

國 立 交 通 大 學

電控工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

大型貝氏網路推論之

時間與準度權衡演算法

A Tractable Time-Precision Tradeoff Algorithm for

Inference in Large-Scale Bayesian Networks

研 究 生：莊仲翔

指導教授：周志成 博士

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 九九九九 年年年年 七七七七 月月月月

大型貝氏網路推論之

時間與準度權衡演算法

A Tractable Time-Precision Tradeoff Algorithm for

 Inference in Large-Scale Bayesian Networks

研 究 生：莊仲翔 Student：Chung- Hsiang Chuang

指導教授：周志成 Advisor：Chi-Cheng Jou

國 立 交 通 大 學

電控工程研究所

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

 in

Electrical and Control Engineering

July 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

大型貝氏網路推論之

時間與準度權衡演算法

 學 生：莊仲翔

 指導教授：周志成

國立交通大學電控工程研究所

摘 要

 在不同的領域中，貝氏網路是一種功能強大的分析工具。推論引擎則

是貝氏網路中最重要的部分，負責處理接收到的訊息藉由機率的方式給出

結論。推論引擎可以藉由不同的演算法來實現，並且加速推論的效率。由

於傳統的精確推論演算法在大型貝氏網路中，會大幅降低演算效率導致無

法運作。因此，我們提出了一種新的演算法，稱作 KLA 演算法，來解決在

大型複雜的貝氏網路中推論的問題。KLA 演算法可透過權衡時間和精準度

來提升推論的效率，而且所需要的記憶體空間會是所有推論演算法中最小

的。因此，此演算法能夠更容易的將貝氏網路實現在記憶體受限制的應用

中。為了評估在不同結構下 KLA 演算法的表現，我們設計了一系列的實驗

來觀察準度和計算時間的結果並且和傳統聯結樹演算法來做比較。我們也

將 KLA 演算法運用在現實中的案例上來觀察模擬的成果。

A Tractable Time-Precision Tradeoff Algorithm for

 Inference in Large-Scale Bayesian Networks

Student：Chung- Hsiang Chuang

Advisors：Dr. Chi-Cheng Jou

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

Bayesian networks (BNs) are powerful tools in diverse fields. The most important part is the

inference engine, which draws conclusions by updating probabilities on the basis of the given

knowledge. The inference engine can be implemented by using different algorithms, which

help BNs draw various conclusions efficiently. Since traditional exact methods collapse when

applied to large-scale methods, we propose a new algorithm, called KLA-algorithm, to solve

the problem of drawing an inference in a large and complex system. The KLA-algorithm

always has tractable computational time and a trade-off with precision. The required memory

in KLA-algorithm is the minimum as compared to the other inference algorithms. This

advantage extends large-scale BNs to some limited resource applications. In order to verify

the KLA-algorithm in a different graph structure, we design a series experiment to compare

with the junction tree algorithm and discuss the performance of precision and computation

time. We also apply the KLA-algorithm to real-world data in order to carry out some

simulations.

誌 謝

 研究這條路，一路走來一直都是跌跌撞撞的，處在迷霧中永遠比撥雲見日的時間還

要永久許多。能夠毫無畏懼的一直走到最後是因為有大家一直在旁邊的陪伴。

 謝謝我的指道教授可以這麼放任的讓我為所欲為，讓我可以做我自己的研究，朝我

想走的方向走；即使由於我的固執而走入死路，也會即時指引出另一條可行的道路。然

而跟您相處兩年的點點滴滴，您的行事風格，特立獨行的品味對我的影響更甚於課業上

的教導。

 謝謝實驗室的研究同伴們，在苦悶時總是可以一起聊天、吃飯，這一直是我堅持到

最後的動力。雖然有時覺得實驗室很吵，但是當實驗室空無一人時，才深深體會到那份

吵鬧的珍貴。

 在我身邊的朋友們，感謝你們的陪伴，大家研究的路都各不相同，但目標都是一致

的。彼此的扶持與鼓勵讓我覺得這條旅途並不孤獨。

 感謝口試委員對論文方面的建議以及提點，與你們討論令我受益良多也讓讓這份作

品能更加完整。

 最後，謝謝我的家人，總是受到你們的呵護與照顧。也在此將這份論文獻給你們。

A Tractable Time-Precision Tradeoff Algorithm for

Inference in Large-Scale Bayesian Networks

July 28, 2010

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 4

2 Large Bayesian Network Structure Learning 5

2.1 Introduction . 5

2.2 Basic Concept of Bayesian Networks . 7

2.2.1 Independence and Conditional Independence 7

2.2.2 BN Factorization . 7

2.2.3 D-Separation . 9

2.3 BN Power Constructor . 10

2.4 Issues Related to BN Power Constructor . 13

2.4.1 Threshold Selection . 13

2.4.2 Orientation Problem . 14

3 Bayesian Network Inference 15

3.1 Introduction . 15

3.2 Parameter Learning . 16

3.2.1 Bayesian Networks Model Parameterization 17

3.2.2 Maximum Likelihood with Complete Data 18

3.3 Inference engine . 20

i

3.3.1 Junction Tree Algorithm . 21

3.3.2 Conditioning Algorithm . 25

3.4 Why New Algorithm? . 29

3.4.1 Exact Algorithm Problem . 29

3.4.2 Some Approaches for Large-Scale Inference 30

3.4.3 Why New Algorithm? . 34

4 New Inference Approach 35

4.1 Introduction . 35

4.2 KLA-Algorithm . 36

4.2.1 Structure Construction . 36

4.2.2 Initializing Potentials . 38

4.2.3 Propagation . 38

4.2.4 Joint Probabilities . 39

4.2.5 Conditional Probabilities . 41

4.3 Inference in Large System . 43

4.3.1 Complexity of Graph vs. Computing Time 44

4.3.2 Good Approximation Method . 45

4.4 Complexity of KLA-Algorithm . 50

5 Experiments 53

5.1 Verification of KLA-Algorithm . 53

5.2 Application to Ozone Level Detection Data Set 64

5.2.1 Problem and Data Introduction . 64

5.2.2 Bayesian network construction . 65

5.2.3 Inference simulation . 71

6 Conclusions 75

ii

List of Figures

1.1 Bayesian network modeling a meadow. The structure (nodes and arcs) and

parameters (conditional probabilities table) are shown in the graph. 2

2.1 The joint probability P (A,B,C,D,E) can be factorized as the product of all

conditional probabilities,
∏
P (X|ΠX). 8

2.2 (a) Original graph of a multi-connected network. (b) Result draft of original

data output from Phase I and input to Phase II. (c) Result graph after Phase

II. The remaining edges are passed from the heuristic (in)dependent test. (d)

Result graph output from Phase III. The remaining edges are passed from

the exact (in)dependent test, and part of them will be oriented. The result

structure is similar to the original structure. 12

3.1 Bayesian network model, structure, and CPTs; here, we parameterize all the

entries in CPT. 18

3.2 (a) Original Bayesian network. (b) Corresponding moral graph. The newly

added arcs are shown with dashed lines in the moralized graph. (c) Corre-

sponding triangulated graph with two added chords (dashed). (d) Junction

tree structure with corresponding cliques and separators. During the mes-

sage propagation, messages are passed away from clique ACE, beginning with

ACE; these message passing route is indicated by the arrows. The numbers

indicate a possible message passing order. 22

iii

3.3 Initialization of clique ACE by multiplying the CPT of node C and node E.

The separator CE is initialized to be unity. 24

3.4 Part of poly-tree network for each node X with parents U1, ..., UM and children

Y1, ..., YN . 26

3.5 (a)G is a moral graph of the Bayesian network and is a union graph in (b).

(b) G is sectioned into four graphs. (c) Junction forest of G, each square

represents a sub-graph in (b) and is called an agent. 32

4.1 (a) Simple Bayesian network with a loop. (b) Clique graph from (a); the

parents of node Xi and Xi can be contained in corresponding Ci. (c) Initial

clique potential ϕ(Ci) and separator potential φ(Sj). 37

4.2 Message propagation in the nodes. (a) Update ϕ(AEB) and ϕ(AC). (b)

Since there is a loop contain node D and D is the bottom node, node A will

be instantiated to 0 and 1. The correct potential of ϕ(BCD) will be obtained

by ϕ1(BCD)× P (A = 0) + ϕ2(BCD)× P (A = 1). (c) Top node and bottom

node in a loop. We select top node A in the local loop cut-set of node D. . 40

4.3 (a) Addition of a virtual node H, and assigning the interesting set of nodes to

be its parents. (b) Corresponding clique-node EDH. The blue line indicates

the message propagation path, and ϕ(EDH) can be obtained. 41

4.4 Propagation path of loopy belief propagation. Blue line represents the back-

ward propagation path. After clique-nodes B, C, D and E have propagated

the message to clique-node A, return again until all of clique potentials are

consistence. 43

iv

4.5 (a) Maximum eigenvalue of a structure with ten nodes with different numbers

of edges. A greater number of edges will lead to more loops in the structure

and a large maximum eigenvalue. The maximum eigenvalue of all the ten

nodes is between that of the line structure (the left) and the that of the fully

connected structure (the right). (b) Maximum eigenvalue of nine edges with

different nodes. A greater number of nodes will lead to simple structures and

the maximum eigenvalue will decrease. 46

4.6 Computation time increase exponentially with an increase in the graph com-

plexity. The value on the y-axis is the natural logarithm. 47

4.7 (a) Distance level from parents of bottom node X4 to top node X1 of the loop.

(b) KL-divergence between real joint probability and estimated joint proba-

bility of the parents of node X4 in the loop. The estimated joint probability

assumes that the nodes X2 and X3 are independent of each other. The low

value KL-divergence implies that the parents of node X4 are closer to the in-

dependent node. The blue line indicates a loop structure that does not have

an outside node, see (a). The green line indicates an outside node added to

parent X3 (shown in (c)) and has less KL-divergence than the blue line. (c)

Addition of an outside node on the left path. 49

4.8 Yellow nodes {X1, X2, X3} are the local loop cut-set of node X12. X1 is three

levels from X12, and X2 and X3 are two levels from X12. We can just keep

two levels for approximation, and the reduced local loop cut-set has only two

nodes, {X2, X3}. 50

4.9 (a) Poly-tree structure. (b) Multiply networks with few loops. (c) Multiply

networks with many long loops. (d) Multiply networks with many short loops. 52

5.1 Number of nodes vs. graph complexity. 54

v

5.2 Graph complexity vs. maximum clique size. Size of the clique is represented

by the number of nodes in the clique. The maximum clique size grows expo-

nentially in junction tree algorithm but fixed in the KLA-algorithm when the

graph complexity increases. 55

5.3 Computation time (seconds) of VN-method with different numbers of level

approximations and junction tree algorithm. The computation time is repre-

sented in a logarithmic form. Junction tree algorithm lacks one point because

the algorithm can not work in the most complex structure (The memory is

not sufficient). The VN-method with all levels only has 4 points because the

computation time is intractable in the last three structures. 57

5.4 K-L divergence between approximate value and exact value. There is no clear

relation between KL-divergence value and graph complexity. Most K-L di-

vergence values are less than 10−2, which means that we can obtain a good

approximation by the VN-method of the KLA-algorithm. 58

5.5 Computation time (seconds) of FB-method with different numbers of level

approximations and junction tree algorithm. The computation time is rep-

resented in a logarithmic form. The FB-method when all levels are kept is

replaced by that when seven levels are kept here, since the computation time

of keeping all values is always intractable. 60

5.6 K-L divergence between approximate value and exact value in FB-method.

There is no clear relation between KL-divergence value and graph complexity,

and the K-L divergence in different level approximations are similar. All of

the K-L divergence value are less than 10−2, which means that we can obtain

a good approximation by FB-method of KLA-algorithm. 62

vi

5.7 Computational time of different number of evidence nodes in two different

methods. The FB-method is presented as diamond with thick line, and the

VN-method is circle with thin line. The FB-method has more stable computing

time than VN-method. The y-axis represents the logarithm. 63

5.8 Maximum clique of JT and KLA algorithm in different value of threshold

ε2. (a) In 2-bins discretization situation. (b) In 3-bins discretization situation.

Both two situation indicate the JT-algorithm need more large space than KLA-

algorithm. 68

5.9 BIC value of the model with different threshold and bins. The blue line is two

bins discretization and the green line is three. The two bins discretization is

always better than three bins. The best network is occur at ε2 = 0.04, with

two bins discretization. 69

5.10 BIC value of the model with different threshold ε1. The ε1 value smaller than

0.0016 would have the best structure. 70

5.11 Final networks of ozone detection problem. Each circle corresponds a at-

tributes according to the number. The target node is No.73 and only be

connected by Node12 which is wind speed resultant at 11 am. 71

5.12 The corresponding precision with different value of vE . The highest precision

is 0.76 and vE is between 0.04 and 0.16. 72

5.13 Probability of ozone day on random six days from test-data. The left column

is the normal day case and right column is the ozone day case. The dashed

line is the threshold vE. 74

vii

List of Tables

3.1 X-ray noisy-OR example. The chance that an X-ray (E) will fail to detect two

medical conditions X and Y is just the product of the individual failure chances. 33

5.1 Computation time (seconds) of VN-method with different numbers of level ap-

proximations and junction tree algorithm. The corresponding graph is shown

in Figure 5.3. 56

5.2 K-L divergence between approximate value and exact value. NaN represents

that we do not have approximate value. The corresponding graph is shown in

Figure 5.4. 58

5.3 Computation time (seconds) of FB-method with different numbers of level ap-

proximations and junction tree algorithm. The corresponding graph is shown

in Figure 5.5. 60

5.4 K-L divergence between approximate value and exact value in FB-method.

NaN represents that we do not have approximate value. The corresponding

graph is shown in Figure 5.6. 61

5.5 Computational time (sec) of different number of evidence nodes in two different

methods of KLA-Algorithm.The corresponding graph is shown in Figure 5.7. 63

5.6 Seventy-two continuous attributes and one target variable in the data file. . 66

5.7 Precision and cross entropy error of different level approximation. All level is

the exact result. 73

viii

Chapter 1

Introduction

1.1 Motivation

Bayesian networks are powerful tools in diverse fields such as medical diagnosis [24], image

recognition [1], language comprehension [2], and search algorithms [12]. Bayesian networks

are very effective in modeling situations where some information is already known and the

incoming data are uncertain or partially unavailable (unlike rule-based or other expert sys-

tems, where uncertain or unavailable data lead to ineffective or inaccurate reasoning). These

networks also provide consistent semantics for representing causes and effects through an

intuitive graphical representation. Because of all of these capabilities, Bayesian networks are

being increasingly used in a wide variety of domains where automated reasoning is needed.

The Bayesian network systems can be deconstructed into three components. First is the

structure, which represents a set of random variables and their conditional independence.

Second is the parameter, which uses a conditional probabilities table to quantify the re-

lationship between variables. Third and the most important part is the inference engine,

which draws conclusions by updating probabilities on the basis of the given knowledge. The

previous two parts can be attained from domain knowledge or by learning from the data.

The inference engine can be implemented by using different algorithms, which help Bayesian

1

networks draw various conclusions efficiently.

For example, Figure 1.1 shows the simple case for modeling a meadow. The structure,

composed of arcs and nodes, indicates the relationship between cloudy weather, sprinkler,

rain, and wet grass conditions. The wet grass condition is caused by the rain or the sprinkler

condition, and the cloudy weather condition can affect the rain and decide whether the

sprinkler should be turned on. The strength of a relationship depends on the conditional

probabilities table; these probabilities are deduced on the basis of data or experience. Suppose

we observe that the grass is wet in the morning, and wish to know whether it rained or

whether the water sprinkler was turned on the previous night. By using the inference engine,

the Bayesian network would update the probabilities on the basis of the given information

(e.g. the grass is wet.).

1

2 3

4

cloudy

rainsprinkler

Wet grass

0.50.5

P(C=f)P(C=t)

0.50.5

P(C=f)P(C=t)

0.80.2P(C=f)

0.20.8P(C=t)

P(R=f)P(R=t)

0.80.2P(C=f)

0.20.8P(C=t)

P(R=f)P(R=t)0.50.5P(C=f)

0.90.1P(C=t)

P(S=f)P(S=t)

0.50.5P(C=f)

0.90.1P(C=t)

P(S=f)P(S=t)

10P(S=f & R=f)

0.10.9P(S=f & R=t)

0.10.9P(S=t & R=f)

0.010.99P(S=t & R=t)

P(W=f)P(W=t)

10P(S=f & R=f)

0.10.9P(S=f & R=t)

0.10.9P(S=t & R=f)

0.010.99P(S=t & R=t)

P(W=f)P(W=t)

Figure 1.1: Bayesian network modeling a meadow. The structure (nodes and arcs) and
parameters (conditional probabilities table) are shown in the graph.

To be considered an expert system, it is important for the system to draw efficient infer-

ence. In recent years, several efficient exact inference algorithms have been proposed, and

successfully used in different network structures. However, when a system becomes compli-

cated and the scale of the network increases, the inference engine requires a large number

of computations or a huge amount of memory, and becomes inefficient. In order to solve

2

this problem, some people use approximate methods, and others keep improving the exact

methods. The approximate methods have a trade-off the between the precision and the com-

putational time as well as the memory space. In large-scale networks, the precision is not

sufficiently good enough for some applications. On the other hand, there has not been any

significant improvement of the exact methods. The most famous method is the multiply

sectioned Bayesian network, which divides a network into small sub-networks, and obtains

the result by combining the inference in these sub-networks. However, even this method has

not efficiently deceased the computation time and memory space required.

In the present exercise, we focus on developing a new algorithm to make the Bayesian

networks draw inferences efficiently from complex, large-scale networks. There are three

reasons why we pay attention to the problem:

1. A complex large-scale system is commonly used in a variety of fields such as industry,

meteorology, and genetics. A Bayesian network is a powerful tool for predictive rea-

soning in these fields. Therefore, the above-mentioned problem is very practical in real

life.

2. While modeling the large-scale problem, feature selection can be used for simplifying

the problem. However, feature selection focuses on the correlation between an input

variable and an output variable, but not on the input variables themselves. Therefore,

we may lose some information related to the system. Large-scale Bayesian networks

can store more information about a system.

3. The memory space is limited in some applications such as embedded system. Therefore,

solving this problem is helpful in extending the applications of Bayesian networks to a

large scale.

3

1.2 Organization

In Chapter 2, we first describe the Bayesian networks, and then present a construction

algorithm for large-scale Bayesian networks. In large-scale networks, it is difficult to attain the

structure from domain knowledge. Therefore, we briefly discuss the algorithms for obtaining

a structure from the data and select the BNPC algorithm [5] to construct our model in

Chapter 5.

Chapter 3 presents the parameter learning and inference engine of a Bayesian network.

The maximum likelihood method is introduced for estimating the parameters of the model.

Two exact inference engines - junction tree algorithm [14] and conditioning methods [27] -

are described; these are helpful for the development of our new algorithm in Chapter 4. We

also examine the other methods proposed to solve the large-scale networks at the end.

Chapter 4 presents a new algorithm devised by using combination of the two exact in-

ference engines mentioned in Chapter 3. The approximate working of new algorithm is

discussed with respect to obtaining a relatively fast inference. We discuss the complexity of

this algorithm and compare this algorithm to other exact inference engines.

In Chapter 5, we first carry out some simulations in order to compare the performance

of the new algorithm and the junction tree algorithm for different complexity values of the

networks. Next, we apply the new algorithm to real-world data and discuss the result.

Chapter 6 summarizes the present exercise and outlines some future work.

4

Chapter 2

Large Bayesian Network Structure

Learning

2.1 Introduction

A Bayesian network, also called a belief network, is a graphical structure that allows us

to represent and reason an uncertain domain. Formally, Bayesian networks represent a set

of random variables and their conditional independence via a directed acyclic graph (DAG).

Each node in the graph is associated with a random variable, while the arcs, or directed edges,

between the nodes indicate the probabilistic dependencies among the corresponding random

variables. For example, a Bayesian network can represent the probabilistic relationships

in medical diagnosis. Given the symptoms, the network can be used for computing the

probabilities of the presence of various diseases.

The construction of a network structure for a given application by domain experts is a

time-consuming task. It is difficult to build a medium-sized network manually. Therefore,

one may learn the dependency structure directly from the data via computational methods.

Over the last decade, considerable progress has been made with respect to structural learning

in Bayesian networks. Two important classes of such algorithms have been defined as the

5

score-metric-based and the constraint-based learning methods [13, 19, 25]. The score-metric-

based methods deduce structures by optimizing a scoring function, and the constraint-based

methods infer structures through conditional independence tests. Since the number of pos-

sible network structures grows exponentially with the number of nodes, both methods apply

heuristic search in a certain manner.

In a comparative study [17], some currently used structure learning algorithms are iden-

tified. One is a method based on a scoring criterion, such as K2 [6] (maximization of the

structure probability for the given data), Greedy search [3] (finding the best score of the

neighbor and iterate) or SEM [8] (greedy search dealing with missing values). The other is a

method based on a constraint-based criterion, such as PC [19] or IC [22] (searching causal-

ity using statistical tests to evaluate conditional independence), or BN Power Constructor

(BNPC) [5] (using conditional independence tests based on an information theory). However,

the problem of learning an optimal Bayesian network from a given data-set is NP-hard [4].

In the present exercise, we have focused on a large, complex system. Therefore, we need a

method that can achieve structure learning with limited memory space and tractable time.

The best method is BN Power Constructor; however, we still need to modify this method for

the construction of our model.

This chapter is organized as follows: Section 2.2 presents the basic concept of Bayesian

networks. In Section 2.3, we describe the BNPC structure learning algorithm. Section 2.4

discusses some issues that arise when this algorithm is applied to the construction of a large

variable network.

6

2.2 Basic Concept of Bayesian Networks

2.2.1 Independence and Conditional Independence

In probability theory, two random variables, X and Y , are said to be independent if

P (X = x, Y = y) = P (X = x)P (Y = y), (2.1)

or equivalently, if

P (X = x|Y = y) = P (X = x), (2.2)

where P (X = x|Y = y) is a conditional probability.

By combining the concept of independent and conditional probability, we can represent

the conditional independence as

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z), (2.3)

or equivalently1,

P (X = x|Y = y, Z = z) = P (X = x|Z = z). (2.4)

In other words, if we know about Z, then X and Y are independent or the knowledge of

Y does not help us to guess X when Z is known. We say that X and Y are conditionally

independent given Z, and we write this as X⊥Y |Z.

2.2.2 BN Factorization

Suppose that we have a directed acyclic graph (DAG) D with nodes Xi, where i = 1, 2, . . . p.

If there is an arc from node Xi to another node Xj, Xi is called the parent of Xj, and Xj is

a child of Xi. The set of parent nodes of a node Xi is denoted by ΠXi
. A directed acyclic

graph is a Bayesian network if the joint distribution of the node values can be written as the
1P (X = x, Y = y|Z = z) = P (X = x|Y = y, Z = z) · P (Y = y|Z = z).

7

product of the individual density functions, conditional on their parent variables:

P (X1 = x1, X2 = x2, ..., Xp = xp) =
∏

i

P (Xi = xi|ΠXi
= Πxi

). (2.5)

where Πxi
is the corresponding value of the parent nodes of node Xi .

An example of BN factorization is shown in Figure 2.1. The joint probability P (A,B,C,D,E)

is factorized as the product of five conditional probabilities as follows: P (A) ·P (B) ·P (C|B) ·

P (D|A,B) · P (D|E).

D

E

C

A B

P(A) P(B)

P(C|B)

P(D|E)

P(D|A,B)

Figure 2.1: The joint probability P (A,B,C,D,E) can be factorized as the product of all
conditional probabilities,

∏
P (X|ΠX).

We order all of variables X, such that for any two nodes Xi and Xj, when i < j, there is

a directed path from Xi to Xj. When i < j, Xi is called an ancestor of Xj. The set of all

ancestors of Xj is denoted by an(Xj). On the other hand, Xj is called a descendant of Xi.

The set of all descendants of Xi is denoted by de(Xi). The BN factorization implies the local

Markov property : each variable is conditionally independent of its ancestors given its parent

variables,

Xi ⊥ an(Xi)|ΠXi
. (2.6)

Recall that the joint distribution can also be calculated from the conditional probabilities

using the chain rule as follows:

8

P (X1 = x1, X2 = x2, ..., Xp = xp) =
∏

i

P (Xi = xi|Xi−1 = xi−1, ..., X1 = x1). (2.7)

By comparing (2.5) and (2.7), we can obtain the following formula:

P (Xi = xi|ΠXi
= Πxi

) = P (Xi = xi|Xi−1 = xi−1, ..., X1 = x1). (2.8)

Because the graph is acyclic, the set of parents is a subset of the set of ancestors, thereby

implying the local Markov property.

2.2.3 D-Separation

D-separation provides considerably strong criterion for independence and plays an important

role in Bayesian network learning and inference. A path p is said to be d-separated (or

blocked) by a set of nodes Z if and only if (at least) one of the following holds:

1. p contains a chain, i→ m→ j or i← m← j, such that the middle node m is in Z.

2. p contains a fork, i← m→ j, such that the middle node m is in Z.

3. p contains an inverted fork (or collider), i → m ← j, such that the middle node m is

not in Z and no descendant of m is in Z.

If every undirected path from a node in Xi to a node in Xj is d-separated by Z, then Xi and

Xj are conditionally independent given Z, in formula form Xi⊥Xj|Z.

For example, in Figure 2.1 we illustrate the following conditional independent relationship

using d-separation.

• (C ⊥ B,D,E|A): C ← A→ D is a fork path that is closed since we condition on A.

9

• (B ⊥ A,C|φ)2: B → D ← A is a closed inverted fork path since we do not condition

on D or it’s descendant E.

• (B ⊥ E|D): B → D → E is a closed chain path since we condition on D.

2.3 BN Power Constructor

The BNPC algorithm was proposed in [5] . The algorithm constructs Bayesian networks by

analyzing conditional independence relationships among nodes on the basis of information

theory. In information theory, the mutual information (MI) of two random variables is a

quantity that measures the mutual dependence of the two variables, defined as

I(Xi, Xj) =
∑
xi,xj

P (xi, xj)log
P (xi, xj)

P (xi)p(xj)
; (2.9)

and conditional mutual information (CMI) is the expected value of the mutual information

of two random variables given the value of a third, defined as

I(Xi, Xj|C) =
∑

xi,xj ,c

P (xi, xj, c)log
P (xi, xj|c)

P (xi|c)p(xj|c)
. (2.10)

In this algorithm, the conditional mutual information is used as conditional independent

tests. When I(Xi, Xj|C) is smaller than a certain threshold value ε, we say that Xi, and Xj

are d-separated by the condition-set C, and are conditionally independent.

The entire procedure of this algorithm can be decomposed into three phases as follows:

PhaseI: (Drafting)

In the first phase, the algorithm computes the mutual information of each pair of nodes as

a measure of closeness, and creates a draft on the basis of this information. We select the

MI of the pairs of nodes that are greater than a threshold ε, and order them from large to
2φ denotes an empty set.

10

small. Then beginning from the large, we place an edge between the corresponding pair of

nodes if there is no path between these nodes. After at most (n− 1) edges are drafted (n is

the number of nodes in the graph), we obtain a draft of the structure. This phase ensures

that the output draft is a single-connected structure. In fact, if the original graph is just a

single-connected graph, the draft would be the same as the original one. The draft created

in this phase is the base for the next phase.

We use the same simple multi-connected network example as that in [5]. Suppose we

have a database of the original Bayesian networks, as shown in Figure 2.2(a). The task

is to recover the original networks from the data. Suppose we have I(B,D) ≥ I(C,E) ≥

I(B,E) ≥ I(A,B) ≥ I(B,C) ≥ I(C,D) ≥ I(D,E) ≥ I(A,D) ≥ I(A,E) ≥ I(A,C), and

all mutual information is greater than ε, the draft obtained from Phase I is shown in Figure

2.2(b).

PhaseII: (Thickening)

In the second phase, the algorithm adds edges when the pairs of nodes are not conditionally

independent of a certain conditioning set. We examine all pairs of nodes that have mutual

information greater than ε and are not directly connected. An edge is added only when two

nodes are not independent given a certain condition-set. The condition-set can be found by

using a heuristic method, and hence, it may not be able to find the correct condition-set for

a special group of structures and has some edges that are wrongly added in this phase.

For example, the graph after Phase II is shown in 2.2(c). An edge such as [AC], [AD],

[CD], or [AE], is not added because the CI test can reveal that these pairs of nodes are

independent of the given corresponding condition-set.

PhaseIII: (Thinning)

In the final phase, each edge is examined using conditional independence tests and will be

removed if the two nodes of the edge are conditionally independent. Since Phase II has some

incorrectly added edges, we check the edges again in this phase. In order to guarantee a

11

correct structure, we use a correct procedure to find the exact condition-set. After obtaining

the correct structure, we use the algorithm to orient some of the edges.

The correct procedure for finding the condition-set can replace the heuristic procedure in

Phase II. However, in practice, the heuristic procedure usually uses relatively few conditional

independent tests and requires a relatively small condition-set. Therefore, in order to speed

up the algorithm, the correct procedure is used only in the final phase.

The graph after the completion of Phase III in our example is shown in Figure 2.2(d);

this graph has the almost same structure as that of the original graph. Edge [BE] is removed

since B and E are independent given the condition-set {C,D}. In this graph, we can only

orient two edges [CE] and [DE]; the reason for this will be described in Section 2.4.2.

B

D

C

EA

(a)

B

D

C

EA

(b)

B

D

C

EA

(c)

B

D

C

EA

(d)

Figure 2.2: (a) Original graph of a multi-connected network. (b) Result draft of original data
output from Phase I and input to Phase II. (c) Result graph after Phase II. The remaining
edges are passed from the heuristic (in)dependent test. (d) Result graph output from Phase
III. The remaining edges are passed from the exact (in)dependent test, and part of them will
be oriented. The result structure is similar to the original structure.

12

2.4 Issues Related to BN Power Constructor

2.4.1 Threshold Selection

The threshold has an effect on two places in the algorithm. One is in phase I, when we

choose the MI of the pairs of nodes which are greater than a threshold ε1. The other is

in Phase II and III, the procedure of testing the conditional independence of the pairs of

nodes. If I(Xi, Xj|C) is smaller than a threshold value ε2, then Xi and Xj are conditionally

independent. When ε1 is large, the small edges would be considered; the small edges are set

for the conditional independent test. However, the graph would be too simple to explain the

data. On the other hand, if ε1 is small, many edges will be examined. We will be able to

determine a relatively more correct structure, but waste more time in computation. For the

threshold value ε2 of the conditional independent test, the large ε2 leads to the omission of

a considerable number of edges, and the graph structure will be too simple. However, the

small value of ε2 will lead to a complex graph, and cannot explain the data well.

In practice, the optimal threshold is unknown beforehand. Moreover, the optimal thresh-

old is problem and data-driven, i.e., it depends, on one hand, on the database and its size

and, on the other hand, on the variables and the numbers of their states. Therefore, it is not

possible to set a default threshold value that will accurately determine conditional indepen-

dence while using any database or problem. Therefore, we would score structures learned

using different thresholds by a likelihood-based criterion evaluated using the training set and

select the threshold leading to the structure achieving the highest score. The most commonly

used scoring function is the Bayesian information criteria (BIC) which is derived on the basis

of the principles stated in [23]. The BIC is a criterion for model selection among a class of

parametric models with different numbers of parameters and has the following formulation:

BIC(G,D) = logP (D|G, θML)− 1

2
Dim(G) · logN, (2.11)

13

where D is the data-set, ML are the parameter values obtained by likelihood maximization,

and the network dimension Dim(G) is used for preventing the graph from becoming very

over-fitting. The other methods such as test error are also a good pointer.

2.4.2 Orientation Problem

In the last phase of the BNPC algorithm, we orient the edges in the final step. The procedure

involves the identification of colliders, as the other edge orientations are virtually based on

these identified colliders. Colliders can be found by a conditional independence test. For

any two nodes Xi and Xj that are not directly adjoined and are dependent according to the

smallest given condition-set C , by d-separation, we can say that nodes Xi and Xj are the

parents of the node set C, i.e., Xi → C ← Xj.

However, in practice, we cannot always orient all the edges. In a special case, if a part

of the structure is a line structure, which means that the nodes adjoin each other one by

one, then there are no identifiable collides. Therefore, we cannot know the exact direction of

the structure. For example, in Figure 2.2(d), we can only identity the collider E; C and D

are the parents of E. The other edges cannot be oriented since we do not have any further

information.

Therefore, expert knowledge is required in this situation. In the worst case, there is no

expert knowledge and we cannot orient all the edges. We will arbitrarily assign the variable

order in this case, and the previous order will be the ancestors of the reverse order. Therefore,

the directed graph cannot explain a causal relationship between two connected nodes, but

just a conditional relationship between them.

14

Chapter 3

Bayesian Network Inference

3.1 Introduction

In the previous chapter, we described an algorithm for building a Bayesian network struc-

ture. In this chapter, our goal is to draw conclusions when new information, or evidence,

is observed. For example, in the field of meteorology, the objective of a meteorological sys-

tem is to forecast weather with some observed climate data (e.g., temperature, cloud, and

humidity data). The mechanism of drawing conclusions in Bayesian networks is called an in-

ference engine, or the propagation of evidence. The inference engine consists of updating the

probability distributions of variables (e.g., weather forecast) according to the newly available

evidence (e.g., climate data).

Two types of algorithms for an inference engine are available, namely, exact and ap-

proximate. The basic concept of an exact inference is based on the Bayesian theorem. In

accordance with the variable dependency relationships residing in a network, we can use

more efficient methods to update probabilities. In recent years, several efficient methods

have been developed, such as variable elimination [29], junction tree, and belief propagation

[20]. However, all the exact algorithms suffer from a combinatorial explosion when dealing

with large and complex networks.

15

Approximate inference methods are used in large-scale systems when exact methods are

computationally inefficient. The basic idea of an approximate inference is to generate a sam-

ple from the joint probability distribution of the variables, and then use the generated sample

to compute approximate values for the probabilities of certain events given the evidence. Dif-

ferent approximate methods attempt to improve the quality or efficiency of approximations.

The problem with an approximate inference is the requirement of an adequate sample size.

In large systems, large amounts of data are required to ensure reasonable results.

Although approximate methods can handle large-scale systems, for obtaining a better

inference result, exact methods are used. We have reason to believe that the exact methods

can be improved to be efficient while dealing with large, complex systems. Therefore, in the

present exercise, we will also focus on the exact inference algorithms in this chapter.

This chapter is organized as follows: Section 3.2 presents an approach for estimating the

parameters of Bayesian networks. After both the structure and the parameters are provided,

the inference engine can be launched. In Section 3.3, the exact inference algorithms used for

Bayesian networks are considered. The exact inference algorithms that we consider include

the junction tree algorithm and belief propagation algorithm. Both algorithms will be used

for developing a new algorithm in the next chapter. Section 3.4 discusses the advantages

and the shortcomings of both the algorithms and explains why we need to develop a new

algorithm for Bayesian networks.

3.2 Parameter Learning

Before trying to launch the Bayesian network (BN) inference engine, we have to specify the

BN completely. There are two major parts for learning a BN from data, one is the structure

learning, and the other is the parameter leaning. In Chapter 2, we described a structure

learning method. Once the structure of a BN is determined, the problem left is to learn the

parameters from the data.

16

We take a standard statistical modeling approach for parameter learning. The distri-

bution of the data is unknown, but is assumed to belong to some given family of possible

distributions. We label the distinct members of the family by the value of a set of parame-

ters θ = (θ1, ..., θM)T . Thus, θ determines the unknown probabilities, and our task is to use

the data to estimate θ. There are many statistical methods for doing so. Here, we adopt

the maximum likelihood estimation method. In the following paragraphs, we discuss how

to parameterize the Bayesian networks by θ and use the maximum likelihood approach for

estimating the optimal values of θ.

3.2.1 Bayesian Networks Model Parameterization

Suppose that we have a directed acyclic network (DAG) D with nodes Xi, where i =

1, 2, . . . , p. We use capital letters, such as X, Y , and Z, as variable names and lowercase

letters, x, y, and z, to denote the specific values taken by these variables. Sets of variables

are denoted by boldface capital letters X, Y , and Z, and the assignments of values to the

variables in these sets are denoted by boldface lowercase letters, x, y, and z. Let ΠXi
denote

the set of parent nodes of Xi in D. If Xi does not have a parent, ΠXi
is the empty set. A

particular value in the joint distribution is represented by P (X1 = x1, X2 = x2, . . . , Xp = xp),

or more compactly, P (x1, x2, . . . , xp). We can factorize (Section 2.2.2) the joint probabilities

as:

P (x1, x2, . . . , xp) =
∏

i

P (xi|Πxi
). (3.1)

Therefore, a Bayesian network can be parameterized using a vector of conditional probability

table (CPT) entries, one entry for each value of each node and each instantiation of the

parents of the nodes. We now define the overall parameter θ, which is composed by parameter

θxi|Πxi
to represent the conditional probability table entry P (xi|Πxi

) for each possible value

xi of Xi, and Πxi
of ΠXi

.

17

Now, (2.7) becomes

P (x1, x2, . . . xp|θ) =
∏

i

P (xi|Πxi
, θxi|Πxi

). (3.2)

For example, in graph 3.1, we show a simple Bayesian network with structure and four

conditional probability tables (CPTs) for each node. θxi|Πxi
represents each conditional prob-

ability in CPT, such as θW=T |S=T,R=F = P (Wet(W) = T |Sprinkler(S) = T&Rain(R) =

F) = 0.9.

1

2 3

4

cloudy

rainsprinkler

Wet grass

0.50.5

P(C=f)P(C=t)

0.50.5

P(C=f)P(C=t)

0.80.2P(C=f)

0.20.8P(C=t)

P(R=f)P(R=t)

0.80.2P(C=f)

0.20.8P(C=t)

P(R=f)P(R=t)
0.50.5P(C=f)

0.90.1P(C=t)

P(S=f)P(S=t)

0.50.5P(C=f)

0.90.1P(C=t)

P(S=f)P(S=t)

10P(S=f & R=f)

0.10.9P(S=f & R=t)

0.10.9P(S=t & R=f)

0.010.99P(S=t & R=t)

P(W=f)P(W=t)

10P(S=f & R=f)

0.10.9P(S=f & R=t)

0.10.9P(S=t & R=f)

0.010.99P(S=t & R=t)

P(W=f)P(W=t)
����W=t|S=t&R=f

Figure 3.1: Bayesian network model, structure, and CPTs; here, we parameterize all the
entries in CPT.

3.2.2 Maximum Likelihood with Complete Data

Maximum likelihood estimation (MLE) is a popular statistical method used for fitting a

statistical model to data, and providing estimates for the parameters of the model (i.e., the

probability of the observed data as a function of the unknown parameters). This procedure

involves the calculation of the likelihood on the basis of the data according to the model,

and finding the values of the parameters that maximize this likelihood. For complete data

with no constraints related to the component parameters, the calculation of the maximum

likelihood is divided into a collection of local calculations, as we shall see.

18

For discrete Bayesian networks, suppose that we have a sample of N independent and

identically distributed cases d = {x(1), ..., x(n)}, where x(n) = (x
(n)
1 , ..., x

(n)
p). The likelihood is

a function of the parameters that is proportional to the probability of the observed data:

P (d|θ) =
N∏

n=1

P (x(n)|θ). (3.3)

We assume that the parameters are unknown and estimate them from data. We focus on the

problem of estimating a single setting of the parameters that maximizes the likelihood (3.3).

Equivalently, we can maximize the log likelihood:

L(θ) = logP (d|θ) =
N∑

n=1

log p(x(n)|θ)

=
N∑

n=1

p∑
i=1

log p(x
(n)
i |Πx

(n)
i
, θ

x
(n)
i |Πx

(n)
i

) (3.4)

where the last equality makes use of the factorization (2.7). Let NX(x) be the number of

occurrences in the data set where X = x. (3.4) can be rewritten as:

L(θxi|Πxi
) =

∑
i

∑
xi,Πxi

N(xi,Πxi
)log(θxi|Πxi

) (3.5)

The problem of maximizing the data log-likelihood subject to the parameters can be

restated as:

max L(θxi|Πxi
) =

∑
i

∑
xi,Πxi

N(xi,Πxi
)log(θxi|Πxi

)

subject to
∑
xi

θxi|Πxi
= 1.

This is a simple optimal problem. We just need to solve the following equation:

∂L
∂θxi|Πxi

=
N(xi,Πxi

)

θxi|Πxi

+ λ = 0, (3.6)

19

where λ is the Lagrange multiplier. After computation, we obtain θxi|Πxi
= −N(xi,Πxi

)/λ.

Since
∑
xi

θxi|Πxi
= 1, the solution of λ is −N(Πxi

), where N(Πxi
) =

∑
xi

N(xi,Πxi
).Therefore ,

θxi|Πxi
=
N(xi,Πxi

)

N(Πxi
)

(3.7)

In other words, on the basis of a database of cases, for all nodes Xi, the conditional proba-

bilities are estimated by using the ratio of the corresponding counts.

There are other issues in parameter learning, such as dealing with incomplete data, and

updating the parameter on-line. Many approaches to obtain better parameters on different

situations have been reported. However, in this present exercise, we just pay attention to the

complete data parameter learning.

3.3 Inference engine

The inference engine is the core of the Bayesian networks. Only by an inference engine, a

BN can work as an expert system to predict, diagnose, or detect fraud. We can think of

the inference engine as a human brain, which uses the past experience (i.e., CPT) to answer

questions in new situations (i.e., given evidence). Like a human brain, an efficient and general

inference engine leads to versatile applications of a BN.

With respect to loops, there are two different types of directed graphs, namely, single-

connected networks and multiple-connected networks. The single-connected network, also

called a poly-tree, is a directed graph without loops, or for any two nodes in the graph, there is

only one path between them. It is straightforward to develop propagation algorithms on poly-

trees, but poly-trees are not suitable in many real-world problems due to its oversimplified

structures. The multiple-connected network is a directed graph containing loops and is thus

adequate for real-world situations. In order to propagate information in a multiple-connected

network, the commonly used approach is to transform the multiple-connected structure into

a single-connected network.

20

Both conditioning and clustering inference methods are widely used in single-connected

and multiple-connected networks. Conditioning methods involve the breaking of the commu-

nication pathways along the loops by instantiating a select group of variables. This results

in a single-connected network in which poly-tree propagation algorithms can be applied. For

either a single-connected or a multiple-connected network, clustering methods build an asso-

ciated graph in which each node corresponds to a set of variables. This leads to a network

with poly-trees.

In the following paragraphs, we discuss two algorithms: conditioning algorithm (condi-

tioning method) and junction tree algorithm (clustering method).

3.3.1 Junction Tree Algorithm

The idea of the junction tree algorithm is to aggregate nodes into a set of nodes, called

cliques, which result in a local structure called a junction tree devised for propagating the

evidence in the network. The algorithm has five steps, namely, moralization, triangulation,

constructing the junction tree, updating the potentials, and propagation.

The junction tree algorithm can be described as follows:

Moralization:

For a directed acyclic graph, the corresponding moral graph is formed by connecting the

parents of each node, and then making all edges in the graph undirected. In a moral graph,

nodes with a common child are said to be married and thus form a family.

In this step, the BN graph (directed acyclic graph) is transformed into an undirected

graph. The moral graph Gm is obtained by linking the parents of each node and dropping

the directions in the original BN graph D. The goal is to combine the family of nodes, since

the family members contain of the conditional probability. An example of the moralization

is shown in Figure 3.2(b).

Triangulation:

A graph is called chordal if each of its cycles of four or more nodes has a chord, which is

21

A

B C

D

F

G

HE

A

B C

D

F

G

HE

A

B C

D

F

G

HE

ABD ADE ACE CEG

DEF EGH

AD

DE

AE CE

EG

1 3 5

2 4

8 6 9

1
07

root

Backward

propagate

Forward

propagate

(a) Bayesian network structure (b) Moral graph (c) Triangulated graph

(d) Message propagation

Figure 3.2: (a) Original Bayesian network. (b) Corresponding moral graph. The newly added
arcs are shown with dashed lines in the moralized graph. (c) Corresponding triangulated
graph with two added chords (dashed). (d) Junction tree structure with corresponding
cliques and separators. During the message propagation, messages are passed away from
clique ACE, beginning with ACE; these message passing route is indicated by the arrows.
The numbers indicate a possible message passing order.

an edge joining two nodes that are not adjacent in the cycle. Because any chord-less cycle

has at most three nodes, chordal graphs are also called triangulated graphs. A specific moral

graph can have many different triangulated graphs. Several triangulation methods have been

proposed, but none of them guarantee the generation of the minimum added chords. Note

that it is NP-hard to find the minimum added chords. The triangulated graph is shown in

Figure 3.2(c).

Construction of junction tree:

A junction tree is a mapping of a triangulated graph into a tree that can be used for

speeding up the message propagation in the graph. An intermediate result of the process is

called a clique graph. The basic operating unit or node in a junction tree is called a clique,

formed by the maximum set of fully-connected nodes in a triangulated graph. In a clique

22

graph, each clique-node corresponds to a clique, and two clique-nodes are connected by an

edge if they have a common node in the graph. A junction tree is then constructed by forming

a maximal spanning tree from the clique graph. A spanning tree of the undirected graph is

a sub-graph that is a tree and connects all the vertexes. We assign the intersection of the

adjacent nodes as a weight to each edge, and use this to assign a weight to a spanning tree by

computing the sum of the weights of the edges in that spanning tree. The maximal spanning

tree is then a spanning tree with a weight that is greater than or equal to the weight of every

other spanning tree. Each edge on the junction tree has an attached separator consisting

of the intersection of the adjacent clique-nodes. The junction tree structure is shown in

Figure 3.2(d). We see that the cliques of the triangulated graph are EGH, CEG, DEF ,

ACE, ABD, and ADE, which are the ellipse shown in Figure 3.2(d), and the corresponding

separator is shown in the square.

Transfer of potentials:

For each clique Ci and separator Si, we define a non-negative potential ϕ(Ci) and φ(Si),

respectively. A potential is actually a table, which eventually represents a joint probability

distribution of the corresponding nodes. Both ϕ(Ci) and ϕ(Si) are initialized to be unity.

For each node X of the original Bayesian network, we choose one clique Ci that contains X

and all parents of X, and then multiply the CPT of X with ϕ(Ci). Figure 3.3 illustrates

the initialization procedure on the potential tables of clique ACE and separator CE. In this

example, node C and node E are assigned to clique ACE, but not node A. Therefore, after

initialization, ϕ(ACE) = P (C|A)P (E|A), and ϕ(CE) = 1.

23

Figure 3.3: Initialization of clique ACE by multiplying the CPT of node C and node E. The
separator CE is initialized to be unity.

Propagation:

After initializing the junction tree potentials, we now perform global propagation in order

to make these potentials locally consistent. Global propagation consists of a series of local

manipulations, called message passes, that occur between a clique X and a neighboring clique

Y . A message pass from X to Y forces the belief potential of the intervening separator to be

consistent with ϕ(X). Before the propagation begins, the graph is orientated by designating

one node as the root; any non-root node that is joined to only one other node is called a leaf. In

the first step, messages are passed inwards: starting at the leaves, each node passes a message

along the (unique) edge towards the root node. The junction tree structure guarantees that

it is possible to obtain messages from all other adjoining nodes before passing the message

on. This continues until the root has obtained messages from all of its adjoining nodes. The

second step involves passing the messages back out: starting at the root, messages are passed

in the reverse direction. The execution of the algorithm is complete when all leaves have

received their messages, as shown in Figure 3.2(d). The message propagation between two

nodes in a junction tree can be shown as follows:

24

a. First, update the separator potential.

φ∗(S) =
∑
V/S

ϕ(V). (3.8)

b. Next, update the clique potential

ϕ∗(W) = ϕ(W) · φ∗(S)/φ(S). (3.9)

Once the algorithm is terminated, the clique potentials and separator potentials are the joint

probabilities of the nodes in the clique.

The second part of propagation is the situation of the given evidence. We only keep the

evidence state of nodes in the corresponding cliques, and replace the other state values with

zero; we then perform the message propagation again. Upon completion, the clique potentials

and separator potentials are proportional to the joint probabilities of the nodes in the clique.

We just need to normalize the potential, the correct joint probabilities will then be obtained.

There are two problems related to the junction tree algorithm. First, the optimal result of

the triangulation is NP-complete. Second, the size of the cliques can be prohibitive, in terms

of memory requirements as well as the computational cost of the propagation. Each message-

passing step requires marginalization, which, for the case of tabular CPTs, is exponential with

respect to the size of the largest clique. Therefore, in the case of a large-scale or complex

system, this algorithm is inefficient.

3.3.2 Conditioning Algorithm

Before we describe the conditioning algorithm, we will review Pearl’s poly-tree algorithm,

which is one of the methods used for message propagation and will be used in the conditional

algorithm. Pearl’s algorithm for computing the posterior of any variable in a belief network

(without loops) exploits the fact that each variable X separates the belief network into two

disjoint parts, one above X, and the other below X. This algorithm denotes four elements

25

in the propagation procedure. The predictive messages πU,X which are passed down from

each parent U of X, and the likelihood messages λY,X which are passed up from each child

Y of X. These message are combined to yield the predictive support πX , and the likelihood

support λX . The posterior for X is obtained by normalizing the product of πX and λX .

Pearl’s algorithm is defined by these four elements as follows:

Suppose a given node X having parents U1, ..., Um and children Y1, ..., Yn, as shown in

Figure 3.4. P (x|u1, ..., um) is a shorthand for CPT of each nodeX P (X = x|U1 = u1, ..., Um =

um). Evidence is represented with E, with evidence above X (evidence at the ancestors of

X) written as e+
X and evidence below X (evidence at the descendants of X) written as e−X .

Further, let e+
X,U denote the evidence above X and its parents U , and let e−X,Y denote the

evidence below X and its child Y . Then, the π and λ functions are calculated in terms of

the probabilities involving X, the parents and the children of X, and the evidence in the

Bayesian network.

X

U1 U2 UM

Y1 Y2 YN

Parents of X

Children of X

P(x|u)

Figure 3.4: Part of poly-tree network for each node X with parents U1, ..., UM and children
Y1, ..., YN .

1. Posterior for variable X:

PX|e(x) ∝ πX(x)λX(x). (3.10)

2. Predictive support for X:

26

πX(x) = PX|e+
X

(x)

=
∑

u1,...,um

P (x|u1, ..., um) ·
∏

i

πUi,X(ui). (3.11)

3. Likelihood support for X:

λX(x) ∝ Pe−X |X
(x) =

n∏
j=1

λYj ,X(x). (3.12)

4. Predictive message sent to child Yk:

πX,Yk
(x) = PX|e\e−X,Y

(x) ∝ πX(x)
n∏

j=1,j 6=k

λYj ,X(x) (3.13)

5. Likelihood message sent to parent Uk:

λX,Uk
(uk) = Pe\e−X,Uk

|Uk
(uk)

=
∑

x

∑
u1,...,um

λ(x)P (x|u1, ..., um)
∏

j=1,j 6=k

πUj ,X(uj). (3.14)

The details of these formulas are not as important to our discussion as to the understanding of

the conditional algorithm. In conclusion, Pearl’s algorithm is similar to the classic forward-

backward algorithm for information sharing. The posterior for each node depends on the

message sent to it by its parents and children, if any. For a more in-depth review of the belief

algorithm, please refer to [15].

When the network is not singly-connected, we introduce the notion of conditioning in

order to apply the poly-tree algorithm. In the method of conditioning, a set of nodes called a

loop cut-set break the dependency loops in a belief network, so named because its members

27

are selected such that every loop (a minimal multiply connected subset of the network) is

cut by at least one member of the set. After the loop cut-set identified, the conditioning

algorithm requires the instantiation of the members of the cut-set. Combinations of the

instantiations of the loop-cut-set nodes are the instances of the cut-set. In the context of

some observed evidence, the instances are solved with an efficient method for solving single-

connected networks. We apply Pearl’s algorithm for solving the single-connected networks.

For single-connected networks, this algorithm is linear with respect to the size of the network.

Finally, in the method of conditioning, the answers of the single-connected sub-problems are

combined to calculate the final probability of interest.

The following are the main steps of the conditioning algorithm:

Suppose a multiply connected network D with a loop cut-set C = {C1, ..., Cm} and

evidence node E = e. For any given node X, the method of conditioning calls for the

propagation of this evidence in each instance in order to calculate the updated posterior

probabilities for the node X of the network. We associate with each unique instance c1, ..., cm

an integer label i, and denote P (c1, ..., cm) as the weight of the instance wi.

• In the first step, the weights for all instances are calculated and stored during the

initialization of the priors in the network. Therefore,

wi = P (c1, ..., cm) = P (c1)P (c2|c1)...P (cm|c1, ..., cm−1). (3.15)

If we observe the value e of node E, then we calculate the new weight, w∗i , of instance

i as follows:

w∗i = P (c1, ..., cm|e) = αP (e|c1, ..., cm)P (c1, .., cm) = αP (e|instance i)× wi, (3.16)

where α = 1
P (e)

, obtained by normalizing the new weights.

• In the second step, we calculate the marginal probabilities for each node in the network

28

for each cut-set instance, given the values assigned to the loop-cut-set nodes in that

instance and evidence e. We apply Pearl’s algorithm for propagating the evidence in

a single-connected network to solve each instance. For each instance i, we assign a

probability to each value x of node X,

P (x|e, instance i) = p(x|e, c1, ..., cm). (3.17)

• In the final step, we simply sum the belief over all instances, weighted by the likelihood

of the instances:

P (x|e) =
∑

c1,..,cm

P (x|e, c1, ..., cm)p(c1, ..., cm|e) =
∑

i

P (x|e, instance i)× w∗i . (3.18)

For additional evidence, we repeat this procedure each time by multiplying the old weight

assigned to an instance with the probability of the observed value given that instance. There-

fore, the method of conditioning provides a mechanism for performing a general probabilistic

inference in multiply connected belief networks.

3.4 Why New Algorithm?

3.4.1 Exact Algorithm Problem

In the previous section, we described two exact inference algorithms: junction tree algorithm

and conditioning algorithm. In the case of the junction tree algorithm, we might have to

spend a considerable amount of time on building the junction tree. In the triangulation step,

finding the best elimination order is NP-hard. If we arbitrarily assign the order, we may add

many unnecessary fill-in edges, which would lead to large cliques. There are two problems

when the clique of a junction tree is large. First, the potential table is huge and grows

exponentially with respect to the size of clique. For example, suppose we have 20 nodes in a

29

clique, and each node has two statuses, then the potential table has 220 entries, which need

220 × 32 memory; 32 is the number of bits required by a float value. If there are 25 nodes

in the clique, we may need approximate 1−GB memory to store the data. Not to mention

there are always more than two statuses of the nodes. In general, the limited memory of

Matlab is 2 GB∼ 3 GB, the same as that of other program platforms. Further, there will

be more problems if the algorithm is applied to embedded systems, which always have less

memory than a PC. Maybe in the future, we will not be restricted by this problem, but

now, this is an obstacle that we have to face. The other problem is that the computational

time increases exponentially. In the case of a propagation, we have to calculate the potential

of the separators and the cliques. If a clique is large, we need to perform a significantly

high number of summations in order to obtain the marginal potential, which will waste a

considerable amount of time. Therefore, there are some obstacles when the junction tree is

implemented in large-scale networks.

In the case of a conditioning algorithm, unlike in the case of the junction tree algorithm,

we preserve the original structure since no new edges are added. Therefore, only CPTs need

be stored in the memory for computing the probabilities. However, in a multiple-connected

structure, the computation of probabilities is very redundant. We need to calculate three

different types of probabilities in order to obtain the marginal probabilities of the nodes given

the evidence (See (3.15) to (3.18)). Further, when the loop-cut-set is large, the computation

complexity increases exponentially. Finding the minimum loop cut-set is also an NP-hard

problem. Therefore, this algorithm is also inappropriate for implementation in the large-scale

networks because of the computational inefficiency.

3.4.2 Some Approaches for Large-Scale Inference

Since both exact methods collapse when applied to large-scale methods, how do we draw

inference in large, complex systems? There are three main methods have been proposed

for application to large systems, namely, multiply sectioned Bayesian networks [28], noisy

30

Or-gate models [26], and hybrid inference methods [7]. In the following paragraphs, we will

briefly introduce and discuss these methods.

Multiply sectioned Bayesian networks (MSBNs)

A multiply sectioned Bayesian network is an extension of the Bayesian network model

for the support of flexible modeling in large and complex problem domains. An MSBN

consists of a set of interrelated Bayesian sub-nets, each of which encodes an agent’s knowledge

concerning a sub-domain. Global consistency among sub-nets in an MSBN is achieved by

communication. Once the information for all the agents is updated, we obtain complete

knowledge of the system. For example, in the field of medical science, we can separate

the physical structure of the body into different parts, such as brain, respiratory system,

and gastrointestinal system. All of them have different but related knowledge domains.

Therefore, we have several different types of doctors, who check their professional parts, and

by communicating other domain knowledge to diagnose the disease. Therefore, we do not

require to draw an inference in a large-scale system, but only an inference in some small

sectioned networks.

The inference method is called a junction forest algorithm (see Figure 3.5). It is similar

to a two-layered junction tree. The first layer is in the sectioned networks. For each agent,

we construct a little junction tree to draw the inference. The second layer is on an agent.

We view each agent as a supper clique and build a junction tree again to communicate with

each other. Since all sectioned networks are small, we can efficiently construct a junction

tree and draw an inference. Therefore, we can efficiently handle the large-scale problem.

31

(a)

d

c

a

b h l

m

nk

j

po

f

i

g

e

(b)
po

m
n

d

c

a

b

g

e

h l

k

jf i

G

G1

G0

G2
G3

(c)

G0

G2

G1 G3

{f, i, j}

{i, k, l}{f, g, h}

Figure 3.5: (a)G is a moral graph of the Bayesian network and is a union graph in (b). (b)
G is sectioned into four graphs. (c) Junction forest of G, each square represents a sub-graph
in (b) and is called an agent.

Noisy Or-gate model

Recall that Bayesian Networks require the condition probabilities of each variable given

all combination of the values of its parents. Therefore, if each variable has only two states

and a variable has p parents, we must specify 2p conditional probabilities for that variable.

When p is large, the storage requirements as well as the inference algorithm computations

become infeasible.

The idea of noisy Or-gate methods is attempt to avoid specifying every entry in the con-

ditional probability table. In other words, we assume each parent causes child to contribute

independently. Thus, the probability that parents have an effect on a child is simply the

product of the probabilities of the effect of each parent.

As a simple example, medical causal models commonly assume that all the possible causes

of a symptom act independently. The person who either tuberculosis (X) or cystic fibrosis

(Y) will have a normal lung X-ray (E). Further, tuberculosis has a failure rate of 70% with

respect to showing up on an X-ray, and cystic fibrosis has a corresponding failure rate of

40%. The noisy-OR model states that if someone has both tuberculosis and cystic fibrosis,

32

the X-ray will have a detection failure rate of 0.4 × 0.7 = 0.28 = 28%. In other words,

they combine just like coin tosses. The CPT for this example is given in Table 3.1. The

probabilities of having an abnormal lung X-ray (E = 1) are obtained by 1− P (E = 0).

X Y P (E = 0) P (E = 1)
0 0 1 0
1 0 0.7 0.3
0 1 0.4 0.6
1 1 0.28 0.72

Table 3.1: X-ray noisy-OR example. The chance that an X-ray (E) will fail to detect two
medical conditions X and Y is just the product of the individual failure chances.

Since we define the conditional probabilities, on one hand, we do not need to store all the

CPT entries and can thus avoid the problem related to limited memory space. On the other

hand, we can efficiently draw an inference by using the relationship between the conditional

probabilities. Therefore, the noisy Or-gate model is popular in dealing with a large-scale

system.

Hybrid inference

A hybrid inference refers to the simultaneous use of an exact and an approximate infer-

ence. For example, in the case of the junction tree algorithm, if some cliques are too large

to compute the potential, we can use the approximate inference, which refer to the compu-

tation of the approximate potential through simulation. The reason that we do not use an

approximate inference in all cliques is the consideration of precision. The greater the number

of cliques approximated, the lower is the precision obtained.

Since approximate methods, such as Gibbs sampling [11], are being discussed, the com-

putational complexity is not exponential with respect to the number of variables. The other

advantage is the hybrid inference method can handle relatively large range of distribution

and mixture of distribution. Therefore, this method can be applied to a large-scale system.

In addition to these three methods, other approaches have been proposed, such as divorc-

ing, which attempts to add a hidden variable to the structure to avoid large junction tree

cliques. However, these approaches are suitable only for some special cases and worsen in

33

general. Therefore, we do not discuss these approaches here.

3.4.3 Why New Algorithm?

Some problems exist in the above-mentioned three methods. In the case of the MSBN

approach, there is a restriction with respect to sectioning the graph in which the parents of a

node can not be separated. Therefore, if the original networks is so complicated that it will

have large cliques, and even after sectioning into small agents, the size of the cliques will not

change. The only benefit of sectioning is that we spend less time on triangulation and the

construction of the junction tree. Therefore, the MSBN approach appropriate only for some

cases.

The noisy Or-gate mode, may be suitable for medical causal models maybe, but in other

fields, most of the time, the conditional distribution will not have a relationship in the noisy-

Or way. Therefore, we will obtain a poor inference in other field. Therefore, this method is

also not suitable for general cases.

The hybrid inference, which is the most general method, can be utilized in a different

domain. However, the precision of the inference will be questioned if we do not sample an

adequate amount of data when using approximate methods.

Therefore, we do have an approach that can efficiently handle large-scale networks and

obtain an exact or a good approximate result for a general case. In the next chapter, we

will propose a new approach to a solve the problem of drawing an inference in a large and

complex system.

34

Chapter 4

New Inference Approach

4.1 Introduction

In this chapter, we propose a new algorithm, called KLA-algorithm, for drawing an inference

from Bayesian networks. While developing a KLA-algorithm, we take the following two facts

into consideration. First, cluster methods (Section 3.3.1) are efficient with respect to the

propagation of probabilities but require a considerable amount of memory and time to build

the junction tree. In order to reduce the memory space, we look for the minimum clique and

then get rid of the junction tree structure. Secondly, conditional methods (Section 3.3.2)

compute the probabilities directly on the original network instead of building a cluster tree;

however, only marginal probabilities instead of joint probabilities are attainable. Conditional

methods also suffer from a combinatorial explosion while dealing with a large set of cut-set

nodes. Therefore, it is expected that the inference algorithm can directly compute the joint

probabilities and adopt a local conditioning approach [9] to refine the size of the cut-set

nodes. On the basis of the above observations, we have developed a novel algorithm that

combines the clique of cluster methods and the structure of conditional methods to avoid

the computing inefficiency and the memory space problem and used the concept of a local

conditioning approach to decrease the size of the cut-set nodes. In addition, the proposed

35

algorithm is capable of efficiently computing the marginal, joint, and conditional probabilities

for large and complex systems.

The KLA-algorithm can neither be classified as exact inference methods nor approximate

inference methods because it allows one to trade-off the quality of approximations with the

computational time. In small and simple networks (e.g., poly-trees), the performance of the

KLA-algorithm is as good as the other exact inference. In large and complex networks, the

KLA-algorithm approximates the probabilities more accurately than other approximate infer-

ence engines. The KLA-algorithm does not require any sample data and produces relatively

small cliques. Because of these enhancements, the algorithm remarkably extends the range of

the realizable network complexity. Furthermore, the joint and conditional probabilities can

be easily computed at the same time. Note that traditional inference algorithms can only

compute either joint or conditional probabilities.

This chapter is organized as follows: In Section 4.2, we present our algorithm in detail. We

present the algorithm structure in Section 4.2.1. The manner to assign a list of conditioning

variables to each node and the propagation are considered in Section 4.2.2. The methods

of computing joint probabilities and conditional probabilities are given in Sections 4.2.3

and 4.2.4, respectively. Finally, in Section 4.3, we discuss how to trade-off the quality of

approximations with the computation time and analysis and compare the complexity with

that of the other algorithms.

4.2 KLA-Algorithm

4.2.1 Structure Construction

Suppose that we have a DAG structure D, with nodes Xi, i = 1, . . . , p, and each node has

its parents ΠXi
. For each Xi, we use a clique containing the node and its parents, denoted

as Ci. Now, we construct the clique graph on the basis of these cliques, connecting each pair

of cliques Ci and Cj if Xi and Xj are connected, denoted as Gc. Therefore, the structure of

36

Figure 4.1: (a) Simple Bayesian network with a loop. (b) Clique graph from (a); the parents
of node Xi and Xi can be contained in corresponding Ci. (c) Initial clique potential ϕ(Ci)
and separator potential φ(Sj).

Gc would be the same as the original graph structure D, only replacing the node Xi with the

corresponding cliques Ci.

The structure of Gc combines the junction tree algorithm and the conditioning method.

The node that we replace with a clique is to ensure the junction tree propagation and pre-

serve the original structure but not the junction tree structure in order to not only apply the

conditioning method to it but also avoid the large clique problem in the junction tree algo-

rithm. The additional benefit of this structure is that we can compute the joint probabilities

easily. This will be discussed further.

Figure 4.1 is a simple example. Figure 4.1(a) is original, and the corresponding clique

graph is shown in (b).

37

4.2.2 Initializing Potentials

As in the case of the junction tree algorithm, in association with each clique we define the

potential ϕ(Ci), a non-negative function on the realizations of clique Ci and the potential

φ(Si) for each separator. For each clique and separator, set each potential to 1. The condi-

tional distribution P (Xi|ΠXi
) of each variable Xi is multiplied into the corresponding clique

potential ϕ(Ci). Figure 4.1(c) is an example of the clique graph and its initial potential.

After message propagation, the potential of the cliques will become the joint probabilities of

nodes in a corresponding clique.

4.2.3 Propagation

The procedure of message propagation between cliques is the same as in the junction tree

algorithm. See (3.15) ~ (3.18). However, the problem is that we have no junction tree

properties to ensure the global consistence; hence, we have to apply the concept of the

conditional algorithm here.

The conditioning method attempts to transform the multiplied graph into a poly-tree

structure by identifying the loop cut-sets. After instantiating of the members of the cut-set,

the answers of the single-connected poly-trees are combined to calculate the final probability

of interest as described in Section 3.3.2. The only difference from Section 3.3.2 is that we

use the clique message propagation to replace Pearl’s message propagation algorithm; the

message in the former method is based on the potential of cliques and the message in the

latter method is based on the four message functions, namely, πU,X , λY,X , πX and λX . In the

conditioning method, the loop cut-set is for the entire graph, but in the KLA-algorithm, the

loop cut-set is for each node. We call our loop cut-set local loop cut-set. This idea has been

proposed by F.J. Diez [9], on the basis of Pearl’s message propagation algorithm to develop

the algorithm. Here, we use the clique message propagation to implement this idea. Suppose

that the local loop cut-set has been identified, after instantiating all the nodes in the local

loop cut-sets for the corresponding node Xi in the structure, we have the local poly-tree for

38

the node Xi. After propagating the message from all of the nodes in the local poly-tree of Xi,

we will obtain different values of ϕ(Ci) for the corresponding different instantiations in the

local loop cut-set. The true potential of Ci will be obtained by using a combination of all the

ϕ(Ci) values. Therefore, once the procedures for each node Xi are terminated one by one,

every potential of Ci will be correct. The following is a simple example of the propagation

procedure with only one loop. Figures 4.2(a) and (b) are the message propagation of all the

cliques in the graph. Since cliques A and E have no parents so we do not need to propagate

a message to them.

The issue here is how to find the local loop cut-sets for the node Xi. First, we have to

find the loops that Xi is at the bottom, which means in the directed loop, Xi have no edge

flowing out to the other node in the loop. Initializing any one of the nodes in the loop except

node Xi can transform the loop into a tree structure. However, in the message propagation,

it is convenient to have the same propagation direction, i.e., propagate Ci to Cj for i < j.

Therefore, we choose the top node in the loop, the node with no flow to the other nodes in

the loop. Figure 4.2 is an example of the local loop cut-sets of node D.

4.2.4 Joint Probabilities

Once the message propagation for all the nodes is terminated, we obtain all potentials of

cliques, which is the joint probabilities for the nodes in the corresponding clique. Therefore,

we can compute joint probabilities P (O) for the interest node set O in clique Ci as follows:

P (Xs) =
∑
X\O

ϕ(Ci). (4.1)

where X is the node set contained in clique Ci.

However, how do we obtain the joint probabilities of the set of nodes O in the different

cliques? In the junction tree algorithm, if we want to calculate the joint probabilities of nodes

from different clique, we have to find a path that the union of cliques on the path can contain

39

Figure 4.2: Message propagation in the nodes. (a) Update ϕ(AEB) and ϕ(AC). (b) Since
there is a loop contain node D and D is the bottom node, node A will be instantiated
to 0 and 1. The correct potential of ϕ(BCD) will be obtained by ϕ1(BCD) × P (A =
0) + ϕ2(BCD)× P (A = 1). (c) Top node and bottom node in a loop. We select top node A
in the local loop cut-set of node D.

O, and multiply the potential of these cliques and then divide all separators on the path.

Then, we obtain the joint probabilities of a large set of nodes that contain O. Therefore, we

just use (4.1) to obtain the joint probabilities of the nodes that we want. This procedure is

considerably redundant and complicates. Here, we have a more efficient method to obtain

the joint probabilities of any node set.

Suppose we want to compute the joint probabilities of the set of nodes O. The basic idea

is to add a virtual node Xv, and connect the observed nodes O to node Xv. Therefore, the

observed nodes are the parents of Xv. The conditional probabilities can be given arbitrarily.

Therefore, we add a clique Cv to the clique graph. Therefore, by using the propagation

method, we can obtain the potential of clique Cv, which is the joint probability of the nodes in

Cv. Further, we added all the statuses of node Xv, as shown in (4.1), and obtain the required

joint probability. The following Figure 4.3(a) is the example of adding the virtual node. If we

40

Figure 4.3: (a) Addition of a virtual node H, and assigning the interesting set of nodes to
be its parents. (b) Corresponding clique-node EDH. The blue line indicates the message
propagation path, and ϕ(EDH) can be obtained.

want to know P (E,D), we assign nodes E and D to be the parents of virtual node H. After

message propagation, we can obtain the joint probabilities P (E,D,H) = ϕ(EDH). Then,

the probability P (E,D) can be calculated by using (4.1), i.e., P (E,D) =
∑

H P (E,D,H).

4.2.5 Conditional Probabilities

The conditional probabilities play the most important role in Bayesian networks. In this

clique graph, we can not use message propagation methods like the junction tree or condi-

tioning methods since they are complicated to implement. However, we propose two efficient

methods here, namely, virtual node method (VN-method) and foreward-Backword method

(FB-method). In the case of VN-method, the basic idea is to use the method of computing

joint probabilities. More precisely, if a system is given the evidence of a set of nodes E and

we want to obtain the probabilities of a set of target nodes O, then, we can compute the

joint probability of the set nodes O∪E. Next, we find the probability values P for the target

node set O corresponding to the particular evidence state of node set E. Once terminated,

we normalize P ; P is the conditional probability we want. The above procedure can be

represented by the following simple formula:

P (O|E = e) =
P (O,E = e)

P (E = e)
. (4.2)

41

In the first and second steps, we obtain P (O,E = e), and in the third step, the normalized

term is just P (E = e).

In our example of Figure 4.3, suppose we have evidence E = 1, and we want to find

the conditional probabilities of D, P (D|E = 1), we can calculate the joint probabilities of

P (E,D) and find the value of P (D,E = 1) in the table of P (E,D). Then, we normalize the

values and obtain the conditional probabilities P (D|E = 1).

However, when there are many evidence nodes in the system, the number of parents

of the virtual node increases and the size of the local loop cut-set of the virtual node will

be large because there might be many loops contained in the virtual node. Hence, the

computation will become very efficient. Therefore, the FB-method reconsiders the foreword-

backward passing as in the junction tree algorithm. First, we propagate a message from

the top to the bottom called forward propagation and then propagate the message from

the bottom to the top called backward propagation. Since our structure has loops, for

forward propagation, we use a conditioning method to guarantee that the result is correct,

and for backward propagation, we use another message propagation method called loopy

belief propagation, which was proposed by Pearl and use it for drawing an approximate

inference in a wide variety of BN models [18]. Loopy belief propagation is used for handling

the undirected graph with a loop by modifying the message propagation path. We can

obtain an approximate inference result if the message propagation can converge. We alter

the loopy belief propagation to suit the KLA-algorithm and make it easier to implement; the

procedures are shown in Figure 4.4. Any clique Ci has to receive the message from Cj if Ci

and Cj are adjoining and j > i. When there is a loop containing the clique-nodes Ci and

Cj, the original propagation may not guarantee that the message in Ci is consistent with all

of Cj. Therefore, we use iteration to re-propagate the message until the message in Ci does

not change. Further, if message in Ci can be converged, Ci will be consistent with all of

Cj. The message will not always converge every time, but if it can converge, the result will

be very close to the exact inference. Some researches propose an error assessment for loopy

42

Figure 4.4: Propagation path of loopy belief propagation. Blue line represents the backward
propagation path. After clique-nodes B, C, D and E have propagated the message to clique-
node A, return again until all of clique potentials are consistence.

propagation and the situation under which the convergence can be guaranteed.

In conclusion, the procedure for computing conditional probabilities in a forward-backward

manner can be shown as follows:

1. Modify the potential of the evidence node, and keep the evidence state and replaced

the other state with zero.

2. Move the evidence node to the top, which means change the arrow direction of the

evidence node to outward.

3. Forward propagation: the message is passed from Ci to Cj if they are adjoining and

i < j.

4. Backward propagation: the message is passed from Cj to Ci.

4.3 Inference in Large System

In a large, complex system, we might have a large size of the local loop cut-sets for some

nodes. Therefore, as in the case of conditioning methods, the computation complexity will

43

grow exponentially with respect to the size of the loop cut-sets. In this section, we will

discuss the relationship between the complexity of the network and the time of computation.

Then, we proposed a good approximate method which allows one to trade-off the quality of

approximations with the computation time. In the end, we discuss the algorithm computation

complexity in different types of network structures and compare with that of other exact

inference.

4.3.1 Complexity of Graph vs. Computing Time

We know that the computation complexity of the propagation in the KLA-algorithm is O(N ·

ep), where p is the largest size of the loop cut-sets and N is the number of nodes. The value

p can be viewed as an index of graph complexity. When p is large, there are many loops in

the graph, and the graph is complex. However, it is not practical to find the values of p each

time in order to know the approximate computing time. Here, we introduce another simple

index of graph complexity, which has a relationship with p and N . The index is the max

eigenvalue of the graph adjacency matrix.

The adjacency matrix of the graph is the matrix that represents the connection of the

graph. Each entry in the matrix represents the pair of nodes. If the pair of nodes has an

edge between them, we will obtain the value of one in the corresponding entry, else we set

zero. It is a symmetric matrix since we do not care about the arrows. If the graph is fully

connected with N nodes, which is the graph with the maximum complexity. All the entries

of the adjacency matrix will be one except diagonal entries. Thus, the maximum eigenvalues

is N − 1. If the graph is a line with N nodes, which is the simplest graph, the maximum

eigenvalue will be 2cos(πj/(N + 1)). If the graph between the line structure and the fully

connected graph, the maximum eigenvalue will be in the scale of the corresponding max

eigenvalue. Further details can be found in [16].

In Figure 4.5, we see some types of graph with their complexity and the computation

time taken by the algorithm. The computation time is defined as the time from message

44

propagation to that required for obtaining the true joint probabilities of each clique (no

evidence). In Figure (a), the left graph is the line structure, and the right is the fully

connected structure. From the left to the right, we increase the number of edges connected

to have more loops. We can find that the maximum eigenvalue increases as well. In Figure

(b), in the case of the fixed number of edges, we decrease number of nodes to obtain a graph

with more loops, and the maximum eigenvalue increases. Therefore, the maximum eigenvalue

can be used as a good pointer of the graph complexity. Figure 4.6 is the computation time vs.

different graph complexities. When the complexity increases, the computation time increases

exponentially.

4.3.2 Good Approximation Method

In the above discussion, when the complexity of the graph is high, the computation time

will become intractable. We have two ways to improve the computation time. One is by

simplifying the graph structure, and the other is by reducing the size of the local loop cut-

sets. The first method can modify structure learning; here, we assume that the structure is

given, and therefore, the focus is on the latter method.

The local loop cut-sets for node X is found by identifying each loop on X and selecting

the top node in each loop. If we initiate the top node, the loop will break and the other

nodes in the loop on a different path will be independent, including the parents of X. In

this situation, the local structure can be seen as the tree structure; the message propagation

will have a consistent result. However, there are other situations can make the parents of the

node nearly independent. That is, the loop is so long that the top node has almost no effect

on the parents of the bottom node. The structure is as shown in Figure 4.7(a). The level in

(a) is the number of nodes between the top node and the bottom node on the left path. In

order to understand this concept, we use an analogy. We view a belief network as a system of

a family tree. At the top of the family tree, the relationship between the family members is

close. However, when every family member has its family, we are not familiar with the other

45

(a)

(b)

Figure 4.5: (a) Maximum eigenvalue of a structure with ten nodes with different numbers
of edges. A greater number of edges will lead to more loops in the structure and a large
maximum eigenvalue. The maximum eigenvalue of all the ten nodes is between that of
the line structure (the left) and the that of the fully connected structure (the right). (b)
Maximum eigenvalue of nine edges with different nodes. A greater number of nodes will lead
to simple structures and the maximum eigenvalue will decrease.

46

2 2.5 3 3.5 4 4.5 5 5.5
-6

-4

-2

0

2

4

6

8

��������	�
����

�
�
�
�
�
�
�
�
	

�
�
	
�

�
�
�
�
�
�

�
�
	
�
�

�
�
�
�
�
	
�
�

�
�
�

data

 linear

Figure 4.6: Computation time increase exponentially with an increase in the graph complex-
ity. The value on the y-axis is the natural logarithm.

members of the family tree, except the generations close to ours. Therefore, we can mostly

say that we have no relationship with the other members except our close family member.

It is the same on the Bayesian networks. The loop can be seen as the family tree when the

node in the loop is far away from the top node of the loop (ancestor), and the relationship

would mostly disappear. Therefore, we can say that the parents of the bottom nodes in the

clique would be mostly independent if the loop is sufficiently long.

The Markov property can explain this phenomenon. We know that the relationship

between two nodes can be represented in the conditional probability table (CPT). For the

sake of simplification, suppose both two nodes A and B are two states. Therefore, the CPT

will be a 2 × 2 matrix. The CPT matrix is a Markov matrix since the sum of each row is

one. The independent relationship is established when the CPT matrix is singular, which

implies that the rows of the matrix are the same. Therefore, no matter what the probability

of node A is, the probability of node B will always be the same value. If the CPT matrix

is an identical matrix, then the probability of node A will be the same as that of node B.

Therefore, nodes A and B have a strong relationship. The singular or identity matrix react

on the determinant of matrix, and since the CPT is the Markov matrix, the determinant of

47

matrix will always be smaller than or equal to one. We can judge from the smallest eigenvalue

to determine the strength of the relationship. Therefore, suppose any two nodes Xi and Xj

in only one path Xi to Xj, the CPT of P (Xj|Xi) would be a product of all of the CPT in

the path, i.e., P (Xj|Xi) =
∏j

k=i P (Xk|ΠXk
). Therefore, the determinant of matrix will also

be a product of all the CPT in the path and will decrease to zero. If the path is sufficiently

long, we can say that the node Xi is approximate irrespective of node Xj.

We can see the following example. Figure 4.7(a) is a loop structure with a different level

from the top node X1 to the bottom node X4. We add a node on the left path and want to

justify when path is sufficiently long, the parent node X2 would be independent of X1. Figure

4.7(b) shows the KL-divergence between the real joint probability and the estimated joint

probability of node X1 and X2. The estimated joint probability is calculated by supposing

that the node X1 is independent of X2. The small value of KL-divergence means that X1 and

X2 are nearly independent. We can find KL-divergence decreases rapidly when the level is

increases. From blue line in (b), we conclude thatX1 andX2 are nearly independent when the

level is more than two; the KL-divergence is smaller than 10−2. Figure 4.7(c) shows another

structure in which an outside node is added to the left path. From the green line in (b), we

can conclude that X1 and X2 are nearly independent at a smaller level than the blue line.

This is make sense because the outside node can share dependencies with the original parents

of the node. Therefore, the dependence will not be as strong as the original. In practice,

the outside node structure is common, and hence the approximate inference obtained by this

approach is always good.

In any directed loop, there must be more than two paths from the top node to the bottom

node. If we want to ensure that all parents of the bottom node are independent, the shortest

path should be sufficiently long. Then, we can ignore this loop since all parents of the bottom

node are nearly independent. Therefore, the local loop cut-sets can be reduced; the precision

depends on how many loops were be abnegated. In Figure 4.8, we identify the local loop

cut-set of node X12, which are nodes X1, X2 and X3, and have different levels to node X12.

48

(a)

(b)
1 2 3 4 5 6 7 8 9

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

�����������	
���		��������

�
�
�
�
�
�
�
�
	
�

�
�

All nodes are in the loop.

Add outside node arc to loop node.

(c)

Figure 4.7: (a) Distance level from parents of bottom node X4 to top node X1 of the loop. (b)
KL-divergence between real joint probability and estimated joint probability of the parents
of node X4 in the loop. The estimated joint probability assumes that the nodes X2 and X3

are independent of each other. The low value KL-divergence implies that the parents of node
X4 are closer to the independent node. The blue line indicates a loop structure that does
not have an outside node, see (a). The green line indicates an outside node added to parent
X3 (shown in (c)) and has less KL-divergence than the blue line. (c) Addition of an outside
node on the left path. 49

If we want to save the computing time, we can use the approximate method to remove the

largest level loop. Thus, node X1 will be removed from the local loop cut-set since it has

three levels. The local loop cut-set can be reduced to only two member sets.

In the above example, if the CPT is close to the identity matrix, then the loop must be

longer than 10 levels (the shortest path must pass more than ten nodes) and we can say that

the parents of the node are nearly independent. Therefore, a different model would have a

different result, and the user has to perform model selection to choose how many levels of

the loop to save. If we keep all the loops, we will obtain an exact inference but will have

intractable computation time in a complex system.

Figure 4.8: Yellow nodes {X1, X2, X3} are the local loop cut-set of node X12. X1 is three
levels from X12, and X2 and X3 are two levels from X12. We can just keep two levels for
approximation, and the reduced local loop cut-set has only two nodes, {X2, X3}.

4.4 Complexity of KLA-Algorithm

Since this algorithm adopts the conditioning method, the complexity of the method is

O(N · ep), where p is the largest size of the local loop cut-sets. However, if we can re-

duce p by the approximate methods, the complexity will show a substantial reduction. The

complexity of computing conditional probabilities by adding the virtual node is O(ep), and

can be reduced by the approximate method. The forward-backward method for computing

conditional probabilities is O(N · ep). Therefore, the size of the local loop cut-sets plays an

50

important role in determining the complexity of the KLA-algorithm. Although we can reduce

it by using the approximate methods, some types of graphs will still have an intractable com-

puting time. In the following paragraphs, we discuss the time performance of the algorithm

in different types of graph structures.

• Poly-tree structure (no loop)

In this structure, the time performance of the KLA-algorithm is the same as that of the

junction tree algorithm. Since there is no loop, we just propagate message to all the nodes.

The computing complexity of both algorithm is O(N). The structure is shown in Figure

4.9(a).

• Multiply networks with few loops

In this case, the complexity of the graph is not large, and the size of clique is small. The

junction tree algorithm has a better performance than the KLA-algorithm with respect to

the computing time complexity because of trade-of between memory space and computation

time [10]. This trade-off is obtained if we aggregate some small cliques to be a large clique; we

would need more memory space to store the cliques, but the number of cliques will decrease

and result in a saving of the propagation time. The computation time of the propagation of

large cliques also grows exponentially, but it is not the dominant computation time until the

size of the clique is more than 1 GB.

However, since the graph is simple, the computation time of both methods is tractable.

The structure is shown in Figure 4.9(b).

• Multiply networks with many long loops

In this structure, the conditioning method will be broken since the large size of loop cut-sets,

As in the case of the junction tree, the large cliques contain not only the parents of the

node but also other nodes in the loops. However, in our approximate method, we can reduce

the size of the local loop cut-sets and apparently have the same result as that of an exact

inference. The structure is shown in Figure 4.9(c).

51

1

2
3

5

8
9

7

10 11 12

6

4

1

2
3

5

8 97

10 11 12

6

4

1

2
3

5

8 97

10 11 12

6

4

58 59

60

11 12

13

1 2 3 8 9 10

(a) (b)

(d)(c)

Figure 4.9: (a) Poly-tree structure. (b) Multiply networks with few loops. (c) Multiply
networks with many long loops. (d) Multiply networks with many short loops.

• Multiply networks with many short loops

This structure will lead to intractable computing time for all the exact methods. Since all

the loops are short, we cannot reduce the local loop cut-sets by the KLA-algorithm if the

precision is concerned. Therefore, we have to use other methods to solve this problem. The

structure is shown in Figure 4.9(d).

52

Chapter 5

Experiments

In order to verify the KLA-algorithm in a different graph structure, first, we design a series

experiment to compare with the junction tree algorithm and discuss the performance of

precision and computation time. Second, we apply the KLA-algorithm to real-world data

and ozone level detection in order to carry out some simulations.

5.1 Verification of KLA-Algorithm

We build seven different structures with a different number of nodes, namely, 15, 30, 45, 60,

75, 90, and 105 nodes with randomly connected arcs and the maximum number of parents

is four for the propagation test. By comparing the junction tree algorithm, we discuss the

memory, precision, and computation time of both the algorithms. For the given evidence,

we compare two computing conditional probability approaches in the KLA-algorithm. The

following is the result of the simulation.

As shown in Figure 5.1, the structure with different number of nodes reflects different

complexities. In the last experiment, we will use graph complexity for the discussion. Notice

that the correlation between the complexity and the number of nodes is not always positive,

see Section 4.4.1. Figure 5.1 points out the seven different structures and the corresponding

complexity.

53

10 20 30 40 50 60 70 80 90 100 110
3.5

4

4.5

5

5.5

6

6.5

��������	�
����

�
�
�
�
�
�
�
�
	
�

�
�

�
�

Figure 5.1: Number of nodes vs. graph complexity.

In Figure 5.2, we discuss the memory space in the running algorithm. The considerable

space is not only inefficient with respect to computation but also impractical. The clique size

is denoted as the number of nodes in the clique. If there are 25 nodes in a clique and each

node has two states, the real memory space needs 225 × 32 ' 1GB bits since the float value

needs 32 bits to store the data. We can observe that the space of the junction tree algorithm

increases exponentially when the graph complexity increases. However, the KLA-algorithm

is fixed since the maximum clique of the KLA-algorithm depends on the maximum number

of parents. Because the structures consist of four parents, the maximum size of clique is five

(four parents and the corresponding node) in the KLA-algorithm.

Since the most important thing in Bayesian networks is the computation of the conditional

probabilities for the given the evidence, the system would random choose five evidence nodes.

The KLA-algorithm has two different methods for computing the conditional probabilities,

one is the VN-method and the other is the FB-method. We will compare both methods and

their approximate ways with a junction tree to see the performance. The followings is the

simulation result.

Computation time vs. graph complexity

(VN-method compared with junction tree algorithm)

54

3.5 4 4.5 5 5.5 6 6.5

5

10

15

20

25

30

��������	�
����

�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�

�
�
�
�

JT Algorithm

New Algorithm

Figure 5.2: Graph complexity vs. maximum clique size. Size of the clique is represented by
the number of nodes in the clique. The maximum clique size grows exponentially in junction
tree algorithm but fixed in the KLA-algorithm when the graph complexity increases.

The computation time is defined only on the basis of the inference of the conditional

probabilities. Thus, we do not care the time of the system construction. The number of

levels is used for reducing the local loop cut-sets. For example, five levels implies that we

keep the local loops in which the shortest path is less than five levels for the corresponding

node. Hence, the fewer the levels, the smaller is the size of the local loop cut-set and the

lower is the computation time. In Figure 5.3, we can see the junction tree always has a low

computation time in the case of the networks with a complexity of less than six. However,

when the complexity is more than six, the computation time increases exponentially and

requires a large memory space. The VN-method has intractable computation time in a

complex structure (green line). However, by using approximate methods, we can reduce the

computation time to increase at a slow rate when the graph becomes more complex. When

there are less than three levels, we obtain the result in 10s in these seven different structures.

The computation time of five levels (red line) and four levels (blue line) decreases dra-

matically in the case of the most complicated structure. This is because the structure of

55

(Graph complexity) G1(3.7505) G2(5.1459) G3(5.2319) G4(5.8076)
Junction Tree 0.047 0.0531s 0.0468 0.1906

KLA(VN) (all level) 0.5266 21.531 366.812 161.563
KLA(VN) (5-level) 0.5797 2.8032 23.0363 80.156
KLA(VN) (4-level) 0.5125 0.3718 6.109 9.532
KLA(VN) (3-level) 0.3141 0.5874 0.3626 0.766
KLA(VN) (2-level) 0.1156 0.1406 0.1874 0.297
KLA(VN) (1-level) 0.0938 0.0842 0.1812 0.297

(Graph complexity) G5(5.8854) G6(6.2131) G7(6.2464)
Junction Tree 0.4718 6.1968 Out of memory

KLA(VN) (all level) Intractable time Intractable time Intractable time
KLA(VN) (5-level) 2.21E+03 3.51E+03 860
KLA(VN) (4-level) 143.562 221.906 9.078
KLA(VN) (3-level) 0.844 1.625 2.031
KLA(VN) (2-level) 0.297 0.563 0.719
KLA(VN) (1-level) 0.281 0.594 0.438

Table 5.1: Computation time (seconds) of VN-method with different numbers of level ap-
proximations and junction tree algorithm. The corresponding graph is shown in Figure 5.3.

the most complex graph (105-node structure) has more long loops than in the case of the

previous complexity (90-node structure). Therefore, when we consider only five levels for

calculation, the 105-node structure will have fewer local loop cut-sets than 90-node structure

and will spend less time on computation.

Precision vs. graph complexity

(VN-method compared with junction tree algorithm)

Because the VN-method is an oriented-method, which calculates only the probabilities of

the interesting nodes. In this simulation, we focus on the last-node conditional probability

and compare it with the exact value calculated by the junction tree algorithm. Further,

since the junction tree algorithm cannot work in a 105-node structure, the exact value of the

structure is estimated by the five-level approximation. We use the K-L divergence to present

the difference between the exact value and the approximate value. The K-L divergence is

defined to be

DKL(P |Q) =
∑

i

P (i)log
P (i)

Q(i)
, (5.1)

56

3.5 4 4.5 5 5.5 6 6.5
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

��������	�
����

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�

�

�
�
�

JT algorithm

all level

5 level

4 level

3 level

2 level

1 level

Figure 5.3: Computation time (seconds) of VN-method with different numbers of level ap-
proximations and junction tree algorithm. The computation time is represented in a loga-
rithmic form. Junction tree algorithm lacks one point because the algorithm can not work in
the most complex structure (The memory is not sufficient). The VN-method with all levels
only has 4 points because the computation time is intractable in the last three structures.

and is only defined when P > 0 and Q > 0 for all values of i, and when the sum of P and Q

both is 1. Typically, P represents the exact distribution of the data. The measure Q typically

represents an approximation of P . When the value of K-L divergence is smaller than 10−2,

we define the approximate value to be close to exact value and a good approximation.

In Figure 5.4, keep all levels would obtain the exact value; however, in the case of a

large complexity the computation time is intractable. Therefore, the line of all levels (blue

line) only has four values. The value of the K-L divergence will increase when the number

of levels decreases. For example, the structure with 60 nodes with a complexity value of

5.8076 has a small divergence in the case of five-level approximation. However, in the case of

4-level approximation, the K-L divergence increases dramatically, which means that there is

an influential top nodes in some 5-level loops, but we abnegate them. Overall, we can always

obtain a good approximate value by keeping only some levels.

Computation time vs. graph complexity

57

(Graph complexity) G1(3.7505) G2(5.1459) G3(5.2319) G4(5.8076)
KLA(VN) (all level) 7.32E-09 1.98E-09 9.43E-10 3.87E-09
KLA(VN) (5-level) 7.32E-09 9.08E-05 0.0813 3.87E-09
KLA(VN) (4-level) 7.32E-09 9.08E-05 0.0034 0.0133
KLA(VN) (3-level) 2.66E-04 7.62E-05 0.003 0.02
KLA(VN) (2-level) 0.0015 3.06E-04 3.04E-04 0.1506
KLA(VN) (1-level) 0.0015 1.74E-04 0.0022 0.1788

(Graph complexity) G5(5.8854) G6(6.2131) G7(6.2464)
KLA(VN) (all level) NaN NaN NaN
KLA(VN) (5-level) 5.08E-05 5.62E-05 0(Basis)
KLA(VN) (4-level) 1.99E-08 6.08E-05 2.01E-06
KLA(VN) (3-level) 0.0013 1.51E-05 0.00E+00
KLA(VN) (2-level) 2.55E-04 1.29E-05 7.25E-07
KLA(VN) (1-level) 2.55E-04 0.0016 9.87E-07

Table 5.2: K-L divergence between approximate value and exact value. NaN represents that
we do not have approximate value. The corresponding graph is shown in Figure 5.4.

3.5 4 4.5 5 5.5 6 6.5
10

-10

10
-5

10
0

3.5 4 4.5 5 5.5 6 6.5
10

-10

10
-5

10
0

3.5 4 4.5 5 5.5 6 6.5
10

-10

10
-5

10
0

3.5 4 4.5 5 5.5 6 6.5
10

-10

10
-5

10
0

3.5 4 4.5 5 5.5 6 6.5
10

-10

10
-5

10
0

3.5 4 4.5 5 5.5 6 6.5
10

-10

10
-5

10
0

��������	�
����

�
�
�
�
�
�
�
�
	
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

all level

5 level

4 level

3 level

2 level

1 level

Figure 5.4: K-L divergence between approximate value and exact value. There is no clear
relation between KL-divergence value and graph complexity. Most K-L divergence values are
less than 10−2, which means that we can obtain a good approximation by the VN-method of
the KLA-algorithm.

58

(FB-method compared with junction tree algorithm)

The FB-method is the combination of conditional method (forward propagation) and

loopy belief propagation (backward propagation). Thus, the computation time is the sum

of the computation time in both propagation methods. The computation time of forward

propagation depends on the size of the local loop cut-sets. Hence, we can save time by

keeping only small level loops. The computation time of backward propagation depends on

how long the potential will converge. That is, we can modify the system, and the potential

value will have an effect on the convergence time. Therefore, the entire computation time

will not always decrease in the case of small levels.

In Figure 5.5, except the junction tree that grows exponentially, the others grow slowly.

However, the computation time of the structure with 105 nodes (most complexity) increasing

drastically, especially the 1-level approximation. This is because the system is difficult to

converge. The most stable approximate level is 2 and can obtain the result in a few seconds

in this figure. Notice that a high-complexity graph is not always difficult to converge. It

depends on the structure and the parameter value. All in all, the computation time of the

FB-method always grows slowly in the small levels approximation and thus can handle the

most complex system well.

Precision vs. graph complexity

(FB-method compared with junction tree algorithm)

Unlike the VN-method, the FB-method can update all the conditional probabilities in

the networks at once , and not just of the interesting node. However, we still just look at

the final node to compare with the VN-method. The exact value is still obtained from the

junction tree algorithm, and the exact value of the most complexity structure is calculated

by the VN-method when five levels are kept. In Figure 5.6, we can see that all the K-L

divergence values are less than 10−2, and the value of the K-L divergence in different level

approximations is very similar. That means that the difference in the levels has little effect

on the precision of the FB-method. This is because in backward propagation, the loopy

59

(Graph complexity) G1(3.7505) G2(5.1459) G3(5.2319) G4(5.8076)
Junction Tree 0.047 0.0531s 0.0468 0.1906

KLA(FB) (7-level) 3.4167 220.073 215.5937 1.00E+03
KLA(FB) (5-level) 3.2397 44.9533 65.266 173
KLA(FB) (4-level) 2.6407 15.0363 25.625 32.891
KLA(FB) (3-level) 2.1877 6.9633 8.578 14.313
KLA(FB) (2-level) 1.8333 4.0937 5.547 8.578
KLA(FB) (1-level) 1.4113 3.1613 5.328 7.968

(Graph complexity) G5(5.8854) G6(6.2131) G7(6.2464)
Junction Tree 0.4718 6.1968 Out of memory

KLA(FB) (7-level) 1.44E+03 4.04E+03 2.05E+04
KLA(FB) (5-level) 689.406 528.672 5.45E+03
KLA(FB) (4-level) 105.203 135.157 427.875
KLA(FB) (3-level) 18.406 28.672 340.75
KLA(FB) (2-level) 8.391 14.734 21.063
KLA(FB) (1-level) 8.281 27.297 923.906

Table 5.3: Computation time (seconds) of FB-method with different numbers of level ap-
proximations and junction tree algorithm. The corresponding graph is shown in Figure 5.5.

3.5 4 4.5 5 5.5 6 6.5
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

��������	�
����

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�
�

�
�
�
�

JT Algorithm

7 level

5 level

4 level

3 level

2 level

1 level

Figure 5.5: Computation time (seconds) of FB-method with different numbers of level approx-
imations and junction tree algorithm. The computation time is represented in a logarithmic
form. The FB-method when all levels are kept is replaced by that when seven levels are kept
here, since the computation time of keeping all values is always intractable.

60

(Graph complexity) G1(3.7505) G2(5.1459) G3(5.2319) G4(5.8076)
KLA(FB) (7 level) 9.47E-04 4.22E-04 6.95E-04 0.0048
KLA(FB) (5 level) 9.47E-04 3.32E-04 0.001 0.0048
KLA(FB) (4 level) 1.50E-03 3.44E-04 3.79E-04 0.0048
KLA(FB) (3 level) 4.49E-04 1.87E-04 3.15E-05 0.0045
KLA(FB) (2 level) 4.41E-04 1.50E-04 0.0017 0.0054
KLA(FB) (1 level) 0.0038 1.03E-06 0.0098 0.0089

(Graph complexity) G5(5.8854) G6(6.2131) G7(6.2464)
KLA(FB) (7 level) 1.26E-05 6.56E-05 7.00E-05
KLA(FB) (5 level) 1.38E-05 7.05E-05 3.09E-04
KLA(FB) (4 level) 3.17E-04 3.13E-04 9.03E-05
KLA(FB) (3 level) 3.35E-04 1.90E-04 1.89E-04
KLA(FB) (2 level) 9.18E-05 0.0012 5.82E-06
KLA(FB) (1 level) 7.39E-05 2.46E-04 5.16E-06

Table 5.4: K-L divergence between approximate value and exact value in FB-method. NaN
represents that we do not have approximate value. The corresponding graph is shown in
Figure 5.6.

belief propagation attempts to find the convergence value of all clique potentials. Thus,

different approximate values in forward propagation are just the different starting points in

backward propagation and cause different ways to converge. In other words, the different

level approximations would change the convergence way and the convergence time, but the

convergence value is caused by the system or some other factor.

Compared to Figure 5.4, the K-L divergence in the VN-method is smaller than the value

in the FB-method at some points. However, both of them have good approximation in these

seven structures. By Comparing the computation time of both methods, we find that the

VN-method needs a smaller computation time than the FB-method. Thus, irrespective of the

precision or computation time, the VN-method has a better performance than the others.

Why do we need the FB-method? First, it can update all of conditional probabilities at

once. When we want to know the conditional probability of other nodes, we do not need

to calculate them again. Second, the VN-method would have intractable computation time

when ga considerable amount of evidence is given, since the hidden node would have many

parents and might cause many short loops. The following is the simulation when we change

61

3.5 4 4.5 5 5.5 6 6.5
10

-6
10

-4
10

-2

3.5 4 4.5 5 5.5 6 6.5
10

-6
10

-4
10

-2

3.5 4 4.5 5 5.5 6 6.5
10

-6
10

-4
10

-2

3.5 4 4.5 5 5.5 6 6.5
10

-6
10

-4
10

-2

3.5 4 4.5 5 5.5 6 6.5
10

-6
10

-4
10

-2

��������	�
����

�
�
�
�
�
�
�
�
	

�
�
�
�

5 level

3 level

4 level

2 level

1 level

3.5 4 4.5 5 5.5 6 6.5
10

-6
10

-4
10

-2

7 level

Figure 5.6: K-L divergence between approximate value and exact value in FB-method. There
is no clear relation between KL-divergence value and graph complexity, and the K-L diver-
gence in different level approximations are similar. All of the K-L divergence value are less
than 10−2, which means that we can obtain a good approximation by FB-method of KLA-
algorithm.

the number of evidence nodes in the structure.

Different number of evidence nodes vs. computation time

(FB-method compared with VN-method)

In Figure 5.7, we give different numbers of evidence nodes in the structure with 60 nodes,

and use the approximate method on 2, 3 and 4-levels. The circle with a thin line is the result

of the VN-method. The line moves vertically when the number of evidence nodes increases.

If the number of evidence nodes keep increasing, the 2 or 3-level approximation might also be

intractable. The diamond with a thick line is the result of the FB-method. The lines remains

nearly unchanged when the number of evidence nodes are increasing. We can find when the

number of evidence nodes is more than 17, the FB-method performs better than the VN-

method except in the case of 2-level approximation. Thus, if the system just receives little

evidence, we can adopt the VN-method for the calculation. If the number of evidence nodes

is large, or we want the observed conditional probabilities of all nodes, then the FB-method

62

Number of evidence nodes evid = 2 evid = 5 evid=8 evid = 11 evid = 14 evid = 17
KLA(VN) (2 level) 0.312 0.438 0.36 0.515 0.437 0.75
KLA(VN) (3 level) 1.344 1.671 1.735 6.688 9.406 42.672
KLA(VN) (4 level) 10.922 13.36 111.375 117.875 76.859 169.375
KLA(FB) (2 level) 7.453 7.25 7.672 6.125 6.609 7.547
KLA(FB) (3 level) 11.969 11.766 15.281 12.765 13.828 16.047
KLA(FB) (4 level) 23.594 24.734 27.578 27.61 28.578 39.891

Table 5.5: Computational time (sec) of different number of evidence nodes in two different
methods of KLA-Algorithm.The corresponding graph is shown in Figure 5.7.

is appropriate.

2 4 6 8 10 12 14 16 18
10

-1

10
0

10
1

10
2

10
3

�����������	
���������������������������	�	��������������������

�
�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�
�

�
�
�
�

2 level(VN-method)

3 level(VN-method)

4 level(VN-method)

2 level(FB-method)

3 level(FB-method)

4 level(FB-method)

Figure 5.7: Computational time of different number of evidence nodes in two different meth-
ods. The FB-method is presented as diamond with thick line, and the VN-method is circle
with thin line. The FB-method has more stable computing time than VN-method. The
y-axis represents the logarithm.

In conclusion, the KLA-algorithm just needs little memory space and can obtain the

conditional probability efficiently by the approximate approach. Thus, we would adopt the

KLA-algorithm for the analysis of the real-world data.

63

5.2 Application to Ozone Level Detection Data Set

5.2.1 Problem and Data Introduction

Ozone level forecasting has been popular in environmental science and meteorology field.

High concentrations of ozone near ground level can be harmful to people, animals and crops.

As ozone builds up, it becomes toxic, causing shortness of breath, coughing, etc. Therefore

an accurate ozone alert forecasting system is necessary to issue warnings to the public before

the ozone reaches a dangerous level. There are mainly two families of methods, air dynamic

and statistical models. The dynamic forecasting uses 3-D air quality models to simulate

the atmospheric processes that influence the formation, transport and dispersion of ozone.

The statistical methods, on the other hand, find the empirical statistical correlation between

ozone and atmospheric parameters such as wind, temperature, etc. However, due to limited

knowledge about the true physical and chemical mechanism, existing approaches can only use

a rather small number of parameters (≤ 10), and are still rather inaccurate. In the present

exercise, we use the Bayesian networks model for ozone prediction problem, and obtain some

insight into the dependence structure of the phenomena.

The data set, contains 2500+ examples with 72continuous features, and were collected

from 1998 to 2004 at the Houston, Galveston and Brazoria area. Two ground ozone level

data sets are included in this collection. One is the eight hour peak set, the other is the

one hour peak set. Those data Depending on the criterion for ozone days, either 2% or 5%

of them. These 72 data attributes are extracted from several databases within two major

federal data warehouse and one local database for ozone level detection. Table 5.6 lists all of

attributes in the data file. In the present exercise, we only analysis the eight hour peak data

set.

Relevant information of attributes is described in [30]. The air quality data such as

hourly ozone data for this data set were extracted from the EPA Aerometric Information

Retrieval System (AIRS) data set. AIRS is the national repository for information about

64

airborne pollution in the U.S. It provides the sensory information that is used in the reg-

ulatory feedback. Ozone exceedances of the National Air Quality Standard are based on

the AIRS data. As stated in the EPA guideline, the meteorology at both surface level and

upper atmospheric level affects the formation, transport and dispersion of pollutants. Thus,

meteorological data from both surface and upper-air level were obtained. Specifically, hourly

surface level wind speed and direction, relative humidity, pressure (SLP), sky cover were

taken from NCDC (National Climate Data Center) Surface Airway data set; daily maximum

temperature, precipitation were extracted from NCDC Summary of the Day data set. Fif-

teen upper-air variables were extracted from the NCDC Radiosonde Data of North America:

temperature (T), geopotential height (HT), dew point, wind speed and direction at the 850,

700, and 500 hPa levels. To ensure data quality, all variables were pre-screened to remove

erroneous entries. Then all the data sets for the same site were pre-processed, matched and

combined into one set.

5.2.2 Bayesian network construction

Each attribute in the ozone level detection data set would correspond to a variable (node) in

the Bayesian network. Thus, we have total 73 nodes in the network. Except the attribute for

Ozone Day is discrete data, other attributes are continuous and we have to do discretization.

To simplify, we use two or three bins for discretization. Then, we use the BNPC (Section

2.3) to build the networks. The order of nodes is according to the number of each node since

some of variables are time sequence data. We prefer the events occurs first would be in the

earlier order. The target node is defined as output node and at the end of order. The model

would be selected after the following four procedures.

Find the best structure in different value of threshold ε2

and two different number of bins for discretization

In BN power constructor, we can modify the two thresholds to change the complexity of

structure (Section 2.4.1). First, we choose a small value on threshold ε1 = 0.0008 to pass

65

Name of Attribute Description Type Node(BN)
WSR 0 ∼ 23 WSRxx: 1-hour wind speed resultant.

Ex: WSR1 is the WSR at 1am.
Cont. No.1 ∼ 24

WSR_PK The peak value of WSR. Cont. No. 25
WSR_AV The average value of WSR. Cont. No. 26
T 0 ∼ 23 Txx: Temperature at various hours.

Ex: T1 is the temperature at 1am.
Cont. No. 27 ∼ 50

T_PK The peak value of temperature. Cont. No. 51
T_AV The average value of temperature. Cont. No. 52

T85, T70, T50 Temperature at at 850, 700, 500 hpa level. Cont. No. 53, 58, 63
RH85, RH70, RH50 Relative humidity at at 850, 700, 500 hpa level. Cont. No. 54, 59, 64

U85, U70, U50 U-velocity1 at 850, 700, 500 hpa level. Cont. No. 55, 60, 65
V85, V70, V50 V-velocity2 at 850, 700, 500 hpa level. Cont. No. 56, 61, 66

HT85, HT70, HT50 Geo-potential height at 850, 700, 500 hpa level. Cont. No. 57, 62, 67
KI K-Index.3 Cont. No. 68
TT T-Totals. Cont. No. 69
SLP Sea level pressure. Cont. No. 70
SLP_ Sea level pressure change in the past 24 hour. Cont. No. 71
Precp Precipitation. Cont. No. 72

Ozone Day Two classes. 1: ozone day, 0: normal day. Disc. No. 73
U-velocity: East-West component of wind speed and direction.
V-velocity: South-North component of wind speed and direction.
K-Index: A measure of the heavy rain and thunderstorm potential.

Table 5.6: Seventy-two continuous attributes and one target variable in the data file.

66

all the edges in Phase I and only change the threshold ε2 to construct different complexity

networks. The large ε2 usually correspond to simple structure. Then we would do model

selection by BIC test. The Figure 5.8 shows the clique size of KLA-algorithm and Junction

tree algorithm in two and three bins discritization. When ε2 is smaller than 0.01, the junction

tree algorithm needs a huge clique and runs out of memory in inference. For example, in two

bins discretication case, the maximum size of clique at ε2 = 0.001 is thirty-three in junction

tree, which means there are thirty-three nodes in a clique. Each node has three states, and

we use 32 bits (float type) to store the potential value. Thence, we need 333×32 bits to store

the potential value. Obviously, the memory space much larger than the system equipment.

However, the KLA-algorithm just need 37×32 bits in memory. Therefore, the KLA-algorithm

works well in any complicated networks in this case. In this ozone prediction problem, we

just use KLA-algorithm to do each test and inference.

The Figure 5.9 shows the result of BIC value with different ε2 value and two different

number of bins for discretization . The larger BIC value, better the network is. The blue

line is two bins dicretization, and green line is three bins discretization. When threshold

ε2 is smaller than 0.02, both BIC values of two line drop down. This means the networks

with small ε2 is too complicate for this data and might be over-fitting. The blue line always

has better BIC value than green line. It implies simple networks is more suitable for ozone

prediction. The best model is at ε2 = 0.04 with two bins discretization.

Find the best structure in different value of threshold ε1

After selecting the best value of ε2 and the numbers of bins, we try to find the value of

ε1 to generate largest BIC value. The large ε1 usually correspond to simple structure too.

We fix ε2 = 0.04 with two bins discetization. Figure 5.10 shows the result of BIC test with

different threshold ε1 values. We can find that when the value of ε1 between 0.0001 to 0.0016,

we would have same structure and the largest BIC value. When ε1 value is larger than 0.016,

the structure is too simple to fit the data set with smaller BIC value. Thus, we do not need

to change the original ε1 value.

67

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
2

4

6

8

10

12

14

16

18

20

22

����������	
����������������

�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	

�
�
�
�
�
�

JT-Algorithm

KLA-Algorithm

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

20

25

30

35

����������	
����������������

�
�
�
�
�
�
�
�
	
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�

�
�
�
�

JT-Algorithm

KLA-Algorithm

Figure 5.8: Maximum clique of JT and KLA algorithm in different value of threshold ε2. (a)
In 2-bins discretization situation. (b) In 3-bins discretization situation. Both two situation
indicate the JT-algorithm need more large space than KLA-algorithm.

68

0 0.02 0.04 0.06 0.08 0.1 0.12
-10

7

-10
6

-10
5

-10
4

X: 0.07

Y: -5.601e+004

�����������	
���������
�����������

�
�
�
�
�
�
�
�
�
�
	
�
�

�
�

�
�

X: 0.04

Y: -4.117e+004

X: 0.04

Y: -4.117e+004

2 bins

3 bins

Figure 5.9: BIC value of the model with different threshold and bins. The blue line is two
bins discretization and the green line is three. The two bins discretization is always better
than three bins. The best network is occur at ε2 = 0.04, with two bins discretization.

The final network is shown in Figure 5.11. We can make the following conclusions ac-

cording to the networks and they fits our common sense.

1. Hourly wind resultants are only relevant with previous hour resultants. Node1 ∼ 24

are a series connected in the networks.

2. Hourly temperature are only relevant with previous hour temperature. Node27 ∼ 50

are a series connected in the networks, too.

3. Node40 (temperature at 1 pm.) arcs to Node51 (peak value of temperature), which

means the peak temperature usually occur at 1 pm of the day.

4. Fifteen upper-air variables (Node53 ∼ 67) have complicate relationship to each other.

5. Node59 (RH70) arcs to Node68 (K-Index) , which means the relative humidity at 700

have effect on the K-index, a measure of the heavy rain and thunderstorm potential.

69

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
-4.128

-4.126

-4.124

-4.122

-4.12

-4.118

-4.116
x 10

4

�����������	
���������
���������

�
�
�
�
�
�
�
�
�
�
	
�
�

�
�

�

Figure 5.10: BIC value of the model with different threshold ε1. The ε1 value smaller than
0.0016 would have the best structure.

However, there is only one attribute connected the Node73 (ozone day). It is Node12 which

is wind speed resultant at 11.am. But there is no reports can prove it. We would do some

tests to justify this network.

Find the value of threshold vE corresponding to the best precision

To predict whether ozone day or not, the number of classification error is the most im-

portant index. However, if we predict ozone day only based on the probabilities we cal-

culate, the result would always be a normal day. Because the result of ozone day only

takes 2% or 5% of the data set. Thus, we choose a subjective threshold vE, and whenever

P (y = “ozone day”|x, θ) ≥ vE, we issue an alert. Obviously, with different values of vE,

different precision will result. However, we would redefine the precision in this problem since

the the ozone day case is too small but important to us. The precision is defined as the

following formula:

Percission = 50%× #Pred. Normal Day

#Normal Day
+ 50%× #Pred. Ozone Day

#Ozone Day

70

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Figure 5.11: Final networks of ozone detection problem. Each circle corresponds a attributes
according to the number. The target node is No.73 and only be connected by Node12 which
is wind speed resultant at 11 am.

Figure 5.12 shows the result of classification precision of the validation data. The appro-

priate value of vE is between 0.04 and 0.16 since we have the highest precision value 0.76.

We select the middle value 0.1 as the value of vE.

5.2.3 Inference simulation

In this section, we discuss a series inference performed on the test-data. Then we simulate

a prediction procedure from a begin of a day. Some of the data is time-sequenced, and we

only can collect some data at first. With difference evidence nodes set, the performance of

model would be examined.

Test data result:

Test data has some missing value in difference attributes. The attributes with missing

value are usually adjacent, like a section of hours temperature or wind speed resultants. In

this situation, the performance of the model is shown in the following tables. We test the

71

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�����������	
���������
����������

�
�
�
�
�
�
�
�
�
�

Figure 5.12: The corresponding precision with different value of vE . The highest precision
is 0.76 and vE is between 0.04 and 0.16.

all levels and 4, 3, 2-level to approximate conditional probabilities by using the FB-method.

Note that we denote “o_” as the observed data, and “p_” as the predicted data. “CE” is

defined as cross entropy error.

Table 5.7 shows the result of different level approximations. The all levels is the exact

result from junction tree algorithm. We can observe that irrespective of which number of

levels approximation, we would obtain the same result, and the performance is very close to

exact result. This is because the loopy belief propagation in FB-method has same converge

value on different level approximations in this case. Thus, the number of level can be arbitrary

chosen.

.

Prediction on a new day:

From the beginning of a day, we start collecting the data. Every hour we can obtain the

new data. However, it is meaningless to know today is ozone day after the day is over. Thus,

72

All level p_normal p_ozone Total
o_normal 492 163 655
o_ozone 10 22 32
Total 502 185 687

Precision: 0.72, CE: 0.3383

2,3,4 level p_normal p_ozone Total
o_normal 490 165 655
o_ozone 10 22 32
Total 500 187 687

Precision: 0.717, CE: 0.3387

Table 5.7: Precision and cross entropy error of different level approximation. All level is the
exact result.

we will predict hourly and keep modify our prediction after collecting data. In this situation,

the inference of Bayesian networks plays an important role. Suppose except hourly data such

as T0 ∼ 23 and WSR0 ∼ 23, the other data have been collected from past 24 hours. The

following figures shows the probability of ozone day of hourly predictions of random six days

from test-data.

In Figure 5.13, the left three graphs is the normal day case, and right three graphs is

the ozone day case. In the case of normal day, if the probability of ozone day less than vE

at beginning, then we can obtain a good prediction, since the ozone day probability will

keep decreasing. However, if the ozone probabilities near the vE, it is difficult to predict

whether the ozone day or not until at 11 am. This is because the wind speed resultant at

11.am is the only one attributes connected with the target node (ozone or normal day). If

we know the information from 11 am, the other information will useless. This is why the

probability of the ozone day are same after 11 am. In the case of ozone day, we can find that

the probability of ozone day is close to vE at beginning. The first graph of ozone day case

is the miss-classification case. The probability is decreasing and leads to error prediction.

However, in other two graphs, the probability is near threshold vE all of time, and thus we

can have a good prediction. Overall, we will have the most exact prediction after 11 am.

However, in most of time, we can predict whether the ozone day or not before the 11 am

correctly. In this simulation, we can conclude that the attributes of wind speed resultant at

11.am is a key factor of ozone level, since the precision is high in ozone detection problem.

73

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

���������	
�����

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�
�

�

�
�
	

Normal Day

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

���������	
�����

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�
�

�

�
�
	

Ozone Day
(Misclassification case)

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

���������	
�����

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�
�

�

�
�
	

Normal Day

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

���������	
�����

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�
�

�

�
�
	

Ozone Day

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

���������	
�����

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�
�

�

�
�
	 Normal Day

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

���������	
�����

�
�
�
�
�
�
�
�
�
�
	

�
�

�
�
�

�

�
�
	

Ozone Day

Figure 5.13: Probability of ozone day on random six days from test-data. The left column is
the normal day case and right column is the ozone day case. The dashed line is the threshold
vE.

74

Chapter 6

Conclusions

In this thesis, we have considered the learning of Bayesian networks, namely structure learn-

ing, parameter learning and inference algorithms, and developed the KLA-algorithm for

large-scale Bayesian networks. We also presented an application of large-scale networks. In

the following paragraphs, we summarize the present exercises and derive several important

conclusions.

1. We have presented a BN power constructor algorithm for the construction of large-

scale Bayesian networks. The BN power constructor can build the network structure

efficiently. We can tune the parameter to obtain different complexity structures and

perform model selection for the best one.

2. We have described the parameter learning methods, which can easily estimate the

conditional probability table in the Bayesian networks.

3. We developed the KLA-algorithm, which always has tractable computational time and

a trade-off with precision. The value of the levels that we keep can be selected on the

basis of the structure and the performance. The required memory in KLA-algorithm is

the minimum as compared to the other inference algorithms. This advantage extends

large-scale Bayesian networks to some limited resource applications.

75

4. The simulation results in Section 5.1 show that both the VN-method and the FB-

methods of the KLA-algorithm can obtain a good approximate, which have a low K-L

divergence than the exact result from a junction tree algorithm. The VN-method can

calculate the conditional probability of an interesting node and just spend a short time

when the size of the evidence nodes is small. The FB-method calculates the conditional

probabilities of all nodes. Thus, it may spend more time, but the computation time

will stabilize with different sizes of evidence nodes.

5. The application in Section 5.2 shows that large-scale Bayesian networks by the KLA-

algorithm with different levels approximations can have high precision with respect to

classification of the ozone day. We also simulate the missing data case, and a new day

prediction by drawing an inference from Bayesian network. We still have good result

in this case.

Bayesian networks using the inference algorithm proposed here is computationally efficient

and require a small memory space than traditional algorithms. Future researches includes

how to draw inferences in continuous-type systems and mixed-type systems and how to handle

the networks with the minimum-sized clique is still out of memory space.

76

Bibliography

[1] Booker, L. B., and Hota, N. “Probabilistic Reasoning about Ship Images,” Uncertainty

in Artificial Intelligence, vol. 2, pp. 371-379, 1988.

[2] Charniak, E., and Goldman, R. P. “Plan Recognition in Stories and in Life,” In Proceed-

ings of the Fifth Workshop on Uncertainty in Artificial Intelligence, pp. 54-60, 1989.

[3] Chickering, D. M. “Optimal Structure Identification with Greedy Search,” Journal of

Machine Learning Research, vol. 3, pp. 507-554, 2002.

[4] Chickering, D. M., Geiger, D., and Heckerman, D. “Learning Bayesian Networks is Np-

Hard,” Microsoft Research, Technical Report MSR-TR-94-17, 1994.

[5] Chow, C. K., and Liu, C.N. “Approximating Discrete Probability Distributions with

Dependence Trees,” IEEE Transactions on Information Theory, vol. 14, no. 3, pp. 462-

467, 1968.

[6] Cooper, G., and Hersovits, E. “A Bayesian Method for the Introduction of Probabilistic

Networks from Data,” Machine Learning, vol. 9, pp. 309-347, 1992.

[7] Dawid, A. P., Kjaerulff, U., Lauritzen, S.L. “Hybrid Propagation in Junction Trees,”

Advances in Intelligent Computing (IPMU), pp. 85-97, 1994.

[8] Dempster, A., Laird, N., and Rubin, D. “Maximum Likelihood from Incomplete Data

via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, vol. 39, pp.

1-38, 1977.

77

[9] Diez, F. J. “Local Conditioning in Bayesian Networks,” Artificial Intelligence, vol. 87,

pp. 1-20, 1996.

[10] Fishelson, M. and Geiger, D. “Optimizing Exact Genetic Linkage Computations,” Pro-

ceedings of 7th Conference on Computational Molecular Biology (RECOMB), pp. 114-

121, 2003.

[11] Geman, S. and Geman, D. “Stochastic Relaxation, Gibbs Distributions and the Bayesian

Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 12, pp. 609-628, 1984.

[12] Hansson, O., and Mayer, A. “Heuristic Search as Evidential Reasoning,” Proceedings of

the Fifth Workshop on Uncertainty in Artificial Intelligence, 1989.

[13] Heckerman, D. “A Tutorial on Learning with Bayesian Networks,” Microsoft Research,

Technical Report MSR-TR-95- 06, 1996.

[14] Huang, C., Darwiche, A. “Inference in Belief Networks: A Procedural Guide,” Interna-

tional Journal of Approximate Reasoning, vol. 15, no. 3, pp. 225-263, 1996.

[15] Kim, J. H. and Pearl, J. “A Computation Model for Causal and Diagnostic Reason-

ing in Inference Systems,” Proceedings of the Eighth International Joint Conference on

Artificial Intelligence, Los Angeles, pp. 190-193, 1983.

[16] Kim, J. and Wilhelm, T. “What is a complex graph?,” Physica A: Statistical Mechanics

and its Applications, vol. 387, no. 11, pp. 2637–2652, 2008.

[17] Leray, P., and Francois, O. “BNT Structure Learning Package: Documentation and

Experiments,” Laboratoire PSI, Technical Report, 2004.

[18] Murphy, K. P., Weiss, Y., and Jordan, M. “Loopy Belief Propagation for Approximate

Inference: An Empirical Study,” Proceedings of Uncertainty in Artificial Intelligence,

pp. 467-475, 1999.

78

[19] Pearl, J. Causality: Models, Reasoning, and Inference. London: Cambridge University

Press, 2000.

[20] Pearl, J. Probabilistic Reasoning in Intelligent Systems. CA: Morgan Kaufmann, 1988.

[21] Pearl, J. “Fusion, Propagation and Structuring in Belief Networks,” Artificial Intelli-

gence, vol. 29, pp. 241-288, 1986.

[22] Pearl, J. and Verma, T.S. “A Theory of Inferred Causation,” Principles of Knowledge

Representation and Reasoning: Proceedings of the 2nd International Conference, pp.

441–452, 1991.

[23] Schwarz, G. E. “Estimating the Dimension of a model,” Annals of Statistics, vol.6, no.

2, pp. 461-464, 1978.

[24] Spiegelhalter, D. J., Franklin, R. and Bull, K. “Assessment, Criticism, and Improve-

ment of Imprecise Probabilities for a Medical Expert System,” Proceedings of the Fifth

Conference on Uncertainty in Artificial Intelligence, pp. 285-294, 1989.

[25] Spirtes, P., Glymour, C. and Scheines, R. Causation, Prediction and Search. New York:

Springer, 2000.

[26] Srinivas, S. “A Generalization of the Noisy-Or Model,” Proceedings of Ninth Conference

on Uncertainty in Artificial Intelligence, pp. 208-215, 1993.

[27] Suennondt, H. J. and Cooper, G.F. “Probabilistic Inference in Multiply Connected Belief

Networks Using Loop Cutsets,” International Journal of Approximate Reasoning, vol. 4,

pp. 283-306, 1990.

[28] Xiang, Y., Poole, D., and Beddoes, M.P. “Multiply Sectioned Bayesian Networks and

Junction Forests for Large Knowledge Based Systems,” Computational Intelligence, vol.

9, no. 2, pp. 171-220, 1993.

79

[29] Zhang, N. L. and Poole, D. “A Simple Approach to Bayesian Network Computations,”

Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pp. 171-178,

1994.

[30] Zhang, K. and Fan, W. “Forecasting Skewed Biased Stochastic Ozone Days: Analyses,

Solutions and Beyond,” Knowledge and Information Systems, vol. 14, no. 3, pp. 299-326,

2008.

80

