples, and the second pipeline stage needs M == 2!
samples. To simplify the design of this ADC prototype, M = 2'7 is chosen for both the
first and the second pipeline stage.

In [45], it was shown empirically that for an N-bit . ADC, the number of required
input samples is on the order of 22V to calibrate the gain errors. Therefore, we need
approximately 27 iterations to track the correction parameters which is very close to

the simulation results shown in‘the next chapter.

5.2.5 Discussion

The shaded blocks illustrated in Fig. 5.2 has been designed and implemented on an
external FPGA using Verilog HDL. The FPGA board we used is Altera DE2-70. The
synthesized result shows that 1024 logic cells are used.

If the correction table needs to cover all the percentage of the nonlinearity from
0% to 100%, a 12 M-bit ROM is need. Fortunately, the correction function is a cosine
function which is a periodic data. Therefore, the table can be reduced to a quarter,
i.e. 3 M-bit. In practice, there is no need to cover the full range of the nonlinear term.
Simulations can show the nominal nonlinear term value. It is sufficient to add some
reasonable range based on the nonminal value. For example, let the nonlinear term be

0.5 (50%) and assume the variation of the term be less than 20%. Then, the lookup
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table needs to cover 0.4 to 0.6. Of course, most open-loop residue amplifiers have a
nonlinear term less than 10% which means the lookup table is only few k-bit [3]. Some
compression technique can be used to further minimize the required memory size [46].

The following chapter will give the simulation results of the prototype.
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Chapter 6

SIMULATION RESULTS OF THE
12-BIT 100MS/S PIPELINED ADC
PROTOTYPE

6.1 Simulation Setup

In this chapter, we use a behavieral model that closely resembles the pipelined ADC to
validate the MCE algorithm. In order to.compare the behavioral result with the register-
transfer-level (RTL) result, the bit numbers in the behavioral code are truncated to be
identical to the corresponding ones of the RTL code.

This model uses a fully differential (3+1)-bit/stage in the first and the second
pipeline stage and then followed by an ideal 6-bit flash ADC. As a result, the total
resolution of the ADC is 12-bit. In the simulation setup, the first and the second
pipeline stages use the same open-loop residue amplifiers which provide non-perfect

amplification. An appropriate model of the residue amplifier is
Gj(ve) = ar(vy) + az(vs)’*.

Table 6.1 summarizes the nominal values of a; and a3 as well as the associated design
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Table 6.1: Open-loop residue amplifier parameters.

Parameter Description Value
FS Full scale range 1.2V
ay Linear gain error 7.5
as 3rd-order nonlinear gain error -142.2

parameters. With the values listed in Table 6.1, the corresponding amplifier model is
Gj(vg) = 7.50, — 142.207 (6.1)

which leads to the correction parameters P 5, = 7.5 and Ps o, = —0.485.

6.2 Simulated ADC Performance

Figure 6.1 and 6.2 show the INL plots without and with calibration, respectively. Before
calibration, the INL values are.within +20.00/-20.00 LSB. After calibration, the INL is
between +0.60/-0.49 LSB. Asignificant INL improvement is observed.

Figure 6.3 and Fig. 6.4 show the DNL plots without-and with calibration, respec-
tively. Before calibration, the DNI. values- are within +2.00/-1.00 LSB. Note that, a
lot of missing codes exist. After calibration..the DNL reduces to be within +0.56/-0.78
LSB. The original missing codes are successfully corrected. Figure 6.5 shows the INL
plot and the DNL plot after calibration in detail.

Figure 6.6 and 6.7 show the output spectra before and after calibration, respectively.
Comparing Fig. 6.6 and 6.7 indicates that the simulated SNDR improves from 39.7 dB
to 69.7dB and SFDR improves from 53.6 dBc to 93.4 dBc, respectively. The calibration
improves the ENOB from 6.3 bits to 11.3 bits.

Table 6.2 summarizes the ADC performance without/with calibration. From the

table, we see a great improvement on ADC performance after calibration.
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INL (LSB)

Table 6.2: ADC performance.

Performance metrics Without calibration With calibration

INL (LSB) -20.00,-20.00 £0.60,-0.49
DNL (LSB) +2.00/-1.00 0.56,/-0.78
SFDR (dBc) 53.6 93.4
SNDR (dB) 39.7 69.7
ENOB (bits) 6.3 11.3
INL
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Figure 6.1: INL without calibration.
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o6



INL

0.5

0.4

0.3

0.2

0.1

INL (LSB)

-0.3

-0.4

-0.5

0 500

0.6

0.4

0.2

DNL (LSB)
o

|
o
N

-0.4

-0.6

1000
CODE

DNL

1500

2000

500

Figure 6.5: INL and DNL with calibration

1000
CODE

27

1500

2000



Power Spectrum

Fi = 10.0MHz , Fs = 100.0MHz
SFDR = 53.6dBc
0 SNR = 40.4dB
SNDR = 39.7dB
ENOB = 6.3bits

|
N
o

T

1

-60

Power Spectral Density (dBFS/bin)

Frequency(MHz)

Figure 6.6: FF'T without calibration.

o8



Power Spectral Density (dBFS/bin)

Power Spectrum

Fi = 10.0MHz , Fs = 100.0MHz
SFDR = 93.4dBc
ol SNR = 69.8dB |
SNDR = 69.7dB
ENOB = 11.3bits
_40 - .
_60 - .
_80 - .
-100 |
-120
0 10 20 30 40 50
Frequency(MHz)
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6.3 LMS Loop Convergence

Figure 6.8 and 6.9 show the correction parameter convergence plots upon startup of
P, and P; of the first and the second pipeline stage, respectively. The input signal is
a full-scaled sinusoid. The samples of each correlation is 27, i.e., we take totally 2'®
samples for each updates of P, and P;.

With the help of the discussion in chapter 5, the step sizes of the P;-LMS-loop and
the P3-LMS-loop are

0 <y <21, (6.2)

0 < ps < 69. (6.3)

Therefore, we choose the step sizes between these ranges. Also, we take the convergent
speed into consideration. At the beginning, the step sizes are chosen for the time
constants to be around 50 iterations. If the amplitude of the dither is small at the
steady-state, the step size can be set to a larger value to speed up the convergence.
Finally, the designed parameters of the LMS loops are summarized in Table 6.3. The
step sizes are chosen not only suitable for the stability but also a special value to simplify

the implementation (no multipliers are needed).

Table 6.3: LMS loop parameters.
Step size Time constant
w1 = 0.5 7 = 64 iterations
usz = 2.25 713 = 38 iterations

Figure 6.10 and 6.11 show the behavioral simulation results versus the RTL simu-
lation results of the correction parameters P; and P3. For the RTL simulation, it’s not
efficient to simulate with a sinusoidal input because the required test patterns are too
large. Therefore, we apply a static input signal to make the simulations more efficient.
Observing Fig. 6.10 and 6.11, the solid line is the behavioral simulation result and the
dashed line is the RTL simulation result . It’s obvious that the behavioral simulation

results are identical to the RTL simulation results.
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Figure 6.8: LMS loop convergence of the first pipeline stage.
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Figure 6.10: Behaviroal vs. RTL simulation result of the LMS loop convergence of the
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P1 convergence of the 2nd pipeline stage
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Figure 6.11: Behaviroal vs. RTL simulation result of the LMS loop convergence of the
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64



Chapter 7

PROPOSED DIGITAL
BACKGROUND MCE METHOD
FOR ESTIMATING
MULTIPLE-ORDER
NONLINEARITY OFE. THE RESIDULE
AMPLIFIERS

In this chapter, we propose a novel digital background MCE method that can accurately
estimate multiple-order nonlinear terms of the residue amplifiers. This proposed scheme
makes use of the fact that the offsets in the sub-ADC doesn’t affect the ADC conversion
results based on the digital redundancy [23]. As most correlation based estimation
methods, a random sequence whose values no more than the tolerable offset can be
applied using either the sub-ADC or sub-DAC. To estimate the nonlinear terms lower
than (2m — 1)-order of the residue amplifiers, m calibration signals are applied to the
pipeline stage under calibration.

In the remainder of this chapter, we discuss the MCE method from two points of
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view, multiple-odd-order nonlinear terms and multiple-order nonlinear terms. Although
the residue amplifier is usually implemented in fully differential topology, even-order
nonlinear terms may exist if the circuit components are not perfectly matching. More-
over, to further reduce the power dissipation, a single-ended amplifier may be used due
to the power is half of the fully differential one or a novel topology such as dynamic
source follower amplifier [12] may be used. In this cases, the even-order nonlinear terms
of the residue amplifier can not be ignored. Therefore, we also propose an estimation
method for estimating the even-order nonlinear terms of the residue amplifiers. By this
proposed estimation method with a calibration technique, it can substantially relax the

precision of the analog circuit design and improve the pipelined ADC’s performance.

7.1 Proposed MCE Method for Estimating Multiple-
Odd-Order Nonlinear Terms of the Residue Am-

plifiers
Nonlinear
residue amplifier
Vresj—l Vresj
Sub-ADC Sub-DAC T_
M ® /_*_\ \\ Backend
?J_/ ADC
| SLBY
Va // : DEM N di o :
1 1
\ T Ril pnG : %
pec |'\PCSG____ i____ o
Py PW
Estimation ﬁ
Dyi-1 I o
« +)< Calibration <

Figure 7.1: Model of the j-th pipeline stage under calibration
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Considering Fig. 7.1, the estimation block provides the correction parameters, P,,
where w denotes the coefficient of the w-th order term of the residue amplifier. The

correction parameters are defined as

P1 = A17 (71)

A
P, = —, forw> 1. (7.2)
Ay

In order to unbiasedly estimate the nonlinearity of the residue amplifiers, the PNG is
designed as a uniformly distributed pseudorandom binary sequence. That is, PNGe
{+1, —1} and is uncorrelated with the ADC’s input signal. The PCSG is continuously
applied the calibration signals to the stage under calibration to estimate and track the
correction parameters against environmental variations.

Now, assume the transfer function of the nonlinear residue amplifier contains the lin-
ear gain error, 3rd-order and 5th-order nonlinear gain errors. Then it can be expressed

as

Gj(vs) = a1 () + a3(v,)” + as(v,)’, (7.3)

where a5 is the coefficient of the hth-order nonlinearterm of the residue amplifier. The

digitized residue Dy; when the random sequences are applied is

Dbivref = I (U:v) + a3(vx)3 + CL5<UI>5 + Vgb + Vop
ai as
= Dy = (—Vga — Rivai) + (—vga — Rivai)® +
Uref Uref
a Vab Uob .
" (—vga — Rivai)® + —- + —=, i € {1,2,3}
Uref Uref Uref
3
v Vdi v Vdi
= Dbi = a1 (— “ Rz di ) +CL3U36f <— “ RZ di ) +
Uref Uref Uref Uref

5

(% Vdi (Y v .

%%&—W—&“)+qﬁ%wweuz% (7.4)
Uref Uref Uref Uref

where R; € {41, —1} are the pseudo-random number sequences generated from the
PNG block and uncorrelated with the input signal of the pipelined ADC.
For simplicity, we define the normalized analog signal As=asv?, s> and use the same

notations of the normalized analog signals in chapter 5. Substituting these notations
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into (7.4),

Dy = Ay(—Ngo — RiNg;) + As(—Nga — RiNgi)* + As(—Nga — RiNg;)® +
Ny + N, i € {1,2,3}
= A1(=Ng — RiNg;) + A3(—Nj, — 3N, RiNy; — 3NgaNg; — RiNJ;) +
As(=N;, — 5Ny, RiNg; — 10N, NJ; — 10N, RiN3; — 5Nga Ny, — RiNJ,)

+Ngp + Nop, @ € {1,2,3}. (7.5)

As aresult, R; times N add offsets of £Ny1, =Nyo or Ny3 LSB (of the local sub-ADC)
to the sub-DAC. They are

RNyt € {+Nag,—Na}
RoNgon '€ A+ Ngoy = Nao }

R3Ngz—< {+Naz, —Naz}.
Taking the correlation of Dy; and R;, we have

E[R;Dy] = E[A((=R;iNg=Ng)+ As(—RiN,, — 3N, Nu; — 3R;Nyu N,
—N3) + As(—R;N,; = BNy, Ngi — 10R; N3, Nz, — 10N2, N, —

q q

5R;NgaNg; — Ng;) + RilNoy + Ri Noy). (7.6)

Because R; are uncorrelated with the input signal, the correlations of R; and Nyq, N,

and N, are all zero. Therefore, (7.6) is further reduced to
E[R;Dy) = A1(—Na;) + A3(—3N_,Nai — N3) + As(=5N,,Nas — Ny,). (7.7)

Equation (7.7) reveals that the quantization error and the offset of the backend
ADC doesn’t affect the estimation accuracy as compared with [3]. Furthermore, if the
backend ADC has a conversion gain error, it can be referred to the previous stage as
an additional gain factor. Therefore, the conversion gain error, the quantization error,

and the offset of the backend ADC have no effect on the estimation accuracy.
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By (7.7), the result is proportional to Aj if the terms with A; and Az can be elim-
inated. For such a reason, we propose a technique called “multi-correlation estimation
(MCE)” method that accurately estimates the error information of the residue ampli-
fiers. This goal can be achieved by using Ng3 = Ny /2 = Ny /4 = LSB/8 (of the local
sub-ADC). The result is

€5 = E[RlDbﬂ — 10E[R2Db2] + 16E[R3Db3]
= [A1(=Na1) + A3(—=3N2,Nay — Njy) + As(—5Ng,Na1 — 10N, N3, — Njy)]
—10 [A1(=Na2) + A3(—3Nz,Naz — Njpp) + As(—5NgyNao — 10N, N3, — N3, )]
+16  [A1(—Ngs) + As(—3Ng,Nas — Nijs) + As(—5Ny, Naz — 10N, Ny — Nj3)|
= [A1(=Na1) + A3(=3N2Na1 — Nj;) + A5(—5Ngy N1 — 10N, N3 — Ng)]
Ny o Nao NJ N, Nai > Vi Ni
—10 |Ai(——) + A3(-3N2, == — As —10NZ,— 4 — —dL
0 |An(=Tg) + Aa(-3n 0 - T 4 as(-sg, T~ 108 N - T
Na1 a2 Vg NI, 4 Na1 o Niv  Ni
16 | A1 (=—) + As(=3Ngg=— — ~11) + As(=5Ng,—— — 10Ng, 4L -
10 [1( 1) AN — ) A ONaa 54 ~ 1024

Therefore, €5 is directly proportional.to A; and it gives.an unbiased estimation. Assume
the inverse function of the nonlinear residue amplifier G;l(vmsj) exists. A further
derivation of this nonlinear inverse function is beyond the scope of this thesis. We use
an equivalent model of the inverse function as shown in Fig. 7.2, where D, is the
digitized linear term of the residue amplifier. The calibration scheme can be modeled
as

Dy — PsD} — PsD; . (7.8)

Based on this assumption, the 3rd-order and 5th-order nonlinear terms can be cancelled

in the digital domain. If the correction function (7.8) is applied, we obtain

45

%57 6

— N3 A (Ps opt — Ps). (7.9)

This result indicates the deviation of the correction parameter Ps from its ideal value is
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directly proportional to €5. Therefore, it can be applied to the LMS loop to minimize

the deviation so as to obtain the ideal value of the Ps.
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1
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1 1 ~
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Linear 1 . * !
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+ + o0 !
1
Pl . . I:)bx /I/
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= — ‘ 5
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< T Callbr;atlon 5 <«
Dy ~P3 D ~Ps Dipx

Figure 7.2: Equivalent model of the calibration scheme for multiple-odd-order nonlinear
terms.

Once the 5th-order nonlinear term is cancelled, A5 in (7.7) will be zero. As a result,
E[R;Dy] = A1(—Ng;) + A3(—3N2,Nai — Nj;). (7.10)

Notice that (7.10) is the same as (5.3). Therefore, the same estimations of the 3rd-order
nonlinear term and the linear gain error of the residue amplifier shown by (5.4) and

(5.5) hold.
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Table 7.1: Coefficients C,; of the MCE method for the estimation of the odd-order
nonliner terms if the ratios of the calibration signals are geometric series of 2.

(2m — 1)-order | 3rd-order | 5th-order | 7th-order
m 2 3 4
€(@m-1) —iNhAs | g NG As | — e N Az

Cor (=27 (=2 (=2)°

Co2 (—2)! (=2)!' x5 | (=2)! x3x7

Co3 0 (—2)* (—2)* x3x7

CVo4 0 0 (—2)9
7.1.1 Discussion
The estimation of the (2m — 1)-order nonlinear term is

eam-1= > _ CoE[R; Dy, (7.11)

i=1

where m indicates m calibration signals are .applied and C,; are the coefficients of the
MCE method for the estimation of the-odd-order nonlinear terms.

Any other odd-order nonlinear term estimation of the residue amplifier can be deter-
mined similarly as mentioned above. For-example; if we inject four calibration signals
Ngy = Ng3/2 = Ng/4 = Ny /8 = LSB/16 (of the'local sub-ADC), the estimation of

the 7th-order nonlinear term can be expressed as

2835
er=E[R Dy] — 42B[Ry Diz] + 336 B[Ry Dys] — 512E[RaDy] = — 5 A7,

where A7 = a8, 7 and a7 is the coefficient of the 7th-order nonlinear term of the residue
amplifier. Table 7.1 summarizes the coefficients C,; of the MCE method for estimating
the odd-order nonlinear terms when the ratios of the calibration signals are geometric
series of 2. In fact, there’s no need to choose the ratios of the calibration signals to be
geometric series of 2. The coefficients of the MCE can be adjusted to suit any selected

ratios of the calibration signals.
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7.2 Proposed MCE Method for Estimating Multiple-
Order Nonlinear Terms of the Residue Amplifiers

Now, let’s take the even-order nonlinear term into account. Assume the nonlinearity
of the residue amplifier contains the linear gain error and the 2nd-order and 3rd-order

nonlinear gain errors, i.e., the transfer function of the residue amplifier is
G(ve) = ar(ve) + az(v2)”® + az(vs)’, (7.12)

where as is the coefficient of the 2nd-order nonlinear term of the residue amplifier. The

digitized residuum D,; when the random sequences are applied is

Dy = Al(—Nqa - RiNdi) + A2(_Nqa J RiNdz’)2 + A3(_Nqa - RiNdi)S
+Nqb + Nob
= Ai(=Nyo — RilNgi) + Ao(NZ 4+ 2Ny RiNg; + N3,) + As(— N2,

—3 N, RiNai = 8Ny Nas = RilNg) + Ny + Ny, i € {1,2}, (7.13)

where As=asv,s. Other notations in.(7.13) are the same as those in chapter 5.

Similar to the derivation in section 7.1, taking the correlations of Dy; and R; gives
E[R; Dy = Ai1(—Na;) + A2(2NgaNas) + As(—3N_, Nai — 3Ng,). (7.14)

Assume Ny = Ng1/2 = LSB/4 (of the local sub-ADC), the estimation of the 3rd-order
nonlinear term is the same as (5.4).

From (7.14), it’s obvious that the 2nd-order nonlinear term doesn’t affect the es-
timation of the 3rd-order nonlinear term because the term Ay(2N,,Ng;) is eliminated
during the MCE procedure.

The calibration scheme of the 3rd-order nonlinear term is similar to that in section

7.1 and is shown in Fig. 7.3. If the 3rd-order nonlinear term is cancelled, A; in (7.13)
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Figure 7.3: Equivalent model of the calibration scheme for multiple-order nonlinear

terms.
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becomes zero. As a result,
Dy; = A1(—Ngo — RiNg;) + Ao(N2, + 2NgoRiNgi + N;) + Ngp + Now. (7.15)

To find the estimation of the 2nd-order nonlinear term of the residue amplifier, we seek
a result that is directly proportional to A;. By (7.14), the terms contained with A;
and A, are all proportional to Ny;. If we still take the correlations of R; and Dy;, the
estimation of the 2nd-order nonlinear term by MCE method is hard to find. Fortunately,
observing (7.15), there’s a term in the expansion of Ay which is directly proportional

to N2%. Therefore, we can take the expected value of Dy,
E[Dy] = Ai(=Nga) + Az(Ngy + Nig) + Ny + Nob. (7.16)

As a result, it’s obvious that the estimate of the 2nd-order nonlinear term can be easily
found by

3 3
£9=E[Dy) — B[Dy | = —ZJ\C;’lA2 = —ZNglAﬁ(PQ,Opt - PR). (7.17)

After the 3rd-order and the 2nd-order nonlinear terms are all removed, the estimation

of linear gain error is given by (5.5) as well.

7.2.1 Discussion

The estimation of the (2m — 2)-order nonlinear term is

Eom_o= Z_ Coi(E[Dyisr] — E[Dy)), (7.18)

where Cy; are the corresponding coefficients of the MCE method for the estimation of
the even-order nonlinear terms.

Any other even-order nonlinear term estimation of the residue amplifier can be
derived in a similar way. Table 7.2 summarizes the coefficients C\; of the MCE method
for the even-order nonlinear term estimation when the ratios of the calibration signals

are geometric series of 2.
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Table 7.2: Coefficients C,; of the MCE method for the estimation of the even-order
nonliner terms if the ratios of the calibration signals are geometric series of 2.

(2m — 2)-order | 2nd-order | 4th-order | 6th-order
m 2 3 4
E(2m—2) —3N; Ay | —2Nj Ay | —2BNT Ag
Ca D [0
Cea 0 (-1t x2% | (=1)! x22 x5
063 0 0 (—1)2 X 26

An important property of this MCE method is that the even-order nonlinear terms
doesn’t affect the accuracy of the estimation of the odd-order nonlinear term. For
instance, if an residue amplifier contains the linear gain error and the 2nd-order to

bth-order nonlinear gain errors, the correlation of R; and Dy; will be

E[RiDbi] = Al(_Ndz') + A2(2Nandz') + A3(_3N(12aNdi - N(?i) + A4(4N$aNdi

+4N NG 4455 NgaiNag <10N2 N3, — N3, ).

Qa

(7.19)

To derive 5, we can expect that the unbiased estimation result is proportional to a scalar
times A;N3,. That is, the terms with N7 in.(7.19) where z < 5 will be cancelled by
the MCE method. From (7.19),44t’s.obvious that the term related to A, is proportional
to Ng and the terms relative to Ay are Ny and Nj’i. The order of these terms are all
lower than 5 and all of them can be cancelled by the MCE method. Therefore, the 2nd-
order and the 4th-order nonlinear terms do not affect the estimation of the 5th-order
nonlinear term.

In general, if we focus on deriving the unbiased estimation e, 1, the correlations
of R; and the even-order nonlinear term only contain terms with Nj;, where z < 2m —
1. These terms can be eliminated by the MCE process. As a result, the even-order
nonlinear terms have no impact on the accuracy of the estimation of the odd-order
nonlinear terms. In other words, the coefficients C,; of the MCE method for estimating
odd-order nonlinear term remain the same even though we take the even-order nonlinear

terms into account.
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7.3 LMS Loop Analysis

We use an example in which the residue amplifier’s transfer function contains a 2nd-
order and a 5th-order term to demonstrate how to employ the LMS algorithm to update
correction parameters Ps and P,. Based on the LSM algorithm, two recursions are

constructed with respect to €5 and 5.

P5<kf+].) = P5(]€)—/L565

45
= P5(k) + N56_4N31A?(P5,opt — P)
45
= P5(k) + 2”5(P5,opt - PS)E8 5114? (720)

Py(k+1) = Py(k) = sEs

3
= Py(k) dpa g Ny AT (Po,op — P2)

4
3
i PQ(k) + 2“2(P2,0pt y\ P2)§N31A% (721)
. . 45 5 5 .
The eigenvalue of the Ps-LMS-loop is' A5 = EgN‘”Al and the eigenvalue of the P,-

3
LMS-loop is Ag = 3 1AT

7.3.1 Stability and Convergence

The step size can be determined by Eq. (4.29). The criteria,

1
0< < —
s A

128

e 7.22
135N3, A} (7.22)

= 0<ps <

1
0< < —
2 By

= 0O<pu< (7.23)

8
INZ AT

ensure the two LMS loops to be convergent and stable.
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7.3.2 Time Constant

Recall (4.25), the time constants of the two LMS loops are

1 64
= = 7.24
75 2/15/\5 45#5]\73114?7 ( )
1 4
Ty (7.25)

2#2)\2 N B/LQNC%IA% ’

respectively.
The following chapter will give behavioral simulation results of the proposed MCE-

based nonlinear-term estimating scheme.
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Chapter 8

SIMULATION RESULTS

8.1 Simulation Results of the Proposed MCE Method

for Estimating Multiple-Odd-Order Nonlinear Terms

of the Residue Amplifiers

8.1.1 Simulation Setup

We build a behavioral model of an example ADC 10 validate the propose scheme. This

example is a 14-bit 100MS/s pipelined ADC formed by a (3-+1)-bit pipeline stage and
then followed by an ideal 11-bit backend ADC. Hence, the ADC has a resolution of 14

bits. The first pipeline stage of the ADC has 1-bit redundancy for the injection of the

random sequences. In this section, we aim at verifying the estimation of multiple-odd-

order nonlinear terms. As a result, the residue amplifier in the first pipeline stage is

modeled to have the linear gain error, the 3rd-order and the 5th-order nonlinear terms.

Table 8.1 summarizes the associated values of the design parameters. With the value

Table 8.1: Open-loop residue amplifier parameters.

Parameter Description Value
FS Full scale range 1.2V
a; linear gain error 7.6
as 3rd-order nonlinear gain error  -142.2
as Sth-order nonlinear gain error -126420
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listed in the table, a polynomial expression of the residue amplifier’s transfer function
is

Gj(ve) = 7.6(v,) — 142.2(v,)* — 126420(v,)°. (8.1)

The optimal correction parameters for this example are P oy = 7.6, Ps o, = —0.467,

P5,Opt - —].O

8.1.2 Simulated ADC Performance

Figure 8.1 and 8.2 compare the INL plots of the ADC without and with calibration,
respectively. By activating the calibration, the INL values improve from +165.50/-
166.25 LSB to +0.66/-0.50 LSB. Figure 8.3 and 8.4 show the DNL plots of the ADC
without and with calibration, respectively. After calibration, the DNL values improve
from +11.61/-1.00 LSB to +0.55/-0:569 LSB.In addition, the original missing codes are
successfully corrected after calibration. Figure 8.5 shows the INL plot and the DNL
plot after calibration in detail.

Figure 8.6 and 8.7 show the output spectra of the ADC at an input frequency around
10 MHz. The SNDR improves from 31:2 dB to 80.4 dB-and the SFDR improves from
45.2 dBc to 94.7 dBc. The ENOB improves from-4.9 bits to 13.1 bits.

Table 8.2 summarizes the ADC performance without/with calibration. It verifies

the proposed calibration scheme achieves a great improvement on ADC performance.

Table 8.2: ADC performance.
Performance metrics Without calibration With calibration

INL (LSB) +165.50/-166.25 40.66/-0.50
DNL (LSB) +11.61/-1.00 +0.55/-0.59
SFDR (dBc) 452 94.7
SNDR (dB) 312 80.4
ENOB (bits) 19 13.1
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Figure 8.1: INL without calibration.
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Figure 8.2: INL with calibration.
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Figure 8.3: DNL without calibration.

82

16000



DNL (LSB)

12

10

DNL

0

2000 4000 6000 8000 10000 12000 14000 16000
CODE

Figure 8.4: DNL with calibration.
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Figure 8.5: INL and DNL with calibration.
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Figure 8.6: FF'T without calibration.
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Figure 8.7: FF'T with calibration.
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8.1.3 LMS Loop Convergence

The convergence of the correction parameters, Py, P3, Ps, are illustrated in Fig. 8.8, 8.9
and 8.10, respectively. The input signal is a full-scaled sinusoid. With the discussion
of the stability and the time constant of the LMS loops in chapter 7, the ranges of the
step sizes for the LMS loops to be stable are

0 < <21, (8.2)
0 < ps < 66, (8.3)
0 < p5 < 2688. (8.4)

The step sizes are chosen to be p; = 0.05, ps = 0.125 and p; = 32. First, we set
the step size us to make the time constant 75 between 50 to 150 iterations. Because
the three LMS loops converge simultaneously, we should set the time constants of the

low-order ones 71, 73, to be larger than the value of 753 oetherwise, they will underdamp.
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Figure 8.8: P1 convergence.
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8.2 Simulation Results of the Proposed MCE Method
for Estimating Multiple-Order Nonlinear Terms

of the Residue Amplifiers

8.2.1 Simulation Setup

In this section we use the same pipelined ADC example as described in the previous
section but with a different transfer function of the residue amplifier to validate the
proposed MCE method for multiple-order nonlinear terms. Table 8.3 summarizes the
associated parameters of the nonlinear residue amplifier in the first pipeline stage. With

the values listed in the table, the corresponding residue amplifier model is
Gj(vg) = T.6(vp)= TAT(vs) = 142.2(v,)?. (8.5)

Consequently, the optimal correction parameters are Py .+ = 7.6, Poon = —0.155,

Py opt = —0.467.

Table 8.3: Open-loop residue amplifier parameters.

Parameter Description Value
FS Full'scale range 1.2V
ay Linear gain with error 7.6
as 2nd-order nonlinear gain error -7.47
as 3rd-order nonlinear gain error -142.2

8.2.2 Simulated ADC Performance

Figure 8.11, 8.12, 8.13 and 8.14 show the INL plots and the DNL plots of the ADC with-
out and with calibration, respectively. The proposed calibration scheme significantly
improves the INL values from +89.97/-55.81 LSB to +0.46/-0.49 LSB and the DNL
values from +6.13/-1.00 LSB to +0.46/-0.73 LSB. Furthermore, the original missing
codes are successfully corrected after calibration. Figure 8.15 shows the INL plot and

the DNL plot after calibration in detail.
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Figure 8.16 and 8.17 show the output spectra of the ADC with a 10MHz input before
and after calibration, respectively. It clearly illustrates the great improvement on the
ADC’s performance afforded with calibration. The SNDR improves from 40.1 dB to
85.5 dB and the SFDR improves from 54.5 dBc to 123.5 dBc. The ENOB improves
from 6.4 bits to 13.9 bits.

Table 8.4 summarizes the ADC performance without/with calibration. From the

table, we see a great improvement on ADC performance after calibration.

Table 8.4: ADC performance.
Performance metrics Without calibration With calibration

INL (LSB) 189.97/-55.81 10.46/-0.49
DNL (LSB) 16.13/-1.00 10.46/-0.73
SFDR (dBc) 54.5 1235
SNDR (dB) 0.1 85.5
ENOB (bits) 6.4 13.9
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Figure 8.11: INL without calibration.
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Figure 8.12: INL with calibration.
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Figure 8.14: DNL with calibration.

95



INL (LSB)

DNL (LSB)

INL
0.5 \

0.4

0.3

0.2

o
a

o

-0.2

vl

-0.4

.5 L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000
CODE

DNL

0.4

0.2

I
o
()

-0.4

0 2000 4000 6000 8000 10000 12000 14000 16000
CODE

Figure 8.15: INL and DNL with calibration.
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Figure 8.17: FFT with calibration.
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8.2.3 LMS Loop Convergence

Figure 8.18, 8.19 and 8.20 show the correction parameter convergence plots of P, Py
and P3;. The input signal is a full-scaled sinusoid. The range of the step sizes for the

LMS loops to be stable are

0 < pp <21, (8.6)
0 < pg < 15, (8.7)
0 < pg < 66. (8.8)

The step sizes are determined by a similar consideration as mentioned in the previous
section. Finally, the values of the step sizes are set to be pu; = 0.25, pus = 0.3125,

U3 = 1.5.
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Figure 8.18: P1 convergence.
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Figure 8.19: P2 convergence.
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Figure 8.20: P3 convergence.

101



Chapter 9

CONCLUSION AND FUTURE
WORKS

9.1 Conclusion

The performance of the pipelined ADC is limited by the accuracy of the linear gain
and the nonlinearity of the Tesidue amplifier. ‘In order to have high performance,
the pipelined ADC needs to be-calibrated. In this thesis, a novel digital background
MCE method for estimating multiple-order nonlinear terms of the residue amplifiers in
pipelined ADCs is presented. The proposed method can accurately estimate any order
nonlinear term of the residue amplifier. Since the accuracy and linearity requirements
are alleviated, less complex and lower-power analog circuits can be used. Most hard-
ware overhead is on the digital circuits, whose area and power consumption are small
in advanced technology. This feature makes the design of the high-performance ADCs
much easier. Compared with the similar digital background estimation techniques dis-
cussed previously [3, 28, 5|, the proposed algorithm is favorable in many aspects, where

they are summarized in Table 9.1.
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Table 9.1: Comparison of the estimation techniques

3] [28] 5] proposed
Applying static . .
. fails fails works works
mput
Input statistic
dependence yes 1o 1o 1o
Residue only suitable
amplifier no restriction for weakly no restriction | no restriction
limitation nonlinear
Nonlinear term. . .
Oestir?%ti?n S only suitable | only suitable any order any order
. for 3rd-order | for 3rd-order
capability
limited by
Correction analog and limited by limited by theoretical
range digital analog circuit | analog circuit maximum
circuits
Multi-stage
calibration no yes yes yes
capability
Hardware cost moderate large large small
Tracking time ~ 2% cycles |~ 2% cycles | =23 cycles | =~ 2* cycles

9.2 Future Works

In this thesis, the MCE algorithm {2] is-implemented on an external FPGA using Verilog
HDL. An obvious future work is SoC that integrates the digital calibration processor
and the pipelined ADC on a single chip. The offset of the backend ADC must be
address because the inverse function can not tolerate it.

Second, exploring a more efficient estimation method that has less dependence on
the ratio of the calibration signals may be a future research topic.

Other opportunities exist in developing a novel calibration scheme. Although there’re
many researches focus on digital background calibration scheme for pipelined ADC,
they usually only concern the estimation of the linear and the nonlinear coefficients of
the residue amplifier. However, how to cancel the obtained nonlinear terms is another
important issue. Except for directly using an inverse function [3], most calibration tech-
niques use the backend ADC’s digital output as an approximation of the linear term of

the residue amplifier |5, 18, 28, 47|. They use the backend ADC’s digital output to gen-
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erate an approximation of the nonlinear errors of the residue amplifier and then cancel
it from the pipelined ADC’s primary digital output. This kind of calibration schemes
inject some additional error terms due to the nonlinearity of the residue amplifier. As

a result, the correction range of the nonlinearity may be significantly limited.
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APPENDIX A

Derive the calibration Eq. (3.20):

4cos®p — 3cosp = cos3p
Let cos3¢p =C

then 4cos®¢p — 3cosp = G

cosd3p = C
= ¢= %cole

3
a1V + azvy, = Dyney

3
(% (Y
v Uref

= X = Rcost; Ay =aq; Az = agvfef
Uref

AL X + AsX? = D,
= A;Rcosl + Az(Rcost)® = Dy,

Al A3 2 3 _Db
= 3(3)0039+(—4)< 4)R0059—R

3A5 5 3 b
4 -
= 3cosf + ( )(_4A1)R0039 e
—4A; —4 A,
Let R? = = R =
¢ 345 34,
3 —Dy
= 4c08°0 — 3cosl =
Ay [—44,
3 345
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Comparing (A.1) with (A.3), the right hand side of these two equations is only
Dy

A [-44,
3 343

4cos® (¢ + g) — 3cos(¢ + g) = cos3(¢ + g)

different in the polarity if C' = . To modify this difference, let 6 = ¢ + %.

= 4cos* (¢ + g) — 3cos(¢ + g) = —c0s3¢

X = Rcosf
= X = Rcos(¢ + g)
from equation (A.2)

—4A 1 D
= X =/ —Lcos T + —cos™? b

3A3 3 3 A [ =4A
3\ 343
the linear term *

—4A1 v 1 \ 7 Db

A1 X = A ——cos | = += =
1 1 A, coS 3 + 3003 ED
3\ 343
A3 1 D,
A X = ) — + —cos !
= 1 3, COS 3 i 3605 ) —
27A5
Az
Let P3 = A_:f
-1 ™ 1 Db
= A X =24 — — 4+ —cos!
1 3P3005 3 + 3003 =
27P;

Consequently, the nonlinear term A3 X? can be expressed as:

A3 X3 = Dy— A1 X

—1 s 1 Db

= A3X3? = Dy —24/— — + —cos™!
3 b 3P3003 3—1—3005 S
27P3
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