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ABSTRACT

In this thesis, we first address the issues regarding the robust stabilization of a
class of nonlinear uncertain systems using a combined scheme. The scheme
consists of the state-dependent ‘Riccati equation (SDRE) technique for the
control of nominal systems ‘and.the integral. sliding mode control (ISMC)
strategy to compensate for the error when the system state deviates from the
nominal system trajectory. It is shown that the state of the uncertain system
using the combined scheme and that of the ‘nominal system under the SDRE
scheme are identical when the uncertainties are of the matched type. These
analytic results are also applied to the brake control of a three-wheeled vehicle.
Simulation results show that the control under the combined scheme could be
intelligently adjusted so that the yaw rate and lateral velocity is as small as
possible. Second, we deal with the reliable issues of yaw rate tracking for
electric vehicles using yaw moment control strategy. The presented reliable
controllers are organized via the sliding mode control technique. As a result, this
reliable scheme is robust and is shown to be able to tolerate some of the

actuators' faults. Simulation results demonstrate the benefits of the approach.
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CHAPTER ONE
INTRODUCTION

1.1 Motivation

Recently, electric vehicles have achieved remarkable driving performance and has strong
incentives of energy efficiency. The advantages of Electric Vehicle (EV) can be summarized

as follows [15]:

1. Torque generation of an eléctric-motor is,fast and precise. The electric motor’s
torque response is several milliseconds; 10-100-times as fast as that of the internal
combustion engine or hydraulic braking system. Because a motor can generate both
acceleration or deceleration torque; therefore, the electric motor’s can be integrated
high performance antilock braking system_ and traction control system with minor

feedback control.

2. A motor can be attached to each wheel. We can distribute motor location to en-
hance the performance of Vehicle Stability Control (VSC) such as Direct Yaw Con-
trol (DYC). It is not allowed for an Internal Combustion engine Vehicle (ICV) to
use four engines, however, EV is permitted to insert four motors without increase

significantly cost.

3. Motor torque can be measured easily. This advantage will contribute greatly to

application of new control strategies based on road condition estimation.

To improve the safety of the driver and passengers without sacrificing the stability
and steering ability of a vehicle, an antilock braking system (ABS) had been proposed to
realize maximum negative acceleration, while preventing the wheels from locking [2], [14],

[19], [20], [30]. Among the existing studies, there are mainly two methods of realizing the



ABS. One method uses the slip ratio to adjust the duration of brake signal pulses, i.e., to
discretely “pump” the brakes [19], [30]. The other uses the fact that the friction between
the road and the tire is a nonlinear function of wheel slip to regulate the slip ratio at its
optimum value so that the vehicle has maximum deceleration [2], [14], [20]. In this thesis,
we uses the fact that the friction between the road and the tire is a nonlinear function of
wheel slip to regulate the slip ratio at its optimum value so that the vehicle has maximum
deceleration to realize the ABS.

Moreover, the studies of electric vehicles” (EVs’) yaw moment control and reliable
(or fault tolerant) control have attracted considerable attention [4], [8], [10], [11], [18],
24]-[28], [34]-[36], [38]-[41]. EVs are known to have many advantages [11], [38], including
1) the motor torque can be measured easily and be controlled more precisely; 2) the
individual motor at each wheel can generate differential distribution of braking/driving
forces between the right and the left-sides-of the vehicle; 3) the motor enhances the
diagnostic capability of the braking-system. Thus; the lateral stability of EVs can be
improved significantly if an appropriate controller is organized. Among the various control
designs for EVs, it was reported that-the yaw moment control is one of the most effective
means for active chassis contrel; which may considerably improve the vehicle stability and
controllability [10]. The yaw moment; control is also an important technique behind the
vehicle dynamic control systems, especially for controlling the lateral motion of a vehicle
during a severe driving maneuver [10]. From the advantages mentioned above, EVs have
the ability to generate more accurate yaw moment than the conventional vehicles.

Recently, the study of nonlinear control using the state-dependent Riccati equation
(SDRE) approach and the integral sliding mode control (ISMC) design have attracted
considerable attention [1], [5]-[7], [31], [32]. The SDRE scheme factorizes the nonlinear
drift term into a (nonunique) linear structure with state-dependent coefficient (SDC)
matrices and then employs the linear quadratic regulation (LQR) technique to organize
an optimal controller at every nonzero state. This adoption of the LQR strategy is
intuitive, and yet provides a systematic and effective controller design. The benefits of
the SDRE design also include 1) the ability to predictably address system performance

through the specification of the performance index by adjusting the state and the control



weightings, for instance, the engineer may tune up the weightings on the system state to
speed up the response at the expense of more control effort, 2) an extra design degree of
freedom arising from the non-uniqueness of the SDC representation of the nonlinear drift
term, which can be utilized to enhance controller performance and 3) the preservation
of the essential system nonlinearities, as it does not truncate any system nonlinear term.
Many practical and meaningful applications that are successfully performed by the SDRE
design, including vehicle control, have been reported [1], [7], [31], [32]. However, due to
the direct adoption of the LQR strategy at every nonzero state, the SDRE design might
not robustly compensate for model uncertainties and/or disturbances, which can also be
observed from the simulations in this thesis. Hence, the SDRE scheme should incorporate
another robust scheme for better performance.

On the other hand, the sliding mode control (SMC) design is known to have the benefits
of rapid response, easy implementation and robustness to model uncertainties and/or
external disturbances [2], [3]:4(5],1[6};7[21]-[23],[33]:"However, it has been reported that
the resulting closed-loop system might be sensitive to-uncertainties and/or disturbances
during the period in which the system state has not yet reached the sliding manifold
[5]. To overcome the reaching phase problem, am integral sliding mode control design,
which guarantees that the system‘trajectories will start in the manifold from the first
time instant, has been studied recently [5], [6]. In addition to the absence of a reaching
phase feature, the ISMC design also maintains the above-mentioned advantages of the
SMC and has the following three characteristics: 1) the matched uncertainties and/or
disturbances will be completely rejected whenever the system state remains on the sliding
manifold, 2) the maximum control magnitude required for ISMC is usually smaller than
those of SMC designs because the maximum control magnitude of SMC designs usually
occurs at the beginning of reaching phase period and 3) the states of the nominal system
and the matched-type uncertain system are exactly the same if the system state stays on
the sliding manifold. The last feature provides an extra degree of freedom to organize a
suitable controller for the nominal system, creating a desired system state trajectory for
the state of the uncertain system to follow. In light of the benefits of the SDRE and the

ISMC approaches mentioned above, in this thesis, investigates the ABS controller design



issues from the ISMC viewpoint, while adopting the SDRE design for nominal system.

It is known that a control system is not to be able to operate in normal (non-faulty)
situation all the time, and the repair and maintenance services are in general not able to
be provided instantly. These make the reliable control issues of paramount importance.
The objective of reliable control is to design an appropriate controller such that the closed-
loop system can tolerate abnormal operation of specific control components and retain
the overall system stability with acceptable system performance. Within the existing
reliable control studies, several approaches have been presented. These approaches include
the linear-matrix inequality-based approach [24], the algebraic Riccatti equation-based
approach [35], the coprime factorization approach [36], the Hamilton-Jacobi (HJ)-based
approach [27], and the sliding-mode control (SMC)-based approach [22], [28]. Among the
aforementioned reliable control studies, only the HJ-based and the SMC-based approaches
deal with reliability issues for nonlinearsystems: However, because the HJ-based approach
was designed under an optimalstrategy, its reliable controller is inevitably dependent upon
the solution of an associated-HJ equation, which is; in-general, difficult to solve. Although
a power series method [13] may alleviate the difficulty through computer calculation, the
solution obtained is only approximate, and the computational load grows quickly when
the system is complicated. In contrast; the SMC reliable controllers [22] do not require
the solution of any HJ equation, and they retain the advantages of conventional SMC
designs. Those advantages include rapid response, easy implementation, and robustness
to model uncertainties and/or external disturbances.

In EVs, a fault might happen in sensor or actuator (see e.g., [8], [34], [38], [41]) that
results in hazard, such as loss of steering, loss of traction force for wheel by wheel motor,
brake system and inverter failure [41]. However, due to the limit of space, a vehicle is in
general not allowed to insert a backup of control component. Thus, it is important for a
vehicle using its analytic redundancy to equip with a suitably fault detection and diagnosis
(FDD) mechanism and an active fault tolerant controller for ensuring driving safety when
fault happens. For instance, when wheel actuator(s) experiences fault, the vehicle is
likely to spin and result in catastrophic situation. Thus, a yaw moment reliable controller

is expected to activate for preventing possible driving instability. Two recent papers



have investigated this reliable issue from feedback linearization approach [8] and LQR
scheme [41]. Though the proposed two schemes are able to enhance the driving safety,
one of them only considers the linear case [41] (i.e., it considers the issue based on the
linearized model at a free-rolling equilibrium point), and the mentioned two approaches
require incorporating a robust scheme for better robustness performance when the EVs
experience model uncertainties, measurement noises and/or external disturbances. In
light of the many benefits of SMC reliable design as mentioned above, in this thesis we

will study the reliable control for EVs’ nonlinear model from the SMC approach viewpoint.

1.2 Outline

This thesis is organized as follows. In Chapter 2, we recall some basic concepts of state
dependent Riccati equation (SDRE), integral sliding mode control, sliding mode control,
Burckhardt tire friction model and Magic Formula. Chapter 3 proposes an intelligent
SDRE and ISMC combined sc¢heme with application. to vehicle bake control, and the as-
sociated simulations. Chapter 4 gives detailed of reliable yaw moment control for electric
vehicle. Finally, in Chapter.5, we givethe conclusions and suggestions for the researches

in the future.



CHAPTER TWO
PRELIMINARIES

2.1 State Dependent Riccati Equation

In this section, we recall the concepts of State Dependent Riccati Equation (SDRE)

Consider the following class of nonlinear control systems
X =f(x)+B(x)u (2.1)

where x € R" and u € R™ denote the system and control inputs, respectively, f(x) € R",

B(x) € R™™ and f(0) = 0. In addition; we consider.the following performance index
J = /OO [XTQ(X)X + uTR(x)u} dt (2.2)
0

where QT (x) = Q(x) > 0 and RT(x) = R(x) > 0. The procedure of SDRE is summarized

as follows:
e Symbolically factorize f(x) into the form of f(x) = A(x)x, where A(x) € R™*".

e Check the stabilizability of (A(x), B(x)) and the observability of (A(x), C'(x)) sym-

bolically to ensure the solvability of the following SDRE:
AT(x)P(x) + P(x)A(x) — P(x)Bx)R™' (x)B" (x)P(x) + Q(x) = 0. (2.3)
where C'(x) € RP*" has full rank and satisfies Q(x) = C7(x)C(x).
e Solve the SDRE for P(x) to produce the SDRE controller u = — R~ (x) BT (x) P(x)x.

Note that the SDRE scheme to the stabilization of nonlinear control systems need to

symbolically factorize the drift term in the form of f(x) = A(x)x, and then using this A(x)



to check system’s stabilizability and observability symbolically at every state for ensuring
the solvability of an associated state-dependent Riccati equations. In doing so, the SDRE
algorithm fully captures the nonlinearities of the system, bringing the nonlinear system
to a (non-unique) linear structure having state-dependent coefficient (SDC) matrices, and
minimizing a nonlinear performance index having a quadratic-like structure. Moreover,
the nonuniqueness of the factorization creates extra degrees of freedom, which can be used

to enhance controller performance.

2.2 Sliding Mode Control

The implementation of the Sliding Mode Control (SMC) consists of two main phases.
First, we should construct the sliding surface such that the system states restricted to
the sliding surface will produce the desired behavior. Second, we construct switched
feedback gain which derive the plant state trajectory to the sliding surface in finite time
(ie. ofe < —n||s|| for some'sy ;0) and festrict the state to sliding surface (i.e. s = 0
and § = 0). Suppose at ty, the state trajectory of the-plant intercepts the sliding surface
and a sliding mode exists for all ¢ > #5:" The existence of a sliding mode implies (1)$ = 0,
and (2)s = 0 for all t > ty.<The system’s motions-on the sliding surface can be given
an interesting geometric interpretation, as-an “averag” of the systems’ dynamics on both

sides of the surface. The system while in sliding mode can be written as
s =0. (2.4)

By solving the above equation formally for the control input, we obtain an expression for
u called the equivalent control, u®? which can be interpreted as the continuous control
law that would maintain $ = 0 if the dynamics were exactly known. For instance, for a

system of the form
i=f+u, zeRR (2.5)

In order to be converged to a desired trajectory z(t)=x4(t), we define a sliding surface

s=0.

s=(—+NT =1+ A\, (2.6)



here, define the tracking error & = x — x4. We then have
S=F—Fg+ N =f+u—ig+ A& (2.7)
and the system dynamics while in sliding mode is, of course,
Ul = —f +ig— \. (2.8)

Controller design is the second phase of the SMC design procedure. Here the goal is to
determine switched feedback gains which derive the plant state trajectory to the sliding
surface and maintain a sliding mode condition. The presumption is that the sliding
surface has been designed. Among several approach (e.g. the diagonalization method and
hierarchical control method), augmenting the equivalent control is one popular approach.

This structure of control of system (2.5) is
u = u +u"c (2.9)

where " is the discontinuous ot the switched part of Eq.(2.9). Consider the system (2.5),
we have u®? = —f + iy — M. In order-to satisfy sliding condition Eq.(2.12), we add to

u? a term discontinuous across the‘surface s = 0;and let

u = ul+u"

= u® — ksgn(s) (2.10)

where sgn denotes the sign function.

1 ifs>0
sgn(s) =4 0 ifs=0 (2.11)
-1 ifs<0
By choosing k to be a positive scalar,
1d
5%82 =5-s=—ksgn(s)-s=—k|s|. (2.12)

Therefore, the sliding variable s will keep at zero. Practically, Eq. (2.12) states that the
squared “distance” to the surface, as measured by s2, decrease along system trajectory.

Thus, it constrains trajectories to points towards the surface S(t), as illustrated in Fig.



2.1. In particular, once on the surface, the system trajectories remain on the the surface.
In other words, satisfying sliding condition Eq. (2.12), makes the surface an invariant set.
Furthermore, as we shall see, Eq. (2.12) also implies that some disturbances or dynamics

uncertainties can be tolerated while still keeping the surface an invariant set.

2.3 Integral Sliding Mode Control

In this section, we review the concepts of integral sliding mode control scheme. First,

consider the following nonlinear matched uncertainties system :
x(t) = f(x) + G(x) {u+ Ad,, } (2.13)

where x € R" is a vector of states, u € R™ is a vector of control inputs. f(x) and
G(x) are known nonlinear functions. ||d,,| < vm, v > 0 which represent the matched

uncertainties. In the ISMC approach, a law.of the form
wx, t) =1y +uy (2.14)

is proposed. The nominal control uy(x) is responsible for the performance of the nominal
system; u;(x) is a discontinuous,control action-that rejects the perturbations by ensuring

the sliding motion, design as

0, ifo=0
lhz{ _p,%’ if 0 £0 (2.15)
where p > 7,,. and sliding surface define as
t
o(x,t) = Dy [x(t) — x(tg) — / (f(x) + G(x) - u,) - dr (2.16)
to

where t is the initial time, Dy € R™*", and D,G(x) has full rank. The term

x(to) +/(f((x)) +G(x)-ug) - dr (2.17)

in (2.16) can be though as a trajectory of the system in the absence of perturbations and
in the presence of the nominal control ug, that is, as a nominal trajectory for a given
initial condition x(#y). With this remark in mind, o(x) can be considered a penalizing

factor of the difference between the actual and the nominal trajectories, projected along



G (hence, the name projection matrix, not to be confused with a projection operator).
Notice that at t = tg, s(x,t) = 0, so the system always starts at the sliding manifold.
To determine the motion equations at the sliding manifold we use the equivalent

control method. The derivative of s along time is
§ = Dy & (/) + Gx)ug)

= Ds- [(f(x) + G(x)u+ G(x)dn) — (f(x) + G(x)u)]

= D,G(x)- (u+d,; — ug). (2.18)
Therefore, the equivalent control u,, = ug — d,, by solving the equation ¢ = 0. By
substituting u., for u; in (2.13), we obtain the sliding dynamics (motion eqations on the
sliding manifold) is

Xeq = (%) + G(x) - uo. (2.19)
It is found from (2.19) that the matched type uncertainties can be completely rejected,
and the sliding dynamics and the nominal system dynamics are exactly the same. To
prove u; can maintain the gliding mode, we choose a Lyapunov function as V = 1/20%¢.
Differentiating V' with respect. time using. with. respect to time using (2.14), (2.15) and
(2.18) yields
V = ol¢
= o'D,G(x)- (u+d, — ug)

T [DSG(X)]TS
= O DSGX =P T dm
) (p 0.6 ] )

< —p|[(D.G) o] + ldnll - |(DG) |
< (=p+m) - ||(DG(x) o
< 0. (2.20)

since DG(x) is of full rank and o(x(to), o) = 0, then the controller (2.14) guarantees that

the sliding mode o = 0 can be maintained, Vt € [tg, 00).

2.4 Burckhardt Tire Friction Model

The friction behavior of the wheel can be approximated with parametric characteristics,

as shown in Fig. 2.2. The friction, or adhesion coefficient p is defined as the ratio of the

10



frictional force in the wheel plane FY,;. and the wheel ground contact force F:

Ffm'c

o (2.21)

The calculation of friction forces can be carried out using the method of Burckhard [16]:

p) = (e (1—e) —csh) e en . (1 5 F2) (2.22)
V — R,w

where ¢, ¢o, and c3 are given for various road surfaces in table 2.1. ¢4 lies in the rang
0.02s/m to 0.04s/m which influence of a higher drive velocity. ¢ is the influence of a
higher wheel load. ¢4 and c5 have a maximum value of 1, i.e. they lead to a reduction of
the friction coefficient. In this thesis, we neglect the influence of a higher wheel load and

adopt as tire friction model of vehicle brake control.

Table 2.1: Parameters for friction-coefficient-characteristics (Burckhardt Tire Friction

Model)

C1 Cy C3
Asphalt, dry [-1.2801 | 23.99 | 0.52
Asphalt,(wet. [ 0.857. 33:822 | 0.347
Snow 0.1946- 94.129 | 0.0646

11
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Fig. 2.1.  Friction coefficient (Burckhardt Tire Friction Model)

2.5 Magic Formula for Longitudinal'-and Lateral Force

In general, there are many descriptions of the model for longitudinal and lateral force.
In recent years, an well-known empirical method , the so-called Magic Formula, is devel-
oped for characterizing tire behavior and used.ifi wehicle handling simulation. The Magic
Formula can be used to fit experimental tire data for characterizing the relationships
between the cornering face and tire slip angle or braking effort and skid. Thus, in this
thesis, we adopt the Magic Formula form [37] to represent the nonlinear cornering forces.

It is expressed by
y(x) = Dsin { C'tan™* { Bx — FE (B:c — tan~! B:c) } } (2.24)

where B is called the stiffness factor, C the shape factor, D the peak factor, and E the
curvature factor, respectively. Where y(x) represent longitudinal force f, and lateral force
fy- When y(z) represent longitudinal force f,, then x denotes slip ratio at wheel. When
y(x) represent lateral force, then = denotes tire slip angle at wheel.One example of the
parameter values for Magic Formula type longitudinal and cornering force are adopted
from [37] as given in Table 2.2. Fig. 2.3 depicts the relationship between longitudinal

force and skid. Fig. 2.4 depicts the relationship between cornering force and tire side slip
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angle. In this thesis, we adopt Magic Formula as tire model of yaw moment control.

Table 2.2: Magic Formula coefficient (F, = 3118.3N)

B C D E
longitudinal force | 0.1664 | 1.65 | 3579.4 | 0.6645
lateral force 0.23 1.3 | 3152.9 | -0.4216
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Fig. 2.2. Longitudinal force using Magic Formula
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cornering force Fy (N)
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Fig. 2.3.  Cornering force using Magic Formula

14



CHAPTER THREE

AN INTELLIGENT SDRE AND ISMC COMBINED
SCHEME WITH APPLICATION TO VEHICLE BRAKE
CONTROL

In this chapter, combination of the SDRE and ISMC scheme is studied and applied to
vehicle brake system when actuators degradation. The organized of this chapter as follow.
Section 3.2 states the problem and the main goal of this paper. Section 3.3 then describes
the design of a combination of the'\SDRE and ISMC schemes. Section 3.4 discusses the
application of the analytic results to the antilock brake control of a three-wheel vehicle

system.

3.1 Problem Formulation
Consider a class of nonlinear systems deseribed by the following equation:
x = f(x)+Gx)[(I+AG)u+d] (3.1)

where x € IR" and u € R™ denote the system states and the control inputs respectively,
AG and d describe possible matched type uncertainties, f(x) € R" and G(x) € R™*™.
In this chapter, we assume that G(x) # 0 for all x # 0, and make the following three

assumptions:

Assumption 3.1: The origin of the nominal system x = f(x) + G(x)u of System (3.1)

is asymptotically stabilizable.

Assumption 3.2: I+ AG > kI for some x > 0 in the sense of &7 (I + AG)€ > & - ||€]?
for all £ # 0.

Assumption 3.3: There exist a positive constant p, and a nonnegative function py(x)

such that ||AG|| < k- py and ||d]] < k- pa(x).
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When AG is a diagonal matrix and a controller has been organized, Assumption
3.2 implies that each actuator experiences no change in the output direction and only
experiences degradation and/or amplification. In electrical vehicles, this degradation
and/or amplification are associated with the loss of control effectiveness of steering and/or
wheel torque controllers [41]. The objective of this chapter is to organize an appropriate
controller to realize the regulation performance x — x4, where X, is a nonzero constant

vector.

3.2 Controller Design

Due to the many advantages of the SDRE and the ISMC approaches mentioned in the
Introduction section, we combine the two schemes for the controller design in this chapter.
First, the SDRE design is used for the nominal system. Then, we adopt the ISMC strategy
to compensate for the error when the system' state deviates from the nominal system’s

trajectory.
3.2.1 SDRE Design for-Nominal System

To employ the SDRE approach, the regulation preblem needs to be converted into the
stabilization problem. For this purpose, we introduce the error state e; = x —x4. System

(3.1) then becomes
é; = fi(e;) + Gi(er) [({ + AG)u+d] (3.2)

where fi(e;) := f(e; +x4) and G;(e1) := G(e; +x4). Using this error state dynamics, the
regulation problem becomes the stabilization problem, i.e., x — x, if and only if e; — 0.
To implement the SDRE design, we assume that the quadratic performance index is

given by (3.3) below:
J = /OO [elTQ(el)el + uTR(el)u] dt (3.3)
0

where Q7 (e;) = Q(e;) > 0 and RT(e;) = R(e;) > 0. The SDRE scheme requires the
condition f;(0) = 0 to factorize the drift term f;(e;) in Eq. (3.2) into the form of A, (e;)e;.

However, there might be a state-dependent bias term, say b(e;), that makes f;(0) # 0,
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fl(el) = Al(el)el -+ b(el) (34)

with b(0) # 0. To solve this problem, we adopt a strategy from [7] to express b(e;) as

b(e;) = [@} z and augment the system with a stable auxiliary state z as (3.5) below:

i=—kiz (3.5)

where k; is a small positive constant that makes z change slowly, and z(0) # 0 so that

b(e1)

is smooth during the control period. With these settings, the augmented system

formed by (3.5) and the nominal system of (3.2) has following form:

¢ = A(e)e + B(e)u (3.6)

b(e1)
where A(e) = ( Aléel) A ), B(e)= ( Gl(()el) ) and e = [el, 2]7. To successfully
—ky

implement the SDRE scheme;:the following.assumption for the existence of a unique
positive definite matrix solution of-an ‘associated \algebraic Riccati equation (ARE) is

needed [17]:

Assumption 3.4 : The pair {A(e), Ql/Q(e)} 1s’pointwise observable and {A(e), B(e)}

is pointwise stabilizable.

According to the SDRE design procedure, the SDRE controller then has the following
form [7]

u = —R*(e)B(e)P(e)e (3.7)
where P(e) is the unique positive definite matrix solution of the following ARE:
AT(e)P(e) + P(e)A(e) — P(e)B(e)R™'(e)B” (e)P(e) + Q(e) = 0. (3.8)
3.2.2 ISMC Design for the Compensation of Uncertainties

After selecting the nominal controller, the system might experience uncertainties, in-
cluding external disturbances and actuators’ output degradation and/or amplification.
To compensate for these effects, we adopt the ISMC design because of its advantages,

including robustness, rapid response and easy implementation.
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According to the ISMC design procedure [5], [6], the sliding manifold for System (3.2)

is given by the following equation:

o= D, len(t) — e (ty) — /t £i(e1) + G (e )up dr (3.9)

to

where D, € IR™*" is choose such that DyG1(e;) has full rank and uy is given by (3.7). It
follows from Egs. (3.2) and (3.9) that

o = DS [e1 - fl(el) - Gl(el)uo]

= DSGl(el) [(I + AG)H + d-— llo] . (310)

To keep the system state on the sliding manifold, we chose the overall control law to be

u=1ug+ Uuy (311)
where uy is given by (3.7) and
{ 0 ifo = 0; : )
u =94 | [DGi(e))"s . 3.12
p—||[D3G1 (0o otherwise

with p chosen to satisfy p=> p, |[ugl| + pa(ey). Although the coefficient p requires the
information about ug, it can<be.casily obtained after the calculation of uy because the

upper bounds p, and py(e;) can be estimated offline. We then have the next result:

Theorem 3.1: Suppose that Assumptions 3.1-3.4 hold. Then the error states e; given
in the nominal system (3.6) with the SDRE controller and the uncertain system described

by (3.2) with the control law given by (3.11)-(3.12) are identical.
proof: From Egs. (3.10)-(3.12) and Assumptions 3.2-3.3 we have

UTd' O'TDSGl(el) [(I + AG)u1 — AG - ugy + d]

IN

(=pr + |AG] - [ull + [1d]) - [|[D:G(en)] o]
< 5 (=p+ oy [oll + paler)) - |[DuGr(en)) o

< 0 (3.13)

whenever [D,Gy(e;)]"o # 0 or o # 0 because DG (e;) is a nonsingular matrix. From

(3.9), it is clear that o(ei(tp)) = 0. Thus, from (3.13), we have o(e1(t)) = 0 for all ¢ > t,
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i.e., the system state remains on the sliding manifold for all ¢ > ¢;. To determine the
sliding dynamics (the equations of motion on the sliding manifold), the equivalent control
method is used [6]. The equivalent control is obtained by solving the equation & = 0 from

Eq. (3.10) as follows:
U, = (I +AG) (g —d). (3.14)

By substituting u,, into (3.2), we have the sliding dynamics &; = fi(e;)+G1(e1)ug, which
is the nominal system under the SDRE controller and the proof is completed. [ |

It is found from the proof of Theorem 3.1 that the matched type uncertainties can
be completely rejected, and that the sliding dynamics and the nominal system dynamics
are identical. Because the system state under the ISMC scheme starts from the sliding
manifold, it follows that the state trajectories of the uncertain system using the combined
scheme and the nominal system ainder-SDRE scheme are identical. Therefore, with this
ISMC design the engineer can organize another optimal controller (other than the SDRE
design) according to system. requirements creating a-desired system state trajectory for

the state of the uncertain system to follow.

3.3 Simulation Results

3.3.1 Vehicle dynamics

A three wheeled vehicle (TWV) model has been described in [12]. For simplicity, we
consider only the yaw plane motion, in which the simplified yaw plane vehicle model can
be described as follows: the body frame, which is fixed to vehicle’s center of gravity (CG),
is denoted by x and y. The positive z- and y-axes represent the forward direction and
right-hand side respectively, as seen by the driver. The vehicle dynamics then have the

following form:
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Three wheeled vehicle model.

Qo v,

m Fy 7 _‘/1‘

ll (Lf06sat ) B Rf55sat) - ZQ(LTT + Lrl)
(R =R, 1)

_Rf65sat - < Rrr y, er - Lf55sat
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: <Vz +l3’7>
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(3.15)

(3.16)
(3.17)
(3.18)

(3.19)
(3.20)

(3.21)

Here, V, and V,, are the components of the velocity of the CG in the z- and y-directions
respectively, v denotes the angular speed about the vertical axis (z-axis), m denotes the
total mass of the TWV, J, denotes the moment of inertia in the vertical axis of the body
frame, [; and [y are the longitudinal distances from the CG to the front axle and the
rear axle respectively, [3 denotes the lateral distance between CG and the left or right
wheel, F, and F} represent the external forces acting on the body along the z- and y-
axes respectively, R, and L, are the longitudinal and the lateral forces at each wheel

between the tire patches and the road respectively, where o = f, rl, rr and the subscripts



f, rl and rr denote the front, the rear-left and the rear-right wheels respectively, c,,
a = f,rl,rr, denotes the cornering stiffness for the three wheels, d4, is the actual output

value of the steering wheel angle 4, defined by 0. = {5 if 6 > Osat = — 15 if 0 < —

. .
167 167

dsat = = - sin(0) if —16 < 0 < {5, and ¢ and s denote the cosine and the sine functions

16 16°
respectively. In addition to the vehicle dynamics, we adopt the tire friction model from
Burckhardt [14] in this chapter to simulate the antilock brake system, where R, at each

wheel can be expressed as
Ry = pra Ny, a= forrrl. (3.22)

Here, Ny = ﬂiﬁ, N, = %%, N, = %%, L =1y + I3, g is the acceleration of gravity and

Lo, o = f,rr;rl, are the tire-road coefficients of friction defined by
fho = [cl (1 — e’”’\“) - 03)\&} e cataVe (3.23)

where ¢1, ¢3, c3 and ¢4 are four parameters introduced in [14],

Ye—Rua  dyring braking:
)\a - Vi —‘1% w, o :
Se—twla during acceleration

TwWa

(3.24)

for a = f,rr,rl are the slip ratios of the three wheels, and R, and w, denote the radius
and the angular velocity of the wheel respectively. To study the braking performance,
we consider only the slip ratio in braking mode. To achieve an optimal antilock braking
performance, the wheel slip ratio is guided to track its peak value for producing maximum
negative acceleration [14]. For this purpose, we differentiate \, and using the fact that

Wa = (paTwNy — Tw)/ Jw [14], yield

Vo (1= Xa) N RuTs — piaR2N,

= 2

where J,, denotes the inertia moment of wheel and T,, o = f,rl,rr, are the three brake

torques. Finally, the vehicle model is augmented with the following steering dynamics [1]:
0 = —0+dg (3.26)

where 7 is time constant and g is the steering wheel angle generated by the SDRE

controller. The overall system is then described by (3.15)-(3.16) and (3.25)-(3.26).
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3.3.2 Employment of the Combined Scheme

In [1], Acarman has demonstrated the efficiency of SDRE scheme in vehicle control. In
this chapter, we further improve the SDRE robust performance by incorporating it with
the ISMC scheme when there are model uncertainties and/or external disturbances. To
employ the combined scheme, we define e; = [ey, ez, €3, €4, €5, €5, €7]7 = [V, Vi, 7,0, A\p —
by Arr — AL

T

M — AT and w = [6s, Ty, T,r, Ty]", where A

. r,a= f,rl,rr, are the peak

values, to be tracked, of the wheel slip ratio curves. The governing equations then have
the form of (3.2), and the control objective becomes to organize an appropriate controller
that effectively brings the error state e; to the origin. Next, we factorize the nonlinear
drift term f;(e1) into a linear structure with SDC matrices. Because we require regulation
performance for Ay, A, and A, the factorization of fi(e;) exhibit a bias term b(e;), as
described by Eq. (3.4). Details of an expression for A;(e;), b(e;) and Gi(ey) given in
Eq. (3.6) are presented in Appendix.

In this example we assume that the disturbance d = [0,0,0,0,0,0,0.5sin20¢]7 and
the output of the brake torque at the rearsleftywheel experiences a 40% degradation in
magnitude, i.e., [AG]; = 0 for all i, j exceptfor [AG|y = —0.4, where [-];; denotes
the (i, j)-entry of a matrix. The degradation might result from the abnormal operation
of the inverter, braking system and/or wheel motor [41]. The vehicle parameters are
assumed from [12] to be m = 403.87kg, J, = 178.54kgm?, [} = 1.39m, I, = 0.61m,
ls = 0.575m, C; = 3885N/rad, C,, = 4050N/rad, C;; = 4050N/rad, R,, = 0.21m and
Ju = 0.567kgm?. The time constant is set to be 7 = 30. The road is assumed to be dry
with ¢; = 1.2801, ¢y = 23.99, ¢3 = 0.52, ¢4 = 0.02 and X}, = 0.15 for all of the three wheels
[14]. The other parameters and initial state are k = 0.6, p, = %, pa(er) = 0.5, ky = 1073,
Dy = [O4x3 I4x4], R = diag[1071,1,1,1], Q = diag[107°,1072,1072,1072,10°, 10, 10°]
and e;(0) = [30,0,0,107%, =107, =107, —107!7, where the unit of velocity is meters
per second. Note that, we have promoted the weightings on the three slip ratios to

make A\, — A as soon as possible and to maximize the antilock braking torque. To

(DsGi(er) "o

€

alleviate chatter, the control u; given by (3.12) is replaced with —p when
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1(D,G1(e1))" o|| < e, and € is selected to be 5 x 1073,
Verification of Assumption 3.4:

Finally, we need to verify Assumption 3.4 so that the SDRE scheme can be success-
fully implemented. Because @ is selected to be a nonsingular matrix, (A(e), Q2 (e)) is
observable. Due to the special structure of A(e) and B(e) given by (3.6), (A(e), B(e))
is stabilizable if (A;(e;),G1(e1)) is controllable. To investigate the controllability of
(Ai(e1), G1(er)), we introduce a matrix M € IR as follows: the first four columns

of M are G;(ey), while the last three columns of M are taken from the last three columns

of Ay(e)Gy(e;). Tt is found that M = < 03,4 My
My =

Clearly, My, is nonsingular if e; # 0 (i.e., before the vehicle is fully stopped). Since M is

77 Jwer? Jwer? Jwer

) and M21 = dlag[l By Ry Ao ]

a block triangular matrix, we have that (A;(e;), Gi(e1)) is controllable if det(Mjs) # 0.

. . —2E1 By E3R3 1356
By direct calculation, we have det(Mis) = B S
wYv 1

, where E;, Ey and FE5 are
three nonzero scalars given in Appendix ATt follows that (A;(e1), G1(e1)) is controllable
if sin(d) # 0 (or 6 # 0). For 6= 0;-we replace the fifth column of M by the first column
of A3(e1)G1(e1). With this mew M and the fact that es = A\ — A}, eg = A\ — A7, and e7 =
A=y, it is found that det (M) = 2228 (1 —X5) (1 + 52)E2 + (1 = A ) EvEs + (1= \i) By E
From (3.24), we observe that 0. < A, < 1 during braking and A\, = 1 only when
the wheel is locked. Thus, det(Mis) % 0 unless all the three wheels are locked (i.e.,
Ar = Ay = Ay = 1). These results verify Assumption 3.4 for the period before the vehicle

is fully stopped.
3.3.3 Simulation Results

Numerical results are summarized in Figs. 3.1-3.4. Among these, we consider the
following three cases: the first use the SDRE scheme for the nominal system (labeled
SDREO), while the other two adopt the SDRE scheme (labeled SDRE1) and the com-
bined scheme (labeled SDRE+ISMC) for the uncertain system (experiencing actuator’s
degradation and external disturbance in the actuator). It is observed from Fig. 1(a) that
the longitudinal velocity converges to zero for all of the three cases. However, during the
control period, the lateral velocity, the angular speed and the steering angle for SDRE1

given in Figs. 3.1(b)-3.1(d) are much larger than the other two cases, which might result
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in undesirable instability. Due to the use of a saturation-type function instead of the sign-
type function given in (3.12), the state trajectory of the SDRE+ISMC system deviates
slightly from that of SDREO, and it is found from simulation that the smaller the boundary
layer width € is, the closer the two trajectories are. From Fig. 3.3, all the sliding variables
are found to be within the boundary layer. These results agree with the theoretical results.
It is also observed from Fig. 3.2(c) that the performances of A\,; — A}, are not achieved
for SDREL, which results in a worse braking performance, and the oscillation of e (i.e.,
Ar) for SDRE1 comes from the persistent oscillation of d. These results imply that the
SDRE+ISMC scheme is more robust than the SDRE1 scheme. Finally, Fig. 3.4 shows the
control efforts. Among these, the control curves of T,; for the SDRE1 and SDRE+ISMC
schemes have taken the degradation effect into account, i.e., those two curves describe the
actual degradation torque output which is 60% of the magnitude of the designed control
value. It is seen from Fig. 3.4(d) that-the braking torque 7;; for the SDRE+ISMC systems
is automatically adjusted to & levelsuch that its degradation curve approximates that of
the SDREO scheme, to ensure that its state responses are close to those of the SDREO
system. The oscillations of T} for the SDRET and' SDRE+ISMC systems resulted from
the compensation for the persistent disturbance ex¢itation. The braking torque T,; for the
SDRE+ISMC system is found to be a little larger than that of the SDRE1 system, since
the combined scheme provides an additional control u; for regulation when the system
state deviates from the sliding manifold. In contrast, the required steering wheel angle
0g for the SDRE+ISMC system is much smaller than that of the SDRE1 system. By
direct calculation, the quadratic performance of the three cases has the following relation:
Jsprer = 9.2539 x 10° < Jspreo = 9.2265 x 10° < Jspresismc = 9.0261 x 10°.

Though the above simulations demonstrate the effectiveness of the combined scheme,
the controls are decoupled from each other since the matrix Dy is selected to be Dy = I.
To demonstrate the interactive relation of these actions, in the following we consider Dy

has the following form:

0001 0 0 O
0000 1 07 07

D = 000007 1 07 (3.27)
000007 07 1
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Under the choice of Dy, the sliding variables o9, 03, and o4 will couple to each other. As a
result, the required control effort of 77, also be provided by Ty and T;, to compensate the
degradation effect. A same scenario for state response can also be observed form Figs.
3.6(a)-(d). However, from Figs. 3.7(a)-(c), the slip ratios of these three wheel are slight
variation because the couple effect of sliding variable. Fig. 3.8 shows the couple effect for
D Boy, D;Bos,and D,Boy. Fig 3.9 shows the control efforts. Among these, the control
curves of T, T,,,T,; are slight different to pervious simulation result.

Although the combined scheme requires a little more control effort than SDREI, it
enables a much smaller yaw rate and lateral velocity than the SDRE1 scheme. Thus, it
is concluded from this example that the combined scheme is more robust and safer in

braking control than the SDRE scheme alone.
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Fig. 3.2.  Time history of the first four system states.
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Appendix 3.A

Here, we present A;(el), b(ey)-and Gi(ey) for the TWV, which appear inside Eq.
(3.6):

(1) Let Al(el) = [aij]. Then A1 = Qg5 = Qo) = 0 for i = ]_,"',7, ] = 1,2,3,5,6, 7,

’

k=06,7 and

C(fS(Ssat Cflls(ssat _6sat0f55sat _Elc(ssat _E2
a2 = 3= ————+€; Q= ——"""Q;5=——; A1 = )

meq meq mey m m

-FE —1 (Crcdsq Cyr C,

Qrr = —iam = — [ L= 4 + l ;
€1 €1 — l3€3 e+ l3€3

1 _Cfllc(ssat C’I‘TZQ CYr‘ll2 6sat . C(fC(Ssat _Els(ssat
Qg3 = — + —€1; A4 = ————— 5 G5 = —————

m €1 e —lzes e+ l3e3 mey m

1 _Cfllc(ssat Crrl2 Crll2
azpy = — + ;

Jv €1 €1 — l3€3 e + l3€3

1 (CiBBebyy Ol Cl2
azz = —— + ;

L. €1 er —lzes e+ lzes

5sat : llch(Ssat _llEls(ssat l3E2 _l3E3 —1
a34:—Je ;a35:7J ;a36:[ ; agr = T ;a44:7;

vt4 v zz v

1—e — A\ Crsogg ,

(o = ¢ o 1% ! for i = 5,6,7, and
meq €1

a= f,rrand rl if ¢=5,6 and 7, respectively;
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1—e¢ — X\ )
A <Cf 150sat —|—€2> for i = 5,6,7, and

3 =
meq €1
a= f,rrand rl if i=25,6 and 7, respectively;
1—e — XN Osar - Crsdsg ,
(jg = — ¢ o DJsat’ /3 ! for i =5,6,7, and

meq €4

a= f,rrand rl if i=15,6 and 7, respectively;

1 —e5 — A% R?
ass = = 4 <E105sat + —wE1> ;

meq Jw
1—e; — A\
5 = ST b T A Eicdgy for i = 6,7, and
meq

a=rrandrl if ¢=6 and 7, respectively;

1 —eg — \* R?
aps = T (EQ + —wE2> ;

mey Juw
1—e; — \N)E ,
ai6:—( ¢ o) for e = 5,7, and
meq

a= fandrl if 1 =25 and 7, respectively;

1—e; — M\ R?
oA g,
me; Jus
1—e; — \)E
ai7:—( ¢ o) B for.i = 5,6,-and
meq

a= fand rr if i=05 and 6, respectively;
E; = —Njcze~aQaterae foph =19 3 and

a= f,rrand rl if ¢ = 172 and:3;-respectively.

(i) Let b(e;) = [by, - -+, bs]7. Then

FEscdgy + Fg + B —F5504, 1
by = ——2t T LTy = T by — (<14 Es 80 + 13Es — 1sEr7) ; by = 0;
m m JU
A =1 R?
p= G a (Es,ccssat + Eg + Er + —WEZ) for i = 5,6,7;
me; Jw

E; = N,cie“QXatea (1 — 6_02(>\Z+ei)) — )\;Na036_c4()‘3+ei)el for e =15,6,7, and
a= f,rrand rl if i=25,6 and 7, respectively.

(iii) Let Gi(e1) = [gi;]. Then g;; = 0 for all 4, j except for g4 = % and gso = gg3 =

w

__ R
gra = e1dw "

30



CHAPTER FOUR
A STUDY OF RELIABLE YAW MOMENT CON-
TROL FOR ELECTRIC VEHICLE

In this chapter, the SMC reliable control scheme is applied to retain steerability and
lead the vehicle to a neutral steer behavior. This chapter is organized as follows. Section
4.1 states the vehicle dynamical model and the problem. It is followed by the design of
SMC reliable controllers for ensuring EVs’ safety when actuators’ fault happens. Section

4.4 demonstrates the simulation results.

4.1 Problem Formulation

Consider the following 7"DOF nonlinear vehicle model [16]:

Fig. 4.1. Four wheeled vehicle model.

mV 0 cB sB 0
mVB = —mV~y |+ | —sB8 ¢8 0
Joy 0 0 0 1

4 fmi06i - fyiS(si
=1 MZz’
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Ry f.. —T;
y = —dr ot 4.2
w T (4.2)

and M,, = l,,(fz,c0i — [,,50;)

Hy, ([, 90 + f,¢0;) (4.3)

for © = 1,---,4. Here, ¢ and s denote respectively the cosine and the sine functions
(e.g., ¢f = cosf and sd; = sind;), m, J,, J, and R, denote respectively the vehicle
mass, vehicle inertia, wheel inertia and wheel radius, V, g and ~ are respectively the
vehicle velocity, body side slip angle and yaw rate, w;, ; and T; for i = 1,---,4 denote
respectively the wheel angular speed, steering wheel angle and brake/drive torque at the
ith wheel, f;, and f,, denote the longitudinal and the lateral forces at the ith wheel
between the tire patch and the road, respectively, and [, and [,, denote respectively the
lateral and longitudinal distances between the center of gravity (CG) to the ith wheel.
In this chapter, the subscripts i = 1~ 4 are.employed to represent respectively the
front-right, the front-left, the.rearsright and the rear-left wheels, as seen from the driver.
Besides, we assume that 0 =05 = 0, 03 =04 = 05 l,1 = lu3 = =1y, lyo = g = 1y,
lpn = lp = Iy and I3 = {u = —l[16]. The longitudinal and the lateral forces are

expressed according to the Magie Formula [37] as follows:

fe(\i) = Dsin{C'tan""[BA; — E (BX; —tan™'(B\))]} (4.4)
and f,,(o;) = Dsin {C’talf1 [Ba; — E(Bay;  — tanfl(Bozi)ﬂ} (4.5)
for i = 1,---,4, where the coefficients B, C, D and E denote respectively the stiffness,

the shape, the peak, and the curvature factors, A\; and «; are respectively the wheel slip

ratio and the tire slip angle defined by [16] as

(V — wai) .
A\ = L i=1,---.,4 4.6
max{V, R,w; } ! (46)
—tan~! (H2EYEY) L5 i =1,2
and a; = { _1< lr‘w/iﬁ\/sﬁ) . (4.7)
tan (W) s 1 = 3, 4.

Note that, A\; < 0 if the ith wheel is in acceleration, and \; > 0 if it is in deceleration.
In order to have a satisfactory steerability and guide the vehicle to a neutral steer

behavior, a reference yaw rate v; determined from the assumption of constant forward
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speed, while negotiating a steady state cornering maneuver has been proposed as (4.8)-

(4.9) below [4]:

14+ 7p
2VC;C, (s +1,)
204C, (If +1,)* —mV2 (1;C; — 1,C,.)

and Vg5 =

(4.9)

where 7, p, Cy and C, denote the time constant, the Laplace variable, the front and the
rear wheel cornering stiffness, respectively. When the vehicle is operated under normal
(non-faulty) condition, the desired yaw rate can be easily tracked by creating a yaw
moment from the difference of tire driving torques and/or braking forces between the
right and left sides. However, if one of the wheel torque controllers fails to operate (which
might result from the inverter failure, the brake system failure, or the wheel motor failure
[41]), the vehicle will start to spin and an appropriate reliable controller is needed to assure
driving safety and provide better performances.. Thus, the objective of this chapter is to
organize a suitably control te realize-the performance v — 4 when a vehicle experiences

wheel actuator failure.

4.2 Reliable Controller, Design
4.2.1 Output tracking formulation

Let x = [V75775w17w27w37w4]’ u = [TlaTQaT3aT4] and Yy =7 Then EqS (41)_(42)
together with the selected output 7 constitute a multi-input and single-output (MISO)
nonlinear affine system. It is found that the MISO system has relative degree 2, i.e., one

has to differentiate y(t) twice to have u(t) explicitly appearing. By direct calculation we

have
=0 ((x)+GX)u+d (4.10)

where ¢(x) € R, G(x) = [91(x), - -, ga(x)] € R?, d denotes possible uncertainties and/or
measurement noises, and the detailed expressions of ¢(x) and g;(x) are given as below:

Define

wi(z) = Bx — F [Bx - tan’l(Bx)} (4.11)

wo(r) = Ctan ! [ (z)] (4.12)
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_ BCD cos(ws(x))[(1 — E)(1+ B?2?) + E]
N (1+@t(z))(1 + B?)

. (4.13)

w3 ()

Then f,(A) = Dsin(ws(X), fy, (i) = Dsin(@s(ar)), g foi(Ae) = (A A and § f, (@) =
ws(a)d;. These together with Eqs. (4.1)-(4.3) and (4.6)-(4.7) yield

4

—_

(b(X) = 7 Z { - lxz (fxzsal + fin(si) 51 + lyi (f:sz(sl - fyi‘Séi) 51
v =1
1 .
and g;(x) = — ({y,¢6; + 1,,50;) w3(Ni) Ai (4.15)
fort=1,---,4, where
JwRuwwiV—RYV fz, .
/-\‘: ' TE lfAZ>0 (416)
o v _ Yy if \; <0 '
Ryw; wa? ?
. L it >0
) Twv i
'M—{zﬁm'ﬁM<0 (4.17)
¢ VPEG VBB VeBYEL BV e o
by = o (VcB)B £l ahl B2 He=1,2 (4.18)
v (layV s =V 2B+ 1V By —14cBV ifi—3.4 )
(VeB2+(lny V552 he=9=

4.2.2 SMC reliable design

In this chapter we considersthe active reliableoutput tracking issues for System (4.1)-
(4.2), that is, we assume that the actuators™ fault has been successfully detected and
diagnosed by an FDD mechanism. The fault may be time varying and include degradation,
amplification and outage [28]. Before the occurrence of faults, the engineers may take any
kind of control strategy to fulfill their desired system performance. When the fault is
detected and diagnosed, the control law is guided to switch to an active reliable law
for ensuring system performance. Thus, after the fault is detected, we may divide the
actuators into two groups H and F, within which we assume that all of the actuators in
‘H are healthy, while those in F experience faults. This implies that Eq. (4.10) can be

rewritten as

¥=0¢(X)+ Gy (x)uy + Gr (X)ur +d (4.19)

where u = [ul, uZ]” and G(x) = [Gx(x) G#(x)]. In the rest of the this paper, we assume

that uy € R, ur € R*™ and k& > 1, since the assumption of rank(Gy(x)) = 1 is
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necessary for the existence of the equivalent control in SMC design [9]. In addition, we

assume that the control inputs in the set of F are diagnosed as
ur = ﬁ]:—FALI]: (420)

where iz and Auzr denote the estimated control value and estimated error, respectively.
The estimated error Auz is treated as an additional uncertainty that should be compen-

sated. Define the output error

e=v—". (4.21)

The control objective is then to force e — 0 through SMC reliable design. Since Eq.

(4.19) is a second-order system, we may assume the sliding surface in the form of
o =¢é+ ke (4.22)

where ks is a positive constant. Clearly;-if-thesystem state remains on the sliding surface,
then the desired performance.of e.—-0 can be exponentially achieved with a convergence

rate depending on the choice ofiky [9]. From Eqs: (4.19)-(4.22) we have
o= ¢(X) + GHU’H + G]: (ﬁ]: =+ All]:) -+ d — ’.}./d + k?ge (423)
To guarantee the reaching performance, we.impose the next assumption:

Assumption 4.1: There exists a nonnegative function p(x,t) such that |GrAuz + d| <
p(x,t).
Following the SMC design procedure [9], we choose
wy = —Gy(x) - [#(x) + Gr (x) 0 — Ja + kaé
+(p(x,t) +n)sgn (0)] (4.24)

-1
where G7; (x) = G%, (x) {GH (x) GL, (x)} and 7 is a positive constant which affects the
convergence speed of the system state to the sliding surface. Note that, uy, given by
(4.24), involves the information of diagnosis. Form (4.23), (4.24) and Assumption 1 we

have

06 = 0-[GrAur+d— (p(x,t) +n)sgn (o)

< —ylo]. (4.25)
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Thus, the system state will reach the sliding surface in a finite amount of time with
reaching speed depending on the magnitude of 7, and remain there hereafter [9]. After
reaching to the sliding surface o = 0, the tracking error e, from Eq. (4.22), satisfies
€ + ke = 0. It implies that the tracking error is exponentially convergent to zero and the
tracking performance is achieved. In addition to the yaw rate tracking, another factor
that affects the vehicle driving stability and cannot be ignored is the magnitude of the
body side slip angle 5. It is in general expected to have [ as small as possible for ensuring
vehicle stability; however, when v & 4, |V| ~ 0, |3| < 1, l;74/V < 1 and the tire forces
at the two sides are the same, the side slip angle is related to the yaw rate and the steering
angle in the following relation [40]:

- 20 +2C, 2C,1, — 2Cyly
f~ ( mV )ﬁ+< mV?2 _1>7d

20, + 26,
4 <T) 5 (4.26)

which is clearly a stable system for-5-with inputs,v; and 6. As a result, the side slip angle
is determined from the yawrrate and the steering angle; and it can be made small if v; and
0 are appropriately chosen.“An analysis of lateral stability and bifurcation phenomena
with respect to the variations in'the front wheel'steering angle has been presented in [29].
Besides, one may also deal with the tracking of yaw rate and side slip angle simultaneously
by choosing the weightings on the error of yaw rate and on the error of side slip angle
[11]. In this chapter, we only consider the yaw rate tracking matter, i.e., the weighting

on the error of side slip angle is chosen to be zero.
4.2.3 FDD mechanism

To detect the actuators’ fault for active reliable task, in this chapter we assume that all
the state variables are available for measurement or estimation. In fact, this assumption
is feasible for EVs [4]. We adopt the observer and the associated residual signals r; from

22] as (4.27 and (4.28) below:

G = w + ai (Wi — ) (4.27)
and r; = w; — (4.28)
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where ¢ = 1,--+,4 and a; > 0 for all 4. It was shown in [22] that the actuators’ fault can
be detected and diagnosed with diagnosed error converging to zero at an exponential rate

Q;.
4.3 Simulation Results

In this chapter, we adopt the vehicle’s parameters from [38] as follows: m = 1300kg,
J, = 2000kgm?, J,, = 0.6kgm?, ly =1.25m, [, = 1.25m, l; = 0.8m and R,, = 0.3m. Under
these settings, the normal loads for the four wheels are calculated to be F,, = mgl,./2l =
3188N for ¢ = 1,2 and F,, = mgl;/2] = 3188N for ¢ = 3,4. Let the cornering stiffness
Cy = C, = 8741N/rad. The coefficients of the Magic Formula can then be obtained as
follows: B = 0.1664, C' = 1.65, D = 3579.4 and E = 0.6645 for longitudinal forces; and
B =0.2302,C' = 1.3, D = 3152.9 and £ = —0.0412 for lateral forces [37]. The control and
the observer parameters are selectedas+=1073, ks = 1,n=1landa; = 1 fori =1,--- 4.
To alleviate chatter, sgn(o) is Feplaced with the saturation function sat(o/¢) and e = 1071
The steering command for lane.change is chosen to be § = 0.05sin(1.5708(¢t — 1)) when
1 <t <5 and 6 = 0 elsewhere [4].-Finally, the road is assumed to be dry, and the
initial state and the disturbance:are taken-as x(0) = [30,0,0.5,102 102,102, 10%] and
d = sin(20t) + 0.5 sin(30¢) + 0.1 sin(50¢).

To demonstrate the reliable performances, in the following, we will consider three
faulty cases: the first concerns only one actuator fault, two actuator faults and three
actuators fault. The alarm will be fired if any one of the residual signals exceeds 1 (i.e.,
|r;| > 1). Numerical results are summarized in Figs. 4.2-4.13. Among these, we adopt the
following two schemes: the first uses the proposed reliable SMC scheme (labeled RSMC),
while the other adopts the conventional (non-reliable) SMC design (labeled SMC). Before
alarm, both the two schemes adopt their conventional non-reliable SMC design, i.e., con-
trol in the form of (4.24) with all actuators being healthy. Whenever there is an alarm,

the associate active reliable controllers are activated according to the FDD information.
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4.3.1 One actuator fault

Here, we assume that the rear-left brake actuator fails at ¢t = 2.5, i.e., T = 0 after
t =25 H ={T,T,, T3} and F = {T,} after the fault happens. It is observed from
Figs. 1(c) and 1(d) that the output tracking error for RSMC is much smaller than that of
SMC after fault happens. The longitudinal velocity, as seen from Fig. 4.2(a), of RSMC
decreases from 30m/sec to 24.48m/sec, while that of SMC decreases from 30m/sec to
16.3m/sec. This means that the non-reliable design leads to a larger deceleration than
the RSMC; however, a large deceleration usually results in a loss of ride comfort [4], which
is usually undesired. From Fig. 4.2(b), the magnitude of the side slip angle of RSMC
is also significantly reduced after fault happens, compared with that of SMC. With the
selected parameters and steering command, it is found that max{l;v;/V}|v=30 = 0.016
and Eq. (4.26) under V' = 30 becomes B.=.—0.908—74+0.908, which yields the magnitude
of B has an upper bound maxse{f| = 0.3678at around ¢ = 2.60. It is observed from
Fig. 4.2(b) that the magnitude of B-for RSMC' is actually within this bound. Besides,
of SMC is noticed from Fig. 4.2(b) to be convergent to zero slower than that of RSMC,
because the output tracking error of SMC inFig./ 4.2(d) converges to zero slower than
that of RSMC. Figures 4.3(a)(d):show the angular speed of the four wheels. All of the
four wheels are seen to be decelerated during the change lane period, and those of SMC
having angular speed much decreased than those of RSMC. In addition, it is observed
from Fig. 4.4(a) that the actuator fault is successfully detected by the observer at around
t = 2.506. When the fault is detected, the RSMC scheme switches its controller to the
reliable one and the residual signal r4 is seen to quickly decrease to zero. This can also
be seen from the alarm signals shown in Fig. 4.4(b), where the alarm value 1 denotes the
fault of the fourth actuator. Figures 4.4(c) and 4.4(d) give the history of the four control
torques for RSMC and SMC, respectively. It is noted that after the detection of the
outage of actuator T}, the other three actuators of RSMC contribute much more control
effort than those of SMC to realize the required yaw moment for yaw rate tracking, which
are also reflected in Figs. 4.2(b) and 4.2(d) where the output tracking performances of

RSMC are much better than those of SMC. After the change lane mission (i.e., ¢t > 5),
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the controls of RSMC are seen from Fig. 4.4(c) to maintain near zero level, while those of
SMC do not reduce to zero until the output tracking error converges to zero, as seen from
Fig. 4.4(d). All the peaks of the healthy control curves and the abrupt change of v — ~,
at t = 5 of the SMC scheme come from the abrupt change of the steering wheel angle.
Finally, Fig. 4 displays the time history of the sliding variables of RSMC and SMC. It is
seen that, after the reaching phase time period, the two sliding variables remain inside the
boundary layer before the fault happens. After the fault, the sliding variable of RSMC
runs out of the boundary layer shortly and then gets back to the boundary layer due
to the activation of reliable controller; however, the non-reliable scheme is not able to
force its sliding variable stay inside the boundary layer even after the end of change lane
mission ¢ > 5. The two abrupt changes of ¢ of SMC scheme at ¢ = 3 and ¢t = 5 come
from the occurrence of fault and control peak of SMC (see Fig. 4.4(d)), respectively. The
final peak of the sliding variable curve-of SMC.mear t = 7 is resulted from Eq. (4.22) and
the abrupt change of e = v vy, shown in Fig. 4.2(d). These observations agree with the

theoretical results.
4.3.2 Two actuator faults

In this section, we assume that the.rear-left brake actuator fails at ¢ = 2.5 and the
front-right actuator fails at ¢ = 3. That is, 7, = 0 and 7} = 0 after ¢ = 2.5 and
t = 3, respectively. These yield H = {1, T, T3} and F = {74} during the time period
25 <t <3 and H = {T5, T3} and F = {T1,T,} after t = 3. Tt is observed from Figs.
4.6-4.7 that the timing responses of the seven states and the output tracking error for
RSMC scheme have the same scenario as those of one fault case. However, from Figs.
4.2(a) and 4.6(a), the longitudinal velocity V' of SMC scheme decreases from 30m/sec to
12.14m/sec, which is falling more than that of one fault case. The same scenarios can
also be found from Figs. 4.3 and 4.7 regarding the four wheel angular velocities of SMC
scheme. After the second fault, the side slip angle 5 and the output tracking error v — 74
of the SMC scheme are seen to be a little larger than those of SMC regarding one fault
case. From Fig. 4.8(a), the two actuator faults are observed to be successfully detected

by the observer at around ¢t = 2.506 and ¢ = 3.003, respectively, which can also be seen
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from the alarm signals shown in Fig. 4.8(b). When these faults are detected, the RSMC
scheme switches its controller to the appropriately reliable one and the residual signals
ry and 7, are seen to quickly decrease to zero. Figures 4.8(c) and 4.8(d) give the time
history of the four control torques for RSMC and SMC, respectively. It is noted that
these control curves are exactly the same as those of one fault case before the second
fault happens. After the detection of the second fault, the two healthy actuators T, and
T3 of RSMC contribute more control effort than one fault case and the SMC scheme to
realize the required yaw moment for yaw rate tracking, as seen from Figs. 4.4(c), 4.8(c)
and 4.8(d).

Finally, Fig. 4.9 displays the time history of the sliding variables of RSMC and SMC.
Again, after the reaching phase time period, the two sliding variables remain inside the
boundary layer before the first fault happens. When the two faults happen, the sliding
variable of RSMC starts to growsand runs-out-of the boundary layer shortly, then it gets
back to the boundary layer diie totheactivation of reliable controller. On the other hand,
the non-reliable scheme is not able to forceits sliding variable stay inside the boundary
layer even after the end of"change lane‘mission. The reasons for the abrupt changes of
the o—curve of SMC at t = 2.5)and ¢t = 5, and.the peak around ¢ &~ 7.8 are same with
those of one fault case. These observations agree with the theoretical results. From these
examples, it is found that the performances of RSMC are better than those of conventional

SMC design when the EVs experience actuators’ faults.
4.3.3 Three actuator faults

In this section, we assume that the rear-left brake actuator fails at t = 2.5, the front-
right actuator fails at ¢ = 3, and the rear-right actuator fails at t = 3.5. That is,
T, =0,7, =0and T3 = 0 after t = 2.5, ¢t = 3 and t = 3.5, respectively. These yield
H = {T1,T2,T3} and F = {T,} during the time period 2.5 < t < 3, H = {73, T3} and
F = {T1,T,} during the time period 3 < ¢t < 3.5. H = {1y} and F = {T,T3,T,} after
t = 3.5. It is observed from Figs. 4.10-4.11 that the timing responses of the seven states
and the output tracking error for RSMC scheme have the same scenario as those of one

fault case. However, from Figs. 4.2(a), 4.6(a) and 4.10(a), the longitudinal velocity V'
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of SMC scheme decreases from 30m/sec to 11.15m/sec, which is falling more than those
of one fault and two fault cases. The same scenarios can also be found from Figs. 4.3,
4.7 and 4.11 regarding the four wheel angular velocities of SMC scheme. After the three
fault, the side slip angle S and the output tracking error v — 74 of the SMC scheme are
seen to be a little larger than those of SMC regarding one fault and two fault case. From
Fig. 4.12(a), the three actuator faults are observed to be successfully detected by the
observer at around ¢ = 2.506, t = 3.003, and ¢ = 3.506, respectively, which can also be
seen from the alarm signals shown in Fig. 4.12(b). When these faults are detected, the
RSMC scheme switches its controller to the appropriately reliable one and the residual
signals 74, 7 and 73 are seen to quickly decrease to zero. Figs. 4.12(c) and 4.12(d) give
the time history of the four control torques for RSMC and SMC, respectively. It is noted
that these control curves are exactly the same as those of one fault case before the second
fault happens. After the detection of the third fault, the healthy actuator T of RSMC
contribute more control effortsthan-one fault and two fault case. The SMC scheme realize
the required yaw moment for yaw rate tracking, as seen from Figs. 4.4(c) 4.4(d), 4.8(c),
4.8(d), 4.12(c) and 4.12(d).

Finally, Fig. 4.13 displays the.time history of the'sliding variables of RSMC and SMC.
Again, after the reaching phase time period, the two sliding variables remain inside the
boundary layer before the first fault happens. When the two faults happen, the sliding
variable of RSMC starts to grow and runs out of the boundary layer shortly, then it gets
back to the boundary layer due to the activation of reliable controller. In addition, When
the three faults happen, the sliding variable of RSMC starts to grow and runs out of the
boundary layer shortly, then it gets back to the boundary layer due to the activation of
reliable controller. On the other hand, the non-reliable scheme is not able to force its
sliding variable stay inside the boundary layer even after the end of change lane mission.
The reasons for the abrupt changes of the o—curve of SMC at ¢t = 2.5 and t = 5, and
the peak around ¢ ~ 7.95 are same with those of one fault and two fault case. These
observations agree with the theoretical results. From these examples, it is found that the
performances of RSMC are better than those of conventional SMC design when the EVs

experience actuators’ faults.
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Fig. 4.2.  Time histories of (a)ilongitudinal.velocity, (b) body side slip angle, (c) yaw
rate and (d) output trackingerror for one actuator fault.

120 120
100 100
RSMC RSMC
37 80 80
60 60
40 40
5 10 5 10
(a) time (b) time
120 120
100 RSMC 100 RSMC
(32) <~
3 80 SMC 3 80
SMC
60 60
40 40
5 10 5 10
(c) time (d) time

Fig. 4.3.  Time histories of (a) front-right, (b) front-left, (c¢) rear-right and (d) rear-left
wheel angular speeds for one actuator fault.
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Fig. 4.6. Time histories of (a)ilongitudinal.velocity, (b) body side slip angle, (¢) yaw
rate and (d) output trackingerror for two actuator faults.
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CHAPTER FIVE
CONCLUSIONS AND SUGGESTIONS FOR FUR-
THER RESEARCH

A combined scheme using the SDRE design for a nominal system and the ISMC strat-
egy for model uncertainties and/or disturbances has presented. This combined scheme
is shown to be able to preserve the same state response as that of the SDRE scheme for
the nominal system when the uncertainties are of the matched type. We also apply these
analytical results to a three-wheeled wehicle brake control system. The results demon-
strate that the combined scheme has the ability tointelligently adjust the steering angle
and the wheel torques so that the yaw ratesand lateral velocity are the same as those
of the nominal system under the SDREscheme. Hence, the combined scheme is more
effective and robust than using\.the SDRE-schemeé alone, thereby greatly enhancing the
braking safety. It is also worth noting that the engineers may adopt any other optimal
control strategy (other than the SDRE scheme) in accordance with the nominal system
requirements to create a desired state trajectory for the uncertain system to follow.

In this thesis, we also have presented a class of SMC-type reliable controllers to gener-
ate a suitably yaw moment for EVs’ yaw rate tracking task. These reliable controllers are
shown to be able to successfully track the desired yaw rate when the vehicle experiences
some of the actuators’ faults. The body side slip angle can also be maintained in a small
magnitude which depends on the desired yaw rate and steering command. Besides, the
vehicle model under investigation is nonlinear rather than linear one, and the proposed re-
liable controllers do preserve the advantages of SMC design, including robustness, ease of
implementation and responding rapidly. Simulation results have shown the effectiveness
and benefits of the design.

To further extend the research covered in this thesis, we note several directions:

48



Consider the situation of actuator total failure and the case of unmatch type uncer-

tainties and/or external disturbances.
Choose suitable Dy in the ISMC design to enhance system performance.
Apply the combined scheme to other practically physical systems.

Track both the body side slip angle and yaw rate simultaneously to improve the

vehicle safety for lane change task.
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