

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

針對高畫質視訊之H.264/MPEG-4 AVC視訊編碼

器設計

Design of H.264/MPEG-4 AVC Video Encoder for

High Definition Video

研 究 生： 林佑昆

指導教授： 張添烜 教授

 任建葳 教授

中華民國 九十七年 六月

針對高畫質視訊之H.264/MPEG-4 AVC視訊編碼

器設計

Design of H.264/MPEG-4 AVC Video Encoder for

High Definition Video

研 究 生： 林佑昆 Student：Yu-Kun Lin

指導教授： 張添烜博士 Advisor：Dr. Tian-Sheuan Chang

 任建葳博士 Dr. Chein-Wei Jen

國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering and
Institute of Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Electronics Engineering

June 2008
Hsinchu, Taiwan, Republic of China

中華民國 九十七年六月

i

針對高畫質視訊之 H.264/MPEG-4 AVC 視訊編

碼器設計

學生：林佑昆 指導教授：張添烜教授

 任建葳教授

國 立 交 通 大 學

電子工程學系 電子研究所

摘要

H.264 因為其具備的高壓縮率與高畫質，已是目前最被廣泛採用的視訊壓縮標

準。但是其主要的問題是需要極高的運算量，特別是要支援到 1920x1080 (1080p)，

所謂的高清畫質解析度時，其所需即時處理的資料量更達到以往 1280x720 (720p)

解析度的四倍以上，所需要支援的功能也更多，很難使用軟體架構進行即時編碼。

所以使用單晶片架構來設計 H.264 編碼器，已被廣泛採用於業界與學界。但如果

使用硬體架構進行即時的 H.264 編碼，不論是在硬體面積、記憶體的數量與頻寬

等方面，仍需要極高的成本。此外 H.264 所需的高運算量會導致低資料輸出率與

高操作頻率。總和以上因素，巨大的功率消耗也是不可避免的。因此本論文提出

了學術界第一個可以即時編碼 1080p 解析度之視訊，並且支援 H.264 高級規範的

單晶片，此晶片中使用多種演算法與架構上的最佳化技術，將其硬體的成本與消

耗功率降到最低，並且幾乎對其畫質與壓縮率沒有影響。

本論文共包含三大部分。首先，本論文針對 H.264 編碼器中最消耗硬體資源與

運算量的移動偵測模組，進行討論與分析。因應 H.264 特有的可變區塊尺寸移動

偵測技術，我們提出了模式濾波技術，在所有可能的區塊尺寸組合中，只挑出兩

ii

組最好的組合進行微調，藉此節省了 73.2%的運算量。在整數移動偵測部分，為

了達到影像品質與硬體成本之間的最佳平衡，本論文採用了多層次的平行化移動

偵測的技術，此技術可以減少 91.7%的運算量與 30%的硬體面積。此外本論文也

使用 C 層級的資料重複採用技術，以減少記憶體的存取量，藉此減少 88%的內

部記憶體與 46%的記憶體頻寬。接著在分數移動偵測部分，本論文採用一次遞迴

的技術，使資料處理速度變成以往所有採用二次遞迴技術之設計的兩倍，同時也

節省了 68%的硬體。綜合了以上的技術之後，本論文提出了一個能夠支援 1080p

解析度，並且搜尋範圍能夠達到±128 的 H.264 移動偵測器。相較於之前的研究，

我們的設計可減少 60%的硬體面積與 68.9%的內部記憶體。

論文的第二部分是 H.264 框內編碼器的架構設計。H.264 規格中的框內編碼，

提供了比過去的影像壓縮技術如 JPEG2000 等，更高的壓縮率，可是又不需像移

動偵測如此巨大的運算量與系統資源，因此是影像處理或低功耗視訊壓縮的一個

新選擇，但其硬體設計的主要缺點是因為其可選擇的預測模式過多而導致的低資

料輸出率。因此本論文提出了一個高資料輸出率與小面積的 H.264 框內編碼器。

首先，本論文採用了一個修改過的三步快速演算法，在確保影像品質不下降時，

減少運算所需要的時間。此外，此編碼器採用可變平行度的設計概念，在運算量

較高的部分採用較高平行度架構，但在非瓶頸區域，則採用較低平行度架構，以

減少硬體需求。此設計同樣能夠即時處理 1080p 解析度的視訊，並減少 23.5%的

硬體面積。此外因為操作頻率可以減少 48%，並且也採用了多項低功率技術，故

能夠達到低功耗的效果。

本論文的最後一部分是一個完整的 H.264 高級規範編碼器，因為許多支援高清

解析度的應用採用 H.264 標準中的高級規範，所以我們將論文前半部提出的移動

偵測器與框內編碼器，再結合了高級規範裡的新工具，整合成一個完整可支援

1080p 解析度的 H.264 高級規範編碼器。因為比起基礎規範編碼器，高級規範編

碼器的設計有更大的挑戰在資料傳輸率、硬體資源與功率消耗上。此外，移動偵

測模組與框內編碼模組在三級平行化系統架構當中，其重建模組會有時間上的衝

iii

突，因此在系統層面上，我們提出了跨平行化階層的硬體共享技術，以除去這項

時間衝突與減少重複的硬體。此外我們採用全八點平行處理的技術，更進一步的

加快資料處理速度，以免新增的高級規範工具變成系統瓶頸。在移動偵測的部分，

我們讓新的雙向移動偵測共用同一組硬體，以減少面積；此外整數移動偵測與分

數移動偵測硬體間也共享內部記憶體，以減少記憶體面積與所需頻寬。總之，這

個學術界第一個發表的高級規範編碼器，在 145MHz 下便可支援 1080p 解析度，

使用 0.13 微米製程時，其面積只要 3.17x3.17 平方毫米，只占過去類似設計的 54%。

支援 1080p 解析度時的功率消耗只要 242 毫瓦，而支援 720p 解析度時，功率消

耗只需要過去類似設計的 46.3%。而此小面積、低功率但高資料處理速度的設計

也證明了本論文的研究成果確實適用在高畫質的視訊處理之上。

iv

v

Design of H.264/MPEG-4 AVC Video Encoder

for High Definition Video

Student：Yu-Kun Lin Advisor：Dr. Tian-Sheuan Chang

 Dr. Chein-Wei Jen

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract
H.264 video standard has been widely adopted in high definition video applications

because of its high compression efficiency and video quality. However, the major

bottlenecks of H.264 implementation are its high computational loading and large

memory bandwidth, especially for encoding 1920x1080 (1080p) high definition video

in real time. Therefore, this dissertation proposes the first chip in academia which can

both support H.264 high profile and encode 1080p video in real time.

This dissertation contains three parts. First, we discuss and analyze the inter

prediction modules which occupy the most memory bandwidth and hardware cost in

H.264 encoder. To overcome these problems, we present a low complexity and

hardware efficient motion estimation design with several design techniques. The first

low complexity technique, mode filtering, selects the best two candidates of all

possible block size combinations for refinement, and reduces the computations of

fractional refinement by 73.2%. To further reduce the complexity and hardware cost,

vi

we propose a multi-level parallel processing technique in integer motion estimation

stage. By this technique, 91.7% of complexity and 30% of gate count can be reduced.

Furthermore, 88% of local memory size and 46% of external memory bandwidth can

be reduced by the level C data reuse technique. Finally, our proposed single iteration

technique can remove 68% of gate count and double the throughput of fractional

motion estimation stage, which is a bottleneck in the inter prediction modules. In

summary, the proposed H.264 inter prediction engine not only can support 1080p

resolution and ±128 search range but also can reduce 60% of hardware and 68.9% of

internal SRAM than previous work.

The second part of the dissertation is the architecture design of H.264 intra encoder.

The intra encoder in H.264 standard provides comparable coding efficiency with

JPEG 2000 standards. To achieve high throughput and low area cost, we apply the

modified three-step fast intra prediction to reduce the cycle count while keeping the

quality as close as full search. Then, we further adopt the variable pixel parallelism to

speed up performance on the critical intra prediction part while keeping other parts

with low area cost. The achieved design supports 1080p video encoding and reduces

23.5% of gate count cost compared to the previous design. In addition, this design can

achieve low power consumption by reducing 48% of operating frequency and several

low power techniques.

The final part of this dissertation is a complete H.264 high profile encoder. Because

several high definition applications apply H.264 high profile, we integrate our motion

estimation engine, intra encoder, and the new coding tools of H.264 high profile into a

complete H.264 high profile encoder supporting 1080p video. These 1080p high

profile applications present a series of new design challenges in throughput, cost and

power. Furthermore, in system level, a timing conflict happens in the reconstruction

stage of inter and intra prediction due to the three pipelined stages architecture.

vii

Therefore, we first propose the crossing stage hardware sharing technique to remove

the conflict and repeated hardware. To solve the high throughput demands and

structural hazards, this design adopts full eight-pixel parallelism. In motion estimation

part, the bi-directional motion estimation modules share the hardware, and the integer

and fractional motion estimation modules also share the local SRAM to reduce the

internal memory size and bandwidth. In summary, we propose the first H.264 high

profile encoder in academia which supports 1080p resolution under only 145MHz.

The core area is 3.17x3.17mm2 under 0.13μm process, which is only 54% of previous

work. The power consumption is 242mW for 1080p resolution and is only 46.3% of

previous work for 720p resolution. Therefore, the small area, low power, and high

throughput design is suitable for high definition video applications.

viii

ix

誌 謝
 一轉眼，在交大就度過了六年時光。其實這幾年的博士生涯，並不是一帆風

順的，途中也經歷了尋找研究主題時的迷惘、論文被拒絕時的打擊等種種困難，

所以最後能夠順利的得到這個學位，其實得到過很多人的幫助。首先要感謝博士

班引領我入門的任建葳教授，提供我良好的研究環境與可自由揮灑的研究空間。

此外，我也致最高的謝意給我的指導教授－張添烜教授。張教授在這幾年間在研

究方向、論文撰寫等方面，不厭其煩的給我指導與鼓勵，讓我最後能夠克服難關，

完成學業。當然，我也要感謝我的口試委員：李鎮宜教授、蔣迪豪教授、方偉騏

教授、楊家輝教授、林永隆教授、陳永昌教授、吳炳飛教授、蔡宗漢教授，在百

忙當中抽空來參加我的論文口試，並且給了我精闢的建議，讓我獲益良多。

 除了諸位師長，我更要感謝我的父母，一直給我全力的支持與協助；也要感

謝他們在我遇到挫折時，能夠容忍我的壞脾氣並給我鼓勵。此外也要謝謝老弟這

幾年來的相互協助。還要感謝阿姨與姨丈對我在新竹這幾年的照顧，讓我可以專

心於研究。

 接著要謝謝這幾年與我一起共度的交大學長、同學與學弟妹們。首先要感謝

李坤儐學長在我剛進入博士班時的悉心指導，還有李元仲學長在我剛接手實驗室

工作站時給我的協助。再來要謝謝我的好同學 Nelson 張彥中，這六年裡一起奮

鬥，相互砥礪，讓我獲益匪淺。接著要謝謝和我共同完成 H.264 Encoder Chip 的

學弟們：嘉俊、得瑋、子筠、秈璟、瑋呈、瑋城，論文能夠被 ISSCC 接受，是

大家共同努力的成果。還有其他 H.264 戰隊的學弟們：朝鐘、君偉、裕仁、國亘、

旻奇、錦木，與你們的教學相長也讓我成長。也要感謝所有張教授實驗室的學弟

妹們：Esam、浩雲、昕儀、惠錚、彥芪、英澤、國龍、宇晟、宗憲、景竹、筱

珊、之悠、孟維、博淵、政君，謝謝你們讓我這幾年的研究生涯充滿歡笑。還要

謝謝子明，與所上所有幫助過我的學長學弟們。

最後謹將這本論文，獻給所有關心我的人們。

x

xi

Contents
Chapter 1 Introduction ... 1

1.1 Overview of H.264 ... 1

1.1.1 History of H.264 .. 1
1.1.2 Introduction of H.264 encoder and decoder 2
1.1.3 Profiles and levels of H.264 specification 5

1.2 Motivation of Thesis .. 7

1.3 Organization and Contribution of Thesis ... 8

Chapter 2 High Performance H.264 Motion Estimator for HDTV 11

2.1 Introduction to H.264 Motion Estimation .. 12

2.1.1 System overview for H.264 motion estimation 12
2.1.2 Variable block size motion estimation (VBSME) 12
2.1.3 Quarter-pel fractional motion estimation 14
2.1.4 Multiple reference frames .. 15
2.1.5 Skip mode .. 15

2.2 Design Challenges and Paper Survey .. 16

2.2.1 Design challenges .. 16
2.2.2 Paper survey ... 17

2.3 Mode Filtering Algorithm .. 18

2.3.1 Introduction to mode filtering .. 18
2.3.2 Simulation result of mode filtering .. 21

2.3.2.1 Performance of QCIF/CIF sequences 21
2.3.2.2 Performance of 720p sequences ... 23

2.4 Integer Motion Estimation Module : Parallel Multi-Resolution Motion

Estimation (PMRME) [35] .. 25

2.4.1 Algorithm of PMRME ... 25
2.4.2 Performance of PMRME ... 26
2.4.3 Architecture of PMRME .. 28
2.4.4 Implementation result and comparisons 35

2.5 Fractional Motion Estimation Module: Single Iteration Fractional Motion

Estimation (SIFME) [40] ... 37

2.5.1 Algorithm of SIFME .. 37

xii

2.5.2 Performance of SIFME .. 40
2.5.3 Architecture of SIFME .. 44
2.5.4 Implementation result and comparisons of SIFME 47

2.6 Integrated Design ... 49

2.6.1 Integrated video quality analysis ... 49
2.6.2 Integrated architecture ... 52
2.6.3 Implementation results and comparisons 53

2.7 Summary .. 54

Chapter 3 Design of H.264 1080p Intra-only Encoder .. 57

3.1 Introduction of H.264 intra-only encoder .. 58

3.1.1 Overview of H.264 Intra-only encoder .. 58
3.1.2 Intra prediction ... 59
3.1.3 4x4 integer DCT/IDCT .. 59
3.1.4 Quantization/Inverse quantization ... 62
3.1.5 CAVLC .. 62

3.2 Design Challenges and Paper Survey .. 63

3.2.1 Design challenges .. 63
3.2.2 Paper survey ... 64

3.3 Fast and Hardware-Efficient Intra Prediction Algorithms 64

3.3.1 Modified three step algorithm [52] .. 64
3.3.2 Enhanced SATD algorithm [42]... 68
3.3.3 Plane mode removal technique [42] .. 70
3.3.4 Performance comparison ... 71

3.4 Architecture of Intra-only Encoder .. 74

3.4.1 Overview of intra-only encoder with variable pixel parallelism . 74
3.4.2 Schedule of encoder ... 75
3.4.3 Architecture of eight-pixel parallelism modules 79

3.4.3.1 Eight-pixel intra predictor .. 79
3.4.3.2 Eight-pixel DCT... 81

3.4.4 Architecture of four-pixel parallelism modules 82
3.4.4.1 Four-pixel IDCT .. 82
3.4.4.2 Q/IQ ... 83

3.4.5 Architecture of CAVLC module .. 83

3.5 Implementation Results and Comparison .. 86

3.5.1 Implementation results ... 86

xiii

3.5.2 Comparison with previous works .. 88

3.6 Summary .. 89

Chapter 4 H.264 HD1080p High Profile Encoder Chip .. 93

4.1 Overview of H.264/AVC High Profile ... 94

4.1.1 History of H.264/AVC high profile ... 94
4.1.2 Introduction of the coding tools of H.264 high profiles and levels
 94
4.1.3 Introduction to new tools of H.264/AVC high profile encoder ... 95

4.1.3.1 8x8 intra prediction .. 95
4.1.3.2 8x8 transform ... 96
4.1.3.3 Weighted bi-directional motion estimation 97
4.1.3.4 Context adaptive binary arithmetic coding (CABAC) 97
4.1.3.5 Deblocking ... 100

4.2 Design Challenges and Paper Survey .. 101

4.2.1 Design challenges .. 101
4.2.2 Paper survey ... 102

4.3 System Overview ... 103

4.4 Schedule of H.264 High Profile Encoder .. 104

4.5 System Level Hardware Sharing Techniques .. 105

4.5.1 Reconstruction sharing... 105
4.5.2 Hardware-shared bi-directional motion estimation 106

4.6 Full eight-pixel intra encoder ... 107

4.6.1 Intra predictor... 110
4.6.2 Interlaced schedule with intra 8x8 prediction 111
4.6.3 8x8 transform unit .. 113
4.6.4 Shared 8x8 inverse transform unit ... 114
4.6.5 8-pixel quantization and inverse quantization unit 118

4.7 Bi-directional Inter Predictor Module .. 119

4.7.1 Techniques for inter prediction .. 119
4.7.2 4x4 SATD cost function ... 121

4.8 Architecture of CABAC [73] ... 123

4.8.1 The proposed algorithm flow and architecture of CABAC 123
4.8.2 Architecture of binarization ... 124
4.8.3 Architecture of context modeling .. 124

xiv

4.8.4 Architecture of AC ... 124
4.8.5 Interval maintainer in AC ... 125
4.8.6 Renormalization in AC .. 125

4.9 Deblocking Filter ... 129

4.10 Implementation Result ... 131

4.10.1 Chip specification .. 131
4.10.2 Power measurement result ... 131
4.10.3 Comparisons with previous work .. 131

4.11 System Integration ... 135

4.12 Summary .. 135

Chapter 5 Conclusion ... 137

5.1 Conclusions .. 137

5.2 Future Works .. 138

5.2.1 H.264 Motion Estimator .. 138
5.2.2 H.264 Intra Encoder ... 139
5.2.3 High Profile Encoder ... 139

References .. 141

xv

List of Figures

Fig. 1-1 The basic structure of encoder. ... 3
Fig. 1-2 The basic structure of decoder. ... 3
Fig. 1-3 Organization of this thesis. ... 9
Fig. 2-1 Block diagram of H.264 motion estimator. 13
Fig. 2-2 Block sizes and hierarchy for H.264 motion estimation. 13
Fig. 2-3 Integer samples and fractional sample positions for (a) luma and (b)

chroma interpolation. ... 14
Fig. 2-4 Multiple references in motion estimation....................................... 15
Fig. 2-5 (a) The original coding flow between IME and FME (b) Mode

filtering algorithm. ... 20
Fig. 2-6 The rate-distortion curves of QCIF sequences. 22
Fig. 2-7. The rate-distortion curves of CIF sequences. 22
Fig. 2-8 The rate-distortion curves of 720p sequences. 24
Fig. 2-9. The three-level new multi-resolution algorithm. 26
Fig. 2-10 The rate-distortion curves of 720p sequences. 27
Fig. 2-11 The rate-distortion curves of 1080p sequences. 28
Fig. 2-12. The proposed architecture of IME stage. 31
Fig. 2-13. Basic 4p-SAD unit can accumulate the SAD of four pixels. 31
Fig. 2-14. The SAD calculation unit used for different levels. The modules

can process a search point of a 16x16 MB within one cycle. (a)
The L0 (Level 0) search point module (b) The L1 (Level 1) search
point module (c) The L2 (Level 2) search point module. 32

Fig. 2-15. (a) The 4x4 SAD Tree used in level 0. (b) The 8x8 SAD Tree
used in level 1. ... 34

Fig. 2-16 The search algorithm of reference software [27] 39
Fig. 2-17. The proposed SIFME on two square points, (0, 0) and

frac_pred_mv, and four triangle point around frac_pred_mv in
one quarter-pel distance. .. 39

Fig. 2-18. The proposed hardware architecture of FME. 45
Fig. 2-19 Interpolation unit .. 46
Fig. 2-20. 6-tap 1-D FIR filter ... 46
Fig. 2-21. The block diagram of IME and FME. ... 54
Fig. 3-1 Block diagram of intra-only encoder. ... 59
Fig. 3-2 Nine modes for intra luma 4x4 and 8x8 prediction 61

xvi

Fig. 3-3 Four modes for intra luma 16x16 and chroma 8x8 prediction 61
Fig. 3-4. Transmission order of all coefficients in a macroblock predicted by

16x16 intra mode. .. 61
Fig. 3-5 The scan order and the syntax symbols of a non-zero 4x4 block... 62
Fig. 3-6 Decision flow of (a) original three-step algorithm (b) modified

three-step algorithm. .. 66
Fig. 3-7 Proposed timing schedule for the modified three-step algorithm. . 67
Fig. 3-8 Proposed architecture of encoder with variable pixel parallelism. 75
Fig. 3-9 Pipelined schedule for fast encoder (a) best luma mode is 16x16 (b)

best luma mode is 4x4.. 78
Fig. 3-10 (a) Eight-pixel parallelism intra prediction generator (b) Examples

of operations for intra 16x16 DC mode. .. 80
Fig. 3-11 Eight-pixel parallelism transform unit. .. 80
Fig. 3-12 Inverse transform Unit ... 82
Fig. 3-13 (a) Quantization and (b) inverse quantization unit 83
Fig. 3-14 Overall architecture of entropy encoder in H.264 baseline encoder.

.. 84
Fig. 3-15 The overall architecture of CAVLC encoder 85
Fig. 3-16 An example for nonzero index table: (a) Original 4x4 block and

zig-zag scan (b) the initial table after all coefficients are loaded
and (c) the updated table after first iteration of leading one
detection. .. 85

Fig. 3-17 The cycle reduction by adopted techniques. 87
Fig. 3-18 The layout and its design specification. 88
Fig. 4-1 Profiles of H.264/AVC ... 95
Fig. 4-2 Nine modes for intra 8x8 prediction. ... 96
Fig. 4-3 Bi-directional motion estimation .. 97
Fig. 4-4 Block diagram of CABAC ... 98
Fig. 4-5 Flow diagram of arithmetic coding. ... 101
Fig. 4-6 Filtering boundary of a macroblock. .. 101
Fig. 4-7. System overview of H.264 high profile encoder. 104
Fig. 4-8. The scheduling of H.264 high profile encoder 104
Fig. 4-9. The schedule of reconstruction module....................................... 106
Fig. 4-10 System architecture of bi-directional motion estimator for H.264

high profile ... 107
Fig. 4-11. (a)The architecture of intra encoder part. (b)The gate count

reduction of intra encoder by proposed techniques. 109
Fig. 4-12. Intra prediction generator used for intra luma 8x8 modes. 111

xvii

Fig. 4-13 Pipelined schedule of proposed intra prediction generator 113
Fig. 4-14 Hardware architecture of transform unit 113
Fig. 4-15 Block diagram architecture of inverse transform unit 115
Fig. 4-16 The architecture of 1-D transform unit 116
Fig. 4-17 The 4x4 IDCT transform datapath in inverse transform unit. 116
Fig. 4-18 The 8x8 IDCT transform datapath in inverse transform unit 117
Fig. 4-19 The inverse Hadamard transform datapath in inverse transform

unit ... 117
Fig. 4-20 Block algorithm of quantization circuits 118
Fig. 4-21. The architecture of motion estimation part and the proposed

algorithms. ... 121
Fig. 4-22.(a) The memory access reduction of ME (b) the gate count

reduction of ME (c) the internal SRAM buffer reduction of ME (d)
The trade-off between the number of search point and quality loss.
.. 121

Fig. 4-23 (a) Original serial chedule of CABAC. (b) Modified parallel
algorithm for CABAC.. 126

Fig. 4-24 Pipelined CABAC encoding flow .. 126
Fig. 4-25 Architecture of Binarization ... 127
Fig. 4-26 Architecture of Context Modeling .. 127
Fig. 4-27 Architecture of AC ... 127
Fig. 4-28 Architecture of Interval Maintainer .. 128
Fig. 4-29 Architecture of Renormalization .. 128
Fig. 4-30. Architecture design of deblocking filter. 130
Fig. 4-31. Edge processing order for (A) luma edge, and (B) chroma edge

 130
Fig. 4-32. Chip micrograph. ... 133
Fig. 4-33. The power of proposed design and previous works. 135

xviii

xix

List of Tables

TABLE 1-1 Profiles of H.264 Specification .. 6
TABLE 1-2 Levels of H.264 Specification .. 7
TABLE 2-1 The average mode filtering performance for QCIF and CIF

sequences ... 23
TABLE 2-2. The average mode filtering performance for 720p sequences 24
TABLE 2-3. Performance of PMRME for 720p and 1080p sequences 27
TABLE 2-4. Memory and bandwidth requirement equation for each level.

The MBsize is 16. Besides, SRL0, SRL1, and SRL2 are 16, 64, and
256 in respect ... 32

TABLE 2-5. Memory and bandwidth requirement is for different frame size.
The saving is compared to the direct design [25]. The
maximum search range is [-128, 127]...................................... 33

TABLE 2-6 Comparison of the IME part with previous designs. 36
TABLE 2-7 Prediction accuracy of motion vector (mvx and mvy) compared

to the full search FME algorithm ... 40
TABLE 2-8 Search point comparisons for different algorithms 40
TABLE 2-9 Simulation results of SIFME for different CIF sequences and

QPs when compared to the reference software [27] 42
TABLE 2-10 PSNR and bit rate comparison for different 720p sequences

and QPs. Speed up is only the performance in fractional ME
part ... 42

TABLE 2-11 PSNR & bit rate comparison for different 1080p sequences
and QP .. 43

TABLE 2-12 Simulation comparison with previous works. 43
TABLE 2-13 comparisons of number of processing unit (PU) and number

of iterative search steps .. 45
TABLE 2-14 Comparison of the FME part with previous designs.............. 48
TABLE 2-15 PSNR and bitrate change for proposed algorithms compared

with full search for 720p sequences 51
TABLE 2-16 PSNR and bitrate change for proposed algorithms compared

with full search for 1080p sequences 52
TABLE 2-17 hardware cost comparison for complete H.264 ME accelerator

with previous works ... 55
TABLE 3-1 H.264/AVC quantization coefficients 70

xx

TABLE 3-2 H.264/AVC de-quantization coefficients 70
TABLE 3-3 Probability Distribution of All 16x16 Modes in 720p Sequences

with 300 I-frames when QP=28 ... 72
TABLE 3-4 The performance of modified 3-step algorithm and combined

algorithm for 720p video sequences. 73
TABLE 3-5 The performance of modified 3-step algorithm and combined

algorithm for 1080p video sequences. 74
TABLE 3-6 Zero-block Codeword Table .. 84
TABLE 3-7 Gate count table for the encoder for HD1080p at 140MHz. 87
TABLE 3-8 Comparison with previous intra encoders 90
TABLE 3-9 Comparison of intra predictor part with the state-of-the-art 91
TABLE 4-1 Quantization parameter table when QP equals twenty-eight: A

for 4x4 block size, B for 8x8 block size 118
TABLE 4-2 The performance comparison with 4x4 and adaptive Hadamard

transform .. 123
TABLE 4-3 Optimized codIRange and codILow 128
TABLE 4-4 Chip specification and features. ... 133
TABLE 4-5 Chip specification and comparison .. 134

1

Chapter 1

Introduction

The video applications exist in our life in every corner such as the analog/digital

broadcast TV, the DVD/Blu-ray video disk, and the streaming video through mobile

phone or computer. The video applications provide us a lot of fun and convenience.

However, the data amount of the video is very huge. If without compression, no

storage device can process these data. Therefore, efficient video compression

technique has been proposed to reduce the data size and the bandwidth when

transmitting these video signals. The H.264 standard is the latest and the most

powerful video compression standard, and many applications adopt this standard. In

this chapter, we will review the trends of video coding stand and overview H.264

specification. And then, the motivation of the thesis is proposed and followed by the

organization and contribution of the thesis.

1.1 Overview of H.264
1.1.1 History of H.264

In 1990s, The ISO (International Standard Organization) MPEG4 standard was

proposed for new internet-based video applications while the ITU-T

(Telecommunication Standardization Sector) H.263 standard for video compression

was widely used in videoconference systems.

MPEG4 and H.263 are standards based on video compression technology, which

are developed by two groups. The one is Motion Picture Experts Group (MPEG) and

the other is Video Coding Experts Group (VCEG). In 21th century, both groups were

2

in the final stages of developing a new standard that promises to significantly

outperform MPEG4 and H.263. The VCEG group started work on two further

development areas: a short-term effort to add extra features to H.263 and a long-term

effort to develop a new standard for low bit rate video communications. The

long-term effort led to the draft “H.26L” standard, offering significantly better video

compression efficiency than previous ITU-T standards. Due to the similarity of the

groups, in 2001, the Joint Video Team (JVT) was formed by the experts from MPEG

and VCEG group. The major task of JVT is to develop the draft H.26L to be a full

international standard. Finally, the two identical standards, ISO MPEG4 Part 10 of

MPEG4 and ITU-T H.264, were developed. The official title of the new technique is

Advanced Video Coding (AVC); however, it is well known by the ITU document

number, H.264 [1].

1.1.2 Introduction of H.264 encoder and decoder
Compared to prior video coding standards, many new techniques are employed in

H.264 standard and result in significant improvement on coding performance. The

details of these techniques can be found in [2]. Here, we would like to give a brief

introduction of the basic concepts of the H.264 encoder and decoder.

In common with earlier standards, the H.264 standard does not explicitly define a

CODEC (encoder / decoder pair). Instead, the standard defines the syntax of an

encoded video bit stream together with the method of decoding. Therefore, some

variations in encoder is allowed as long as the format of encoded bit-stream is correct.

Actually, a compliant H.264 encoder and decoder include the functional modules

shown in Fig. 1-1 and Fig. 1-2. In these figures, we can find that the decoder system is

3

Fig. 1-1 The basic structure of encoder.

Fig. 1-2 The basic structure of decoder.

a part of the encoder, whereas there is a certain range for considerable variation in the

structure.

H.264/AVC also adopts the hybrid video coding scheme which is the same with

MPEG 1/2/4. The input video is divided into marcoblocks. A macroblock consists of

three components, luma and two chroma components. The luma component presents

4

the brightness and the chroma components show the color information. The input

macroblocks are predicted by motion estimation (i.e. inter prediction) or intra

prediction. If using inter prediction, the macroblock is predicted by the blocks in

encoded frames. For intra prediction, the macroblock is predicted by the pixels from

neighbor coded macroblocks. The prediction error, which is the difference between

the original and predicted pixels, will be transformed and quantized to reduce the

value. Finally, the processed predicted error is sent to entropy coding module to

generate the final bit-stream. At the same time, the quantized coefficients are

reconstructed by inverse quantization and inverse transform and added by the

predicted values. The reconstructed image is filtered and stored in the memory as the

reference of next macroblock or next frame.

Comparing with previous standards, the H.264/AVC standard has these changes:

1. H.264/AVC uses in-loop deblocking filter to replace the post-loop filter in

previous standards.

2. H.264/AVC supports multiple references frames.

3. The intra prediction provides higher coding efficiency than previous MPEG-4

standard.

4. The Discrete Cosine Transform (DCT) used in previous standards is replaced by

the integer transform.

Fig. 1-2 shows the diagram of H.264/AVC decoder. The entropy decoder decodes

the quantized coefficients and the motion data. As in the encoder, the prediction pixels

are obtained by intra or inter prediction, which is added to the inverse transformed

coefficients.

The details of the important modules will be introduced in the next chapters.

5

1.1.3 Profiles and levels of H.264 specification
H.264/AVC has many applications; however, different applications have different

requirements both in terms of functionalities and complexity. In order to satisfy the

requirement of all applications as possible, the H.264/AVC specification defines

profiles and levels. A profile is a subset of the coding tools. All decoders compliant to

a certain profile must support all the tools of the profile and the syntax format. Now,

H.264/AVC standard contains seven profiles, whose supporting tools are listed in

TABLE 1-1.

However, for many applications, the major difference of requirement between them

is the format constrain in resolution and bit-rate, not the supporting tools. Therefore, a

level which defines a set of constraints on values of the syntax elements in the bit

stream was created for each profile. Each level specifies upper bounds for the bit

stream or lower bounds for the decoder capabilities. The difference of all levels is

listed in TABLE 1-2. The detailed information on the H.264/AVC profiles and levels

can be found in Annex A of [1].

6

TABLE 1-1 Profiles of H.264 Specification
Profiles Baseline Extended Main High High 10 High 4:2:2 High 4:4:4
I and P Slices Yes Yes Yes Yes Yes Yes Yes
B Slices No Yes Yes Yes Yes Yes Yes
SI and SP Slices No Yes No No No No No
Multiple
Reference

Yes Yes Yes Yes Yes Yes Yes

Deblocking
Filter

Yes Yes Yes Yes Yes Yes Yes

CAVLC Yes Yes Yes Yes Yes Yes Yes
CABAC No No Yes Yes Yes Yes Yes
FMO Yes Yes No No No No No
ASO Yes Yes No No No No No
RS Yes Yes No No No No No
Data Partitioning No Yes No No No No No
Interlaced
Coding

No Yes Yes Yes Yes Yes Yes

4:2:0 Format Yes Yes Yes Yes Yes Yes Yes
4:0:0 Format No No No Yes Yes Yes Yes
4:2:2 Format No No No No No Yes Yes
4:4:4 Format No No No No No No Yes
8 Bit Sample
Depth

Yes Yes Yes Yes Yes Yes Yes

9 and 10 Bit
Sample Depth

No No No No Yes Yes Yes

11 to 14 Bit
Sample Depth

No No No No No No Yes

8x8 Transform No No No Yes Yes Yes Yes
Quantization
Scaling Metrices

No No No Yes Yes Yes Yes

Separate Cb and
Cr QP control

No No No Yes Yes Yes Yes

Separate Color
Plane Coding

No No No No No No Yes

Predictive
Lossless Coding

No No No No No No Yes

7

TABLE 1-2 Levels of H.264 Specification
Level
Number

Max
macroblocks
per second

Max frame
size
(macroblocks)

Max video bit
rate (VCL)
for all
profiles

Vertical MV
component
range

1 1485 99 64-256
kbits/s

[-64,+63.75]

1b 1485 99 128-512
kbits/s

[-64,+63.75]

1.1 3000 396 192-768
kbits/s

[-128,+127.75]

1.2 6000 396 384-1536
kbits/s

[-128,+127.75]

1.3 11880 396 768-3072
kbits/s

[-128,+127.75]

2 11880 396 2-8Mbits/s [-128,+127.75]
2.1 19800 792 4-16Mbit/s [-256,+255.75]
2.2 20250 1620 4-16Mbits/s [-256,+255.75]
3 40500 1620 10-40Mbits/s [-256,+255.75]
3.1 108000 3600 14-56Mbits/s [-512,+511.75]
3.2 216000 5120 20-80Mbits/s [-512,+511.75]
4 245760 8192 20-80Mbits [-512,+511.75]
4.1 245760 8192 50-200Mbits [-512,+511.75]
4.2 522240 8704 50-200Mbits [-512,+511.75]
5 589824 22080 135-540Mbits [-512,+511.75]
5.1 983040 36864 240-960Mbits [-512,+511.75]

1.2 Motivation of Thesis

H.264 has been adopted as the major coding standard in recently popular high

definition video because of its excellent coding efficiency. Due to its high

computational loading, ASIC implementation of H.264 encoder is preferred.

Therefore, several implementations have been developed [3]-[5], but their

performance is limited to baseline 720p [3][4] or SDTV [5]. The main stream 1080p

application presents a series of new design challenges in throughput, cost and power

because of at least a 4X higher complexity than in the 720p baseline.

Thus, in this thesis, we first propose algorithms and architectures for our H.264

encoder to support 1080p resolution without significant quality loss and hardware

8

overhead. And then, we integrate the whole design with the new coding tools of high

profile to support the latest high definition video applications.

1.3 Organization and Contribution of Thesis

Fig. 1-3 shows the organization and contribution of the dissertation. In chapter 2,

we propose a high performance H.264 motion estimator which can support 1080p

video with 60fps and the search range up to ±128 without area and throughput

overhead [6]. In chapter 3, we provide an alternative solution for application with low

power and small area. The high throughput H.264 intra encoder can support 1080p

resolution but its area and complexity cost is much lower than original H.264 encoder

[7]. Finally, the integrated H.264 high profile encoder combines the high performance

and low power techniques from previous two chapters for HDTV applications [8].

The last chapter is the conclusion.

9

Fig. 1-3 Organization of this thesis.

High Throughput
H.264 Motion

Estimator (Chap 2)

High Throughput
H.264 Intra

Encoder (Chap 3)

Low Power H.264
High Profile

Encoder (Chap 4)

High
Performance

Encoder

Low
Power

Encoder

10

11

Chapter 2

High Performance H.264 Motion

Estimator for HDTV

Motion estimation (ME) part is the most important component in H.264 encoder. In

which, the variable block size integer-pel motion estimation (IME) and its improved

fractional-pel ME (FME) not only contributes a lot for coding efficiency but also

dominates the computational loading of the whole encoding process. Thus, various

VLSI realizations of ME have been proposed to speed up the process. In this chapter,

we first introduce the motion estimation algorithms of H.264. Besides, we review the

previous works and define the problems when extending the supporting resolution to

full high definition (HD) size and large search range (SR). And then, we introduce our

proposed algorithms and architectures in H.264 motion estimation part for high

definition (HD) applications: The first technique, mode filtering (MF), is used to

speed up the throughput of whole system. And then the parallel multi-resolution

motion estimation (PMRME) reduces the most complexity and memory bandwidth

for variable block size motion estimation. Finally, the single iteration fractional

motion estimation (SIFME) minimizes the hardware cost and latency for one-quarter

fractional motion estimation.

12

2.1 Introduction to H.264 Motion Estimation
2.1.1 System overview for H.264 motion estimation

 The H.264 standard adopts the general block-based motion estimation algorithm,

which compares the block-based coding data with the reference data to find the best

motion vectors. The motion estimation flow of H.264 is illustrated in Fig. 2-1. The

current block is compared with the reference data in the search range of previous

frames, and the best integer motion vectors are decided by integer motion estimation

module. And then the related data is processed by fractional motion estimation

modules for refinement. Finally, the residue data which is the difference between

current block and best reference block is generated for further coding.

Although H.264 standard uses the common block matching algorithm, it has some

new features which differ from previous video standards and will be introduced in

next sections:

 Variable block size motion estimation

 Quarter-pel fractional motion estimation

 Multiple reference frames

2.1.2 Variable block size motion estimation (VBSME)
The H.264 standard adopts hierarchical variable block size (VBS) motion

estimation technique to improve the prediction accuracy. Fig. 2-2 shows the block

selection procedure and seven possible block size modes for VBSME. In the first step,

the best block size is chosen from mode 1 to mode 4 as shown in Fig. 2-2. If the 8x8

mode is preferred, all blocks are split into smaller blocks from mode 4 to mode 7 in

the second step. Therefore, there are many combinations of chosen modes in a

macroblock. Unlike the previous MPEG 1/2/4 standards which only support 16x16 or

8x8 block matching units, the VBS technique provides flexibility for different

13

Fig. 2-1 Block diagram of H.264 motion estimator.

Fig. 2-2 Block sizes and hierarchy for H.264 motion estimation.

video sequence. For the video with complex textures, the smaller blocks provide

higher coding efficiency. As for the video with flat backgrounds, the larger blocks can

predict the video precisely with fewer motion vectors.

16

…
…

8

4 ~

14

(a)

(b)

Fig. 2-3 Integer samples and fractional sample positions for (a) luma and (b) chroma
interpolation.

2.1.3 Quarter-pel fractional motion estimation
 H.264 standard supports the motion estimation resolution to quarter pixel in luma

components and one-eighth pixel in chroma parts. The sub-pixel motion estimation

technique can raise the prediction accuracy and reduce bit-rate. The interpolation

schedules to generate the half and quarter pixels are presented in Fig. 2-3 (a), The half

luma pixel is generated by the 6-tap filter:

a = E-5*F+20*G-20*H+5I-J+16/32 (1)

The quarter pixel is generated by the average of integer and half pixels:

b = (E+F+1)/2 (2)

As for the chroma part, the sub-pixel in Fig. 2-3 (b) is calculated by the interpolation

equation:

c= ((8–x)*(8–y)*A+x*(8–y)*B+(8–x)*y*C+x*y*D+32)/32 (3)

A B

C D

c
X 8-X

8-Y

Y

15

Fig. 2-4 Multiple references in motion estimation.

2.1.4 Multiple reference frames
H.264/AVC standard supports multiple reference frames in motion estimation as

shown in Fig. 2-4. At most five frames can be used to predict current block. By this

technique, the coding efficiency and prediction accuracy can be further improved.

However, the computational complexity is proportional to the number of reference

frame.

2.1.5 Skip mode
Because these new techniques in motion estimation stage dominate the

computational loading and power of the H.264 encoding process, the most efficient

way to lower the complexity and power of H.264 encoder is to skip the prediction

procedure of a macroblock and simply use the information of coded macroblock

directly.

In H.264/AVC, if the following conditions are matched, the macroblock will be

skipped and encoded as skip mode:

1. The chosen block type is 16x16.

2. The best motion vector equals the predicted motion vector (MVP).

3. The chosen reference frame is the previous frame.

Frame N-4 Frame NFrame N-1Frame N-2Frame N-3

16

4. All coefficients are zero after transform and quantization.

2.2 Design Challenges and Paper Survey

2.2.1 Design challenges

As mentioned above, the VBS integer-pel motion estimation (IME) and its

improved fractional-pel ME (FME) modules require the most computational resources

in the whole encoding process of H.264 standard. Thus many VLSI realizations of

ME have been proposed to speed up the process [9]-[18]. However, most of them are

only applicable for standard definition (SD) size or below. For high definition (HD)

video applications that requires large search range up to [-128, 127] or even larger,

direct extension with previous approaches will consume too large area cost, buffers,

bandwidth and cycles. To support large search range, many fast integer ME

algorithms have been proposed [19]-[24]. However, most of them are not suitable for

hardware implementation because of its irregular data flow. Besides, most of these

approaches only consider IME or FME only without exploiting their relationship,

which may result in extra computation cost.

To solve the above problems, we present an efficient ME architecture suitable for

HD videos by various design techniques, including a mode filtering algorithm to

jointly reduce the IME and FME computations, a parallel multi-resolution ME

(PMRME) for large search range IME, and a single iteration FME (SIFME) to

achieve the lower cycle count. The cycles are reduced by hardware parallelism and

algorithm modification (PMRME and SIFME). Furthermore, we lower requirements

of bandwidth and buffer by reusing data within IME as well as between IME and

FME. The video quality loss is low by exploiting unequal distribution of motion

vectors. With these approaches, we can save more than half of area, bandwidth and

17

buffer cost when compared to previous designs.

2.2.2 Paper survey

For fast IME of H.264 standard, various approaches have been proposed [14]-[24]

but few can be readily applicable to large search range as used in HDTV. The large

search range requirement will result in longer execution cycles as well as large buffer

and high memory access. Previous designs with [-63, +64] search range [25][26] use

the full search method and thus occupy large area cost. To solve these problems, one

promising approach is the multi-resolution ME [14]. In [14], they use three

hierarchical levels for search and refine the motion vectors from the coarse level to

the finest level. However, the motion vector found in the higher level needs to be

further refined in the lower level. It implies the search is a sequential process that will

increase the cycle counts, and thus decrease the hardware utilization and throughput.

Besides, a full search range sized buffer is still needed because of the dependency

between the three hierarchical levels. And then, the required bandwidth is still too

large because of poor data reuse of the refinement process. In [15], a modified

three-step algorithm is used to decrease the search points for low power, but still

consumes large area cost and memory. [16] also uses the subsampling techniques to

reduce the hardware cost; however, the two-stage architecture results in longer cycle

counts. In [18], the two-stage flow and the irregular search range cause the difficulty

of external data transfer.

For fast FME, most of them follows the two-step approaches as in reference

software [27] which needs total 17 search points for fractional ME. Although this

algorithm is suitable for hardware [28], it has two drawbacks. First, the nine search

points in each step result in area-costly nine processing units (PUs) for hardware

implementation. The second drawback is that it needs two iterative search loops of

18

interpolation and Hadamard transform to calculate the SATD cost.

To speedup FME, many fast FME [29]-[34] algorithms are proposed to speed up

the process. However, these algorithms [29]-[32] are software-oriented, with irregular

data flow and thus are not suitable for hardware design. Our previous work [33] is

more suitable for hardware and can reduce the processing unit from nine to five to

save hardware cost. But all these algorithms suffer from long computation cycles due

to the two iterative search loops, one for half-pels and one for quarter-pels. On the

other hand, single iteration algorithms like [36][37] have bad performance due to poor

interpolation accuracy. The design in [38] increases the throughput by the cost of

large area and memory bandwidth. In summary, the hardware implementations of

these fast algorithms only reduce the processing element but degrade the quality a lot

or do not reduce the total cycle count. These problems will pose strict limits on the

HD video applications since FME will take more cycles than IME and thus will

dominate the whole pipelining cycle time.

2.3 Mode Filtering Algorithm
2.3.1 Introduction to mode filtering

Fig. 2-5 (a) presents the general flow of IME and FME in the reference software

[27] that IME sends the motion vector to FME for refinement. After all possible

modes and motion vectors are generated, the best mode and its motion vectors are

chosen in the final step of FME. Thus, the IME and FME module both process 41

MVs.

To reduce the complexity, we select the two best modes instead of all modes for FME

refinement as shown in Fig. 2-5 (b). One mode is chosen from mode 1 to mode 3 in

Fig. 2-2, and the other mode is selected from mode 1 to mode 7. With this, only 3 to

18 MVs instead of 41 MVs are computed in FME, which saves 60% to 70%

19

computing cycles. In [28], a similar concept but more complex procedure has been

proposed. Our method can achieve better quality and lower cycle count than that in

[28] because we only select two instead of three candidates and only the best

candidate for the 8x8 and smaller subblock case is considered in the final best mode

selection. Besides, the method also increases the overall ME pipelining efficiency

because it can reduce the cycle count of FME to be similar to that of the IME stage.

20

(a)

(b)

Fig. 2-5 (a) The original coding flow between IME and FME (b) Mode filtering

algorithm.

21

2.3.2 Simulation result of mode filtering
We test the mode filtering algorithm in three different sizes of video: QCIF, CIF

and 720p test sequences to see the performances under different conditions. The test

sequences with QCIF and CIF resolution are ‘akiyo’, ‘foreman’, and ‘mobile’, which

are low motion, medium motion, and high motion sequences respectively. For 720p

resolution, the test sequences are ‘Stockholm’, and ‘park_run’. The search ranges are

8, 16 and 32 for QCIF, CIF and 720p sequences respectively. The reference software

is JM 9.0 [27] without rate-distortion optimization (RDO).

2.3.2.1 Performance of QCIF/CIF sequences

Fig. 2-6 and Fig. 2-7 show the result of mode filtering algorithm for the QCIF and

CIF sequences. For small size sequences, we can observe that mode filtering method

has similar performance as reference software.

TABLE 2-1 presents the average performance of this algorithm of QCIF and CIF

sequences respectively. In these results, we find out that the average bit-rate

increasing can be only 0.54% and 1.30% and the PSNR degradation is only 0.11db,

which performs well.

The performances for CIF sequences are better than that for QCIF because the

mode filtering technique will filter most of the small block modes while these small

block modes are more preferable in small size sequences. Therefore, mode filtering

has better performance for CIF sequences because CIF sequences more prefer larger

block sizes than QCIF.

22

Fig. 2-6 The rate-distortion curves of QCIF sequences.

Fig. 2-7. The rate-distortion curves of CIF sequences.

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500

PS
N
R
(d
B)

Bit rate (kbit/sec)

RD_Curve of QCIF Video

Foreman_Original

Foreman_MF

Mobile_Orig

Mobile_MF

Akiyo_Orig

Akiyo_MF

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

PS
N
R
(d
B)

Bit rate (kbit/sec)

RD_Curve of CIF Video

Foreman_Original

Foreman_MF

Mobile_Orig

Mobile_MF

Akiyo_Orig

Akiyo_MF

23

TABLE 2-1 The average mode filtering performance for QCIF and CIF sequences
 QCIF CIF

QP14
PSNR (dB) -0.13 -0.12
Bit-rate (%) 2.52 0.50

QP21
PSNR (dB) -0.14 -0.10
Bit-rate (%) 3.96 1.59

QP28
PSNR (dB) -0.12 -0.12
Bit-rate (%) 1.45 0.68

QP35
PSNR (dB) -0.15 -0.10
Bit-rate (%) -0.67 -0.63

Average
PSNR (dB) -0.11 -0.11
Bit-rate (%) 1.30 0.54

2.3.2.2 Performance of 720p sequences

Fig. 2-8 shows the rate-distortion curves of 720p sequences. TABLE 2-2 lists the

average performance. For 720p sequences, we find that mode filtering provides very

good performance with very little PSNR dropping for low QP situation. However, as

the QP increases, the bit rate also increases rapidly and reaches 2.19% increasing

under QP36.

For small size (QCIF and CIF) video, the bit-rate overhead is smaller for high QP case

(the low bit-rate condition). It is because the mode filtering algorithm prefers larger

block size which is the better choice for the low bit-rate condition by reduced MV bit.

For 720p sequences, the frame contents are smoother because of the characteristics of

high definition; thus, large block size is preferred in 720p sequences and results in

better performance of mode filtering than that in QCIF and CIF video.

24

Fig. 2-8 The rate-distortion curves of 720p sequences.

TABLE 2-2. The average mode filtering performance for 720p sequences

 720p

QP12
PSNR (dB) -0.03
Bit-rate (%) -0.45

QP16
PSNR (dB) -0.04
Bit-rate (%) -0.71

QP20
PSNR (dB) -0.11
Bit-rate (%) -1.37

QP24
PSNR (dB) -0.15
Bit-rate (%) -2.30

QP28
PSNR (dB) -0.09
Bit-rate (%) -0.42

QP32
PSNR (dB) -0.07
Bit-rate (%) 1.23

QP36
PSNR (dB) -0.06
Bit-rate (%) 2.19

Average
PSNR (dB) -0.08
Bit-rate (%) -0.26

25

30

35

40

45

50

1000 51000 101000 151000 201000

PS
N
R
(d
B)

Bit rate (kbit/sec)

RD_Curve of 720p Video

Stockholm_Original

Stockholm_MF

Parkrun_Orig

Parkrun_MF

25

2.4 Integer Motion Estimation Module : Parallel

Multi-Resolution Motion Estimation (PMRME) [35]

2.4.1 Algorithm of PMRME

PMRME includes three levels and all of them are independent to each other, as

illustrated in Fig. 2-9.

In the coarsest level, level 2, the search range (SR) is the largest, [-128~127], and

centered on the original point (0,0). This enables the regular memory reuse between

successive MB processing as used in most of ME designs [39]. This level uses the

16:1 sampling and thus we only choose the 16x16 mode (mode 1 in Fig. 2-2) since

other modes will contain too fewer pixels for SAD calculation and may result in poor

mode decision.

In level 1, the SR is reduced to [-32 ~ +31] and also centered on (0,0) for memory

reuse. This level uses the 4:1 sampling and thus we only choose the 16x16 to 8x8

mode (mode 1 to 4 in Fig. 2-2) for the same reason as level 2.

In the finest level, level 0, the SR is set to [-8 ~ +7]. However, unlike the other two

levels with (0,0) center, we choose the MVP as the center due to its higher probability

to find the final MV here. Thus, we do not subsample data in this level and thus

enable search for all variable block size modes.

In the three parallel levels, the level 2 provides a large search range for high motion

blocks with coarse precision. It is useful for very high motion blocks, and can find a

good enough though rough motion vector candidate. Also, the level 1 can provide a

26

Fig. 2-9. The three-level new multi-resolution algorithm.

medium search range but a finer MV precision. With these two large search levels, the

motion search algorithm of level 0 can converge to the true motion vector quickly by

effects of MVP. If only the level 0 is used, it is difficult to trace the high motion

blocks because the MVP cannot follow up the real motion effectively in this case.

2.4.2 Performance of PMRME

TABLE 2-3 shows the video quality of PMRME algorithm for 720p and 1080p

sequences respectively.

Rate-distortion optimization (RDO) is not used, and only the first frame is intra

frame. The search range (SR) is [-128, 127]. All simulation results are compared with

reference software JM9.0 [27]. TABLE 2-3 shows the average performance under

different QPs. For 720p video, four test sequences are used: Stockholm, park_run, and

shields. The frame rate is 30 and 300 frames are coded.

27

TABLE 2-3. Performance of PMRME for 720p and 1080p sequences

QP 720p 1080p

QP16
PSNR inc.(db) -0.0025 0.00

Bit rate inc. (%) -1.02 -0.49

QP20
PSNR inc.(db) 0 -0.01

Bit rate inc. (%) -0.49 -0.44

QP24
PSNR inc.(db) -0.0075 -0.03

Bit rate inc. (%) -0.335 -0.40

QP28
PSNR inc.(db) -0.005 -0.06

Bit rate inc. (%) -0.2 0.40

QP32
PSNR inc.(db) -0.01 -0.06

Bit rate inc. (%) 1.56 1.68

Average
PSNR inc.(db) -0.005 -0.04

Bit rate inc. (%) -0.017 0.15

Fig. 2-10 The rate-distortion curves of 720p sequences.

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000

PS
N

R
(d

B
)

Bit-Rate(Kbits/sec)

RD-Curve for 720p sequences

Mobcal_Orig

Mobcal_PMRME

Parkrun_orig

Parkrun_PMRME

Stockholm_orig

Stockholm_PMRME

Shield_orig

Shield_PMRME

28

Fig. 2-11 The rate-distortion curves of 1080p sequences.

For 1080p video, three test sequences include: station2, rush_hour, and sunflower.

The number of testing frames is 100. We should note that the 1920x1080 image is

truncated to 1920x1072 to fit the multiples of 16.

Fig. 2-7 and Fig. 2-8 present the rate-distortion curve of 720p and 1080p video

sequences, respectively. The results show the PMRME algorithm can achieve the

similar video quality as the full search algorithm. However, the bit-rate overhead is

larger under high OP because the video quality of reconstructed video will be worse

for high QP and the worse reference will mislead the subsampling method. For 720p

sequences, PSNR loss is only 0.005dB and the bit-rate decreasing is 1.28% in average.

As for 1080p sequences, it has 0.04dB PSNR loss and up to 0.15% of bit-rate

decreasing in average. The average PSNR quality loss is negligible and the bit-rate in

some cases is decreasing because PMRME also prefers larger block size.

2.4.3 Architecture of PMRME
Fig. 2-12 shows the proposed IME architecture. All three levels can be computed in

parallel. A 16x16 current block is shared by three levels. The memory size and

bandwidth for three reference frame buffers are listed in TABLE 2-4 and TABLE 2-5.

35

37

39

41

43

45

47

49

0 20000 40000 60000 80000 100000 120000

PS
N

R
(d

B
)

Bit-Rate(Kbits/sec)

RD-Curve for 1080p sequences

sta tion2_orig

sta tion2_PMRME

rush_hour_orig

rush_hour_PMRME

sunflower_orig

sunflower_PMRME

29

The bit width of memory buffer of level 1 and level 2 are truncated while that of the

level 0 is not. The reason for this is that the level 0 data can be reused by the

following FME hardware if the best MV falls in the level 0. TABLE 2-4 presents the

equation of buffer size and the memory access requirement for each level and direct

implementation [25]. The MBsize in the table is 16. Besides, SRL0, SRL1, and SRL2

are respective 16, 64, and 256. We should note that the buffer size for direct

implementation is the search range size. As for level 0, the buffer size is a little larger

than the search range because it includes the neighbor pixels for FME interpolation.

But in the case of level 1 and level 2, the memory size is only one-fourth and

one-sixteen of their search range by the subsampling techniques. Besides, the

bit-truncation technique also reduces 25% to 37.5% buffer size if two or three bits are

truncated. As for the memory bandwidth, by the level C data-reuse scheme in [39], the

direct implementation needs to update (SR+MBsize-1)*16 pixels. Therefore, the

larger search range results in the lower proportion of update rate. Thus, only

16/(64+16) = 20% data in level 1 SRAM should be updated when the coding MB

changes with above approach. As for level 2, only 16/(256+16) = 5.88% data should

be updated. TABLE 2-5 shows the real buffer size and memory bandwidth

requirement for 720p and 1080p video. The proposed algorithm can save over 91.91%

buffer in the 720p case and 55% bandwidth in the 1080p case by subsampling and

bit-truncation when comparing to [18] that also uses level C data-reuse scheme. If the

bus width is 128 bits, it only needs 121 cycles per MB to transfer the required data

from external memory to SRAM.

In this architecture, all computations are decomposed as the combinations of 4x4

blocks. The basic processing unit is the 4p-SAD (four-pixel SAD) unit which can

process the SAD of four pixels as depicted in Fig. 2-13. With this, every level can be

easily implemented by regularly composed SAD units. As Fig. 2-12 presents, L0

30

(level 0) has one search point module which can process a search point within one

cycle so that the level 0 with search range [-8, +7] can finish the full search within

256 cycles. In the same manner, level 1 and level 2 has four and 16 search point

modules, which mean the level 1 and level 2 can process four and 16 search points in

parallel. Therefore, level 1 and level 2 can process 1024 and 4096 search points

within 256 cycles by the parallelization techniques.

Fig. 2-14 shows the detailed architecture of search point modules of each level. Fig.

2-14 (a) shows the “L0 search point module”, which is consisted of four row SAD

modules. Each row SAD module contains 16 4p-SAD units. Thus, the L0 search point

module includes 64 4p-SAD units in total to generate the total SAD cost of a 16x16

MB. As for level 1 with 2:1 subsampling, the number of search point is 1024.

Furthermore, since the current buffer for level 1 is also subsampled, only 64 pixels are

compared in current MB. Therefore, L1 (Level 1) search point modules in Fig. 2-14(b)

only needs 16 4p-SAD units, which is quarter of that in level 0. In order to keep the

cycle count of level 1 as the same as that of level 0, we use four L1 search point

modules. Thus, four search points in level 1 can be processed in parallel with the

same current block. With above arrangement, the total hardware cost of level 1 is the

same as that of level 0, 64 4p-SAD units. Similar design considerations are also

applied to level 2. Thus, in level 2, the L2 (Level 2) search point module in Fig.

2-14(c) only needs 4 4p-SAD units so that we use 16 L2 search point modules to

compute 16 search points in parallel. In summary, all these levels have 64 4p-SAD

units respectively to balance the computation cycle of each level to be the same 256

cycles.

31

Fig. 2-12. The proposed architecture of IME stage.

Fig. 2-13. Basic 4p-SAD unit can accumulate the SAD of four pixels.

16 L1 Search Point Module 0

L1 Search Point Module 1

L1 Search Point Module 3

L1 Search Point Module 2

L0 Search Point Module 0

8x8 SAD
tree 0

8x8 SAD
tree 1

8x8 SAD
tree 2

8x8 SAD
tree 3

4x4 SAD
tree 0

L2 Search Point Module 0

L2 Search Point Module 1

L2 Search Point Module 15

L2 Search Point Module 14

67 19

4

39 11

8

31 16

16

<<4

<<2

C
0

C
1

C
2

C
3

R
0

R
1

R
2

R
3

32

Fig. 2-14. The SAD calculation unit used for different levels. The modules can

process a search point of a 16x16 MB within one cycle. (a) The L0 (Level 0) search
point module (b) The L1 (Level 1) search point module (c) The L2 (Level 2) search

point module.

TABLE 2-4. Memory and bandwidth requirement equation for each level. The MBsize
is 16. Besides, SRL0, SRL1, and SRL2 are 16, 64, and 256 in respect

Memory cost buffer size BW(per MB)

Level 0
(SRL0 + MBsize+ 5)

* (SRL0+ MBsize + 5)*8
(SRL0 + MBsize +5)

* (SRL0+ MBsize+5) *8

Level 1
(SRL1/2 + MBsize/2 -1)
* (SRL1/2 + MBsize/2)

*(Pixel_DepthL1)

(SRL1/2 + MBsize/2 -1)
* (SRL1/2 + MBsize/2)*

(16/(64+16)) *8

Level 2
(SRL2/4 + MBsize/4 -1)
* (SRL2/4 + MBsize/4)

*(Pixel_DepthL2)

(SRL2/4 + MBsize/4 -1)
* (SRL2/4 + MBsize/4)

*(16/(256+16)) *8

Direct design
(SR+MBsize-1)
(SR+MBsize) *8

(SR+MBsize-1) (SR+MBsize)
*(16/(256+16)) *8

C
0 4

C
2 4

C
4 4

C
6 4

C
8 4

C
10 4

C
12 4

C
14 4

L1 Search Point M
odule

C
0 4

C
4 4

C
8 4

C
12 4 L2 Search Point M

odule

C
0 4

C
1 4

C
2 4

C
3 4

C
4 4

C
5 4

C
6 4

C
7 4

C
8 4

C
9 4

C
10 4

C
11 4

C
12 4

C
13 4

C
14 4

C
15 4 L0 Search Point M

odule

33

TABLE 2-5. Memory and bandwidth requirement is for different frame size. The
saving is compared to the direct design [25]. The maximum search range is [-128,

127]

Memory cost
for 720p for 1080p

buffer sizeBW(per MB)buffer sizeBW(per MB)
Level 0 (Kbyte) 1.369 1.369 1.369 1.369
Level 1 (Kbyte) 0.975 0.312 1.170 0.312
Level 2 (Kbyte) 2.8475 0.268 3.417 0.268
Total (Kbytes) 5.1915 1.949 5.956 1.572
Direct design 73.712 4.336 73.712 4.336
Saving (%) 92.95 55 91.91 55

The SADs generated from the SAD modules are further summed up by the

summation trees to generate the SAD of different block size as shown in Fig. 2-15. In

Fig. 2-15(a), level 0 has the most complex summation trees for combination of the

seven kinds of block types. The SADs of 4x4 blocks 00, 01, 02, and 03 are

accumulated in the first step, and then they are saved to registers dly4. When the

SADs of the 4x4 blocks 10, 11, 12, and 13 are ready, these SADs are accumulated for

4x8 and 8x4 SADs. Then two 8x4 SADs are used to generate 8x8 SAD. In the same

manner, the SAD of 16x8, 8x16, and 16x16 blocks are generated. For the level 1, four

“8x8 SAD tree” are used for combination of the mode 1 to mode 4 block types.

Fig. 2-15 (b) presents the 8x8 SAD trees for level 1. However, in level 2, only

comparators and registers are needed to select the minimum SAD cost. Finally, the

selection module will choose the best two SAD costs from different levels for the

fractional ME module.

34

(a)

(b)
Fig. 2-15. (a) The 4x4 SAD Tree used in level 0. (b) The 8x8 SAD Tree used in level

1.

sum
 m

ode 1

sum
 m

ode 2
sum

 m
ode 3

sum
8x4 11

sum
4x8 11

sum
8x4 10

sum
4x8 10

sum
8x4 01

sum
4x8 01

sum
8x4 00

sum
4x8 00

sum
4x4 11

sum
4x4 10

sum
4x4 01

sum
4x4 00

 sum
 m

ode 4

sum
 m

ode 1

sum
 m

ode 2
sum

 m
ode 3

35

2.4.4 Implementation result and comparisons
The proposed design has been implemented by Verilog and synthesized by 0.13μm

CMOS process. TABLE 2-6 shows the total hardware cost of our IME design and

comparison to other designs. Our design can provide the largest search range

capability (High Profile Level 2) but just needs 213.7K gate count and 5.95KB local

SRAM. Besides, our design has the shortest latency so that our design can achieve

1080p@60fps specification with only 124MHz operating frequency only. In

comparison, designs in [12][13][26] has larger area cost and long latency due to the

full search architecture. Though designs in [14][15] use fast algorithms to reduce the

latency, they still needs large area cost and buffer. As for [16], their throughput is only

one-fourth of ours though it uses fast algorithm. The proposed IME design can

achieve low latency with low buffer cost and similar area cost, and thus is suitable for

HD applications.

36

TABLE 2-6 Comparison of the IME part with previous designs.
 [15] [9] [13] [14] [26] [16] [12] Ours [35]

Max.
Resolution

CIF@
30fps

4CIF@
15fps

4CIF@
15fps

720x480@
30fps

720p@
30fps

720p@
30fps

720p@
60fps

1080p@
60fps

Search
Algorithm

4-Step Full Full Multi-
resolution

Full Sub-
sampling

Full Multi-resolutio
n

Quality
loss(dB)

About 0.1 0 0 0.4 0 0.083 0 0.065

PE (SAD
Module)

256 16 256 64/320 1024 32 256 192

Max.
Search
Range

H:±32
V: ±16

H:±32
V: ±32

H:±64
V: ±64

H:±64
V: ±64

H:±64
V: ±32

H:±32
V: ±32

H:±16
V: ±16

H: ±128
V: ±128

Gate
Count (K)

131.2 61 154 n.a

330.2 47.9+4k
bit buffer

176 155.8 for 720p
213.7 for 1080p

Memory
(Kbyte)

8 n.a. 7.5 n.a 26 2.75 41.6 5.19 for 720p
5.95 for 1080p

Operating
Freq.(MHz)

40
(13.3 for

CIF)

294 for
4CIF

100 for
4CIF

16 for
720x480

n.a 105 for
720p

55.6 for
720p

27.6 for 720p
124.4for 1080p

Latency
(Cycle)

n.a. 4096 1024 375 n.a 972 258 256

CMOS
Tech.

0.18 um 0.13um 0.18um n.a 0.18um 0.18um 0.18um 0.13 um

37

2.5 Fractional Motion Estimation Module: Single Iteration

Fractional Motion Estimation (SIFME) [40]

2.5.1 Algorithm of SIFME

Fig. 2-16 shows the fractional-pel motion estimation (FME) algorithm in reference

software [27]. This search process is divided into two steps. The first step is half-pel

motion estimation, where the specific pixels at half-pel spacing are calculated for

comparison. The second step is the quarter-pel motion estimation, where the pixels at

quarter-pel spacing are obtained for comparison. However, this algorithm searches 17

point totally, and the two step schedule doubles the latency of FME modules.

Therefore, we must propose single iteration fractional motion estimation (SIFME) [40]

to reduce the latency and hardware cost of FME.

Inspired by the unequal distribution of MVs, we propose SIFME that searches six

candidates in only one step without refined search as shown in Fig. 2-17. The

candidate with the lowest cost will be selected as the best one.

It first calculates the fractional predicted motion vector (frac_pred_mv):

β)%_(__ mvmvpredmvpredfrac −= (4)

where pred_mv here is defined as the fractional pixel unit of MVP. mv is the integer

pixel motion vector after IME process, and is also in fractional pel unit. % is the mode

operation. β is 4 in 1/4-pel case and is 8 in 1/8-pel case. frac_pred_mv is the predicted

fractional motion vector and indicates only fractional position.

The six candidates includes (0, 0), frac_pred_mv from (4) and four diamond points

around frac_pred_mv. (0, 0) is included for low texture and low motion sequences.

Other search points are placed around frac_pred_mv since the best fractional motion

vector is more probable around frac_pred_mv than around (0, 0).

TABLE 2-7 shows the prediction correctness compared with the algorithm in the

38

reference software. The prediction accuracy is defined as if the fractional MV by the

proposed approach is the same as that by the full search algorithm of the reference

software. We use four 720p-sized test sequences with 300 frames under different QPs.

The reference software is JM9.0 [27]. This result shows that it has more than 70%

prediction accuracy in average though the proposed one has ignored more than 88%

search points.

TABLE 2-8 shows the search point comparisons with other algorithms. The

proposed algorithm searches the fewest points compared to other search algorithms.

Besides, our approach does not need the second step search and saves the additional

interpolation time, which is very suitable for hardware design.

39

Fig. 2-16 The search algorithm of reference software [27]

Fig. 2-17. The proposed SIFME on two square points, (0, 0) and frac_pred_mv, and

four triangle point around frac_pred_mv in one quarter-pel distance.

: Integer pixel

: half pixel

: quarter pixel

40

TABLE 2-7 Prediction accuracy of motion vector (mvx and mvy) compared to the full
search FME algorithm

720p size, 300 frame, IPPP, RDO off, SR=±32
QP mobile

calendar
shields park run Stockholm

10 58.62% 48.77% 64.65% 73.49%
16 65.68% 55.27% 66.65% 76.07%
22 77.74% 66.78% 67% 78.01%
28 87.46% 87.61% 72.84% 84.86%
34 91.31% 92.34% 80.83% 91.2%
40 92.65% 93.71% 85.92% 94.3%
Avg. 78.91% 74.08% 72.94% 82.9%

TABLE 2-8 Search point comparisons for different algorithms
 search point
JM [27] 17
[30] 6+multiple diamond search (Total <=11)
[29] 6 + multiple diamond search
[33] 8~9
Proposed [40] 6

2.5.2 Performance of SIFME

TABLE 2-9 shows the simulation results of SIFME for CIF sequences. Only the

first frame is set to I-frame because inserting I-frame periodically will reduce the

effect of SIFME. The results shown in TABLE 2-9 are compared with the reference

software. The maximum PSNR drop is only 0.13dB and the bit-rate overhead is lower

than 2.11% except the cases with QP40. That is quite acceptable since the bit rate at

that condition is quite low and any increase will be large in terms of that bit rate.

TABLE 2-10 and TABLE 2-11 show the simulation results of the proposed SIFME

for 720p and 1080p sequences. Since our hardware architecture is used for HDTV

size video, we care more about the performance on 1080p and 720p size sequences

41

rather than that on CIF size sequences. For the result on 720p size sequence shown in

TABLE 2-10, the PSNR degradation is lower than 0.08dB and the bit-rate increasing

is below 4.28%. Moreover, the bit-rate even decreases in most cases. The reason may

be that SIFME tends to find the motion vector similar to the motion vector predictor

(mvp) and thus saves bits for coding motion vectors. TABLE 2-11 shows that the

result of 1080p video. The PSNR degradation is also lower than 0.08dB and the

bit-rate increasing is below 4.47%. Under high QP condition, the PSNR performance

of SIFME is even better than that of the reference software. The reason is that the

correct motion vectors are getting closer to motion vector predictors under high QP

condition, and hence the accurate fractional motion vectors are getting closer to

frac_mv_pred in eq. (4).

Comparing the results shown in TABLE 2-9 to the results in TABLE 2-10 and

TABLE 2-11, we can find that SIFME has better performance on large size sequences

than CIF size sequences, which matches our goal. Besides, SIFME greatly reduces

computation time of FME. The proposed algorithm can speed up the FME part by up

to 4 times compared to the reference software. The major reason is the reduction of

search candidates.

Summing the information from TABLE 2-9 to TABLE 2-11, we can conclude that

SIFME can reduce 88% of search points and speed up the coding by 4 times with only

less than 0.13 dB PSNR degradation and 4.47% of bit rate increase. For some 720p or

1080p sequences, SIFME even has better PSNR quality or less bit rate than that of JM

software [27].

TABLE 2-12 shows the performance comparison with previous works. SIFME

speeds up more than our previous work [33] with the similar PSNR quality and less

bit rate increase. The algorithm in [29] has better video quality than ours but it

requires much iteration and hence is not suitable for hardware implementation.

42

TABLE 2-9 Simulation results of SIFME for different CIF sequences and QPs when
compared to the reference software [27]

CIF size, 300 frame, only first frame is I-frame, ProfileIDC=100,
RDO off, Search range = 32
SIFME

 container foreman mobile&calendar stefan
QP ΔPSNR

(dB)
Δbit
rate

ΔPSNR
(dB)

Δbit
rate

ΔPSNR
(dB)

Δbit
rate

ΔPSNR
(dB)

Δbit
rate

10 -0.03 -0.75% -0.05 0.04% -0.04 -0.24% -0.04 0%
16 0 -0.28% -0.07 1.03% -0.06 0.16% -0.05 0.30%
22 -0.03 -0.37% -0.09 0.89% -0.08 0.06% -0.06 0.50%
28 0.03 0.46% -0.09 1.50% -0.07 0.47% -0.07 1.24%
34 0.04 2.11% -0.12 1.35% -0.07 1.73% -0.10 1.57%
40 -0.03 4.36% -0.08 -0.36% -0.08 2.30% -0.13 1.02%

TABLE 2-10 PSNR and bit rate comparison for different 720p sequences and QPs.
Speed up is only the performance in fractional ME part

720p, 300 frames, only first frame is I-frame, ProfileIDC=100,
RDO off, search range=64
SIFME
 mobcal parkrun shields stockholm
QP ΔPSN

R(dB)

Δbit

rate

speed

 up

ΔPSN

R(dB)

Δbit

rate

speed

up

ΔPSN

R(dB)

Δbit

rate

speed

 up

ΔPSN

R(dB)

Δbit

rate

speed

up

10 -0.04 -0.77% 4.0 -0.02 -0.77% 3.9 -0.04 -0.42% 3.6 -0.04 0.05% 3.8

16 -0.04 -1.07% 3.6 -0.04 -0.99% 3.7 -0.08 -1.27% 3.7 -0.08 -0.86% 3.6

22 -0.01 -1.08% 4.0 -0.05 -1.42% 3.9 -0.04 -1.54% 3.9 -0.05 -1.50% 3.7

28 -0.01 -0.36% 3.9 -0.04 -0.63% 3.9 -0.02 -0.36% 3.6 -0.02 -0.71% 3.8

34 -0.05 3.20% 3.9 -0.05 -0.14% 3.8 -0.03 0.30% 3.6 -0.01 -1.87% 3.7

40 -0.06 4.28% 3.7 -0.04 -0.70% 4.1 -0.01 -7.05% 3.5 0 -8.86% 3.7

In summary, SIFME greatly reduces computational complexity and is suitable for

hardware design with only small amount of quality loss.

43

TABLE 2-11 PSNR & bit rate comparison for different 1080p sequences and QP

TABLE 2-12 Simulation comparison with previous works.
QP = 28 Stefan Mobile Foreman Coastguard News # of iteration

JM [27]

bit rate 1441.14 1888.69 498.62 1127.87 223.72
1

PSNR 35.36 33.75 36.24 34.52 38.12

time (sec) 491.604 471.993 496.974 488.039 450.37

Y. J.
Wang
[33]

bit rate(%) 2.2843 2.36407 1.780915 1.070159 2.23494
2

PSNR(dB) -0.09 -0.11 -0.07 -0.04 -0.06

speed up 2.34227 2.24167 2.361651 2.283373 2.24787

CBFPS
[29]

bit rate(%) -0.1524 -0.0822 -0.7819 -0.402 0.2294
> 2

PSNR(dB) -0.01 -0.01 -0.03 -0.01 0

speed up 2.163 2.265 2.249 2.307 2.638

proposed
[40]

bit rate(%) 1.2408 0.4657 1.5022 -0.9468 2.3643
1

PSNR(dB) -0.07 -0.07 -0.09 -0.06 -0.09

speed up 3.6 3.9 3.7 3.8 3.9

1080p, 200 frames, only first frame is I-frame, ProfileIDC=100, RDO off, SearchRange=128
SIFME
 blue sky pedestrian riverbed rush hour sation2 sunflower tractor
QP ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

ΔPSN

R(dB)

Δbit

rate

10 -0.06 -1.14% -0.07 -1.41% -0.07 -0.53% -0.07 -1.13% -0.06 -0.64% -0.11 -0.27% -0.08 0.38%

16 -0.05 -0.74% -0.05 -0.68% -0.09 -1.85% -0.06 0.62% -0.07 -1.08% -0.10 -0.11% -0.12 -0.16%

22 -0.03 -1.20% -0.05 -1.32% -0.07 -2.11% -0.04 0.02% -0.08 -1.65% -0.07 -2.53% -0.11 -1.38%

28 0 0.08% -0.02 -1.03% -0.08 -1.14% 0.02 0.72% -0.01 4.70% -0.01 -1.71% -0.09 -0.66%

34 0.01 2.40% 0.07 0.55% -0.03 0.48% 0.13 1.68% 0.03 -2.43% -0.02 -3.54% -0.03 1.10%

40 0.08 4.47% 0.16 0.68% 0.06 1.45% 0.22 1.44% 0.13 -7.55% 0.02 -5.07% 0 2.36%

44

2.5.3 Architecture of SIFME
Fig. 2-18 shows the proposed FME hardware architecture. The input data is first

interpolated by the interpolation unit for half and quarter pixels of one 4x4 block.

Then these data are computed with the current block data by six 4x4 block PUs. Each

PU is in charge of residual generation and 4x4 Hadamard transform. All larger sized

block are decomposed into 4x4 block for processing. Then the residual cost

combining with MV cost is sent to the Compare Unit to find the best one and stored in

SB_buffer.

TABLE 2-13 shows the comparisons of the number of PUs and iteration steps.

SIFME searches only six candidates and thus only needs six PUs. Besides, with single

loop design, our design just takes about only half of cycles when compared to others

[28][33].

The interpolation unit is shown in Fig. 2-19. It is composed of two sets of

directional (horizontal and vertical) 1-D FIR filters as shown in Fig. 2-20. First, we

interpolate the horizontal half pixels by five FIR filters from 10 adjacent integer

pixels. These five intermediate values and six integer pixels are stored and shifted

cycle by cycle in the interpolation buffer. We use the same way to interpolate the

vertical half pixels with 11 FIR filters. In our algorithm, because we don’t need to

check all possible half pixels, 88% of redundant filters for full search can be removed.

45

Fig. 2-18. The proposed hardware architecture of FME.

TABLE 2-13 comparisons of number of processing unit (PU) and number of iterative
search steps

 # of PU # of iterative search step
 [33] 5 2
 [28] 9 2

Proposed [40] 6 1

46

Fig. 2-19 Interpolation unit

Fig. 2-20. 6-tap 1-D FIR filter

FI
R

FI
R

 x
 1

1

+

+

+

<<2

+

A F

+

B E

+

C D

Out = A – 5B + 20C + 20D – 5E + F

Out

<<2

47

2.5.4 Implementation result and comparisons of SIFME
Our design is implemented by Verilog and synthesized by 0.13μm technology. The

area gate count is 52.8K for 720p video and 68.9K for 1080p. The latency without

mode filtering is 1002 cycles, but it can be reduced to 264 cycles if combing with

mode filtering as discussed in section 2.3. Therefore, our design can achieve high

throughput with low area cost and negligible quality loss. TABLE 2-14 shows the

comparison of our implementation result to previous works. From this table, we can

observe that our hardware cost is only slightly larger than our previous work [33], but

with six times throughput. As for [34], the area cost is doubled than our work because

it needs to search 25 points. In comparison, though design in [36] has higher

throughput than ours, their quality drop is more than 0.15dB due to imprecise

mathematical modeling. Besides, such mathematical modeling design still needs

additional hardware to calculate the final residuals, which is not included in the gate

count report. When comparing to other design for 1080p@30fps [38], our FME

design only needs 36.5% of gate count and 54.6% of cycles due to our hardware

based approaches.

48

TABLE 2-14 Comparison of the FME part with previous designs
 [28] [33] [34] [38] [36] Ours [40]

Max.
Supporting
 Resolution

720x576@
30fps

720p@
30fps

720p@
30fps

1080p@
30fps

3200x2400
@30fps

1080p@
60fps

Algorithm 17 candidates
2-iteration

interpolation

8 candidates
2-iteration

interpolation

25
candidates
1-iteration

interpolation

17
candidates
2-iteration

interpolation

Math-model
No

interpolation

6 candidates
1-iteration

interpolation

Gate
Count (K)

79.3 48 117.2 188.45 56.53 52.8 for
720p

68.9 for
1080p

Latency (Cycle) 1648 2000 1000 790 110 1002
264~432

(With mode
filtering)

Operating
Freq.(MHz)

100 100 108 for 720p 285 100 28.5 for
720p

128.3 for
1080p

Throughput
(Kilo-MBs/sec)

49 50 108 250 909 486

Quality Drop
(dB)

0.1 0.09 0.012 n.a. 0.15 0.04

CMOS Tech. 0.18μm 0.18μm 0.13μm 0.18μm 0.13μm 0.13μm

49

2.6 Integrated Design
2.6.1 Integrated video quality analysis

TABLE 2-15 presents the simulation results for different algorithms combinations:

PMRME, mode filtering, and SIFME. In these results, we also include the bit

truncation in this design to reduce the hardware cost. The simulation environments are

as following: rate-distortion optimization (RDO) is off. Only the first frame is I-frame

and search range is [-128, 127]. All of the simulation results are compared to that of

the default full search algorithm in JM9.0 [27]. The result in this table only shows the

average performance under different QPs. The test sequences are all 720p resolution

including Stockholm, parkrun, mobile calendar, and shields. The frame rate is 30 and

300 frames are coded.

TABLE 2-15 shows the PSNR change, bit-rate increasing, and “Sharing Rate of L0

(Level 0) buffer”. The sharing rate of level 0 denotes the percentage that FME can

directly reuse level 0 search range buffer for computation to save memory bandwidth.

This sharing occurs once the final MV is within level 0 search range. In our design,

the sharing rate is at least 90%, and the higher QP will have higher sharing rate and

thus can save more power and bandwidth.

In this table, we can find that the performance of PMRME is almost the same with

full search. The average PSNR drop is only 0.005dB and the bit-rate is even

decreasing when comparing with full search. It is because the PMRME ignores

smaller blocks in level 1 and level 2 and prefer larger block which results bit-rate

decrease. As for mode filtering, the algorithm also prefers to select larger block size,

so the bit-rate decreasing is more obvious. Oppositely, the PSNR drop is a little

serious than using PMRME only. But the worst quality drop is only 0.095dB. While

considering the bit-truncation technique, the influence on PSNR is only 0.064dB, and

the bit-rate increasing is 0.52% in average. Finally, we combine all proposed

50

techniques, the PSNR quality is almost the same and the bit-rate quality drop is a little

increasing to 2.11% in average.

TABLE 2-16 shows the performance of our proposed algorithms for 1080p video

sequences. The performance is not as good as the performance for 720p video,

especially the bit-rate increasing rate. The average bit-rate increasing rate reaches

3.07% for QP32. This is because the 1080p sequences prefer the larger block size than

720p or other smaller sequences, which agrees the tendency of our proposed

algorithms. Therefore, our algorithms don’t provide too much reduction in bit-rate

which happens in the smaller sequences as shown in TABLE 2-1, TABLE 2-2,

TABLE 2-9, and TABLE 2-10. However, the quality loss is still acceptable and the

average sharing rate is also higher than 90% for 1080p sequences.

51

TABLE 2-15 PSNR and bitrate change for proposed algorithms compared with full
search for 720p sequences

 Frame size 720p

QP PMRME
PMRME
+MODE

FILTERING

PMRME
+MODE FILTERING

+Bit-Truncation(5 bits)

PMRME
+MODE FILTERING

+Bit-Truncation (5 bits)
+SIFME

QP16

PSNR inc.(db) -0.0025 -0.085 -0.075 -0.0975

Bit rate inc. (%) -1.02 -1.66 -0.66 1.08
Sharing Rate of L0

Buffer(%) n.a. 96.95 96.08 96.10

QP20

PSNR inc.(db) 0 -0.095 -0.0825 -0.117

Bit rate inc. (%) -0.49 -1.24 -0.013 1.80
Sharing Rate of L0

Buffer(%) n.a. 97.84 96.86 96.87

QP24

PSNR inc.(db) -0.0075 -0.08 -0.0675 -0.1025

Bit rate inc. (%) -0.33 -1.11 0.32 2.27
Sharing Rate of L0

Buffer(%) n.a. 98.36 97.77 97.75

QP28

PSNR inc.(db) -0.005 -0.0625 -0.0525 -0.0925

Bit rate inc. (%) 0.20 -0.57 0.76 2.52
Sharing Rate of L0

Buffer(%) n.a. 98.78 98.21 98.19

QP32

PSNR inc.(db) -0.01 -0.0525 -0.045 -0.09

Bit rate inc. (%) 1.56 1.14 2.18 2.90
Sharing Rate of L0

Buffer(%) n.a. 99.00 98.30 98.31

Avg

PSNR inc.(db) -0.005 -0.075 -0.0645 -0.1

Bit rate inc. (%) -0.017 -0.69 0.52 2.11
Sharing Rate of L0

Buffer(%) n.a. 98.18 97.44 97.44

52

TABLE 2-16 PSNR and bitrate change for proposed algorithms compared with full
search for 1080p sequences

 Frame size 1080p

QP PMRME
PMRME
+MODE

FILTERING

PMRME
+MODE FILTERING

+Bit-Truncation(6 bits)

PMRME
+MODE FILTERING

+Bit-Truncation (6 bits)
+SIFME

QP16

PSNR inc.(db) 0 -0.07 -0.06 -0.11

Bit rate inc. (%) -0.49 -1.09 0.47 2.22
Sharing Rate of L0

Buffer(%) n.a. 93.61 90.64 92.73

QP20

PSNR inc.(db) -0.01 -0.04 -0.04 -0.08

Bit rate inc. (%) -0.44 -0.22 2.65 5.04
Sharing Rate of L0

Buffer(%) n.a. 95.6 94.12 94.48

QP24

PSNR inc.(db) -0.03 -0.06 -0.06 -0.09

Bit rate inc. (%) -0.4 -0.94 1.83 3.57
Sharing Rate of L0

Buffer(%) n.a. 95.94 95 95.08

QP28

PSNR inc.(db) -0.06 -0.07 -0.08 -0.1

Bit rate inc. (%) 0.4 0.19 2.20 3.7
Sharing Rate of L0

Buffer(%) n.a. 95.97 95.17 95.19

QP32

PSNR inc.(db) 1.68 -0.09 -0.1 -0.08

Bit rate inc. (%) 1.56 1.59 3.06 3.44
Sharing Rate of L0

Buffer(%) n.a. 95.65 94.79 95.05

Avg

PSNR inc.(db) -0.04 -0.07 -0.07 -0.08

Bit rate inc. (%) 0.15 -0.1 2.04 3.07
Sharing Rate of L0

Buffer(%) n.a. 95.36 93.94 94.49

2.6.2 Integrated architecture
Fig. 2-21 shows the total block diagram of the full ME modules. It contains IME,

FME, several memory buffer and external data access interface. The whole flow is as

described in Fig. 2-5(b).

To enable the data reuse between IME and FME, the IME module has three internal

SRAMs for reference pixels storage. When the IME search of a MB is completed, its

macroblock information is sent to FME. Moreover, the reference pixels in level 0

SRAM is also sent to FME. However, instead of moving data, we use three SRAMs

53

as the level 0 buffer and swap them with a ping-pong buffer concept. The three level 0

buffers includes one for IME level 0 reference, one for FME, and one for loading new

data from external memory. Whenever the IME stage completes the coding of the first

MB, the buffer for level 0 reference for the first MB is changed as the FME reference

in the next stage. At the same time, the buffer for current FME reference is changed to

load the data of the third MB from external memory for further use. The buffer that is

now filled the reference data for the second MB is switched for IME level 0 reference.

With above ping-pong buffers, we can share the level 0 data of IME with the FME,

and no additional memory access time is necessary. Besides, the data in level 0

buffers can be reused by FME for more than 90% of MBs according to the sharing

rate in TABLE 2-15. With above arrangement, all these data can be reused as much as

possible and reduce the bandwidth a lot.

2.6.3 Implementation results and comparisons
TABLE 2-17 shows the total hardware cost of our ME design and comparison to

the integrated designs [18][25]. Comparing to [25], our design can save at least 30%

of area costs and 50% of memory costs in IME part. As for FME part, we save 82.8%

of area cost due to fewer number of PUs and reduce 81.2% of memory. In summary,

the total area and memory saving is 60% and 65.78% respectively. As for the

throughput, our design is sufficient for HD video applications. Our design improves

throughput by 75% when comparing to that in [25]. If comparing with the other

integrated design [11] using fast algorithms in IME, our design still saves 12.3% area.

As for the cycle count, our design also has 75.5% of throughput improvement than

[18]. By the high throughput, only 28.5 MHz is enough for 720p sequence with 30

frames per second, and 128.8 MHz for 1080p sequences with 60 frames per second.

To satisfy high throughput requirement, the external bus width should be 128 bits.

54

Fig. 2-21. The block diagram of IME and FME.

2.7 Summary

In this chapter, we propose a highly data reused ME design with low cost and

latency for high definition video. This design maximizes the most concerned data

reuse by sharing data within IME as well as between IME and FME, while minimizes

the computation and latency by parallel multi-resolution IME and single iteration

FME. The final design can easily support processing for 1080p sequences with just

128.8MHz and 282.6K gates, and saves 60% of gate count, and 68.9% of SRAM

buffers compared to the previous design. The presented design also can be easily

scaled to other smaller size video with search range adjustment.

55

TABLE 2-17 hardware cost comparison for complete H.264 ME accelerator with
previous works

 [25] [18] Ours [6] Saving with

[25]

Saving with

[18]

Max.

Resolution

720p@30fps 720p@30fps 1080p@60fps

Search Range H: ±64

V: ±32

H: ±96

V: ±96

H: ±128

V: ±128

Quality Loss

(dB)

0 n.a. 0.1

IME Gate

Count (K)

305.2 n.a 155.8 for 720p

213.7 for 1080p

48.9% for 720p

30% for 1080p

FME Gate

Count (K)

401.8 n.a 52.8 for 720p

68.9 for 1080p

86.8% for 720p

82.8% for 1080p

Total Gate

Count (K)

707 238 208.6 for 720p

282.6 for 1080p

70.4% for 720p

60% for 1080p

12.3% for

720p

IME Memory

(Kbyte)

13.71 n.a 5.19 for 720p

5.95 for 1080p

62.1% for 720p

56.6% for 720p

n.a

FME Memory

(Kbyte)

13.82 n.a 2.59 81.2% n.a

Total Memory

(Kbyte)

27.53 n.a 7.78 for 720p

8.54 for 1080p

71.7% for 720p

68.9% for 1080p

n.a

Latency for

IME Stage

(Cycle)

1024 1079

256 75% 75.5%(Best)

Latency for

FME Stage

(Cycle)

1648 264(Best)

432(Worst)

83.9%(Best)

Freq. (MHz) 120 (108 for

720p)

117 for 720p 28.5 for 720p

128.8 for 1080p

73.6% for 720p 75.6% for

720p

CMOS Tech. 0.18μm 0.18μm 0.13μm

56

57

Chapter 3

Design of H.264 1080p Intra-only

Encoder

In H.264 video standard, the intra frame prediction technique can efficiently use the

neighboring pixels to predict the current coding block from various directions. With

this, the coding efficiency is even competitive with the latest still image coding

standard, JPEG2000. Thus, this all intra frame coding is now accepted as the intra

only profile [41], and is suitable for applications like digital video recorder and digital

still camera that cannot afford the inter prediction computing.

Therefore, we propose a H.264 intra encoder which keeping the high coding

efficiency and excellent video quality without the large hardware cost and heavy

computing loading from the motion estimation parts in H.264 [7].

In this chapter, we first introduce the basic of intra prediction and other modules in

H.264 intra encoder. In the second section, the design challenges of H.264 intra

encoder for high definition video and image applications are described. Besides, the

previous works are also reviewed and discussed. In the third section, our proposed

algorithms including three step algorithms, enhanced SATD algorithm, and plain

mode removal are used to speed up the encoding procedure and reduce hardware cost

of intra prediction part. In architecture level, the variable-pixel parallelism

architecture is proposed to satisfy the throughput requirement while minimizing the

hardware overhead. Some module level optimization techniques are also proposed in

integer transform, quantization, and CAVLC designs to increase the throughput and

58

decrease the hardware cost. Finally, the implementation result and comparisons of the

entire H.264 intra encoder are presented.

3.1 Introduction of H.264 intra-only encoder
3.1.1 Overview of H.264 Intra-only encoder

The major difference between general H.264 encoder and intra only encoder is that

the inter prediction and deblocking modules are removed from intra-only encoder. Fig.

3-1 shows the block diagram of H.264 intra-only encoder. The input video is

predicted by intra prediction. And then the residue data is transformed, quantized and

compressed by CAVLC encoder to generate the final bit-stream. As for the

reconstruction phase, the quantized coefficients are passed through inverse

quantization, inverse transform, and compensated by intra prediction module. We

should note that the reconstructed coefficients are feedback to the intra prediction

module because the intra prediction procedure requires the reconstructed data of the

left block. Finally, the reconstructed pixels are stored in the frame memory and as the

upper reference of the blocks in the next row.

59

Fig. 3-1 Block diagram of intra-only encoder.

3.1.2 Intra prediction
The intra prediction technique is first proposed in the MPEG-4 standard, which

uses neighbor pixels to predict the current blocks in vertical and horizontal directions.

In H.264/AVC, two different block sizes of intra prediction are possible for the

prediction of the luminance component. These predictions can be one of nine kinds of

4x4 luma prediction modes as in Fig. 3-2 or four kinds of 16x16 luma prediction

mode as in Fig. 3-3. In Fig. 3-2 and Fig. 3-3, the number before the name of each

mode is the mode number of each mode, and we use the number to replace the name

of each mode in this paper for simplicity. For chroma blocks, four kinds of 8x8

chroma prediction mode are the same with the four modes of 16x16 luma prediction

modes. Among these modes, the one with the minimum cost value is selected as the

best mode.

3.1.3 4x4 integer DCT/IDCT
The transform of residue data is used to reduce the spatial redundancy. All previous

Intra
Prediction

Inverse
Quantization

CAVLC

Inverse
Transform

Video Transform Quantization

Frame
Memory

Coefficient

Output
Video

+
+

+
-

bitstream

60

standards such as MPEG-1/2/4 all applied two dimensional Discrete Cosine

Transform (DCT) of the size 8x8. In H.264/AVC, however, the size of the transforms

is from 2x2 to 4x4 in baseline and main profile. The smaller transform block size is

better to fit the smallest block size of motion estimation and to reduce the redundancy

of local residue data. Besides, the new transforms with integer coefficients adopted in

H.264/AVC standard can reduce the most complexity and hardware cost than

traditional DCT transform.

There are three kinds of transforms adopted in H.264/AVC standard. The first type

is a 4×4 transform whose matrix coefficients are shown in eq. (5). If the macroblock

chooses 16x16 intra prediction mode, a Hadamard transform shown in eq. (6), is

applied. This 4x4 matrix transforms all 16 DC terms of luma coefficients of the

already transformed 4x4 blocks. The third transform is a 2x2 Hadamard transform

which is used for the transform of the 4 DC coefficients of the chrominance

component. Its matrix is shown in eq. (7). The three transforms only use integer

coefficients and can be easily computed by low complex add, subtract, and shift

operations.

Fig. 3-4 shows the transmission order of all coefficients if the macroblock is

predicted by intra 16x16 mode. The DC coefficient blocks are first transmitted and the

AC coefficient blocks follow no matter in luma or chroma components.

M

1 1 1 1
2 1 1 2
1 1 1 1
1 2 2 1

 (5)

M

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (6)

M 1 1
1 1 (7)

61

Fig. 3-2 Nine modes for intra luma 4x4 and 8x8 prediction

Fig. 3-3 Four modes for intra luma 16x16 and chroma 8x8 prediction

Fig. 3-4. Transmission order of all coefficients in a macroblock predicted by 16x16

intra mode.

0

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

Y

Cb Cr

62

Fig. 3-5 The scan order and the syntax symbols of a non-zero 4x4 block.

3.1.4 Quantization/Inverse quantization

The residue coefficients are processed by a lossy scalar quantizer. The quantization

step size is decided by the quantization parameter (QP) which range from 0 to 52. If

the QP increases six, the step size will double. It means that an increment of QP by 1

results in approximately 12.5% of increase of the required data rate.

3.1.5 CAVLC

In H.264/AVC, two algorithms of entropy coding are supported. The simpler

method called Context-Adaptive Variable Length Coding (CAVLC) is employed in

baseline profile. In this algorithm, VLC tables for various syntax elements are

switched according to previous syntax elements. Therefore, the coding efficiency of

CAVLC is better than traditional VLC coding which uses fixed table.

The CAVLC process has three phases. First, the CAVLC process checks the CBP to

decide whether an 8x8 block is all-zero. We can skip an all-zero 8x8 block. If the 8x8

block is not all-zero, the four 4x4 blocks in the 8x8 block are encoded in the next step.

Secondly, the CAVLC process scans a 4x4 block as the steps shown below and gets

the syntax symbols as Fig. 3-5 presents:

1. Scan 4x4 coefficients in reverse zigzag scan order.

1. Zigzag reordered block:

0,4,0,0,2,0,0,0,1,-1,…

 Element Value
2.coeff_token TotalCoeff=4, TrailingOnes=2
3.trailing_one_sign_flag(3) 1
4.trailing_one_sign_flag(2) 0
5.Level (1) 2
6.Level (0) 4
7.total_zeros 6
8.run_before (3) 0
9.run_before (2) 3
10.run_before (1) 2
11.run_before (0) 1

CBP NON SKIP!

63

2. Calculate the number of total nonzero coefficients, TotalCoeffs, and the number

of trailing ones, TrailingOnes.

3. Get the sign of each trailing one.

4. Get the level of each nonzero coefficient.

5. After the first nonzero coefficient, get the number of total zeros, TotalZeros,

6. Calculate each run of zeros, RunBefore, between the nonzero coefficients, which

will also depend on the number of zeros that have not yet been coded.

Finally, the CAVLC process looks up the codeword of syntax symbol in several

tables. Each type of syntax symbol (except each trailing one’s sign) has several

context-adaptive codeword tables. The selection of codeword tables depends on either

the content of the 4x4 block or that of neighbor 4x4 blocks. Then each codeword is

concatenated in a specific order (coeff_token, each trailing one’s sign, levels,

TotalZeros, and RunBefore) to generate bitstream.

3.2 Design Challenges and Paper Survey
3.2.1 Design challenges

The design challenges for H.264 intra frame encoder is the low throughput and

huge hardware cost. Several previous H.264 intra frame encoder have been reported

in [42]-[44]. However, these designs are still limited to HD720p resolution because of

the low parallelism and multi-stage intra prediction algorithms. If extending the

parallelism of previous works to support 1080p resolution directly, the area and

memory requirement are not affordable because their algorithms include irregular data

path and huge required buffer. Therefore, if we want to design an intra frame encoder

which can support 1080p resolution with affordable hardware cost, hardware-friendly

algorithms for intra prediction, and the balance between parallelism and hardware cost

must be considered carefully.

64

3.2.2 Paper survey
Intra prediction algorithms can be classified as two categories. The first type of fast

algorithms adopts the two-step approach [45]-[50]. The first step uses image features

to select the possible modes, and the second step computes the selected modes. Thus,

in the worst case, it will have to compute all modes [50]. Furthermore, this two-step

dependency results in irregular data flow which is not suitable for hardware design. In

some cases, the feature calculation in the first step will be too complex for hardware

design. For example, the edge-based method [48] uses an arc tangent function and

two dividers to calculate the edge for possible mode selections. Thus, these feature

calculation circuits introduce extra hardware overhead to the original intra prediction

circuit. Even though this arc tangent function can be simplified as shown in [54], this

simplification results in an overhead of 15K gates, which is still large when compared

to a full mode calculation circuit with 10K gates [55]. The second type of algorithms

uses single-step approach [51] [53] [55]. This type of algorithms calculates the modes

without extra overhead. However, full search implementations like [53] [55] need

large area cost and long computational cycles. Our previous algorithm [51], three step

algorithm, divides the mode computation into three steps without complex feature

calculation. It just needs to compute constant six modes and is more suitable for

hardware design. However, it still introduces pipeline bubble cycles.

3.3 Fast and Hardware-Efficient Intra Prediction Algorithms
3.3.1 Modified three step algorithm [52]

Fig. 3-6 (a) illustrates the original three-step fast intra prediction algorithm [53]. In

Fig. 3-6 (a), we first compare the vertical and horizontal modes, and then compare the

two neighboring modes around the winner of previous step at the second and third

step. Finally, costs of these winners are compared and the minimum one is selected.

65

This algorithm can save one-third operations with negligible quality loss, only 0.04dB

PSNR degradation and 1.58% of bit-rate increase. Further reduction of intra mode test

will result in significant quality degradation. Besides, the flow of three step algorithm

is regular so that hardware implementation is simpler. Although the three-step

algorithm is more suitable for hardware design than the other software-based ones

[45]-[50], it still has much room for improvement in practice. Direct applying the

algorithm to the hardware will result in pipeline bubble and performance loss.

Fig. 3-7 (a) illustrates a pipeline schedule example when applying the original

three-step algorithm to our previous hardware design. For illustration purpose, this

example assumes the cost of mode 0 is smaller than that of mode 1, and the cost of

mode 5 is larger than that of mode 7 without loss of generality. In the pipeline stage

diagram, each block takes eight cycles latency to complete a mode prediction

including intra prediction, SATD calculation, and mode decision. In Fig. 3-7(a), the

first step will take 12 cycles for three modes, and the second step can be executed

immediately in the 11th cycle since the comparison results of mode 0 and mode 1 is

finished in the 10th cycle. However, this scheduling leads to four cycle bubbles

marked in step 2 of Fig. 3-7(a) because step 2 must wait the comparison results of

mode 0 and mode 1. The same situation also occurs between the second step and the

third step, and six cycles latency are generated. Therefore, total 28 cycles are needed

to predict a block with the original fast algorithm due to the decision flow.

66

(a)

 (b)

Fig. 3-6 Decision flow of (a) original three-step algorithm (b) modified three-step
algorithm.

Step 1
Compare cost of mode 0 and 1

And calculate mode 2 cost

Step 2.2
Calculate cost of

mode 6 and 8

mode 0 < mode 1
Yes No

Step 2.1
Calculate cost of

mode 5 and 7

Step 4
Select the best mode from the selected mode in step 1, 2, 3

Mode 5 < mode 7 Mode 6 < mode 8
No NoYes Yes

Step 3.2
Calculate

cost of
mode 3

Step 3.3
Calculate

cost of
mode 4

Step 3.1
Calculate

cost of
mode 4

Step 3.4
Calculate

cost of
mode 3

Step 1
Compare cost of mode 0 and 1

And calculate mode 2 cost

Step 3.2
Calculate cost of

mode 6 and 8

Step 2
Calculate cost of mode 3 and 4

mode 0 < mode 1

Yes No

Step 3.1
Calculate cost of

mode 5 and 7

Step 4
Select the best mode from the selected mode in step 1, 2, 3

67

(a)

(b)

Fig. 3-7 Proposed timing schedule for the modified three-step algorithm.

Therefore, we change the fast three-step algorithm to hide the bubble cycles by

adjusting the order of prediction modes in the scheduling. The idea of the modified

algorithm [52] is from the analysis of Fig. 3-7 (a). Since the third step in Fig. 3-7 (a)

has to predict either mode 3 or mode 4 no matter which branch is chosen, we can

move these two modes to the second step and fill the transition bubbles. Fig. 3-6 (b)

shows the decision flow of the modified three step algorithm. It is more regular than

the originalone because we can just calculate the second step, mode 3 and mode 4,

without waiting for the comparison result of step 1. Fig. 3-7 (b) shows the pipeline

Step 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Mode 0 St P D T1 T2 C B

St P D T1 T2 C B

Mode 1 St P D T1 T2 C B

St P D T1 T2 C B

Mode 2 St P D T1 T2 C B

St P D T1 T2 C B

Step 2

Mode 5 1 2 3 4 St P D T1 T2 C B

St P D T1 T2 C B

Mode 7 St P D T1 T2 C B

St P D T1 T2 C B

Step 3

Mode 3 1 2 3 4 5 6 St P D T1 T2 C B

St P D T1 T2 C B

St: Start cycle
P: Intra Prediction
D: Difference of residuals
T1: 1-D transform
T2: 2-D transform
C: Cost generation
B: Best mode decision

Step 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Mode 0 St P D T1 T2 C B

St P D T1 T2 C B

Mode 1 St P D T1 T2 C B

St P D T1 T2 C B

Mode 2 St P D T1 T2 C B

St P D T1 T2 C B

Step 2

Mode 3 St P D T1 T2 C B

St P D T1 T2 C B

Mode 4 St P D T1 T2 C B

St P D T1 T2 C B

Step 3

Mode 5 St P D T1 T2 C B

St P D T1 T2 C B

Mode 7 St P D T1 T2 C B

St P D T1 T2 C B

68

scheduling for the modified three step algorithm. From the diagram, we can find the

total cycles to predict a block are reduced to 20 and no bubble cycle exists, though the

number of prediction modes is increased from six to seven. With more prediction

modes, the final quality shall be better.

3.3.2 Enhanced SATD algorithm [42]

In intra-only H.264 encoding, the cost function for intra mode decision is an

important issue for coding performance. Although adopting rate distortion

optimization (RDO) in the cost function can provide the best performance, its

corresponding complexity limits its hardware implementation. Thus, the sum of

absolute difference (SATD) method is an alternative. The equation for SATD is shown

in the below equation:

SATD ∑ ∑ T s p (8)

where sij and pij denote the (i, j)th elements of source block and predicted block

respectively and the function T(x) in (8) means a 4x4 transform function.

However, the choice of transform T(x) for SATD computation becomes a main

issue now. In reference software [27], the Hadamard transform in eq. (6) used for

SATD calculation is computationally simple but is much different from the real

discrete cosine transform. A better choice of transform matrix for SATD shall consider

the effect of transform and quantization used in H.264 encoding to estimate the real

bit-rate. Therefore, previous designs [44][45] adopt the 4x4 integer transform shown

in eq. (5) as their choice.

Although previous approaches can achieve better performance than Hadamard

transform does, they still have space to improve since they do not consider the

fractional multiplication factors. A complete transform function for SATD calculation

shall include the integer transform and multiplication factors in the quantization

formula as shown in (9).

69

 (9)

The matrices with factors a and b denote the scalar multiplication.

 However, to integrate these factors into the cost function directly will increase a

lot of computation because they are not simple numbers for computation. Besides,

these factors cannot be directly obtained from (9) because they have already been

integrated with the quantization coefficients in H.264/AVC specification. To resolve

this problem, we propose a new cost function which combines the integer transform

with simplified multiplication factors, which are acquired from quantization and

de-quantization coefficients shown in TABLE 3-1 and TABLE 3-2. From these tables,

we can derive the factors by exploiting the relationship among the reciprocal of

de-quantization coefficients and simplify the equations as below:

1/quant_coef: p(0,0)-1:p(0,1)-1:p(1,1)-1 ~= 30:19:12 (10)

1/dequant_coef: p(0,0)-1:p(0,1)-1:p(1,1)-1 ~= 30:25:20 (11)

where the p(x,y) is the quantization and de-quantization coefficients of different

positions in TABLE 3-1 and TABLE 3-2. These simplified scaling factors are shown

in (12) which consider the final performance and their hardware cost. In the equation,

division by 32 is added to avoid the enlargement of the cost values and can be carried

out by simple shifting to reduce computational complexity and hardware cost.

Therefore, this cost function can estimate the energy of residuals after the transform

more precise than previous methods while keeping computation simple and suitable

for hardware implementation.

Besides, this technique can even provide better video quality than the original cost

function in the reference software and can compensate the quality loss of other fast

intra prediction algorithms discussed in the next subsections.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊗

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

4/2/4/2/
2/2/
4/2/4/2/
2/2/

1121
2111
2111

1121

1221
1111
2112

1111

22

22

22

22

babbab
abaaba
babbab
abaaba

X
Y

70

TABLE 3-1 H.264/AVC quantization coefficients
QP Positions

(0,0) (2,0) (2,2) (0,2)
Positions
(1,1) (1,3), (3,1), (3,3)

Other Position

0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4599

TABLE 3-2 H.264/AVC de-quantization coefficients
QP Positions

(0,0) (2,0) (2,2) (0,2)
Positions
(1,1) (1,3), (3,1), (3,3)

Other Position

0 10 5243 8066
1 11 4660 7490
2 13 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4599

Y

1 1 1 1
2 1 1 2
1 1 1 1
1 2 2 2

X

1 2 1 1
1 1 1 2
1 1 1 2
1 2 1 1

32 25 32 25
25 20 25 20
32 25 32 25
25 20 25 20

/32 (12)

Besides, it can even provide better video quality than the original cost function in

the reference software and can compensate the quality loss of plane mode removal

discussed in the next subsection.

3.3.3 Plane mode removal technique [42]

The plane mode shown in Fig. 3-3 is derived by the approximation of bilinear

function. Though this mode is simplified with only integer arithmetic operations, it is

still much more computationally complex than other modes, hard to reuse its results

for other modes, and needs almost half of the area in intra prediction unit.

A solution for this problem is to remove the plane mode from the intra prediction,

71

but this may result in performance loss. TABLE 3-3 shows the probability distribution

of all 16x16 prediction modes. The ratio of macroblocks predicted by plane mode is

only 4.1% in average and generally not larger than 6.6%. However, the intra

prediction without plane mode only increases about 1% of bit-rate than that with

plane mode for those video sequences. The loss of 1% bit-rate difference can be easily

compensated by the proposed enhanced SATD cost function. By plane mode removal,

we can achieve almost the same results as the original one but save lots of

computational cycles and area cost.

3.3.4 Performance comparison

TABLE 3-4 shows the simulation results of the modified intra prediction algorithm

and combined algorithms for four HD720p sequences when compared with the

reference software JM8.6 [56]. The test condition is all I-frames encoding with RDO

off. In the simulation, we first consider the effects of the modified three-step

algorithm. The proposed one has the negligible quality degradation with at most

1.13% of bit rate increase, which is better than that in the original three-step algorithm.

Besides, we combine the effect of previously proposed plane mode removal and

enhanced SATD with the modified three-step algorithm as shown in TABLE 3-4. We

can find the performance is still good. The bit-rate is increased by no more than

1.18%, and the PSNR degradation does not exceed 0.25 dB in luma part. In some

conditions with lower QP, the PSNR is even increased by the improvement of

enhanced SATD algorithm. In average, our algorithm can achieve 0.02 dB

improvement in Y-PSNR and 0.58% of bit-rate increase.

72

TABLE 3-3 Probability Distribution of All 16x16 Modes in 720p Sequences with 300
I-frames when QP=28

Sequence 16x16 modes
Total ratio Vertical Horizontal DC Plane

Mobile
Calendar

25.8% 11.3% 6.43% 4.8% 3.3%

Park run 7.2% 2% 0.8% 2.7% 1.5%
Shields 24.1% 8.6% 4% 6.5% 4.9%

Stockholm 32.8% 3.9% 17.1% 5.2% 6.6%
Average 22.5% 6.5% 7.1% 4.8% 4.1%

73

TABLE 3-4 The performance of modified 3-step algorithm and combined algorithm
for 720p video sequences.

Sequence QP

Modified 3-step Algorithm Combined Algorithm [7]

Δ
SNR_Y

(dB)

Δ
SNR_U

(dB)

Δ
SNR_V

(dB)

Δ
Bit-Rate

(%)

Δ
SNR_Y

(dB)

Δ
SNR_U

(dB)

Δ
SNR_V

(dB)

Δ
Bit-Rate

(%)

Park_run

16 0 0 0 0.23 0.04 0.1 0.13 0.16
20 0 0 0 0.32 0.06 0.06 0.05 0.19
24 0 0 0 0.42 0.06 -0.06 -0.03 0.30
28 -0.01 0 0 0.55 0.11 -0.11 -0.06 0.44
32 -0.01 0 0 0.68 0.03 -0.23 -0.12 0.57
36 -0.01 0 0 0.74 -0.07 -0.25 -0.1 0.69

Mobcal

16 0 0 0 0.30 0.05 0.06 0.1 0.30
20 0 0 0 0.41 0.12 0.14 0.05 0.39
24 0 0 0 0.57 0.07 0.02 -0.16 0.56
28 -0.01 0 0 0.80 0.07 -0.07 -0.27 0.78
32 -0.01 0 0 1.03 -0.01 -0.19 -0.32 1.03
36 -0.01 0 0 1.13 -0.08 -0.22 -0.26 1.18

Shields

16 0 0 0 0.29 0.07 0.09 0.08 0.25
20 0 0 0 0.42 0.17 0.04 -0.04 0.39
24 -0.01 0 0 0.60 0.08 -0.08 -0.16 0.63
28 0 0 0 0.81 0.03 -0.15 -0.27 0.85
32 -0.02 0 0 0.88 -0.12 -0.26 -0.44 0.97
36 -0.02 0 0 0.84 -0.22 -0.35 -0.51 0.91

Stockholm

16 0 0 0 0.15 0.06 0.07 0.1 0.37
20 0 0 0 0.24 0.16 -0.01 0.02 0.40
24 -0.01 0 0 0.38 0.09 -0.12 -0.11 0.66
28 -0.01 0 0 0.57 0.07 -0.21 -0.2 0.66
32 -0.01 0 0 0.64 -0.11 -0.33 -0.31 0.65
36 -0.01 0 0 0.55 -0.25 -0.33 -0.33 0.50

Average -0.006 0 0 0.57 0.02 -0.1 -0.13 0.58

74

TABLE 3-5 The performance of modified 3-step algorithm and combined algorithm

for 1080p video sequences.
Sequence Station2 tractor Avg.

QP 16 20 24 28 32 16 20 24 28 32

Modified

3-Step

Δ PSNR
(dB)

0 -0.01 -0.02 -0.02 -0.01 0 0 -0.01 -0.02 -0.02 -0.011

Δ Bit rate
(%)

0.53 0.78 1 0.99 0.82 0.35 0.47 0.63 0.75 0.74 0.71

Combined

[7]

PSNR
(dB)

0.15 0.22 -0.03 -0.11 -0.35 0.09 0.06 -0.24 -0.34 -0.56 -0.11

Bit rate
(%)

0.51 0.91 1.4 1.52 1.36 0.33 0.58 1.03 1.28 1.39 1.03

TABLE 3-5 shows the simulation results for two HD1080p sequences. The bit rate

increasing is within 1% for modified three step algorithm. Besides, even if we also

include the plane mode removal and enhanced SATD algorithms, the performance of

the combined algorithms only results in 0.11 dB PSNR degradation and 1.03% bit rate

increase in average.

3.4 Architecture of Intra-only Encoder
3.4.1 Overview of intra-only encoder with variable pixel parallelism

To further speed up the intra prediction, we adopt some hardware parallelism

strategies. However, only the most critical part, intra prediction, adopts the eight-pixel

parallelism to double the throughput and thus reduces almost half of computation

cycles. Other parts like the quantization and reconstruction use four-pixel parallelism

to save the area cost. This architecture with mixed eight-pixel and four-pixel

parallelism are thus called variable pixel parallelism architecture.

Fig. 3-8 shows the proposed intra frame encoder design with variable pixel

parallelism architecture. The whole design works as the data flow in Fig. 3-1. This

Δ

Δ

75

Fig. 3-8 Proposed architecture of encoder with variable pixel parallelism.

architecture is partitioned into four phases: prediction phase, reconstruction

phase,quantization phase, and bitstream phase.

This variable pixel parallelism has the benefit of low area overhead and high

throughput. This parallelism will not introduce the performance bottleneck at the

four-pixel part since only blocks with the best mode will be passed to the quantization

phase and reconstruction phase. Data flow between different data parallelism is

smoothed by several buffers, including the current block and best block registers in

the quantization phase and the FIFO registers in the reconstruction phase. To achieve

the eight-pixel parallelism in prediction phase, we only add one more intra prediction

engine, two 1-D four-point transform units, and a few small buffers. The gate count

overhead of these new components is very little.

3.4.2 Schedule of encoder

Fig. 3-9 shows the scheduling diagram of the proposed encoder. In the intra

Boundary
Reg for 4x4

Pixels
Selection

D
iff

8-point
DCT
DHT

Pred. DC
Reg

Cost Generator and
Mode Decision

Q

IQ

Boundary
Reg for
16x16

8 to 4
Cur/Best

Block
Reg

Source
Input

IDCT
IDHT

A
dd 8 to 4 FIFO Reg

Rec. DC
Reg

Source Buffer
48x64

Single Port

External Upper Line Buffer

Ping-pong
Coefficient

Buffer
104x48x2

Single Port

CAVLC
Encoder

Intra Prediction
Generator

Upper Buffer
Controller

Bitstream
Output

Rec. Shifter

Most
Pb.
Reg

Source
Reg

Intra Prediction
Generator

D
iff

Prediction Phase
Bitstream

Phase

8 pixels/cycle 1 coef./cycle4 pix/c

4 pixels/cycle

Reconsturction Phase Quantization
Phase

76

encoder design, the major problem is the data dependency of neighboring blocks since

each intra prediction will use the reconstructed data from its left and upper block.

During these reconstruction cycles, the intra prediction unit will be idle. Thus, the

scheduling challenge is how to hide the reconstruction bubble cycles by keeping the

intra prediction unit busy. To maximize performance without pipeline bubble cycles,

this design also includes previous techniques proposed in [42], such as insertion of

luma 16x16 or chroma 8x8 predictions, early start of next 4x4 block prediction and

re-computation of luma 16x16 and chroma 8x8 best modes. The insertion of luma

16x16 or chroma 8x8 predictions techniques will insert luma 16x16 or chroma 8x8

intra prediction into the reconstruction bubble cycles to pre-compute their costs. Thus,

utilization of components in the prediction phase is improved. Furthermore, since the

4x4 blocks are processed in the Z-scan order, upper and left boundary samples might

not be available at the same time for prediction purpose. Thus, we adopt the early start

of next 4x4 block prediction techniques by rearranging the processing order of

prediction modes such that prediction modes can be started as early as possible if the

needed data is available. For the 4x4 block prediction, we use a small buffer to save

the residuals of the best mode. However, when such a strategy applies to 16x16 or 8x8

predictions, a large macroblock-size buffer will be needed. Therefore, we neglect the

data generated in the prediction and re-compute them for the best mode of 16x16 and

8x8 macroblocks after the prediction if it is selected as the best mode. This

re-computation of luma 16x16 and chroma 8x8 best modes approach may increase the

total encoding cycles, but it is still in an acceptable range and can reduce the buffer

cost as well.

Besides above previous proposed techniques, the newly adopted variable-pixel

parallel architecture also introduces a problem that demands a new scheduling

technique. In our variable-pixel parallel architecture, we adopt a block-size buffer at

77

the boundary between four-pixel parallel quantization phase and eight-pixel parallel

prediction phase. However, this is not enough since the recomputed coefficients for

best luma 16x16 and chroma modes cannot be passed through consecutively because

of different parallelism. Thus these coefficients will be blocked. This will result in a

larger buffer to store temporarily blocked data or low hardware utilization with empty

cycles in the prediction phase.

An efficient solution without utilization loss is to use the interlaced pipelined

schedule for best mode as shown in Fig. 3-9. This solution is called interlaced best

mode computation strategy. We interleave and insert the successively recomputed best

modes for luma 16x16 and chroma components into the normal prediction modes that

may not pass to quantization phase. With this interlaced scheduling, we will have two

different scheduling diagrams for best mode is 4x4 or 16x16, as showed in Fig. 3-9 (a)

and (b) respectively. If the best mode is 16x16 as shown in Fig. 3-9 (a), the

recomputed 16x16 best modes of luma components are interleaved with modes of

normal chroma components. This can improve the hardware utilization in the

prediction phase without wasted cycles and keep the data continuity in the

quantization phase as well. However, a few empty cycles from cycle 520 to 544 are

still needed for the best chroma mode as shown in Fig. 3-9 (a). If the best mode is 4x4

as shown in Fig. 3-9 (b), only the best mode of chroma 8x8 is recomputed and

interleaved with normal chroma modes because the best mode of intra 4x4 mode is

saved in the buffer and re-computation is not necessary. With the interlaced method,

the total cycle count for encoding a macroblock can be reduced to 522 as shown in

Fig. 3-9 (b) or 560 in Fig. 3-9 (a), about only 52% when compared to that in previous

design [42].

In the previous scheduling, though there are three luma 16x16 modes inserted in the

prediction schedule, not all of them are useful for final decision. When the cost of the

78

 (a)

(b)

Fig. 3-9 Pipelined schedule for fast encoder (a) best luma mode is 16x16 (b) best luma
mode is 4x4

first-predicted 16x16 mode is obtained, the early termination for second-predicted and

third-predicted modes can be asserted. If the currently accumulated cost in the

prediction is larger than the previous one, the following operations of this mode will

be canceled and the other prediction can be started. This strategy can reduce

redundant prediction cycles and extra power consumption.

79

3.4.3 Architecture of eight-pixel parallelism modules
3.4.3.1 Eight-pixel intra predictor

The eight-pixel parallelism intra prediction generator consists of two four-pixel

parallelism units. One is for even row and one is for odd row in a 4x4 block. Fig. 3-10

(a) shows the eight-pixel parallelism intra prediction generator. Its input ports can

switch to select any neighboring data in registers for different modes except

horizontal and vertical mode. The bypass input ports are used for horizontal and

vertical modes because the inputs of these two modes are passed to output directly.

After data input, the computation for each mode is done by selecting the

appropriate datapath through multiplexers. Fig. 3-10 (b) shows the example for intra

16x16 DC mode. In DC mode, only the odd-row intra predictor is used to generate the

summation of eight neighbor pixels for DC mode. In which, the dc_reg is only used

for the intra 16x16 DC mode, which needs to sum up 32 neighbor pixels. The sum of

eight input data is stored in the dc_reg, and then another eight pixels are added with

the result in dc_reg, and so on. Finally, the total summation for intra 16x16 DC mode

is generated after four cycles.

80

Fig. 3-10 (a) Eight-pixel parallelism intra prediction generator (b) Examples of

operations for intra 16x16 DC mode.

Fig. 3-11 Eight-pixel parallelism transform unit.

+

+

+

+

+

+

+

+

+ Round &
Clipping

Round &
Clipping

Round &
Clipping

Round &
Clipping

+

+

+

+

+

+

+

+

+ Round &
Clipping

Round &
Clipping

Round &
Clipping

Round &
Clipping

+
+ dc_reg +

0

0

0

0

0

X

Y

Y

X

0

0

0

0

0

0

By-pass Input

By-pass Input

By-pass Input

By-pass Input By-pass Input

By-pass Input

By-pass Input

By-pass Input

 Input

 Input

 Input

 Input

 Input

 Input

 Input

 Input

 Input

Four pixel for odd row
Four pixel for even row

 Input

 Input

 Input

 Input

 Input

 Input

 Input

 Input

Output

Output

Output

Output Output

Output

Output

Output

+

+

+

+

+

+

+

+

+ Round &
Clipping

Round &
Clipping

Round &
Clipping

Round &
Clipping

+

+

+

+

+

+

+

+

+ Round &
Clipping

Round &
Clipping

Round &
Clipping

Round &
Clipping

+
+ dc_reg +

A

I

J

L

K

0

0

0

0

0

A+B+C+D

I+J+L+K

0

0

0

0

0

0

D

B

C

A+B+C+D

I+J+L+K

DC

DC

DC

DC

DC

DC

DC

DC

Four pixel for odd row
Four pixel for even row

Intra 16x16 DC modea b c d
e f g h
i j k l
m n o p

A B C D E F G H
I
J

K
L

M

(a)

(b)

81

3.4.3.2 Eight-pixel DCT

In additional to eight-pixel parallelism intra predictor, the transform unit also

adopts eight-pixel parallelism for the same data throughput. The eight-pixel

parallelism transform design as shown in Fig. 3-11 includes two 1-D four-point row

transform units and two 1-D four-point column transform units for computations. To

fit such design, the corresponding transpose registers are decomposed as four 2x2

transpose register array. With such arrangement, we only need two additional 1-D

transform units when compared to the design with four-pixel parallelism [42].

With above designs, we can double the architecture throughput with small area

overhead. Besides, the Hadamard transform shown in eq. (6) for DC coefficients is

also implemented by the eight-pixel parallelism transform unit in order to reduce the

hardware cost. This hardware sharing between integer transform and Hadamard

transform can be easily achieved by inserting some multiplexors into the transform

unit to switch the different coefficients between eq. (5) and (6).

82

Fig. 3-12 Inverse transform Unit

3.4.4 Architecture of four-pixel parallelism modules

3.4.4.1 Four-pixel IDCT

The transform matrices used in H.264/AVC standard as shown in eq. (5), (6), and (7)

are symmetry matrices and can be easily implemented without complex floating point

operations. The 2-D inverse transform is generally separated into two 1-D inverse

transform with fast algorithm and butterfly architecture [57]. Though there have been

several transform designs for H.264 codec [58]-[60], our design adopts the four-pixel

architecture presented in [61] to execute inverse integer transform. It is because this

architecture is simple and with low hardware cost. Fig. 3-12 shows the architecture of

inverse integer transform.

1-D Inverse Transform

Input

83

 (a)

 (b)

Fig. 3-13 (a) Quantization and (b) inverse quantization unit

3.4.4.2 Q/IQ

Fig. 3-13 shows the quantization and de-quantization units. In which, the

quant_coef, dequant_coef, qp_const, qp_shift, and qp_per denote the quantization

parameters (QP). And then, we establish the QP-dependent look-up tables to

implement the constant quantization coefficients. The quantized coefficient is derived

through a multiplication with quant_coef, an addition of qp_const, and a shifter. In the

de-quantization unit, the data is also passed through a multiplication followed by

rounding and shift module.

3.4.5 Architecture of CAVLC module
Fig. 3-14 presents the overall architecture of entropy encoder in a H.264 baseline

encoder [62]. The CAVLC module accepts a 4x4 block residue from the residue buffer.

When the residue data is sent to the CAVLC encoder, the corresponding CBP also

sends to encoder to check the 8x8 block. The output bitstream is packaged with the

output of UVLC to generate the final bit stream.

84

TABLE 3-6 Zero-block Codeword Table
0<=nC<2 2<=nC<4 4<=nC<8 8<=nC nC = -1

1 11 1111 000011 01

Fig. 3-14 Overall architecture of entropy encoder in H.264 baseline encoder.

Fig. 3-15 presents the detailed architecture of the CAVLC encoder. The first step is

to check the CBP. If the CBP of 8x8 block is nonzero, its coefficients is passed to

zig-zag scan. At the same time, it nonzero index table is generated, and the 4x4 zero

block checking is finished. Then if a zero 4x4 block is detected, the output codeword

will be generated directly by the zero block codeword table in TABLE 3-6.

The general CAVLC encoding can be divided into two processes, scanning and

coding process. However, unlike the previous approach as in [63]-[66] that requires a

large static buffer to process pipelining, the proposed approach directly integrates the

two processes together for direct encoding and thus no intermediate buffer is required.

Global Control Unit

Quantized
transform

coefficients
CBP

Generator

Residual
Buffer

M
U
X
0

UVLC

Exp-
Golomb
Coding

Unit

CAVLC
Encoder

M
U
X
1

Bit-
stream
Packer

H.264/AVC
bit-stream

85

Fig. 3-15 The overall architecture of CAVLC encoder

Fig. 3-16 An example for nonzero index table: (a) Original 4x4 block and zig-zag scan (b) the initial

table after all coefficients are loaded and (c) the updated table after first iteration of leading one

detection.

86

Besides, each components in Fig. 3-15 can be simplified and speedup by nonzero

index table shown in Fig. 3-16.

3.5 Implementation Results and Comparison
3.5.1 Implementation results

The proposed intra frame encoder was designed using Verilog HDL and

implemented using 0.13μm CMOS technology. Fig. 3-17 shows the effects of the

proposed techniques. The variable parallelism architecture and the modified three step

algorithm can reduce the cycle count by 39.3% and 10.3% respectively. Although the

interlaced scheme only reduces the latency by 4.9%, it can increase the hardware

utility and remove bubble cycles. With these three techniques, we can process a

macroblock (MB) with 560 cycles. Thus, the final design can achieve HD720p 30

frames/sec encoding at 61MHz and HD1080p 30 frames/sec encoding at 140MHz.

For digital still camera applications, our design can process a 4096x2304 image with

6.78 frames per second. The total gate count is 94.7K for HD1080p 30 frames/sec

encoding at 140MHz. TABLE 3-7 lists the final results of gate count for each

component. Most of the area is spent on boundary prediction buffer, quantization,

DCT, and cost generator for mode decision as shown in TABLE 3-7. Fig. 3-17 shows

the layout of this design.

87

TABLE 3-7 Gate count table for the encoder for HD1080p at 140MHz.
Component Gate Count

Boundary Buffer 12,015
Predictor 6,005

Cost Generation 13,865
Schedule Control Unit 1,532

DCT 13,970
IDCT 5,347

DC register 6,566
Quantization 23,263

Reconstruction and FIFO 3,528
CAVLC encoder 7,474

Total Design Gate Count 94,729

Fig. 3-17 The cycle reduction by adopted techniques.

88

Fig. 3-18 The layout and its design specification.

3.5.2 Comparison with previous works
TABLE 3-8 shows the comparison to other designs. For the same HD720p 30

frames/sec encoding requirement, this design can reduce 48% of operating frequency

compared with [42] (encoding part, only) because of lower latency. With lower

operating frequency, the critical path timing is thus relaxed and the area cost is 23.5%

lower than [42]. Moreover, our design can support HD1080p 30 frame/sec encoding

at 140MHz but with similar gate count as [42]. Compared to the standard definition

(SD, 720x480) sized encoder in [43], this design reduces the working frequency by

57.6% for SD sized support. Besides, comparing with another HD-sized design [44],

our gate count reduction reaches 50.8%.

For comparisons with intra predictor part only, TABLE 3-9 shows that our design

needs 19.8K gates (including both intra predictor and cost generation) for HD1080p

encoding. Compared to full search design with HD720p intra predictor only [55], our

intra predictor design with 6K gate count for HD1080p can save 40% gate count.

Compared to [53], which adopts the fast algorithm [48], the design uses more highly

parallel hardware and thus its gate count is 122% larger than ours. Moreover, this

design does not consider the overhead of feature calculation in the fast algorithm.

89

Finally, one simplified feature calculation circuit has been shown in [54]. In [54], it

only deals with feature-based mode selection without considering the intra predictor

and cost generation part. This circuit costs 15K gates, which is a large overhead. Note

that in TABLE 3-9, the term “Not implemented” means that that item should be

included for a complete intra prediction design but is not done in that reference.

3.6 Summary

A high throughput and low cost H.264/AVC intra frame encoder is presented in this

chapter with just 94K gate and 0.72mm2 core area at 140MHz. We have applied

techniques such as fast prediction algorithm, variable pixel parallelism and other

scheduling techniques to optimize this design. Compared to previous design for

HD720p 30 frames/sec, this work can reduce 23.5% of gate count but only with 52%

of working frequency. With these improvements, the new design can support digital

video recorder applications with HD1080p 30 frames/sec resolution in real time.

Besides, the work also can support digital still camera application with 4096x2304

resolution at 6.78 frames/sec. Further extension to full intra-only profile is

straightforward by including 8x8 transform and intra prediction and higher bit width

per pixel.

90

TABLE 3-8 Comparison with previous intra encoders
design Feature This Work [7] [42] [43] [44]
Max operating Freq. 140MHz 125MHz 55MHz n.a.

Pixel parallelism 8-pixel/4pixel 4-pixel 4-pixel 4-pixel

CMOS technology TSMC 0.13μm UMC 0.18μm TSMC 0.25μm Hynix
0.35μm

Chip Core size 0.85x0.85mm2 1.28x1.28mm2 1.86x1.86mm2 n.a.

Gate count 66.2K@61MHz
94.7K@140MHz

86.6K 85K 192K

On-Chip memory
usage

Single 48x64(x1)
Single104x56(x2)

Single 96x32(x1)
Single104x64(x2)

Single
96x32(x2)
Single
64x32(x1)
Dual
96x16(x4)

27.6K bits

Max target Size HD1920x1080 HD1280x720 SD 720x480 HD1280x720

Freq. for HD
1080p@30fps
Freq. for HD
720p@30fps
Freq. for SD@30fps
Freq. for CIF@30fps

140MHz
61MHz
23MHz
6.7MHz

n.a.
125MHz
43MHz
12.8MHz

n.a.
n.a.
54MHz
15.8MHz

n.a.
108MHz

Processing
cycles/MB

<560 cycles <1080 cycles <1300 cycles <927 cycles

Cost Function Enhanced
DCT-based
SATD

Enhanced
DCT-based SATD

DCT-based
SATD

DCT-based
SATD

Mode decision
method

Modified 3-step 3-Step Full search Full Search

91

TABLE 3-9 Comparison of intra predictor part with the state-of-the-art
Design Feature This Work [7] [55] [53] [54]
Max operating Freq. 140MHz 120MHz n.a. 200MHz
Pixel parallelism 8-pixel 4-pixel 10-pixel n.a
CMOS technology TSMC 0.13um UMC

0.18um
TSMC 0.18um TSMC 0.18um

Gate count for intra
predictor

6K for HD1080
3K for HD720

10K for
HD720

28.51K for
HD1080

Not
implemented

Gate count for cost
and mode decision

13K for HD1080
9.8K for HD720

Not
implemented

Not
implemented

Gate count for fast
mode decision

0 0 Not
implemented

15.8K

Max target Size HD1920x1080 HD1280x720 HD1920x1080 HD1920x1080
Processing
cycles/MB

<560 cycles <896 < 256 n.a.

Mode decision
method

Modified 3-step
+ SATD

Full search Edge
Detection +
SAD

Simplified
Edge Detection

92

93

Chapter 4

H.264 HD1080p High Profile

Encoder Chip

H.264/AVC high profile standard is the latest extension of H.264/AVC for high

resolution video applications. This standard has been adopted in a lot of video

applications such as Blu-ray, HD-DVD, and DVB-H. These new coding tools improve

a lot of coding efficiency especially for high resolution video. However, these tools

also result in huge computation power and require extremely high throughput for high

definition (HD) applications. Due to these requirements, ASIC design is the only

solution to process H.264/AVC high profile encoding in real time.

Therefore, in this chapter, we propose a H.264 high profile encoder chip which can

support 1080p video at 30 frames per second [8]. This design includes the most

techniques discussed in previous two chapters no matter in algorithm and architecture

level. Besides, the new coding tools of high profile are added to the encoder without

resource conflict and large hardware overhead.

This design adopts three stage pipelining schedule. In the first stage, the integer

motion estimation module mentioned in Chapter 2 is adopted and extended to support

bi-directional motion estimation. The second stage includes the fractional motion

estimation module and full eight-pixel parallelism intra predictor which are

introduced in Chapter 2 and Chapter 3 respectively. Finally, the third stage consists of

the deblocking filter and two entropy tools, CAVLC and CABAC.

Except the individual modules, the system integration and hardware sharing

94

between pipeline stages are important issues in our design. By the integration, the

hardware cost and power can be reduced a lot when comparing with previous similar

designs.

4.1 Overview of H.264/AVC High Profile
4.1.1 History of H.264/AVC high profile

After the completion of H.264/AVC standard in May 2003, the JVT group focuses

on an extension for coding of high definition video material, especially in application

areas like professional film production, video post production, or high-definition

TV/DVD. The work on the Fidelity Range Extensions (FRExt) of

H.264/MPEG4-AVC was completed in July 2004, and its final draft amendment text

was released in September 2004 [67].

4.1.2 Introduction of the coding tools of H.264 high profiles and levels

Fig. 4-1 shows four major four profiles defined in H.264/AVC, which are baseline,

main, extended and high profiles. Baseline profile consists of basic coding tools and

features, such as intra prediction, forward inter prediction, deblocking filter, and

CAVLC. Main profile includes all coding tools of baseline profile and other advanced

techniques, such as weighted bi-directional inter prediction, CABAC, and et al. The

third profile, extended profile, contains all tools of main profile except CABAC. This

profile is designed as the streaming video profile with new tools for robustness to data

losses and server stream switching.

Finally, the high profile is the latest and the most complex profile. The new tools

such as intra 8x8 prediction types, transform and quantization with 8x8 block size,

95

Fig. 4-1 Profiles of H.264/AVC

and others are supported in this profile. The high profile can provide more bit-rate

saving and better video quality than baseline and major profiles. However, this new

profile requires much more computation efforts. Therefore, H.264/AVC high profile

has been widely used in multimedia applications especially for high quality and low

bitrate requirements.

4.1.3 Introduction to new tools of H.264/AVC high profile encoder

4.1.3.1 8x8 intra prediction

In the high profile of H.264, a new prediction block size of 8×8 was used for spatial

luma prediction by extending the concepts for 4×4 intra prediction in baseline profile.

As shown in Fig. 4-2, the luma 8x8 block is predicted from neighboring

reconstructed reference pixels, where nine modes can be selected by the encoder. We

should note that the selection of the inter or intra prediction block size (4×4, 8×8, or

16×16) also influences the corresponding luma transform size.

96

Fig. 4-2 Nine modes for intra 8x8 prediction.

4.1.3.2 8x8 transform

For high resolution video, the details and textures which can be processed by the

function with larger basic block unit become more important than that in low

resolution video. Therefore, the high profile includes an 8×8 integer transform and the

following quantization function and allows the encoder to switch adaptively between

the 4×4 and 8×8 transform for luma samples in a macroblock level [68].

The 2-D 8×8 transform also can be executed as a 1-D horizontal transform

followed by a 1-D vertical transform, where the 1-D transformation matrix is shown

in (13):

T

8 8 8 8 8 8 8 8
12 10 6 3 3 6 10 12
8 4 4 8 8 4 4 8
10 3 12 6 6 12 3 10
8 8 8 8 8 8 8 8
6 12 3 10 10 3 12 6
4 8 8 4 4 8 8 4
3 6 10 12 12 10 6 3

 (13)

Because (13) consists of integer coefficients, both the forward and inverse 8×8

transform can be efficiently implemented by shift and add operations.

After 8x8 transforms, the following processes such as scaling, quantization, and

scanning of 8×8 transform coefficients are extended directly from that defined for the

4×4 transform. Besides, two restrictions for the transform size

97

Fig. 4-3 Bi-directional motion estimation

selection are listed:

1. For inter-predicted macroblocks, they adopt 4x4 luma transform if at least one of

their sub-blocks is smaller than 8×8.

2. For intra-predicted macroblocks, they choose the 8×8 luma transform if and only

if 8×8 luma intra prediction is used.

4.1.3.3 Weighted bi-directional motion estimation

The H.264 motion estimation supports bi-directional motion estimation so that both

the backward and forward prediction can be used to improve the coding efficiency as

shown in Fig. 4-3. Except the generalized bi-directional motion estimation, the H.264

also supports the weighted prediction so that prediction result of different reference

data can be averaged and weighted to optimize the prediction result. Besides, the

direct mode can be used to reduce the complexity load overhead from the

bi-directional prediction.

4.1.3.4 Context adaptive binary arithmetic coding (CABAC)

CABAC is used as one of the entropy coding method for H.264 video coding that is

consisted of three stages: binarization, context modeling and arithmetic coding (AC)

as shown in Fig. 4-4. First, a given non-binary value syntax element will pass to

98

Fig. 4-4 Block diagram of CABAC

binarization to form a uniquely bin-string. Second, except for suffix of syntax element

for motion vector and level information, all of bins from binarization will enter into

decision mode, and a probability model will be selected to assign context model. The

selection of probability models depends on previously encoded syntax elements or

bins. After receiving bin and context, AC can encode and output the compressed data

directly. AC consists of two sub-engines and is classified into three modes. These two

engines are called decision coding engine and bypass coding engine, while the three

modes are:

1. “decision” mode” that includes adaptive probability models and interval maintainer.

2. “bypass” mode for fast encoding of symbols.

3. “termination” mode for ending of encoding.

 Binarization

For a given non-binary valued syntax element, H.264/AVC adopts four schemes to

do binarization. Such fours schemes are:

1. The unary code word consists of x “1” bits plus a terminating “0” bit for a given

unsigned integer x.

2. For truncated unary (TU) code, unary code is used only when x < cMax. If x=cMax,

Binarizer Context
Modeler

Regular
Coding
Engine

By-pass
Coding
Engine

Context
Model
Table

Syntax
Element

Non-Binary
Valued Syntax

Element

Binary Valued
Syntax Element

Bin String

Bin
Regular Flow

Bypass Flow Bypass Flow

Regular Flow

Bitstream
Bin

Bin Value,
Context
Model

Bin Value, for Context
Model Update

Context

Binary Arithmetic Codec

99

the terminating “0” bit is neglected.

3. A unary/K-th order Exp-Golomb (UEGk) bin-string is a concatenation of a prefix

bit string with TU and a suffix bit string with Exp-Golomb code.

4. The fixed length (FL) codeword of x is simply x with a fixed (minimum) number

FLbits=log2 (cMax+1) of bits.

 Context modeling

In the context modeling, the encoder should calculate context index (ctxIdx) from 0

to 460. With ctxIdx as memory address, it can get probability state (pStateIdx) and

Most Probable Symbol (MPS) from context table. The pStateIdx is in range from 0 to

63, and MPS is either 0 or 1. CABAC provides two equations to calculate ctxIdx.

Except for syntax element coded_block_flag, last_significan_flag, significan_flag and

coeff_abs_level_minus1, eq (14) is used for calculating ctxIdx. Otherwise, eq (15) is

used.

ctxIdx = ctxIdxOffset + ctxIdxInc (14)

ctxIdx = ctxIdxOffset + ctxIdxInc + ctxCatOffset (15)

In (13) and (14), both of ctxIdxOffset and ctxCatOffset are constant for calculating

ctxIdx. The ctxIdxInc is calculated from the information of neighbor macroblock

 Arithmetic coding (AC)

Fig. 4-5 shows the flow diagram of AC encoding for a given bin value, binVal, in

the Decision mode. AC is consisted of three parts.

1. Interval Maintainer.

2. Probability Updating

3. Renormalization.

100

4.1.3.5 Deblocking

Deblocking filter is used to the decoded macroblocks to reduce blocking distortion.

This filter is applied after the inverse transform in both the encoder and decoder. The

major benefits of adopting this are smoothing the block edges, reducing blocking

effecst and improving the objective quality of the decoded images.

The deblocking filtering is applied to vertical or horizontal edges of 4x4 blocks in a

macroblock. The deblocking steps are shown in the following:

Step 1: Filter four vertical boundaries (a,b,c,d in Fig. 4-6) of the luma component.

Step 2: Filter four horizontal boundaries (e,f,g,h in Fig. 4-6) of the luma component.

Step 3: Filter two vertical boundaries (i, j in Fig. 4-6) of chroma components.

Step 4: Filter two horizontal boundaries (k,l of Fig. 4-6) of chroma components.

101

Fig. 4-5 Flow diagram of arithmetic coding.

Fig. 4-6 Filtering boundary of a macroblock.

4.2 Design Challenges and Paper Survey
4.2.1 Design challenges

The design challenges of H.264/AVC basic encoder mainly come as follows:

 the high complexity of the encoding algorithms

 large memory requirement and computational loading of motion estimation

 The throughput of intra prediction and motion estimation is not enough for real

time coding if adopting the algorithms of reference software

Interval maintainer

MPS

Renormalization

binVal != MPS

PSTATE

bit-stream

LPS probability update MPS probability update

Y N

Interval maintainer

MPS

Renormalization

binVal != MPS

PSTATE

bit-stream

LPS probability update MPS probability update

Y N

102

 The deblocking filter requires huge memory access and may become the system

bottleneck

 The power and area consumption of the H.264 encoder is too huge.

However, the high resolution applications such as High Definition Television

(HDTV), HD-DVD, and BD all adopt 1080p (1920x1080) H.264 high profile for

higher compression efficiency and better video quality, which cannot be supported by

previous works. Thus, the main stream 1080p high profile application presents a

series of new design challenges:

 The new coding tools increase more complexity

 The 1080p high profile application needs at least 4X higher complexity than in

the 720p baseline.

 The memory requirement and hardware cost of motion estimation module are

double by bi-directional motion estimation.

 The resource conflict between the new coding tools and baseline tools

 CABAC will become the bottleneck due to its data dependency

 The high profile encoder must have the compatibility to support baseline and

main profile encoding.

4.2.2 Paper survey
Because of high complexity of H.264 encoder, several VLSI implementations have

been presented [3][4][5][69] but their performance is limited to baseline 720p

(1280x720) [3][4] or SDTV (640x480) [5]. Although [69] can support 1080p

resolution, the SoC design with embedded memory is very large and the power

consumption is huge. Besides, the design targets of previous designs are focused on

H.264 baseline profile which only provides the basic video quality and compression

103

efficiency. As for the commercial design, only [70][71] can support H.264/AVC high

profile encoding. However, their performances are achieved by high operating

frequency and huge power consumption.

4.3 System Overview

Fig. 4-7 presents the system overview [8]. The new high profile coding tools are

included as the shaded parts. An important challenge is to add these new coding tools

to the system but keep the similar throughput and minimum hardware overhead. As

shown in Fig. 4-7, the system architecture of the proposed encoder has three

macroblock pipelined stages. The first stage is the integer motion estimation (IME)

stage which occupies the most computation and memory resource of the entire H.264

encoder. In the second stage, intra prediction and fractional motion estimation (FME)

are placed in the same stage to share the current block buffer and pipelined buffer.

Intra prediction uses the neighbor pixels to predict the current block and the FME

refines the result of IME stage. The third stage is the entropy coding stage including

Context-Adaptive Variable Length Coding (CAVLC) and Context-Adaptive Binary

Arithmetic Coding (CABAC), which both provide high compression efficiency to

generate the final bit-stream.

104

Fig. 4-7. System overview of H.264 high profile encoder.

Fig. 4-8. The scheduling of H.264 high profile encoder

4.4 Schedule of H.264 High Profile Encoder

Fig. 4-8 shows the scheduling of these three stages. There are three features in this

scheduling. First, we load the reference data for IME in advanced because the IME

requires huge amount of memory access. The second feature is that FME and Intra

modules share residual SRAM and reference SRAM. Besides, the two modules adopt

special scheduling for loading data from external memory so that their data

requirement can be satisfied without confliction. Finally, the reconstruction process is

through the second stage and the third stage.

105

4.5 System Level Hardware Sharing Techniques
4.5.1 Reconstruction sharing

The intra prediction and FME in the same stage could cause timing conflict in the

reconstruction of inter and intra prediction and thus reconstruction hardware has to be

duplicated. This conflict is that the intra predictor in the second stage needs the

reconstructed boundary pixels of previous block immediately for intra mode decision

and thus its reconstruction must finish in the second stage. But the reconstruction of

inter prediction after the final mode decision must execute after all predictions are

done. Besides, the reconstructed data of inter predicted blocks must go through the

deblocking filter to remove the blocking effect and should finish in the third stage. To

solve the reconstruction hazard, we place the reconstruction stage cross the second

and third stages so that the intra and inter predictions can share the same hardware in

different time slots. As shown in Fig. 4-9, the non-filtered reconstructed data is

feedback to the intra predictor in the end of the second stage, but the deblocking filter

processes the reconstructed blocks in the third stage. With the above reconstruction

sharing technique, we can eliminate one extra reconstruction hardware unit and its

power.

Therefore, during cycle 16 to 382 shown in Fig. 4-8, the reconstruction module

reconstructs data for intra prediction procedure of MB 1 and filters the reconstructed

data of MB 0 and MB 1. Moreover, after residual re-computation of a best mode is

finished, the data is quantized and reconstruction begins immediately in the second

stage. This work continues to the third stage which finishes the reconstruction of a

MB and sends the data into the deblocking engine. By this flow, we can send the

necessary quantized residuals to entropy coding module in time and remove bubble

cycles in the third stage.

106

Fig. 4-9. The schedule of reconstruction module

4.5.2 Hardware-shared bi-directional motion estimation

Fig. 4-10 is the system architecture of bi-directional motion estimator for H.264

high profile. The width of external bus is 128 bits because the width of a MB is just

128 bits (i.e. 16 pixels)

To support bi-directional motion estimation, we double the memory for two

reference frames but keep the same hardware cost with one directional motion

estimator. It is because the throughput of PMRME (i.e. 512 cycles for bi-directional)

is good enough to meet the throughput requirement of system (i.e. 600 cycles). As

shown in Fig. 4-10, we have 10 memory blocks totally. Among these memories, three

memory modules are used for level 0 forward search. The other two forward search

modules for level 1 and level 2 both need one memory module. As for backward

search, the memory allocation is the same with forward search. The three memories

for level 0 are used as ping-pong buffers as presented in Sec. 2.6.2. With these level 0

buffer sharing technique, we can reuse the level 0 data between IME and FME and

reduce the memory access time.

For level 1 and level2, the forward and backward search are interlaced. When

forward or backward search is executing, the memory access of inverse direction

search is also executing at the same time.

107

Fig. 4-10 System architecture of bi-directional motion estimator for H.264 high

profile

4.6 Full eight-pixel intra encoder

Fig. 4-11 (a) presents the overview of this design except ME and entropy coding.

The new 1080p high profile coding tools including intra8x8 prediction and 8x8

integer DCT increase the complexity by 37.5% and the throughput by 2.5X compared

to the baseline profile. Besides, the structure and data hazards will occur since the

new high profile tools such as intra8x8 predictor need extra reconstruction and

different reconstructed boundary data and thus will conflict with intra4x4 modules.

For the data hazard, we adopt independent boundary buffer for intra8x8 prediction to

eliminate it.

To solve the high throughput request and structure hazard, this design adopts

eight-pixel parallelism. To further improve throughput, we parallel process intra8x8

and intra4x4/16x16 and use interlaced scheduling to minimize the stall cycles by data

hazards. However, direct implementation will cause high cost due to eight-pixel

parallelism. To reduce cost, we merge the reconstruction of intra4x4/16x16 and

108

intra8x8 into one and further share it with reconstruction of ME as stated above. To

further decrease the cost, we adopt intra8x8/16x16 recomputation so that the best

mode result and its prediction value of intra8x8/16x16 are not saved and recomputed

if being chosen. With this, 2560 bits of memory can be reduced. Besides, using

eight-pixel architecture in reconstruction and quantization phases can save the extra

buffers between different pixel-parallelism phases. The details of these techniques

will be discusses in the next section.

Fig. 4-11 (b) shows the performance of these proposed algorithms. The cross-stage

reconstruction component can reduce 24.2% of gate count, and then the

intra8x8/intra16x16 re-computation can save 10.9% of gate count. The merged

reconstruction module for intra and re-computation schemes can save the gate counts

by 7.7% and 9.26%, respectively. In summary, 42% of gate counts can be reduced by

these techniques than direct implementation.

109

 (a)

(b)
Fig. 4-11. (a)The architecture of intra encoder part. (b)The gate count reduction of

intra encoder by proposed techniques.

8 pixels/cycle

Boundary
Reg for

4x4

Pixels
Selection

D
iff

8-point
DCT
DHT
(4*4)

Pred.
DC Reg

Cost Generator
and Mode
Decision

Q
(4*4

&8*8)

IQ
(4*4

&8*8)

Boundary
Reg for
16x16

Cur
&

Best
Block
Reg

Source
Input

IDCT
IDHT
(4*4&
8*8)

A
dd

FIFO Reg

Rec. DC
Reg

Source
Buffer
48x64
Single
Port

Deblocking
Filter

Ping-pong
Coefficient

Buffer
104x48x2

Single Port

Entropy
Encoder

Intra
Prediction
Generator*

2

Upper Buffer
Controller

Bitstream
Output

Rec.
Shifter

Most
Pb.
Reg

Source
ctrl
(16

pixels)

Intra
Prediction

Generator*
2

D
iff

Prediction Phase

Bitstream
Phase

Reconstruction Phase Quantization
Phase

Boundary
Reg for

8x8
8-point
DCT
(8*8)

8x8 Cur
& Best
Block
Reg

FIFO Reg

8 pixels/cycle
Data path for

intra4x4/16x16

Data path
for intra8x8

Shared data path for
intra4x4/8x8/16x16

Modules shared by
intra4x4/8x8/16x16

Buffer removed by
all 8-pixel parallel

Rec. module

Buffer removed by re-
computing the best

mode of intra8x8/16x16

150 170 190 210 230 250 270 290

2+3+4+5

2+3+4

2+3

2

1

163.5

176.2

194.2

215.4

284.4

Gate Count(K)

Reduction of Intra and Rec. Hardware Cost

110

4.6.1 Intra predictor
8x8 prediction generator is modified from 4x4 prediction generator to support more

than six input ports. The major difference between 4x4 and 8x8 intra prediction

generator is that new multiplexers are added in 8x8 prediction generator to support

more inputs. Instead of predicting two rows of 4x4 blocks simultaneously shown in

Fig. 3-10, this predictor computes a row in an 8x8 block directly. Its detailed

architecture is shown in Fig. 4-12.

111

Fig. 4-12. Intra prediction generator used for intra luma 8x8 modes.

4.6.2 Interlaced schedule with intra 8x8 prediction

This scheduling of intra prediction generator as shown in Fig. 4-13 is based on

previous work shown in Fig. 3-9. We used three scheduling techniques in this

112

scheduling, interlaced scheduling, parallel intra 8x8/4x4 computation, and

re-computation for intra 8x8 boundary values.

 Interlaced scheduling :

The interlaced scheduling of luma 4x4 and l6x16 intra prediction modes is the same

as Fig. 3-9. Because the reconstruction architecture also adopts 8-pixel parallelism,

we re-arrange the schedule of some activities: deciding best luma mode, chroma mode

prediction, and re-computing chroma best mode.

 Parallel 8x8/4x4 intra computation :

Because the additional path for 8x8 intra mode decision is added in the design,

parallel intra 8x8/4x4 computation is used to computing 4x4 and 8x8 intra prediction

modes in parallel without structure hazards in reconstruction phase to keep the same

throughput as baseline designs.

 Re-computation for intra 8x8/16x16 boundary values :

For additional path for 8x8 intra prediction, we re-compute intra 8x8 boundary

values to save hardware cost and increase its utilization. After the best intra mode

decision of one 8x8 block, re-computation for intra 8x8 boundary values will process

twice. The first re-computation is to re-compute boundary pixels as reference of its

right and down blocks and the second is to produce the prediction reference value for

reconstruction.

 Remove setup cycles in previous work [42]:

The purpose of setup cycles in Fig. 3-9 is to compute DC value used in luma 16x16

dc mode. However, we remove it and calculate the average value during computing

enhanced SATD value of luma 16x16 vertical and horizontal modes in our design to

save calculating cycles.

113

Fig. 4-13 Pipelined schedule of proposed intra prediction generator

Fig. 4-14 Hardware architecture of transform unit

4.6.3 8x8 transform unit

This work also adopts the butterfly architecture in [61] as shown in Fig. 4-14, to

execute integer 4x4 DCT, 8x8 DCT, 4x4 Discrete Hadamard Transform (DHT), and

2x2 DHT. Besides, two 4x4 block registers are used to store the DC coefficients for

further DHT computation. The 2-D transform is also executed by two separate 1-D

transforms with butterfly architecture [57]. Because 4x4 DCT and DHT have the same

butterfly structures and do not operate at the same time in the encoder, they can share

the hardware to reduce area.

114

4.6.4 Shared 8x8 inverse transform unit
Compare with other modules of our design, the reconstruction circuits has much

lower hardware utilization. To resolve this problem, every unit of this reconstruction

phase focuses on both reducing hardware cost and raising the utilization. For instance,

the inverse transform unit can execute inverse 4x4 integer transform, inverse 8x8

integer transform, and inverse 4x4 DHT. This module adopts the design in [72] but it

has structure hazards when an 8x8 DCT follows the 4x4 DCT transform immediately.

We can avoid all structure hazards by carefully scheduling of intra prediction phase.

Fig. 4-15 shows the block diagram of inverse 2-D transform unit.

Fig. 4-16 is the architecture of 1-D transform unit which we only add few

multiplexers from general 8-pixel IDCT transform architecture to support two rows of

four-pixel inverse integer transform operations in parallel. Fig. 4-17 and Fig. 4-18

show the data path for four-pixel and eight-pixel inverse integer transform respective.

Similar to the forward transform hardware, the inverse integer transform and inverse

Hadamard transform also share the hardware to reduce area and increase hardware

utilization. Fig. 4-19 illustrates data path for inverse Hadamard transform. The steps

of switching the hardware to support different types of inverse transform are shown

below: Firstly, we decide inputs ports according to which function executed. And then,

if the function is inverse Hadamard transform, we avoid all paths with shifters in the

figure. If the function is inverse 4x4 DCT transform, we select the second datapath of

every multiplexer as shown in Fig. 4-17. Otherwise, the first datapath of every

multiplexer will be selected when executing functions is 8x8 DCT transform. To

avoid bubble cycles for the DC value of special mode like intra 16x16 mode and intra

chroma mode during reconstructing data, we compute inverse DHT transform after

the DC value pass through DHT transform, quantization, and inverse quantization

circuits immediately.

115

Fig. 4-15 Block diagram architecture of inverse transform unit

1-D inverse transform unit

in0 in1 in2 in3 in4 in5 in6 in7

out0

out1

out2

out3

out4

out5

out6

out7

116

Fig. 4-16 The architecture of 1-D transform unit

Fig. 4-17 The 4x4 IDCT transform datapath in inverse transform unit.

117

Fig. 4-18 The 8x8 IDCT transform datapath in inverse transform unit

Fig. 4-19 The inverse Hadamard transform datapath in inverse transform unit

118

Fig. 4-20 Block algorithm of quantization circuits

TABLE 4-1 Quantization parameter table when QP equals twenty-eight: A for 4x4

block size, B for 8x8 block size

A

8192 5243 5243 5243
5243 3355 5243 3355
8192 5243 5243 5243
5243 3355 5243 3355

B

8192 7740 10486 7740 8192 7740 10486 7740
7740 7346 9777 7346 7740 7346 9777 7346
10486 9777 13159 9777 10486 9777 13159 9777
7740 7346 9777 7346 7740 7346 9777 7346
8192 7740 10486 7740 8192 7740 10486 7740
7740 7346 9777 7346 7740 7346 9777 7346
10486 9777 13159 9777 10486 9777 13159 9777
7740 7346 9777 7346 7740 7346 9777 7346

4.6.5 8-pixel quantization and inverse quantization unit

To process eight pixels in parallel, we use a pair of quantization circuits shown in

Fig. 4-20 which are modified from the circuits presented in 3.4.4.2. However, the dual

circuits can share the quantization parameter table shown in TABLE 4-1. For example,

if we quantize the coefficients of one 4x4 block, one quantization circuits only needs

odd rows of quantization parameter table and the other one only accesses even row

parameters of the table. As for 8x8 block, one quantization circuits only needs left

four parameters of one row and the other requests right four parameters. Finally, the

similar architecture also adopts in de-quantization module due to the similar function

behavior between quantization and de-quantization.

=0

reg
X

+ shift

skip quant_coef

qp_const

qp_shift skip

0

Quantization
circuits

Quantization
circuits

Quantization
parameter table

Output
Coefficients

Residues

Quantziation
Parameter

119

4.7 Bi-directional Inter Predictor Module
4.7.1 Techniques for inter prediction

Fig. 4-21 shows the motion estimation (ME) algorithm and its architecture. The

basic techniques all come from Chapter 2. To achieve 1080p resolution with

bi-directional prediction, we adopt parallel single step processing for ME. Thus, for

integer motion estimation (IME), we use a parallelized subsampling algorithm,

Parallel Multi-resolution ME (PMRME) as discussed in chapter 2. It searches three

subsampling levels of different search ranges in parallel so that all searches are done

with 256 cycles in single step. This provides higher throughput than [4] and [5] using

two and four steps in IME respectively. With 256 cycles, the high throughput IME can

process bi-directional predictions sequentially while still meets 1080p requirement.

Thus, a single IME module cost is enough for both directional predictions. Besides, to

support search range (SR) ±128 and reduce the hardware cost within the limited

quality loss, level 1 and 2 provide different subsampling ratio according to the search

range for large motion vectors, and the search centers of the two levels are at (0,0) for

further data reuse. Furthermore, to compensate quality loss of subsampling to meet

the 1080p requirement, the level 0 without subsampling is centered at the motion

vector predictor (MVP) to cover the most occurred motion vectors.

After IME, we use Mode Filtering (MF) to select only two best modes for FME

refinement so that FME tests at most 18 motion vectors instead of 41 motion vectors

in [3]. As for the fractional motion estimation part, we use the six pixels only instead

of 17 pixels and 25 pixels in [3][5], and reduce at least 64.7% of complexity and 76%

of processing units used in [4]. Besides, in order to improve the throughput, we finish

the FME stage within a single iteration to double the throughput than previous works.

To further reduce the bandwidth of FME, we use the Non-Subsampling Reference

Memory Sharing (NSRMS), another cross stage technique, which uses three SRAM

120

banks to enable sharing of level 0 reference memory of IME and that of FME. FME

searches only six candidates in a single step so that only six processing units are

needed, which eliminates 76% of processing units used in [4].

Fig. 4-22 (d) shows the trade-off between the video quality loss and the search

point reduction for motion estimation. In previous work [4], the fast motion

estimation algorithms may result in 0.6dB PSNR loss, which may cause obvious

image distortion. In our proposed ME algorithm, only 0.1dB quality loss is required,

but the search points (search complexity) can reduce 98.7%. The fast IME (PMRME)

can save the complexity by 91.7%. As for mode filtering and fractional motion

estimation, they can reduce the complexity by 56% and 64%, respectively. It means

the three algorithms all can reduce the complexity a lot.

In addition to the complexity, our proposed architecture also reduces the hardware

cost including area, internal SRAM size and memory bandwidth. Compared with

[3][25], the proposed gate count for motion estimation can decrease 30% and 62.5%

gate count in IME and FME part as shown in Fig. 4-22 (b). These benefits come from

the reduction of processing units to calculate the sum of absolute difference (SAD).

For local memory reduction shown in Fig. 4-22 (c), the memory size can save 86%

because PMRME uses the subsamping techniques and only the sampled pixels are

necessary to be stored in local memory. Finally, the memory access can reduce 46%

due to the subsampling PMRME technique as Fig. 4-22 (a) presents.

121

Fig. 4-21. The architecture of motion estimation part and the proposed algorithms.

Fig. 4-22.(a) The memory access reduction of ME (b) the gate count reduction of ME
(c) the internal SRAM buffer reduction of ME (d) The trade-off between the number

of search point and quality loss.

4.7.2 4x4 SATD cost function

In H.264 high profile standard, if the inter prediction block size is larger than 8x8,

the corresponding integer transform size for residual data also adopts 8x8. Thus, in

the reference software [27], it adopts 8x8 Hadamard transform for SATD calculation

213.7

305.2

68.9

401.8

0 100 200 300 400 500 600 700 800

Proposed with SR=[±128,±128]

[3][22] with SR = [±32,±64]

Gate Count(K)

Reduction of IME and FME Hardware Cost

4 5 6 7 8 9

PMRME+ Level C data reuse in Level 1,2

Full Search [3] with SR= ±128+Level C data
Reuse

4.282

8.672

KBytes

Memory Access for ME per MB

0.58

1.65

3.75

45.68
0.1045

0.075

0.005
0 0

0.02

0.04

0.06

0.08

0.1

0.12

0

1

10

100

PMRME+Mode Filtering+
6-pixel FME

PMRME+Mode Filtering PMRME Full Search[3] if SR=±128

Q
ua

lit
y
Lo
ss
(d
B)

N
o.
 o
f S
ea
rc
h
Po

in
ts
(M

 p
ix
el
s/
M
B)

The Trade‐off between No. of Search Points and Quality Loss

No. of Search Points PSNR Loss

0 20 40 60 80 100 120 140 160

PMRME

Full Search [3] if SR=±128

17.44

154.012

(KBytes)

Search Range Buffer Size

122

for block size larger than 8x8. Though Hadamard transform is greatly simplified, a

8x8 Hadamard transform unit still consumes about four times area than that of 4x4

one. Because the FME adopts six PUs architecture, six 8x8 SATD transform units will

be required and thus cost a lot of area cost. Moreover, the area of interpolation unit

will also increase. To solve this area problem, we propose to use 4x4 Hadamard for all

SATD calculation disregarding of the block size [40].

TABLE 4-2 shows the comparison results of our algorithm with different SATD

strategy for 1080p test sequences. The frame number is 100 and we set only the first

frame to be I-frame because inserting I-frame periodically will reduce the impact of

our algorithm. All data in TABLE 4-2 are acquired with the reference software [27].

As shown in the table, the results of using 4x4 and adaptive Hadamard transform are

similar except for high QP situations. This is quite acceptable since the bit rate under

that condition is quite low and any increase will be large in terms of that bit rate.

Since the 4x4 transform unit only consumes 25% of area cost of 8x8 one, we calculate

SATD by 4x4 Hadamard transform which doesn’t influence video quality and saves

about 75% of area cost in PU and 60% of area cost in the total FME module.

123

TABLE 4-2 The performance comparison with 4x4 and adaptive Hadamard transform
1080p size, 100 frame, only first frame is I-frame, RDO off, Search range = 16

 Blue Sky Pedestrian Riverbed
QP ΔPSNR

(dB)
Δbit rate ΔPSNR

(dB)
Δbit rate ΔPSNR

(dB)
Δbit rate

16 0 -0.48% 0 -0.11% 0 -0.06%
22 0 -0.67% 0 0.61% 0 -0.16%
28 0 -0.4% 0.01 1.38% -0.01 -0.02%
34 0.01 0.83% 0 2.13% -0.02 0.67%
40 0.08 3% 0 1.81% 0.01 0.96%

4.8 Architecture of CABAC [73]
4.8.1 The proposed algorithm flow and architecture of CABAC

In [74], they rearrange the overall CABAC flow into four stages as shown in Fig.

4-23 (a). With help of software analysis, first, we find that ctxIdx calculation is

depended on previous binVal not current ones. So, we can process binarization and

context generation in parallel. Secondly, to read pstateIdx and MPS from context

memory and update them at the same time, a dual-port memory is adopted here for

increasing encoding speed. With this approach, the encoding iteration can be reduced

from 5 to 3-4 cycles as shown in Fig. 4-23 (b) and architecture is easier to be

pipelined into three stages as in Fig. 4-24.

In the first stage of CABAC as in Fig. 4-24, the binarization stage will output the

bin-string to second stage and context memory will be updated and output ctxIdx for

arithmetic coding (AC) at the same time. However, if the ctxIdx are the same for the

successive processing, a stall signal should be added to avoid pstateIdx be read out

before updating. This is the reason why proposed iteration is 4. The second stage is

AC, which takes responsibility for calculating interval and output bit-stream. The last

stage is FIFO, which collects data from AC. Because output word length of bit-stream

is varying from 0 to 2, a FIFO is needed.

124

4.8.2 Architecture of binarization
In the binarization stage, although there are four schemes, it can be simply reduced

into two types. In which, we classify U, TU and FL schemes into the table based type

because they are easier to be realized by combinational logic. On the other hand, the

table based UEGk will cost a lot due to the large table. To minimize the table cost, we

use the arithmetic method to calculate it by adapting the table partition introduced in

[75]. Thus, we use the parameter “base” to find the partition block and a carry save

adder (CSA) to calculate it suffix. The proposed architecture is showed in Fig. 4-25.

4.8.3 Architecture of context modeling
The architecture of context modeling is showed as Fig. 4-26. As mention above, we

adopted a dual-port memory for context memory. Besides, the probability updating is

extracted from AC because it depends on values of pstateIdx and MPS. However, it

does not depend on codIRange and codILow. Furthermore, transition table of MPS is

reduced into simple one by its regular characteristic.

4.8.4 Architecture of AC
Fig. 4-27 shows the architecture of AC. There are two loops in AC [1]. One is

controlled by codIRange and the other one is controlled by bitsOutStanding. To speed

up the first loop, we skip the successive one by the Leading-Zero Detector (LZD) and

Barrel-shifter to generate new interval. At the same time the output of LZD will sent

to FSM to calculate the renormalization. The idea for the second loop speedup is by

bit-parallelism as described below.

125

4.8.5 Interval maintainer in AC
For the sake to maximize hardware sharing, we analyze codILow, and codIRange

between three modes as shown in TABLE 4-3. Here, we can find no matter which

mode is selected, codILow will involve a three input adder (when binVal equals to

MPS or equals to 0). Thus we use a carry-save adder to compute new codILow to

save hardware. This adder also helps calculating codIRange since binVal equals to

zero and binVal non-equals to zero will not happen at the same time when the mode is

on termination. After this calculation, the interval will be sent to renormalization. The

proposed architecture is showed in Fig. 4-28.

4.8.6 Renormalization in AC
When renormalization is happened, [1] uses adder for updating codILow. However,

with a detailed analysis, we can find that codILow is just trying to eliminate its MSB

when codIRange is less than 0x100. Thus, to minimum the hardware cost, we adopt a

FSM instead of adder. After that, BitsPacking in the renormalization will receive the

bit-stream from AC and pack them in byte. Within BitsPacking, bitsOutstading has to

solve the carry over problem that requires a loop to output data. To break such

multi-cycle operations, we use two masks to generate output data in parallel. With

such bit-parallelism, we can process this loop in one cycle. Fig. 4-29 shows the

architecture of the renormalization stage.

126

(a)

(b)

Fig. 4-23 (a) Original serial chedule of CABAC. (b) Modified parallel algorithm for
CABAC

Fig. 4-24 Pipelined CABAC encoding flow

Binarization1

Context range generation
/context table access2

Prob check/BAC
/range table access2

Bit-stream update1 Binarization1 Binarization1

Context range generation
/context table access2 Context range generation
/context table access2

Prob check/BAC
/range table access2 Prob check/BAC
/range table access2

Bit-stream update1 Bit-stream update1

Binarization1 Binarization1Context index generation1 Context index generation1

Bit-stream update1 Bit-stream update1

Binary arithmetic codingBinary arithmetic codingRange table accessRange table access

Probability update1 Probability update1

output

SE

AC

bitPacking

Context memory
read

write

Context INIT

RAM – Context State

Arithmetic coder

STAGE 1 STAGE 2 STAGE 3

FIFOFIFO

Binarizer &context idx

Mode Controller

SE

127

Fig. 4-25 Architecture of Binarization

Fig. 4-26 Architecture of Context Modeling

Fig. 4-27 Architecture of AC

Base LUT

abs_mis1

CSA

cMax

+- -
Prefix Gen

Base

binVal-Suffix

TABLE_SuffixTABLE_Pefix

SE

binVal-Prefix

mb_type_val
Const Table UEGK encoder

C0

STATE[CTX=0] MPS[CTX=0] SYMBOL_CNT [CTX=0]

STATE[CTX=1] MPS[CTX=1] SYMBOL_CNT [CTX=1]

: : :

STATE[CTX=460] MPS[CTX=460] SYMBOL_CNT [CTX=460]

CONTEXT MEMORY

R/!W

ctxIdx

LPS Trans. Table

+1 62 63

MPS_STATE_SEL

0 1MPS

Arithmetic code

N_PSTATE

MPS

PSTATE_UPDATE

MPS_UPDATE

PSTATEIDX

MPS_STATE_SEL

PSTATE< 61

PSTATE= 61, 62

PSTATE= 63

0

1

2

MPS_STATE_SEL
PSTATE< 61

PSTATE= 61, 62
PSTATE= 63

0
1
2INIT

PSTATEIDX

MPS Trans. Table

128

TABLE 4-3 Optimized codIRange and codILow

Fig. 4-28 Architecture of Interval Maintainer

Fig. 4-29 Architecture of Renormalization

Renormalization

Re_codIRange Re_codILow

LZD
Barrel-shifter

FSM

Mask Gen

BitsPacking

FIFOFIFO

codIRange_next codILow_next

Output Stage

129

4.9 Deblocking Filter

Fig. 4-30 presents the proposed deblocking filter architecture design. The

deblocking filter module adopts our previous design [76]. Fig. 4-31 shows the

proposed filtering order of block boundary data. In order to speed up the throughput

to meet the requirement and reduce buffer size, we change the filtering order shown in

Fig. 4-6. The filtering starts from the most left-top block, in which we first filter the

pixels on its two vertical edges (edge 0 and edge 1). Then, since all data is available

for horizontal edge 2, we can filter this edge immediately. This horizontal- vertical

interleaved approach is repeated for each 4x4 block in raster scan order, as the edge

number shown in Fig. 4-31. This data flow also improves more data reusability than

the original order shown in Fig. 4-6.

Besides, there are two SRAM modules in this filter. The SRAM, rec_SRAM in Fig.

4-30 stores the data only filtered in one dimension or not filtered yet does not

complete filtering for further data reusing and removing data transferring cycles. The

other SRAM module, Ext_SRAM, is used to store the filtered data for reconstruction.

Finally, we output data to external memory until we complete filtering data of a row

of blocks.

However, the filtering flow requires storing a row of blocks as the reference blocks

for next row of blocks, which needs 30720 bits local memory for 1080p video.

Therefore, it is necessary to send these temporary data to external memory.

130

Fig. 4-30. Architecture design of deblocking filter.

Fig. 4-31. Edge processing order for (A) luma edge, and (B) chroma edge

131

4.10 Implementation Result
4.10.1 Chip specification

A 0.13μm 1080p high profile H.264 video encoder is presented with 3.1x3.1mm2

core size. The equivalent gate count is 593K and the local memory size is 22 KB. The

operating frequency for 720p and 1080p at 30fps is 62.5 and 145MHz respectively.

The chip specification and features are summarized in TABLE 4-4, and the chip photo

is shown in Fig. 4-32.

4.10.2 Power measurement result

TABLE 4-4 also shows the power consumption of our chip under different

supporting resolution. For high profile, the power consumption is 116.61 and 242mW

for 720p and 1080p resolution respectively. As for the baseline profile, the power

consumption for 720p and 1080p resolution is 84.6 and 176.1mW. If you consider the

low resolution video, the required power is 23.61mW for D1, 6.74mW for CIF, and

2.92mW for QCIF. We should note that the core voltage can be lower to 0.9V for CIF

and QCIF resolution. Fig. 4-33 shows the power curves of our design and previous

design. It is obviously that our design is the lowest power design when comparing

with [4][5] no matter which resolution is adopted.

4.10.3 Comparisons with previous work
TABLE 4-5 shows the detailed comparison with other works. The presented design

can support 1080p resolution, high profile, and up to ±128 search range. Compared to

the state-of-the-art design [4] targeted at 720p baseline in low power mode, the power

consumption and operating frequency are 53.4% and 13% lower than [4] due to our

enhanced throughput and complexity reduction. The PSNR loss is only 0.1dB that is

better than [4] that has 0.6dB quality loss at the low power mode. For the area, our

core size is only 54% of [4]. For small resolution video, the level 1 and level 2 of IME

132

are turned off when the video size is below CIF, and level 2 is off for D1 video size.

Therefore, the power consumption is 6.74mW, only 42.6% of [5] and comparable to

the lower power mode in [4] for baseline CIF video. In summary, the design

outperforms other works to achieve 1080p processing with the less power

consumption and area.

133

TABLE 4-4 Chip specification and features.

Fig. 4-32. Chip micrograph.

Name H.264/AVC High Profile @Level 4
Encoder

Process UMC 0.13μm 1P8M Standard CMOS
1.2V core, 3.3V I/O

Package CQFP 208-pin
Gate Count 593K
Internal Memory 22KB
Chip Size 3.76x3.76mm2
Core Size 3.17x3.17mm2
Maximum Processing
Throughput

62.208 M pixels/sec @145MHz

Operating Frequency 145MHz@1080p/30fps
62.5MHz@ 720p/30fps
28.5MHz@D1/30fps
7.2MHz@CIF/30fps
1.8MHz@QCIF/30fps

Core Power consumption Baseline Profile:
176. 1mW@1080p/30fps/1.2V
84.6mW @720p/30fps/1.2V
23.61mW@ D1/30fps/1.2V
6.74mW@CIF/30fps/0.9V
2.92mW@QCIF/30fps/0.9V

High Profile:
242.01 mW@1080p/30fps/1.2V
116.61 mW@ 720p/30fps/1.2V

134

TABLE 4-5 Chip specification and comparison
 Proposed [8] [3] [4] [5]
CMOS Tech. UMC 0.13μm TSMC 0.18μm TSMC 0.13μm TSMC 0.18μm
Core Size 3.17x3.17 mm2 7.68x4.13mm2 4.3x4.3mm2 3.47x3.7mm2
Chip Size 3.74x3.74mm2 N/A 4.9x4.9mm2 N/A
Package CQFP 208-pin N/A CQFP 160-pin N/A
Profile H.264 High

@Level4
H.264 Baseline H.264 Baseline H.264 Baseline

Maximum
Support
Resolution

1920x1080
@30fps
(1080p)

1280x720
@30fps
(720p)

1280x720
@30fps
(720p)

640x480@30fps
(SDTV)

Maximum
Search
Range

H: -128~+127
V: -128~+127

H: -64-+63
V: -32-+31

H: -32-+31
V: -32-+31

H: -32-+31
V: -16-+15

Quality
Loss

0.1dB N/A Up to 0.6dB N/A

Gate Count 593K 922.8K 470K 458.2K
SRAM Size 22KB /B-frame

14KB /P-frame
34.72KB 13.3KB 16.95KB

Operating
Frequency
(for 30fps)

145MHz@1080p
62.5MHz@ 720p
28.5MHz@D1
7.2MHz@CIF

108MHz@720p
81MHz @D1

72/108MHz@720p
30~96MHz@D1
10~28MHz@ CIF

54.5MHz@SDTV
13.5MHz@CIF

Power@
baseline profile
 (for 30fps)

176.1mW
@1080p/1.2V
84.6mW
@ 720p/1.2V
23.61mW
@ D1/1.08V
6.74mW
@CIF/0.9V

785mW@720p
581mW@D1

183mW
@720p/1.2V
27mW@D1/0.9V
7mW@CIF/0.7V

67.2mW
@ SDTV/1.8V
15.9mW
@ CIF/1.3V

Power@
high profile
(for 30fps)

242 mW
@ 1080ps/1.2V
116.61 mW
@ 720p/1.2V

N/A N/A N/A

135

Fig. 4-33. The power of proposed design and previous works.

4.11 System Integration

After the chip implementation, the next step is to integrate our chip into a complete

embedded system which consists of bus system, external memory, embedded

processor, and memory controller as shown in Fig. 4-7. The proposed bus width of

our design is 128 bits, which is four times than general AMBA bus protocol and

external memory bandwidth. To satisfy the memory requirement, the clock rate of the

external bus and memory should be four times than our chip so that the system with

32 bit bus width can provide the bandwidth equivalent to 128 bits. Our design

supports 1080p resolution at 145MHz, so the external bus and memory should work at

580MHz which can be supported by AMBA 2.0 bus protocol and DDR3 SDRAM.

4.12 Summary

In this chapter, we propose a high throughput and low power H.264 encoder. The

design not only supports the high profile specification and more coding tools, but also

uses smaller area and lower power by parallelism enhanced throughput and cross

176.10

84.67

23.61

6.74

2.92

242.01

116.61

183

27

7

15.9

4.3

2

20

200

0 10 20 30 40 50 60 70

Throughput(M pixel/sec)

Power Comparison

Baseline Profile
High Profile

[4]
[5]

1080p HD

720p HD

D1

CIF

QCIF Work at 0.9V

Work at 1.2V

[3]

[2]

Work at 1.08V

136

stage sharing pipeline. Besides, by the golden model and robust verification and

testing strategies, our chip can work correctly and can be used as an IP for further

reuse. In summary, this design achieves 46.7% and 54% reduction in area and power

respectively.

137

Chapter 5

Conclusion

In this chapter, we conclude our work and point out some future works which can

be the next research topics.

5.1 Conclusions

In this thesis, we propose not only a complete design of H.264 high profile encoder

including innovative techniques in algorithm and architecture level but also the first

H.264 high profile encoder chip in academia. This chip supports the high profile

specification and achieves 46.7% and 54% reduction in area and power consumption

by the system level and module level optimization techniques. Therefore, our design

can be used in high definition video applications because it can encode 1080p video in

real time and only requests acceptable hardware cost in mobile or HDTV devices.

Besides, this thesis also explores the cores of H.264 and provides highly data

reused motion estimation engine. First, the proposed techniques such as mode

filtering, PMRME, and SIFME make our engine support 1080p video with just

128.8MHz and 282.6K gates, and saves 60% of gate count, and 68.9% of SRAM

buffers compared to the previous designs. Another important feature of presented

motion estimator is that it can be easily scaled to other smaller size video with search

range adjustment.

Secondly, for the applications which needs high resolution but has fewer resources

like still camera, the intra-only encoder is the best choice. Therefore, we propose a

H.264 intra frame encoder with just 94K gate and 0.72mm2 core area at 140MHz

138

which can support digital video recorder applications with HD1080p 30 frames/sec

resolution in real time and digital still camera application with 4096x2304 resolution

at 6.78 frames/sec. The excellent specification is achieved by the novel optimization

techniques such as fast prediction algorithm, variable pixel parallelism and other

scheduling. With these techniques, this work can reduce 23.5% of gate count but only

with 52% of working frequency.

In summary, the dissertation proposes a series of novelties which can be used in

high definition applications without significant overhead and video quality

degradation. We hope and believe that these improvements from this thesis can be

adopted in commercial products in near future.

5.2 Future Works

5.2.1 H.264 Motion Estimator

 Skip Mode Detection

The skip mode in H.264 motion estimation can reduce a lot of bit-rate and

complexity. However, the original flow about skip mode checking is not suitable for

pipelined hardware design. Therefore, how to modify the skip mode detection

algorithm and integrate it into the hardware is an important issue for low power H.264

encoder design.

 Direct Mode Implementation

To reduce the complexity cost of bi-directional and multiple reference motion

estimation of H.264 encoder, direct mode is used to predict motion vectors in B frame

encoding. The difficulty of direction mode implementation is the complex memory

control and access schedule. For the ultra low power H.264 high profile encoder, the

direct mode implementation must be a future work.

139

 Supporting Multiple Reference

Multiple reference technique is another key feature of H.264 motion estimator

which can increase the precision of motion estimation. However, the computational

loading and memory requirement of this technique are proportional to the number of

reference frames. Therefore, our design does not include this technique yet. In the

future work, our design will include the multiple reference technique.

5.2.2 H.264 Intra Encoder

 Multi-standard Encoder

As for the intra encoder, some modules are similar to previous image compression

standards. For example, the entropy coding modules are similar to JPEG and

JPEG2000 standard. Maybe we can integrate the H.264 intra encoder with JPEG2000

standard.

5.2.3 High Profile Encoder

 Scalable Video Coding Extension

The latest extension of H.264, the scalable video coding, is in the final draft stage.

This extension is used to provide scalability of H.264 bit-stream so that the same

bit-stream can be broadcasted to difference applications. And then, the different

decoders retrieve the necessary data from the bit-stream. However, the foundation of

the scalable video coding is the H.264 high profile codec. Therefore, we can use the

H.264 high profile encoder as a basic structure and add the new coding tools of

scalable video coding.

 System Level Integration

The H.264 high profile encoder chip must be as an accelerator in an integrated

140

system with general purpose processor and external memory system. Therefore, in

addition to the chip performance, we should consider the integration of our design.

Therefore, we are implementing a FPGA platform which implements our design into

FPGA as an IP in an embedded system. By this platform, we can evaluate the system

performance of a complete H.264 encoding system and modify our chip design to fit

the requirement of whole system.

 H.264 High Profile Encoder with Rate-Distortion Optimization (RDO)

H.264 standard supports rate-distortion optimization technique to further improve

the video quality and reduce the bit-rate. However, the iterative coding flow of

rate-distortion optimization results in multiple times of complexity than that of

encoder without optimization. Besides, the iterative loops also result in data hazard in

pipelined system architecture. Therefore, most of H.264 encoder implementations

don’t include the rate-distortion optimization technique. However, the benefits of

RDO is more obvious for high definition video application which pursuits the best

video quality and optimized compression rate. So it is necessary to include the RDO

function in future encoder design.

141

References

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint

Video Specification (ITU-T Rec. H.264/ ISO/ IEC14496-10 AVC), Mar. 2005.

[2] T. Wiegand, and et al., “Overview of the H.264/AVC video coding standard,”

IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.7, pp. 560-575, July 2003.

[3] Y. W. Huang, and et al., “A 1.3TOPS H.264/AVC Single-Chip Encoder for

HDTV applications,” in Proc. Int. Solid State Circuits Conf., pp. 128–588, Feb.

2005.

[4] H. C. Chang, and et al., “A 7mW to 183mW Dynamic Quality-Scalable H.264

Video Encoder Chip,” in Proc. Int. Solid State Circuits Conf., pp. 280–281, Feb.

2007.

[5] T. C. Chen, and et al., “2.8 to 67.2mW Low-Power and Power-Aware H.264

Encoder for Mobile Applications,” in Proc. Symp. on VLSI Circuits, pp. 222-223,

June 2007.

[6] Y. K. Lin, and et al., "A Hardware Efficient H.264/AVC Motion Estimation

Design for High Definition Video," to be published, IEEE Trans. on Circuits

Syst. I, Reg. Papers.

[7] Y. K. Lin, and et al., “A 140MHz 94K GATES HD1080P 30 FRAMES/SEC

INTRA-ONLY PROFILE H.264 ENCODER,” to be published, IEEE Trans.

Circuits Syst. Video Technol.

[8] Y. K. Lin, and et al., “A 242mW, 10mm2 1080p H.264/AVC High Profile

Encoder Chip,” in Proc. Int. Solid State Circuits Conf., pp. 314-315, Feb. 2008.

142

[9] S. Y. Yap, and J. V. McCanny, “A VLSI architecture for variable block size

video motion estimation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no.

7, pp. 384-389, July 2004.

[10] C. M. Ou, C. F. Le, and W. J. Hwang, "An efficient VLSI architecture for H.264

variable block size motion estimation", IEEE Trans. on Consum. Electron., vol.

51, no. 4, pp. 1291-1299, Nov. 2005.

[11] C. Wei and M. Z. Gang, "A novel VLSI architecture for VBSME in MPEG-4

AVC/H.264", in Proc. IEEE Int. Symp. Circuits Syst., vol. 2 pp. 1794-1797, May

2005.

[12] Z. Zheng, and et al., “High Data Reuse VLSI Architecture for H.264 Motion

Estimation,” in Proc. Int. Conf. on Comm. Technol., pp. 1-4, Nov. 2006.

[13] M. Kim, I. Hwang, and S. I. Chae, “A fast vlsi architecture for full search

variable block size motion estimation in MPEG-4 AVC/H.264,” in Proc. Asia

and South Pacific Design Automation Conf., vol. 1, pp. 631–634, Jan. 2005.

[14] J. H. Lee and N. S. Lee, “Variable block size motion estimation algorithm and its

hardware architecture for H.264/AVC,” in Proc. IEEE Int. Symp. Circuits Syst.,

vol.3, pp. 741-744, May 2004.

[15] T. C. Chen, and et al., “Fast Algorithm and Architecture Design of Low-Power

Integer Motion Estimation for H.264/AVC,” IEEE Trans. Circuits Syst. Video

Technol., vol. 17, no. 5, pp. 568-577, May 2007.

[16] C. L. Su, and et al., “A Low Complexity High Quality Interger Motion

Estimation Architecture Design for H.264/AVC,” in Proc IEEE Asia Pacific

Conf. on Circuits and Syst., pp. 398 – 401, Dec. 2006.

[17] Y. L. Xi, and et al., “A fast block-matching algorithm based on adaptive search

area and its VLSI architecture for H.264/AVC,” Signal Process.: Image

Commun., vol. 21, no. 8, pp. 626-646, Sep., 2006,

143

[18] L. Zhang, and W. Gao, “Reusable Architecture and Complexity-Controllable

Algorithm for the Integer/Fractional Motion Estimation of H.264,” IEEE Trans.

on Consum. Electron., vol. 53, no. 2, pp. 749-756, May 2007.

[19] T. H. Tsai, and Y. N. Pan, “A Novel 3-D Predict Hexagon Search Algorithm for

Fast Block Motion Estimation on H.264 Video Coding,” IEEE Trans. Circuits

Syst. Video Technol., vol. 16, no. 12, pp.1542-1547, Dec. 2006.

[20] C. H. Kuo, M. Shen, and C. C. J. Kuo, “Fast motion search with efficient

inter-prediction mode decision for H.264,” J. Visual Comm. and Image

Represent., vol. 17, no. 2, pp. 217-242, April, 2006.

[21] N.A. Khan, S. Masud, A. A. Ahmad, “variable block size motion estimation

algorithm for real-time H.264 video encoding,” Signal Process.: Image

Commun.,” vol. 21, no. 4, pp. 306-315, April, 2006.

[22] Y. K. Tu, and et al.,”Fast variable-size block motion estimation for efficient

H.264/AVC encoding,” Signal Process.: Image Commun., vol. 20, no. 7, pp.

595-623, August, 2005.

[23] Z. Chen, and et al., “Fast integer-pel and fractional-pel motion estimation for

H.264/AVC,” J. Visual Commun. and Image Represent., vol. 17, no. 2, pp.

264-290, April, 2006.

[24] Z. Zhou, J. Xin, and M. T. Sun, “Fast motion estimation and Inter-mode decision

for H.264/MPEG-4 AVC encoding,” J. Visual Commun. and Image Represent.,

vol. 17, no. 2, pp. 243-263, April, 2006.

[25] T. C. Chen and et al., “Analysis and Architecture Design of an HDTV720p 30

Frames/s H.264/AVC Encoder,” IEEE Trans. Circuits Syst. Video Technol., vol.

16, no.6, pp. 673–688, June 2006.

144

[26] C. Y. Chen, and et al., "Analysis and Architecture Design of Variable Block Size

Motion Estimation for H.264/AVC", IEEE Trans. on Circuits Syst. I, Reg.

Papers, vol. 53, no. 3, pp. 578-593, March 2006.

[27] Joint Video Team Reference Software JM9.0, ITU-T.

[28] T. C. Chen, Y. W. Huang, and L. G. Chen, "Fully utilized and reusable

architecture for fractional motion estimation of H.264/AVC" in Proc. IEEE Int.

Conf. on Acoust., Speech, and Signal Process., vol. 4, pp. 9-12, May 2004.

[29] L. Yang, and et al., “Prediction-based Directional Fractional Pixel Motion

Estimation for H.264 Video Coding”, in Proc. IEEE Int. Conf. on Acoust.,

Speech, and Signal Process., vol. 2, pp.901–904, May, 2005.

[30] J. F. Chang, and J. J. Leou, "A Quadratic Prediction Based Fractional-Pixel

Motion Estimation Algorithm for H.264," in Proc. IEEE Int. Symp. on

Multimedia, pp. 491-498, Dec. 2005.

[31] H. Chao, and J. Lu, “A High Accurate Predictor Based Fractional Pixel Search

for H.264,” in Proc. IEEE Int. Conf. on Image Process., pp.2365-2368, Sep.

2006.

[32] L. Shen, and et al., “An adaptive and fast fractional pixel search algorithm in

H.264,” Signal Process., vol. 87, no. 11, pp. 2629-2639, Nov., 2007.

[33] Y. J. Wang, C. C. Cheng, and T. S. Chang, "A Fast Fractional Pel Motion

Estimation Algorithm for H.264/AVC", in Proc. IEEE Int. Symp. Circuits Syst.,

pp. 3974-3977, May 2006.

[34] C. L. Su, and et al., “Low Complexity High Quality Fractional Motion

Estimation Algorithm and Architecture Design for H.264/AVC,” in Proc IEEE

Asia Pacific Conf. on Circuits and Syst., pp. 578-581, Dec. 2006.

[35] C. C. Lin, Y. K. Lin, and T. S. Chang, "PMRME: A Parallel Multi-Resolution

Motion Estimation Algorithm and Architecture for HDTV Sized H.264 Video

145

Coding," Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Process., vol. 2 ,

pp. 385-388, April 2007.

[36] C. Y. Kao, H. C. Kuo, and Y. L. Lin, “High Performance Fractional Motion

Estimation and Mode Decision for H.264/AVC,” in Proc. IEEE Int. Conf. on

Multimedia and Expo, pp. 1241-1244, July 2006.

[37] J. W. Suh, and J. Jeong, “Fast Sub-pixel Motion Estimation Techniques Having

Lower Computation Complexity,” IEEE Trans. on Consum. Electron., vol. 50,

pp. 968-973, Aug. 2004.

[38] C. Yang, S. Goto, T. Ikenaga, “High performance VLSI architecture of fractional

motion estimation in H.264 for HDTV,” in Proc. IEEE Int. Symp. Circuits Syst.,

pp.2605-2608, May 2006.

[39] J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse and memory

bandwidth analysis for full-search block-matching VLSI architecture,” IEEE

Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61–72, Jan. 2002.

[40] T. Y. Kuo, Y. K. Lin, and T. S. Chang, "SIFME: A Single Iteration

Fractional-Pel Motion Estimation Algorithm and Architecture for HDTV Sized

H.264 Video Coding," Proc. IEEE Int. Conf. on Acoust., Speech, and Signal

Process., vol. 1, pp. 1185- 1188, April 2007.

[41] T. Wedi, and et al., “Intra-only H.264/AVC profiles for professional

applications,” JVT-U120, Oct., 2006.

[42] C. W. Ku, and et al., “A high-definition H.264/AVC intra-frame codec IP for

digital video and still camera applications,” IEEE Trans. Circuits Syst. Video

Technol., vol. 16, no. 8, pp. 917- 928, Aug. 2006.

[43] Y. W. Huang, and et al., “Analysis, fast algorithm, and VLSI architecture design

for H.264/AVC intra frame coder,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 15, no. 3, pp. 378-401, Mar. 2005.

146

[44] K. Suh, S. Park, and H. Cho, “An efficient hardware architecture of intra

prediction and TQ/IQIT module for H.264 encoder,” ETRI Journal, vol. 27, no. 5,

pp. 511-524, Oct. 2005.

[45] F. Fu, X. Lin, and L. Xu, “Fast intra prediction algorithm in H.264/AVC,” in

Proc. IEEE Int. Conf. on Signal Process., vol. 2, pp. 1191-1194, Aug. 2004.

[46] B. Meng, and et al., “Efficient intra-prediction algorithm in H.264,” in Proc.

IEEE Int. Conf. on Image Process., vol. 3, pp. 837-840, Sep. 2003.

[47] C. L. Yang, L. M. Po, and W. H. Lam, “A fast H.264 intra prediction algorithm

using macroblock properties,” in Proc. IEEE Int. Conf. on Image Process., vol. 1,

pp. 461-464, Oct. 2004.

[48] F. Pan, and et.al , “Fast intra mode decision algorithm for H.264/AVC video

coding,” in Proc. IEEE Int. Conf. on Image Process., vol. 2, pp. 781-784, Oct.

2004.

[49] C. Kim, H. H. Shih, and C. C. J. Kuo, “Feature-based intra-prediction mode

decision for H.264,” in Proc. IEEE Int. Conf. on Image Process., vol. 2, pp.

769-772, Oct. 2004.

[50] J. F. Wang, and et al., “A novel fast algorithm for intra mode decision in

H.264/AVC encoders,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 3498-3501,

May 2006.

[51] C. C. Cheng, and T. S. Chang, “Fast three step intra prediction algorithm for 4x4

blocks in H.264,” in Proc. IEEE Int. Symp. Circuits Syst., vol.2, pp. 1509-1512,

May 2005.

[52] D. W. Li, and et al., "A 61MHz 72K Gates 1280X720 30FPS H.264 Intra

Encoder," Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Process., vol.2,

pp. 801-804, April 2007.

147

[53] S. C. Hsia, S. H. Wang, and Y. C. Chou, “A configurable IP for mode decision

of H.264/AVC encoder,” in Proc. NASA/ESA Conf. on Adaptive Hardware and

Systems, pp. 146-152, Aug. 2007.

[54] S. Li, and et al., “A VLSI architecture design of an edge based fast intra

prediction mode decision algorithm for H.264/AVC,” in Proc. Great Lakes Symp.

on VLSI, pp.20-24, Mar. 2007.

[55] C. H. Tsai, Y. W Huang, and L.G. Chen, “Algorithm and architecture

optimization for full-mode encoding of H.264/AVC intra prediction,” in Proc.

Midwest Symp. Circuits Syst., vol.1, pp.47-50, Aug. 2005.

[56] H.264/MPEG-4 AVC reference software JM8.6.

[57] H. Malvar, and et al., “Low-complexity transform and quantization with 16-bit

arithmetic for H.26L,” in Proc. IEEE Int. Conf. on Image Process., vol. 2,

pp.489-492, Sep. 2002.

[58] H. Y. Lin, and et al., “Combined 2-D transform and quantization architecture for

H.264 video coders,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1802-1805,

May. 2006.

[59] K. H. Chen, and et al., “A high-performance low power direct 2-D transform

coding IP design for MPEG-4 AVC/H.264 with a switching power suppression

technique,” in Proc. Int. Symp. VLSI Design, Automation & Test, pp. 291-294,

Apr. 2005.

[60] K. H. Chen, J. I. Guo, and J. S. Wang, “High-performance direct 2-D transform

coding IP design for MPEG-4 AVC/H.264,” IEEE Trans. Circuits Syst. Video

Technol., vol. 16, no.4, pp. 472-483, May. 2005.

[61] T. C. Wang, and et al., “Parallel 4x4 2D transform and inverse transform

architecture for MPEG-4 AVC/H.264,” in Proc. IEEE Int. Symp. Circuits Syst., ,

pp. 800-803, May. 2003.

148

[62] M. C. Tsai and T. S. Chang, "High Performance Context Adaptive Variable

Length Coding Encoder for MPEG-4 AVC/H.264 Video Coding," Proc IEEE

Asia Pacific Conf. on Circuits and Syst., 2006, pp. 586-589.

[63] Y. K. Lai, C. C. Chou, and Y. C. Chung, “A simple and cost effective video

encoder with memory-reducing CAVLC,” in Proc. IEEE Int. Symp. Circuits

Syst., pp. 432–435, May 2005.

[64] T. C. Chen, and et al., “Architecture Design of Context-Based Adaptive

Variable-Length Coding for H.264/AVC”, IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 53, no. 9, pp. 832-836, September 2006.

[65] C. D. Chien, and et al., ”A high performance CAVLC encoder design for

MPEG-4 AVC/H.264 video coding applications,” in Proc. IEEE Int. Symp.

Circuits Syst.,pp. 3839-3842, May 2006.

[66] D. Kim, and et al., “Implementation of High Performance CAVLC for

H.264/AVC Video Codec”, in Proc. Int. Workshop on System-on-Chip for

Real-Time Applications, pp. 20-23, December 2006.

[67] Joint Video Team of ITU-T and ISO/IEC: “Draft Text of H.264/AVC Fidelity

Range Extensions Amendment”, JVT-L047, Sep. 2004.

[68] S. Gordon, D. Marpe, and T. Wiegand, “Simplified Use of 8x8 Transforms”,

JVT-K028, March 2004.

[69] Z. Liu, and et al., “A 1.41W H.264/AVC Real-Time Encoder SOC for

HDTV1080P,” in Proc. Symp. on VLSI Circuits, June 2007, pp.12-13.

[70] http://www.ambarella.com/news/press_releases/pr_09102007.htm

[71] http://www.fujitsu.com/us/services/edevices/microelectronics/h264/index_p3.ht

ml

[72] Y. K. Lin, Y. Z. Liao, and T. S. Chang, “An Area-Efficient Design for Integer

149

Transform in H.264/AVC,” in Proc. VLSI Design/CAD Symp., pp. 517-520, Aug.

2006.

[73] J. L. Chen, Y. K. Lin, and T. S. Chang, "A Low Cost Context Adaptive

Arithmetic Coder for H.264/MPEG-4 AVC Video Coding," Proc. IEEE Int. Conf.

on Acoust., Speech, and Signal Process., vol.2 pp. 105-108, April 2007.

[74] V. H. S. Ha, W. S. Shim, and J. W. Kim, “Real-time MPEG-4 AVC/H.264

CABAC entropy coder,” in Proc. IEEE Conf. on Consum. Electron., pp.255-256,

Jan. 2005.

[75] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary

arithmetic coding in the H.264/AVC video compression standard,” IEEE Trans.

Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620-636, July 2003.

[76] C. C. Cheng, and T. S. Chang, “An in-place architecture for the deblocking filter

in H.264/AVC,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, pp. 530-534,

2006.

150

151

作者簡歷

姓名 林佑昆 英文姓名 Yu-Kun Lin

性別 男 生日 1979/5/22

出生地 高雄市 電子信箱
yklin@twins.ee.

nctu.edu.tw

學歷

學位 學校 系所 在學期間

學士 國立台灣大學 電機工程學系 1996/9~2000/7

碩士 國立台灣大學 電機工程學研究所 2000/9~2002/7

博士 國立交通大學 電子研究所 2002/9~2008/7

經歷
交通大學電子所 VLSI Signal Processing Lab.
系統管理員
晶片系統設計中心(CIC)約聘人員
矽智產設計課程助教
計算機結構課程助教
電子系統層級設計課程助教

2002/9~2005/6

2004/9~2005/6
2004/9~2005/1
2005/2~2005/6
2006/2~2006/6

152

專長
1. Digital IC design flow (from RTL to gdsII)
2. Silicon IP design methodology
3. Video codec (MPEG 1/2/4, H.264, Scalable Video Coding)
4. Digital image processing
5. VLSI signal processing
6. Computer architecture
7. Electric system level design
8. ARM-based system platform design
9. Biomedical electronics

榮譽

學業成績優良
1. 大一上 書卷獎 全系第一名
2. 碩士班一年級 全組第一名
3. 碩士班二年級 A 類助學金(全組前 10%)
4. 91 年度斐陶斐榮譽會員
5. 交大博士班獎學金兩年(博士班前五名入學)

研究成果獲獎
1. 92 學年度教育部 IP 設計競賽優勝
2. ASP-DAC 2005 Design Contest Winner
3. 45th ISSCC/DAC Student Design Contest Winner
4. 獲頂尖會議 DAC 2008 邀稿
5. 指導大學部專題生獲 Tensilica 2005 Xtensa 可配

置式處理器設計大賽 第一名

6. 2008 年交大電子所博士論文獎 優等獎

社團領導 1. 87年度台大優良服務性社團負責人 – 華南慈善

獎學金

153

作者著作目錄

International Journal Papers:

[1] Yu-Kun Lin, Chia-Chun Lin, Tzu-Yun Kuo, and Tian-Sheuan Chang, "A

Hardware Efficient H.264/AVC Motion Estimation Design for High Definition

Video," to be published, IEEE Transaction on Circuit and System I: Regular Papers.

[2] Yu-Kun Lin, Chun-Wei Ku, De-Wei Li, and Tian-Sheuan Chang , “A 140MHz

94K GATES HD1080P 30 FRAMES/SEC INTRA-ONLY PROFILE H.264

ENCODER,” to be published, IEEE Transaction on Circuit and System for Video

Technology.

International Conference Papers:

[1] Yu-Kun Lin, De-Wei Li, Chia-Chun Lin, Tzu-Yun Kuo, Sian-Jin Wu, Wei-Cheng

Tai, Wei-Cheng Chang, and Tian-Sheuan Chang, “A 242mW, 10mm2 1080p

H.264/AVC High Profile Encoder Chip,” to be published, Design Automation

Conference (DAC), June 2008. (Invited Paper)

[2] Yu-Kun Lin, De-Wei Li, Chia-Chun Lin, Tzu-Yun Kuo, Sian-Jin Wu, Wei-Cheng

Tai, Wei-Cheng Chang, and Tian-Sheuan Chang, “A 242mW, 10mm2 1080p

H.264/AVC High Profile Encoder Chip,” International Solid-State Circuits

Conference (ISSCC), pp. 314-315, Feb. 2008.

[3] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, “Hardware Efficient Skip

Mode Detection for H.264/AVC,” International Conference on Consumer Electronics

(ICCE), Jan., 2008.

[4] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, "SIFME: A Single Iteration

154

Fractional-Pel Motion Estimation Algorithm and Architecture for HDTV Sized H.264

Video Coding," IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), vol. 1, pp. 1185- 1188, April 2007,.

[5] Jian-Long Chen, Yu-Kun Lin, and Tian-Sheuan Chang, "A Low Cost Context

Adaptive Arithmetic Coder for H.264/MPEG-4 AVC Video Coding," IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

vol.2 pp. 105-108, April 2007.

[6] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, "PMRME: A Parallel

Multi-Resolution Motion Estimation Algorithm and Architecture for HDTV Sized

H.264 Video Coding," IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), vol. 2, pp. 385-388, April 2007.

[7] De-Wei Li, Chun-Wei Ku, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan

Chang, "A 61MHz 72K Gates 1280X720 30FPS H.264 Intra Encoder," IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

vol.2, pp. 801-804, April 2007.

[8] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, "A Fast Algorithm and Its

Architecture for Motion Estimation in MPEG-4 AVC/H.264 Video Coding," IEEE

Asia Pacific Conference on Circuits and Systems (APCCAS),pp. 1248-1251, Dec.

2006.

[9] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, "A Memory Bandwidth

Optimized Interpolator for Motion Compensation in the H.264 Video Decoding,"

IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 1244-1247,

Dec. 2006.

[10] Jia-Bin Huang, Yu-Kun Lin, and Tian-Sheuan Chang, "A Display Order

Oriented Scalable Video Decoder," IEEE Asia Pacific Conference on Circuits and

Systems (APCCAS), pp. 1976-1979, Dec. 2006.

155

[11] Yu-Kun Lin and Tian-Sheuan Chang, "Analysis and architectures of MCTF for

scalable video coding," Picture Coding Symposium (PCS), May 2006.

[12] Yu-Kun Lin and Tian-Sheuan Chang, "Fast block type decision algorithm for

intra prediction in H.264 FRext," in IEEE International Conference on Image

Processing (ICIP), pp. 585-588, Sep. 2005.

[13] Hao-Yun Chin, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan Chang, "A

Bandwidth Efficient Subsampling-based Block Matching Architecture for Motion

Estimation," Asia and South Pacific Design Automation Conference (ASP-DAC), vol.

2, pp. D/7 - D/8, Jan. 2005.

Domestic Conference Papers:

[1] Yu-Kun Lin, Ying-Ze Liao, and Tian-Sheuan Chang, “AN AREA-EFFICIENT

DESIGN FOR INTEGER TRANSFORM IN H.264/AVC FRExt,” VLSI Design/CAD

Symposium, pp. 517-520, Aug. 2006.

[2] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, “Hardware Oriented

Algorithms for Motion Estimation in MPEG-4 AVC/H.264 Video Coding, “ VLSI

Design/CAD Symposium, , pp. 505-508, Aug. 2006.

	封面與簽名頁.pdf
	封面最終版
	授權書
	掃瞄0004
	掃瞄0006
	掃瞄0005

	簽名推薦函
	掃瞄0009
	掃瞄0010
	掃瞄0011

	中文審定書
	掃瞄0007

	英文審定書
	掃瞄0008

	Ver10_6_6

