£-41 % B A2 H.264/MPEG-4 AVCARL L % 75
RS

Design of H.264/MPEG-4 AVC Video Encoder for
High Definition Video

=B A SR
1 W %Efj‘ YGRS
FiER KPP

£-41 % & AR 2 H.264/MPEG-4 AVCARL L % 75
T

Design of H.264/MPEG-4 AVC Video Encoder for
High Definition Video

L

N B R Student : Yu-Kun Lin
Ip R RpEf L Advisor : Dr. Tian-Sheuan Chang
FiEEE L Dr. Chein-Wei Jen

A Dissertation
Submitted to Department of Electronics Engineering and
Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electronics Engineering

June 2008
Hsinchu, Taiwan, Republic of China

PEAR 4Lt &F2

B # F AL 2 H264/MPEG-4 AVC 4.3 %
R

B4 kiR Ip R R E R
EE R

P BAR R AR Y R UR SRR

fim

H264 Fl2 B L& g REGFHFHF > <

Bow HH A BN AE T EHRE uf 5 F o u L £ 32 7] 1920x1080 (1080p):

l

“3) Pd F E R R R B T A R e T LB i B 12 /1 1280720 (720p)
fRiT Rehe B2 bt E B LAEAE S 5 (LR SR Al T s
SR S B E R RR H264 KB R C RGBT N EREFR o ek
AR HEE T TP H264 0fG 0 P s LA We i e R i S T
FO0 0 MFEARSG D A o gt H264 1R hF 8 %iﬁﬁ%ﬁfﬁ?#ﬂﬁ%}ﬂ:%ﬁ
BAROCAE S et P Fl R B R ch Ff s B2 T @ L che FR A% K
TENR ¥ - BT TGS 1080p fR1T R 2 AL 12 L3 H264 B B D
B & ot f P @ S ek 1 P A R A g
A FED B XD BT E ARG R

AT E FZ A o F A AHY AH H24 BB EY B EANT RS
EEEOBE R BFHRE A1 FIBEH264 55 7 RFH BB

GRIBEAT > A PRI T B R R B TR PRAC e o R dla

—

g AFE LTRSS T T32% 8N R o AR RIS 0 3
RIS TR A PR G AHY R O S hT AP
IR BT S T Y 91.7% i B R 2 30% PR R o sttt AR
7 C R snTRE AT R U R B 0 88%
TORE IR 46% s R T o % F A BB B RIS AT T - ik
SR @ T AL RS R RN LA R - iR B2 K ans B B opRs
G40 68% A A o S E T v engkgie2 {2 kv 4T - a4 L 4% 1080p
RT3 0 405 B EA 59 L 12128 e H.264 45 85 iR o Ap RO 2 e
AP AR R0 60%0H Bk 8 68.9% 0 R [RAY

v g 2 A ELH264 12 $nfs 7k o H264 g P hiE) i o

T B3 R R F5E ke JPEG2000 ¥ 0 { B RS 0 T AX 3 F A

B Rt B HRE R g TR B R R rr AR R - B
ATER L HAMA T DA E RGBT S ET EREDRRIBE A FRADUF

ft 1 H.264 f2 1 78 B
IERES R LR RS LIRSS STt (N S R
BOEESFRAWR S L RBERY VR GRS 0 pEE £
BB I BB T FRE b 2 RS

AT Foo B e R A S0 PR AST 1080p R 1T B il 0 TR b 23.5%:0

R BT (R 2

ARG A o B FI AR ITAR S 7 LR D 48% > P W R T 3 M P
W 39 B M Lk o

A ot - A A - BREFDH204 B B RFERBEFILF S AHEFF
fRiT R PE ™t % H264 R ¢ chg i ge o i AP ks v W 203 T i 6
BRIFRIENHBE LT FRRPRDITLE - - BRETLE

1080p f#47 & h H264 B SR 5 F o Fl 5 A A A RF 5B E - 3 540F

#
E

BERankzty L= rﬁ;};bﬁk},{tﬁfﬂu@gﬁj:: CHR T RES F4EE o gt BE 0

RN S e) BB i b BT KRB Y B EE R g F R it

il

R IR KA G o SR BT TR R RS S B R
U E AT R R o gL e SR X N BET (T R R chfl e { i - e
e T A RSEE R L ATH DR B 1 B K SUALSE e A B R et A
NPEATOE S BE R R - B RS G 0 R R e
HAE W PEAME Y L3 PR R PRl FETERET o RL 0 &
BEMR S - B L DR B RS E > & 145MHz T i ¥ L 4% 1080p f# 47 & >
% 013 #ck Az H g R 8 307x3.17 2 F 48 b4 Bk 54% o
A3 1080p fR¥T AP F R B 242 X 0 A A 32 T20p fRITARPE 0 # Y
FERFEEL IR TP463% d Pl m FF o~ M e 3 T A IR R R

SHEP T AHTAET A R B E O g

il

iv

Design of H.264/MPEG-4 AVC Video Encoder
for High Definition Video

Student: Yu-Kun Lin Advisor : Dr. Tian-Sheuan Chang

Dr. Chein-Wei Jen

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

H.264 video standard has been widely adopted in high definition video applications
because of its high compression efficiency and video quality. However, the major
bottlenecks of H.264 implementation are its high computational loading and large
memory bandwidth, especially for encoding 1920x1080 (1080p) high definition video
in real time. Therefore, this dissertation proposes the first chip in academia which can
both support H.264 high profile and encode 1080p video in real time.

This dissertation contains three parts. First, we discuss and analyze the inter
prediction modules which occupy the most memory bandwidth and hardware cost in
H.264 encoder. To overcome these problems, we present a low complexity and
hardware efficient motion estimation design with several design techniques. The first
low complexity technique, mode filtering, selects the best two candidates of all
possible block size combinations for refinement, and reduces the computations of

fractional refinement by 73.2%. To further reduce the complexity and hardware cost,
\%

we propose a multi-level parallel processing technique in integer motion estimation
stage. By this technique, 91.7% of complexity and 30% of gate count can be reduced.
Furthermore, 88% of local memory size and 46% of external memory bandwidth can
be reduced by the level C data reuse technique. Finally, our proposed single iteration
technique can remove 68% of gate count and double the throughput of fractional
motion estimation stage, which is a bottleneck in the inter prediction modules. In
summary, the proposed H.264 inter prediction engine not only can support 1080p
resolution and +128 search range but also can reduce 60% of hardware and 68.9% of
internal SRAM than previous work.

The second part of the dissertation is the architecture design of H.264 intra encoder.
The intra encoder in H.264 standard provides comparable coding efficiency with
JPEG 2000 standards. To achieve high throughput and low area cost, we apply the
modified three-step fast intra prediction to reduce the cycle count while keeping the
quality as close as full search. Then, we further adopt the variable pixel parallelism to
speed up performance on the critical intra prediction part while keeping other parts
with low area cost. The achieved design supports 1080p video encoding and reduces
23.5% of gate count cost compared to the previous design. In addition, this design can
achieve low power consumption by reducing 48% of operating frequency and several
low power techniques.

The final part of this dissertation is a complete H.264 high profile encoder. Because
several high definition applications apply H.264 high profile, we integrate our motion
estimation engine, intra encoder, and the new coding tools of H.264 high profile into a
complete H.264 high profile encoder supporting 1080p video. These 1080p high
profile applications present a series of new design challenges in throughput, cost and
power. Furthermore, in system level, a timing conflict happens in the reconstruction

stage of inter and intra prediction due to the three pipelined stages architecture.
vi

Therefore, we first propose the crossing stage hardware sharing technique to remove
the conflict and repeated hardware. To solve the high throughput demands and
structural hazards, this design adopts full eight-pixel parallelism. In motion estimation
part, the bi-directional motion estimation modules share the hardware, and the integer
and fractional motion estimation modules also share the local SRAM to reduce the
internal memory size and bandwidth. In summary, we propose the first H.264 high
profile encoder in academia which supports 1080p resolution under only 145MHz.
The core area is 3.17x3.17mm? under 0.13pum process, which is only 54% of previous
work. The power consumption is 242mW for 1080p resolution and is only 46.3% of
previous work for 720p resolution. Therefore, the small area, low power, and high

throughput design is suitable for high definition video applications.

vii

viii

S el

- o ’ﬁt'i‘ﬂ’ii‘f‘u)iﬁﬁ A EREL HA g M EPE L 4R ¥ - R
MR R Y S SR EDHF Y AR DS R R ARIES i B R T
T B fS A R I e B E = B R EIER S A hFe e g AR RN L
FLAMAEA C P eniZ 2 @ R EA VP TRBREV A LF Ty 2 B o
peeh s AN R ECE FERR 3 ey W — %TJF’?@; ERZALTHSER A
T2 he ERE S G REE NG Ay o R SR A BB R S IR
ZABEEF AN BRHASC RLE 24T K B Rk R
B RIS HORBREE S MRS o~ S Bk s BR R R
PRI RSN R T A RaER RAEE LS
%a HirpELE R BRHAMH - B AN L P) R

Prie 9 A g BT 0 B S B LA R TSR o by & PR F g

\r’;
e
b
¥
=
)
Ti*
=
(s
A
e
‘?g
B
=
N %
=
A
eic
=
F_&
S
4
j N

VTN ERAE AT LR

INNE N =28 Z

o

BREFLPMESE LA LERN AT E BT SR LR

e

%

EaARErfirprat i o8 2 A0EE AANBREIHE

\.x

“ﬁ:‘r

FrhpE LA R o B KRB HEHA hF & Nelson 565 7 0 152 £ - A2 B
Mo AR T 7AFE 0 RAJEE BR o HF L I o £ B = & H.264 Encoder Chip
B EG @I IR L TR 0 v ok ISSCC 2% > £
LpE YA nd ko B W H264 RIS P A F AR FE
A Ak B PKERE Y AL E o BB ERET RS
Wi iBsam~ 22 prkc A BEKCER CRATCFEFZEFS K
P2z S~ FHAEN R BT PR EBESE] L RERER - RE
FAF @ oo grar b g A L F S o

R IR N ’}%J%,f‘.{g‘.'—”"-'r’ﬁ [N o O L

X

Contents

Chapter 1 INrodUCTIONvieeiiieciiiecee ettt e e e e e e sbe e e sereeenaeas 1
1.1 OVerview Of H.264........cooiiiiiiiiieeee e 1
1.1.1 History of H.264oooiiiiiee e 1

1.1.2 Introduction of H.264 encoder and decoderc.ccccveevrennnnne. 2

1.1.3 Profiles and levels of H.264 specificationc..ccceeveevirennnnnne. 5

1.2 Motivation Of TRESIS ...c.uvieeiieiciieeeiie et e e 7
1.3 Organization and Contribution of Thesis.........cccccverievciieniiniieiecieeeas 8
Chapter 2 High Performance H.264 Motion Estimator for HDTVccccccevininen. 11
2.1 Introduction to H.264 Motion Estimation.............ccccceeveeeeveeeeieeeenieeenneen. 12
2.1.1 System overview for H.264 motion estimationc.......... 12

2.1.2 Variable block size motion estimation (VBSME)....................... 12

2.1.3 - Quarter-pel fractional motion estimation.........c....cceeerveeereveennee. 14

2.1.4 Multiple reference framescccvecveeerveeiviieeeiiee e e eevee e 15

2. L. 5SEESkip mage ... NS Ml .. . IR L 15

2.2 Design Challenges and Paper SUIVEYc.ccceeiieiiieiiiienieeiieeie e 16
2.2.1 Design challengesccccoevuieiieriieiiiieiieeieeie et 16

2.2.2 PaPCI SUIVEY ..oiiiiiiiiiiiiiieenieeesteesttaeeeiteesitessbae s e aeessabeessaaeesaeees 17

23 Mode Filtering Algorithm..........c.ccoiiiiiiiiniiie e 18
2.3.1 Introduction to mode filtering...........cccceeviueiiiirieeriieeiee e, 18

2.3.2 Simulation result of mode filtering.........ccceeevvvieevcieiniieeieeeen, 21

2.3.2.1 Performance of QCIF/CIF sequences..........ccccceevveerveeennenn. 21

2.3.2.2 Performance of 720p SEQUENCES......cceerevveercrreenrieerreeernreenns 23

2.4 Integer Motion Estimation Module : Parallel Multi-Resolution Motion

Estimation (PMRME) [35] oot 25
2.4.1 Algorithm of PMRMEcoooiiiiiieeceeeee e 25
2.4.2 Performance of PMRMEc.cccoiiiiiiiiii 26
2.4.3 Architecture of PMRME ... 28
2.44 Implementation result and comparisonsccceeeveeereveeereveeennen. 35

2.5 Fractional Motion Estimation Module: Single Iteration Fractional Motion

Estimation (SIFME) [40]cueioiiiiieiie ettt 37
2.5.1 Algorithm of SIFME........ccooiiiiiiieieeeeeeeeee e 37

X1

2.5.2 Performance Of SIFMEcoo oo 40

2.5.3 Architecture of SIFME ...t 44

2.5.4 Implementation result and comparisons of SIFME 47

2.6 Integrated DeSIZN......cccccuiiiiiiiiieiiieieecie ettt 49
2.6.1 Integrated video quality analysisccccccuevviierienieniiienieeieeen. 49

2.6.2 Integrated architeCtureccoevieeiieiieeiieieeieeee e 52

2.6.3 Implementation results and comparisSons...........cccceeververuerruennnene 53

2.7 SUMIMATY ..ottt st s 54
Chapter 3 Design of H.264 1080p Intra-only Encoder..........ccccccovveviiiienciieeniieeieens 57
3.1 Introduction of H.264 intra-only encodercccoeevvevuienieenienieeneennen. 58
3.1.1 Overview of H.264 Intra-only encoder...........ccceecuvervenreenrennen. 58

3.1.2 Intra prediCtion.......oceeeieerieeieenee sttt ettt 59

3.1.3 4x4 integer DCT/IDCToooiiiiiiiiieiieeiee e 59

3.1.4 Quantization/Inverse qUANtIZAtiONcceiiieeveeniieeieeniieeieeeeens 62

3. 1SR T (B Rl R R, ... e 62

3.2 Design Challenges and Paper Surveyc.cccceeeeviviniiineencncncecnne. 63
3.2+ | Design challenges ...t 2l i, 63

359N Pap OGN, e, 64

33 Fast and Hardware-Efficient Intra Prediction Algorithms....................... 64
3.3.1 Modified three step algorithm [52]..........cccoceeiiiiiiiniiiiiieeee 64

3.3.2° Enhanced SATD algorithm [42]......ccccovieiiiiieiiieiieeeeee e, 68

3.3.3 Plane mode removal technique [42] ..cccoeevieriiienieeiieieeieeeeee, 70

3.3.4 Performance COMPAriSONcciuerrieerieieeeeriienieeieeereeieesneenaeens 71

3.4 Architecture of Intra-only Encoder............cc.coceviiiiniiiiniinininicces 74
3.4.1 Overview of intra-only encoder with variable pixel parallelism .74

3.4.2 Schedule of encoder...........coocueeiiiiiiiiiiiii e 75

3.4.3 Architecture of eight-pixel parallelism modules.......................... 79

3.4.3.1 Eight-pixel intra predictor..........cccccveeeeiieecieencieeeiee e 79

3432 Eight-pixel DCT...cccooiiiiieieieeceeeeeeeee e 81

3.4.4 Architecture of four-pixel parallelism modules........................... 82

3441 Four-pixel IDCT ...ccooiiiieiieeeeeeeeee e 82

3442 Q/IQ et 83

3.4.5 Architecture of CAVLC modulecccoooeeiiiiiiiniiiniiiiieiee. 83

3.5 Implementation Results and Comparisonccceeeveerveevieenieenieennneenne. 86
3.5.1 Implementation reSults..........cceevueriiiniieniieniieie e 86

Xii

3.6 SUMMATY ...t s e e s e e e saeeesabeeenaaeenes 89
Chapter 4 H.264 HD1080p High Profile Encoder Chipccocoevivvieniininiinienicnene 93
4.1 Overview of H.264/AVC High Profile..........ccccoovieniiiiniiniiiniiicee 94
4.1.1 History of H.264/AVC high profileccoceevviiiiriieeniieeieenee, 94

4.1.2 Introduction of the coding tools of H.264 high profiles and levels

94

4.1.3 Introduction to new tools of H.264/AVC high profile encoder ...95
4.1.3.1 8x8 intra prediCtionccceeecuveeeiuieeeiieeeiie e 95
4.1.3.2 8XxBtransformi........ccceveeiiiiiiiiiiiieee e 96
4.1.3.3 Weighted bi-directional motion estimation.......................... 97
4.1.3.4 Context adaptive binary arithmetic coding (CABAC)......... 97
4.1.3.5 DebloCKiNg........ccceeiiiieeiieeeiieesiie et 100
4.2 Design Challenges and Paper SUIrveyccccceevieeiienieecieenieerieeeeeenn 101
4.2.1 Design challengescccceeriieniiiiiiieniieieesee e 101
4.2 2l aper slllveyer-teel B BN ... N i .. 102
43 SYSIEM OVETVIEWeeviiuiiriieniienieeiiaueeastetesseesseenteseeessesasasneenseenseseenseens 103
4.4 Schedule of H.264 High Profile Encoderccccoeevvueeiieniennennnnn. 104
4.5 System Level Hardware Sharing Techniquescccccoienieriicniencnnnene. 105
4.5.1 Reconstruction Sharing............cccceervueeerueeeiieeesiureeneeeenreeesvee e 105
4.5.2 Hardware-shared bi-directional motion estimation 106
4.6 Full eight-pixel intra encoder............cccveiiieriieiniiniieiieeieeie e 107
4.6.1 Intra prediCtor. ... cooeerieeiieiieecieeie et 110
4.6.2 Interlaced schedule with intra 8x8 prediction..........c..cceecvvennenn. 111
4.6.3 8x8 transform UNit.........ccccecverienieiiinieieneeee e 113
4.6.4 Shared 8x8 inverse transform Unit...........cceeeeerieecieenieeireennnnns 114
4.6.5 8-pixel quantization and inverse quantization unit.................... 118
4.7 Bi-directional Inter Predictor Module............cccovveeiiiieiiieniieeieeiees 119
4.7.1 Techniques for inter predictioncccvveeeciieeeciieeniiieeeee e, 119
4.7.2 4x4 SATD cost funcCtion...........coeeeeiieeiieniieiiienieeeeee e 121
4.8 Architecture of CABAC [73].cuuiiiiiieiieeeeeeeeeeee e 123
4.8.1 The proposed algorithm flow and architecture of CABAC........ 123
4.8.2 Architecture of binarizationccceecveerveeiiienieecieenie e 124
4.8.3 Architecture of context modelingccceevveeiienienieeniienenn, 124

xiii

4.8.4 ATrchiteCture OF AC ..o 124

4.8.5 Interval maintainer in AC.........cccooovvieeiiieeiiie et 125

4.8.6 Renormalization in ACccovieeiiiieeiieecee e 125

4.9 Deblocking Filterccveviiiiiieiiieiieiie et 129
4.10 Implementation Result.........cccooiiiiiiiiiiiiiii e 131
4.10.1 Chip SPeCIfiCaAtIONcevuvieeeiieeiiieeiee et 131

4.10.2 Power measurement 1eSUlt...........ccouveervieeiiieerieeeeiee e 131

4.10.3 Comparisons with previous Workccccceeeeiveerieeenireeenveeene, 131

411 System INtEGrationceevvieeriiieeiieeeiieeeiee e e 135

4.12 SUIMIMATY ..ottt sane s 135
Chapter 5 CONCIUSION.....ccuviieiiiieieteeeieieeeitteeesaaeeesaaesataeesseeesseeesseeesseeessseesssseessssees 137
5.1 CONCIUSIONS ...eutteeeiiiieeiiie ettt e eiteeeieeesaee e eseesnntessineeeeareeenaeeesnseeennseeennseas 137

5.2 Future WOTKSoouvviiieeee it 138
5.2.1 H.264 Motion EStimatorcccccceeireeeeiiieeniieeciee e 138

5.2.2 H.264 Intra ENCOAET.......ccoiueeivieeiiieeiieecieee it 139

5.2.3 High Profile ENncodercccociveiiiieiiieeieeeeecee e, 139

References.... WSy o S i v L. 141

X1V

List of Figures

Fig. 1-1 The basic structure of encoder..........cccveeviiieriieeniieeriee e 3
Fig. 1-2 The basic structure of decoder..........cccvveriiieniiiieniieeiieeee e, 3
Fig. 1-3 Organization of this thesis........cccccveriiiiriiiieie e, 9
Fig. 2-1 Block diagram of H.264 motion estimator.cccccveeevveeennreennns 13
Fig. 2-2 Block sizes and hierarchy for H.264 motion estimation. 13
Fig. 2-3 Integer samples and fractional sample positions for (a) luma and (b)
chroma INterpolation.ccecueeeviieeriieeciee e 14
Fig. 2-4 Multiple references in motion estimation............cceeeveeerveerrnveennne. 15
Fig. 2-5 (a) The original coding flow between IME and FME (b) Mode
filtering algorithm.coooiiiiiiii e 20
Fig. 2-6 The rate-distortion curves of QCIF sequences..............cccveeveuveennee. 22
Fig. 2-7. The rate-distortion curves of CIF sequences............ccceeevuveeeruneenns 22
Fig. 2-8 The rate-distortion curves of 720p SEqUENCES. ...cc..eevevveeeveeernrennn. 24
Fig. 2-9. The three-level new multi-resolution algorithm............................ 26
Fig. 2-10 The rate-distortion curves of 720p S€qUENCES.cccvvrerveeerereennnn. 27
Fig. 2-11 The rate-distortion curves of 1080p sequences.cceeeuvennee. 28
Fig. 2-12. The proposed architecture of IME stage.cccceevvivriinnnnennnn. 31

Fig. 2-13. Basic 4p-SAD unit can accumulate the SAD of four pixels. 31

Fig. 2-14. The SAD calculation unit used for different levels. The modules
can process a search point of a 16x16 MB within one cycle. (a)
The LO (Level 0) search point module (b) The L1 (Level 1) search

point module (c) The L2 (Level 2) search point module. 32
Fig. 2-15. (a) The 4x4 SAD Tree used in level 0. (b) The 8x8 SAD Tree

used in level 1. ..o 34
Fig. 2-16 The search algorithm of reference software [27]cccoevveeeneennne 39

Fig. 2-17. The proposed SIFME on two square points, (0, 0) and
frac_pred_mv, and four triangle point around frac_pred_mv in

one quarter-pel diStance.cceeceeeeiiieiiie e 39
Fig. 2-18. The proposed hardware architecture of FME...............c.............. 45
Fig. 2-19 Interpolation Unit.........ccceeeriieeiiieeiieeciie e e 46
Fig. 2-20. 6-tap 1-D FIR filterccceeeeiiiieeiieeiieeeeee e 46
Fig. 2-21. The block diagram of IME and FME.cccceeoiiiiiieins 54
Fig. 3-1 Block diagram of intra-only encoder............cccceeevveeervieenieeenieens 59
Fig. 3-2 Nine modes for intra luma 4x4 and 8x8 prediction........................ 61

XV

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

3-3 Four modes for intra luma 16x16 and chroma 8x8 prediction....... 61
3-4. Transmission order of all coefficients in a macroblock predicted by
16X16 INtra MOAE.eoeuvieiiiiiiiiieecee e 61
3-5 The scan order and the syntax symbols of a non-zero 4x4 block...62
3-6 Decision flow of (a) original three-step algorithm (b) modified
three-step algorithm.ccccoeeiiiiiiie e 66
3-7 Proposed timing schedule for the modified three-step algorithm. .67
3-8 Proposed architecture of encoder with variable pixel parallelism. 75
3-9 Pipelined schedule for fast encoder (a) best luma mode is 16x16 (b)
best luma mode 18 4X4.....couieiiiiieiieeeeee e 78

3-10 (a) Eight-pixel parallelism intra prediction generator (b) Examples

of operations for intra 16x16 DC mode.cceevveeecvienciieeeinen, 80
3-11 Eight-pixel parallelism transform unit.cccceevevveeeieeenneennne. 80
3-12 Inverse transform Unitccoceeiiiiiiiiieinieieicece e 82
3-13 (a) Quantization and (b) inverse quantization unit....................... 83

3-14 Overall architecture of entropy encoder in H.264 baseline encoder.

3-15 The overall architecture of CAVLC encoder.............ccoceevueennennne 85
3-16 An example for nonzero index table: (a) Original 4x4 block and
zig-zag scan (b) the initial table after all coefficients are loaded

and (c) the updated table after first iteration of leading one

AETECTION. 1. it teieeruiee st st st en et e bt e st e ebeeeateenbeesaneenbeenns 85
3-17 The cycle reduction by adopted techniques.cccccvveerereennnne. 87
3-18 The layout and its design specification.c..ccceeeeuveeecreeenneennne. 88
4-1 Profiles of H.264/AVC ... 95
4-2 Nine modes for intra 8x8 prediction.cccceeevveeervieerieeennnn. 96
4-3 Bi-directional motion estimation.............ceeceervueenieniieenienieeneeeenn 97
4-4 Block diagram of CABACcoovieeiiieeieeeeeeeee et 98
4-5 Flow diagram of arithmetic coding.cccceecveeeeiieeciienieeeeen. 101
4-6 Filtering boundary of @ macroblock.cccceevviiiiniiiieiiiiiiieee. 101
4-7. System overview of H.264 high profile encoder......................... 104
4-8. The scheduling of H.264 high profile encoder............................ 104
4-9. The schedule of reconstruction module............cccccevvieniiniiannnns 106

4-10 System architecture of bi-directional motion estimator for H.264
high profile.......c.cooviiiiiiee e 107

4-11. (a)The architecture of intra encoder part. (b)The gate count
reduction of intra encoder by proposed techniques. 109

4-12.Intra prediction generator used for intra luma 8x8 modes......... 111

XVi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

4-13 Pipelined schedule of proposed intra prediction generator 113

4-14 Hardware architecture of transform unit............ccceevvveerveennee. 113
4-15 Block diagram architecture of inverse transform unit................ 115
4-16 The architecture of 1-D transform unitc.cccccvveeeiieenneennnne. 116
4-17 The 4x4 IDCT transform datapath in inverse transform unit..... 116

4-18 The 8x8 IDCT transform datapath in inverse transform unit..... 117

4-19 The inverse Hadamard transform datapath in inverse transform

4-20 Block algorithm of quantization Circuits.........ccccceeeecveeerveeennnen. 118

4-21. The architecture of motion estimation part and the proposed
AlGOTTtRIMS. ..eiiiiiiiiie e 121

4-22.(a) The memory access reduction of ME (b) the gate count
reduction of ME (¢) the internal SRAM buffer reduction of ME (d)

The trade-off between the number of search point and quality loss.

.. 121
4-23 (a) Original serial chedule of CABAC. (b) Modified parallel

algorithm for CABAC..........ccoiiiieeiieeeeeeeeee e 126
4-24 Pipelined CABAC encoding flow........cccvveriieencneeeeieeciee e, 126
4-25 Architecture of Binarization..............ceceeiiiiiiiiiiiiiiniiieeee 127
4-26 Architecture of Context Modeling............cccoeevveeriiieenciieenieeenee, 127
4-27 Architecture 0f AC ..ccooiiiiiiiiiiii e 127
4-28 Architecture of Interval Maintainer.............icceeiiieeieenienieeneens 128
4-29 Architecture of Renormalizationccocceniiiiinniiiinnnn 128
4-30. Architecture design of deblocking filter.cceeeevvveniennnnnen. 130
4-31.Edge processing order for (A) luma edge, and (B) chroma edge

130
4-32. Chip MICTOZIAPN. ...ceiiviieiiiieiiee ettt e 133
4-33. The power of proposed design and previous works................... 135

Xvil

Xviii

List of Tables

TABLE 1-1 Profiles of H.264 Specification...........ccccueeveveerciieeniieeenieeenneens 6

TABLE 1-2 Levels of H.264 Specification..........c.cccccveeevieeeciieeniiieeeiee e 7

TABLE 2-1 The average mode filtering performance for QCIF and CIF
SEQUETICES ..vvvveeeenerreeeernnrreeeasurreeessnreeeeassseeeeesassneesssssseeessssseesanns 23

TABLE 2-2. The average mode filtering performance for 720p sequences 24

TABLE 2-3. Performance of PMRME for 720p and 1080p sequences....... 27

TABLE 2-4. Memory and bandwidth requirement equation for each level.
The MBsi,. is 16. Besides, SRy, SRy, and SRy, are 16, 64, and
256 10 TESPECT 1vvrieeurreeeieeeaieeeiieeeerereeeitreeesareesseeesseeessseeessseeens 32

TABLE 2-5. Memory and bandwidth requirement is for different frame size.
The saving is compared to the direct design [25]. The

maximum search range is [-128, 127]...c.ccccveevviieecieeeieeee. 33
TABLE 2-6 Comparison of the IME part with previous designs. 36
TABLE 2-7 Prediction accuracy of motion vector (mvx and mvy) compared

to the full search FME algorithm...............cccoooiiiiiniiiiiee. 40
TABLE 2-8 Search point comparisons for different algorithms.................. 40
TABLE 2-9 Simulation results of SIFME for different CIF sequences and

QPs when compared to the reference software [27] 42

TABLE 2-10 PSNR and bit rate comparison for different 720p sequences
and QPs. Speed up is only the performance in fractional ME

BTo.ooveeeeennnnnnennnnyeedoudl ORI T . .oeeeeeeniaeeeeenaaeeeennns 42
TABLE 2-11 PSNR & bit rate comparison for different 1080p sequences

and QP ... e 43
TABLE 2-12 Simulation comparison with previous works..............c.......... 43

TABLE 2-13 comparisons of number of processing unit (PU) and number

of iterative Search StePS........cccveerieeeiieeeiiee e 45
TABLE 2-14 Comparison of the FME part with previous designs.............. 48
TABLE 2-15 PSNR and bitrate change for proposed algorithms compared
with full search for 720p sequences...........ccceeevveeeereeerveeennee. 51
TABLE 2-16 PSNR and bitrate change for proposed algorithms compared
with full search for 1080p sequences.........cccceeevveerveeeenveeennee. 52
TABLE 2-17 hardware cost comparison for complete H.264 ME accelerator
With Previous WorkS......c.ceveveeieiieeiiie e 55
TABLE 3-1 H.264/AVC quantization coefficientsccccecveercveeenveeenneen. 70

XiX

TABLE 3-2 H.264/AVC de-quantization coefficientscccccecvveerveennee. 70

TABLE 3-3 Probability Distribution of All 16x16 Modes in 720p Sequences
with 300 I-frames when QP=28..............cooviiiiiiiiiieieee, 72

TABLE 3-4 The performance of modified 3-step algorithm and combined

algorithm for 720p video SeqUENCes.cevvveeerreeerieenneeennne. 73
TABLE 3-5 The performance of modified 3-step algorithm and combined

algorithm for 1080p video sequences.cccceeeeveeeereeernreenne. 74
TABLE 3-6 Zero-block Codeword Tableccccoevieniiniiiniiiiieiiceeeee, 84
TABLE 3-7 Gate count table for the encoder for HD1080p at 140MHz.....87
TABLE 3-8 Comparison with previous intra encoders............ccceveeeuveeenneen. 90

TABLE 3-9 Comparison of intra predictor part with the state-of-the-art....91

TABLE 4-1 Quantization parameter table when QP equals twenty-eight: A
for 4x4 block size, B for 8x8 block sizeccccvvvvveveeiiiiinnnnn. 118

TABLE 4-2 The performance comparison with 4x4 and adaptive Hadamard

EEANSTOTIN ..o e 123
TABLE 4-3 Optimized codlRange and codILOW............ccccoeeveevrenienennnne. 128
TABLE 4-4 Chip specification and features.cccceevveierereeencieeenneeenne, 133
TABLE 4-5 Chip specification and compariSonccceeerveeeeveeennveennne. 134

XX

Chapter 1

Introduction

The video applications exist in our life in every corner such as the analog/digital
broadcast TV, the DVD/Blu-ray video disk, and the streaming video through mobile
phone or computer. The video applications provide us a lot of fun and convenience.
However, the data amount of the video is very huge. If without compression, no
storage device can process these data. Therefore, efficient video compression
technique has been proposed to reduce the data size and the bandwidth when
transmitting these video signals. The H.264 standard is the latest and the most
powerful video compression standard, and many applications adopt this standard. In
this chapter, we will review the trends of video coding stand and overview H.264
specification. And then, the motivation of the thesis is proposed and followed by the

organization and contribution of the thesis.

1.1 Overview of H.264

1.1.1 History of H.264
In 1990s, The ISO (International Standard Organization) MPEG4 standard was

proposed for new internet-based video applications while the ITU-T
(Telecommunication Standardization Sector) H.263 standard for video compression
was widely used in videoconference systems.

MPEG4 and H.263 are standards based on video compression technology, which
are developed by two groups. The one is Motion Picture Experts Group (MPEG) and

the other is Video Coding Experts Group (VCEG). In 21th century, both groups were

in the final stages of developing a new standard that promises to significantly
outperform MPEG4 and H.263. The VCEG group started work on two further
development areas: a short-term effort to add extra features to H.263 and a long-term
effort to develop a new standard for low bit rate video communications. The
long-term effort led to the draft “H.26L” standard, offering significantly better video
compression efficiency than previous ITU-T standards. Due to the similarity of the
groups, in 2001, the Joint Video Team (JVT) was formed by the experts from MPEG
and VCEG group. The major task of JVT is to develop the draft H.26L to be a full
international standard. Finally, the two identical standards, ISO MPEG4 Part 10 of
MPEG4 and ITU-T H.264, were developed. The official title of the new technique is
Advanced Video Coding (AVC); however, it is well known by the ITU document

number, H.264 [1].

1.1.2 Introduction of H.264 encoder and decoder

Compared to prior video coding standards, many new techniques are employed in
H.264 standard and result in significant improvement on coding performance. The
details of these techniques can be found in [2]. Here, we would like to give a brief
introduction of the basic concepts of the H.264 encoder and decoder.

In common with earlier standards, the H.264 standard does not explicitly define a
CODEC (encoder / decoder pair). Instead, the standard defines the syntax of an
encoded video bit stream together with the method of decoding. Therefore, some
variations in encoder is allowed as long as the format of encoded bit-stream is correct.
Actually, a compliant H.264 encoder and decoder include the functional modules

shown in Fig. 1-1 and Fig. 1-2. In these figures, we can find that the decoder system is

. .. [Coefficient bitstream
Video fFrt—| Transform - Quantization » Entropy ——>
- —
\
B Intra Inverse
| Prediction Quantization .
Motion
_ y Info.
< Motion Inverse
Compensation| Transform
4 >+
ty
Deblocking
Motion | _ Frame Output
" | Estimation Memory Video
Fig. 1-1 The basic structure of encoder.
: Entropy Inverse Inverse
bitstream — Licw
Decoder Quantization ?Transform
residue
Intra
> o | —E
Reference Prediction
o ¥
Frame :
) Motion
Rt .
Compensation v
Deblocking

a part of the encoder, whereas there is a certain range for considerable variation in the

structure.

H.264/AVC also adopts the hybrid video coding scheme which is the same with

MPEG 1/2/4. The input video is divided into marcoblocks. A macroblock consists of

Fig. 1-2 The basic structure of decoder.

three components, luma and two chroma components. The luma component presents

3

the brightness and the chroma components show the color information. The input
macroblocks are predicted by motion estimation (i.e. inter prediction) or intra
prediction. If using inter prediction, the macroblock is predicted by the blocks in
encoded frames. For intra prediction, the macroblock is predicted by the pixels from
neighbor coded macroblocks. The prediction error, which is the difference between
the original and predicted pixels, will be transformed and quantized to reduce the
value. Finally, the processed predicted error is sent to entropy coding module to
generate the final bit-stream. At the same time, the quantized coefficients are
reconstructed by inverse quantization and inverse transform and added by the
predicted values. The reconstructed image is filtered and stored in the memory as the
reference of next macroblock or next frame.

Comparing with previous standards, the H.264/AVC standard has these changes:

1. H.264/AVC uses in-loop deblocking filter to replace the post-loop filter in
previous standards.

2. H.264/AVC supports multiple references frames.

3. The intra prediction provides higher coding efficiency than previous MPEG-4
standard.

4. The Discrete Cosine Transform (DCT) used in previous standards is replaced by
the integer transform.

Fig. 1-2 shows the diagram of H.264/AVC decoder. The entropy decoder decodes
the quantized coefficients and the motion data. As in the encoder, the prediction pixels
are obtained by intra or inter prediction, which is added to the inverse transformed
coefficients.

The details of the important modules will be introduced in the next chapters.

1.1.3 Profiles and levels of H.264 specification
H.264/AVC has many applications; however, different applications have different

requirements both in terms of functionalities and complexity. In order to satisfy the
requirement of all applications as possible, the H.264/AVC specification defines
profiles and levels. A profile is a subset of the coding tools. All decoders compliant to
a certain profile must support all the tools of the profile and the syntax format. Now,
H.264/AVC standard contains seven profiles, whose supporting tools are listed in
TABLE 1-1.

However, for many applications, the major difference of requirement between them
is the format constrain in resolution and bit-rate, not the supporting tools. Therefore, a
level which defines a set of constraints on values of the syntax elements in the bit
stream was created for each profile. Each level specifies upper bounds for the bit
stream or lower bounds for the decoder capabilities. The difference of all levels is
listed in TABLE 1-2. The detailed information on the H.264/AVC profiles and levels

can be found in Annex A of [1].

TABLE 1-1 Profiles of H.264 Specification

Profiles Baseline | Extended | Main | High | High 10 | High 4:2:2 | High 4:4:4
I and P Slices Yes Yes Yes Yes Yes Yes Yes
B Slices No Yes Yes Yes Yes Yes Yes
ST and SP Slices | No Yes No No No No No
Multiple Yes Yes Yes Yes Yes Yes Yes
Reference

Deblocking Yes Yes Yes Yes Yes Yes Yes
Filter

CAVLC Yes Yes Yes Yes Yes Yes Yes
CABAC No No Yes Yes Yes Yes Yes
FMO Yes Yes No No No No No
ASO Yes Yes No No No No No
RS Yes Yes No No No No No
Data Partitioning | No Yes No No No No No
Interlaced No Yes Yes Yes Yes Yes Yes
Coding

4:2:0 Format Yes Yes Yes Yes Yes Yes Yes
4:0:0 Format No No No Yes Yes Yes Yes
4:2:2 Format No No No No No Yes Yes
4:4:4 Format No No No No No No Yes
8 Bit Sample | Yes Yes Yes Yes Yes Yes Yes
Depth

9 and 10 Bit | No No No No Yes Yes Yes
Sample Depth

11 to 14 Bit| No No No No No No Yes
Sample Depth

8x8 Transform No No No Yes Yes Yes Yes
Quantization No No No Yes Yes Yes Yes
Scaling Metrices

Separate Cb and | No No No Yes Yes Yes Yes
Cr QP control

Separate Color | No No No No No No Yes
Plane Coding

Predictive No No No No No No Yes
Lossless Coding

TABLE 1-2 Levels of H.264 Specification

Level Max Max frame | Max video bit | Vertical MV
Number macroblocks | size rate (VCL) | component
per second (macroblocks) | for all | range

profiles

1 1485 99 64-256 [-64,+63.75]
kbits/s

1b 1485 99 128-512 [-64,+63.75]
kbits/s

1.1 3000 396 192-768 [-128,+127.75]
kbits/s

1.2 6000 396 384-1536 [-128,+127.75]
kbits/s

1.3 11880 396 768-3072 [-128,+127.75]
kbits/s

2 11880 396 2-8Mbits/s [-128,+127.75]

2.1 19800 792 4-16Mbit/s [-256,+255.75]

2.2 20250 1620 4-16Mbits/s [-256,+255.75]

3 40500 1620 10-40Mbits/s | [-256,+255.75]

3.1 108000 3600 14-56Mbits/s | [-512,+511.75]

3.2 216000 5120 20-80Mbits/s | [-512,+511.75]

4 245760 8192 20-80Mbits [-512,+511.75]

4.1 245760 8192 50-200Mbits | [-512,t511.75]

4.2 522240 8704 50-200Mbits | [-512,t511.75]

5 589824 22080 135-540Mbits | [-512,+511.75]

5.1 983040 36864 240-960Mbits | [-512,+511.75]

1.2 Motivation of Thesis

H.264 has been adopted as the major coding standard in recently popular high
definition video because of its excellent coding efficiency. Due to its high
computational loading, ASIC implementation of H.264 encoder is preferred.
several but their

Therefore, implementations have been developed

[3]-[5],
performance is limited to baseline 720p [3][4] or SDTV [5]. The main stream 1080p
application presents a series of new design challenges in throughput, cost and power
because of at least a 4X higher complexity than in the 720p baseline.

Thus, in this thesis, we first propose algorithms and architectures for our H.264

encoder to support 1080p resolution without significant quality loss and hardware

overhead. And then, we integrate the whole design with the new coding tools of high

profile to support the latest high definition video applications.

1.3 Organization and Contribution of Thesis

Fig. 1-3 shows the organization and contribution of the dissertation. In chapter 2,
we propose a high performance H.264 motion estimator which can support 1080p
video with 60fps and the search range up to +128 without area and throughput
overhead [6]. In chapter 3, we provide an alternative solution for application with low
power and small area. The high throughput H.264 intra encoder can support 1080p
resolution but its area and complexity cost is much lower than original H.264 encoder
[7]. Finally, the integrated H.264 high profile encoder combines the high performance
and low power techniques from previous two chapters for HDTV applications [8].

The last chapter is the conclusion.

Baseline Profile High Profile
Encoder Encoder
High High Throughput
Performance H.264 Motion
Encoder Estimator (Chap 2)
Low Power H.264
High Profile
Encoder (Chap 4)
Low High Throughput
Power H.264 Intra
Encoder Encoder (Chap 3)

All modules and encoder
support 1080p video
encoding in real time

Fig. 1-3 Organization of this thesis.

10

Chapter 2
High Performance H.264 Motion

Estimator for HDTV

Motion estimation (ME) part is the most important component in H.264 encoder. In
which, the variable block size integer-pel motion estimation (IME) and its improved
fractional-pel ME (FME) not only contributes a lot for coding efficiency but also
dominates the computational loading of the whole encoding process. Thus, various
VLSI realizations of ME have been proposed to speed up the process. In this chapter,
we first introduce the motion estimation algorithms of H.264. Besides, we review the
previous works and define the problems when extending the supporting resolution to
full high definition (HD) size and large search range (SR). And then, we introduce our
proposed algorithms and architectures in H.264 motion estimation part for high
definition (HD) applications: The first technique, mode filtering (MF), is used to
speed up the throughput of whole system. And then the parallel multi-resolution
motion estimation (PMRME) reduces the most complexity and memory bandwidth
for variable block size motion estimation. Finally, the single iteration fractional
motion estimation (SIFME) minimizes the hardware cost and latency for one-quarter

fractional motion estimation.

11

2.1 Introduction to H.264 Motion Estimation

2.1.1 System overview for H.264 motion estimation

The H.264 standard adopts the general block-based motion estimation algorithm,
which compares the block-based coding data with the reference data to find the best
motion vectors. The motion estimation flow of H.264 is illustrated in Fig. 2-1. The
current block is compared with the reference data in the search range of previous
frames, and the best integer motion vectors are decided by integer motion estimation
module. And then the related data is processed by fractional motion estimation
modules for refinement. Finally, the residue data which is the difference between
current block and best reference block is generated for further coding.

Although H.264 standard uses the common block matching algorithm, it has some
new features which differ from previous video standards and will be introduced in
next sections:

® Variable block size motion estimation

® (Quarter-pel fractional motion estimation

® Multiple reference frames

2.1.2 Variable block size motion estimation (VBSME)
The H.264 standard adopts hierarchical variable block size (VBS) motion

estimation technique to improve the prediction accuracy. Fig. 2-2 shows the block
selection procedure and seven possible block size modes for VBSME. In the first step,
the best block size is chosen from mode 1 to mode 4 as shown in Fig. 2-2. If the 8x8
mode is preferred, all blocks are split into smaller blocks from mode 4 to mode 7 in
the second step. Therefore, there are many combinations of chosen modes in a
macroblock. Unlike the previous MPEG 1/2/4 standards which only support 16x16 or

8x8 block matching units, the VBS technique provides flexibility for different

12

Integer Motion Best Motion

Current MB Vectors .
— Integer »| Fractional | Y¢S
. Current MB .
Motion Motion
Ref. Data > —

—| Estimator | Ref. Data . Estimator |Residue Data

Fig. 2-1 Block diagram of H.264 motion estimator.

«—16—
1 | | |
>/MB MB| - 'MB | N
L S R B N -
MB | MB | %iMod'el g
frame 0P N
VT . o) . & Mofle 4
I ARt
e i

Mode 1 Mode 2 Mode 3 Mode 4

16 8 8
8X16 8X8 8X8

16 16x16 16x8 | 16x8
8x16 8x8 | 8x8

8 4 4
4x8 4x4 | 4x4

8 8x8 8x4 | 8x4
4x8 4x4 | 4x4

Mode 4 Mode 5 Mode 6 Mode 7

Fig. 2-2 Block sizes and hierarchy for H.264 motion estimation.

video sequence. For the video with complex textures, the smaller blocks provide
higher coding efficiency. As for the video with flat backgrounds, the larger blocks can

predict the video precisely with fewer motion vectors.

13

(G S S D
(b)

Fig. 2-3 Integer samples and fractional sample positions for (a) luma and (b) chroma

interpolation.

2.1.3 Quarter-pel fractional motion estimation

H.264 standard supports the motion estimation resolution to quarter pixel in luma
components and one-eighth pixel in chroma parts. The sub-pixel motion estimation
technique can raise the prediction accuracy and reduce bit-rate. The interpolation
schedules to generate the half and quarter pixels are presented in Fig. 2-3 (a), The half
luma pixel is generated by the 6-tap filter:

a = E-5*F+20*G-20*H+51-J+16/32 (1)
The quarter pixel is generated by the average of integer and half pixels:

b= (E+F+1)/2 (2)

As for the chroma part, the sub-pixel in Fig. 2-3 (b) is calculated by the interpolation
equation:

c= ((8—x)*(8-y)*A+x*(8—y)*B+(8—x)*y*C+x*y*D+32)/32 3)

14

=]
| —

1

Frame N-4 Frame N-3 Frame N-2 Frame N-1 Frame N
Reference Frames Current Frame

Fig. 2-4 Multiple references in motion estimation.

2.1.4 Multiple reference frames

H.264/AVC standard supports multiple reference frames in motion estimation as
shown in Fig. 2-4. At most five frames can be used to predict current block. By this
technique, the coding efficiency and prediction accuracy can be further improved.
However, the computational complexity is proportional to the number of reference

frame.

2.1.5 Skip mode

Because these new techniques in motion estimation stage dominate the
computational loading and power of the H.264 encoding process, the most efficient
way to lower the complexity and power of H.264 encoder is to skip the prediction
procedure of a macroblock and simply use the information of coded macroblock
directly.

In H.264/AVC, if the following conditions are matched, the macroblock will be
skipped and encoded as skip mode:

1. The chosen block type is 16x16.
2. The best motion vector equals the predicted motion vector (MVP).

3. The chosen reference frame is the previous frame.

15

4. All coefficients are zero after transform and quantization.

2.2 Design Challenges and Paper Survey

2.2.1 Design challenges

As mentioned above, the VBS integer-pel motion estimation (IME) and its
improved fractional-pel ME (FME) modules require the most computational resources
in the whole encoding process of H.264 standard. Thus many VLSI realizations of
ME have been proposed to speed up the process [9]-[18]. However, most of them are
only applicable for standard definition (SD) size or below. For high definition (HD)
video applications that requires large search range up to [-128, 127] or even larger,
direct extension with previous approaches will consume too large area cost, buffers,
bandwidth and cycles. To support large search range, many fast integer ME
algorithms have been proposed [19]-[24]. However, most of them are not suitable for
hardware implementation because of its irregular data flow. Besides, most of these
approaches only consider IME or FME only without exploiting their relationship,
which may result in extra computation cost.

To solve the above problems, we present an efficient ME architecture suitable for
HD videos by various design techniques, including a mode filtering algorithm to
jointly reduce the IME and FME computations, a parallel multi-resolution ME
(PMRME) for large search range IME, and a single iteration FME (SIFME) to
achieve the lower cycle count. The cycles are reduced by hardware parallelism and
algorithm modification (PMRME and SIFME). Furthermore, we lower requirements
of bandwidth and buffer by reusing data within IME as well as between IME and
FME. The video quality loss is low by exploiting unequal distribution of motion

vectors. With these approaches, we can save more than half of area, bandwidth and

16

buffer cost when compared to previous designs.

2.2.2 Paper survey

For fast IME of H.264 standard, various approaches have been proposed [14]-[24]
but few can be readily applicable to large search range as used in HDTV. The large
search range requirement will result in longer execution cycles as well as large buffer
and high memory access. Previous designs with [-63, +64] search range [25][26] use
the full search method and thus occupy large area cost. To solve these problems, one
promising approach is the multi-resolution ME [14]. In [14], they use three
hierarchical levels for search and refine the motion vectors from the coarse level to
the finest level. However, the motion vector found in the higher level needs to be
further refined in the lower level. It implies the search is a sequential process that will
increase the cycle counts, and thus decrease the hardware utilization and throughput.
Besides, a full search range sized buffer is still needed because of the dependency
between the three hierarchical levels. And then, the required bandwidth is still too
large because of poor data reuse of the refinement process. In [15], a modified
three-step algorithm is used to decrease the search points for low power, but still
consumes large area cost and memory. [16] also uses the subsampling techniques to
reduce the hardware cost; however, the two-stage architecture results in longer cycle
counts. In [18], the two-stage flow and the irregular search range cause the difficulty
of external data transfer.

For fast FME, most of them follows the two-step approaches as in reference
software [27] which needs total 17 search points for fractional ME. Although this
algorithm is suitable for hardware [28], it has two drawbacks. First, the nine search
points in each step result in area-costly nine processing units (PUs) for hardware

implementation. The second drawback is that it needs two iterative search loops of
17

interpolation and Hadamard transform to calculate the SATD cost.

To speedup FME, many fast FME [29]-[34] algorithms are proposed to speed up
the process. However, these algorithms [29]-[32] are software-oriented, with irregular
data flow and thus are not suitable for hardware design. Our previous work [33] is
more suitable for hardware and can reduce the processing unit from nine to five to
save hardware cost. But all these algorithms suffer from long computation cycles due
to the two iterative search loops, one for half-pels and one for quarter-pels. On the
other hand, single iteration algorithms like [36][37] have bad performance due to poor
interpolation accuracy. The design in [38] increases the throughput by the cost of
large area and memory bandwidth. In summary, the hardware implementations of
these fast algorithms only reduce the processing element but degrade the quality a lot
or do not reduce the total cycle count. These problems will pose strict limits on the
HD video applications since FME will take more cycles than IME and thus will

dominate the whole pipelining cycle time.

2.3 Mode Filtering Algorithm

2.3.1 Introduction to mode filtering

Fig. 2-5 (a) presents the general flow of IME and FME in the reference software
[27] that IME sends the motion vector to FME for refinement. After all possible
modes and motion vectors are generated, the best mode and its motion vectors are
chosen in the final step of FME. Thus, the IME and FME module both process 41
MVs.

To reduce the complexity, we select the two best modes instead of all modes for FME
refinement as shown in Fig. 2-5 (b). One mode is chosen from mode 1 to mode 3 in
Fig. 2-2, and the other mode is selected from mode 1 to mode 7. With this, only 3 to

18 MVs instead of 41 MVs are computed in FME, which saves 60% to 70%
18

computing cycles. In [28], a similar concept but more complex procedure has been
proposed. Our method can achieve better quality and lower cycle count than that in
[28] because we only select two instead of three candidates and only the best
candidate for the 8x8 and smaller subblock case is considered in the final best mode
selection. Besides, the method also increases the overall ME pipelining efficiency

because it can reduce the cycle count of FME to be similar to that of the IME stage.

19

16x16 1 | No. of MVs
— IME > FME — refined by
16x8 FME: 41
» IME > FME —
8x16 Best
—{IME > FME ——>> mode
Decision and
8x8 MVs
/| P{IMEP{FME |—
8x8 gx4
_‘{ IME | FME |—
4x8
\‘\ > IME > FME |—
4x4
IME »{ FME |—
- (a)
16x16 B No. of MVs
—>[IME[——— refined by FME:
16x8 3~18
first best
mode

mode

second
mode

Y
uoisio9Q
9poN
—

—
uoisIoa(g
apon
go

MVs

S
o 3
w o
o
=

(b)
Fig. 2-5 (a) The original coding flow between IME and FME (b) Mode filtering

algorithm.

20

2.3.2 Simulation result of mode filtering

We test the mode filtering algorithm in three different sizes of video: QCIF, CIF
and 720p test sequences to see the performances under different conditions. The test
sequences with QCIF and CIF resolution are ‘akiyo’, ‘foreman’, and ‘mobile’, which
are low motion, medium motion, and high motion sequences respectively. For 720p
resolution, the test sequences are ‘Stockholm’, and ‘park run’. The search ranges are
8, 16 and 32 for QCIF, CIF and 720p sequences respectively. The reference software

is JM 9.0 [27] without rate-distortion optimization (RDO).

2.3.2.1 Performance of QCIF/CIF sequences
Fig. 2-6 and Fig. 2-7 show the result of mode filtering algorithm for the QCIF and

CIF sequences. For small size sequences, we can observe that mode filtering method
has similar performance as reference software.

TABLE 2-1 presents the average performance of this algorithm of QCIF and CIF
sequences respectively. In these results, we find out that the average bit-rate
increasing can be only 0.54% and 1.30% and the PSNR degradation is only 0.11db,
which performs well.

The performances for CIF sequences are better than that for QCIF because the
mode filtering technique will filter most of the small block modes while these small
block modes are more preferable in small size sequences. Therefore, mode filtering
has better performance for CIF sequences because CIF sequences more prefer larger

block sizes than QCIF.

21

50

PSNRy(dB) »
¢ S

w
o

25

20

50

@SNR (dB)s

25

RD_Curve of QCIF Video

-

=4&—Foreman_Original
=~ Foreman_MF

== Mobile_Orig
== Mobile_MF

== Akiyo_Orig
=0- Akiyo_MF

500 1000534 rate (kbit/sec)lSOO 2000 2500

Fig. 2-6 The rate-distortion curves of QCIF sequences.

RD_Curve of CIF Video

_—"

=4&—Foreman_Original

=~ Foreman_MF
== Mobile_Orig
=>==Mobile_MF

== Akiyo_Orig
=0- Akiyo_MF
' ' ' Bit rate (kbit/sec) ' ' ' '
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig. 2-7. The rate-distortion curves of CIF sequences.

22

TABLE 2-1 The average mode filtering performance for QCIF and CIF sequences

QCIF CIF
PSNR (dB) -0.13 -0.12

QP14 [
Bit-rate (%) 2.52 0.50
PSNR (dB) -0.14 -0.10

QP21 [
Bit-rate (%) 3.96 1.59
PSNR (dB) -0.12 -0.12

QP28 [
Bit-rate (%) 1.45 0.68
PSNR (dB) -0.15 -0.10

QP35 [
Bit-rate (%) -0.67 -0.63
PSNR (dB) -0.11 -0.11

Average |
Bit-rate (%) 1.30 0.54

2.3.2.2 Performance of 720p sequences

Fig. 2-8 shows the rate-distortion curves of 720p sequences. TABLE 2-2 lists the
average performance. For 720p sequences, we find that mode filtering provides very
good performance with very little PSNR dropping for low QP situation. However, as
the QP increases, the bit rate also increases rapidly and reaches 2.19% increasing
under QP36.

For small size (QCIF and CIF) video, the bit-rate overhead is smaller for high QP case
(the low bit-rate condition). It is because the mode filtering algorithm prefers larger
block size which is the better choice for the low bit-rate condition by reduced MV bit.
For 720p sequences, the frame contents are smoother because of the characteristics of
high definition; thus, large block size is preferred in 720p sequences and results in

better performance of mode filtering than that in QCIF and CIF video.

23

50

45

PSNR (dB)

25

RD_Curve of 720p Video

=4—Stockholm_Original

= Stockholm_MF

—Parkrun_Orig

== Parkrun_MF

1000

51000

Bit rate (kbit/sec) '

101000

151000

201000

Fig. 2-8 The rate-distortion curves of 720p sequences.

TABLE 2-2. The average mode filtering performance for 720p sequences

720p
PSNR (dB) -0.03

QP12 _
Bit-rate (%) -0.45
PSNR (dB) -0.04

QP16 .
Bit-rate (%) -0.71
PSNR (dB) -0.11

QP20 _
Bit-rate (%) -1.37
PSNR (dB) -0.15

QP24 :
Bit-rate (%) -2.30
PSNR (dB) -0.09

QP28 .
Bit-rate (%) -0.42
PSNR (dB) -0.07

QP32 _
Bit-rate (%) 1.23
PSNR (dB) -0.06

QP36 -
Bit-rate (%) 2.19
PSNR (dB) -0.08

Average -
Bit-rate (%) -0.26

24

2.4 Integer Motion Estimation Module : Parallel

Multi-Resolution Motion Estimation (PMRME) [35]

2.4.1 Algorithm of PMRME

PMRME includes three levels and all of them are independent to each other, as
illustrated in Fig. 2-9.

In the coarsest level, level 2, the search range (SR) is the largest, [-128~127], and
centered on the original point (0,0). This enables the regular memory reuse between
successive MB processing as used in most of ME designs [39]. This level uses the
16:1 sampling and thus we only choose the 16x16 mode (mode 1 in Fig. 2-2) since
other modes will contain too fewer pixels for SAD calculation and may result in poor
mode decision.

In level 1, the SR is reduced to [-32 ~ +31] and also centered on (0,0) for memory
reuse. This level uses the 4:1 sampling and thus we only choose the 16x16 to 8x8
mode (mode 1 to 4 in Fig. 2-2) for the same reason as level 2.

In the finest level, level 0, the SR is set to [-8 ~ +7]. However, unlike the other two
levels with (0,0) center, we choose the MVP as the center due to its higher probability
to find the final MV here. Thus, we do not subsample data in this level and thus
enable search for all variable block size modes.

In the three parallel levels, the level 2 provides a large search range for high motion
blocks with coarse precision. It is useful for very high motion blocks, and can find a

good enough though rough motion vector candidate. Also, the level 1 can provide a

25

Center:

Level 0 / (pred_x ,pred_y)
SR [-8~7] -

mode 1 ~mode 7 P B

Level 1
SR [-32~31]
mode 1 ~ mode 4

Level 2
SR [-128~127]
mode 1

Fig. 2-9. The three-level new multi-resolution algorithm.

medium search range but a finer MV precision. With these two large search levels, the
motion search algorithm of level 0 can converge to the true motion vector quickly by
effects of MVP. If only the level 0 is used, it is difficult to trace the high motion

blocks because the MVP cannot follow up the real motion effectively in this case.

2.4.2 Performance of PMRME

TABLE 2-3 shows the video quality of PMRME algorithm for 720p and 1080p
sequences respectively.

Rate-distortion optimization (RDO) is not used, and only the first frame is intra
frame. The search range (SR) is [-128, 127]. All simulation results are compared with
reference software JM9.0 [27]. TABLE 2-3 shows the average performance under
different QPs. For 720p video, four test sequences are used: Stockholm, park run, and

shields. The frame rate is 30 and 300 frames are coded.

26

50

45

PSNR(dB)
N
[=}

(%)
[

30

25

TABLE 2-3. Performance of PMRME for 720p and 1080p sequences

QP 720p 1080p
PSNR inc.(db) -0.0025 0.00
QP16) -
Bit rate inc. (%) -1.02 -0.49
PSNR inc.(db) 0 -0.01
QP20 - 5
Bit rate inc. (%) -0.49 -0.44
PSNR inc.(db) -0.0075 -0.03
QP24 - 5
Bit rate inc. (%) -0.335 -0.40
PSNR inc.(db) -0.005 -0.06
QP28 . .
Bit rate inc. (%) -0.2 0.40
PSNR inc.(db) -0.01 -0.06
QP32 - -
Bit rate inc. (%) 1.56 1.68
PSNR inc.(db) -0.005 -0.04
Average . -
Bit rate inc. (%) -0.017 0.15

RD-Curve for 720p sequences

-4+ Mobcal_Orig
--#--Mobcal PMRME
~—A— Parkrun_orig

=% Parkrun_PMRME
=% Stockholm_orig
—O— Stockholm_PMRME
Shield_orig

Shield PMRME

0 10000 20000 30000 40000 50000 60000 70000
Bit-Rate(Kbits/sec)

Fig. 2-10 The rate-distortion curves of 720p sequences.

27

RD-Curve for 1080p sequences

49 3 X me
47 e T S et
PrI :_.:x—_' ———————
o e LT - station2_orig
g4 == === ~E--station2 PMRME
g /)(’;:_.__ station2_|
D41 | PLe —=tush_hourorig———————
l" - B
39 _".- = X= msh hour PMRME
£ —#— sunflower_orig
37 e
! sunflower PMRME
35 =
0 20000 40000 60000 80000 100000 120000

Bit-Rate(Kbits/sec)

Fig. 2-11 The rate-distortion curves of 1080p sequences.

For 1080p video, three test sequences include: station2, rush_hour, and sunflower.
The number of testing frames is 100. We should note that the 1920x1080 image is
truncated to 1920x1072 to fit the multiples of 16.

Fig. 2-7 and Fig. 2-8 present the rate-distortion curve of 720p and 1080p video
sequences, respectively. The results show the PMRME algorithm can achieve the
similar video quality as the full search algorithm. However, the bit-rate overhead is
larger under high OP because the video quality of reconstructed video will be worse
for high QP and the worse reference will mislead the subsampling method. For 720p
sequences, PSNR loss is only 0.005dB and the bit-rate decreasing is 1.28% in average.
As for 1080p sequences, it has 0.04dB PSNR loss and up to 0.15% of bit-rate
decreasing in average. The average PSNR quality loss is negligible and the bit-rate in

some cases is decreasing because PMRME also prefers larger block size.

2.4.3 Architecture of PMRME

Fig. 2-12 shows the proposed IME architecture. All three levels can be computed in
parallel. A 16x16 current block is shared by three levels. The memory size and

bandwidth for three reference frame buffers are listed in TABLE 2-4 and TABLE 2-5.

28

The bit width of memory buffer of level 1 and level 2 are truncated while that of the
level O is not. The reason for this is that the level 0 data can be reused by the
following FME hardware if the best MV falls in the level 0. TABLE 2-4 presents the
equation of buffer size and the memory access requirement for each level and direct
implementation [25]. The MBsize in the table is 16. Besides, SRLO, SRL1, and SRL2
are respective 16, 64, and 256. We should note that the buffer size for direct
implementation is the search range size. As for level 0, the buffer size is a little larger
than the search range because it includes the neighbor pixels for FME interpolation.
But in the case of level 1 and level 2, the memory size is only one-fourth and
one-sixteen of their search range by the subsampling techniques. Besides, the
bit-truncation technique also reduces 25% to 37.5% buffer size if two or three bits are
truncated. As for the memory bandwidth, by the level C data-reuse scheme in [39], the
direct implementation needs to update (SR+MBsize-1)*16 pixels. Therefore, the
larger search range results in the lower proportion of update rate. Thus, only
16/(64+16) = 20% data in level 1 SRAM should be updated when the coding MB
changes with above approach. As for level 2, only 16/(256+16) = 5.88% data should
be updated. TABLE 2-5 shows the real buffer size and memory bandwidth
requirement for 720p and 1080p video. The proposed algorithm can save over 91.91%
buffer in the 720p case and 55% bandwidth in the 1080p case by subsampling and
bit-truncation when comparing to [18] that also uses level C data-reuse scheme. If the
bus width is 128 bits, it only needs 121 cycles per MB to transfer the required data
from external memory to SRAM.

In this architecture, all computations are decomposed as the combinations of 4x4
blocks. The basic processing unit is the 4p-SAD (four-pixel SAD) unit which can
process the SAD of four pixels as depicted in Fig. 2-13. With this, every level can be

easily implemented by regularly composed SAD units. As Fig. 2-12 presents, LO
29

(level 0) has one search point module which can process a search point within one
cycle so that the level 0 with search range [-8, +7] can finish the full search within
256 cycles. In the same manner, level 1 and level 2 has four and 16 search point
modules, which mean the level 1 and level 2 can process four and 16 search points in
parallel. Therefore, level 1 and level 2 can process 1024 and 4096 search points
within 256 cycles by the parallelization techniques.

Fig. 2-14 shows the detailed architecture of search point modules of each level. Fig.
2-14 (a) shows the “L0 search point module”, which is consisted of four row SAD
modules. Each row SAD module contains 16 4p-SAD units. Thus, the LO search point
module includes 64 4p-SAD units in total to generate the total SAD cost of a 16x16
MB. As for level 1 with 2:1 subsampling, the number of search point is 1024.
Furthermore, since the current buffer for level 1 is also subsampled, only 64 pixels are
compared in current MB. Therefore, L1 (Level 1) search point modules in Fig. 2-14(b)
only needs 16 4p-SAD units, which is quarter of that in level 0. In order to keep the
cycle count of level 1 as the same as that of level 0, we use four L1 search point
modules. Thus, four search points in level 1 can be processed in parallel with the
same current block. With above arrangement, the total hardware cost of level 1 is the
same as that of level 0, 64 4p-SAD units. Similar design considerations are also
applied to level 2. Thus, in level 2, the L2 (Level 2) search point module in Fig.
2-14(c) only needs 4 4p-SAD units so that we use 16 L2 search point modules to
compute 16 search points in parallel. In summary, all these levels have 64 4p-SAD
units respectively to balance the computation cycle of each level to be the same 256

cycles.

30

Current MB

SISt ® 9 | L2 Search Point Module 0 l— — = — — —
— g
S 8 8 67 2 Y
Q& &H g :
=g | L2 Search Point Module 1 l— — = — — — =
: gi <<4
| . .S
L2 Search Point Module 14 l— — = — — — :
]
o
— 1=
o & A -
%) 4
=2k " | [L2 Search Point Module 15 | 1 {= — — — -
16 —_ 3 ° | L1 Search Point Module 0 l— — —I xife:AOU] 2
—_ = %
S 8 E 1393 |11 <
R g & g X8 SAD : =
= e | L1 Search Point Module 1 l— — —I tree 1 g —g
._i <<2 S
8XS SAD = N
| L1 Search Point Module 2 l— — —I tree) B -
\] 53
o 2
» ZE s . 3
i1 | L1 Search Point Module 3 l— — —| F 2
& @ tree 3 LI
=
S 314 2 16
—-
| L0 Search Point Module 0 l— — 1 4)([:£AOD ips
2
» g 16—
—
—_ »
Fig. 2-12. The proposed architecture of IME stage.

I
[
|
\
\
\

SAD Unit

Fig. 2-13. Basic 4p-SAD unit can accumulate the SAD of four pixels.

31

Py
=]

Level 0A 16 |
!
Level 0B 16

1
|
|
|
|

SINPOJN 10 (PI83S 71

SINPON 1U0d (2IE3S 11

L1 Search Point Module (b)

Fig. 2-14. The SAD calculation unit used for different levels. The modules can
process a search point of a 16x16 MB within one cycle. (a) The LO (Level 0) search
point module (b) The L1 (Level 1) search point module (c) The L2 (Level 2) search

point module.

TABLE 2-4. Memory and bandwidth requirement equation for each level. The MBg;,e
is 16. Besides, SRy, SRy, and SR, are 16, 64, and 256 in respect

Memory cost buffer size BW(per MB)
(SRLO + MBsize+ 5) (SRLO a MBsize +5)
Level 0
n (SRLO+ MBsize+ 5)*8 * (SRLO+ MBsize+5) *8
(SRL1/2 + MBge/2 -1)| (SR11/2 + MBgye/2 -1)
Level I | *(SRiy/2+MBgs/2) | * (SR11/2 + MBiie/2)*
*(Pixel_Depthy) (16/(64+16)) *8
(SRL2/4 + MB,;,./4 —1) (SRL2/4 + MB;,./4 —1)
Level 2 | * (SRiz/4 + MBy,e/d) | * (SRpo/4 + MByie/4)
*(Pixel_Depthys) *(16/(256+16)) *8
. . (SR+MBsize‘ 1) (SR+MBSize‘ 1) (SR+MBsize)
Direct design
(SR+MBiye) *8 *(16/(256+16)) *8

32

TABLE 2-5. Memory and bandwidth requirement is for different frame size. The
saving is compared to the direct design [25]. The maximum search range is [-128,
127]
for 720p for 1080p
buffer sizeBW(per MB)buffer sizeBW(per MB)
Level 0 (Kbyte) 1.369 1.369 1.369 1.369
Level 1 (Kbyte) 0.975 0.312 1.170 0.312
Level 2 (Kbyte) 2.8475 0.268 3.417 0.268

Memory cost

Total (Kbytes) | 5.1915 1.949 5.956 1.572
Direct design | 73.712 4.336 73.712 4.336
Saving (%) 92.95 55 91.91 55

The SADs generated from the SAD modules are further summed up by the
summation trees to generate the SAD of different block size as shown in Fig. 2-15. In
Fig. 2-15(a), level 0 has the most complex summation trees for combination of the
seven kinds of block types. The SADs of 4x4 blocks 00, 01, 02, and 03 are
accumulated in the first step, and then they are saved to registers dly4. When the
SADs of the 4x4 blocks 10, 11, 12, and 13 are ready, these SADs are accumulated for
4x8 and 8x4 SADs. Then two 8x4 SADs are used to generate 8x8 SAD. In the same
manner, the SAD of 16x8, 8x16, and 16x16 blocks are generated. For the level 1, four
“8x8 SAD tree” are used for combination of the mode 1 to mode 4 block types.

Fig. 2-15 (b) presents the 8x8 SAD trees for level 1. However, in level 2, only
comparators and registers are needed to select the minimum SAD cost. Finally, the
selection module will choose the best two SAD costs from different levels for the

fractional ME module.

33

[4x4 SAD tree |

L [
4x4] | 4x8 € 00 | 10 | 20 | 30
00|, 00| %
4x4 | 5| 4x8|g 01 | 11 | 21 | 31
01 [F] 10
4x4 5 8x4 é 02| 12 | 22 | 32
_]0 <) 00 iN 8x8 dly
4x4 8x4 | o 4 0013 03 | 13|23 |33
11 01 [
— — 4x4 Block No.
4x4 AR 4x8 §
02 |1 01 |%
4x4 | E| [ay 4x8 | =
03 i 4 11—
4x4 | 5 8x4 |E
2] 02 %w 8x8 | [y z
8x16 | =
4x4 8x4 =~ 01 8 0 |3
13 03 — g
= 8x16 |
]] 1
4x4 | | [ay 4x8 | £
20 [20|%
4x4 || [ay 4x8 | = z —
o1 (25 30) 16x8 | 5 | ¢
, » < " 0 |2 3
4x4 f 8x4 % = (8.9. 16x16 | 3
30[° 10 [Z[{8x8 10815] e
4x4 8x4 | =1~ 10 =
31 11—
,_ 12}
4x4 | | 4x8 g
2, 21|%
4x4 | E| 4x8 | =
B [F 31
4x4 | 2 8x4 | &
2| 12 ‘%w 8x8
4x4 8x4 | =| o _11
33 13 (a)
| 8x8 SAD tree |
N
8x8 L
00 2|
rove | 2
8x8 8—|
(¢}
_01 g
[
N B [—
8x8 g!
| ! 2! Tiexi6 |2
| 8| X0 s
8x8 || o g
|11 == (b)
Fig. 2-15. (a) The 4x4 SAD Tree used in level 0. (b) The 8x8 SAD Tree used in level

1.

34

2.4.4 Implementation result and comparisons

The proposed design has been implemented by Verilog and synthesized by 0.13um
CMOS process. TABLE 2-6 shows the total hardware cost of our IME design and
comparison to other designs. Our design can provide the largest search range
capability (High Profile Level 2) but just needs 213.7K gate count and 5.95KB local
SRAM. Besides, our design has the shortest latency so that our design can achieve
1080p@601fps specification with only 124MHz operating frequency only. In
comparison, designs in [12][13][26] has larger area cost and long latency due to the
full search architecture. Though designs in [14][15] use fast algorithms to reduce the
latency, they still needs large area cost and buffer. As for [16], their throughput is only
one-fourth of ours though it uses fast algorithm. The proposed IME design can
achieve low latency with low buffer cost and similar area cost, and thus is suitable for

HD applications.

35

TABLE 2-6 Comparison of the IME part with previous designs.

[15] 9] [13] [14] [26] [16] [12] Ours [35]
Max. CIF@ ACIF@ 4CIF@ | 720x480@ | 720p@ 720p@ 720p@ 1080p@
Resolution 301fps 15fps 15fps 301fps 301fps 301fps 601ps 601fps
Search 4-Step Full Full Multi- Full Sub- Full Multi-resolutio
Algorithm resolution sampling n
Quality About 0.1 0 0 0.4 0 0.083 0 0.065
loss(dB)
PE (SAD 256 16 256 64/320 1024 32 256 192
Module)
Max. H:+32 H:+32 H:+64 H:+64 H:+64 H:+32 H:+16 H: +128
Search V: 16 V: £32 V: +64 V: +64 V: £32 V: £32 V:£16 V: £128
Range
Gate 131.2 61 154 n.a 330.2 47.9+4k 176 155.8 for 720p
Count (K) bit buffer 213.7 for 1080p
Memory 8 n.a. 7.5 n.a 26 2.75 41.6 5.19 for 720p
(Kbyte) 5.95 for 1080p
Operating 40 294 for 100 for 16 for n.a 105 for 55.6 for | 27.6 for 720p
Freq.(MHz) | (13.3 for 4CIF 4CIF 720x480 720p 720p 124.4for 1080p
CIF)
Latency n.a. 4096 1024 375 n.a 972 258 256
(Cycle)
CMOS 0.18 um 0.13um 0.18um n.a 0.18um 0.18um 0.18um 0.13 um
Tech.

36

2.5 Fractional Motion Estimation Module: Single Iteration

Fractional Motion Estimation (SIFME) [40]

2.5.1 Algorithm of SIFME

Fig. 2-16 shows the fractional-pel motion estimation (FME) algorithm in reference
software [27]. This search process is divided into two steps. The first step is half-pel
motion estimation, where the specific pixels at half-pel spacing are calculated for
comparison. The second step is the quarter-pel motion estimation, where the pixels at
quarter-pel spacing are obtained for comparison. However, this algorithm searches 17
point totally, and the two step schedule doubles the latency of FME modules.
Therefore, we must propose single iteration fractional motion estimation (SIFME) [40]
to reduce the latency and hardware cost of FME.

Inspired by the unequal distribution of MVs, we propose SIFME that searches six
candidates in only one step without refined search as shown in Fig. 2-17. The
candidate with the lowest cost will be selected as the best one.

It first calculates the fractional predicted motion vector (frac_pred mv):

frac_pred mv=(pred mv-mv)%p

4
where pred mv here is defined as the fractional pixel unit of MVP. mv is the integer
pixel motion vector after IME process, and is also in fractional pel unit. % is the mode
operation. B3 is 4 in 1/4-pel case and is 8 in 1/8-pel case. frac_pred mv is the predicted
fractional motion vector and indicates only fractional position.

The six candidates includes (0, 0), frac_pred mv from (4) and four diamond points
around frac_pred mv. (0, 0) is included for low texture and low motion sequences.
Other search points are placed around frac_pred mv since the best fractional motion
vector is more probable around frac pred mv than around (0, 0).

TABLE 2-7 shows the prediction correctness compared with the algorithm in the
37

reference software. The prediction accuracy is defined as if the fractional MV by the
proposed approach is the same as that by the full search algorithm of the reference
software. We use four 720p-sized test sequences with 300 frames under different QPs.

The reference software is JM9.0 [27]. This result shows that it has more than 70%
prediction accuracy in average though the proposed one has ignored more than 88%
search points.

TABLE 2-8 shows the search point comparisons with other algorithms. The
proposed algorithm searches the fewest points compared to other search algorithms.
Besides, our approach does not need the second step search and saves the additional

interpolation time, which is very suitable for hardware design.

38

D

&

Q : Integer pixel
D - half pixel

/\ : quarter pixel

=
N
=

ﬁ}%%[
.

dn
@
[
=
an
&

]
]
[
]
[]
=

@ e D

Fig. 2-16 The search algorithm of reference software [27]

Q - ©@ S

A D (0,0) and MVP in the

first iteration loop

The neighbor points
around MVP also in
the first iteration loop

0
@ EP S

¢ e o
Fig. 2-17. The proposed SIFME on two square points, (0, 0) and frac_pred_mv, and

four triangle point around frac_pred_mv in one quarter-pel distance.

39

TABLE 2-7 Prediction accuracy of motion vector (mvx and mvy) compared to the full

search FME algorithm
720p size, 300 frame, IPPP, RDO off, SR=+32
QP mobile shields | park run | Stockholm
calendar

10 58.62% 48.77% | 64.65% 73.49%
16 65.68% 55.27% | 66.65% 76.07%
22 77.74% 66.78% 67% 78.01%
28 87.46% 87.61% | 72.84% 84.86%
34 91.31% 92.34% | 80.83% 91.2%
40 92.65% 93.71% | 85.92% 94.3%
Avg. 78.91% 74.08% | 72.94% 82.9%

TABLE 2-8 Search point comparisons for different algorithms

search point

IM [27] 17

[30] 6+multiple diamond search (Total <=11)
[29] 6 + multiple diamond search

[33] 8~9

Proposed [40] | 6

2.5.2 Performance of SIFME

TABLE 2-9 shows the simulation results of SIFME for CIF sequences. Only the
first frame is set to I-frame because inserting I-frame periodically will reduce the
effect of SIFME. The results shown in TABLE 2-9 are compared with the reference
software. The maximum PSNR drop is only 0.13dB and the bit-rate overhead is lower
than 2.11% except the cases with QP40. That is quite acceptable since the bit rate at
that condition is quite low and any increase will be large in terms of that bit rate.

TABLE 2-10 and TABLE 2-11 show the simulation results of the proposed SIFME
for 720p and 1080p sequences. Since our hardware architecture is used for HDTV

size video, we care more about the performance on 1080p and 720p size sequences

40

rather than that on CIF size sequences. For the result on 720p size sequence shown in
TABLE 2-10, the PSNR degradation is lower than 0.08dB and the bit-rate increasing
is below 4.28%. Moreover, the bit-rate even decreases in most cases. The reason may
be that SIFME tends to find the motion vector similar to the motion vector predictor
(mvp) and thus saves bits for coding motion vectors. TABLE 2-11 shows that the
result of 1080p video. The PSNR degradation is also lower than 0.08dB and the
bit-rate increasing is below 4.47%. Under high QP condition, the PSNR performance
of SIFME is even better than that of the reference software. The reason is that the
correct motion vectors are getting closer to motion vector predictors under high QP
condition, and hence the accurate fractional motion vectors are getting closer to
frac mv_pred in eq. (4).

Comparing the results shown in TABLE 2-9 to the results in TABLE 2-10 and
TABLE 2-11, we can find that SIFME has better performance on large size sequences
than CIF size sequences, which matches our goal. Besides, SIFME greatly reduces
computation time of FME. The proposed algorithm can speed up the FME part by up
to 4 times compared to the reference software. The major reason is the reduction of
search candidates.

Summing the information from TABLE 2-9 to TABLE 2-11, we can conclude that
SIFME can reduce 88% of search points and speed up the coding by 4 times with only
less than 0.13 dB PSNR degradation and 4.47% of bit rate increase. For some 720p or
1080p sequences, SIFME even has better PSNR quality or less bit rate than that of IM
software [27].

TABLE 2-12 shows the performance comparison with previous works. SIFME
speeds up more than our previous work [33] with the similar PSNR quality and less
bit rate increase. The algorithm in [29] has better video quality than ours but it

requires much iteration and hence is not suitable for hardware implementation.
41

TABLE 2-9 Simulation results of SIFME for different CIF sequences and QPs when
compared to the reference software [27]

CIF size, 300 frame, only first frame is I-frame, ProfileIDC=100,

RDO off, Search range = 32

SIFME

container foreman mobile&calendar stefan
QP | APSNR | Abit | APSNR | Abit | APSNR | Abit | APSNR | Abit
(dB) rate (dB) rate (dB) rate (dB) rate

10 -0.03 | -0.75% -0.05 | 0.04% -0.04 | -0.24% -0.04 0%
16 0] -0.28% -0.07 | 1.03% -0.06 | 0.16% -0.05 | 0.30%
22 -0.03 | -0.37% -0.09 | 0.89% -0.08 | 0.06% -0.06 | 0.50%
28 0.03 | 0.46% -0.09 | 1.50% -0.07 | 0.47% -0.07 | 1.24%
34 0.04 | 2.11% -0.12 | 1.35% -0.07 | 1.73% -0.10 | 1.57%
40 -0.03 | 4.36% -0.08 | -0.36% -0.08 | 2.30% -0.13 | 1.02%

TABLE 2-10 PSNR and bit rate comparison for different 720p sequences and QPs.
Speed up is only the performance in fractional ME part

720p, 300 frames, only first frame is I-frame, ProfileIDC=100,
RDO off, search range=64

SIFME
mobcal parkrun shields stockholm
QP | APSN | Abit speed | APSN | Abit speed- | APSN | Abit speed | APSN | Abit speed
R(dB) | rate up R(dB) | rate up R(dB) | rate up R(dB) | rate up
10| -0.04| -0.77% 40| -0.02 | -0.77% 39| -0.04 | -0.42% 3.6 | -0.04 0.05% 3.8
16| -0.04| -1.07% 3.6 | -0.04 | -0.99% 3.7 | -0.08 | -1.27% 37| -0.08 | -0.86% 3.6
22| -0.01| -1.08% 40| -0.05| -1.42% 39 | -0.04 | -1.54% 39| -0.05] -1.50% 3.7
28 | -0.01| -0.36% 39| -0.04 | -0.63% 39| -0.02 | -0.36% 3.6 | -0.02] -0.71% 3.8
34 -0.05 3.20% 391 -0.05 -0.14% 3.8 -0.03 0.30% 3.6 | -0.01 -1.87% 3.7
40 -0.06 4.28% 3.7 | -0.04 -0.70% 41| -0.01 -7.05% 35 0 -8.86% 3.7

In summary, SIFME greatly reduces computational complexity and is suitable for

hardware design with only small amount of quality loss.

42

TABLE 2-11 PSNR & bit rate comparison for different 1080p sequences and QP

1080p, 200 frames, only first frame is I-frame, ProfileIDC=100, RDO off, SearchRange=128

SIFME
blue sky pedestrian | riverbed rush hour | sation2 sunflower | tractor
QP | APSN | Abit | APSN | Abit | APSN | Abit | APSN | Abit | APSN | Abit | APSN | Abit | APSN | Abit
R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate R(dB) | rate
10 -0.06 | -1.14% -0.07 | -1.41% -0.07 | -0.53% -0.07 | -1.13% -0.06 | -0.64% -0.11 -0.27% -0.08 0.38%
16 -0.05 | -0.74% -0.05 | -0.68% -0.09 | -1.85% -0.06 0.62% -0.07 | -1.08% -0.10 | -0.11% -0.12 | -0.16%
22 -0.03 | -1.20% -0.05 | -1.32% -0.07 | -2.11% -0.04 0.02% -0.08 | -1.65% -0.07 | -2.53% -0.11 -1.38%
28 0 0.08% -0.02 | -1.03% -0.08 | -1.14% 0.02 0.72% -0.01 4.70% -0.01 -1.71% -0.09 | -0.66%
34 0.01 2.40% 0.07 0.55% -0.03 0.48% 0.13 1.68% 0.03 | -2.43% -0.02 | -3.54% -0.03 1.10%
40 0.08 4.47% 0.16 0.68% 0.06 1.45% 0.22 1.44% 0.13 | -7.55% 0.02 | -5.07% 0 2.36%
TABLE 2-12 Simulation comparison with previous works.
QP =28 Stefan Mobile |Foreman [Coastguard|News |# of iteration
bit rate 1441.14 1888.69 498.62 1127.87| 223.72
IM [27]
PSNR 35.36 B8 36.24 34.52 38.12 1
time (sec) 491.604| 471.993| 496.974 488.039| 450.37
Y. J. Abit rate(%) 22843 2.36407| 1.780915 1.070159| 2.23494
Wang APSNR(dB) -0.09 -0.11 -0.07 -0.04 -0.06 2
[33] speed up 2.34227| 2.24167| 2.361651 2.283373| 2.24787
Abit rate(%) -0.1524 -0.0822 -0.7819 -0.402| 0.2294
CBFPS
APSNR(dB) -0.01 -0.01 -0.03 -0.01 0 >2
[29] speed up 2.163 2.265 2.249 2.307 2.638
Abit rate(%) 1.2408 0.4657 1.5022 -0.9468| 2.3643
proposed APSNR(dB) -0.07 -0.07 -0.09 -0.06 -0.09 1
[40] speed up 3.6 39 3.7 3.8 3.9

43

2.5.3 Architecture of SIFME
Fig. 2-18 shows the proposed FME hardware architecture. The input data is first

interpolated by the interpolation unit for half and quarter pixels of one 4x4 block.
Then these data are computed with the current block data by six 4x4 block PUs. Each
PU is in charge of residual generation and 4x4 Hadamard transform. All larger sized
block are decomposed into 4x4 block for processing. Then the residual cost
combining with MV cost is sent to the Compare Unit to find the best one and stored in
SB buffer.

TABLE 2-13 shows the comparisons of the number of PUs and iteration steps.
SIFME searches only six candidates and thus only needs six PUs. Besides, with single
loop design, our design just takes about only half of cycles when compared to others
[28][33].

The interpolation unit is shown in Fig. 2-19. It is composed of two sets of
directional (horizontal and vertical) 1-D FIR filters as shown in Fig. 2-20. First, we
interpolate the horizontal half pixels by five FIR filters from 10 adjacent integer
pixels. These five intermediate values and six integer pixels are stored and shifted
cycle by cycle in the interpolation buffer. We use the same way to interpolate the
vertical half pixels with 11 FIR filters. In our algorithm, because we don’t need to

check all possible half pixels, 88% of redundant filters for full search can be removed.

44

MVPIMV Mode Refframe Gioinal MB

data data
(Control) |

‘A

- Interpolation Unit

MV Y
Adaptive Search Pattern
COST - P

. Selpction pnit 1 .
| T T T T
4x4 4x4 4x4 4x4 4x4 4x4

Block || Block | | Block | | Block | | Block | | Block
PU PU PU PU PU PU

|2 N T T

Compare

'

| SB_buffer

I !

frational MV Total SATD Ref Pixel & Residual

-

Fig. 2-18. The proposed hardware architecture of FME.

TABLE 2-13 comparisons of number of processing unit (PU) and number of iterative

search steps

of PU | # of iterative search step
[33] 5 2
[28] 9 2
Proposed [40] 6 1

45

FIR x 11

i

1 BT Horizontal
nteger Pixe Half Pixel
Vertial Half

Pixel

Fig. 2-19 Interpolation unit

Out=A - 5B+20C+20D - SE+F

A F B E C D

Out

Fig. 2-20. 6-tap 1-D FIR filter
46

2.5.4 Implementation result and comparisons of SIFME

Our design is implemented by Verilog and synthesized by 0.13pum technology. The
area gate count is 52.8K for 720p video and 68.9K for 1080p. The latency without
mode filtering is 1002 cycles, but it can be reduced to 264 cycles if combing with
mode filtering as discussed in section 2.3. Therefore, our design can achieve high
throughput with low area cost and negligible quality loss. TABLE 2-14 shows the
comparison of our implementation result to previous works. From this table, we can
observe that our hardware cost is only slightly larger than our previous work [33], but
with six times throughput. As for [34], the area cost is doubled than our work because
it needs to search 25 points. In comparison, though design in [36] has higher
throughput than ours, their quality drop is more than 0.15dB due to imprecise
mathematical modeling. Besides, such mathematical modeling design still needs
additional hardware to calculate the final residuals, which is not included in the gate
count report. When comparing to other design for 1080p@30fps [38], our FME
design only needs 36.5% of gate count and 54.6% of cycles due to our hardware

based approaches.

47

TABLE 2-14 Comparison of the FME part with previous designs

[28] [33] [34] [38] [36] Ours [40]
Max. 720x576@ 720p@ 720p@ 1080p@ 3200x2400 1080p@
Supporting 301fps 301fps 301fps 301fps @?30fps 601ps
Resolution
Algorithm 17 candidates | 8 candidates 25 17 Math-model | 6 candidates
2-iteration 2-iteration candidates candidates No 1-iteration
interpolation | interpolation 1-iteration 2-iteration | interpolation | interpolation
interpolation | interpolation
Gate 79.3 48 117.2 188.45 56.53 52.8 for
Count (K) 720p
68.9 for
1080p
Latency (Cycle) 1648 2000 1000 790 110 1002
264~432
(With mode
filtering)
Operating 100 100 108 for 720p 285 100 28.5 for
Freq.(MHz) 720p
128.3 for
1080p
Throughput 49 50 108 250 909 486
(Kilo-MBs/sec)
Quality Drop 0.1 0.09 0.012 n.a. 0.15 0.04
(dB)
CMOS Tech. 0.18pum 0.18pm 0.13pm 0.18pum 0.13pm 0.13pm

48

2.6 Integrated Design

2.6.1 Integrated video quality analysis

TABLE 2-15 presents the simulation results for different algorithms combinations:
PMRME, mode filtering, and SIFME. In these results, we also include the bit
truncation in this design to reduce the hardware cost. The simulation environments are
as following: rate-distortion optimization (RDO) is off. Only the first frame is I-frame
and search range is [-128, 127]. All of the simulation results are compared to that of
the default full search algorithm in JM9.0 [27]. The result in this table only shows the
average performance under different QPs. The test sequences are all 720p resolution
including Stockholm, parkrun, mobile calendar, and shields. The frame rate is 30 and
300 frames are coded.

TABLE 2-15 shows the PSNR change, bit-rate increasing, and “Sharing Rate of L0
(Level 0) buffer”. The sharing rate of level 0 denotes the percentage that FME can
directly reuse level 0 search range buffer for computation to save memory bandwidth.
This sharing occurs once the final MV is within level 0 search range. In our design,
the sharing rate is at least 90%, and the higher QP will have higher sharing rate and
thus can save more power and bandwidth.

In this table, we can find that the performance of PMRME is almost the same with
full search. The average PSNR drop is only 0.005dB and the bit-rate is even
decreasing when comparing with full search. It is because the PMRME ignores
smaller blocks in level 1 and level 2 and prefer larger block which results bit-rate
decrease. As for mode filtering, the algorithm also prefers to select larger block size,
so the bit-rate decreasing is more obvious. Oppositely, the PSNR drop is a little
serious than using PMRME only. But the worst quality drop is only 0.095dB. While
considering the bit-truncation technique, the influence on PSNR is only 0.064dB, and

the bit-rate increasing is 0.52% in average. Finally, we combine all proposed
49

techniques, the PSNR quality is almost the same and the bit-rate quality drop is a little
increasing to 2.11% in average.

TABLE 2-16 shows the performance of our proposed algorithms for 1080p video
sequences. The performance is not as good as the performance for 720p video,
especially the bit-rate increasing rate. The average bit-rate increasing rate reaches
3.07% for QP32. This is because the 1080p sequences prefer the larger block size than
720p or other smaller sequences, which agrees the tendency of our proposed
algorithms. Therefore, our algorithms don’t provide too much reduction in bit-rate
which happens in the smaller sequences as shown in TABLE 2-1, TABLE 2-2,
TABLE 2-9, and TABLE 2-10. However, the quality loss is still acceptable and the

average sharing rate is also higher than 90% for 1080p sequences.

50

TABLE 2-15 PSNR and bitrate change for proposed algorithms compared with full

search for 720p sequences

Frame size 720p
PMRME
PMRME PMRME
QP PMRME +MODE +MODE FILTERING +—;Dﬁ9f?uif;£§fglﬁi)
FILTERING +Bit-Truncation(5 bits) +SIFME
PSNR inc.(db) -0.0025 -0.085 -0.075 -0.0975
QP16 Bit rate inc. (%) -1.02 -1.66 -0.66 1.08
Sharing Rate of LO
Buffer(%) n.a 96.95 96.08 96.10
PSNR inc.(db) 0 -0.095 -0.0825 -0.117
QP20 Bit rate inc. (%) -0.49 -1.24 -0.013 1.80
Sharing Rate of LO
Buffer(%) n.a. 97.84 96.86 96.87
PSNR inc.(db) -0.0075 -0.08 -0.0675 -0.1025
Bit rate inc. (%) -0.33 -1.11 0.32 227
QP24
Sharing Rate of LO
Buffer(%) n.a. 98.36 97.77 97.75
PSNR inc.(db) -0.005 -0.0625 -0.0525 -0.0925
QP28 Bit rate inc. (%) 0.20 -0.57 0.76 2.52
Sharing Rate of LO
Buffer(%) n.a. 98.78 98.21 98.19
PSNR inc.(db) -0.01 -0.0525 -0.045 -0.09
QP32 Bit rate inc. (%) 1.56 1.14 2.18 2.90
Sharing Rate of LO
Buffer(%) n.a. 99.00 98.30 98.31
PSNR inc.(db) -0.005 -0.075 -0.0645 -0.1
Avg Bit rate inc. (%) -0.017 -0.69 0.52 2.11
Sharing Rate of LO
Buffer(%) n.a. 98.18 97.44 97.44

51

TABLE 2-16 PSNR and bitrate change for proposed algorithms compared with full

search for 1080p sequences

Frame size 1080p
PMRME
PMRME PMRME
QP PMRME +MODE +MODE FILTERING +—§\1/{-(’)f]3u131(1::211t11‘;rf?61§2)
FILTERING +Bit-Truncation(6 bits) +SIFME
PSNR inc.(db) 0 -0.07 -0.06 -0.11
QP16 Bit rate inc. (%) -0.49 -1.09 0.47 2.22
Sharing Rate of LO
Buffer(%) n.a 93.61 90.64 92.73
PSNR inc.(db) -0.01 -0.04 -0.04 -0.08
QP20 Bit rate inc. (%) -0.44 -0.22 2.65 5.04
Sharing Rate of LO
Buffer(%) n.a. 95.6 94.12 94.48
PSNR inc.(db) -0.03 -0.06 -0.06 -0.09
QP24 Bit rate inc. (%) -0.4 -0.94 1.83 3.57
Sharing Rate of LO
Buffer(%) n.a. 95.94 95 95.08
PSNR inc.(db) -0.06 -0.07 -0.08 -0.1
QP28 Bit rate inc. (%) 0.4 0.19 2.20 3.7
Sharing Rate of LO
Buffer(%) n.a. 95.97 95.17 95.19
PSNR inc.(db) 1.68 -0.09 -0.1 -0.08
QP32 Bit rate inc. (%) 1.56 1.59 3.06 3.44
Sharing Rate of LO
Buffer(%) n.a. 95.65 94.79 95.05
PSNR inc.(db) -0.04 -0.07 -0.07 -0.08
Avg Bit rate inc. (%) 0.15 -0.1 2.04 3.07
Sharing Rate of LO
Buffer(%) n.a. 95.36 93.94 94.49

2.6.2 Integrated architecture

Fig. 2-21 shows the total block diagram of the full ME modules. It contains IME,

FME, several memory buffer and external data access interface. The whole flow is as

described in Fig. 2-5(b).

To enable the data reuse between IME and FME, the IME module has three internal

SRAMs for reference pixels storage. When the IME search of a MB is completed, its

macroblock information is sent to FME. Moreover, the reference pixels in level 0

SRAM is also sent to FME. However, instead of moving data, we use three SRAMs

52

as the level 0 buffer and swap them with a ping-pong buffer concept. The three level 0
buffers includes one for IME level 0 reference, one for FME, and one for loading new
data from external memory. Whenever the IME stage completes the coding of the first
MB, the buffer for level 0 reference for the first MB is changed as the FME reference
in the next stage. At the same time, the buffer for current FME reference is changed to
load the data of the third MB from external memory for further use. The buffer that is
now filled the reference data for the second MB is switched for IME level 0 reference.
With above ping-pong buffers, we can share the level 0 data of IME with the FME,
and no additional memory access time is necessary. Besides, the data in level 0
buffers can be reused by FME for more than 90% of MBs according to the sharing
rate in TABLE 2-15. With above arrangement, all these data can be reused as much as

possible and reduce the bandwidth a lot.

2.6.3 Implementation results and comparisons

TABLE 2-17 shows the total hardware cost of our ME design and comparison to
the integrated designs [18][25]. Comparing to [25], our design can save at least 30%
of area costs and 50% of memory costs in IME part. As for FME part, we save 82.8%
of area cost due to fewer number of PUs and reduce 81.2% of memory. In summary,
the total area and memory saving is 60% and 65.78% respectively. As for the
throughput, our design is sufficient for HD video applications. Our design improves
throughput by 75% when comparing to that in [25]. If comparing with the other
integrated design [11] using fast algorithms in IME, our design still saves 12.3% area.
As for the cycle count, our design also has 75.5% of throughput improvement than
[18]. By the high throughput, only 28.5 MHz is enough for 720p sequence with 30
frames per second, and 128.8 MHz for 1080p sequences with 60 frames per second.

To satisfy high throughput requirement, the external bus width should be 128 bits.

53

External

Memory
A
Bus
Global External Memory Controller
Ref.
Luma
Level 0
Ref. SRAM Ref.
Luma Luma
Ref. Ref. Level 0 Level 0 Second Ref.
Luma. | Luma. SRAM SRAM Ref. | hroma v
Level 2 | Level 1 Luma SRAM
SRAM | SRAM i —_— i SRAM CE:g fslt‘::a
' Cur. Chroma
-] Reg
Cur. Luma-» IME Kernal FME Kernal .
Register Best two ReSIdue
modes and
|| podesand] Best Mode and
MVs
IME Stage | FME Stage
\
Fig. 2-21. The block diagram of IME and FME.
2.7 Summary

In this chapter, we propose a highly data reused ME design with low cost and

latency for high definition video. This design maximizes the most concerned data

reuse by sharing data within IME as well as between IME and FME, while minimizes

the computation and latency by parallel multi-resolution IME and single iteration

FME. The final design can easily support processing for 1080p sequences with just

128.8MHz and 282.6K gates, and saves 60% of gate count, and 68.9% of SRAM

buffers compared to the previous design. The presented design also can be easily

scaled to other smaller size video with search range adjustment.

54

TABLE 2-17 hardware cost comparison for complete H.264 ME accelerator with

previous works

[25] [18] Ours [6] Saving with Saving with
[25] [18]
Max. 720p@30fps | 720p@30fps | 1080p@601fps
Resolution
Search Range H: +64 H: +96 H: +128
V:+32 V: £96 V: £128
Quality Loss 0 n.a. 0.1
(dB)
IME Gate 305.2 n.a 155.8 for 720p | 48.9% for 720p
Count (K) 213.7 for 1080p | 30% for 1080p
FME Gate 401.8 n.a 52.8 for 720p 86.8% for 720p
Count (K) 68.9 for 1080p | 82.8% for 1080p
Total Gate 707 238 208.6 for 720p | 70.4% for 720p 12.3% for
Count (K) 282.6 for 1080p | 60% for 1080p 720p
IME Memory 13.71 n.a 5.19 for 720p 62.1% for 720p n.a
(Kbyte) 5.95 for 1080p | 56.6% for 720p
FME Memory 13.82 n.a 2.59 81.2% n.a
(Kbyte)
Total Memory 27.53 n.a 7.78 for 720p 71.7% for 720p n.a
(Kbyte) 8.54 for 1080p | 68.9% for 1080p
Latency for 1024 1079 256 75% 75.5%(Best)
IME Stage
(Cycle)
Latency for 1648 264(Best) 83.9%(Best)
FME Stage 432(Worst)
(Cycle)
Freq. (MHz) 120 (108 for 117 for 720p | 28.5 for 720p 73.6% for 720p 75.6% for
720p) 128.8 for 1080p 720p
CMOS Tech. 0.18um 0.18pum 0.13pum

55

56

Chapter 3
Design of H.264 1080p Intra-only

Encoder

In H.264 video standard, the intra frame prediction technique can efficiently use the
neighboring pixels to predict the current coding block from various directions. With
this, the coding efficiency is even competitive with the latest still image coding
standard, JPEG2000. Thus, this all intra frame coding is now accepted as the intra
only profile [41], and is suitable for applications like digital video recorder and digital
still camera that cannot afford the inter prediction computing.

Therefore, we propose a H.264 intra encoder which keeping the high coding
efficiency and excellent video quality without the large hardware cost and heavy
computing loading from the motion estimation parts in H.264 [7].

In this chapter, we first introduce the basic of intra prediction and other modules in
H.264 intra encoder. In the second section, the design challenges of H.264 intra
encoder for high definition video and image applications are described. Besides, the
previous works are also reviewed and discussed. In the third section, our proposed
algorithms including three step algorithms, enhanced SATD algorithm, and plain
mode removal are used to speed up the encoding procedure and reduce hardware cost
of intra prediction part. In architecture level, the variable-pixel parallelism
architecture is proposed to satisfy the throughput requirement while minimizing the
hardware overhead. Some module level optimization techniques are also proposed in

integer transform, quantization, and CAVLC designs to increase the throughput and

57

decrease the hardware cost. Finally, the implementation result and comparisons of the

entire H.264 intra encoder are presented.

3.1 Introduction of H.264 intra-only encoder

3.1.1 Overview of H.264 Intra-only encoder

The major difference between general H.264 encoder and intra only encoder is that
the inter prediction and deblocking modules are removed from intra-only encoder. Fig.
3-1 shows the block diagram of H.264 intra-only encoder. The input video is
predicted by intra prediction. And then the residue data is transformed, quantized and
compressed by CAVLC encoder to generate the final bit-stream. As for the
reconstruction phase, the quantized coefficients are passed through inverse
quantization, inverse transform, and compensated by intra prediction module. We
should note that the reconstructed coefficients are feedback to the intra prediction
module because the intra prediction procedure requires the reconstructed data of the
left block. Finally, the reconstructed pixels are stored in the frame memory and as the

upper reference of the blocks in the next row.

58

Coefficient| v ¢ |bitstream

\i

Video —t—{ Transform | Quantization

!

Inverse

Quantization
Intra *

Prediction
1 Inverse

Transform
+

ty

\i

Frame Output
Memory Video

Fig. 3-1 Block diagram of intra-only encoder.

3.1.2 Intra prediction
The intra prediction technique is first proposed in the MPEG-4 standard, which

uses neighbor pixels to predict the current blocks in vertical and horizontal directions.
In H.264/AVC, two different block sizes of intra prediction are possible for the
prediction of the luminance component. These predictions can be one of nine kinds of
4x4 luma prediction modes as in Fig. 3-2 or four kinds of 16x16 luma prediction
mode as in Fig. 3-3. In Fig. 3-2 and Fig. 3-3, the number before the name of each
mode is the mode number of each mode, and we use the number to replace the name
of each mode in this paper for simplicity. For chroma blocks, four kinds of 8x8
chroma prediction mode are the same with the four modes of 16x16 luma prediction
modes. Among these modes, the one with the minimum cost value is selected as the

best mode.

3.1.3 4x4 integer DCT/IDCT

The transform of residue data is used to reduce the spatial redundancy. All previous

59

standards such as MPEG-1/2/4 all applied two dimensional Discrete Cosine
Transform (DCT) of the size 8x8. In H.264/AVC, however, the size of the transforms
is from 2x2 to 4x4 in baseline and main profile. The smaller transform block size is
better to fit the smallest block size of motion estimation and to reduce the redundancy
of local residue data. Besides, the new transforms with integer coefficients adopted in
H.264/AVC standard can reduce the most complexity and hardware cost than
traditional DCT transform.

There are three kinds of transforms adopted in H.264/AVC standard. The first type
is a 4x4 transform whose matrix coefficients are shown in eq. (5). If the macroblock
chooses 16x16 intra prediction mode, a Hadamard transform shown in eq. (6), is
applied. This 4x4 matrix transforms all 16 DC terms of luma coefficients of the
already transformed 4x4 blocks. The third transform is a 2x2 Hadamard transform
which is used for the transform of the 4 DC coefficients of the chrominance
component. Its matrix is shown in eq. (7). The three transforms only use integer
coefficients and can be easily computed by low complex add, subtract, and shift
operations.

Fig. 3-4 shows the transmission order of all coefficients if the macroblock is
predicted by intra 16x16 mode. The DC coefficient blocks are first transmitted and the

AC coefficient blocks follow no matter in luma or chroma components.

1 1 1 1
21 -1 -2
My= 1 -1 -1 1 ®)
1 -2 2 -1
1 1 1 1
I S T |
M= 1 -1 -1 1 ©)
1 -1 1 -1
11
Ms=14 —1])

60

4 {diagonal down-right)

0 (vertical) 1 (horizontal) 2(DC) 3 (diagonal down-left)

MA[BICIDIE[F[EH MA[BICIDLE[FG]H| MA[E[CIDIE[F[G]H] AJBICIDIE]FI GIH| M{A] BIC[DIEIF[GH]

n || = R v 0% L w

7 J===5 B [o

K K——— Kl K K

T} [15 B] E&
5 (vertical-right) (herizontal-down) 7 (verfical-left) 8 (horzontal-up)
AJBICIDIE[F]] H Al B] CIDIE[F] G[H| AJBJCIDIE]F] G[R| M A[BIC[DIE[F] G H]

N

I
i
0\

[
IV
|
N
i

EEEE
=~

RN

L
o
K
]

Fig. 3-2 Nine modes for intra luma 4x4 and 8x8 prediction

0 (vertical) 1 (horizontal) 2(DC) 3 (plane)
H | H | H H |
> « / /
vV v Mean(H+V) v

L/
L

Fig. 3-3 Four modes for intra luma 16x16 and chroma 8x8 prediction

17 1% 18
h 3
| | | | "
1 2 5 6 20
; H H H
3 4 7 8 21 2
; | | |
9 10 13 14 Cb
k | | |
1 12 15 16
Y

24

25 26

Cr

Fig. 3-4. Transmission order of all coefficients in a macroblock predicted by 16x16

intra mode.
61

CBP NON SKIP!

Element Value

0O 4 ﬁ— 2.coeff token TotalCoeff=4, TrailingOnes=2
3.trailing_one sign flag(3) 1
/ /0 4 trailing_one sign flag(2) 0
§ /0/) 5.Level (1) 2
6.Level (0) 4
- _6(—0 7.total zeros 6
8.run_before (3) 0
1. Zigzag reordered block: 9.run_before (2) 3
0,4,0,0,2,0,0,0,1,-1,... 10.run_before (1) 2
11.run_before (0) 1

Fig. 3-5 The scan order and the syntax symbols of a non-zero 4x4 block.

3.1.4 Quantization/Inverse quantization

The residue coefficients are processed by a lossy scalar quantizer. The quantization
step size is decided by the quantization parameter (QP) which range from 0 to 52. If
the QP increases six, the step size will double. It means that an increment of QP by 1

results in approximately 12.5% of increase of the required data rate.

3.1.5 CAVLC
In H.264/AVC, two algorithms of entropy coding are supported. The simpler

method called Context-Adaptive Variable Length Coding (CAVLC) is employed in
baseline profile. In this algorithm, VLC tables for various syntax elements are
switched according to previous syntax elements. Therefore, the coding efficiency of
CAVLC is better than traditional VLC coding which uses fixed table.

The CAVLC process has three phases. First, the CAVLC process checks the CBP to
decide whether an 8x8 block is all-zero. We can skip an all-zero 8x8 block. If the 8x8
block is not all-zero, the four 4x4 blocks in the 8x8 block are encoded in the next step.

Secondly, the CAVLC process scans a 4x4 block as the steps shown below and gets
the syntax symbols as Fig. 3-5 presents:

1. Scan 4x4 coefficients in reverse zigzag scan order.

62

2. Calculate the number of total nonzero coefficients, TotalCoeffs, and the number
of trailing ones, TrailingOnes.

3. Get the sign of each trailing one.

4. Get the level of each nonzero coefficient.

5. After the first nonzero coefficient, get the number of total zeros, TotalZeros,

6. Calculate each run of zeros, RunBefore, between the nonzero coefficients, which
will also depend on the number of zeros that have not yet been coded.

Finally, the CAVLC process looks up the codeword of syntax symbol in several
tables. Each type of syntax symbol (except each trailing one’s sign) has several
context-adaptive codeword tables. The selection of codeword tables depends on either
the content of the 4x4 block or that of neighbor 4x4 blocks. Then each codeword is
concatenated in a specific order (coeff token, each trailing one’s sign, levels,

TotalZeros, and RunBefore) to generate bitstream.

3.2 Design Challenges and Paper Survey
3.2.1 Design challenges

The design challenges for H.264 intra frame encoder is the low throughput and
huge hardware cost. Several previous H.264 intra frame encoder have been reported
in [42]-[44]. However, these designs are still limited to HD720p resolution because of
the low parallelism and multi-stage intra prediction algorithms. If extending the
parallelism of previous works to support 1080p resolution directly, the area and
memory requirement are not affordable because their algorithms include irregular data
path and huge required buffer. Therefore, if we want to design an intra frame encoder
which can support 1080p resolution with affordable hardware cost, hardware-friendly
algorithms for intra prediction, and the balance between parallelism and hardware cost

must be considered carefully.
63

3.2.2 Paper survey

Intra prediction algorithms can be classified as two categories. The first type of fast
algorithms adopts the two-step approach [45]-[50]. The first step uses image features
to select the possible modes, and the second step computes the selected modes. Thus,
in the worst case, it will have to compute all modes [50]. Furthermore, this two-step
dependency results in irregular data flow which is not suitable for hardware design. In
some cases, the feature calculation in the first step will be too complex for hardware
design. For example, the edge-based method [48] uses an arc tangent function and
two dividers to calculate the edge for possible mode selections. Thus, these feature
calculation circuits introduce extra hardware overhead to the original intra prediction
circuit. Even though this arc tangent function can be simplified as shown in [54], this
simplification results in an overhead of 15K gates, which is still large when compared
to a full mode calculation circuit with 10K gates [55]. The second type of algorithms
uses single-step approach [51] [53] [55]. This type of algorithms calculates the modes
without extra overhead. However, full search implementations like [53] [55] need
large area cost and long computational cycles. Our previous algorithm [51], three step
algorithm, divides the mode computation into three steps without complex feature
calculation. It just needs to compute constant six modes and is more suitable for

hardware design. However, it still introduces pipeline bubble cycles.

3.3 Fast and Hardware-Efficient Intra Prediction Algorithms
3.3.1 Modified three step algorithm [52]

Fig. 3-6 (a) illustrates the original three-step fast intra prediction algorithm [53]. In
Fig. 3-6 (a), we first compare the vertical and horizontal modes, and then compare the
two neighboring modes around the winner of previous step at the second and third

step. Finally, costs of these winners are compared and the minimum one is selected.

64

This algorithm can save one-third operations with negligible quality loss, only 0.04dB
PSNR degradation and 1.58% of bit-rate increase. Further reduction of intra mode test
will result in significant quality degradation. Besides, the flow of three step algorithm
is regular so that hardware implementation is simpler. Although the three-step
algorithm is more suitable for hardware design than the other software-based ones
[45]-[50], it still has much room for improvement in practice. Direct applying the
algorithm to the hardware will result in pipeline bubble and performance loss.

Fig. 3-7 (a) illustrates a pipeline schedule example when applying the original
three-step algorithm to our previous hardware design. For illustration purpose, this
example assumes the cost of mode 0 is smaller than that of mode 1, and the cost of
mode 5 is larger than that of mode 7 without loss of generality. In the pipeline stage
diagram, each block takes eight cycles latency to complete a mode prediction
including intra prediction, SATD calculation, and mode decision. In Fig. 3-7(a), the
first step will take 12 cycles for three modes, and the second step can be executed
immediately in the 11th cycle since the comparison results of mode 0 and mode 1 is
finished in the 10th cycle. However, this scheduling leads to four cycle bubbles
marked in step 2 of Fig. 3-7(a) because step 2 must wait the comparison results of
mode 0 and mode 1. The same situation also occurs between the second step and the
third step, and six cycles latency are generated. Therefore, total 28 cycles are needed

to predict a block with the original fast algorithm due to the decision flow.

65

Step 1
Compare cost of mode 0 and 1
And calculate mode 2 cost

mode 0 < mode 1

Step 2.1 Step 2.2
Calculate cost of Calculate cost of
mode 5 and 7 mode 6 and 8

Mode 5 <mode 7 Mode 6 < mode 8

Step 3.1 Step 3.2 Step 3.3 Step 3.4
Calculate Calculate Calculate Calculate
cost of cost of cost of cost of
mode 4 mode 3 mode 4 mode 3
Step 4

Select the best mode from the selected mode in step 1, 2,3

(a)

Step 1
Compare cost of mode 0 and 1
And calculate mode 2 cost

Step 2
Calculate cost of mode 3 and 4

Yes l

mode 0 < mode 1

Step 3.1 Step 3.2
Calculate cost of Calculate cost of
mode 5 and 7 mode 6 and 8
Step 4

Select the best mode from the selected mode in step 1, 2,3

(b)

Fig. 3-6 Decision flow of (a) original three-step algorithm (b) modified three-step
algorithm.

66

Stepl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Mode0 [St| P D[TI[T2] C B
St|P|ID|TI[T2|C|B St: Start cycle
_ P: Intra Prediction
Mode 1 Lst g]; 1];1 E TCZ S g D: Difference of residuals
L T1: 1-D transform
Mode 2 [stp]p[ri2]c] [B] T2: 2-D transform
St|PID|TI|T2| C| B C: Cost generation
Step 2 — B: Best mode decision
Mode § 12 3 4[st]p[p[Ti[m]C B
stip|p|Ti{T2] C[B
Mode 7 [sc]p][Dp]Ti[12] C
stip[D|TIT2
Step 3 ——
Mode 3 123 4 5 e6lst[p[p[mi[T2]C B
stip|D|Ti|T2[Cc[B
(a)
Stepl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Mode0 [St] P]D][Ti[12] C] [B]
LstlpIolmi[m]c]B] St: Start cycle
P: Intra Prediction
Mode 1 | S[I ;I]; IEH?}TCZI c E} D: Difference of residuals
- T1: 1-D transform
Mode 2 CscIp[plmilmelc] [B] T2: 2-D transform
[sclpIpfmifmlclBl C: Cost generation
Step 2 B: Best mode decision
Mode 3 [stfp]p]Ti[12] C] B
[scfpIp]mim]cl|B]
Mode 4 Csclplplnlmlc] [B]
[stIpPID[TiIm2] c[B]
Step 3
Mode 5 [stTp[p[ri[r2[c] [B]
[silplplmilmlclBl
Mode 7 [stp[D[Ti][T2] C]
[silplplmi[m]c]
(b)

Fig. 3-7 Proposed timing schedule for the modified three-step algorithm.

Therefore, we change the fast three-step algorithm to hide the bubble cycles by

adjusting the order of prediction modes in the scheduling. The idea of the modified

algorithm [52] is from the analysis of Fig. 3-7 (a). Since the third step in Fig. 3-7 (a)

has to predict either mode 3 or mode 4 no matter which branch is chosen, we can

move these two modes to the second step and fill the transition bubbles. Fig. 3-6 (b)

shows the decision flow of the modified three step algorithm. It is more regular than

the originalone because we can just calculate the second step, mode 3 and mode 4,

without waiting for the comparison result of step 1. Fig. 3-7 (b) shows the pipeline

67

scheduling for the modified three step algorithm. From the diagram, we can find the
total cycles to predict a block are reduced to 20 and no bubble cycle exists, though the
number of prediction modes is increased from six to seven. With more prediction

modes, the final quality shall be better.

3.3.2 Enhanced SATD algorithm [42]

In intra-only H.264 encoding, the cost function for intra mode decision is an
important issue for coding performance. Although adopting rate distortion
optimization (RDO) in the cost function can provide the best performance, its
corresponding complexity limits its hardware implementation. Thus, the sum of
absolute difference (SATD) method is an alternative. The equation for SATD is shown

in the below equation:
SATD = ¥, Mt | T(si5 — pyy)| 3

where s;; and p;; denote the (i, j)th elements of source block and predicted block
respectively and the function T(X) in (8) means a 4x4 transform function.

However, the choice of transform T(x) for SATD computation becomes a main
issue now. In reference software [27], the Hadamard transform in eq. (6) used for
SATD calculation is computationally simple but is much different from the real
discrete cosine transform. A better choice of transform matrix for SATD shall consider
the effect of transform and quantization used in H.264 encoding to estimate the real
bit-rate. Therefore, previous designs [44][45] adopt the 4x4 integer transform shown
in eq. (5) as their choice.

Although previous approaches can achieve better performance than Hadamard
transform does, they still have space to improve since they do not consider the
fractional multiplication factors. A complete transform function for SATD calculation
shall include the integer transform and multiplication factors in the quantization

formula as shown in (9).
68

I 1 1
1 -1 -2 X
-1 -1 1
-2 2 -1

2 1 1 a’ ab/2 a® ab/2
1 -1 -2 ®ab/2 b?/4 ab/2 b*/4
-1 -1 2 a ab/2 a’ ab/2
-2 1 -1 ab/2 b?/4 ab/2 b*/4

—_ = N
—_ = =

®

The matrices with factors a and b denote the scalar multiplication.

However, to integrate these factors into the cost function directly will increase a
lot of computation because they are not simple numbers for computation. Besides,
these factors cannot be directly obtained from (9) because they have already been
integrated with the quantization coefficients in H.264/AVC specification. To resolve
this problem, we propose a new cost function which combines the integer transform
with simplified multiplication factors, which are acquired from quantization and
de-quantization coefficients shown in TABLE 3-1 and TABLE 3-2. From these tables,
we can derive the factors by exploiting the relationship among the reciprocal of
de-quantization coefficients and simplify the equations as below:

1/quant_coef: p(0,0)-1:p(0,1)-1:p(1,1)-1 ~=30:19:12 (10)

1/dequant_coef: p(0,0)-1:p(0,1)-1:p(1,1)-1 ~=30:25:20 (11)

where the p(x,y) is the quantization and de-quantization coefficients of different
positions in TABLE 3-1 and TABLE 3-2. These simplified scaling factors are shown
in (12) which consider the final performance and their hardware cost. In the equation,
division by 32 is added to avoid the enlargement of the cost values and can be carried
out by simple shifting to reduce computational complexity and hardware cost.
Therefore, this cost function can estimate the energy of residuals after the transform
more precise than previous methods while keeping computation simple and suitable
for hardware implementation.

Besides, this technique can even provide better video quality than the original cost
function in the reference software and can compensate the quality loss of other fast

intra prediction algorithms discussed in the next subsections.

69

TABLE 3-1 H.264/AVC quantization coefficients

QP Positions Positions Other Position
(0,0) (2,0) (2,2) (0,2) (1,1) (1,3), 3,1), 3,3)
0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4599

TABLE 3-2 H.264/AVC de-quantization coefficients

QP Positions Positions Other Position
(0,0) (2,0) (2,2) (0,2) (1,1) (1,3), (3,1), (3,3)

0 10 5243 8066

1 11 4660 7490

2 13 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4599
1 1 1 1 2 1 1 32 25 32 25

LA Fa Ry o] PRSI B |] P e V(e

1 -2 2 =2 -2 1 -1 25 20 25 20

Besides, it can even provide better video quality than the original cost function in

the reference software and can compensate the quality loss of plane mode removal

discussed in the next subsection.

3.3.3 Plane mode removal technique [42]

The plane mode shown in Fig. 3-3 is derived by the approximation of bilinear

function. Though this mode is simplified with only integer arithmetic operations, it is

still much more computationally complex than other modes, hard to reuse its results

for other modes, and needs almost half of the area in intra prediction unit.

A solution for this problem is to remove the plane mode from the intra prediction,

70

but this may result in performance loss. TABLE 3-3 shows the probability distribution
of all 16x16 prediction modes. The ratio of macroblocks predicted by plane mode is
only 4.1% in average and generally not larger than 6.6%. However, the intra
prediction without plane mode only increases about 1% of bit-rate than that with
plane mode for those video sequences. The loss of 1% bit-rate difference can be easily
compensated by the proposed enhanced SATD cost function. By plane mode removal,
we can achieve almost the same results as the original one but save lots of

computational cycles and area cost.

3.3.4 Performance comparison

TABLE 3-4 shows the simulation results of the modified intra prediction algorithm
and combined algorithms for four HD720p sequences when compared with the
reference software JM8.6 [56]. The test condition is all I-frames encoding with RDO
off. In the simulation, we first consider the effects of the modified three-step
algorithm. The proposed one has the negligible quality degradation with at most
1.13% of bit rate increase, which is better than that in the original three-step algorithm.
Besides, we combine the effect of previously proposed plane mode removal and
enhanced SATD with the modified three-step algorithm as shown in TABLE 3-4. We
can find the performance is still good. The bit-rate is increased by no more than
1.18%, and the PSNR degradation does not exceed 0.25 dB in luma part. In some
conditions with lower QP, the PSNR is even increased by the improvement of
enhanced SATD algorithm. In average, our algorithm can achieve 0.02 dB

improvement in Y-PSNR and 0.58% of bit-rate increase.

71

TABLE 3-3 Probability Distribution of All 16x16 Modes in 720p Sequences with 300
I-frames when QP=28

Sequence 16x16 modes
Total ratio Vertical Horizontal DC Plane
Mobile 25.8% 11.3% 6.43% 4.8% 3.3%

Calendar

Park run 7.2% 2% 0.8% 2.7% 1.5%
Shields 24.1% 8.6% 4% 6.5% 4.9%
Stockholm 32.8% 3.9% 17.1% 5.2% 6.6%
Average 22.5% 6.5% 7.1% 4.8% 4.1%

72

TABLE 3-4 The performance of modified 3-step algorithm and combined algorithm

for 720p video sequences.

Modified 3-step Algorithm Combined Algorithm [7]
Sequence | QP A A A A A A A A
SNR_ Y | SNR U | SNR_V | Bit-Rate | SNR Y | SNR U | SNR_V | Bit-Rate

(dB) (dB) (dB) (%) (dB) (dB) (dB) (%)
16 0 0 0 0.23 0.04 0.1 0.13 0.16
20 0 0 0 0.32 0.06 0.06 0.05 0.19
Park run 24 0 0 0 0.42 0.06 -0.06 -0.03 0.30
- 28 -0.01 0 0 0.55 0.11 -0.11 -0.06 0.44
32 -0.01 0 0 0.68 0.03 -0.23 -0.12 0.57
36 -0.01 0 0 0.74 -0.07 -0.25 -0.1 0.69
16 0 0 0 0.30 0.05 0.06 0.1 0.30
20 0 0 0 0.41 0.12 0.14 0.05 0.39
Mobeal 24 0 0 0 0.57 0.07 0.02 -0.16 0.56
28 -0.01 0 0 0.80 0.07 -0.07 -0.27 0.78
32 -0.01 0 0 1.03 -0.01 -0.19 -0.32 1.03
36 -0.01 0 0 1.13 -0.08 -0.22 -0.26 1.18
16 0 0 0 0.29 0.07 0.09 0.08 0.25
20 0 0 0 0.42 0.17 0.04 -0.04 0.39
Shields 24 -0.01 0 0 0.60 0.08 -0.08 -0.16 0.63
28 0 0 0 0.81 0.03 -0.15 -0.27 0.85
32 -0.02 0 0 0.88 -0.12 -0.26 -0.44 0.97
36 -0.02 0 0 0.84 -0.22 -0.35 -0.51 0.91
16 0 0 0 0.15 0.06 0.07 0.1 0.37
20 0 0 0 0.24 0.16 -0.01 0.02 0.40
Stockholm 24 -0.01 0 0 0.38 0.09 -0.12 -0.11 0.66
28 -0.01 0 0 0.57 0.07 -0.21 -0.2 0.66
32 -0.01 0 0 0.64 -0.11 -0.33 -0.31 0.65
36 -0.01 0 0 0.55 -0.25 -0.33 -0.33 0.50
Average -0.006 0 0 0.57 0.02 -0.1 -0.13 0.58

73

TABLE 3-5 The performance of modified 3-step algorithm and combined algorithm

for 1080p video sequences.

Sequence Station2 tractor Avg.
QP 16 20 24 28 32 16 20 24 28 32

APSNR 0 |-0.01]|-0.02|-0.02 | -0.01 0 0 -0.01 | -0.02 | -0.02 | -0.011
Modified (dB)

3-Step A Bitrate | 0.53 | 0.78 1 099 | 0.82 | 035 | 047 | 0.63 | 0.75 | 0.74 | 0.71
(%)

APSNR | 0.15 | 0.22 | -0.03 | -0.11 | -0.35 | 0.09 | 0.06 | -0.24 | -0.34 | -0.56 | -0.11
Combined (dB)

[7] ABitrate | 0.51 | 091 1.4 1.52 | 136 | 033 | 0.58 | 1.03 | 1.28 | 1.39 1.03

(%)

TABLE 3-5 shows the simulation results for two HD1080p sequences. The bit rate
increasing is within 1% for modified three step algorithm. Besides, even if we also
include the plane mode removal and enhanced SATD algorithms, the performance of
the combined algorithms only results in 0.11 dB PSNR degradation and 1.03% bit rate

increase in average.

3.4 Architecture of Intra-only Encoder

3.4.1 Overview of intra-only encoder with variable pixel parallelism

To further speed up the intra prediction, we adopt some hardware parallelism
strategies. However, only the most critical part, intra prediction, adopts the eight-pixel
parallelism to double the throughput and thus reduces almost half of computation
cycles. Other parts like the quantization and reconstruction use four-pixel parallelism
to save the area cost. This architecture with mixed eight-pixel and four-pixel
parallelism are thus called variable pixel parallelism architecture.

Fig. 3-8 shows the proposed intra frame encoder design with variable pixel
parallelism architecture. The whole design works as the data flow in Fig. 3-1. This

74

External Upper Line Buffer 4 pixels/cycle

A

4 o0 iructi 2 e H i
Reconstruction Phase —| Rec.DC Quantization
Upper Buffer Reg
Controller Rec. Shifter Phase
A
J IDCT g
| 8t0 4 FIFOReg | IDHT il
Pixels Q
Selection Pred. DC
Reg
Boundary Intra Prediction ™ g T T
Reg for 4x4 - Generator Ll 8-point ol 8104 CAVLC
DET Gl Encoder
DHT » Block
™ Bgé;(zg:y g Intra Prediction il i Reg i
16x16 > Celeraty — Cost Generator and
Mode Decision Bitstream
Output
Source Buffer |l source I T i
48x64 Most i -
Source Single Port Reg B i Bitstream
Input Prediction Phase Reg Phase

‘ 4 pix/c 1 coef./cycle

Fig. 3-8 Proposed architecture of encoder with variable pixel parallelism.

architecture is partitioned into four phases: prediction phase, reconstruction
phase,quantization phase, and bitstream phase.

This variable pixel parallelism has the benefit of low area overhead and high
throughput. This parallelism will not introduce the performance bottleneck at the
four-pixel part since only blocks with the best mode will be passed to the quantization
phase and reconstruction phase. Data flow between different data parallelism is
smoothed by several buffers, including the current block and best block registers in
the quantization phase and the FIFO registers in the reconstruction phase. To achieve
the eight-pixel parallelism in prediction phase, we only add one more intra prediction
engine, two 1-D four-point transform units, and a few small buffers. The gate count

overhead of these new components is very little.

3.4.2 Schedule of encoder

Fig. 3-9 shows the scheduling diagram of the proposed encoder. In the intra

75

encoder design, the major problem is the data dependency of neighboring blocks since
each intra prediction will use the reconstructed data from its left and upper block.
During these reconstruction cycles, the intra prediction unit will be idle. Thus, the
scheduling challenge is how to hide the reconstruction bubble cycles by keeping the
intra prediction unit busy. To maximize performance without pipeline bubble cycles,
this design also includes previous techniques proposed in [42], such as insertion of
luma 16x16 or chroma 8x8 predictions, early start of next 4x4 block prediction and
re-computation of luma 16x16 and chroma 8x8 best modes. The insertion of luma
16x16 or chroma 8x8 predictions techniques will insert luma 16x16 or chroma 8x8
intra prediction into the reconstruction bubble cycles to pre-compute their costs. Thus,
utilization of components in the prediction phase is improved. Furthermore, since the
4x4 blocks are processed in the Z-scan order, upper and left boundary samples might
not be available at the same time for prediction purpose. Thus, we adopt the early start
of next 4x4 block prediction techniques by rearranging the processing order of
prediction modes such that prediction modes can be started as early as possible if the
needed data is available. For the 4x4 block prediction, we use a small buffer to save
the residuals of the best mode. However, when such a strategy applies to 16x16 or 8x8
predictions, a large macroblock-size buffer will be needed. Therefore, we neglect the
data generated in the prediction and re-compute them for the best mode of 16x16 and
8x8 macroblocks after the prediction if it is selected as the best mode. This
re-computation of luma 16x16 and chroma 8x8 best modes approach may increase the
total encoding cycles, but it is still in an acceptable range and can reduce the buffer
cost as well.

Besides above previous proposed techniques, the newly adopted variable-pixel
parallel architecture also introduces a problem that demands a new scheduling

technique. In our variable-pixel parallel architecture, we adopt a block-size buffer at
76

the boundary between four-pixel parallel quantization phase and eight-pixel parallel
prediction phase. However, this is not enough since the recomputed coefficients for
best luma 16x16 and chroma modes cannot be passed through consecutively because
of different parallelism. Thus these coefficients will be blocked. This will result in a
larger buffer to store temporarily blocked data or low hardware utilization with empty
cycles in the prediction phase.

An efficient solution without utilization loss is to use the interlaced pipelined
schedule for best mode as shown in Fig. 3-9. This solution is called interlaced best
mode computation strategy. We interleave and insert the successively recomputed best
modes for luma 16x16 and chroma components into the normal prediction modes that
may not pass to quantization phase. With this interlaced scheduling, we will have two
different scheduling diagrams for best mode is 4x4 or 16x16, as showed in Fig. 3-9 (a)
and (b) respectively. If the best mode is 16x16 as shown in Fig. 3-9 (a), the
recomputed 16x16 best modes of luma components are interleaved with modes of
normal chroma components. This can improve the hardware utilization in the
prediction phase without wasted cycles and keep the data continuity in the
quantization phase as well. However, a few empty cycles from cycle 520 to 544 are
still needed for the best chroma mode as shown in Fig. 3-9 (a). If the best mode is 4x4
as shown in Fig. 3-9 (b), only the best mode of chroma 8x8 is recomputed and
interleaved with normal chroma modes because the best mode of intra 4x4 mode is
saved in the buffer and re-computation is not necessary. With the interlaced method,
the total cycle count for encoding a macroblock can be reduced to 522 as shown in
Fig. 3-9 (b) or 560 in Fig. 3-9 (a), about only 52% when compared to that in previous
design [42].

In the previous scheduling, though there are three luma 16x16 modes inserted in the

prediction schedule, not all of them are useful for final decision. When the cost of the
77

Schedule when Best Luma Mode is 16x16 S: Setup cycles
E: Ending cycles

CAVLC Coding (average Decision for Best
MB 1 | 8 (ge) Luma Mode
0 168
Load . Interlaced Chroma & Best
MB 2 | Source S| Mixed Luma 4x4 & Luma 16x16 Best mode | Chroma 5 |
0 96 104 430 520 544 560

L4 blk1 L16 blk1~6 L4 blk2 L4 blk3 L16 blk6~10 ... Cu Cu Cu Cu

7 modes Vertical 7 modes 7 modes Vertical B1 B2 B3 B4
104 118 130 144 158 170 524 528 532 536
Mixed Luma 4x4 & Luma 16x16 Schedule Best Chroma only Schedule

L |Cu|L [Cu|L [Cu|L |Cu|L|Cu .
Bl |H1|B2|H2|B3|H3 B4 |H4 [BS5|D1
438 442 446 450 454
Interlaced Chroma and Best mode
Schedule
(a)
Schedule when Best Luma Mode is 4x4 S: Setup cycles
E: Ending cycles
CAVLC Coding (average) Decisifp gy Best =
MB 1 g g Luma Mode
0 168 l
Load . Ch8 | Int. Ch8 & | Ch8 Best
S Mixed Luma 4x4 & Luma 16x16 E
MB 2 Source only | Best Ch8 | only | Chroma
0 96 104 430 454 472 488 506 522

Cu|Cv|Cu|Cv|Cu|Cv 2.
Bl |V1|B2([V2]|B3|V3
454 458 462
Interlaced Chroma and Best
Chroma Schedule

(b)

Fig. 3-9 Pipelined schedule for fast encoder (a) best luma mode is 16x16 (b) best luma

mode is 4x4

first-predicted 16x16 mode is obtained, the early termination for second-predicted and
third-predicted modes can be asserted. If the currently accumulated cost in the
prediction is larger than the previous one, the following operations of this mode will
be canceled and the other prediction can be started. This strategy can reduce

redundant prediction cycles and extra power consumption.

78

3.4.3 Architecture of eight-pixel parallelism modules
3.4.3.1 Eight-pixel intra predictor

The eight-pixel parallelism intra prediction generator consists of two four-pixel
parallelism units. One is for even row and one is for odd row in a 4x4 block. Fig. 3-10
(a) shows the eight-pixel parallelism intra prediction generator. Its input ports can
switch to select any neighboring data in registers for different modes except
horizontal and vertical mode. The bypass input ports are used for horizontal and
vertical modes because the inputs of these two modes are passed to output directly.

After data input, the computation for each mode is done by selecting the
appropriate datapath through multiplexers. Fig. 3-10 (b) shows the example for intra
16x16 DC mode. In DC mode, only the odd-row intra predictor is used to generate the
summation of eight neighbor pixels for DC mode. In which, the dc_reg is only used
for the intra 16x16 DC mode, which needs to sum up 32 neighbor pixels. The sum of
eight input data is stored in the dc_reg, and then another eight pixels are added with
the result in dc_reg, and so on. Finally, the total summation for intra 16x16 DC mode

is generated after four cycles.

79

Input ﬁ Input ————_

Input
P Round & Input
Clipping Output

By-pass Input Input

Round & Input
|ppmg ' Output
By-pass Inpu
_ Input |
Input Round & P Round &
|ppmg ' -Output Clipping
Input | Input —
Round & Round &
Input —| Clipping Output | Clipping Output
By-pass Input By-pass Input

Output

Input

Input

By-pass Input '
Round &
Clipping Output
By-pass Input

Output

ixel for even row
(a)
‘ N
A+B+C+D 7'*' «
Round & + Round &
e i e))
-

' ' '
A SR N
O Round & N Round & e
> Cli ' Clim: '
g pping + ‘ ipping
[-

Input

(o]
R

N

a
s
Yy,
Y
4

ICRC)

[“
Round & r "l oely T Round & bC
Clipping ' b PR, Clipping '
R <
+1_ o™/ N
' -Round & i N . ¥ Round & b
Ll Clipping ’D—EC . ‘ 0w VT Clipping '
: %4 A =P
+ v
™ «

A+BHCHD ; -
L Mw 5 Four pixel for even row

Four pixel for odd row

et Intra 16x16 DC mode (b)

Fig. 3-10 (a) Eight-pixel parallelism intra prediction generator (b) Examples of

operations for intra 16x16 DC mode.

4-pixel 4-pixel

!

1-D Transform

:
-
R 2 2l | = " .
2 x < 3
= = =
- . — - JEF
<
7 <
“ I/ = E
-
s >
- 3
------ // ! =
/ <
, L
yy
1
|

Fig. 3-11 Eight-pixel parallelism transform unit.
80

3.4.3.2 Eight-pixel DCT

In additional to eight-pixel parallelism intra predictor, the transform unit also
adopts eight-pixel parallelism for the same data throughput. The eight-pixel
parallelism transform design as shown in Fig. 3-11 includes two 1-D four-point row
transform units and two 1-D four-point column transform units for computations. To
fit such design, the corresponding transpose registers are decomposed as four 2x2
transpose register array. With such arrangement, we only need two additional 1-D
transform units when compared to the design with four-pixel parallelism [42].

With above designs, we can double the architecture throughput with small area
overhead. Besides, the Hadamard transform shown in eq. (6) for DC coefficients is
also implemented by the eight-pixel parallelism transform unit in order to reduce the
hardware cost. This hardware sharing between integer transform and Hadamard
transform can be easily achieved by inserting some multiplexors into the transform

unit to switch the different coefficients between eq. (5) and (6).

81

Input

S S SR

1-D Inverse Transform

\ \ \ \
- - - > [E—
Y Y Y Y e
o]
> > > > > (<D
% — & —> o
> 7]
y 4 A \ @ E"
— o
> > > > = o =4
d -
- o :
>)
o)
y y A \ @)
- 3
> > - > o .
T T T (

Fig. 3-12 Inverse transform Unit

3.4.4 Architecture of four-pixel parallelism modules
3.4.4.1 Four-pixel IDCT

The transform matrices used in H.264/AVC standard as shown in eq. (5), (6), and (7)
are symmetry matrices and can be easily implemented without complex floating point
operations. The 2-D inverse transform is generally separated into two 1-D inverse
transform with fast algorithm and butterfly architecture [57]. Though there have been
several transform designs for H.264 codec [58]-[60], our design adopts the four-pixel
architecture presented in [61] to execute inverse integer transform. It is because this
architecture is simple and with low hardware cost. Fig. 3-12 shows the architecture of

inverse integer transform.

82

i uant coef
Sklp augnt- qp_shift skip
\J ¢

reg shift

Y

qp_const 0 —=
(a)
skip dequant_coef
@ qp_per skip
! '
reg shift & round g
0 —»
(b)

Fig. 3-13 (a) Quantization and (b) inverse quantization unit

3.4.4.2 Q/IQ

Fig. 3-13 shows the quantization and de-quantization units. In which, the
quant coef, dequant coef, qp const, qp shift, and qp per denote the quantization
parameters (QP). And then, we establish the QP-dependent look-up tables to
implement the constant quantization coefficients. The quantized coefficient is derived
through a multiplication with quant coef, an addition of qp const, and a shifter. In the
de-quantization unit, the data is also passed through a multiplication followed by

rounding and shift module.

3.4.5 Architecture of CAVLC module

Fig. 3-14 presents the overall architecture of entropy encoder in a H.264 baseline
encoder [62]. The CAVLC module accepts a 4x4 block residue from the residue buffer.
When the residue data is sent to the CAVLC encoder, the corresponding CBP also
sends to encoder to check the 8x8 block. The output bitstream is packaged with the

output of UVLC to generate the final bit stream.
83

TABLE 3-6 Zero-block Codeword Table

0<=nC<2 2<=nC<4 4<=nC<8 8<=nC nC=-1
1 11 1111 000011 01
Global Control Unit
u Pﬁ‘ Exp-
= U
Quantized 3] X (é(())ldoilrlllb
transform CBP ::;D M U 'tg M
coefficients Generator % n U
ke X
< 1
Residual
Buffer —> Ve

Bit-
H.264/AVC
. - stream
bit-stream
Packer

Fig. 3-14 Overall architecture of entropy encoder in H.264 baseline encoder.

Fig. 3-15 presents the detailed architecture of the CAVLC encoder. The first step is
to check the CBP. If the CBP of 8x8 block is nonzero, its coefficients is passed to
zig-zag scan. At the same time, it nonzero index table is generated, and the 4x4 zero
block checking is finished. Then if a zero 4x4 block is detected, the output codeword
will be generated directly by the zero block codeword table in TABLE 3-6.

The general CAVLC encoding can be divided into two processes, scanning and
coding process. However, unlike the previous approach as in [63]-[66] that requires a
large static buffer to process pipelining, the proposed approach directly integrates the

two processes together for direct encoding and thus no intermediate buffer is required.

84

Memory for
TotalCoeff of
Neighbor blocks

Memory
Controller

L

TotalCoeff &
TrailingOne Unit

CBP Zig-Zag

Checking Scan Level Unit Mux
Unit Module

RunBefore Unit

Fig. 3-15 The overall architecture of CAVLC encoder

003 L
4 A8

Vlolols
07| 00

Zig-Zag Scan Order

CoefﬂcientBuffer‘O‘0‘0‘0‘0‘0‘0‘0

ofalal e fofe]0]
16x16 bits

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o Jofo oo oo o [o [l o [o]

(b)

Nonzero index
table

16x1 bits
f Coding Order
Start Stop
Index Index

Coefficient Buffer

o [ofo oo oo o [l ISTAT o [5] o]

16x16 bits

© 10 11 12 13 14 15

BRRENE

Nonzero index
table

o |©o

0
ofofofofefefefo]o]

16x1 bits

t
Start Stop
Index Index

Fig. 3-16 An example for nonzero index table: (a) Original 4x4 block and zig-zag scan (b) the initial
table after all coefficients are loaded and (c) the updated table after first iteration of leading one

detection.

85

Besides, each components in Fig. 3-15 can be simplified and speedup by nonzero

index table shown in Fig. 3-16.

3.5 Implementation Results and Comparison

3.5.1 Implementation results

The proposed intra frame encoder was designed using Verilog HDL and
implemented using 0.13pm CMOS technology. Fig. 3-17 shows the effects of the
proposed techniques. The variable parallelism architecture and the modified three step
algorithm can reduce the cycle count by 39.3% and 10.3% respectively. Although the
interlaced scheme only reduces the latency by 4.9%, it can increase the hardware
utility and remove bubble cycles. With these three techniques, we can process a
macroblock (MB) with 560 cycles. Thus, the final design can achieve HD720p 30
frames/sec encoding at 61MHz and HD1080p 30 frames/sec encoding at 140MHz.
For digital still camera applications, our design can process a 4096x2304 image with
6.78 frames per second. The total gate count is 94.7K for HD1080p 30 frames/sec
encoding at 140MHz. TABLE 3-7 lists the final results of gate count for each
component. Most of the area is spent on boundary prediction buffer, quantization,
DCT, and cost generator for mode decision as shown in TABLE 3-7. Fig. 3-17 shows

the layout of this design.

86

TABLE 3-7 Gate count table for the encoder for HD1080p at 140MHz.

Component Gate Count
Boundary Buffer 12,015
Predictor 6,005
Cost Generation 13,865
Schedule Control Unit 1,532
DCT 13,970
IDCT 5,347
DC register 6,566
Quantization 23,263
Reconstruction and FIFO 3,528
CAVLC encoder 7,474
Total Design Gate Count 94,729
1080 Cycles|
© [37]
@ Variable Pixel
656 Cycles | Parallelism Arch.
o R D Conpaing sebeme.
624 Cycles | (® Modified 3-Step
0l <« 4.9% Reduction
560 Cycles |
08O ‘1#3% Reduction

Fig. 3-17 The cycle reduction by adopted techniques.

87

TSMC 0.13um

Technology | ¢ cmos

Core Voltage 1.2V

I/O Voltage 3.3V

Core Size 0.85x0.85mm’

Package CQFP 144

On-Chlp Single-port 104 x 56 bit x 2
Memory Single-port 48 x 64 bit

Fig. 3-18 The layout and its design specification.

3.5.2 Comparison with previous works

TABLE 3-8 shows the comparison to other designs. For the same HD720p 30
frames/sec encoding requirement, this design can reduce 48% of operating frequency
compared with [42] (encoding part, only) because of lower latency. With lower
operating frequency, the critical path timing is thus relaxed and the area cost is 23.5%
lower than [42]. Moreover, our design can support HD1080p 30 frame/sec encoding
at 140MHz but with similar gate count as [42]. Compared to the standard definition
(SD, 720x480) sized encoder in [43], this design reduces the working frequency by
57.6% for SD sized support. Besides, comparing with another HD-sized design [44],
our gate count reduction reaches 50.8%.

For comparisons with intra predictor part only, TABLE 3-9 shows that our design
needs 19.8K gates (including both intra predictor and cost generation) for HD1080p
encoding. Compared to full search design with HD720p intra predictor only [55], our
intra predictor design with 6K gate count for HD1080p can save 40% gate count.
Compared to [53], which adopts the fast algorithm [48], the design uses more highly
parallel hardware and thus its gate count is 122% larger than ours. Moreover, this

design does not consider the overhead of feature calculation in the fast algorithm.
88

Finally, one simplified feature calculation circuit has been shown in [54]. In [54], it
only deals with feature-based mode selection without considering the intra predictor
and cost generation part. This circuit costs 15K gates, which is a large overhead. Note
that in TABLE 3-9, the term “Not implemented” means that that item should be

included for a complete intra prediction design but is not done in that reference.

3.6 Summary

A high throughput and low cost H.264/AVC intra frame encoder is presented in this
chapter with just 94K gate and 0.72mm” core area at 140MHz. We have applied
techniques such as fast prediction algorithm, variable pixel parallelism and other
scheduling techniques to optimize this design. Compared to previous design for
HD720p 30 frames/sec, this work can reduce 23.5% of gate count but only with 52%
of working frequency. With these improvements, the new design can support digital
video recorder applications with HD1080p 30 frames/sec resolution in real time.
Besides, the work also can support digital still camera application with 4096x2304
resolution at 6.78 frames/sec. Further extension to full intra-only profile is
straightforward by including 8x8 transform and intra prediction and higher bit width

per pixel.

89

TABLE 3-8 Comparison with previous intra encoders

design Feature This Work [7] [42] [43] [44]
Max operating Freq. 140MHz 125MHz 55MHz n.a.
Pixel parallelism 8-pixel/4pixel 4-pixel 4-pixel 4-pixel
CMOS technology TSMC 0.13pm UMC 0.18pum TSMC 0.25um | Hynix
0.35um
Chip Core size 0.85x0.85mm’ 1.28x1.28mm’ 1.86x1.86mm’ | n.a.
Gate count 66.2K@61MHz 86.6K 85K 192K
94.7K@140MHz
On-Chip memory | Single 48x64(x1) | Single 96x32(x1) Single 27.6K bits
usage Single104x56(x2) | Single104x64(x2) | 96x32(x2)
Single
64x32(x1)
Dual
96x16(x4)
Max target Size HD1920x1080 HD1280x720 SD 720x480 HD1280x720
Freq. for HD 140MHz n.a. n.a. n.a.
1080p@30fps 61MHz 125MHz n.a. 108MHz
Freq. for HD 23MHz 43MHz 54MHz
720p@301fps 6.7MHz 12.8MHz 15.8MHz
Freq. for SD@301ps
Freq. for CIF@301ps
Processing <560 cycles <1080 cycles <1300 cycles <927 cycles
cyclessMB
Cost Function Enhanced Enhanced DCT-based DCT-based
DCT-based DCT-based SATD | SATD SATD
SATD
Mode decision Modified 3-step 3-Step Full search Full Search

method

90

TABLE 3-9 Comparison of intra predictor part with the state-of-the-art

Design Feature This Work [7] [55] [53] [54]

Max operating Freq. | 140MHz 120MHz n.a. 200MHz

Pixel parallelism 8-pixel 4-pixel 10-pixel n.a

CMOS technology | TSMC 0.13um UMC TSMC 0.18um | TSMC 0.18um
0.18um

Gate count for intra | 6K for HD1080 | 10K for 28.51K for Not

predictor 3K for HD720 HD720 HD1080 implemented

Gate count for cost | 13K for HD1080 | Not Not

and mode decision | 9.8K for HD720 | implemented implemented

Gate count for fast | 0 0 Not 15.8K

mode decision implemented

Max target Size HD1920x1080 HD1280x720 | HD1920x1080 | HD1920x1080

Processing <560 cycles <896 <256 n.a.

cycles/MB

Mode decision Modified 3-step | Full search Edge Simplified

method + SATD Detection + Edge Detection

SAD

91

92

Chapter 4
H.264 HD1080p High Profile

Encoder Chip

H.264/AVC high profile standard is the latest extension of H.264/AVC for high
resolution video applications. This standard has been adopted in a lot of video
applications such as Blu-ray, HD-DVD, and DVB-H. These new coding tools improve
a lot of coding efficiency especially for high resolution video. However, these tools
also result in huge computation power and require extremely high throughput for high
definition (HD) applications. Due to these requirements, ASIC design is the only
solution to process H.264/AVC high profile encoding in real time.

Therefore, in this chapter, we propose a H.264 high profile encoder chip which can
support 1080p video at 30 frames per second [8]. This design includes the most
techniques discussed in previous two chapters no matter in algorithm and architecture
level. Besides, the new coding tools of high profile are added to the encoder without
resource conflict and large hardware overhead.

This design adopts three stage pipelining schedule. In the first stage, the integer
motion estimation module mentioned in Chapter 2 is adopted and extended to support
bi-directional motion estimation. The second stage includes the fractional motion
estimation module and full eight-pixel parallelism intra predictor which are
introduced in Chapter 2 and Chapter 3 respectively. Finally, the third stage consists of
the deblocking filter and two entropy tools, CAVLC and CABAC.

Except the individual modules, the system integration and hardware sharing

93

between pipeline stages are important issues in our design. By the integration, the
hardware cost and power can be reduced a lot when comparing with previous similar

designs.

4.1 Overview of H.264/AVC High Profile

4.1.1 History of H.264/AVC high profile
After the completion of H.264/AVC standard in May 2003, the JVT group focuses

on an extension for coding of high definition video material, especially in application
areas like professional film production, video post production, or high-definition
TV/DVD. The work on the Fidelity Range Extensions (FRExt) of
H.264/MPEG4-AVC was completed in July 2004, and its final draft amendment text

was released in September 2004 [67].

4.1.2 Introduction of the coding tools of H.264 high profiles and levels
Fig. 4-1 shows four major four profiles defined in H.264/AVC, which are baseline,

main, extended and high profiles. Baseline profile consists of basic coding tools and
features, such as intra prediction, forward inter prediction, deblocking filter, and
CAVLC. Main profile includes all coding tools of baseline profile and other advanced
techniques, such as weighted bi-directional inter prediction, CABAC, and et al. The
third profile, extended profile, contains all tools of main profile except CABAC. This
profile is designed as the streaming video profile with new tools for robustness to data
losses and server stream switching.

Finally, the high profile is the latest and the most complex profile. The new tools

such as intra 8x8 prediction types, transform and quantization with 8x8 block size,

94

High Profile
vlain Profile

eline Profile

I & P Slices \ CABAC
CAVLC B Slices

8x8Transfarm
8x8 Luma In¥ra
Predictio

Fig. 4-1 Profiles of H.264/AVC

and others are supported in this profile. The high profile can provide more bit-rate
saving and better video quality than baseline and major profiles. However, this new
profile requires much more computation efforts. Therefore, H.264/AVC high profile
has been widely used in multimedia applications especially for high quality and low

bitrate requirements.

4.1.3 Introduction to new tools of H.264/AVC high profile encoder
4.1.3.1 8x8 intra prediction
In the high profile of H.264, a new prediction block size of 8x8 was used for spatial
luma prediction by extending the concepts for 4x4 intra prediction in baseline profile.
As shown in Fig. 4-2, the luma 8x8 block is predicted from neighboring
reconstructed reference pixels, where nine modes can be selected by the encoder. We
should note that the selection of the inter or intra prediction block size (4x4, 8x8, or

16x16) also influences the corresponding luma transform size.

95

0 (vertical) 1 (hodizontal) 2ADCY 3idiagonal down-lett) H{diagonal down-roght)

A EEEPEF R FEEEFEFED] FEFEEEEER FREEPEFE T D FE R R

.

TR
BEEOERnE

[=[=[=]=]]>]
]
A
A[=[=]=]=]-]=]=

=[=]<]=]=]=]=]=

7

v

Sivertical-right) B hortzontal-down) Fvertical-lefl) Brhorizontal-up}

als]c]ole]r o u mlalecole]F]a]u mlaleleTolerTalul i P Te[eTu]xTo]r] mlalaclofe]r Ja]ul i ToTe]eu]«]a]r]
B

il ==

Fig. 4-2 Nine modes for intra 8x8 prediction.
4.1.3.2 8x8 transform

il

=== ===
[z] <] =[=[=]=]=

-

For high resolution video, the details and textures which can be processed by the
function with larger basic block unit become more important than that in low
resolution video. Therefore, the high profile includes an 8x8 integer transform and the
following quantization function and allows the encoder to switch adaptively between
the 4x4 and 8x8 transform for luma samples in a macroblock level [68].

The 2-D 8x8 transform also can be executed as a 1-D horizontal transform

followed by a 1-D vertical transform, where the 1-D transformation matrix is shown

in (13):
'8 8 8 8 8 8 8 8-
12 10 6 O 2l . 1 0
8 4 —4 -8 -8 -4 4 8
10 -3 -12 -6 6 12 3 -10
Texe = 8 -8 8 g -8 -g g| 13

8

6 —-12 3 10 -10 -3 12 -6
4 -8 8 -4 -4 8 -8 4

3 -6 10 -12 12 -10 6 -3

Because (13) consists of integer coefficients, both the forward and inverse 8x8
transform can be efficiently implemented by shift and add operations.

After 8x8 transforms, the following processes such as scaling, quantization, and
scanning of 8x8 transform coefficients are extended directly from that defined for the

4x4 transform. Besides, two restrictions for the transform size

96

— 1] — 11—
@/4@:::;@::::@/@

P N

Frame N-2 Frame N-1 Frame N Frame N+1 Frame N+2

Fig. 4-3 Bi-directional motion estimation

selection are listed:
1. For inter-predicted macroblocks, they adopt 4x4 luma transform if at least one of
their sub-blocks is smaller than 8x8.
2. For intra-predicted macroblocks, they choose the 8x8 luma transform if and only

if 8x8 luma intra prediction is used.

4.1.3.3 Weighted bi-directional motion estimation

The H.264 motion estimation supports bi-directional motion estimation so that both
the backward and forward prediction can be used to improve the coding efficiency as
shown in Fig. 4-3. Except the generalized bi-directional motion estimation, the H.264
also supports the weighted prediction so that prediction result of different reference
data can be averaged and weighted to optimize the prediction result. Besides, the
direct mode can be used to reduce the complexity load overhead from the

bi-directional prediction.

4.1.3.4 Context adaptive binary arithmetic coding (CABAC)
CABAC is used as one of the entropy coding method for H.264 video coding that is

consisted of three stages: binarization, context modeling and arithmetic coding (AC)

as shown in Fig. 4-4. First, a given non-binary value syntax element will pass to

97

Bin Value, for Context

?\nggt - Model Update
Table Bin Value,
Non-Binary Context Context ——————~ -
Valued Syntax) . Model : Regular :
Element pfp. o er Bin String Context := Coding :
Syntax Bin Modeler : Engine : Regular Flow
Regular Flow | |
Element Y , [! — Bitstream
Binary Valued Bin L]zy-dpass _:>
Syntax Element Bypass Flow :V Eggigf B:ypass Flow
I I
[

Binary Arithmetic Codec

Fig. 4-4 Block diagram of CABAC

binarization to form a uniquely bin-string. Second, except for suffix of syntax element
for motion vector and level information, all of bins from binarization will enter into
decision mode, and a probability model will be selected to assign context model. The
selection of probability models depends on previously encoded syntax elements or
bins. After receiving bin and context, AC can encode and output the compressed data
directly. AC consists of two sub-engines and is classified into three modes. These two
engines are called decision coding engine and bypass coding engine, while the three
modes are:
1. “decision” mode” that includes adaptive probability models and interval maintainer.
2. “bypass” mode for fast encoding of symbols.
3. “termination” mode for ending of encoding.
® Binarization

For a given non-binary valued syntax element, H.264/AVC adopts four schemes to
do binarization. Such fours schemes are:
1. The unary code word consists of x “1” bits plus a terminating “0” bit for a given
unsigned integer x.

2. For truncated unary (TU) code, unary code is used only when x < cMax. If x=cMax,
98

the terminating “0” bit is neglected.
3. A unary/K-th order Exp-Golomb (UEGKk) bin-string is a concatenation of a prefix
bit string with TU and a suffix bit string with Exp-Golomb code.
4. The fixed length (FL) codeword of x is simply x with a fixed (minimum) number
FLbits=log2 (cMax+1) of bits.
® Context modeling

In the context modeling, the encoder should calculate context index (ctxIdx) from 0
to 460. With ctxIdx as memory address, it can get probability state (pStateldx) and
Most Probable Symbol (MPS) from context table. The pStateldx is in range from 0 to
63, and MPS is either 0 or 1. CABAC provides two equations to calculate ctxIdx.
Except for syntax element coded block flag, last significan flag, significan flag and

coeff abs level minusl, eq (14) is used for calculating ctxIdx. Otherwise, eq (15) is

used.
ctxldx = ctxIdxOffset + ctxIdxInc (14)
ctxldx = ctxIdxOffset + ctxIdxInc + ctxCatOffset (15)

In (13) and (14), both of ctxIdxOffset and ctxCatOffset are constant for calculating
ctxIdx. The ctxIdxInc is calculated from the information of neighbor macroblock
® Arithmetic coding (AC)

Fig. 4-5 shows the flow diagram of AC encoding for a given bin value, binVal, in
the Decision mode. AC is consisted of three parts.

1. Interval Maintainer.

2. Probability Updating

3. Renormalization.

99

4.1.3.5 Deblocking

Deblocking filter is used to the decoded macroblocks to reduce blocking distortion.
This filter is applied after the inverse transform in both the encoder and decoder. The
major benefits of adopting this are smoothing the block edges, reducing blocking
effecst and improving the objective quality of the decoded images.

The deblocking filtering is applied to vertical or horizontal edges of 4x4 blocks in a
macroblock. The deblocking steps are shown in the following:

Step 1: Filter four vertical boundaries (a,b,c,d in Fig. 4-6) of the luma component.
Step 2: Filter four horizontal boundaries (e,f,g,h in Fig. 4-6) of the luma component.
Step 3: Filter two vertical boundaries (i, j in Fig. 4-6) of chroma components.

Step 4: Filter two horizontal boundaries (k.1 of Fig. 4-6) of chroma components.

100

MPS PSTATE

Interval maintainer
‘[1N
LPS probability updatel IMPS probability updatel

!

Renormalization

bit-stream

Fig. 4-5 Flow diagram of arithmetic coding.

e k
f |
g
h b

8x8 chroma

a b C d
16x16 luma

Fig. 4-6 Filtering boundary of a macroblock.

4.2 Design Challenges and Paper Survey

4.2.1 Design challenges
The design challenges of H.264/AVC basic encoder mainly come as follows:

® the high complexity of the encoding algorithms
® Jarge memory requirement and computational loading of motion estimation
® The throughput of intra prediction and motion estimation is not enough for real

time coding if adopting the algorithms of reference software
101

® The deblocking filter requires huge memory access and may become the system
bottleneck

® The power and area consumption of the H.264 encoder is too huge.

However, the high resolution applications such as High Definition Television
(HDTV), HD-DVD, and BD all adopt 1080p (1920x1080) H.264 high profile for
higher compression efficiency and better video quality, which cannot be supported by
previous works. Thus, the main stream 1080p high profile application presents a
series of new design challenges:
® The new coding tools increase more complexity
® The 1080p high profile application needs at least 4X higher complexity than in
the 720p baseline.

® The memory requirement and hardware cost of motion estimation module are
double by bi-directional motion estimation.

® The resource conflict between the new coding tools and baseline tools

® CABAC will become the bottleneck due to its data dependency

® The high profile encoder must have the compatibility to support baseline and

main profile encoding.

4.2.2 Paper survey

Because of high complexity of H.264 encoder, several VLSI implementations have
been presented [3][4][5][69] but their performance is limited to baseline 720p
(1280x720) [3][4] or SDTV (640x480) [5]. Although [69] can support 1080p
resolution, the SoC design with embedded memory is very large and the power
consumption is huge. Besides, the design targets of previous designs are focused on

H.264 baseline profile which only provides the basic video quality and compression

102

efficiency. As for the commercial design, only [70][71] can support H.264/AVC high
profile encoding. However, their performances are achieved by high operating

frequency and huge power consumption.

4.3 System Overview

Fig. 4-7 presents the system overview [8]. The new high profile coding tools are
included as the shaded parts. An important challenge is to add these new coding tools
to the system but keep the similar throughput and minimum hardware overhead. As
shown in Fig. 4-7, the system architecture of the. proposed encoder has three
macroblock pipelined stages. The first stage is the integer motion estimation (IME)
stage which occupies the most computation and memory resource of the entire H.264
encoder. In the second stage, intra prediction and fractional motion estimation (FME)
are placed in the same stage to share the current block buffer and pipelined buffer.
Intra prediction uses the neighbor pixels to predict the current block and the FME
refines the result of IME stage. The third stage is the entropy coding stage including
Context-Adaptive Variable Length Coding (CAVLC) and Context-Adaptive Binary
Arithmetic Coding (CABAC), which both provide high compression efficiency to

generate the final bit-stream.

103

+ Control Signal

Bitstream Buffer —— Data Path

Processor Frame Memory

: I ! 77d Modules for high profile
§ ~)
=
System Controller -
& Header [oo - Bus Arbiter
Generator B |
L,,,,,,,,,,,,,,,,,,,,; ,,,,,,,,,,,,,,,, f ,,,,,,,,,,,,,,,,,,,,,,
‘ T SR
i : Intra-Predictor [| : *\ ! Rec. SRAM
|
V‘ : Intra 4x4/ |l ! i
ol Luma || ! Intra 16x16 Reconstruction 4w-| Deblocking
Cur. Buffer ' Y ; ¥
Backwardq{ Forward Level 2 : Infra 8x8 T :
|t | Lt Luma | Search Module .
SRAM.| SRAM | [-127t0+128] H Residue : > CAVLE | —p-
i TS SRAM i
Bickivard | Forward Level 1] Shared Shared]
T} tuima.] Luma | Search Module + Luma Chroma * [}
SRAM*.| SRAM [-31 to +32] Shared Cur. Buffer | Cur. Buffer | -
Forward [2 xS DCT |
_ Level0 Luma & Quantization'| |
Search Module 4 SRAM | ™ . —) Entropy
[-7 to +8] Shiicd e Fractional ME !
Backward |
Integer ME Lismoa |
SRAM: |
Y] 1
'} 1
MB Pipeline T MB Pipeline T MB Pipeline
Stage 1 | Stage 2 | Stage 3
| |
Fig. 4-7. System overview of H.264 high profile encoder.
0 16 62 170 225 256 282 382 394 506 512 559 568 600
IME (MB 2) IME ‘ LOAD
FME (MB 1) Luma ‘ IDLE ‘ Luma and Chroma ‘ LOAD
Intra (MB 1) LOAD ‘ Luma Luma and Chroma IDLE LOAD
Rec. (MB 0) Rec. for deblocking and Inter Reconstruct intra boundary IDLE Rec.

Fig. 4-8. The scheduling of H.264 high profile encoder

4.4 Schedule of H.264 High Profile Encoder

Fig. 4-8 shows the scheduling of these three stages. There are three features in this

scheduling. First, we load the reference data for IME in advanced because the IME

requires huge amount of memory access. The second feature is that FME and Intra

modules share residual SRAM and reference SRAM. Besides, the two modules adopt

special scheduling for loading data from external memory so that their data

requirement can be satisfied without confliction. Finally, the reconstruction process is

through the second stage and the third stage.

104

4.5 System Level Hardware Sharing Techniques

4.5.1 Reconstruction sharing

The intra prediction and FME in the same stage could cause timing conflict in the
reconstruction of inter and intra prediction and thus reconstruction hardware has to be
duplicated. This conflict is that the intra predictor in the second stage needs the
reconstructed boundary pixels of previous block immediately for intra mode decision
and thus its reconstruction must finish in the second stage. But the reconstruction of
inter prediction after the final mode decision must execute after all predictions are
done. Besides, the reconstructed data of inter predicted blocks must go through the
deblocking filter to remove the blocking effect and should finish in the third stage. To
solve the reconstruction hazard, we place the reconstruction stage cross the second
and third stages so that the intra and inter predictions can share the same hardware in
different time slots. As shown in Fig. 4-9, the non-filtered reconstructed data is
feedback to the intra predictor in the end of the second stage, but the deblocking filter
processes the reconstructed blocks in the third stage. With the above reconstruction
sharing technique, we can eliminate one extra reconstruction hardware unit and its
power.

Therefore, during cycle 16 to 382 shown in Fig. 4-8, the reconstruction module
reconstructs data for intra prediction procedure of MB 1 and filters the reconstructed
data of MB 0 and MB 1. Moreover, after residual re-computation of a best mode is
finished, the data is quantized and reconstruction begins immediately in the second
stage. This work continues to the third stage which finishes the reconstruction of a
MB and sends the data into the deblocking engine. By this flow, we can send the
necessary quantized residuals to entropy coding module in time and remove bubble

cycles in the third stage.

105

IME MBO MB1 MEB2
Intra MBO MB1 MB2
Rec. MB0 | MBo [MB1| MB1 [MB2| MB2

Forintra 77— ———=——""="_""TFor Inter

Predictor — ~ Predictor
| ! | >

Time

Fig. 4-9. The schedule of reconstruction module

4.5.2 Hardware-shared bi-directional motion estimation

Fig. 4-10 is the system architecture of bi-directional motion estimator for H.264
high profile. The width of external bus is 128 bits because the width of a MB is just
128 bits (i.e. 16 pixels)

To support bi-directional motion estimation, we double the memory for two
reference frames but keep the same hardware cost with one directional motion
estimator. It is because the throughput of PMRME (i.e. 512 cycles for bi-directional)
is good enough to meet the throughput requirement of system (i.e. 600 cycles). As
shown in Fig. 4-10, we have 10 memory blocks totally. Among these memories, three
memory modules are used for level 0 forward search. The other two forward search
modules for level 1 and level 2 both need one memory module. As for backward
search, the memory allocation is the same with forward search. The three memories
for level 0 are used as ping-pong buffers as presented in Sec. 2.6.2. With these level 0
buffer sharing technique, we can reuse the level 0 data between IME and FME and
reduce the memory access time.

For level 1 and level2, the forward and backward search are interlaced. When
forward or backward search is executing, the memory access of inverse direction

search is also executing at the same time.

106

External

Forward memory control

bus
L J \ Y
¥ ¥
YV Yy Level 0 Level 0 Level 0 (NSRMS)
Level 2 Level 1 forward forward forward
forward forward memory 0 memory 1 memory 2
memory memory ¥ ¥
| I 7 |
\ \ \
. Mode
1 . !
IME with LO, L1, L2 PUs Filtering [~ FME
N — —
Level 2 Level 1 + + + SRMS)
backward | | backward Level 0 Level 0 Level 0
memory memory backward backward backward
Iy 1‘ Iy memory 0 memory 1 memory 2
X) X
A 1 A [}

| Backward memory control |

Fig. 4-10 System architecture of bi-directional motion estimator for H.264 high
profile

4.6 Full eight-pixel intra encoder

Fig. 4-11 (a) presents the overview of this design except ME and entropy coding.
The new 1080p high profile coding tools including intra8x8 prediction and 8x8
integer DCT increase the complexity by 37.5% and the throughput by 2.5X compared
to the baseline profile. Besides, the structure and data hazards will occur since the
new high profile tools such as intra8x8 predictor need extra reconstruction and
different reconstructed boundary data and thus will conflict with intra4x4 modules.
For the data hazard, we adopt independent boundary buffer for intra8x8 prediction to
eliminate it.

To solve the high throughput request and structure hazard, this design adopts
eight-pixel parallelism. To further improve throughput, we parallel process intra8x8
and intra4x4/16x16 and use interlaced scheduling to minimize the stall cycles by data
hazards. However, direct implementation will cause high cost due to eight-pixel

parallelism. To reduce cost, we merge the reconstruction of intra4x4/16x16 and
107

intra8x8 into one and further share it with reconstruction of ME as stated above. To
further decrease the cost, we adopt intra8x8/16x16 recomputation so that the best
mode result and its prediction value of intra8x8/16x16 are not saved and recomputed
if being chosen. With this, 2560 bits of memory can be reduced. Besides, using
eight-pixel architecture in reconstruction and quantization phases can save the extra
buffers between different pixel-parallelism phases. The details of these techniques
will be discusses in the next section.

Fig. 4-11 (b) shows the performance of these proposed algorithms. The cross-stage
reconstruction component - can reduce 24.2% of gate count, and then the
intra8x8/intral 6x16 re-computation can save 10.9% of gate count. The merged
reconstruction module for intra and re-computation schemes can save the gate counts
by 7.7% and 9.26%, respectively. In summary, 42% of gate counts can be reduced by

these techniques than direct implementation.

108

Deblocking 7y 8 pixels/cycle |

Filter Y,
i it Data path for
y Reconstruction Phas Quantization —
Upper Buffer Rec. :L Phase intra4x4/16x16
Controller Shifter ‘! i Data path
- Fing-pong for intra8x8
_GJ ? 3 ".!":;:‘= g Coefficient
-t [FTFO Req | Buffer
~ 104x48x2 || ----# Shared data path for
Pixels Single Port intra4x4/8x8/16x16
Boundary Selection Thira
|| Reg for Prediction Entropy Modules shared by
ax4 Generator* Encoder intra4x4/8x8/16x16
2
> Bﬁig?ﬁ:y . * « » Buffer removed by
16x16 Intra Bitstream| % all 8-pixel parallel
Prediction Cost Generator Output Y Rec. module
Boundar e tor* and Mode
> Reg fory Gene;a o Decision . BUff db
8x8 Source Bitstream uTier removed Dy re-
Buffer Source Ph computing the best
Sooree ™| ases [P W i mode of intragx8/16x16
Input Single pi(xleals) P
Port Prediction Phase

8 pixels/cycle

(a)

Reduction of Intra and Rec. Hardware Cost

L)

+1]
1 1
g | |
2+3 | |
2+3+4
2+3+4+5 AJ_'TEE. ? :
= f— %.7%1 = r B
150 |1‘70 190 210 230 250 270 |290

Gate Count(K) 42.5% Reduction

1: Direct implementation

2: Rec. module to cross 2nd and 3rd stage
3: Intra8x8/16x16 recomputation

4: Eight-pixel parallelism Rec. module

5: Merged intra4x4/8x8/16x16 Rec. module

(b)
Fig. 4-11. (a)The architecture of intra encoder part. (b)The gate count reduction of

intra encoder by proposed techniques.

109

4.6.1 Intra predictor

8x8 prediction generator is modified from 4x4 prediction generator to support more
than six input ports. The major difference between 4x4 and 8x8 intra prediction
generator is that new multiplexers are added in 8x8 prediction generator to support
more inputs. Instead of predicting two rows of 4x4 blocks simultaneously shown in
Fig. 3-10, this predictor computes a row in an 8x8 block directly. Its detailed

architecture is shown in Fig. 4-12.

110

Pix 6

i

e <
- clipping }b Pred_outd
Pix 7 Fl‘* Pix 4—™
pica - } - Round &
> | — clipping j—' Pred_out3
;]I" Pix 3—»|
Y a
+ -
pix 3 - O Round &
> o l_"‘j_w Pred_out2
. Hp. Pix 2—»
Pix 2 —T/ ’ @ > Round &
> 4 " clipping j—b Pred_outl
PixL > " 0 Pixt
Pix 1
b—/ ’
Pix 6
Pix 5 - E - Round &
- clipping j—b Pred_out§
Pix 7 g Pix
biv g - j‘) > Round &
) _-.: | | clipping Pred_out7
) Pix 3—»
S b
Pix 3 _ @ > Rc:undri &
> A - clipping Pred_out6
> r Pix 2—
Pix 2 ——ot ﬁ" @ - Round &
> o - clipping j—' Pred_out5
Pix L . - Ep. Pix 1—»
Pix 1 >
-
pix K —/

Fig. 4-12.Intra prediction generator used for intra luma 8x8 modes.

4.6.2 Interlaced schedule with intra 8x8 prediction

This scheduling of intra prediction generator as shown in Fig. 4-13 is based on

previous work shown in Fig. 3-9. We used three scheduling techniques in this

111

scheduling, interlaced scheduling, parallel intra 8x8/4x4 computation, and
re-computation for intra 8x8 boundary values.
® Interlaced scheduling :

The interlaced scheduling of luma 4x4 and 16x16 intra prediction modes is the same
as Fig. 3-9. Because the reconstruction architecture also adopts 8-pixel parallelism,
we re-arrange the schedule of some activities: deciding best luma mode, chroma mode
prediction, and re-computing chroma best mode.
® Parallel 8x8/4x4 intra computation :

Because the additional path for 8x8 intra mode decision is added in the design,
parallel intra 8x8/4x4 computation is used to computing 4x4 and 8x8 intra prediction
modes in parallel without structure hazards in reconstruction phase to keep the same
throughput as baseline designs.
® Re-computation for intra 8x8/16x16 boundary values :

For additional path for 8x8 intra prediction, we re-compute intra 8x8 boundary
values to save hardware cost and increase its utilization. After the best intra mode
decision of one 8x8 block, re-computation for intra 8x8 boundary values will process
twice. The first re-computation is to re-compute boundary pixels as reference of its
right and down blocks and the second is to produce the prediction reference value for
reconstruction.
® Remove setup cycles in previous work [42]:

The purpose of setup cycles in Fig. 3-9 is to compute DC value used in luma 16x16
dc mode. However, we remove it and calculate the average value during computing
enhanced SATD value of luma 16x16 vertical and horizontal modes in our design to

save calculating cycles.

112

Luma 8x8 scheduling

| L8 blkl I| Re-computation for intra boundary value Decision for Best
7 modes Luma Mode

63 119 121 147
1: Idle cycles

I Re-compute Luma 8x8
Best mode

‘ Load Source and |

Intra Luma 8x8
up reference

Load Source and Re-compute Luma Re-compute | Load left
‘ up reference | Luma 4x4 & Luma 16x16 16x16 Best mode Chroma Best Chroma | reference
0 63 389 429 469 509 600
L4 blkl L16 blkl1~6 L4 blk2 L16 blk6~7 L4 blk3
7 modes Vertical 7 modes Vertical 7 modes
63 77 87 144 158 170

Interlaced Luma 4x4 & Luma 16x16 Schedule

Fig. 4-13 Pipelined schedule of proposed intra prediction generator

in0 inl in2 in3 in4 inS iné in?

T FITa

1-D transform unit

‘ 1-1 transform unit |

I . —)
outd) |] — I i
out) o
out]l «— E
outl «—| ¢
£
:2
out2 «— I
= out2 «—| E
5 2
outd «— E -
& outd —|
z
=
outd «— = Hin
=} : 4x4 Transform path
outs * T
outh B
out? *

8x8 Transform path

Fig. 4-14 Hardware architecture of transform unit

4.6.3 8x& transform unit

This work also adopts the butterfly architecture in [61] as shown in Fig. 4-14, to
execute integer 4x4 DCT, 8x8 DCT, 4x4 Discrete Hadamard Transform (DHT), and
2x2 DHT. Besides, two 4x4 block registers are used to store the DC coefficients for
further DHT computation. The 2-D transform is also executed by two separate 1-D
transforms with butterfly architecture [57]. Because 4x4 DCT and DHT have the same
butterfly structures and do not operate at the same time in the encoder, they can share

the hardware to reduce area.

113

4.6.4 Shared 8x8 inverse transform unit

Compare with other modules of our design, the reconstruction circuits has much
lower hardware utilization. To resolve this problem, every unit of this reconstruction
phase focuses on both reducing hardware cost and raising the utilization. For instance,
the inverse transform unit can execute inverse 4x4 integer transform, inverse 8x8
integer transform, and inverse 4x4 DHT. This module adopts the design in [72] but it
has structure hazards when an 8x8 DCT follows the 4x4 DCT transform immediately.
We can avoid all structure hazards by carefully scheduling of intra prediction phase.
Fig. 4-15 shows the block diagram of inverse 2-D transform unit.

Fig. 4-16 is the architecture of 1-D transform unit which we only add few
multiplexers from general 8-pixel IDCT transform architecture to support two rows of
four-pixel inverse integer transform operations in parallel. Fig. 4-17 and Fig. 4-18
show the data path for four-pixel and eight-pixel inverse integer transform respective.
Similar to the forward transform hardware, the inverse integer transform and inverse
Hadamard transform also share the hardware to reduce area and increase hardware
utilization. Fig. 4-19 illustrates data path for inverse Hadamard transform. The steps
of switching the hardware to support different types of inverse transform are shown
below: Firstly, we decide inputs ports according to which function executed. And then,
if the function is inverse Hadamard transform, we avoid all paths with shifters in the
figure. If the function is inverse 4x4 DCT transform, we select the second datapath of
every multiplexer as shown in Fig. 4-17. Otherwise, the first datapath of every
multiplexer will be selected when executing functions is 8x8 DCT transform. To
avoid bubble cycles for the DC value of special mode like intra 16x16 mode and intra
chroma mode during reconstructing data, we compute inverse DHT transform after
the DC value pass through DHT transform, quantization, and inverse quantization

circuits immediately.

114

0 inl 12 1n3 14 1n5 1n6 1n7

S R T A S S N

1-D inverse transform unit

out0 « | | = d e

outl~- .t H H H W H H

out2 «—

out3 «—

outd «—

outS <

1-D inverse transform unit

i Bk | 0 g Ldml 9w

out7 ¥ N R .]] | B o

: 8x8 Transform path
: 4x4 Transform path

Fig. 4-15 Block diagram architecture of inverse transform unit

115

=}
-
=)

2
]

Out 1

A,

¥y
+
Y
=}
=4
Y

Out 3

Out 4

[¢
(
‘

G
o
Y Y YYIYTYTr

| >>2 ‘)‘
[—>

D)
>>2 7/
. N
()

=}
g
W

\<+£
L

=}
5
=N

=]
S
2

In1>>1 -

=}
-
=)

=]
-4
-

=}
=4
Y

=}
s
'S

=}
g
W

In7 + =(+) ~n
-1
>>2 T
‘>‘ -1
- (H— .
In 4 -1
In6 + o+ -

0

Out 6

—+

Out 7

LT Ty

Fig. 4-17 The 4x4 IDCT transform datapath in inverse transform unit.

116

D

In7
In7>>1

In7

Inl—»D

>>1

¥

In3
In3>>1

In7 —» 0 o2

>>1

h 4

Inl—»

Y

InS
In5>>1

#

Gr

Y

+
In5 —» 0
In3
+
Inl
In1>>1 0

(+

YT 7V 7T VTTrTr

Fig. 4-18 The 8x8 IDCT transform datapath in inverse transform unit

In0

)
D Y

In 0

In4

Iné6

0

R e e

=}
-
=)

=]
-4
-

=}
=4
Y

=)
=4
w

=}
s
'S

=}
g
W

=}
5
=N

=]
S
2

=}
-
=)

=]
-4
-

=}
=4
Y

=)
=4
w

=}
s
'S

=}
g
W

=}
g
=N

=]
S
2

Fig. 4-19 The inverse Hadamard transform datapath in inverse transform unit

117

-
.

t

Quantization |

T Coefficients

_ | Quantization

circuits

A

circuits

Output

A

Residues

Quantziation
Parameter

Quantization
parameter table

> reg

! skip quant_coef

qp_const

@7Shift skip

shift

Bl

Fig. 4-20 Block algorithm of quantization circuits

TABLE 4-1 Quantization parameter table when QP equals twenty-eight: A for 4x4

A=

(8192 7740
7740 7346
10486 9777

B = 7740 7346
8192 7740

7740 7346
10486 9777
L7740 7346

8192
5243
8192
5243

10486
9777
13159
9777
10486
9777
13159
9777

5243 5243
3355 5243
5243 5243
3355 5243

7740 8192
7346 7740
9777 10486
7346 7740
7740 8192
7346 7740
9777 10486
7346 7740

block size, B for 8x8 block size

5243
3355
5243
3355

7740
7346
9777
7346
7740
7346
9777
7346

10486
9777
13159
9777
10486
9777
13159
9777

4.6.5 8-pixel quantization and inverse quantization unit

7740
7346
9777
7346
7740
7346
9777

7346-

To process eight pixels in parallel, we use a pair of quantization circuits shown in

Fig. 4-20 which are modified from the circuits presented in 3.4.4.2. However, the dual

circuits can share the quantization parameter table shown in TABLE 4-1. For example,

if we quantize the coefficients of one 4x4 block, one quantization circuits only needs

odd rows of quantization parameter table and the other one only accesses even row

parameters of the table. As for 8x8 block, one quantization circuits only needs left

four parameters of one row and the other requests right four parameters. Finally, the

similar architecture also adopts in de-quantization module due to the similar function

behavior between quantization and de-quantization.

118

4.7 Bi-directional Inter Predictor Module

4.7.1 Techniques for inter prediction

Fig. 4-21 shows the motion estimation (ME) algorithm and its architecture. The
basic techniques all come from Chapter 2. To achieve 1080p resolution with
bi-directional prediction, we adopt parallel single step processing for ME. Thus, for
integer motion estimation (IME), we use a parallelized subsampling algorithm,
Parallel Multi-resolution ME (PMRME) as discussed in chapter 2. It searches three
subsampling levels of different search ranges in parallel so that all searches are done
with 256 cycles in single step. This provides higher throughput than [4] and [5] using
two and four steps in IME respectively. With 256 cycles, the high throughput IME can
process bi-directional predictions sequentially while still meets 1080p requirement.
Thus, a single IME module cost is enough for both directional predictions. Besides, to
support search range (SR) £128 and reduce the hardware cost within the limited
quality loss, level 1 and 2 provide different subsampling ratio according to the search
range for large motion vectors, and the search centers of the two levels are at (0,0) for
further data reuse. Furthermore, to compensate quality loss of subsampling to meet
the 1080p requirement, the level 0 without subsampling is centered at the motion
vector predictor (MVP) to cover the most occurred motion vectors.

After IME, we use Mode Filtering (MF) to select only two best modes for FME
refinement so that FME tests at most 18 motion vectors instead of 41 motion vectors
in [3]. As for the fractional motion estimation part, we use the six pixels only instead
of 17 pixels and 25 pixels in [3][5], and reduce at least 64.7% of complexity and 76%
of processing units used in [4]. Besides, in order to improve the throughput, we finish
the FME stage within a single iteration to double the throughput than previous works.
To further reduce the bandwidth of FME, we use the Non-Subsampling Reference

Memory Sharing (NSRMS), another cross stage technique, which uses three SRAM
119

banks to enable sharing of level 0 reference memory of IME and that of FME. FME
searches only six candidates in a single step so that only six processing units are
needed, which eliminates 76% of processing units used in [4].

Fig. 4-22 (d) shows the trade-off between the video quality loss and the search
point reduction for motion estimation. In previous work [4], the fast motion
estimation algorithms may result in 0.6dB PSNR loss, which may cause obvious
image distortion. In our proposed ME algorithm, only 0.1dB quality loss is required,
but the search points (search complexity) can reduce 98.7%. The fast IME (PMRME)
can save the complexity by 91.7%. As for mode filtering and fractional motion
estimation, they can reduce the complexity by 56% and 64%, respectively. It means
the three algorithms all can reduce the complexity a lot.

In addition to the complexity, our proposed architecture also reduces the hardware
cost including area, internal SRAM size and memory bandwidth. Compared with
[3][25], the proposed gate count for motion estimation can decrease 30% and 62.5%
gate count in IME and FME part as shown in Fig. 4-22 (b). These benefits come from
the reduction of processing units to calculate the sum of absolute difference (SAD).
For local memory reduction shown in Fig. 4-22 (¢), the memory size can save 86%
because PMRME uses the subsamping techniques and only the sampled pixels are
necessary to be stored in local memory. Finally, the memory access can reduce 46%

due to the subsampling PMRME technique as Fig. 4-22 (a) presents.

120

[Forward memory control
PMRME xternal bus
Y v
Previous Li : Tevel 0 Level 0 Level 0
Frame loer:vani #)en‘:::y:i forward forward forward [(NSRMS)
; Level2 CFurrent e memo: Vrﬂé%% mem'o 1 mem'o 2
rame
| 22 41 [Level 2 ¥ ¥ ¥ \—v
il b e Search Range Level 2 Level 1 Level 0 2 g
Leye e sa""’e‘ [-127,128] IME Pl i P ing || P i gg
Search| Range [[|LevelT] Module Module Module 20 '
| I Leviel ‘ Search Range ? 1 * — y—A
nq subsampl| [-31.32] — = =
! Level 2 Level 1 L3 L3 L3 (NSRMS)
- e . — backward | [CaErEN Level 0 Level 0 Level 0
- .subsample memory memory
memory 0| | memory 1 memory 2
i A 4 A
T
vel 0: Search centLr at (MVP) | T T
Level 1,2: Search center [at (0,0) | [
Backward memory control
Cycle Count 16
256 512 16 Best
| T Mode 1
Level 0 Parhllel 8 ractional part of
Level 1 154 | }Prom bssing 8 T8 V-MVP)
Level 2]’ 3 Ldvels " Six-Pixel
Single
Forward Backward =) Iteration
Search S h g 1 (Best integer MV)| FME
carc 8[] 811 Best
Mode 2
Mode Filtering:
Only the best two modes
are sent to FME stage

Fig. 4-21. The architecture of motion estimation part and the proposed algorithms.

Memory Access for ME per MB

Full Search [3] with SR=+128+Level C data
Reuse

Reduction of IME and FME Hardware Cost

305.2

[31[22] with SR = [£32.464] | [ME

FME

401.8

Reduce 30% (educe 62.8%
by PMRME by 6-pi

46%
PMRME+ Level C datareuse in Level 1,2 [4.282 Reduction Proposed with SR=[2128,128] | IME. ‘ FME
213.7 689
4 5 6 7 8 9 0 100 200 300 400 500 600
Gate Count(K)
(@) KBytes (b)
Search Range Buffer Size 100 The Trade-off between No. of Search Points and Quality Loss
45.68
154.012
g 91.7%
Full Search [3] if SR=:128 z Reduction
g 98.7%
| 2 Reduction
17.44 | H
| K R
PMRME 88.6% 1 § {R (614
Reduction ! 2 058y YRedy
. —] L 3
2
0O 20 40 60 80 100 120 140 160
(KBytes) ° '
PMRME Mode Filtering+ PMRME+Mode Filtering PMRME Full Search([3] if SR=+128
6-pixel FME
(© = No. of Search Points ~8-PSNR Loss

()

700 800

Quality Loss(dB)

Fig. 4-22.(a) The memory access reduction of ME (b) the gate count reduction of ME
(c) the internal SRAM buffer reduction of ME (d) The trade-off between the number

of search point and quality loss.

4.7.2 4x4 SATD cost function

In H.264 high profile standard, if the inter prediction block size is larger than 8x8,

the corresponding integer transform size for residual data also adopts 8x8. Thus, in

the reference software [27], it adopts 8x8 Hadamard transform for SATD calculation

121

for block size larger than 8x8. Though Hadamard transform is greatly simplified, a
8x8 Hadamard transform unit still consumes about four times area than that of 4x4
one. Because the FME adopts six PUs architecture, six 8x8 SATD transform units will
be required and thus cost a lot of area cost. Moreover, the area of interpolation unit
will also increase. To solve this area problem, we propose to use 4x4 Hadamard for all
SATD calculation disregarding of the block size [40].

TABLE 4-2 shows the comparison results of our algorithm with different SATD
strategy for 1080p test sequences. The frame number is 100 and we set only the first
frame to be I-frame because inserting I-frame periodically will reduce the impact of
our algorithm. All data in TABLE 4-2 are acquired with the reference software [27].
As shown in the table, the results of using 4x4 and adaptive Hadamard transform are
similar except for high QP situations. This 1s quite acceptable since the bit rate under
that condition is quite low and any increase will be large in terms of that bit rate.
Since the 4x4 transform unit only consumes 25% of area cost of 8x8 one, we calculate
SATD by 4x4 Hadamard transform which doesn’t influence video quality and saves

about 75% of area cost in PU and 60% of area cost in the total FME module.

122

TABLE 4-2 The performance comparison with 4x4 and adaptive Hadamard transform

1080p size, 100 frame, only first frame is I-frame, RDO off, Search range = 16
Blue Sky Pedestrian Riverbed
QP | APSNR Abit rate APSNR Abit rate APSNR Abit rate
(dB) (dB) (dB)

16 0 -0.48% 0 -0.11% 0 -0.06%
22 0 -0.67% 0 0.61% 0 -0.16%
28 0 -0.4% 0.01 1.38% -0.01 -0.02%
34 0.01 0.83% 0 2.13% -0.02 0.67%
40 0.08 3% 0 1.81% 0.01 0.96%

4.8 Architecture of CABAC [73]
4.8.1 The proposed algorithm flow and architecture of CABAC

In [74], they rearrange the overall CABAC flow into four stages as shown in Fig.
4-23 (a). With help of software analysis, first, we find that ctxIdx calculation is
depended on previous binVal not current ones. So, we can process binarization and
context generation in parallel. Secondly, to read pstateldx and MPS from context
memory and update them at the same time, a dual-port memory is adopted here for
increasing encoding speed. With this approach, the encoding iteration can be reduced
from 5 to 3-4 cycles as shown in Fig. 4-23 (b) and architecture is easier to be
pipelined into three stages as in Fig. 4-24.

In the first stage of CABAC as in Fig. 4-24, the binarization stage will output the
bin-string to second stage and context memory will be updated and output ctxldx for
arithmetic coding (AC) at the same time. However, if the ctxIdx are the same for the
successive processing, a stall signal should be added to avoid pstateldx be read out
before updating. This is the reason why proposed iteration is 4. The second stage is
AC, which takes responsibility for calculating interval and output bit-stream. The last
stage is FIFO, which collects data from AC. Because output word length of bit-stream
is varying from 0 to 2, a FIFO is needed.

123

4.8.2 Architecture of binarization

In the binarization stage, although there are four schemes, it can be simply reduced
into two types. In which, we classify U, TU and FL schemes into the table based type
because they are easier to be realized by combinational logic. On the other hand, the
table based UEGk will cost a lot due to the large table. To minimize the table cost, we
use the arithmetic method to calculate it by adapting the table partition introduced in
[75]. Thus, we use the parameter “base” to find the partition block and a carry save

adder (CSA) to calculate it suffix. The proposed architecture is showed in Fig. 4-25.

4.8.3 Architecture of context modeling

The architecture of context modeling is showed as Fig. 4-26. As mention above, we
adopted a dual-port memory for context memory. Besides, the probability updating is
extracted from AC because it depends on values of pstateldx and MPS. However, it
does not depend on codIRange and codlLow. Furthermore, transition table of MPS is

reduced into simple one by its regular characteristic.

4.8.4 Architecture of AC
Fig. 4-27 shows the architecture of AC. There are two loops in AC [1]. One is

controlled by codIRange and the other one is controlled by bitsOutStanding. To speed
up the first loop, we skip the successive one by the Leading-Zero Detector (LZD) and
Barrel-shifter to generate new interval. At the same time the output of LZD will sent
to FSM to calculate the renormalization. The idea for the second loop speedup is by

bit-parallelism as described below.

124

4.8.5 Interval maintainer in AC

For the sake to maximize hardware sharing, we analyze codlLow, and codIRange
between three modes as shown in TABLE 4-3. Here, we can find no matter which
mode is selected, codlLow will involve a three input adder (when binVal equals to
MPS or equals to 0). Thus we use a carry-save adder to compute new codlLow to
save hardware. This adder also helps calculating codIRange since binVal equals to
zero and binVal non-equals to zero will not happen at the same time when the mode is
on termination. After this calculation, the interval will be sent to renormalization. The

proposed architecture is showed in Fig. 4-28.

4.8.6 Renormalization in AC

When renormalization is happened, [1] uses adder for updating codILow. However,
with a detailed analysis, we can find that codILow is just trying to eliminate its MSB
when codIRange is less than 0x100. Thus, to minimum the hardware cost, we adopt a
FSM instead of adder. After that, BitsPacking in the renormalization will receive the
bit-stream from AC and pack them in byte. Within BitsPacking, bitsOutstading has to
solve the carry over problem that requires a loop to output data. To break such
multi-cycle operations, we use two masks to generate output data in parallel. With
such bit-parallelism, we can process this loop in one cycle. Fig. 4-29 shows the

architecture of the renormalization stage.

125

1 |Bit-stream update| | 1 Binarization N
A +
5 Context range generation
[context taple access
5 Prob check/BAC
[range table access
(a)
read
lSE Context memory
l rrr
‘ 1 ‘Context index generation‘ ‘1‘ Binarization ‘ ‘l‘Probability update|
‘ ‘Range table accessH ‘ Binary arithmetic coding }

‘ 1 | Bit-stream update ‘

CLErT omis.. | 7 |

(b)

Fig. 4-23 (a) Original serial chedule of CABAC. (b) Modified parallel algorithm for
CABAC

Context INIT Mode Controller

Arithmetic coder | i | |FIFO]

. 1
! ! i
1 1 .
i |RAM — Context State 1 i :
] P ! T T T |
i = NI i
! ;
: i

1

1

!
; i
SE — —*Binarizer &context ide i : ::
i . i
b . . K
STAGE 1 STAGE 2 STAGE 3

Fig. 4-24 Pipelined CABAC encoding flow

126

SE

Const Table $¢{ ,,,,,, UEGK encoder
mb_type_val abs_misl
! |
'
Base LUT cMax
Base

: - +
TABLE_Pefix |TABLE_Suffixl ' i | Prefix Gen CSA
| I | c

binVal-Prefix binVal-Suffix

Fig. 4-25 Architecture of Binarization

MPS_STATE_SEL
PSTATE< 61 0
PSTATE= 61, 62 1
NIT CONTEXT MEMORY PSTATE= 63 2
STATE[CTX=0] MPS[CTX=0] SYMBOL_CNT [CTX=0]
ctxldx STATE[CTX=1] | MPS[CTX=1] | SYMBOL_CNT [CTX=1] MPS UPDATE
RIW : : : PSTATE_UPDATE
' STATE[CTX=460] |[MPS[CTX=460] | SYMBOL_CNT [CTX=460]
PSTATEIDX ‘ MPS
] 62 63 PSTATEIDX
: =
LPS Trans. Table ‘ ~ _<_MPS_STATE_SEL{ | Arithmetic code
T i |
L
VPS MPS Trans. Table
‘ N_PSTATE

Fig. 4-26 Architecture of Context Modeling

. 1 codlLow SRS l B Interval maintainer
I/ \\%
I ILPS = rangeTabLPS[pStateldx][(COIRANGE >>6)&3 L __________________
MPS LPS
! COILOW=_ COILOW COILOW= COILOW: COIRANGE - 1LPS | lqeoodecocamooes
‘\\ COIRANGE= COIRANGE - ILPS CORANGE= 1LPS /)

SM I
”~ N LD
S Shifter Barrel- Shifter

Mode Controller

\I
|
|
|
|
|
|
|
|
1

g renormalization

BitPacket

Output Byte

Fig. 4-27 Architecture of AC

127

TABLE 4-3 Optimized codIRange and codlLow

binVal = MPS(F)

DECISION

codIRange - rangeTabLPS [pStateldx][qCod[Rangeldx]

binVal 1=MPS(T)

rangeTabLPS [pStateldx][qCodIRangeldx]

binVal - =0(F) codRange
binVal !=0(T) codIRange
binVal =0(F) codIRange-2
binVal = ((T) 2

rangeTabLPS

binVal =MPS(F) codlLow
DECISION -
binVal !=MPS(T) codILow + codIRange - rangeTabLPS
binVal ~ =0(F) codlLow << 1
binVal !=0(T) (codILow << 1) + colRange
binVal =0(F) codlLow
binVal !=0(T) codILow + codIRange -2
codlIRange oodleow
PSTATEIDX | (codIRange >>6)&3 (codILow<<1)

20 A
l l 0: Decision h=o° 4 Termm;%o]n& D2
e - o /4/—l: E
2: bypass —
NI 2 1 ‘ 1 bypass
= o ~—D2 H
CSA
N1 ‘ - ‘
i i
ol gy S <—termination S oA pypass D2 DI
) Decision ~-mr o — «— Decision

codIRange
DI=(MPS !=BinVal)

codILow

D2= BinVal =0

Fig. 4-28 Architecture of Interval Maintainer

Re_codlIRange

Re_codlLow

Barrel-shifter

codlRange_next codILow_next‘—|

LZD

|

P — lﬁ *********** ~.Output Stage
\

| Mask Gen |

1
I
I
I
I
I
I
I
I
I
I
I

Fig. 4-29 Architecture of Renormalization

128

4.9 Deblocking Filter

Fig. 4-30 presents the proposed deblocking filter architecture design. The
deblocking filter module adopts our previous design [76]. Fig. 4-31 shows the
proposed filtering order of block boundary data. In order to speed up the throughput
to meet the requirement and reduce buffer size, we change the filtering order shown in
Fig. 4-6. The filtering starts from the most left-top block, in which we first filter the
pixels on its two vertical edges (edge 0 and edge 1). Then, since all data is available
for horizontal edge 2, we can filter this edge immediately. This horizontal- vertical
interleaved approach is repeated for each 4x4 block in raster scan order, as the edge
number shown in Fig. 4-31. This data flow also improves more data reusability than
the original order shown in Fig. 4-6.

Besides, there are two SRAM modules in this filter. The SRAM, rec SRAM in Fig.
4-30 stores the data only filtered in one dimension or not filtered yet does not
complete filtering for further data reusing and removing data transferring cycles. The
other SRAM module, Ext SRAM, is used to store the filtered data for reconstruction.
Finally, we output data to external memory until we complete filtering data of a row
of blocks.

However, the filtering flow requires storing a row of blocks as the reference blocks
for next row of blocks, which needs 30720 bits local memory for 1080p video.

Therefore, it is necessary to send these temporary data to external memory.

129

Rec SRAM
control

Neighbor

A

Info.
Bs control |
Ext SRAM
REC_SRAM Ext_buff " control
» (luma 16*16+ R F'it
Chroma 16*8) 'ilﬁ
| ,
Reconstructed
Data » Ext SRAM
1B P . R R
LALCIIIAl 11ICITIO1 ,\/

Fig. 4-30. Architecture design of deblocking filter.

—2——4——6——7— 34Jr35—
0o 1 3 5 32 33
—— 101214415+ ——F42-43—
8 9 11 13 40 41
18202223 -
16 17 19 21
—— 126283031
24 25 27 29
: : 3839
A 36 37
46447
44 45
] |
B

Fig. 4-31.Edge processing order for (A) luma edge, and (B) chroma edge

130

4.10 Implementation Result

4.10.1 Chip specification
A 0.13pum 1080p high profile H.264 video encoder is presented with 3.1x3.1mm?

core size. The equivalent gate count is 593K and the local memory size is 22 KB. The
operating frequency for 720p and 1080p at 30fps is 62.5 and 145MHz respectively.
The chip specification and features are summarized in TABLE 4-4, and the chip photo

is shown in Fig. 4-32.

4.10.2 Power measurement result

TABLE 4-4 also shows the power consumption of our chip under different
supporting resolution. For high profile, the power consumption is 116.61 and 242mW
for 720p and 1080p resolution respectively. As for the baseline profile, the power
consumption for 720p and 1080p resolution is 84.6 and 176.1mW. If you consider the
low resolution video, the required power is 23.61mW for D1, 6.74mW for CIF, and
2.92mW for QCIF. We should note that the core voltage can be lower to 0.9V for CIF
and QCIF resolution. Fig. 4-33 shows the power curves of our design and previous
design. It is obviously that our design is the lowest power design when comparing

with [4][5] no matter which resolution is adopted.

4.10.3 Comparisons with previous work

TABLE 4-5 shows the detailed comparison with other works. The presented design
can support 1080p resolution, high profile, and up to £128 search range. Compared to
the state-of-the-art design [4] targeted at 720p baseline in low power mode, the power
consumption and operating frequency are 53.4% and 13% lower than [4] due to our
enhanced throughput and complexity reduction. The PSNR loss is only 0.1dB that is
better than [4] that has 0.6dB quality loss at the low power mode. For the area, our

core size is only 54% of [4]. For small resolution video, the level 1 and level 2 of IME
131

are turned off when the video size is below CIF, and level 2 is off for D1 video size.
Therefore, the power consumption is 6.74mW, only 42.6% of [5] and comparable to
the lower power mode in [4] for baseline CIF video. In summary, the design
outperforms other works to achieve 1080p processing with the less power

consumption and area.

132

TABLE 4-4 Chip specification and features.

Name H.264/AVC High Profile @Level 4
Encoder

Process UMC 0.13um 1P8M Standard CMOS
1.2V core, 3.3V 1/O

Package CQFP 208-pin

Gate Count 593K

Internal Memory 22KB

Chip Size

3.76x3.76mm>

Core Size

3.17x3.17mm>

Maximum Processing

62.208 M pixels/sec @145MHz

Throughput
Operating F 145MHz@ 1080p/301ps
POriiE TN 62.SMHz@ 720p/30fps
28.5MHz@D1/30fps
7.2MHz@CIF/301ps

1.8MHz@QCIF/30fps

Core Power consumption

Baseline Profile:
176. ImW@1080p/30fps/1.2V
84.6mW @720p/30fps/1.2V
23.61lmW@ D1/30fps/1.2V
6.74mW@CIF/30fps/0.9V
2.92mW@QCIF/30fps/0.9V
High Profile:
242.01 mW@1080p/30fps/1.2V
116.61 mW@ 720p/30fps/1.2V

HIIIIHIllIIIlIIllIIIIrl\ll\'l!!

IME L2 SRAM

Fig. 4-32. Chip micrograph.

133

TABLE 4-5 Chip specification and comparison

Proposed [8]

[3]

[4]

[3]

CMOS Tech. UMC 0.13pm TSMC 0.18pum TSMC 0.13pm TSMC 0.18pum
Core Size 3.17x3.17 mm’ 7.68x4.13mm” | 4.3x4.3mm’ 3.47x3.7mm’
Chip Size 3.74x3.74mm’ N/A 4.9x4.9mm’ N/A
Package CQFP 208-pin N/A CQFP 160-pin N/A
Profile H.264 High H.264 Baseline | H.264 Baseline H.264 Baseline
@Level4
Maximum 1920x1080 1280x720 1280x720 640x480@301ps
Support @301ps @301ps @?301ps (SDTV)
Resolution (1080p) (720p) (720p)
Maximum H: -128~+127 H: -64-+63 H: -32-+31 H: -32-+31
Search V:-128~+127 V:-32-+31 V: -32-+31 V:-16-+15
Range
Quality 0.1dB N/A Up to 0.6dB N/A
Loss
Gate Count 593K 922.8K 470K 458.2K
SRAM Size 22KB /B-frame 34.72KB 13.3KB 16.95KB
14KB /P-frame
Operating 145MHz@1080p | 108MHz@720p | 72/108MHz@720p | 54.5MHz@SDTV
Frequency 62.5MHz@ 720p | 81MHz @D1 30~96MHz@D]1 13.5MHz@CIF
(for 301ps) 28.5SMHz@D1 10~28MHz@, CIF
7.2MHz@CIF
Power@ 176.1mW 785mW@720p 183mW 67.2mW
baseline profile | @1080p/1.2V S8 ImW@D1 @720p/1.2V @ SDTV/1.8V
(for 301ps) 84.6mW 2TmW@D1/0.9V 15.9mW
@ 720p/1.2V TmW@CIF/0.7V @ CIF/1.3V
23.61mW
@ D1/1.08V
6.74mW
@CIF/0.9V
Power@ 242 mW N/A N/A N/A
high profile @ 1080ps/1.2V
(for 301ps) 116.61 mW

@ 720p/1.2V

134

Power Comparison

183 24201
200 176.10
1980p HD
4.67
720p HD
% 20] ,Dl 23.61 Workat1.2v =®—_Baseline Profile
- 159 / == High Profile
(] 2 W
g [3] 7/ Work at 1.08V [4]
o ; C|?574 =4 [5]
43 \\N
C|%~92—> ork at 0.9V
2 T
0 10 20 30 40 50 60 70

Throughput(M pixel/sec)

Fig. 4-33. The power of proposed design and previous works.

4.11 System Integration

After the chip implementation, the next step is to integrate our chip into a complete
embedded system which consists of bus system, external memory, embedded
processor, and memory controller as shown in Fig. 4-7. The proposed bus width of
our design is 128 bits, which is four times than general AMBA bus protocol and
external memory bandwidth. To satisfy the memory requirement, the clock rate of the
external bus and memory should be four times than our chip so that the system with
32 bit bus width can provide the bandwidth equivalent to 128 bits. Our design
supports 1080p resolution at 145MHz, so the external bus and memory should work at

580MHz which can be supported by AMBA 2.0 bus protocol and DDR3 SDRAM.

4.12 Summary

In this chapter, we propose a high throughput and low power H.264 encoder. The
design not only supports the high profile specification and more coding tools, but also

uses smaller area and lower power by parallelism enhanced throughput and cross

135

stage sharing pipeline. Besides, by the golden model and robust verification and
testing strategies, our chip can work correctly and can be used as an IP for further
reuse. In summary, this design achieves 46.7% and 54% reduction in area and power

respectively.

136

Chapter 5

Conclusion

In this chapter, we conclude our work and point out some future works which can

be the next research topics.

5.1 Conclusions

In this thesis, we propose not only a complete design of H.264 high profile encoder
including innovative techniques in algorithm and architecture level but also the first
H.264 high profile encoder chip in academia. This chip supports the high profile
specification and achieves 46.7% and 54% reduction in area and power consumption
by the system level and module level optimization techniques. Therefore, our design
can be used in high definition video applications because it can encode 1080p video in
real time and only requests acceptable hardware cost in mobile or HDTV devices.

Besides, this thesis also explores the cores of H.264 and provides highly data
reused motion estimation engine. First, the proposed techniques such as mode
filtering, PMRME, and SIFME make our engine support 1080p video with just
128.8MHz and 282.6K gates, and saves 60% of gate count, and 68.9% of SRAM
buffers compared to the previous designs. Another important feature of presented
motion estimator is that it can be easily scaled to other smaller size video with search
range adjustment.

Secondly, for the applications which needs high resolution but has fewer resources
like still camera, the intra-only encoder is the best choice. Therefore, we propose a

H.264 intra frame encoder with just 94K gate and 0.72mm’ core area at 140MHz

137

which can support digital video recorder applications with HD1080p 30 frames/sec
resolution in real time and digital still camera application with 4096x2304 resolution
at 6.78 frames/sec. The excellent specification is achieved by the novel optimization
techniques such as fast prediction algorithm, variable pixel parallelism and other
scheduling. With these techniques, this work can reduce 23.5% of gate count but only
with 52% of working frequency.

In summary, the dissertation proposes a series of novelties which can be used in
high definition applications without significant overhead and video quality
degradation. We hope and believe that these improvements from this thesis can be

adopted in commercial products in near future.

5.2 Future Works

5.2.1 H.264 Motion Estimator
® Skip Mode Detection

The skip mode in H.264 motion estimation can reduce a lot of bit-rate and
complexity. However, the original flow about skip mode checking is not suitable for
pipelined hardware design. Therefore, how to modify the skip mode detection
algorithm and integrate it into the hardware is an important issue for low power H.264
encoder design.
® Direct Mode Implementation

To reduce the complexity cost of bi-directional and multiple reference motion
estimation of H.264 encoder, direct mode is used to predict motion vectors in B frame
encoding. The difficulty of direction mode implementation is the complex memory
control and access schedule. For the ultra low power H.264 high profile encoder, the

direct mode implementation must be a future work.

138

® Supporting Multiple Reference

Multiple reference technique is another key feature of H.264 motion estimator
which can increase the precision of motion estimation. However, the computational
loading and memory requirement of this technique are proportional to the number of
reference frames. Therefore, our design does not include this technique yet. In the

future work, our design will include the multiple reference technique.

5.2.2 H.264 Intra Encoder
® Multi-standard Encoder

As for the intra encoder, some modules are similar to previous image compression
standards. For example, the entropy coding modules are similar to JPEG and
JPEG2000 standard. Maybe we can integrate the H.264 intra encoder with JPEG2000

standard.

5.2.3 High Profile Encoder
® Scalable Video Coding Extension

The latest extension of H.264, the scalable video coding, is in the final draft stage.
This extension is used to provide scalability of H.264 bit-stream so that the same
bit-stream can be broadcasted to difference applications. And then, the different
decoders retrieve the necessary data from the bit-stream. However, the foundation of
the scalable video coding is the H.264 high profile codec. Therefore, we can use the
H.264 high profile encoder as a basic structure and add the new coding tools of

scalable video coding.

® System Level Integration

The H.264 high profile encoder chip must be as an accelerator in an integrated
139

system with general purpose processor and external memory system. Therefore, in
addition to the chip performance, we should consider the integration of our design.
Therefore, we are implementing a FPGA platform which implements our design into
FPGA as an IP in an embedded system. By this platform, we can evaluate the system
performance of a complete H.264 encoding system and modify our chip design to fit

the requirement of whole system.

® H.264 High Profile Encoder with Rate-Distortion Optimization (RDO)

H.264 standard supports rate-distortion optimization technique to further improve
the video quality and reduce the bit-rate. However, the iterative coding flow of
rate-distortion optimization results in multiple times of complexity than that of
encoder without optimization. Besides, the iterative loops also result in data hazard in
pipelined system architecture. Therefore, most of H.264 encoder implementations
don’t include the rate-distortion optimization technique. However, the benefits of
RDO is more obvious for high definition video application which pursuits the best
video quality and optimized compression rate. So it is necessary to include the RDO

function in future encoder design.

140

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

Draft ITU-T Recommendation and Final Draft International Standard of Joint
Video Specification (ITU-T Rec. H.264/ ISO/ IEC14496-10 AVC), Mar. 2005.
T. Wiegand, and et al., “Overview of the H.264/AVC video coding standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.7, pp. 560-575, July 2003.
Y. W. Huang, and et al.,, “A 1.3TOPS H.264/AVC Single-Chip Encoder for
HDTYV applications,” in Proc. Int. Solid State Circuits Conf., pp. 128-588, Feb.
2005.

H. C. Chang, and et al., “A 7mW to 183mW Dynamic Quality-Scalable H.264
Video Encoder Chip,” in Proc. Int. Solid State Circuits Conf., pp. 280-281, Feb.
2007.

T. C. Chen, and et al., “2.8 to 67.2mW Low-Power and Power-Aware H.264
Encoder for Mobile Applications,” in Proc. Symp. on VLSI Circuits, pp. 222-223,
June 2007.

Y. K. Lin, and et al., "A Hardware Efficient H.264/AVC Motion Estimation
Design for High Definition Video," to be published, IEEE Trans. on Circuits
Syst. I, Reg. Papers.

Y. K. Lin, and et al., “A 140MHz 94K GATES HD1080P 30 FRAMES/SEC
INTRA-ONLY PROFILE H.264 ENCODER,” to be published, IEEE Trans.
Circuits Syst. Video Technol.

Y. K. Lin, and et al., “A 242mW, 10mm? 1080p H.264/AVC High Profile

Encoder Chip,” in Proc. Int. Solid State Circuits Conf., pp. 314-315, Feb. 2008.

141

[9] S. Y. Yap, and J. V. McCanny, “A VLSI architecture for variable block size
video motion estimation,” IEEE Trans. Circuits Syst. I, Exp. Briefs, vol. 51, no.
7, pp- 384-389, July 2004.

[10] C. M. Ou, C. F. Le, and W. J. Hwang, "An efficient VLSI architecture for H.264
variable block size motion estimation", IEEE Trans. on Consum. Electron., vol.
51, no. 4, pp. 1291-1299, Nov. 2005.

[11] C. Wei and M. Z. Gang, "A novel VLSI architecture for VBSME in MPEG-4
AVC/H.264", in Proc. IEEE Int. Symp. Circuits Syst., vol. 2 pp. 1794-1797, May
2005.

[12] Z. Zheng, and et al., “High Data Reuse VLSI Architecture for H.264 Motion
Estimation,” in Proc. Int. Conf. on Comm. Technol., pp. 1-4, Nov. 2006.

[13] M. Kim, I. Hwang, and S. I. Chae, “A fast vlsi architecture for full search
variable block size motion estimation in MPEG-4 AVC/H.264,” in Proc. Asia
and South Pacific Design Automation Conf., vol. 1, pp. 631-634, Jan. 2005.

[14] J. H. Lee and N. S. Lee, “Variable block size motion estimation algorithm and its
hardware architecture for H.264/AVC,” in Proc. IEEE Int. Symp. Circuits Syst.,
vol.3, pp. 741-744, May 2004.

[15] T. C. Chen, and et al., “Fast Algorithm and Architecture Design of Low-Power
Integer Motion Estimation for H.264/AVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 5, pp. 568-577, May 2007.

[16] C. L. Su, and et al., “A Low Complexity High Quality Interger Motion
Estimation Architecture Design for H.264/AVC,” in Proc IEEE Asia Pacific
Conf. on Circuits and Syst., pp. 398 — 401, Dec. 2006.

[17] Y. L. Xi, and et al., “A fast block-matching algorithm based on adaptive search
area and its VLSI architecture for H.264/AVC,” Signal Process.: Image

Commun., vol. 21, no. 8, pp. 626-646, Sep., 2006,
142

[18] L. Zhang, and W. Gao, “Reusable Architecture and Complexity-Controllable
Algorithm for the Integer/Fractional Motion Estimation of H.264,” IEEE Trans.
on Consum. Electron., vol. 53, no. 2, pp. 749-756, May 2007.

[19] T. H. Tsai, and Y. N. Pan, “A Novel 3-D Predict Hexagon Search Algorithm for
Fast Block Motion Estimation on H.264 Video Coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 16, no. 12, pp.1542-1547, Dec. 2006.

[20] C. H. Kuo, M. Shen, and C. C. J. Kuo, “Fast motion search with efficient
inter-prediction mode decision for H.264,” J. Visual Comm. and Image
Represent., vol. 17, no. 2, pp. 217-242, April, 2006.

[21] N.A. Khan, S. Masud, A. A. Ahmad, “variable block size motion estimation
algorithm for real-time H.264 video encoding,” Signal Process.: Image
Commun.,” vol. 21, no. 4, pp. 306-315, April, 2006.

[22] Y. K. Tu, and et al.,”Fast variable-size block motion estimation for efficient
H.264/AVC encoding,” Signal Process.: Image Commun., vol. 20, no. 7, pp.
595-623, August, 2005.

[23] Z. Chen, and et al., “Fast integer-pel and fractional-pel motion estimation for
H.264/AVC,” J. Visual Commun. and Image Represent., vol. 17, no. 2, pp.
264-290, April, 2006.

[24] Z. Zhou, J. Xin, and M. T. Sun, “Fast motion estimation and Inter-mode decision
for H.264/MPEG-4 AVC encoding,” J. Visual Commun. and Image Represent.,
vol. 17, no. 2, pp. 243-263, April, 2006.

[25] T. C. Chen and et al., “Analysis and Architecture Design of an HDTV720p 30
Frames/s H.264/AVC Encoder,” IEEE Trans. Circuits Syst. Video Technol., vol.

16, no.6, pp. 673—688, June 2006.

143

[26] C. Y. Chen, and et al., "Analysis and Architecture Design of Variable Block Size
Motion Estimation for H.264/AVC", IEEE Trans. on Circuits Syst. I, Reg.
Papers, vol. 53, no. 3, pp. 578-593, March 2006.

[27] Joint Video Team Reference Software JM9.0, ITU-T.

[28] T. C. Chen, Y. W. Huang, and L. G. Chen, "Fully utilized and reusable
architecture for fractional motion estimation of H.264/AVC" in Proc. IEEE Int.
Conf. on Acoust., Speech, and Signal Process., vol. 4, pp. 9-12, May 2004.

[29] L. Yang, and et al., “Prediction-based Directional Fractional Pixel Motion
Estimation for H.264 Video Coding”, in Proc. IEEE Int. Conf. on Acoust.,
Speech, and Signal Process., vol. 2, pp.901-904, May, 2005.

[30] J. F. Chang, and J. J. Leou, "A Quadratic Prediction Based Fractional-Pixel
Motion Estimation Algorithm for H.264," in Proc. IEEE Int. Symp. on
Multimedia, pp. 491-498, Dec. 2005.

[31] H. Chao, and J. Lu, “A High Accurate Predictor Based Fractional Pixel Search
for H.264,” in Proc. IEEE Int. Conf. on Image Process., pp.2365-2368, Sep.
2006.

[32] L. Shen, and et al., “An adaptive and fast fractional pixel search algorithm in
H.264,” Signal Process., vol. 87, no. 11, pp. 2629-2639, Nov., 2007.

[33] Y. J. Wang, C. C. Cheng, and T. S. Chang, "A Fast Fractional Pel Motion
Estimation Algorithm for H.264/AVC", in Proc. IEEE Int. Symp. Circuits Syst.,
pp- 3974-3977, May 2006.

[34] C. L. Su, and et al.,, “Low Complexity High Quality Fractional Motion
Estimation Algorithm and Architecture Design for H.264/AVC,” in Proc IEEE
Asia Pacific Conf. on Circuits and Syst., pp. 578-581, Dec. 2006.

[35] C. C. Lin, Y. K. Lin, and T. S. Chang, "PMRME: A Parallel Multi-Resolution

Motion Estimation Algorithm and Architecture for HDTV Sized H.264 Video
144

Coding," Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Process., vol. 2,
pp- 385-388, April 2007.

[36] C. Y. Kao, H. C. Kuo, and Y. L. Lin, “High Performance Fractional Motion
Estimation and Mode Decision for H.264/AVC,” in Proc. IEEE Int. Conf. on
Multimedia and Expo, pp. 1241-1244, July 2006.

[37] J. W. Suh, and J. Jeong, “Fast Sub-pixel Motion Estimation Techniques Having
Lower Computation Complexity,” IEEE Trans. on Consum. Electron., vol. 50,
pp. 968-973, Aug. 2004.

[38] C. Yang, S. Goto, T. Ikenaga, “High performance VLSI architecture of fractional
motion estimation in H.264 for HDTV,” in Proc. IEEE Int. Symp. Circuits Syst.,
pp-2605-2608, May 2006.

[39]J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse and memory
bandwidth analysis for full-search block-matching VLSI architecture,” IEEE
Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61-72, Jan. 2002.

[40] T. Y. Kuo, Y. K. Lin, and T. S. Chang, "SIFME: A Single Iteration
Fractional-Pel Motion Estimation Algorithm and Architecture for HDTV Sized
H.264 Video Coding," Proc. IEEE Int. Conf. on Acoust., Speech, and Signal
Process., vol. 1, pp. 1185- 1188, April 2007.

[41] T. Wedi, and et al, “Intra-only H.264/AVC profiles for professional
applications,” JVT-U120, Oct., 2006.

[42] C. W. Ku, and et al., “A high-definition H.264/AVC intra-frame codec IP for
digital video and still camera applications,” IEEE Trans. Circuits Syst. Video
Technol., vol. 16, no. 8, pp. 917- 928, Aug. 2006.

[43] Y. W. Huang, and et al., “Analysis, fast algorithm, and VLSI architecture design
for H.264/AVC intra frame coder,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 15, no. 3, pp. 378-401, Mar. 2005.
145

[44] K. Suh, S. Park, and H. Cho, “An efficient hardware architecture of intra
prediction and TQ/IQIT module for H.264 encoder,” ETRI Journal, vol. 27, no. 5,
pp- 511-524, Oct. 2005.

[45] F. Fu, X. Lin, and L. Xu, “Fast intra prediction algorithm in H.264/AVC,” in
Proc. IEEE Int. Conf. on Signal Process., vol. 2, pp. 1191-1194, Aug. 2004.

[46] B. Meng, and et al., “Efficient intra-prediction algorithm in H.264,” in Proc.
IEEE Int. Conf. on Image Process., vol. 3, pp. 837-840, Sep. 2003.

[47] C. L. Yang, L. M. Po, and W. H. Lam, “A fast H.264 intra prediction algorithm
using macroblock properties,” in Proc. IEEE Int. Conf. on Image Process., vol. 1,
pp. 461-464, Oct. 2004.

[48] F. Pan, and et.al , “Fast intra mode decision algorithm for H.264/AVC video
coding,” in Proc. IEEE Int. Conf. on Image Process., vol. 2, pp. 781-784, Oct.
2004.

[49] C. Kim, H. H. Shih, and C. C. J. Kuo, “Feature-based intra-prediction mode
decision for H.264,” in Proc. IEEE Int. Conf. on Image Process., vol. 2, pp.
769-772, Oct. 2004.

[50] J. F. Wang, and et al., “A novel fast algorithm for intra mode decision in
H.264/AVC encoders,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 3498-3501,
May 2006.

[51] C. C. Cheng, and T. S. Chang, “Fast three step intra prediction algorithm for 4x4
blocks in H.264,” in Proc. IEEE Int. Symp. Circuits Syst., vol.2, pp. 1509-1512,
May 2005.

[52] D. W. Li, and et al.,, "A 61MHz 72K Gates 1280X720 30FPS H.264 Intra
Encoder," Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Process., vol.2,

pp. 801-804, April 2007.

146

[53] S. C. Hsia, S. H. Wang, and Y. C. Chou, “A configurable IP for mode decision
of H.264/AVC encoder,” in Proc. NASA/ESA Conf. on Adaptive Hardware and
Systems, pp. 146-152, Aug. 2007.

[54] S. Li, and et al., “A VLSI architecture design of an edge based fast intra
prediction mode decision algorithm for H.264/AVC,” in Proc. Great Lakes Symp.
on VLSI, pp.20-24, Mar. 2007.

[55] C. H. Tsai, Y. W Huang, and L.G. Chen, “Algorithm and architecture
optimization for full-mode encoding of H.264/AVC intra prediction,” in Proc.
Midwest Symp. Circuits Syst., vol.1, pp.47-50, Aug. 2005.

[56] H.264/MPEG-4 AVC reference software JM8.6.

[57] H. Malvar, and et al., “Low-complexity transform and quantization with 16-bit
arithmetic for H.26L,” in Proc. |IEEE Int. Conf. on Image Process., vol. 2,
pp-489-492, Sep. 2002.

[58] H. Y. Lin, and et al., “Combined 2-D transform and quantization architecture for
H.264 video coders,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1802-1805,
May. 2006.

[59] K. H. Chen, and et al., “A high-performance low power direct 2-D transform
coding IP design for MPEG-4 AVC/H.264 with a switching power suppression
technique,” in Proc. Int. Symp. VLSI Design, Automation & Test, pp. 291-294,
Apr. 2005.

[60] K. H. Chen, J. . Guo, and J. S. Wang, “High-performance direct 2-D transform
coding IP design for MPEG-4 AVC/H.264,” IEEE Trans. Circuits Syst. Video
Technol., vol. 16, no.4, pp. 472-483, May. 2005.

[61] T. C. Wang, and et al., “Parallel 4x4 2D transform and inverse transform
architecture for MPEG-4 AVC/H.264,” in Proc. IEEE Int. Symp. Circuits Syst., ,

pp- 800-803, May. 2003.
147

[62] M. C. Tsai and T. S. Chang, "High Performance Context Adaptive Variable
Length Coding Encoder for MPEG-4 AVC/H.264 Video Coding," Proc IEEE
Asia Pacific Conf. on Circuits and Syst., 2006, pp. 586-589.

[63] Y. K. Lai, C. C. Chou, and Y. C. Chung, “A simple and cost effective video
encoder with memory-reducing CAVLC,” in Proc. IEEE Int. Symp. Circuits
Syst., pp. 432-435, May 2005.

[64] T. C. Chen, and et al., “Architecture Design of Context-Based Adaptive
Variable-Length Coding for H.264/AVC”, IEEE Trans. Circuits Syst. I, Exp.
Briefs, vol. 53, no. 9, pp. 832-836, September 2006.

[65] C. D. Chien, and et al,, ”A high performance CAVLC encoder design for
MPEG-4 AVC/H.264 video coding applications,” in Proc. IEEE Int. Symp.
Circuits Syst.,pp. 3839-3842, May 2006.

[66] D. Kim, and et al., “Implementation of High Performance CAVLC for
H.264/AVC Video Codec”, in Proc. Int. Workshop on System-on-Chip for
Real-Time Applications, pp. 20-23, December 2006.

[67] Joint Video Team of ITU-T and ISO/IEC: “Draft Text of H.264/AVC Fidelity
Range Extensions Amendment”, JVT-L047, Sep. 2004.

[68] S. Gordon, D. Marpe, and T. Wiegand, “Simplified Use of 8x8 Transforms”,
JVT-K028, March 2004.

[69] Z. Liu, and et al., “A 1.41W H.264/AVC Real-Time Encoder SOC for
HDTV1080P,” in Proc. Symp. on VLSI Circuits, June 2007, pp.12-13.

[70] http://www.ambarella.com/news/press_releases/pr_09102007.htm

[71] http://www.fujitsu.com/us/services/edevices/microelectronics/h264/index p3.ht

ml

[72] Y. K. Lin, Y. Z. Liao, and T. S. Chang, “An Area-Efficient Design for Integer

148

Transform in H.264/AVC,” in Proc. VLSI Design/CAD Symp., pp. 517-520, Aug.

2006.

[73]J. L. Chen, Y. K. Lin, and T. S. Chang, "A Low Cost Context Adaptive
Arithmetic Coder for H.264/MPEG-4 AVC Video Coding," Proc. IEEE Int. Conf.

on Acoust., Speech, and Signal Process., vol.2 pp. 105-108, April 2007.

[74] V. H. S. Ha, W. S. Shim, and J. W. Kim, “Real-time MPEG-4 AVC/H.264
CABAC entropy coder,” in Proc. IEEE Conf. on Consum. Electron., pp.255-256,

Jan. 2005.

[75] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE Trans.

Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620-636, July 2003.

[76] C. C. Cheng, and T. S. Chang, “An in-place architecture for the deblocking filter
in H.264/AVC,” IEEE Trans. Circuits Syst. Il, Exp. Briefs, vol. 53, pp. 530-534,

2006.

149

150

/ ’=/5
k3 —‘5 i
W7 this B R g Yu-Kun Lin
e 7 4P 1979/5/22
e 3 5 e yklin@twins.ee.
nctu.edu.tw
g i | po wE O
g4 Rl o#x 8 T ART 1996/9~2000/7
AL Rz o8-8 | T @H1EFFT 9 2000/9~2002/7
1 R~ 5 =T 2002/9~2008/7
£
< i =~ & 7 + %7 VLSI Signal Processing Lab. 2002/9~2005/6
o luE TR
BBH Bk g2t Y L (CIC) 5 -« B 2004/9~2005/6
SRR IR K 2004/9~2005/1
? i) #ﬁ % ﬁé’%ﬁ“” x 2005/2~2005/6

IR S Sk i

2006/2~2006/6

151

NS

ook W=

Digital IC design flow (from RTL to gdslII)

Silicon IP design methodology

Video codec (MPEG 1/2/4, H.264, Scalable Video Coding)
Digital image processing

VLSI signal processing

Computer architecture

Electric system level design

ARM-based system platform design

Biomedical electronics

U*
7%

.4—
Tl RER R AE- ¢
ﬁ-‘i’“ é»}. éﬁ—*’é
FALFI- & ABEEAE & (2 25 10%)
91_&}ifﬂélxﬁfkll;§gﬁ
QAL £ E(EASIHT £ 8)

ook ER

S

P‘:h.‘“!\’t—‘.u‘:hf*’!\’t—‘

92 B # R & 38 IP K EF B%

ASP-DAC 2005 Design Contest Winner

45™ ISSCC/DAC Student Design Contest Winner
EE X €3k DAC 2008 #rfh

ip =~ F30 % 424 & Tensilica 2005 Xtensa fie
ERARIEERVAF 50

2008 xR+ Lme B REHE

A B AR &

CRTER LA RAURMBPABL G A - B3 A

152

T/

F-:ﬁ TP &k

International Journal Papers:

[1] Yu-Kun Lin, Chia-Chun Lin, Tzu-Yun Kuo, and Tian-Sheuan Chang, "A
Hardware Efficient H.264/AVC Motion Estimation Design for High Definition
Video," to be published, IEEE Transaction on Circuit and System I: Regular Papers.

[2] Yu-Kun Lin, Chun-Wei Ku, De-Wei Li, and Tian-Sheuan Chang , “A 140MHz
94K GATES HDI1080P 30 FRAMES/SEC INTRA-ONLY PROFILE H.264
ENCODER,” to be published, IEEE Transaction on Circuit and System for Video

Technology.

International Conference Papers:

[1] Yu-Kun Lin, De-Wei Li, Chia-Chun Lin, Tzu-Yun Kuo, Sian-Jin Wu, Wei-Cheng
Tai, Wei-Cheng Chang, and Tian-Sheuan Chang, “A 242mW, 10mm® 1080p
H.264/AVC High Profile Encoder Chip,” to be published, Design Automation
Conference (DAC), June 2008. (Invited Paper)

[2] Yu-Kun Lin, De-Wei Li, Chia-Chun Lin, Tzu-Yun Kuo, Sian-Jin Wu, Wei-Cheng
Tai, Wei-Cheng Chang, and Tian-Sheuan Chang, “A 242mW, 10mm® 1080p
H.264/AVC High Profile Encoder Chip,” International Solid-State Circuits
Conference (ISSCC), pp. 314-315, Feb. 2008.

[3] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, “Hardware Efficient Skip
Mode Detection for H.264/AVC,” International Conference on Consumer Electronics
(ICCE), Jan., 2008.

[4] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, "SIFME: A Single Iteration

153

Fractional-Pel Motion Estimation Algorithm and Architecture for HDTV Sized H.264
Video Coding," IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 1, pp. 1185- 1188, April 2007,.

[5] Jian-Long Chen, Yu-Kun Lin, and Tian-Sheuan Chang, "A Low Cost Context
Adaptive Arithmetic Coder for H.264/MPEG-4 AVC Video Coding," IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol.2 pp. 105-108, April 2007.

[6] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, "PMRME: A Parallel
Multi-Resolution Motion Estimation Algorithm and Architecture for HDTV Sized
H.264 Video Coding," IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 2, pp. 385-388, April 2007.

[7] De-Wei Li, Chun-Wei Ku, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan
Chang, "A 61MHz 72K Gates 1280X720 30FPS H.264 Intra Encoder," IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol.2, pp. 801-804, April 2007.

[8] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, "A Fast Algorithm and Its
Architecture for Motion Estimation in MPEG-4 AVC/H.264 Video Coding," IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS),pp. 1248-1251, Dec.
2006.

[9] Tzu-Yun Kuo, Yu-Kun Lin, and Tian-Sheuan Chang, "A Memory Bandwidth
Optimized Interpolator for Motion Compensation in the H.264 Video Decoding,"
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 1244-1247,
Dec. 2006.

[10] Jia-Bin Huang, Yu-Kun Lin, and Tian-Sheuan Chang, "A Display Order
Oriented Scalable Video Decoder," IEEE Asia Pacific Conference on Circuits and

Systems (APCCAS), pp. 1976-1979, Dec. 2006.
154

[11] Yu-Kun Lin and Tian-Sheuan Chang, "Analysis and architectures of MCTF for
scalable video coding," Picture Coding Symposium (PCS), May 2006.

[12] Yu-Kun Lin and Tian-Sheuan Chang, "Fast block type decision algorithm for
intra prediction in H.264 FRext," in IEEE International Conference on Image
Processing (ICIP), pp. 585-588, Sep. 2005.

[13] Hao-Yun Chin, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan Chang, "A
Bandwidth Efficient Subsampling-based Block Matching Architecture for Motion
Estimation," Asia and South Pacific Design Automation Conference (ASP-DAC), vol.

2, pp. D/7 - D/8, Jan. 2005.

Domestic Conference Papers:

[1] Yu-Kun Lin, Ying-Ze Liao, and Tian-Sheuan Chang, “AN AREA-EFFICIENT
DESIGN FOR INTEGER TRANSFORM IN H.264/AVC FRExt,” VLSI Design/CAD
Symposium, pp. 517-520, Aug. 2006.

[2] Chia-Chun Lin, Yu-Kun Lin, and Tian-Sheuan Chang, “Hardware Oriented
Algorithms for Motion Estimation in MPEG-4 AVC/H.264 Video Coding, “ VLSI

Design/CAD Symposium, , pp. 505-508, Aug. 2006.

155

	封面與簽名頁.pdf
	封面最終版
	授權書
	掃瞄0004
	掃瞄0006
	掃瞄0005

	簽名推薦函
	掃瞄0009
	掃瞄0010
	掃瞄0011

	中文審定書
	掃瞄0007

	英文審定書
	掃瞄0008

	Ver10_6_6

