
國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

系統資料頻寬之研究

Study on System Data Bandwidth for Video and Vision Applications

研 究 生：張彥中

指導教授：張添烜 教授

王聖智 教授

中 華 民 國 九 十 八 年 八 月

系統資料頻寬之研究

Study on System Data Bandwidth for Video and Vision Applications

研 究 生：張彥中 Student：Nelson Yen-Chung Chang

指導教授：張添烜 Advisor：Tian-Sheuan Chang

 王聖智 Sheng-Jyh Wang

國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

A Dissertation
Submitted to Department of Electronics Engineering and

Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in
Electronics Engineering

August 2009

Hsinchu, Taiwan, Republic of China

中華民國 九 十 八 年 八 月

 i

系統資料頻寬之研究

研究生：張彥中 指導教授：張添烜 博士
 王聖智 博士

國 立 交 通 大 學

電機學院 電子工程學系 電子研究所

摘 要
資料頻寬問題長久以來就是嵌入式系統效能的瓶頸。若一個系統無法提供足夠的資

料頻寬，或運算核心的頻寬需求過高，會造成運算核心缺乏足夠運算資料，因而使運算

核心無法發揮全部的運算能力，進而影響到系統的效能。為了發揮系統的效能，本論文

探討如何提高系統中可用頻寬使用率與降低頻寬需求。本論文以系統中資料傳輸的過程

為主軸，針對傳輸源頭到終端所會遭遇的頻寬問題進行改善的研究。改善方法的核心概

念是利用傳輸或存取資料之間的相關性，搭配系統中硬體裝置的工作特性提高頻寬使用

率，或是重複利用已有資料減少頻寬需求。在資料傳輸的源頭，也就是記憶體控制器的

部份，本論文探討如何透過存取排程，改善資料間的相關性，利用記憶體本身存取特性

與系統匯流排協定的工作特性來提高的資料頻寬使用率。在改善資料傳輸源頭的頻寬

後，瓶頸便落在系統匯流排上，因此本論文接著探討改善採用先進封包式協定匯流排頻

寬使用率的方法。在資料傳輸末端的運算核心部份，本論文則是根據資料間存取的空間

與時間的相關性，探討如何透過有效地資料重複使用，降低運算核心的頻寬需求。本論

文研究的運算核心功能包含了視訊編解碼與早期視覺處理，這兩類運算的頻寬需求皆十

分可觀。在視訊編解碼部份，本論文針對移動補償提出了一利用輸入移動向量與巨方塊

種類之內容特性的運算核心硬體架構，可降低頻寬需求達72%。而在早期視覺處理部

份，本論文針對平均飄移濾波演算法與立體視覺的立體匹配演算法，提出可減低頻寬需

求的運算核心硬體架構。在平均飄移濾波架構中，本論文根據平均飄移向量大小的特

 ii

性，提出部分更新乒乓暫存記憶體架構，可減少八成畫面記憶體頻寬需求。另一方面，

在立體匹配演算法中，本論文根據演算法本身資料存取在空間與時間上的侷限性與相關

性，提出部份列資料重複使用與擴張視窗減少存取兩方法，來達到大幅減少立體匹配資

料頻寬需求。本論文基於資料相關性的頻寬改善方法，可提高可用頻寬與降低頻寬需

求，有效改善系統中資料頻寬的問題，進而幫助提高系統整體效能。

 iii

Abstract

Data bandwidth issue has long been the performance bottleneck of an embedded system.

The computation cores in a system cannot maximize their utilization without enough data.

This is usually a result of insufficient available data bandwidth or excessive data bandwidth

requirement. Being aware of the importance of the data bandwidth issue, this dissertation

addressed the bandwidth issue from the source to the destination of data transfers. The core

concept was to facilitate the address and data correlation among accesses to solve the data

bandwidth issue. Exploiting these correlations can increase bandwidth utilization given a

device’s access characteristics and can also reduce bandwidth requirement through data reuse.

In particular, this dissertation explored methods to increase the bandwidth utilization of

memory controllers by taking the advantage of the characteristics of external memories and

new advanced data transfer protocol. After improving the bandwidth utilization at the source

of data transfers, this dissertation focused on improving the bandwidth utilization of a bus

interconnect adopting advanced protocol under the traditional share-link topology. Finally,

bandwidth requirement reduction techniques have been studied at the destination of data

transfers. For video coding and early vision tasks, these techniques performed data reuse

based on algorithm’s data access characteristics, such as the spatial ad temporal locality

among data accesses. In video coding, this dissertation proposed a combined frame memory

motion compensation (CFMMC) architecture that was capable of reducing the bandwidth

requirement by up to 72% based on the characteristics of input motion vector and macroblock

type data. In early vision tasks, this dissertation proposed a meanshift filtering architecture

that used the proposed partial-update ping-pong buffer (PUPPB), which was based on the

access locality due to intermediate meanshift vector characteristics, to reduce the bandwidth

 iv

to the image memory by 81.6%. In stereo matching vision task, this dissertation proposed the

partial column reuse (PCR) and access reduction by expanding window (AREW) techniques,

which were based on the access locality due to the algorithm’s flow, to significantly reduce

bandwidth requirement for the proposed mini-census adaptive support weight (MCADSW)

stereo matching architecture. The bandwidth utilization improving and bandwidth

requirement reduction techniques studied in this dissertation can also be applied to other

video coding or vision systems to improve system performance.

 v

誌 謝

博士的研究生涯，得到了不少人的幫助。首先要感謝任建威博士，在我的碩士和博

士初期給予的指導，同時感謝他提供良好的研究環境和資源。另外要感謝我的指導老師

張添烜教授與王聖智教授，在我博士班期間毫無保留指導與建議。我要特別感謝張教授

鼓勵我朝自己夢想與有興趣的題目進行研究，同時也要感謝王教授願意給我在這方面幫

助，讓我受益良多。沒有這兩位教授的幫忙，我今天將不會有實現我自己的夢想的機會。

另外，也要感謝我的口試委員：李鎮宜教授、蔡淳仁教授、楊家輝教授、張寶基教授、

陳永昌教授、陳紹基教授、蔣迪豪博士，在忙碌中抽空齊聚ㄧ堂，參與我的論文口試，

並給予十分有幫助的建議，讓我獲益良多。

另外，我也要感謝我的家人。首先，我要感謝我的父母，沒有你們的不間斷的督促

與鼓勵，我將無法在論文連續被拒絕時，重新站起來。也要感謝父親，能夠理解並接受

我改變研究方向。也要謝謝父母給我一個能後放心追求夢想的家庭。此外，也要感謝兄

弟們(這包含友然在內)在博士班其間給我的鼓勵。

最後，要感謝在交大這幾年相遇的學長、同學、學弟妹們。首先要感謝李坤儐學長

的用心帶領和指導，另外也要感謝林泰吉學長和李元仲學長願意適時給予有用的意見。

同時還要感謝博士班重逢的林佑昆同學和約旦來的Esam同學，在這幾年間相互鼓勵，

一起努力。接著要感謝和我一起合作的學弟妹們：浩雲、惠錚、旻奇、宗憲、宇晟、景

竹。最後，要感謝張教授實驗室全體學弟妹，謝謝你們這段期間帶來的歡笑和幫忙。最

後，也要謝謝我所有的朋友的鼓勵與幫忙。

謹將這本論文，獻給所有關心我的人們，也獻給不幸離開人世的蔡旻奇學弟。

 vi

 vii

Contents
摘 要 ... i

Abstract ..iii

誌 謝 .. v

Contents...vii

List of Figures .. ix

List of Tables..xi

Chapter 1 Introduction .. 2
1.1. Background... 2
1.2. Motivation... 3
1.3. Dissertation Organization ... 4

Chapter 2 Related Works .. 6
2.1. Memory Controller ... 6
2.2. System Bus ... 7
2.3. ASIP Data reuse related .. 11

2.3.1. Motion Compensation in Video Codecs .. 11
2.3.2. Meanshift Filtering in Segmentation... 12
2.3.3. Stereo Matching .. 14

Chapter 3 AXI Memory Controller .. 18
3.1. Memory Controller's Role in a System ... 18
3.2. DRAM Basics ... 19
3.3. AXI Memory Controller Policy .. 21

3.3.1. Overall Scheduling Framework .. 21
3.3.2. First-level: Transaction-Level Scheduling.. 21
3.3.3. Second-Level: Command Scheduling.. 23

3.4. Simulation Result.. 24
3.4.1. Multimedia Platform Architecture .. 24
3.4.2. Videophone Application .. 25

3.5. Simulation Result.. 26
3.5.1. Evaluation Metrics .. 26
3.5.2. Burst Length Impact.. 27
3.5.3. Transaction Buffer Size Impact ... 29
3.5.4. Bus Arbitration Policy Impact... 32

3.6. AXI Memory Controller Architecture .. 33
3.7. Summary... 34

Chapter 4 AXI Shared-link Bus .. 36
4.1. System Bus' Role in a System... 36
4.2. Proposed AXI Scheme.. 38

4.2.1. Transfer Modes ... 38
4.2.2. Arbitration Scheme.. 41

4.3. Simulation Setup... 43
4.3.1. Multimedia Platform Architecture .. 44
4.3.2. Video Phone Scenario ... 45
4.3.3. Evaluation Metrics .. 46

4.4. Experiment Result... 48

 viii

4.4.1. AXI Interface Buffer Size and Bus Arbitration Impact .. 48
4.4.2. Task Access Setting Impact ... 52
4.4.3. Single-Layer Shared-link AXI vs. 5-Layer AHB-lite ... 54

4.5. Summary... 56
Chapter 5 Bandwidth Reduction Techniques in Computation Cores.. 58

5.1. Bandwidth Reduction Methods... 58
5.2. CFMMC.. 59

5.2.1. Motion Compensation's Role in a Video Decoder System .. 59
5.2.2. Combined Frame Memory Motion Compensation .. 61
5.2.3. Architecture... 71
5.2.4. Implementation Result... 80
5.2.5. Summary.. 84

5.3. Meanshift .. 86
5.3.1. Meanshift's Role in Vision Applications.. 86
5.3.2. Meanshift Algorithm.. 87
5.3.3. Test Images and Mean Shift Filter Parameter Settings... 89
5.3.4. Meanshift Architecture.. 90
5.3.5. Implementation result.. 102
5.3.6. Summary.. 104

5.4. MCADSW .. 105
5.4.1. Stereo Matching's Role in Vision Applications ... 105
5.4.2. Stereo Matching Issues ... 105
5.4.3. MCADSW algorithm ... 106
5.4.4. Bandwidth Reduction Techniques for MCADSW Architecture ... 114
5.4.5. Real-time Architecture for MCADSW ... 118
5.4.6. Implementation Result and Comparison ... 124
5.4.7. Summary.. 128

Chapter 6 Conclusion... 130

References ... 132

 ix

List of Figures

Fig. 1. Simplified block diagram of a DRAM ..19
Fig. 2. Bank state transition and related commands when (a) current bank state is idle

(b) current bank state is active and row-hit (c) current bank state is active and
row-miss...20

Fig. 3. Overview of the two-level scheduling flow ..21
Fig. 4. The target platform ..24
Fig. 5. Bandwidth usage of different memory scheduling policies with (a)FP and

(b)RR bus arbitration ...27
Fig. 6. Power consumption of different memory scheduling policies with (a)FP and

(b)RR bus arbitration ...28
Fig. 7. Memory energy efficiency of different memory scheduling policies with (a)FP

and (b)RR bus arbitration...29
Fig. 8. Bandwidth usage of different buffer size with (a)FP and (b)RR bus arbitration ..30
Fig. 9. Memory power consumption of different buffer size with (a)FP and (b)RR bus

arbitration...31
Fig. 10. Memory energy efficiency of different buffer size with (a)FP and (b)RR bus

arbitration...31
Fig. 11. Architecture of the AXI-compatible memory controller with the two-level

scheduling policy ...33
Fig. 12. Normal mode transfer example ...39
Fig. 13. Interleaved mode transfer example..39
Fig. 14. Data locked mode transfer example ..40
Fig. 15. Arbitration framework for a share-link AXI bus...42
Fig. 16. Block diagram of the target platform using (a)AXI, (b) AHB-lite......................45
Fig. 17. Performance of different interface buffer size and arbitration policy

combinations ..50
Fig. 18. Performance of different task access settings and interface buffer size53
Fig. 19. Performance of 5-layer AHB-lite and single-layer shared-link AXI55
Fig. 20. Impact of different QP values on percentage of NOT-CODED MB in

MPEG-4 ...63
Fig. 21. Memory components for QCIF with vector range of [-16:+15] in the CFM64
Fig. 22. Flow chart of motion compensation process in the CFMMC65
Fig. 23. The processing of non-perfect-matched MBs ...66
Fig. 24. Life time analysis of MBs ...67
Fig. 25. Block diagram of the CFMMC hardware..73
Fig. 26. Pblk offsets and inblk offsets...73
Fig. 27. Block diagram of the memory accessor ..75
Fig. 28. Gate count distribution and comparison of the logics part in the PPFMMC and

the CFMMC...81
Fig. 29. Plot of the energy reduction percentages of the CFMMC at different P0...........82
Fig. 30. Power consumption distribution and comparison of the PPFMMC and the

CFMMC...83
Fig. 31. Power consumption distribution and comparison of the PPFMMC and the

CFMMC for mobile and akiyo. ...84
Fig. 32. VGA test images..89

 x

Fig. 33. Block diagram of the proposed Meanshift filter architecture..............................91
Fig. 34. Concept of PUPP reuse..93
Fig. 35. Block diagram of PUPP...94
Fig. 36. Image memory pixel read count comparison between using PUPP and not

using PUPP ..96
Fig. 37. Block diagram of the PPLMSSB...98
Fig. 38. Datapath and pipeline schedule of the MSVCU..99
Fig. 39. Block diagram of the SML ..101
Fig. 40. Processing cycles and estimated frame rate of each test images.......................102
Fig. 41. Overall flow of the proposed mini-census adaptive support weight algorithm.106
Fig. 42. The census transform and matching ..107
Fig. 43. Disparity estimation error rate of using different color spaces109
Fig. 44. Scaled, truncated, and non-zero MSB preserved weight function110
Fig. 45. Partial column reuse in mini-census transform ...114
Fig. 46. Partial column reuse in cost aggregation...115
Fig. 47. Example of access count reduction with expanded window, (a) without

expanded rows, (b) with 3 expanded rows...117
Fig. 48. Block diagram of the MCADSW ..118
Fig. 49. Architecture of the mini-census transformer ...119
Fig. 50. Architecture of the weight generator ...120
Fig. 51. Architecture of the cost aggregator and WTA...121
Fig. 52. Schedule of the ping-pong buffer ..122
Fig. 53. Processing schedule of the cost aggregator ...122
Fig. 54. Schedule of the MCADSW architecture ...123
Fig. 55. Disparity map of different implementations..127

 xi

List of Tables

Table 1 The task, access pattern, bandwidth, and completion time requirement of each
master device ...25

Table 2 Performance evaluation metrics...27
Table 3 Port task description and bandwidth requirement..46
Table 4 Combinations of arbitration policies..48
Table 5 Weight allocation of TDMA and Lottery arbitration schemes48
Table 6 Task access settings ...52
Table 7 Percentage of perfect-matched MBs when QP=16..62
Table 8 Memory sizes required in CFM...68
Table 9 Memory access energy consumption and access latency of processing one

frame ..69
Table 10 Average memory access energy consumptions and latencies for various

QCIF test sequences with k=4 ...69
Table 11 Latencies of different MB modes ..79
Table 12 Energy reduction percentage of the real test patterns ..83
Table 13 EDISON’s execution time of VGA image “Raincoat Sam” on a PC with

PentiumIV 2.8GHz processor and 1GB memory. ...86
Table 14 Synthesized gate count of each component ...102
Table 15 Comparison of existing segmentation implementation103
Table 16 Performance comparison between using Euclidean and Manhattan color

distances...110
Table 17 Performance comparison of the MCADSW and other algorithms113
Table 18 Core characteristics of the proposed MCADSW...124
Table 19 Speed comparison of different implementations ...125
Table 20 Performance comparison of different implementations...................................126

 1

 2

Chapter 1 Introduction
1.1. Background

Video coding technology has been developed over the past four decades and has made

high quality portable video playback and recording a reality. Examples of portable video

playback include the early suitcase TV [1], recent portable media players [2], and newly

available iPhones [3]. On the other hand, portable video recording has also been developed

after Le Prince invented moving picture recording technology since 1890’s. Now, portable

video recording can be found on small handheld camcoders to cell phones. These have been

possible because of the advances in digital video coding algorithms, which have greatly

improved the compression ratio while maintained high video quality. However, advanced

digital video coding algorithms are often complex and computation power demanding.

Recently, real-time and portable vision-based applications have been receiving great

attention. Vision algorithms, particularly early vision ones, have enabled traditional

image/video consumer electronics to become smarter than ever. For instance, face detection

and region of interest have improved a camera’s focus capability [4] and made a camera seem

“smarter” to human users. In addition to traditional image/video consumer electronics, vision

algorithms have also been the core technology in robotics, autonomous vehicles, and

intelligent surveillance. However, the drawback of using vision algorithms was the enormous

computation requirement. The complexity of vision algorithms has been much higher than

video coding algorithms. As a result, real-time implementations of vision algorithm were not

as successful as in video coding technology.

One common approach to accommodate the computation requirement is to use multi-core

embedded systems. A multi-core embedded system may include embedded processors, DSPs,

 3

high performance processors, GPUs, and dedicated hardware accelerators to satisfy the

computation power requirement of video and vision algorithms. The large computation

requirement issue can be easily solved by using a multi-core embedded platform. However,

the hard part is the data bandwidth. Without the data to be processed, a computation core can

only idle helplessly. Therefore, it is crucial to take care of the data bandwidth issue to ensure

an embedded multi-core system works as expected.

1.2. Motivation
 Being aware of the fact that the data bandwidth is one of the key factors that affects

the system speed, this work explored methods to improve system speed under limited

resource. One way to improve the system speed is to increase the available BW by investing

more hardware resource. Examples of such approach were using higher clock rate, wider data

port width, more buses, and complex crossbar interconnect. However, this approach often led

to expensive systems.

Other approaches that demand less hardware resources were maximizing existing

bandwidth utilization and reducing bandwidth requirement. Maximizing bandwidth

utilization can be achieved by using new data transfer protocols and access methods. One

example of new advanced data transfer protocols was AMBA AXI [7], which adopted a

packet-based channel scheme to maximize the bandwidth utilization. Better access methods

can increase the bandwidth utilization by taking access device’s characteristics into account.

Reducing bandwidth requirement can be achieved by reusing data within computation

cores so that less data transfer and access outside the cores are needed. Such data reuse often

depends on finding data access characteristics of algorithms, such as data access spatial and

temporal locality. Another approach in reducing bandwidth was by compressing the data to

 4

be transferred. However, this approach often introduced additional compression hardware.

Hence compression-based methods were not discussed within the scope of this dissertation.

Motivated by the importance of bandwidth issue and the potential opportunities of the

aforementioned approaches on maximizing bandwidth and reducing requirement, this work

focused on the study of facilitating the features of new data transfer protocols and intrinsic

characteristics of memory devices and algorithms to improve system performance. In this

dissertation, the bandwidth bottlenecks in a multi-core embedded system were investigated

from the source to the destination of data flow. In particular, the bandwidth issue at a

memory controller, a system bus, and application specific cores were studied.

1.3. Dissertation Organization
The first chapter gave a brief introduction on the background, motivation, and the

organization of this dissertation. The second chapter presented previous arts and related

literatures to help readers better understand the detail background of this dissertation. Chapter

3 presented our study on the bandwidth issue at the source of data transfer, the memory

controller. We have presented a method to improve the bandwidth utilization taking the

advantage of the memory device’s intrinsic characteristics as well as the new bus protocol’s

feature. Once the bandwidth performance at the source is improved, the system bus would

become the data transfer bottleneck. Therefore Chapter 4 analyzed the bus bandwidth issue at

system level and provided methods of enhancing the system bus performance by facilitating

the features of new bus protocols. Chapter 5 studied the bandwidth issues at the destination of

data transfers, the application specific computation cores. Finally, Chapter 6 gave a

conclusion and some future work directions.

 5

 6

Chapter 2 Related Works

Related works were categorized into memory controller related, data transfer related, and

application specific computation core related. In the memory controller part, previous works

on DRAM memory controllers were presented. In the data transfer part, researches on

analyzing and improving the bandwidth issue on system bus were described. Finally, in the

application specific core part, we investigated previous work on motion compensation in

video coding, mean-shift filtering, and stereo vision.

2.1. Memory Controller
Several works have been proposed to improve DRAM performance on bandwidth

utilization and latency. It was initially discussed for single core environment with software

based techniques to reorder access streams [8]. Instead of software approach, Ayukawa et al.

proposed an access-sequence controller [9] which reorders the data input and output order to

reduce access latency. However, neither transaction nor command scheduling were

mentioned in their work. Later, Rixner et al. proposed a memory access scheduler

architecture [10] capable of adopting various combinations of simple DRAM command

arbitration policies and can perform bank-interleaving. In these works, they only focused on

single core environment and neglected the impact of the arbitration policy on system buses.

For multicore environment, Takizawa et al. proposed a simple memory arbitration policy

which reduces bank conflict and read/write turnaround in their MPEG-2 AV decoder system

[11]. However, reducing bank conflict by increasing bank-interleaving would result in row

precharge and activation increase, thereby increasing the memory power consumption.

Recently, Lee et al. proposed an efficient quality-aware memory controller for multimedia

 7

platform SoC [12]. It utilizes a quality-aware scheduler to provide quality-of-service (QoS)

guarantees. However, their scheduler requires multiple channels which may only be suitable

for systems adopting star topology and will result in extra hardware cost for the system.

In the industry, Rambus proposed a pipelined memory controller [13] which includes a

bank cache lookup and a command sequencer. Sonics Limited developed MemMax 2.0

memory controller [14] which improves the efficiency of DRAM but must be used their own

MicroNetwork on-chip bus standard. For packet-based bus systems, ARM Limited has

developed a configurable AXI compliant memory controller [15].

Despite improving bandwidth utilization and access latency, reducing memory energy

consumption has also been discussed at system level [16][17][18]. These works essentially

turn DRAMs into low power state during idle period by using either software or hardware

approaches. However, reducing memory energy consumption in non-idle period should also

be addressed to further reduce the system energy consumption. Meanwhile, the system timing

constraint must also be met. Such issue has been briefly discussed in Burchardt’s work [19].

However, thorough investigation on improving memory energy efficiency in non-idle period

still remains rare.

2.2. System Bus
With the rapid progress of system-on-a-chip (SOC) and massive data movement

requirement, on-chip system bus becomes the central role in determining the performance of

a SOC. Two types of on-chip bus have been widely used in current designs, which are

pipelined-based and packet-based bus.

For pipelined-based buses, such as ARM’s AMBA 2.0 AHB [23], IBM’s CoreConnect

[24], and OpenCore’s WishBone [25], the cost and complexity to bridge the communications

among on-chip designs are low. However, pipeline-based bus suffers from bus contention and

 8

inherent blocking characteristics due to the protocol. The contention issue can be alleviated

by adopting multilayer bus structure [26] or using proper arbitration policies [27][28].

However, the blocking characteristic, which allows a transfer to complete only if the previous

transfer has completed, cannot be altered without changing the bus protocol. This blocking

characteristic reduces the bus bandwidth utilization when accessing long latency devices,

such as an external memory controller.

To cope with the issues of pipelined-based buses, packet-based buses such as ARM

AMBA 3.0 AXI [7], OCP-IP’s Open Core Protocol (OCP) [30], and STMicroelectronics

STBus [31] have been proposed to support outstanding transfer and out-of-order transfer

completion. We will focus on AXI here because of its popularity. AXI bus possesses multiple

independent channels to support multiple simultaneous address and data streams. Besides,

AXI also supports improved burst operation, register slicing with registered input, and

secured transfer.

Despite the above features, AXI requires high cost and possesses long transaction

handshaking latency. However, a shared-link AXI interconnect can provide good

performance while requiring less than half of the hardware required by a crossbar AXI

implementation. This work focused on the performance analysis of a shared-link AXI. The

handshaking latency is at least two cycles if the interface or interconnect are designed with

registered input. This would limit the bandwidth utilization to less than 50%. To reduce the

handshaking latency, we proposed a hybrid data locked transfer mode. Unlike the lock

transfer in [32] which requires arbitration lock over transactions, our data locked mode is

based on a transfer-level arbitration scheme and allows bus ownership to change between

transactions. This gives more flexibility to arbitration policy selection.

With the additional features of AXI, new factors that affect the bus performance are also

introduced. The first factor is the arbitration combination. The multi-channel architecture

 9

allows different and independent arbitration policies to be adopted by each channel. However,

Existing AXI related works often assumed a unified arbitration policy where each channel

adopts the same arbitration policy [32][33][34]. Another key factor is the interface buffer size.

A larger interface buffer usually implies more out-of-order transactions can be handled. The

third factor is the task access setting, which defines how the transfer modes should be used by

the devices within a system. Proper task access settings can yield better performance.

However, the proper setting may be different under different circumstances, such as different

buffer sizes.

Many works have been conducted on the communication architecture of pipelined-based

bus. Earlier work used formal analytic approach [35][36] to explore the design space of

communication architecture to evaluate the performance of a pipeline-based bus system.

Although formal analytic approach can provide the average or best/worst case overall bus

performance, such approach can hardly account for instantaneous changes of bus behavior.

This limitation gave rise to high-level simulation-based approach which is capable of

capturing the detailed instantaneous bus behavior with cycle accuracy [37]. Pasricha et al.

[38] used the cycle count accurate transaction boundaries (CCATB) model in the architecture

exploration of an MPEG AHB system. Later, Pasricha et al. also conducted experiment on

bus architecture synthesis [39] under different given constraint. Their synthesis method

yielded cost efficient bus matrices much faster and reliable than manual optimization.

Most of the techniques developed in the abovementioned works can be extended for the

analysis of packet-based bus. Pasricha et al. extended their communication architecture

synthesis framework to AXI [34]. Their work automatically generates the best bus topology,

arbitration policy, and parameter settings driven by throughput requirements. Besides bus

topology exploration, comparison between packet-based bus and pipelined bus has also

drawn attention. Pasricha et al. [40] compared the performance of a shared-link AXI and a

 10

single-layered AHB. Their comparison showed that up to 30% of bandwidth utilization

improvement can be achieved by AXI compared with AHB. They also investigated the

impact of the transaction reordering buffer size in the memory controller. Lee et al. [41] built

a crossbar AXI platform and a single-layered shared-link AHB platform to quantify the

performance difference. They reported 40% communication efficiency improvement between

AXI and AHB. Ruggiero et al. [42] studied the scalability of AHB, AXI, and STBus under

shared bus topology. Their result showed that AXI is far more scalable to the number of

master devices than AHB. When the number of processor reaches 8, AXI can achieve 60%

bandwidth utilization improvement over AHB.

Comparison of bus connectivity configuration, such as shared-link, multilayer (partial

crossbar), and full matrix (crossbar), has also been interested as well. Lahiri et al. [43]

proposed a design space exploration methodology and compared the performance between

single-layer and multilayer shared-link buses. Recently, Murali et al. [44] presented a bus

communication architecture exploration method that finds the most power-efficient crossbar

interconnect for a packet-based bus. They also briefly compared the performance and

normalized cost ratio among shared-link, multilayer, and crossbar configurations.

Although the aforementioned works conducted analyses on communication architecture,

the register slicing impact and multi-channel arbitration issues that arise with the features of

packet-based bus have been overlooked. In addition, pervious performance comparison of

multi-channel AXI and single-layer share-link AHB may not be fair since AXI requires much

more hardware cost.

 11

2.3. ASIP Data reuse related
2.3.1. Motion Compensation in Video Codecs

Motion compensation has been one of the most important tasks in a video encoder or

decoder. Motion compensation reconstructs a predicted frame from reading frame data from a

frame buffer. The reconstructed frame is written back into the frame memory. In many cases,

the bandwidth requirement and size of the frame memory is usually large. To reduce the size

of the frame memory in motion compensation, [48][49][50] adopted a merged-frame

approach which stored the reference frame and the reconstructed frame together using one

frame memory with the size slightly larger than one frame. Along with the reduced size frame

memory and local buffers, these work claimed that the merged-frame approach is also

capable of reducing the power consumption. Among these works, [48] and [49] proposed an

in-place storage optimization for video decoders. The in-place storage used a buffer to store

the reference frame data that are overlapped with the reconstructed current frame data in a

snake-like manner. To handle the complex address generation and the control, they

implemented a prototype using software. [50] also proposed a similar merged-frame memory

architecture for motion estimation and compensation in an encoder. Although these works

successfully reduced the frame memory size, none of them mentioned further improving the

performance of motion compensation by exploiting the characteristic of MBs without motion

and residue. Consequently, the bandwidth requirement could not be reduced.

Moshnyaga’s works [47][51] on motion estimation reported the presence of block-data

whose content remain unchanged between the adjacent frames. These unchanged block-data

are facilitated to eliminate frame memory writes and computations during the motion

estimation. In order to reduce memory writes for the unchanged block-data, Moshnyga’s

work also adopted the merged-frame approach when the coding pattern has no B-frame.

 12

Although the result shown was quite well for the test sequences listed in their works, the

experiment result on video sequences with great amount of motion was absent.

2.3.2. Meanshift Filtering in Segmentation

Several hardware architectures have been proposed to improve the processing speed of

image segmentation algorithms. However, very few architectures have been proposed for the

Meanshift filter algorithm. For segmentation algorithms other than the Meanshift algorithm,

Ranbabu et al. proposed a VLSI architecture for the well-known watershed segmentation

algorithm [61]. Their architecture could speed up the speed by 3 times compared to their

software implementation. Neuenhahn et al. also implemented the watershed algorithm on an

FPGA with optimal parameter settings [62]. Their work could segment 576x720 resolution

images at a frame rate of 50 FPS. Yamaoka et al. proposed a VLSI architecture that

implemented an image-scan based region-growing segmentation algorithm [63]. The

image-scan based region growing algorithm had regular process flow and was therefore more

suitable for hardware implementation. Their architecture was capable of segmenting up to

230 segments in QVGA images at a frame rate of 30 FPS.

For clustering-based segmentation algorithms, the K-means algorithm has received great

attention by hardware designers. Leeser et al. proposed one of the earliest architecture for

K-means color clustering algorithm [64] one decade ago. However, Leeser’s work did not

adapt to the characteristics of the image being processed. Maliatski and Yadid-Pecht

proposed a hardware-driven architecture for adaptive K-means algorithm [65]. Their

architecture was capable of processing with 64 cluster centers in QCIF images at a frame rate

of 15 FPS. Later, Hernandez proposed a “global-quasi-systolic local-hyper-connected” VLSI

architecture for histogram peak-climbing image segmentation algorithm [66]. Their work

could segment images of 702x576 resolution at a maximum frame rate of 50 FPS. However,

the cost of Hernandez’ architecture was very large and required a tremendous amount of

 13

internal memories. Maruyama and Saegusa also proposed an architecture for filtered

K-means color image segmentation algorithms [67]. They used KD-tree to filter out

redundant cluster computations. Their FPGA implementation could perform image

segmentation on VGA images at an average frame rate of 35 FPS. However, the maximum

segment count in their K-mean implementation was limited to 256. Moreover, the

performance of K-means algorithm is heavily dependent on good initial guess of the cluster

centers. Recently, Chen et al. presented a design for K-means color segmentation [68]. Their

work conducted detailed architectural design space analysis and provided a prototype system

that can perform segmentation of QVGA images with a maximum segment count of 16.

In contrast to the attention received by the K-means algorithm, the popular Meanshift

clustering algorithm seems to have been over sighted by architecture designers despite the

Meanshift’s well recognized performance in image segmentation. Only one architecture has

been proposed in the past. Park et al. proposed a systolic array architecture [69] that

implemented the dynamic Meanshift (DMS) [70] filter algorithm. The DMS computes a new

mode from the old modes in the Meanshift window instead of the original pixel data in the

window. The DMS can achieve super-linear convergence and can reduce the execution time

by at least 30%. Park et al. modified the DMS to map the modes onto a regular 2-D grid

graph to make the computation less irregular. This mapping was suitable for the systolic array

architectures and increased the parallelism. To reduce the cost and memory of the array

architecture, Park et al. adopted a sliding window approach. However, their DMS architecture

would still need a memory to store the mode at each node in the grid graph. If this mode

memory is located externally, the bandwidth requirement between the sliding window and the

mode memory would be very large.

 14

2.3.3. Stereo Matching
A. Stereo Matching Algorithms

Disparity estimation algorithms can be categorized into local and global approaches [72].

Local approach determines the disparity of a pixel based on the content similarity between

the support windows of this pixel and its candidate pixel in the other image. The local

approach usually has low computation complexity and storage requirement, and has been

frequently adopted by real-time implementations [74]-[84]. Global approach determines the

disparity of all the pixels in an image as a whole by optimizing a global energy function.

However, the optimization is usually complex and extremely computation intensive. Hence,

we will focus on local approaches.

Early works on local approach studied the impact of different similarity measures

[85][86]. Their work pointed out that census, rank [87], and mutual information [88] achieved

better disparity estimation performance and were more robust to radiometric distortion. Later,

[89] investigated the performance of using different color representation. Recently, [90]

investigated the performance and speed jointly of different similarity measure and color

representation combinations. The result showed that census-based combination achieved

better performance, but also takes more time to compute.

Another important research topic that has been studied is the support window size. The

simple fixed size rectangular window adopted in early local approaches suffered from

incorrect disparity estimation in occlusion, textureless, and repeating pattern regions. To

remedy this, [91][92] proposed variable window size algorithms. Later, [93] also proposed a

variable window size algorithm that adaptively adjusted the window size based on a

reliability measure. The variable window size could effectively improve the disparity

estimation performance in textureless and repeating pattern regions, but not in occlusion

regions. Being aware of this, [94][95] proposed shiftable windows algorithms to improve the

 15

performance. Kang et al. [96] combined both the concept of variable window size and

shiftable window together. However, the qualitative result of their work still showed great

room for improvement.

The reason for not being able to completely improve the performance in the occlusion

region is because the assumption of same disparity in the window does not hold in occlusion

and slanted surface regions. Understanding this, Veksler [97] proposed a compact window

class method which could model non-rectangular support windows. Although their result

showed significant performance improvement compared to previous algorithms, the

performance near the boundary region was still inferior to complex global approaches. Yoon

et al. proposed an adaptive support weight (ADSW) [73] algorithm that assigned different

weights to the pixels in a support window based on the proximity and color distances to the

center pixel. As a result, the ADSW could achieve the effect of using a support window of

arbitrary size and shape. With multiple iterations of aggregations, the performance of ADSW

was comparable to some of the complex global algorithms. Later, segmentation-based

support methods were also proposed [98][99]. The outlier rejection [98] used a binary weight

based on the segmentation region instead of the weight used in the ADSW. Tombari et al.’s

segment support algorithm [99] only assign weight to the pixels in the same segment the

center pixel is in. Recently, [100] conducted a detailed comparison on the performance and

processing speed of local algorithms. Their result showed that the segment support has the

highest performance but is two times slower than the ADSW. The performance of the ADSW

is only slightly inferior to the segment support algorithm.

B. Real-time Implementations
Real-time stereo matching implementations can be categorized into general purpose

processor solutions, digital signal processor (DSP) solutions, graphic processing unit (GPU)

solutions, and dedicated hardware solutions.

 16

The general purpose processor solutions rely on the great computation power in

state-of-the-art processors to accommodate the high computation complexity of stereo

matching algorithms. Early works [76][101] tried to implement real-time stereo matching on

general purpose processors, however they could only achieve non-video rate real-time

performance due to limited computing power at their times. As the processor technology

advances, [102][103][104] implemented real-time stereo matching algorithms on general

purpose processors. They managed to achieve real-time processing, but the performance of

their disparity map was not very high because of using simple local algorithms. Although

simple local algorithms have been adopted by most general purpose solutions, Forstmann et

al. [105] proposed a real-time implementation of the less complex global algorithm, the

dynamic programming, on general purpose processors. Their performance is higher than most

of the previous local algorithms, but their real-time processing speed is limited to images

smaller than VGA.

The DSPs have better processing speed on signal processing algorithms because of the

SIMD and MIMD architectures than general purpose processors. In addition, they are often

less expensive and less power consuming than the state-of-the-art general purpose processors.

Hence, DSP solutions are more favorable in embedded stereo vision applications. Konolige’s

Small Vision System [76] is one of the most famous early real-time DSP solutions. Recently,

[84] also proposed a real-time DSP implementation with jigsaw matching templates.

Although the DSP solutions may have more computation power than general purpose

processors, the data word alignment and bandwidth issue often limit their capability. As a

result, the DSP solutions are usually limited to local algorithms and cannot provide high

performance result in real-time.

Another powerful solution is the GPU solutions. The GPUs have extremely high

memory bandwidth that ranges from 6.5 GB/sec to 128 GB/sec and can have up to 256

 17

stream processors. With so much hardware resource, the GPU solutions [106]-[109] could

implement high performance complex stereo matching algorithms. However, GPUs are too

expensive and power consuming to be used in embedded applications currently.

The dedicated hardware solutions can also provide great computation power while

allowing the computation resource to be optimized for utilization by designing the

architecture in a customized way. This enables the dedicated hardware solutions to be more

cost efficient than the GPU solutions. The dedicated hardware includes both FPGA/PLD and

applications specific integrated circuit (ASIC). Faugeras et al.’s PeRLe-1 board [110] and

Nishihara’s PRISM-3 based stereo system [111] are two of the earliest dedicated hardware

solutions. Later, other early dedicated hardware solutions [75][77][78][93] have also been

proposed. Among these works, [77] and [78] are two of the first real-time implementation

adopting the census matching. However, these early solutions only implemented simple local

algorithms. Consequently, their performance is not high. Being aware of the performance

limitation of local algorithms, hardware architectures have been proposed for dynamic

programming [112] and hierarchical belief propagation (HBP) [113] algorithms [114]. Their

performance is very high since they are based high performance global methods. However,

their hardware cost is also very high compared to other dedicated hardware implementations.

Recently, Tsai et al. [115] studied data reuse techniques in aggregation-based algorithms to

reduce the internal storage size, computation resource, and bandwidth requirement.

 18

Chapter 3 AXI Memory Controller

3.1. Memory Controller's Role in a System
With the rapid progress of VLSI technology, system-on-a-chip (SoC) [1] emerges and

becomes feasible with on-chip bus compliant IPs. These SoCs possess sufficient computing

power to implement complex and bandwidth demanding multimedia systems for various

embedded applications. In such an embedded design, the bandwidth of memory subsystem is

one of the major issues that have to be evaluated and optimized first to ensure the system’s

success.

We proposed a high bandwidth utilization memory controller which worked with a

packet-based bus interface. In which, we have chosen AXI bus [3] as a representing case for

packet-based bus that supported flexible out-of-order transaction completion. Packet-based

bus not only eliminated the need to access data in request order, the additional transaction ID

tag also provided valuable information about the source of an access request that can help in

scheduling memory accesses. Thus, we proposed a memory controller with a two-level

scheduling framework using such source information. The first level is the transactions-level

scheduling which adopts a limited temporal source prioritized (LTSP) policy that used the

temporal source correlation of accesses in a system. The second-level was the DRAM

command-level scheduling that issues commands based on command age and type to hide

access latency. The experimental result of a multimedia platform running a video phone

application provided quantitative result of bandwidth usage, memory power consumption,

and energy efficiency for different memory scheduling policies.

 19

3.2. DRAM Basics
Fig. 1 illustrates a simplified block diagram of a DRAM. A DRAM usually consists of

four memory banks. For each bank, it includes a row buffer, several memory rows. A DRAM

usually has only one data port and is shared for both read and write. The address port is also

shared for both read and write.

To access a data located in a DRAM, the row with the data must be first “opened” using

an ACTIVATE command. The opened row is read from the memory and written to the row

buffer. After the activation, the bank with the row being opened cannot be access for a period

of time defined as the active to column access delay. However, other banks can still accept

commands. Once the row is opened and the memory bank is ready to accept a command, a

column-access READ/WRITE command is issued to access the data in the row buffer. If it is

a READ column-access, the data would be available at the data port after a column access

latency. Unlike the ACTIVATE command, there can be no other column-access command

during the column-access latency because the data port is currently being used. After the

current data have been accessed, the memory row can be “closed” by issuing a

PRECHARGE command to this bank. Once the row is closed, it would take a period of time

called the precharge command period before the next activation command can be issued.

R
ow

 D
ec

od
er

R
ow

 D
ec

od
er

R
ow

 D
ec

od
er

Row Buffer

Memory row

Memory row

…

Memory row

Memory banks

Data Port

Address
Port

R
ow

 D
ec

od
er

Column Decoder

REG

REG

Fig. 1. Simplified block diagram of a DRAM

 20

Similar to ACTIVATE command, other banks can accept commands within the percharge

command period.

Fig. 2 illustrates different DRAM bank state transitions. In Fig. 2(a), if an access happens

on an idle bank in which no opened row is available, it is called a bank-miss access. In

contrast, if an access happens on an opened row as shown in Fig. 2(b), it is called a row-hit

access, which introduces the least access latency. This is because for a row-hit access, only a

READ/WRITE column-access command is needed. However, if the access row in an active

bank is closed as shown in Fig. 2(c), it is called a row-miss access. For a row-miss access, an

additional PRECHARGE command must be issued before the ACTIVATE and

READ/WRITE column-access command can be issued. Hence, a row-miss access results in

Idle Active

ACTIVATE

PRECHARGE

READ / WRITE

1

2

3

4

(a)

Idle Active

ACTIVATE

PRECHARGE

READ / WRITE

1

2

(b)

Idle Active

ACTIVATE

PRECHARGE

READ / WRITE

1

2

3

4

5

6

(c)

Fig. 2. Bank state transition and related commands when (a) current bank state is idle (b) current bank state is active and
row-hit (c) current bank state is active and row-miss

 21

the longest access latency.

3.3. AXI Memory Controller Policy
3.3.1. Overall Scheduling Framework

Fig. 3 illustrates the scheduling flow of the proposed two-level scheduling framework.

Input transactions are dispatched to each bank for transaction-level scheduling. The goal of

transaction-level scheduling is to increase memory row-hit opportunity. After

transaction-level scheduling, reordered transactions are translated into DRAM commands

with the status of each memory bank taken into consideration. Once the DRAM commands

are available, command-level scheduling issues command to DRAM based on command age

and the type information. The details of the two-level scheduling are explained as follows.

3.3.2. First-level: Transaction-Level Scheduling
 Two transaction scheduling policies are investigated: first-in first-serve (FIFS) and

limited temporal source prioritized (LTSP). The first policy is similar to the first-ready

scheduling policy mentioned in Rixner’s work and has been widely adopted. The second one

is proposed and recommended in this work. The details of each scheduling policy are

described below.

Bank 0
Transaction
Scheduler

Bank 1
Transaction
Scheduler

Bank 2
Transaction
Scheduler

Bank 3
Transaction
Scheduler

Bank 0
Translator

Bank 1
Translator

Bank 2
Translator

Bank 3
Translator

Command Scheduler

Transaction-
level Scheduling

Transaction to
Command
Translation

Command-level
Scheduling

Transaction
Transaction

...

Cmd
Cmd
Cmd
Cmd

Input
Transactions

Output
Commands

To DRAM

From Input Transaction Buffer

Fig. 3. Overview of the two-level scheduling flow

 22

A. Baseline First-In First-Serve
The FIFS policy issues transactions based on transaction input order. The advantage of

FIFS policy is its fairness with respect to input transactions because every transaction would

eventually be issued. However, FIFS policy is highly dependent on the bus arbitration policy,

which determines the transaction input order. This characteristic would make the memory

performance sensitive to bus arbitration policy.

B. Limited Temporal Source Prioritized
The proposed LTSP policy sets higher priority to transaction which has the same source

as the last issued transaction. In other words, LTSP policy groups transactions from the same

source device together. The transactions within a group are issued consecutively based on

their relative temporal order. If no such transaction exists at that moment, LTSP policy gives

higher temporal priority to earlier transactions and issues the transaction with highest

temporal priority. The pseudo code of LTSP scheduling policy is listed below.

Initialize {
 prev_source_id = null;
 consecutive_cnt = 0;
}

LTSP Loop {
 if(transaction_buffer not empty) {
 if(consecutive_cnt < limit_threshold) {
 next_transaction = get_transaction_with_source_id(prev_sorce_id);
 if(next_transaction not null) {
 consecutive_cnt ++;
 }else{
 next_transaction =
get_transaction_with_highest_temporal_priority();
 consecutive_cnt = 0;
 }
 }else{
 next_transaction =
get_transaction_with_highest_temporal_priority();
 consecutive_cnt = 0;
 }
 prev_master_id = next_transaction_source_id;
 issue next_transaction;
 }
}

 23

We designed LTSP policy based on the observation that multimedia applications, such as

video or audio processing, often involve massive amount of vector and block data access.

These data are often correlated in their access location. Such correlation can be observed in

conjunction with temporal and source locality. Therefore, the type (read or write) of

transactions from the same master are likely the same, and the address of these transactions

are also likely to be sequential in real multimedia application. Hence bundling transactions

from the same source together provides more chances to achieve row-hits, which is relatively

less energy consuming than row-misses. However, issuing multiple consecutive transactions

from the same source increases the latency of transactions from other source. To avoid such

starvation effect, we set a threshold to limit the maximum number of transactions in a group.

Although LTSP is suitable for multimedia applications, it needs additional request source

information, such as the transaction ID tag provided in AXI, to identify a transaction’s source.

Unfortunately, such transaction source information is absent in traditional system bus such as

AHB. Hence, scheduling transaction using transaction source information in multicore

environment has not been possible with traditional bus under shared-link topology.

3.3.3. Second-Level: Command Scheduling
Command scheduling determines which bank can issue commands to DRAM based

command age and type. Before selecting a command to be issued, DRAM status and timing

constraint must be checked first. If the DRAM timing constraint inhibits any regular access

command from being issued, a NOP command would be issued instead. If access commands

are allowed to be issued, the oldest command is selected. However, if there are two

commands with the same age, their command type are considered. We assign the command

type priority as PRECHARGE>ACTIVATE>READ>WRITE. PRECHARGE is given the

highest priority because PRECHARGE should be issued as soon as possible to avoid

 24

increasing the already very long access latency due to a row-miss. Similarly, ACTIVATE is

given the second highest priority because of the same reason. READ is given higher priority

than WRITE to minimize read-write turnarounds. Although there are other possible priority

assignments, their bandwidth utilization is usually inferior to the assignment described here

and the differences are within 3%.

3.4. Simulation Result
To evaluate the performance of a memory controller within a system, we model a

simplified dual core platform system using SystemC [18] with different degrees of

abstraction for different parts. For the AXI bus, each channel is modeled at transaction-level,

whereas the memory controller is modeled at behavior-level. Note that the AXI bus and the

memory controller models are all cycle accurate on the interface ports.

3.4.1. Multimedia Platform Architecture
Fig. 4 illustrates the target platform from the memory controller’s point of view. The

memory controller only connects with the AXI bus and the DRAM. Memory access requests

are sent by the master devices connected to the AXI bus interconnect. The memory model is

AXI Bus Interconnect

CPU DSP Accelerator

Video
Capture

Video
Display

Audio In

Audio
Out

WLAN
3G

Memory
Controler

Off-chip
Data

Memories

Off-chip

On-chip

Off-chip
Instruction
Memories

Inst. Memory
Controler

Fig. 4. The target platform

 25

based on Micron’s MT46V8M16 DDR SDRAM [21]. Note that only data memory is

considered. Instruction memory and access are excluded because instruction memory can

often achieve high bandwidth utilization due to predictable access behavior and pattern.

3.4.2. Videophone Application
The target application adopted in our simulation platform is a video phone application. In

this video phone application, the system must deliver both audio and video communication at

the same time. The system supports 44.1 Khz stereo audio capture/output and audio

compression/decompression. As to video, the system provides 4CIF sized video capture,

compression/ decompression, and display with a frame rate of 30 FPS. Table 1 lists the task

 Table 1 The task, access pattern, bandwidth, and completion time requirement of each master device

Master Task Memory Access Pattern
Bandwidth
Requiremen
t

Timing
Constrain
t

CPU Audio codec
OS

Read bitstream and PCM data
Write bitstream and PCM data
Random reads and writes for OS

16.14MB/se
c 24 ms

DSP Video
decoding

Read bitstream
Read reference macroblock (YUV)
Write reconstructed macroblock
(YUV)
Write reconstructed macroblock
(RGB)
Random reads and writes

72.48
MB/sec 33 ms

Accelerat
or

Video
encoding

Read input macroblock (RGB)
Read reference macroblock (YUV)
Write reconstructed macroblock
(YUV)
Write reconstructed macroblock
(RGB)
Write bitstream

70.94
MB/sec 33 ms

Network Tx/Rx
bitstream

Read bitstream
Write bitstream 2.30 MB/sec 33 ms

Audio In Audio input Write PCM data 8.46 MB/sec 24 ms
Audio
Out Audio output Read PCM data 8.46 MB/sec 24 ms

Video In Video input Write captured video (RGB) 36.86
MB/sec 33 ms

Video Out Video output Read display video (RGB) 36.86
MB/sec 33 ms

Total Video phone N/A 252.5
MB/sec

 26

description, minimal bandwidth requirement, and task completion time constraint of each

master device in the video phone application. These system tasks are arranged in a pipelined

fashion so that inter task dependency is minimized. The minimal memory bandwidth

requirement for target performance is 252.5 MB/sec. If a memory controller can deliver more

bandwidth, more data can be transferred within a second and better system speed can be

achieved.

3.5. Simulation Result
In this section, we evaluate the performance of different memory controllers on our

simulation platform. The memory scheduling policies for comparison are No-Scheduling

Nor-Bank-Interleaving (NSNBI), FIFS with bank-interleaving (FIFS), and LTSP. NSNBI

represents the simplest memory controller without bank-interleaving support. FIFS represents

the most common memory controllers with bank-interleaving support.

We investigated the impact of burst length, bus interface buffer size, and bus arbitration

policy on bandwidth usage, memory power consumption, and memory energy efficiency.

3.5.1. Evaluation Metrics
Table 2 lists the performance evaluation metrics and their physical meaning. The

bandwidth usage (BU) evaluates how much data a memory controller can access within a

second; it also implies shorter effective transaction latency from a system’s point of view.

The memory power consumption evaluates scheduling policy impact on memory’s

power consumption. However, scheduling policy that delivers higher bandwidth usage

may also result in higher power consumption. Hence, we also use the memory energy

efficiency to evaluate how much data a scheduling policy can deliver per unit energy.

With memory energy consumption being the dominant part in a system, higher memory

energy efficiency represents longer battery life and hence longer device operation time.

 27

3.5.2. Burst Length Impact
The effect of bus burst length 2, 4, 8, and 16 on DRAM performance is investigated.

These bus burst length corresponds to memory burst length 4, 8, 16, and 32 on DDR

memories because of the double data rate. The buffer size in both the masters and the

memory controller are 8 entries.

A. Bandwidth Usage (BU)
Fig. 5 shows the bandwidth usage of using LTSP scheduling policies is the highest

among the compared scheduling policies. The bandwidth usage improvements compared with

FIFS can reach up to 19.7% for burst length 2. However, for burst length 8 and 16, the

bandwidth usage of using LTSP scheduling policy is slightly higher than that of FIFS. This is

Table 2 Performance evaluation metrics
Evaluation Metric Description Unit

Bandwidth Usage
The ratio between the total amount of data
transferred and the total time taken to transfer the
data.

MB/sec

Memory Power Consumption The power consumed by DRAM estimated with
Micron’s DRAM power calculator [16]. mW

Memory Energy Efficiency The amount of data that can be accessed for a
given amount of memory energy consumption. KB/mJ

0

100

200

300

400

500

600

700

2 4 8 16

Bus Burst Length (Beats)

B
an

dw
id

th
 U

sa
ge

 (
M

B
/s

)

NSNBI

FIFS

LTSP

0

100

200

300

400

500

600

700

2 4 8 16

Bus Burst Length (Beats)

B
an

dw
id

th
 U

sa
g
e

(M
B

/s
)

NSNBI

FIFS

LTSP

 (a) (b)

Fig. 5. Bandwidth usage of different memory scheduling policies with (a)FP and (b)RR bus arbitration

 28

because long burst length not only reduces the amount of row activation but also hides the

long precharge and activation latency with the long data access time.

B. Memory Power Consumption
Fig. 6 shows that LTSP achieves the second lowest memory power consumption for burst

length longer than 2. For burst length 2, however, LTSP has the highest memory power

consumption. This is mainly due to the fact that the total time taken to transfer all the data

when using LTSP policy is much shorter than others, hence decreasing the denominator in the

power consumption formula. For burst length 4 and 8, at least 22 mW of power consumption

can be reduced compared with burst length 2. However, the memory power consumptions of

burst length 8 are almost the same as the power consumption of burst length 16. In contrast to

LTSP’s second lowest memory power consumption, FIFS has the highest power consumption

for burst length longer than 2. NSNBI can achieve the lowest memory power consumption in

most cases because it performs fewer accesses within unit time than other policies. Note that

the power consumptions are around 500mW and are at least an order larger than the power

consumption of a memory controller itself. Hence, the power consumption overhead of the

memory controller is insignificant compared with that of the memory module, which

dominates the power consumption of a multimedia platform.

0

100

200

300

400

500

600

2 4 8 16

Bus Burst Length (Beats)

M
em

or
y
 P

ow
er

 (
m

W
)

NSNBI

FIFS

LTSP

0

100

200

300

400

500

600

2 4 8 16

Bus Burst Length (Beats)

M
em

or
y

Po
w

er
 (

m
W

)

NSNBI

FIFS

LTSP

(a) (b)
Fig. 6. Power consumption of different memory scheduling policies with (a)FP and (b)RR bus arbitration

 29

C. Memory Energy Efficiency
Fig. 7 shows that LTSP scheduling policy provides the highest energy efficiency in all

cases. The efficiency improvements between LTSP and FIFS are 34.1%~4.0%. The

improvement decreases as the burst length becomes longer due to the same reason why

bandwidth usage saturates.

In summary, LTSP scheduling policy can provide both higher bandwidth utilization and

memory energy efficiency, which is suitable for high performance and high energy efficiency

applications. On the other hand, FIFS is an option to provide fair bandwidth usage when long

burst length is available. However, FIFS has very high memory power consumption

compared with other scheduling policies. Therefore FIFS is recommended for medium

performance applications in which power consumption is less of an issue.

3.5.3. Transaction Buffer Size Impact
This sub section presents the impact of using different transaction buffer size. The buffer

size determines the number of transactions that can be scheduled. We investigate the

scheduling policies used in previous section with buffer size 2, 4, 8, 12, and 16 entries. Each

entry stores a transaction. The bus burst length is set to 4 for all cases.

0

200

400

600

800

1,000

1,200

1,400

2 4 8 16

Bus Burst Length (Beats)

M
em

o
ry

 E
n
er

gy
 E

ff
ic

ie
n
cy

 (
K

B
/m

J)

NSNBI

FIFS

LTSP

0

200

400

600

800

1,000

1,200

1,400

2 4 8 16

Bus Burst Length (Beats)

M
em

o
ry

 E
n
er

g
y
 E

ff
ic

ie
n
cy

 (
K

B
/m

J)

NSNBI

FIFS

LTSP

(a) (b)

Fig. 7. Memory energy efficiency of different memory scheduling policies with (a)FP and (b)RR bus arbitration

 30

A. Bandwidth Usage (BU)
Fig. 8. illustrates the bandwidth utilization using different buffer size. For buffer size 2,

the bandwidth utilizations of LTSP scheduling policy and FIFS are almost the same. For

buffer size 4, the bandwidth utilization of LTSP is at least 6% higher than that of FIFS. In

general, increasing the buffer size increases the bandwidth utilization because larger buffer

size allows more transactions to be scheduled. Moreover, larger buffer size also reduces the

possibility of the buffer being occupied by transactions accessing to only one particular bank.

If all the transactions within the buffer try to access the same bank, only one transaction

scheduler and command translator can be utilized. However, the improvement of bandwidth

usage saturates as buffer size increases over 12. This is because all the transaction schedulers

and command translators are already fully in use and hence scheduling capacity is reached. In

addition, the utilization limit of the memory command bus also limits the maximum number

of access commands that can be issued to DRAM.

B. Memory Power Consumption
Fig. 9. illustrates the memory power consumption using different buffer size. For buffer

size 2, the memory power consumptions of LTSP and FIFS are almost the same. For buffer

size 4, the memory power consumption of LTSP is the highest. However, for buffer size

larger than 4, the memory power consumption of FIFS becomes the highest. For buffer size

0

100

200

300

400

500

600

700

2 4 8 12 16

Buffer Size (Entries)

B
an

d
w

id
th

 U
sa

g
e

(M
B

/s
)

NSNBI

FIFS

LTSP

0

100

200

300

400

500

600

700

2 4 8 12 16

Buffer Size (Entries)

B
an

dw
id

th
 U

sa
g
e

(M
B

/s
)

NSNBI

FIFS

LTSP

(a) (b)
Fig. 8. Bandwidth usage of different buffer size with (a)FP and (b)RR bus arbitration

 31

larger than 4, the power consumptions of LTSP and FIFS decrease gradually as the buffer size

increases.

C. Memory Energy Efficiency
Fig. 10 reveals that the energy efficiency increases as buffer size increases for LTSP

scheduling policy in general. Although there is still energy efficiency improvement between

buffer size 12 and 16 using LTSP, the improvements is only 2.1% due to the saturation effect

explained earlier. The energy efficiency improvement of FIFS has similar trend. However, the

energy efficiency of FIFS is inferior to that of LTSP.

In summary, given that the system bus is adopting packet-based protocol, increasing the

buffer size is an alternative way to increase the bandwidth usage and memory energy

0

100

200

300

400

500

600

2 4 8 12 16

Buffer Size (Entries)

M
em

o
ry

 P
o
w

er
 (

m
W

)

NSNBI

FIFS

LTSP

0

100

200

300

400

500

600

2 4 8 12 16

Buffer Size (Entries)

M
em

or
y

Po
w

er
 (

m
W

)

NSNBI

FIFS

LTSP

(a) (b)
Fig. 9. Memory power consumption of different buffer size with (a)FP and (b)RR bus arbitration

0

200

400

600

800

1,000

1,200

1,400

2 4 8 12 16

Buffer Size (Entries)

M
em

or
y
 E

n
er

gy
 E

ff
ic

ie
n
cy

 (
K

B
/m

J)

NSNBI

FIFS

LTSP

0

200

400

600

800

1,000

1,200

1,400

2 4 8 12 16

Buffer Size (Entreis)

M
em

o
ry

 E
n
er

g
y
 E

ff
ic

ie
nc

y
 (

K
B

/m
J)

NSNBI

FIFS

LTSP

(a) (b)
Fig. 10. Memory energy efficiency of different buffer size with (a)FP and (b)RR bus arbitration

 32

efficiency for memory scheduling policies supporting bank-interleaving. However, the buffer

size should not exceed 12 because of the saturation effect. Although with larger buffer size,

the bandwidth usage of FIFS is only slightly lower than the bandwidth usage of LTSP. LTSP

scheduling policy is still the better choice when memory energy efficiency is also an issue.

From the simulation result, buffer size of 8 or 12 are suggested as the best trade-off on

performance and buffer size.

3.5.4. Bus Arbitration Policy Impact
This sub section discusses the impact of using fixed-priority (FP) or round-robin (RR)

bus arbitration policies on performance.

A. Bandwidth Usage (BU)
The bus arbitration impact on bandwidth usage result in at most 1% difference for LTSP

policy. FIFS is also less sensitive to bus arbitration policy when the buffer size is large

enough; however, for buffer size 2, FIFS achieves higher bandwidth usage in RR than in FP.

In contrast to LTSP being independent of bus arbitration policy, NSNBI has 25%~ 7% higher

bandwidth usages in RR bus arbitration than in FP bus arbitration. This is because RR bus

arbitration would result in higher access locality than FP bus arbitration would. If FP bus

arbitration is used with longer burst, a row which was previously accessed by another device

with higher bus arbitration priority would be re-opened. As a result, the access pattern would

jump back and forth from one memory row to another from time to time. In contrast, RR bus

arbitration has higher chances to group accesses from different devices together. Thus result

in more row-hits and fewer row re-openings.

B. Memory Power Consumption
In both bus arbitration policies, the power consumptions of using LTSP are almost the

same. This is due to the fact LTSP can reorder the transactions and is thus independent of

which bus arbitration is being used. For NSNBI, the power consumption in FP bus arbitration

 33

is at least 60 mW lower than that in RR bus arbitration. This is because NSNBI can achieve

more accesses in RR bus arbitration than in FP bus arbitration as explained earlier.

C. Memory Energy Efficiency
The impact of bus arbitration policy is insignificant when using LTSP scheduling policy;

the energy efficiency in FP bus arbitration is only 0.8%~1.7% higher than the energy

efficiency in RR bus arbitration.

LTSP scheduling policy is relatively independent of which bus arbitration policy is being

used. This allows system designer to exploit bus arbitration policy without having to take the

memory’s scheduling policy into account.

3.6. AXI Memory Controller Architecture
Fig. 11 illustrates the proposed memory controller. The AXI slave interface is the first

stage of the memory controller; it handles the communication between the memory controller

and the AXI system bus. The AXI bus has multiple channels that enable transferring read and

write transactions at the same time. In addition, each channel has a transaction ID bus to

enable out-of-order data transfer. The transaction ID is also used inside our memory

controller to identify the source of a transaction.

AXI
Slave

Interface

WR Channel

RA Channel

WA Channel

WD Channel

RD Channel

DRAM
Command &

Address

DRAM
Data

Input & Output
Buffer

Transaction
Scheduler

Command
Translator

Command
Controller

Transaction
Local Buffer

Bank
Controller

Command
Scheduler

Control FSM

Read &
Write Unit

Transaction
Local Buffer

Bank
Controller

Transaction
Local Buffer

Bank
Controller

Transaction
Local Buffer

Bank
Controller

Transaction
Reorder Unit

Transaction
Issue Unit

Transaction
Reorder Unit

Transaction
Issue Unit

Transaction
Reorder Unit

Transaction
Issue Unit

Transaction
Reorder Unit

Transaction
Issue Unit

Transaction
Dispatcher

Input Address
Buffer

Input Data
Buffer

Output
Response

Queue

Output Data
Queue

Bank 0

Bank 1

Bank 2

Bank 3

Fig. 11. Architecture of the AXI-compatible memory controller with the two-level
scheduling policy

 34

Once a transaction is received from the bus, the transaction would be stored in the input

buffer and queued before being issued to transaction scheduling. If a transaction has

finished its access, this transaction is discarded from the buffer and queue. The input

transactions from input buffer are reordered by transaction reorder units according to the

policies mentioned earlier. Each transaction reorder and issue unit corresponds to a DRAM

bank. After a transaction has been reordered and sent to a local transaction buffer, this

transaction would then be translated into DRAM commands based on the status of the bank

to be accessed. Each bank’s status is tracked by one bank controller.

Finally, the translated input commands are scheduled by a command controller. The

command controller determines which command can be issued to DRAM based on the

aforementioned priority assignment and DRAM timing constraints. If a transaction’s write

data has been written or read data has been retrieved, the write response or read data are sent

back to the output buffer and response queue.

The synthesized gate count of the proposed memory controller using UMC 0.18μm

technology is 47.6K. The memory controller is clocked at 166 MHz and has 32-bit data port.

3.7. Summary
We proposed a packet-based bus compatible memory controller with two-level

scheduling scheme. By facilitating the flexibility and additional transaction source

information available in packet-based bus protocol, the proposed memory controller can

achieve relatively higher bandwidth usage and memory energy efficiency. In addition, the

proposed LTSP transaction scheduling policy is independent of which bus arbitration is being

used. The simulation result which includes the bus arbitration impact shows that the proposed

two-level scheduling policy improves bandwidth usage and memory energy efficiency by up

to 19.4% and 34.1% respectively.

 35

 36

Chapter 4 AXI Shared-link Bus
4.1. System Bus' Role in a System

With the rapid progress of system-on-a-chip (SOC) and massive data movement

requirement, on-chip system bus has become the central role in determining the performance

of a SOC. Two types of on-chip bus have been widely used in current designs, which are

pipelined-based and packet-based bus.

For pipelined-based buses, such as ARM’s AMBA 2.0 AHB [23], IBM’s CoreConnect

[24], and OpenCore’s WishBone [25], the cost and complexity to bridge the communications

among on-chip designs are low. However, pipeline-based bus suffers from bus contention and

inherent blocking characteristics due to the protocol. The contention issue can be alleviated

by adopting multilayer bus structure [26] or using proper arbitration policies [27][28].

However, the blocking characteristic, which allows a transfer to complete only if the previous

transfer has completed, cannot be altered without changing the bus protocol. This blocking

characteristic reduces the bus bandwidth utilization when accessing long latency devices,

such as an external memory controller.

To cope with the issues of pipelined-based buses, packet-based buses such as ARM

AMBA 3.0 AXI [29], OCP-IP’s Open Core Protocol (OCP) [30], and STMicroelectronics

STBus [31] have been proposed to support outstanding transfer and out-of-order transfer

completion. We will focus on AXI here because of its popularity. AXI bus possesses multiple

independent channels to support multiple simultaneous address and data streams. Besides,

AXI also supports improved burst operation, register slicing with registered input, and

secured transfer.

 37

Despite the above features, AXI requires high cost and possesses long transaction

handshaking latency. However, a shared-link AXI interconnect can provide good

performance while requiring less than half of the hardware required by a crossbar AXI

implementation. This work focused on the performance analysis of a shared-link AXI. The

handshaking latency is at least two cycles if the interface or interconnect are designed with

registered input. This would limit the bandwidth utilization to less than 50%. To reduce the

handshaking latency, we proposed a hybrid data locked transfer mode. Unlike the lock

transfer in [32] which requires arbitration lock over transactions, our data locked mode is

based on a transfer-level arbitration scheme and allows bus ownership to change between

transactions. This gives more flexibility to arbitration policy selection.

With the additional features of AXI, new factors that affect the bus performance are also

introduced. The first factor is the arbitration combination. The multi-channel architecture

allows different and independent arbitration policies to be adopted by each channel. However,

Existing AXI related works often assumed a unified arbitration policy where each channel

adopts the same arbitration policy [32][33][34]. Another key factor is the interface buffer size.

A larger interface buffer usually implies more out-of-order transactions can be handled. The

third factor is the task access setting, which defines how the transfer modes should be used by

the devices within a system. Proper task access settings can yield better performance.

However, the proper setting may be different under different circumstances, such as different

buffer sizes.

Being aware of the performance factors mentioned above, we conducted a detailed

simulation-based analysis on the performance impact of the factors. The analysis is carried

out by simulating a multi-core platform with a shared-link AXI backbone running a video

phone application. The performance is evaluated in terms of bandwidth utilization, average

transaction latency, and system task completion time. In addition to the analysis on the

 38

performance impact of the aforementioned factors, the performance of a corresponding

5-layer AHB-lite bus, which has a cost comparable to a 5-channel shared-link AXI, is also

included for comparison.

The rest of the chapter is organized as follows. Section 4.2 presents the proposed transfer

modes and the corresponding arbitration framework. Section 4.3 presents the simulation

platform and evaluation metrics for performance comparison. The comparison of the

simulation result is available in Section 4.4. Finally, Section 4.5 concludes this work.

4.2. Proposed AXI Scheme
4.2.1. Transfer Modes
A. Normal

This mode is the basic transfer mode in an AXI bus with registered interface. In the first

cycle of a transfer using normal mode, initiator sets the valid signal high and sends it to the

target. In the second cycle, the target receives the high valid signal and sets the ready signal

high for one cycle in response. Once the initiator receives the high ready signal, the initiator

resets the valid signal low and this transfer is completed. As a result, at least two cycles are

needed to complete a transfer in an AXI bus with registered interface. Fig. 12 illustrates the

transfer of two normal transactions with a data burst length of four. It takes 16 bus cycles to

complete the eight data transfer in the two transactions. This means 50% of the bus available

bandwidth is wasted.

 39

B. Interleaved Mode
The interleaved mode [32][42] hides transfer latency by allowing two transactions from

different initiators to be transferred in an interleaved manner. Fig. 13 illustrates the transfer of

the two transactions mentioned earlier using interleaved transfer mode. The one cycle latency

introduced in the normal mode for request B is hidden by the transfer of request A. Similarly,

the interleaved transfer mode can also be applied to data channels. As a result, transferring

the data of the two transactions only takes 9 cycles.

To support the interleaved mode, only the bus interconnect needs additional hardware.

No additional hardware in device interface or modification on bus protocol is required. Hence,

an AXI interconnect that supports the interleaved mode can be used with standard AXI

device.

M0 AWADDR

M0 WDATA

A

Data0(A)

M1 AWADDR

M1 WDATA

B

Data0(B)

M0 AWREADY

M1 AWREADY

M0 WREADY

M1 WREADY

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Data1(A) Data2(A) Data3(A)

Data1(B) Data2(B) Data3(B)

T11 T12 T13 T14 T15 T16 T17 T18

Fig. 12. Normal mode transfer example

Data1(B)

M0 AWADDR

M0 WDATA

A

Data0(A)

M1 AWADDR

M1 WDATA

B

Data0(B)

M0 AWREADY

M1 AWREADY

M0 WREADY

M1 WREADY

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Data1(A) Data2(A) Data3(A)

Data2(B) Data3(B)

T11

Fig. 13. Interleaved mode transfer example

 40

C. Proposed Data Locked Mode
Although the interleaved mode can increase bandwidth utilization when more than one

initiator is using the bus, the interleaved mode can not be enabled when only one standalone

initiator is using the bus. To handle this, we proposed the data locked mode. In contrast to the

locked transfer implemented in [33] that can only perform when the bus ownership is locked

across consecutive transactions, the proposed data locked mode locks the ownership of the

bus only within the period of burst data transfers. During the burst data transfer period, the

ready signal is tied high and hence the handshaking process is bypassed. Unlike the

interleaved mode, which can be applied to both request and data channels, the proposed data

locked mode only supports burst data transfer.

Fig. 14 illustrates an example of two transactions using data locked mode to transfer data.

Device M0 sends a data locked request A and device M1 sends a data locked request B. Once

the bus interconnect accepted request A, the bus interconnect records the transaction ID of

request A. When a data transfer with the matched ID appears in the data channel, the bus

interconnect uses data locked mode to transfer the data continuously. For a transaction with a

data burst of n, the data transfer latency is n+1 cycles.

There are two approaches to signal the bus interconnect to use the data locked mode for a

transaction. One is using ARLOCK/AWLOCK signal in the address channels to signal the

bus of an incoming transaction using data locked transfer. However, doing so requires

modifying the protocol definition of these signals and the bus interface. To avoid modifying

Data2(B)Data0(B) Data1(B)

Data2(A) Data3(A)

M0 AWADDR

M0 WDATA

A (Data locked)

Data0(A) Data1(A)

M1 AWADDR

M1 WDATA

B (Data locked)

M0 AWREADY

M1 AWREADY

M0 WREADY

M1 WREADY

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Data3(B)

T12

Fig. 14. Data locked mode transfer example

 41

the protocol, the other approach is to assign the devices that can use the data locked mode in

advance. The overhead of this approach is that the bus interconnect must provide mechanisms

to configure the device transfer mode mapping. Note that these two approaches can be used

together without conflict.

To support the proposed data locked mode, the bus interconnect needs an additional

buffer, called data locked mode buffer, to keep record of the transactions using the data

locked mode. Each entry in the buffer stores one transaction ID. If all the entries in the data

locked mode buffer are in use, no more transaction can be transferred using the data locked

mode.

D. Proposed Hybrid Data Locked Mode
The hybrid data locked mode is proposed to allow additional data locked mode

transaction requests to be transferred using the normal or interleaved mode when the data

locked mode buffer is full. This allows more transactions to be available to the scheduler of

the devices that support transaction scheduling. With the additional transactions, the

scheduler of such devices may achieve better scheduling result.

However, only a limited number of additional transactions using the data locked mode

can be transferred using the normal or interleaved mode. This avoids bandwidth-hungry

devices from occupying the bus with too many transactions. A hybrid mode counter is

included to count the number of additional transactions transferred. If the counter value

reaches the preset threshold, no more data locked mode transactions can be transferred using

the normal or interleaved mode until the data locked mode buffer becomes not full again.

Once the data locked mode buffer is not full, the hybrid mode counter is reset.

4.2.2. Arbitration Scheme

With the introduction of the multi-channel architecture and the proposed transfer modes,

traditional arbitration framework that was based on single-channel architecture must be

 42

revamped. Therefore, we propose an arbitration framework that supports different arbitration

flows for address channels and data channels. In contrast to existing works which used

unified arbitration, each independent channel in the proposed arbitration framework is

allowed to have its own arbitration policy. This framework allows different arbitration

policies to be combined together in a simple plug-and-play manner.

Fig. 15 (a) illustrates the arbitration flow for address channels. Upon receiving multiple

data locked mode transaction requests from different initiators, the arbitration flow first

checks if the data locked mode buffer is full or not. If there is an available empty entry in the

Any data locked
mode transaction

requesting?

Is data locked
mode buffer NOT full?

Address Channel Arbitration
for

Data Locked Mode
Transactions only

Address Channel Arbitration for
Normal & Interleaved Mode

Transactions

Hybrid mode
counter = threshold ?

Yes

Yes

No

No

Treat data locked mode
transactions as

normal mode transactions

Upon receiving
transaction requests

Yes

No

(a) address channel arbitration

Bus available for
new data transfer?

Upon receiving
transaction data valid

Yes

No

Any data locked
mode transaction ?

Yes

No

Data Channel Arbitration for
Data Locked Mode Transactions

only

Data Channel Arbitration for
Normal & Interleaved Mode

Transactions only

Give no grant,
wait for a cycle.

(b) data channel arbitration

Fig. 15. Arbitration framework for a share-link AXI bus

 43

data locked mode buffer, the data locked mode transaction requests are arbitrated according

to the arbitration policy adopted for the address channel. If the data locked mode buffer is full

and the hybrid mode counter has not reached the threshold, all data locked mode transaction

requests are treated as normal and interleaved mode transaction requests. As a result, all

transaction requests are arbitrated together according to the adopted arbitration policy. On the

other hand, if the hybrid mode counter has already reached the threshold, only the original

normal and interleaved mode transaction requests are arbitrated. This arbitration flow gives

higher priority to data locked mode transactions than normal or interleaved mode

transactions.

Fig. 15 (b) illustrates the arbitration flow for data channels. The arbitration flow first

checks if there is already a transaction transferring data using the data locked mode. If there

is already a transaction transferring data using the data locked mode, no other transaction

would be granted. If no transaction is transferring, data locked mode transactions would be

arbitrated according to the arbitration policy adopted by the data channel. If there is no data

locked mode transaction requesting to transfer data, normal and interleaved mode

transactions are arbitrated.

The reason for giving higher priority to the transactions using the data locked mode is

that these transactions are often latency sensitive. To minimize the latency of these

transactions, the transactions must be transferred using the data locked mode and given the

highest arbitration priority.

4.3. Simulation Setup
To properly evaluate the performance of the proposed transfer modes and arbitration

framework on a shared-link AXI bus, we built a high-level model of a simplified multi-core

platform system using SystemC [45]. The simulation accuracy of this model depends on

modeling methodology, platform architecture authenticity, and application traffics accuracy.

 44

The bus and components in the platform were modeled using transaction-level and

behavior-level modeling method respectively. Transaction-level modeling uses a transaction

instead of a cycle as the basic simulation unit. Since a transaction takes a fixed number of

cycles to complete in each channel, transaction-level modeling ensures bus cycle accuracy in

our simulations. More detail on transaction-level modeling can be found in [37]. To pursue

platform architecture authenticity, the multi-core platform model was built based on a real

multi-core platform [46]. The real platform has been verified with portable media player and

smartphone applications. This ensures the simulation result from our platform model to be

practical. The application traffics were derived based on the behavior and algorithm of the

platform components to ensure traffics accuracy. The details of the platform architecture and

bus traffics are provided in the following subsections.

4.3.1. Multimedia Platform Architecture
Fig. 16 illustrates the target platform from the system bus point of view. Note that

when the platform is used for AHB simulation, the bus interconnect is replaced with a

5-layer AHB-lite interconnect with each master port having one dedicated AHB-lite bus.

Since we only focus on the transaction behavior on the bus, the devices are modeled to

only exhibit transaction behavior and pattern. However, the CPU does generate

transactions related to interrupt service routines (ISR) upon receiving an interrupt request

(IRQ). In addition, the DMA controller is also programmed to carry out different data

moving tasks to mimic the behavior of its real counterpart. Including such more detailed

behavior enables us to include the inter task dependency between devices. Note that the

memory controller has two slave ports to allow more transactions to be seen by the

scheduler of the memory controller. Among all the devices, the memory controller is the

only one with access latency ranging from 0 to 16 cycles.

 45

The AXI bus is clocked at 40MHz with both the address and data widths being 32-bit

wide. This would yield an ideal total bandwidth of 320 MB/sec with the read and write

bandwidths being 160 MB/sec each.

4.3.2. Video Phone Scenario
We have selected the video phone application for analysis because it covers a variety of

devices and traffics that are common in most multimedia consumer electronic products. The

bandwidth requirement of the video phone application is heavier than other applications such

as portable media player, video recording, MP3 player, and regular phone service. This heavy

bandwidth requirement also makes the video phone application a perfect application to test

the performance limit of a bus.

MPU(M0)
MPU

M

DSP(M1)
DSP

M

SMI SRAM
(S5)

 DMAC(M3, M4) (S4)

VI VO

AI AO

COMM

M SM

VIC(S6)

S

AI(S7)
S

VI(S0)
S

VO(S1)
S

COMM(S9)
S

AO(S8)
S

MemCtrl
(S2)(S10)

S

VideoEnc(M2) (S3)
VE

M S

AXI bus

IRQ

S

VI_ISR

VO_ISR

AO_ISR

AI_ISR

COMM
_ISR

VE_ISR

S

(a)

MPU AHB lite

MPU(M0)
MPU

M

DSP(M1)
DSP

M

SMI SRAM

 DMAC(M3, M4) (S4)

VI VO

AI AO

COMM

M SM

VIC

S

AI
S

VI
S

VO
S

COMM
S

AO
S

MemCtrl
S

VideoEnc(M2) (S3)
VE

M S

IRQ

S

VI_ISR

VO_ISR

AO_ISR

AI_ISR

COMM
_ISR

VE_ISR

S S S SS SS SS

DSP AHB-lite

VE AHB-lite

DMAC1 AHB-lite

DMAC2 AHB-lite

(b)
Fig. 16. Block diagram of the target platform using (a)AXI,
(b) AHB-lite

 46

In the video phone application, the system must deliver both audio and video

communication at the same time. The system supports 44.1 KHz stereo audio capture/output

and audio compression/decompression. As to video, the system provides VGA sized video

capture, compression, decompression, and display with a target frame rate of 30 FPS. Table 3

lists the task description, bandwidth requirement, and task completion time constraint of each

master device in the video phone application. Although more devices may be included in a

system, the bus traffic is usually dominated by the master devices listed in Table 3. The total

bus bandwidth requirement is 247.8 MB/sec, which occupies 77.5% of the 320 MB/sec

available bus bandwidth. If the bus can achieve a bandwidth utilization higher than 77.5%, all

the system tasks are more likely to complete within the specified timing constraints.

4.3.3. Evaluation Metrics
The definition and physical meaning of the evaluation metrics are explained as follows.

Table 3 Port task description and bandwidth requirement

Master
Port Task

Required
Read BW
(MB/sec)

Required
Write BW
(MB/sec)

Total
Required
BW
(MB/sec)

Audio codec 1.467 1.467 2.934

OS routine 0.001 0.001 0.002

Total ISR 0.172 0.493 2.935
MPU

Total Bandwidth
Requirement 1.640 1.961 3.601

DSP Video decode 14.836 42.473 57.309

Video
Encoder Video encode 59.927 14.255 74.182

Video in to MEM 27.927 27.927 55.855

Audio in to
MEM 0.176 0.176 0.353

3G
communication 0.132 0.132 0.265

DMAC0

Total Bandwidth
Requirement 28.236 28.236 56.472

MEM to video
out 27.927 27.927 55.855

MEM to audio
out 0.176 0.176 0.353 DMAC1

Total Bandwidth
Requirement 28.104 28.104 56.208

System Total Bandwidth
Requirement 132.743 115.028 247.771

 47

A. Bandwidth Utilization (BWU)
The bandwidth utilization (BWU) is defined as the percentage of available ideal bus

bandwidth being used to actually transfer data, i.e.

%100×=
ideal

used

B
BBWU , (1)

where Bused and Bideal are the actually used bandwidth and available ideal bandwidth

respectively. A higher BWU implies more data can be transferred within a period of time. It

also implies shorter effective transaction latency from the system’s point of view.

B. Transaction Latency
The transaction latency we used is defined as the average of read and write transaction

latencies. The latency of a read or write transaction is measured from the time a transaction

request is sent from a master till the time the read data or write response is returned to the

master. The average transaction latency, denoted as TL, can be defined as

writeread

writeread

NN
TLTL

TL
+
+

= ∑∑ , (2)

where ∑TLread and ∑TLwrite are the sums of all read and write transaction latencies

respectively. Nread and Nwrite are the total number of read and write transactions respectively.

In contrast to the bandwidth, which increases as more data can be transferred, the transaction

latency may remain the same even if the bandwidth utilization has been increased.

C. System Task Completion Time
The system task completion time is defined as the time when all tasks in the video phone

application have been completed. We believe it is crucial to minimize the system task

completion time so that the task-level timing constraint can be met. In the video phone

application, all tasks must be done within 33 ms, otherwise we say the system violates the

real-time constraint.

 48

4.4. Experiment Result
4.4.1. AXI Interface Buffer Size and Bus Arbitration

Impact
The effect of the bus interface buffer size and the combination of arbitration policies are

investigated first. The investigated buffer sizes are 1, 2, 4, 8, and 16. Each entry keeps the

record of a transaction. Table 4 lists the abbreviations of the investigated arbitration policy

combinations. The weighting parameter, which is slots in the TDMA and tickets in the

Table 4 Combinations of arbitration policies
Arbitration policy of channels
Combination
Name

Address
channel

Data channel Write response
channel

FF Fixed priority Fixed priority Round-Robin

FT Fixed priority TDMA Round-Robin

FR Fixed priority Round-Robin Round-Robin

FL Fixed priority Lottery Round-Robin

TF TDMA Fixed priority Round-Robin

TT TDMA TDMA Round-Robin

TR TDMA Round-Robin Round-Robin

TL TDMA Lottery Round-Robin

RF Round-Robin Fixed priority Round-Robin

RT Round-Robin TDMA Round-Robin

RR Round-Robin Round-Robin Round-Robin

RL Round-Robin Lottery Round-Robin

LF Lottery Fixed priority Round-Robin

LT Lottery TDMA Round-Robin

LR Lottery Round-Robin Round-Robin

LL Lottery Lottery Round-Robin

Table 5 Weight allocation of TDMA and Lottery arbitration schemes
Channel Slots/Tickets of each initiator port

CPU DSP Video Enc. DMAC0 DMAC1 Read
Address 4 8 24 24 24

CPU DSP Video Enc. DMAC0 DMAC1 Write
Address 4 24 8 24 24

Video In Mem. Ctrl. 0 Mem. Ctrl. 1 Others Read
Data 8 24 16 4

CPU DSP Video Enc. DMAC0 DMAC1 Write
Data 4 24 8 24 24

 49

Lottery, are tuned to match the bandwidth requirement of the video phone application. Table 5

lists the detail weight parameter of each channel. Since write response channel does not

require high bandwidth, round-robin arbitration is selected for write response channel due to

its fairness. Note that in this experiment, only the normal and the interleaved modes are used.

 50

Fig. 17 shows the bandwidth utilization, average transaction latency, and completion time

respectively. In general, the bandwidth utilization increased as the interface buffer size

increased. However, the bandwidth utilization stopped increasing when the buffer size is

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16

Interface buffer size (entry)

B
an

dw
id

th
 u

til
iz

at
io

n
FF FT FR FL
TF TT TR TL
RF RT RR RL
LF LT LR LL

(a) Bandwidth utilization

0

50

100

150

200

250

300

350

1 2 4 8 16

Interface buffer size (entry)

La
te

nc
y

(c
yc

le
)

FF FT FR FL TF TT TR TL
RF RT RR RL LF LT LR LL

(b) Average transaction latency

0

11

22

33

44

55

1 2 4 8 16

Interface buffer size (entry)

C
om

pl
et

io
n

tim
e

(m
s)

FF FT FR FL TF TT TR TL

RF RT RR RL LF LT LR LL

(c) System task completion time
Fig. 17. Performance of different interface buffer size and
arbitration policy combinations

 51

greater than 8 because of the required bandwidth limit. The average transaction latency is also

proportional to the interface buffer size. This is because with a larger buffer, a transaction

would spend more time pending in the interface buffer before this transaction finishes

transferring data. In contrast, the completion time decreases as the buffer size increases.

It is interesting that the transaction latency did not reflect the result in bandwidth

utilization. This is because the outstanding and out-of-order transfer capabilities, which are

related to the buffer size, allow multiple transactions to be transferred on the bus in an

overlapped manner. As a result, the latency of a transaction becomes longer, but the transfers

on the bus can be arranged in a more compact way. This is one of the characteristics in a

packet-based bus that is different from a traditional pipeline-based bus.

For the arbitration policy, the impact on the performance was not significant when the

buffer size is 1 and 2. After the buffer size becomes larger than 2, the combinations with data

channels using fixed-priority, such as FF, TF, RF, and LF, usually achieved lower bandwidth

utilization than other combinations. On the other hand, the combinations with data channels

using TDMA, such as FT, TT, RT, and LT, usually achieved the highest bandwidth utilization.

Similar trend is also observed in the execution time. However, this trend is weak in the

transaction latency, which doest not reflect the result of the bandwidth utilization.

The completion time comparison shows that when TDMA is used for data channel, the 33

ms timing constraint can be satisfied in buffer size 8 and 16. On the other hand, no arbitration

policy combination satisfied the 33 ms timing constraint with the buffer size smaller than 8

In summary, bandwidth and completion time improved sub-linearly as the interface

buffer size increased. However, the buffer size increase also increased transaction latency

near linearly. When smaller interface buffer is used, the arbitration combination had less

impact on performance. On the other hand, for larger buffer size, the best arbitration

combination could yield up to 23.3 % performance gain over the worst arbitration

 52

combination. The result suggests that using a fair arbitration policy on data channels should

be more promising. For address channels, a simpler arbitration policy is good enough because

address channel arbitration had less impact on bus performance.

4.4.2. Task Access Setting Impact
This subsection finds out how the hybrid data locked mode should be used and shows the

performance impact delivered by using the hybrid data locked mode. A task access setting

defines how the transfer modes should be used by the devices in a system. Table 6 lists the

four settings investigated here. In which, the memory device is singled out because it is the

only device with non-zero access latency. All other devices have zero access latency and

hence are treated the same. Note that the results here are the average over all 16 arbitration

policy combinations. The buffer size of data locked mode and hybrid counter threshold are

both set to one.

Table 6 Task access settings
Settings Memory Access Tasks Other Tasks
NN Normal & Interleaved Normal & Interleaved
HN Hybrid Normal & Interleaved
NH Normal & Interleaved Hybrid
HH Hybrid Hybrid

 53

Fig. 18 shows the average bandwidth utilizations, average transaction latency, and

completion time of different task access settings. In general, HN setting achieved the highest

bandwidth utilization among all the task access settings except in buffer size 16. This is

because when the buffer size is 16, the bandwidth utilization of NN, HN, and NH settings is

already high enough to handle all the data transfer. If the buffer size is small, the use of the

hybrid data locked mode could reduce the completion time by up to 26.8% compared with

NN. Although HN achieved the highest performance in most cases, HH achieved the highest

40%

45%

50%

55%

60%

65%

70%

75%

80%

1 2 4 8 16

Interface buffer size (entry)

B
an

dw
id

th
 u

til
iz

at
io

n

NN HN NH HH

(a) Bandwidth utilization

0

50

100

150

200

250

300

350

1 2 4 8 16

Interface buffer size (entry)

La
te

nc
y

(c
yc

le
)

NN HN NH HH

(b) Average transaction latency

0

11

22

33

44

55

66

1 2 4 8 16

Interface buffer size (entry)

C
om

pl
et

io
n

tim
e

(m
s)

NN HN NH HH

(c) System task completion time

Fig. 18. Performance of different task access settings and interface buffer
size

 54

bandwidth utilization in buffer size 1 because no out-of-order transfer can be carried out with

the interface buffer having only 1 entry. Consequently, HH took shorter time to transfer a

transaction and less bandwidth would be wasted. In contrast to HH’s highest bandwidth

utilization in buffer size 1, HH setting achieved the lowest bandwidth utilization when the

buffer size is larger than 2. This is because HH had less opportunity to enable interleaved

transfer mode on normal transactions when the interface buffer size increases. Unlike the

result in the bandwidth utilization, HH setting achieved the shortest average transaction

latency among the four settings. The transaction latency of HH did not increase significantly

as the buffer size increased. On the other hand, NN had the expected longest average

transaction latency. The trend in completion time matches the trend in bandwidth utilization

in general. HN setting achieved the shortest completion time and met the 33ms timing

constraint with buffer size larger than 4.

In summary, HN was the best task access setting in most cases in terms of bandwidth

utilization and completion time. This suggests the hybrid data locked mode would best to be

used by long access latency devices, but not by zero access latency devices. From the

transaction latency perspective, HH achieved the shortest transaction latency. This suggests

that processors or devices that require short latency should use the hybrid mode.

4.4.3. Single-Layer Shared-link AXI vs. 5-Layer AHB-lite
This subsection compares the performance between a share-link 5-channel AXI

interconnect and a cost equivalent 5-layer AHB-lite interconnect. The 5-layer AHB-lite

interconnect is capable of providing a maximum bandwidth of 800 MB/sec. We used two

task access settings for the AXI case, one is NN setting and the other is HN setting. The

interface buffer sizes we investigated are 1 and 8. Since the interface buffer size has no effect

in AHB, only the result of buffer size 1 is available for AHB.

 55

Fig. 19 compares the bandwidth utilization, average transaction latency, and completion

time of the AHB and AXI platforms. The bandwidth utilization of shared-link AXI is

significantly higher than that of AHB. If the interface buffer size is 8, the bandwidth

utilization of AXI outperformed AHB by at least 58.3%. However, AXI’s transaction latency

can reach up to 4.7 times of AHB’s in buffer size 8. The completion time comparison shows

that despite the long latency in AXI, the completion time in AXI reduced up to 44.2% when

17.4%

45.9%

75.7%

58.5%

77.7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 8

Interface buffer size (entry)

B
an

dw
id

th
 u

til
iz

at
io

n

AHB AXI NN AXI HN

(a) Bandwidth utilization

36.4 38.6

173.0

33.1

135.9

0
20
40
60
80

100
120
140
160
180
200

1 8

Interface buffer size (entry)

La
te

nc
y

(c
yc

le
)

AHB AXI NN AXI HN

(b) Average transaction latency

58.81
55.11

33.41

43.46

32.82

0

11

22

33

44

55

66

1 8

Interface buffer size (entry)

C
om

pl
et

io
n

tim
e

(m
s)

AHB AXI NN AXI HN

(c) System task completion time

Fig. 19. Performance of 5-layer AHB-lite and single-layer
shared-link AXI

 56

compared with AHB.

The result shows that a single share-link AXI outperforms a 5-layer AHB-lite

interconnect in the videophone case study. Given that the hardware cost of a 5-layer AHB-lite

interconnect is comparable to a shared-link AXI interconnect, using a shared-link AXI

interconnect may be more efficient than using a multi-layer AHB interconnect.

4.5. Summary
The analysis in this work provides some insights for multimedia system design involving

a shared-link AXI interconnect. If the buffer cost and transaction latency are not the primary

concerns, system designers can consider using larger interface buffer to take the full

advantage of out-of-order and outstanding transfer capabilities. However, some care must be

taken in selecting a proper arbitration combination when using a channel-independent

arbitration framework, especially when the interface buffer is large. The analysis showed that

the arbitration combination could affect bus performance by up to 23.2 %. Moreover, the

arbitration combination that yields the best system performance may vary depending on the

interface buffer size, task access setting, and application traffic characteristic. In general,

using a fair arbitration policy such as the TDMA is preferred for data channels. As to address

channels, system designers can select a simpler arbitration policy to reduce the cost since the

address channel arbitration has less impact on system performance. On the other hand, if the

buffer cost and transaction latency do matter, system designers can use the hybrid data locked

mode to achieve a performance similar to the case that uses only the interleaved mode, but

with only half the interface buffer size. When the hybrid data locked mode is adopted for only

long access latency devices, the simulation showed up to 21.1% completion time and 14.3%

transaction latency reduction with respect to the setting without the hybrid data locked mode.

With the short transaction latency, system designers can also consider adopting the hybrid

 57

data locked mode for latency-sensitive devices, such as CPUs, to reduce transaction latency.

Although the analysis was conducted using AXI, we believe the experience can be extended

and applied to other shared-link packet-based bus as well.

 58

Chapter 5 Bandwidth Reduction
Techniques in Computation Cores

5.1. Bandwidth Reduction Methods
Bandwidth requirement can be reduced in two major ways. The first way is to take the

advantage of data characteristics. Some video or vision algorithms access data according to

input data and intermediate data. These input and intermediate data often exhibit special

patterns that can be used to reduce the number of data access. Take motion compensation for

instance, its data access address is determined by motion vectors and macroblock types.

Facilitating the motion vector and macroblock type characteristics can effectively reduce the

bandwidth requirement. Another example is Meanshift filtering, the data to be accessed is

determined by Meanshift vectors. However, the characteristic of the Meanshift vector

magnitude can also be facilitated to reduce bandwidth requirement. The details of the

bandwidth reduction methods adopted in these two examples are described in the following

two subsections.

The other way to reduce bandwidth requirement is to reuse data based on an algorithm’s

data access spatial and temporal locality. By paying the price of extra small buffers, the

bandwidth requirement can be greatly reduced. This dissertation took stereo matching to

demonstrate how data reuse can be used to significantly reduce the bandwidth requirement.

The detail of the stereo matching case is presented in subsection 5.4.

 59

5.2. CFMMC
5.2.1. Motion Compensation's Role in a Video Decoder

System
Over the past two decades, the development of the video coding standard has been

undergoing great progress. Even though the latest video coding standard provides much

better compression performance as well as extra functionalities, all video coding standards

are still consist of motion compensation, transform, and entropy coding. Among these

common video coding tasks, motion compensation interacts with the frame memory most,

and is often the bottleneck of the speed, area, and energy in a video decoder. The operation in

motion compensation can be regarded as to copy the predicted macroblock (MB) from the

reference frame first, and then add the predicted MB with the residual MB to reconstruct the

MB in the current frame. This operation involves extensive amount of frame memory access.

Consequently, the bandwidth to the frame memory would become a performance bottleneck.

On the other hand, the frame memory access is also the dominating part in the energy

consumption of a video decoder. In addition, the requirement of storing the great amount of

the reference frame data and the reconstructed current frame data results in a frame memory

which would occupy most of the silicon area in motion compensation. Therefore, the

optimization of the frame memory architecture is of great significance in reducing the

bandwidth requirement, cost, and energy consumption of motion compensation.

The most common frame memory architecture for video coding without bidirectional

prediction is the ping-pong frame memory (PPFM), which stores the reconstructed current

frame and the reference frame in two memories. The PPFM swaps the role of the

reconstructed current frame memory and the reference frame memory upon the completion of

each frame’s motion compensation. Hence, the reconstructed current frame memory of a

 60

previous frame (t-1) would become the reference frame memory of a current frame (t). As a

result, the PPFM requires a memory size of two frames, which is a considerable amount. In

addition, the read and write accesses to the frame memory result in high bandwidth

requirement. Furthermore, the energy consumption due to accessing the large sized memories

often accounts for approximately half of the energy in a video decoder [47].

Motivated by the fact that the PPFM is very bandwidth hungry, area costly, and energy

consuming, this paper proposes to use the statistical characteristics found from the video data

to reduce the bandwidth, area, and energy consumption. We noticed that from the statistical

analysis on various test sequences, the percentage of MBs with zero motion vector and no

residue in a P-frame ranges from 7%~96%. Essentially, this type of MB is identical in the

reference frame and the reconstructed current frame. By using this characteristic, this paper

proposes the combined frame memory (CFM) architecture, which combines the reconstructed

current frame memory and the reference frame memory into one single memory. Unlike other

merged-frame approaches, the CFM includes an additional table to keep track of MBs with

zero motion vector and no residue. For each MB without motion and residue, no further

memory access is necessary for copying the MB from the reference frame to the

reconstructed current frame. This is because the reconstructed current frame data and the

reference frame data are the same and is already in the same memory. Thus, it is possible to

reduce the bandwidth requirement and energy consumption due to frame memory accesses.

In addition, the memory size is also reduced compared with that of the PPFM. Consequently,

the cost for the motion compensation can be reduced. For QCIF resolution with the vector

range of [-16:+15], the total memory size of the CFM architecture is reduced to 56.6% of the

total memory size in the PPFM architecture.

There are two major contributions in this work. First of all, the statistical analysis and the

concept of the combined frame memory motion compensation (CFMMC) are presented. This

 61

can serve as a reference for designing a CFMMC for other video decoder in different

standards. The other contribution is the investigation result on the hardware implementations.

The implementations of the CFMMC and the ping-pong frame memory motion compensation

(PPFMMC) are compared to each other. The comparison over various test sequences shows

that the hardware architecture can achieve lower bandwidth requirement, less silicon cost,

and can reduce the energy consumption by -32% ~ 18%. To achieve the best benefit in

throughput and energy consumption from using the CFMMC, the video being processed must

exhibit enough percentage of MBs without motion and residue. This suggests that the

CFMMC is more suitable for applications with much still background, such as video

surveillance, video telephony, and video conference.

5.2.2. Combined Frame Memory Motion Compensation
A. Statistics of Perfect-Matched MB

The percentage of perfect-matched MBs within a frame determines the bandwidth

reduction and energy consumption of the frame memory in motion compensation. A

perfect-matched MB is one that has zero-valued MV and no residual. The reconstruction of

such MB does not require the summation of the motion compensated (predicted) MB and the

residual MB. For instance, a NOT-CODED MB in MPEG-4 [52] is a MB with zero-valued

MV and no residual; hence a NOT-CODED MB is a perfect-matched MB. If a MB is a

perfect-matched MB, the MB data read from the reference frame memory is the same as the

MB data written to the reconstructed current frame memory in PPFM. Since the

perfect-matched MB would be read and written with the same content at the same location,

there is an opportunity to eliminate the redundant memory access for a perfect-matched MB.

To eliminate the repeat accesses for a perfect-matched MB, the content of the

perfect-matched MB must be already in the reconstructed frame memory before performing

the motion compensation. The only way to achieve this requirement without performing extra

 62

memory access is to merge the reconstructed frame memory with the reference frame.

Therefore, it is necessary to use the merged-frame approach so that the memory accesses of a

perfect-matched MB can be eliminated. Since the memory access reduction depends on the

percentage of perfect-matched MBs within a frame, the reduction of bandwidth requirement

and energy consumption is also highly dependent on this percentage.

Table 7 lists the average percentage of perfect-matched MBs within one frame. Both the

results for QCIF and CIF sized sequences are listed. The statistics were gathered from

running MPEG-4 VM18 [53] with the quantization parameter (QP) set to 16. The parenthesis

next to each sequence represents the class it belongs as classified in [53]. Class "A" to "C"

represents different levels of spatial detail and amount of movement, where class "A" is the

lowest class and class "C" is the highest class. The statistics shows that lower class test

sequences, such as akiyo, container, mother_daughter, news, and hall, which exhibit large

portion of static background have more than 70% of perfect-matched MBs in average. Other

test sequences with more motion, such as foreman, stefan, coastguard, and mobile, have less

than 30% of perfect-matched MBs.

Table 7 Percentage of perfect-matched MBs when QP=16
Test sequences QCIF (%) CIF (%)

container (A) 91.74 88.91
mother_daughter (A) 81.42 77.65
hall (A) 86.21 83.86
akiyo (A) 91.32 89.09
coastguard (B) 10.35 2.69
foreman (B) 24.49 23.38
news (B) 82.53 83.01
stefan (C) 15.71 20.90
mobile 10.93 3.39

 63

The QP used in Table 7 was 16, this QP value was relatively lower than the typical QP

values of 16~24 adopted in practical MPEG-4 applications. Fig. 20 illustrates the impact of

different QP values on the percentage of perfect-matched MBs. It can be seen that for most

sequences with high percentage, the highest percentage of NOT-CODED MB appeared when

QP=16. However, for most sequences with low percentage, the percentage of NOT-CODED

MB significantly increased until QP=24. After QP>24, the increase became insignificant. It is

suspected that after the QP is larger than 24, the reconstructed frame’s quality would be so

bad that the residue becomes increasingly larger, thus resulting the decrease in the percentage

of NOT-CODED MB. Nevertheless, for the sequences which have low percentage, since the

percentage of NOT-CODED MBs increases when QP>16, practical video applications should

result in higher percentage of NOT-CODED MBs than those listed in Table 7 for these

sequences.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 8 16 24 28 31
QPs

N
ot

-c
od

ed
 M

B
%

Container
Mother_daughter
Hall
Akiyo
Coastguard
Foreman
News
Stefan
Mobile

Fig. 20. Impact of different QP values on percentage of NOT-CODED MB in MPEG-4

 64

B. Combined Frame Memory
The CFM architecture adopts the merged-frame approach with an additional look-up

table. The reconstructed current frame data and the reference frame data are mapped to one

single frame memory with the size of one single frame. Unlike the merged-frame approach in

[48][49], we introduced the additional look-up table to indicate whether the predicted pixel

data are in the frame memory or in the local buffers. There are three major parts in the

proposed CFM architecture: the main frame memory (MFM), the vector range strip buffer

(VRSB), and the dirty table (DT), as illustrated in Fig. 21 for QCIF size with the vector range

of [-16:+15]. The function of each component is explained as follows.

• Main frame memory (MFM): The MFM stores the reference frame data and the

reconstructed frame data together. The reconstructed current frame data are stored at

the upper part of the MFM whereas the reference frame data are stored at the lower part

of the MFM. The size of MFM is as large as one single frame, i.e. 176x144x1.5 bytes

for QCIF.

• Vector range strip buffer (VRSB): The VRSB is a rectangular strip of memory which

works as an exchange buffer for the reference frame data. If one reference MB in the

Main Frame Memory (MFM)

Rec. Current Frame

Reference Frame

Dirty Table (DT)

Vearch Range Strip Buffer (VRSB)

Dirty Index

176x144x1.5 bytes

256x12x1.5 bytes

12 bits

Fig. 21. Memory components for QCIF with vector range of [-16:+15] in the CFM

 65

MFM is to be updated by a reconstructed current MB, this reference MB would be

copied into the VRSB as a backup in case the subsequent MB needs it. This avoids the

reference frame data from being ruined by the reconstructed current frame data. The

size of the VRSB is determined by the height of the vector range and the width of a

frame, i.e. 16x(176+16)x1.5 bytes for QCIF with the vector range of [-16:+15].

• Dirty table (DT): The DT is the look-up table that keeps record of which pixels in the

MFM are updated. If a MB in the MFM is updated by the reconstructed current frame

data, the corresponding dirty bits of this MB will be set. This indicates that the

reference pixels in that MB are stored in the VRSB for backup as mentioned earlier. If

the subsequent MB requires the reference pixels of this MB, these reference pixels will

be read from the VRSB instead of the MFM. The size of the DT varies according to the

size of the VRSB, i.e. 16x(176+16) bits for QCIF with the vector range of [-16:+15].

Perfect-matched MB?

Update the index in DT

Update the corresponding in DT

Check DT for the corresponding DT status

Reconstruct reconstructed MB

Write reconstructed MB into MFM

End of processing current MB

Start of processing current MB

No

Yes

Read predicted MB from MFM and/or VRSB

Back-up current reference MB

Fig. 22. Flow chart of motion compensation process in the CFMMC

 66

Fig. 22 illustrates the flow chart of the CFMMC. The process is very simple for a

perfect-matched MB, but is complex for a non-perfect-matched MB. When processing a

perfect-matched MB, since the reference MB and the reconstructed MB are the same and

resides within the MFM at the same location, no memory access is performed. The only

operation carried out is the updating of the index in the DT. For the non-perfect-matched MB

case, the DT is checked first to determine where the predicted MB pixels are stored, each

pixel in the predicted MB is either read out from the MFM or the VRSB according to the

corresponding dirty bit. After the predicted MB is read out, it is summed with the residual to

reconstruct the reconstructed MB. Then the current reference MB in the MFM must be

copied into the VRSB before the reconstructed MB is written back to the same location.

Finally, the reconstructed MB is written back to the MFM, and the DT and its index are

updated at the end. Fig. 23 illustrates the motion compensation process for two consecutive

non-perfect-matched MBs.

Main Frame Memory (MFM)

Reference Frame

Dirty Table (DT)

Vector Range Strip Buffer (VRSB)

STEP 1:
 Check dirty status from DT
 Read predicted block from MFM (&VRSB)
 Add predicted block with residue

Main Frame Memory (MFM)

Reference Frame

Dirty Table (DT)

Vector Range Strip Buffer (VRSB)

Add with residual

Reconstructed block

Reconstructed block

STEP 2:
 Read the reference block from MFM and write to VRSB
 Update DT
 Write reconstructed block to MFM

Macroblock 1 Macroblock 1

1

2

3

1
2
3

4
5
6

4

5

6

(a) MB 1

Main Frame Memory (MFM)

Reference Frame

Dirty Table (DT)

Vector Range Strip Buffer (VRSB)

Which dirty bits to access is computed from MV

Add with residual

Macroblock 2

STEP 1:
 Check dirty status from DT
 Read predicted block from MFM (&VRSB)
 Add predicted block with residue

Reconstructed block

Main Frame Memory (MFM)

Reference Frame

Dirty Table (DT)

Vector Range Strip Buffer (VRSB)

Reconstructed block

Macroblock 2

1

2

3

1
2
3

STEP 2:
 Read the reference block from MFM and write to VRSB
 Update DT
 Write reconstructed block to MFM

4
5
6

4

5

6

(b) MB 2

Fig. 23. The processing of non-perfect-matched MBs

 67

C. Analytic Estimation of Memory Size, Energy, and Latency
The memory requirement of the CFMMC can be determined through the life time

analysis of the collocated MB in the reconstructed current frame and the reference frame, as

illustrated in Fig. 24. For each MB, the life time of the reconstructed current frame data and

the reference frame data overlaps for a portion of period during the processing of one single

frame. This overlapped lifetime of a collocated MB would be referred as MB overlapped life

time (MBOLT) here on. The length of MBOLT is determined by the vector range’s height and

width. For instance, the reconstruction of the current MB requires the reference pixels from

the most upper-left corner of the vector range in the worst case; thus the reference MB having

the required reference pixels has to remain in VRSB until the reconstruction of the current

MB is complete. MBOLT is proportional to the raster-scan MB distance between the

reference MB and the current MB. The larger the vector range is, the longer the MBOLT is.

MB row 0Reference MB n

MBOLT n

Rec. Curr. MB n

MB row 1 MB row 2

Processing MB

Processing MB n

MB row 3 MB row 4 MB row 5 MB row 6 MB row 7 MB row 8

n+1

n+2

n+3

n+4

n+5

n+6

n+7

n+8

n+9

n+10

n+11

VRSB must store 12 MBs

MB Overlapped
Life Time

Fig. 24. Life time analysis of MBs

 68

The maximum number of MBs having overlapped MBOLT determines the size for

VRSB and DT. In another word, the VRSB size must be large enough to store all the

reference MBs who are currently alive. By the term alive we mean that a reference MB may

still be needed by further motion compensation of subsequent MBs. For example, consider

the case of QCIF with the vector range of [-16:+15], the maximum number of MBs having

overlapped MBOLT is 12 MBs. This means there are at most 12 reference MBs alive

simultaneously, hence the VRSB size is 12 MBs and the DT size is 12 bits. Comparing the

memory requirement with other merged-frame approach [48][49], the VRSB size is 1 MB

smaller than their LIFO buffer size. We generalized the formulation of memory size

requirement for the MFM, VRSB, and DT and listed them in Table 8. Note that this

formulation can be applied to any given frame size and vector range. The overall memory

size was also compared with that of the most commonly used PPFM. For the aforementioned

QCIF case, the memory size of the CFMMC architecture is 56.6% compared to that of the

PPFM architecture.

Table 8 Memory sizes required in CFM

Memory Memory Size Formula
(bytes)

Size for QCIF
with SR of
[-16, +15] (bytes)

MFM height_frame x width_frame x
1.5 38,016

VRSB

floor(height_VR/height_MB) x
height_MB x (width_frame +
(floor(width_VR/width_MB) x
width_MB)) x 1.5

4,608

DT

floor(height_VR/height_MB) x
height_MB x (width_frame +
(floor(width_VR/width_MB) x
width_MB)) x 0.125

384

Combined
Total

size_of_MFM +
size_of_VRSB+size_of_DT 43,008

Ping-pong
Total

(height_frame x width_frame x
1.5) x 2 76,032

 69

Table 9 lists the analytic model of average bandwidth requirement, energy consumption,

and latency due to memory accesses. The model is evaluated for processing one P-frame. In

Table 8, DMB represents the amount of data to be read or write for one macroblock. The total

bandwidth requirement accounts only the access with the MFM since it is common to

implement MFM using external memories. We model the energy consumption of accessing

one MB in the MFM and the VRSB as EMFM and EVRSB respectively. This assumes that the

energy consumption of a memory read and a write are the same. Based on this assumption,

the average memory energy consumption of processing a frame is listed in Table 8, where M

represents the number of MBs in a frame, P0 represents the percentage of perfect-matched

MBs, and k represents the ratio of EMFM to EVRSB. The energy consumed in the MFM includes

the energy of reading predicted MBs from the MFM, reading the reference MBs for backup,

and writing the reconstructed MBs into the MFM. Since the accesses to the MFM only occurs

when processing a non-perfect-matched MB, only Mx(1-P0) MBs would read the MFM twice

Table 9 Memory access energy consumption and access latency of processing one frame

Memory Access Bandwidth
Requirement Access Energy Consumption Access Latency

MFM M x 3 x (1-P0) x DMB M x 3 x (1-P0) x EMFM M x (1-P0) x 3 x CMB

VRSB M x (1-P0) x DMB M x (1-P0) x k-1 x EMFM M x (1-P0) x CMB

DT M M x k-1 x EMFM x 0.125 (neglected) M x 0.125 x CMB (neglected)

Combined Total M x 3 x (1-P0) x DMB M x (3+ k-1) x (1-P0) x EMFM M x (1-P0) x 4 x CMB

Ping-pong Total M x 2 x DMB M x 2 x EMFM M x 2 x CMB

Table 10 Average memory access energy consumptions and latencies for various QCIF test sequences with k=4

K=4 Average Bandwidth Requirement Average Energy Consumptions Average Access Latency

Test sequences
(QCIF)

Ping-pong
(MxDMB)

Combined
(MxDMB)

Reduced
bandwidth
(%)

Ping-pong
(MxEMFM)

Combined
(MxEMFM)

Reduced
energy
(%)

Ping-pong
(MxCMB)

Combined
(MxCMB)

Reduced
latency
(%)

container (A) 2 0.25 87.6 2 0.27 86.6 2 0.33 83.5
mother_daughter (A) 2 0.56 72.1 2 0.60 69.8 2 0.74 62.8
hall (A) 2 0.41 79.3 2 0.45 77.6 2 0.55 72.4
akiyo (A) 2 0.26 87.0 2 0.28 85.9 2 0.35 82.6
coastguard (B) 2 2.69 -34.5 2 2.91 -45.7 2 3.59 -79.3
foreman (B) 2 2.27 -13.6 2 2.45 -22.7 2 3.02 -51.0
news (B) 2 0.52 73.8 2 0.57 71.6 2 0.70 65.1
stefan (C) 2 2.53 -26.4 2 2.74 -37.0 2 3.37 -68.6
mobile 2 2.67 -33.6 2 2.89 -44.7 2 3.56 -78.1

 70

and write it once. The energy consumption of the VRSB is mainly due to the backup of

reference MBs, which writes the reference MBs of non-perfect-matched MBs into VRSB.

Although some predicted pixels may have been stored in the VRSB, the worst case for

energy consumption happens when all the predicted pixels are read from the MFM. This is

the reason we account the energy of reading predicted pixels to the MFM’s energy

consumption.

The memory access latencies of processing one frame are also listed in Table 9. The

access latencies are modeled based on the assumption that the access latencies of read and

write to either the MFM or the VRSB are all the same, hence the memory access latency of

accessing one MB is denoted as CMB . A typical scenario for such assumption to hold is when

SRAM is adopted for both the MFM and the VRSB. In the CFMMC, extra memory access

latency is introduced for a non-perfect-matched MB whereas the memory access latency for a

perfect-matched MB is eliminated. For each non-perfect-matched MB, the predicted MB is

first read from the MFM or the VRSB, and then the content of the current MB which resides

in the MFM is read and written into the VRSB for reference MB backup; the reconstructed

current frame is then written back to the MFM at the end. As a result, the memory access

latency of four MBs is needed for each non-perfect-matched MB. However, overlapping the

latencies of reading the reference MB from MFM and writing the reference MB into VRSB

may reduce the total latency to Mx(1-P0)x3xCMB . According to the formulas in Table 8, the

memory access latency in the CFMMC can be less than that of the PPFMMC when P0 is

larger than 50%.

The reduction of energy consumption in the CFMMC depends on the adopted memory

type and the contents of video sequences. For instance, if on-chip SRAM [54] is used for

both the MFM and the VRSB, k would be about 4. Note that this SRAM case may represent

the worst case reduction of energy consumption. If external memory is adopted, such as

 71

Mobile SRAM [55], k might be even larger, and the energy reduction should also be larger.

The reduction of bandwidth requirement, memory energy consumption, and access latency in

different test sequences when k = 4 is listed in Table 10. The CFMMC may reduce 72.1% ~

87.0% of memory access bandwidth compared to that of the PPFMMC for QCIF test

sequences container, akiyo, news, hall, and mother_daughter. However, for test sequences

with small P0, such as foreman, stefan, coastguard, and mobile, the estimated bandwidth

requirement may increase by 13.6% ~ 34.5% compared to that of the PPFMMC. This

analytic evaluation disregards the impact of memory banking because the memory

organization is beyond the scope of interest in this work.

Table 10 also lists the estimated memory access energy and latency for different test

sequences. For test sequences with larger P0 (>70%), the memory access energy consumption

and latencies in a QCIF frame can be reduced by 71.6% ~86.6% and 62.8% ~ 83.5%

compared with that of the PPFMMC respectively. However, for other test sequences with

smaller P0, such as foreman, stefan, coastguard, and mobile, the access energy consumption

and latency are increased by 22.7% ~ 45.7% and 41.0% ~ 79.3%. However, this extra latency

can be hidden by overlapping these latencies with the computation time of motion

compensation.

5.2.3. Architecture

The VLSI architecture of the proposed CFMMC is designed and synthesized. Although

hardware implementation enables overlapping of memory accesses, the complex control of

the CFMMC would introduce extra hardware and energy consumption overheads. This extra

hardware includes logics for block and pixel offsets computation, address generation, and

dirty table management. The additional operations also consume extra energy consumption,

which would reduce the energy consumption reduction of the CFMMC. To find out the

impact of these overheads, the hardware implementations of both the CFMMC and the

 72

PPFMMC are compared.

The implementations are targeted for mobile devices, so the video format of QCIF is

considered. Since the format size is small, SRAM is used for both the MFM and the VRSB.

However, the CFMMC is not limited to any frame size, nor is it limited by only using

SRAMs. The details on the architecture of the CFMMC and the PPFMC are explained in the

following subsections.

A. Architecture of the Combined Frame Memory Motion Compensation
The architecture of the CFMMC is illustrated in Fig. 25, which consists of five major

parts. The first part includes the mvprocessor, the pblk and inblk offsets generators, and the

dirty table. The second part is the memory accessor, which includes the address generators

for MFM and VRSB, the memory multiplexer, and the predicted row buffer. The third part is

the motion compensation controller which coordinates the tasks among the modules and also

interfaces the control signals. And the fourth part is the filter and reconstructor. The last part

is the memories, which includes the MFM and the VRSB. Each of the key parts will be

explained in this subsection.

 73

Before introducing each part of the CFMMC architecture, the address generation will be

explained first. Fig. 26 illustrates the relation between the motion vector and the offsets used

mvprocesor

inblk offset
generator

pblk offset
generator dirty table

memory
accessor

MFM

VRSB

MC Control

M
V

uv

M
V

uv

MV0~MV3

inblk offset

pblk offset

pblk offset

dirty
status

SRAM IF
signals

SRAM IF
signals

Control
signals

Control
signals

M
V

s

M
B

 Type

M
B

x

filter and
reconstructor

pred. pixels

rec. pixels

Control
signals

M
B

y

residue pixels

M
C

enable

M
C

done

M
C

clear

Fig. 25. Block diagram of the CFMMC hardware

Current
Block 0

Current
Block 1

Current
Block 2

Current
Block 3

-2

-2

-1 0

-1

0

+1

+1 +2 +3
Pblk Offset X

Pblk Offset Y

Predicted
Pixel

 Block 0

Predicted
Pixel

 Block 1

Predicted
Pixel

Block 2

Predicted
Pixel

Block 3

Inblk offset

Pblk offset = [+1,-2]

Pblk offset = [+2,0]

Pblk offset = [+3,-1]

Current MB

Predicted MB

MV

Fig. 26. Pblk offsets and inblk offsets

 74

for the address generation. For each block with a motion vector, the blocks which contain the

predicted pixels are referred as pblk. A predicted pixel block can cover up to 4 pblks. The

offsets between the current block and the pblks are the pblk offsets. The base address of pblks

can be computed using pblk offsets and the block position of the current block. The distance

between the top of the predicted pixel block and the top boundary of the pblk within a pblk is

the vertical inblk offset. Similarly, the distance between the left side of the predicted pixel

block and the left boundary of the pblk within a pblk is the horizontal inblk offset. The base

address of the predicted pixel block is computed using the inblk offsets and the base address

of the pblk.

The first part of the CFMMC architecture pre-processes the key information that is

needed by the memory accessor, such as the motion vector of the chroma component, the

pblk offsets, the inblk offsets, and the dirty status. The components are explained below.

 MVprocessor: This module computes the motion vector of the chroma components

from the motion vectors of the luma component.

 Pblk offset generator: This module computes the pblk offset from the motion vector.

The pblk offset is used to determine which entry in the dirty table is to be accessed.

 Inblk offset generator: This module computes the inblk offset of each pblk

according to the motion vector. The inblk offset is used by the memory accessor

together with the pblk offset to compute the base address within the MFM and the

VRSB.

 Dirty Table: This module provides the dirty status of each pblk and updates the

dirty table. The dirty status is needed by the memory accessor to determine whether

the MFM or VRSB should be accessed. At the start of processing each frame, all

entries in the dirty table are reset. The update procedure is done for every MB(4

blocks) at the end of the motion compensation process. In addition, the dirty index,

 75

which is computed from the pblk offset to determine the current entry in the dirty

table, is also provided for the memory accessor to generate the address to the VRSB.

Each entry is one bit and represents the dirty status of its corresponding block. To

support the VRSB with the size of 12 MBs(48 blocks), the dirty table has 48 entries,

which is implemented using a 48 bits register array.

The second part is the memory accessor, which plays the major role of generating the

addresses to the MFM and the VRSB and multiplexing data among the memories and buffers.

The block diagram is shown in Fig. 27. Each block is explained as follow.

 MFM Address Generator: This address generator generates the memory addresses

for the MFM. The address includes those for reading the predicted pixels, reading

the reference pixels for backup, and writing the reconstructed pixels. The address is

generated from the pblk offset, inblk offset, and the counter values within the

memory accessor.

currpix
counter

pixrow
counter

memory
mux

MFM
address

generator

VRSB
address

generator

predrow
buffer

MA Control

currpix

pixrow

pblk offset

inblk offset

dirty index

rec. pixels

MFM SRAM
IF signals

VRSB SRAM
IF signals

pred. pixels

MFM addr.

VRSB addr.

pr
ed

. p
ix

el
s

Control
signals

Control
signals

Fig. 27. Block diagram of the memory accessor

 76

 VRSB Address Generator: The address generator for the VRSB is similar to the

MFM’s except it generates addresses for the VRSB. This module generates the

address for reading the predicted pixels and the address for writing the backup

reference pixels. The addresses are generated using the dirty index from the dirty

table, inblk offset and the counter values.

 Memory Multiplexer: The memory multiplexer handles the data traffic among the

MFM, the VRSB, the predicted row buffer, and the reconstructed buffer. When the

predicted pixels are read from the MFM and the VRSB, the pixels would be written

into the predicted row buffer for reconstruction. If the reference pixels need to be

backup, the pixels would be read from the MFM and then written into the VRSB.

After the reconstruction is done, the reconstructed pixels would be read from the

reconstructed buffer, which is located in the filter and reconstructor, and then

written into the MFM. The control of the memory multiplexer is given from the

memory accessor control.

 Predicted Row Buffer: The predicted row buffer stores the predicted data before

sending them to the filter and reconstructor. The filter and reconstructor is designed

to handle one row of predicted pixels at a time, hence the predicted row buffer only

stores one row of pixels.

 Memory Accessor Control: The memory accessor control coordinates the

operations of different modules. An internal FSM determines whether to idle, to

read the predicted pixels, to backup the reference pixels, or to write the

reconstructed pixels. The memory accessor is only activated when the CFMMC is

enabled and is in the processing state. The processing state is defined as the state in

which the CFMMC actually needs to perform memory accesses. If the CFMMC

encounters a NOT-CODED MB, which is a perfect-matched MB by definition, the

 77

CFMMC would not enter the processing state. This means the memory accessor

would remain in the idle state.

The filter and the reconstructor part are in charge of generating sub-pel samples and

adding the predicted pixels with the residual pixels. The reconstructed pixels would be stored

in the local reconstructed buffer, which is implemented with registers. Although

implementing a 256-pixel buffer using registers is not economic, the implementation of the

filter and reconstructor is beyond the focus of this work. To be fair during the architecture

comparison, both the CFMMC and the PPFMMC use the same filter and reconstructor

design.

The memories of the MFM and the VRSB are implemented using SRAM. There are two

reasons for using SRAM instead of external DRAM. The first reason is that the design is

targeted for QCIF format, hence the memory size of one QCIF frame is considered to be

acceptable. The other reason is that the SRAM model being used includes a power model

which is more convenient for evaluating power consumption than using DRAM models.

Since using SRAM is likely to decrease the energy consumption ratio between the MFM and

the VRSB, which is referred as the k value, the result acquired using SRAM can be

considered as a lower bound for the amount of energy reduction. If k is larger, which is likely

to be the case when the MFM is implemented using DRAM, the energy reduction should be

larger. The detailed implementation and organization of the memories are described below.

 MFM Memory: The MFM is implemented to store both the luma and the chroma

components. We used three 8,192 bytes and one 768 bytes single-port SRAM for

the luma component. The total memory size of the luma component in the MFM is

25,344(256x99) bytes. For the chroma component, we used two 6,336(64x99) bytes

single-port SRAM. The port data width of the MFM is 1 byte because the

bandwidth is sufficient for processing QCIF at 30 frames per second.

 78

 VRSB Memory: The VRSB is implemented to backup the reference MBs for both

the luma and the chroma components. We used a 3,072(256x12) bytes single-port

SRAM for the luma component and two 768(64x12) bytes single port SRAM for

the chroma components. The port data width of the VRSB is also 1 byte because of

the same reason used in the MFM.

B. Architecture of the Ping-pong Frame Memory Motion Compensation
A prototype of the PPFMMC is implemented based on the prototype of the CFMMC.

Therefore, some of the modules are the same between the two prototypes; this would help us

observe the differences easier. The main differences between the PPFMMC and the CFMMC

are that there is no offsets generation, no dirty table, and no address generator for the VRSB.

Another major difference is that the PPFMMC needs extra frame memory to store another

frame.

In the PPFMMC, there’s no need to compute the pblk and inblk offsets because the pixel

data are not partitioned into blocks to correspond to the dirty bits. Without this partitioning

and mapping, the PPFMMC not only reduces the logics for the offsets computation, it also

eliminates the need of the dirty table. Moreover, the address generation is also simplified to

only compute the logical coordinate of the pixels to be accessed. This address computation

only requires the current coordinate and the motion vector. The simplified address generation

and the elimination of the VRSB address generator reduce the area of the memory accessor.

As a result, the area cost of the logics in the PPFMMC should be smaller than the CFMMC’s.

The PPFMMC requires a memory to store both the reference frame and the

reconstructed current frame. To achieve this, two MFM modules are used in the CFMMC to

implement the ping-pong frame memory. Each MFM module is consists of three 8,192 bytes

SRAMs, four 768 bytes SRAMs, and two 6,336 bytes SRAMs. As a result, the total frame

memory size is 50,688 bytes.

 79

C. Architecture Latency Comparison
The latency of the CFMMC and PPFMMC hardware architectures are both dominated

by the memory access time. The memories adopted in our hardware architectures are

single-port SRAMs with data port width of 8-bit. However, the latencies of processing

different MB modes, such as INTRA, INTER_INTRA, NOT_CODED, INTER, and

INTER4V, are different. The definition of different MB modes and their processing latencies

in the two prototypes are listed in Table 11.

 Essentially, the processing operations of INTRA MBs and INTER-INTRA MBs are

similar. Both the CFMMC and PPFMMC check the MB mode first, which requires one cycle.

After that, the PPFMMC directly write the residue into the frame memory according to the

MB’s position. This is similar to the CFMMC when processing an INTRA MB. As a result,

the total latencies of processing an INTRA MB in both architectures and processing an

INTER-INTRA MB in the PPFMMC are the same, which is 1+(256+64+64) = 385 cycles.

However, for an INTER-INTRA MB, the CFMMC must back-up the collocated reference

MB into VRSB and update the dirty table, which is not necessary for an INTRA MB.

Consequently, the total latency of processing an INTER-INTRA MB is 1 + (256+64+64) + 1

+ (256+64+64) = 770 cycles.

The latency to process an INTER or INTER4V MB in the CFMMC includes the

latencies of identifying the MB mode, computing the chroma’s motion vectors, reading the

Table 11 Latencies of different MB modes
MB Modes Description PPFMMC Latency (cycles) CFMMC Latency (cycles)

INTRA Intra MB in I-frames 385 385
INTER_INTRA Intra MB in P-frames 385 770
INTER Inter MB with only 1 MV 770 1157
INTER4V Inter MB with 4 MVs 770 1157
NOT-CODED Inter MB with perfect-match 770 1

 80

predicted pixels, backing up the reference pixels, and writing back the reconstructed pixels.

The computation of chroma’s motion vectors takes 3 cycles to complete. The reconstruction

computation, which adds the residue with the predicted pixels (Fig. 23, Step1 (2)) is

performed while the backup of the reference pixels (Fig. 23, Step2 (4)) is taking place.

Therefore, the latency of processing an MB is 1 + 3 + (256+64+64) + (256+64+64) +1 +

(256+64+64) = 1,157 cycles. In contrast, the latency of PPFMMC only accounts the latencies

of reading the predicted pixels, writing the reconstructed pixels, and some preprocessing time.

The difference is that no backup of the reference pixels is needed in the PPFMMC. As a

result, the total latency of processing an MB in the PPFMMC is 1 + (256+64+64) + 1 +

(256+64+64) = 770 cycles.

For NOT-CODED MBs, they are perfect-matched MBs. Thus, the CFMMC does not

perform any memory access; the total latency of processing a NOT-CODED MB only takes

one cycle. The one cycle latency is used to update the dirty table. On the contrary, the

PPFMMC has to perform the operations of reading and writing the ping-pong frame memory.

As a result, the latency of processing a NOT-CODED MB is exactly the same as that of

processing an INTER or INTER4V MB, which is 770 cycles.

Considering the processing latency for the worst case scenario, which is no

perfect-matched (NOT-CODED) MB is found in a P-frame, the clock rate of the CFMMC

would have to be 1.5 times of that in the PPFMMC. With the increased clock rate and the

increased memory access to backup the reference pixels, the energy consumption in the

CFMMC operating under the worst case scenario might increase by more than 50%. However,

the negative impact of the clock rate increase in the CFMMC architecture can be minimized

when P0 is higher than 33.4%.

5.2.4. Implementation Result

 81

A. Architecture Cost Comparison
The prototypes of the CFMMC and the PPFMMC architectures are both synthesized

from Verilog RTL design using UMC 0.18μm 1P6M CMOS technology [56]. Both designs

are synthesized with the clock constrained at 50 MHz, which is more than enough to perform

real-time decoding. The logics of the CFMMC prototype (exclude memory) have a gate

count of 40,065. The MFM and the VRSB have the equivalent gate count of 280,749, which

occupies 87.5% of the total cell area. As to the prototype of the PPFMMC, the logics part has

a gate count of 28,039. The ping-pong frame memory has an equivalent gate count of

486,643. It is obvious that the extra logics used in the CFMMC increases the gate count by

43.4% compared with the gate count of the logic part in the PPFMMC. However, the total

equivalent gate count, which takes the memory area into consideration, shows that the cell

area of the CFMMC is actually 37.7% smaller compared with that of the PPFMMC. In other

words, the total cell area of the CFMMC is only 72.3% of PPFMMCS’s total cell area. The

detailed distributions of the gate counts in different modules excluding the memories are

compared in Fig. 28. It can be seen that the dirty table, the pblk offset generator, the inblk

offset generator, and the extra logics in the memory accessor are responsible for the area

increase. Despite the increase in the area of the CFMMC’s logics part, which seems to be

relatively large, the total cell area is significantly smaller than that of the PPFMMC.

0 10,000 20,000 30,000 40,000

CFMMC

PPFMMC

Gate Counts

MC_CONTROL
MV_PROCESSOR
INBLKOFFSET_GEN
PBLK_OFFSET_GEN
DIRTY_TABLE
MEM_ACCESSOR
FILTER_REC

Fig. 28. Gate count distribution and comparison of the logics part in the PPFMMC and the CFMMC

 82

B. Architecture Energy Consumption Comparison
The gate-level power is reported by using Power Compiler [57]. The signal switching

activities are gathered by running at 50 MHz for both the CFMMC and the PPFMMC. The

reason to use such a high clock rate is to increase the numerical order of the reported power,

which corresponds to the energy of processing 109 CIF frames in one second. This can make

the comparison of the energy consumption between the CFMMC and the PPFMMC easier.

Fig. 29 plots the energy consumption comparison between the CFMMC and PPFMMC

running the manually created test patterns. There are two lines related to the CFMMC

architectures. One is the line for the memories themselves, the other one is for the overall

CFMMC architecture. The line of the CFMMC has smaller slope than the slope of the

CFMMC memories line. This is due to the energy consumed by the logics which reduced the

energy reduction. The line of the CFMMC memories has a slightly smaller slope compared

with the slopes of the theoretical lines with k=4 and 2. This may be explained by that the

logics and memories also consume energy even when there’s no memory access, thus

compromising the energy model derived merely based on memory access energy. The detail

distribution of the power consumption in the CFMMC when P0=20% and 80% are illustrated

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
P 0

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

Re
du

ct
io

n
C

om
pa

re
d

to
 P

in
g-

po
ng

's
(%

)

k=4 k=2
CFMMC CFMMC mem

Fig. 29. Plot of the energy reduction percentages of the CFMMC at different P0

 83

in Fig. 30; the power distribution of the PPFMMC is also illustrated for comparison. The

memory accessor accounts for the second most power consumption among the logics in the

CFMMC. This part of the energy consumption was not part of the energy consumption model

to evaluate the percentage of reduction.

The energy reduction percentages of the real test patterns are listed in Table 12. The

percentages of NOT-CODED MB found in the first 15 frames of each test sequences are also

listed. For those test sequences with more than 70% of MBs being NOT-CODED MBs, the

energy consumptions are reduced by 11%~18%. For sequences with much less MBs being

NOT-CODED MBs, the energy consumption are increased by 18%~32%. Fig. 31 illustrates

the detail distribution of the power consumption evaluated for running test sequences mobile

and akiyo, which are the sequences with the least and the most energy consumption reduction

percentages. The result gathered from the real test patterns verifies the conclusion made in

0 5 10 15 20 25

PPFMMC

CFMMC P0=20

CFMMC P0=80

Power Consumption (mW)

MC_CONTROL
MV_PROCESSOR
INBLKOFFSET_GEN
PBLK_OFFSET_GEN
DIRTY_TABLE
MEM_ACCESSOR
FILTER_REC
VRSB_MEM
MFM_MEM
MFM_MEM_0
MFM_MEM_1

MFM_MEM_0 MFM_MEM_1

MFM_MEMVRSB_MEM

VRSB_MEM MFM_MEM

Fig. 30. Power consumption distribution and comparison of the PPFMMC and the CFMMC

Table 12 Energy reduction percentage of the real test patterns

Test sequences P0 of the first 15 frames
(%)

Energy reduction
percentage (%) compared
with the PPFMMC

container (A) 92.93 15.45
mother_daughter (A) 92.83 15.80
hall (A) 95.96 17.19
akiyo (A) 96.87 18.44
container (A) 92.93 15.45
coastguard (B) 34.95 -18.06
foreman (B) 29.39 -21.89
stefan (C) 15.66 -30.66
mobile 7.47 -31.67

 84

previous section which states that the CFMMC should be more suitable for applications with

more static background and less motion.

The hardware implementation of the CFMMC proves the feasibility of the architecture.

The comparison with the most commonly used PPFMMC shows some advantages and

limitations. From the cost perspective, the CFMMC has been proven to reduce the silicon

area compared with the PPFMMC. From the latency perspective, the CFMMC prototype can

achieve a comparable throughput when P0 is more than 33.4%. The limitation, however, is in

the worst case scenario in which the CFMMC would need a clock which is 1.5 times faster

than that of the PPFMMC. Nevertheless, such issue can be alleviated with the use of dynamic

frequency scaling. In the energy consumption aspect, the CFMMC prototype can reduce

energy consumption when P0 is high enough. Similar to the latency issue, the energy

consumption would increase if P0 is not high enough. This issue originates from the

architecture’s data-dependent nature, and cannot be solved. With this limitation, the suitable

applications of the CFMMC hardware are limited to video surveillance, video telephony, and

video conferencing.

5.2.5. Summary
We proposed a combined frame memory motion compensation (CFMMC) architecture

which did not only reduce the frame memory size, but also is potential in reducing bandwidth

0 5 10 15 20 25

PPFMMC mobile

CFMMC mobile

PPFMMC akiyo

CRMMC akiyo

Power Consumption (mW)

MC_CONTROL
MV_PROCESSOR
INBLKOFFSET_GEN
PBLK_OFFSET_GEN
DIRTY_TABLE
MEM_ACCESSOR
FILTER_REC
VRSB_MEM
MFM_MEM
MFM_MEM_0
MFM_MEM_1

MFM_MEM_0 MFM_MEM_1

MFM_MEM_0 MFM_MEM_1

VRSB_MEM MFM_MEM

MFM_MEMVRSB_MEM

Fig. 31. Power consumption distribution and comparison of the PPFMMC and the CFMMC for mobile and akiyo.

 85

requirement, access latency, and energy consumption. The statistics on perfect-matched MB

were investigated for the well known video sequences. Based on the statistical result, we

derived the latency and the energy consumption model for evaluation. During the exploration,

we found that when the percentage of perfect-matched MBs (P0) was higher than 50%, the

CFMMC could reduce both the latency and the energy consumptions due to memory

accesses.

To investigate the cost of extra computation and control logics for achieving the

aforementioned benefits, hardware architectures of the CFMMC and the most commonly

used PPFMMC were both implemented. The hardware implementation of the CFMMC only

required 75% of the silicon area used to implement the PPFMMC. The CFMMC architecture

was also capable of reducing the bandwidth requirement and energy consumption up to 72%

and 16% respectively when P0>70%. However, when P0 is not high enough , the CFMMC

suffered from bandwidth requirement, energy consumption, and latency increases.

Consequently, these limitations limited the application of CFMMC into video surveillance,

video telephony, and video conferencing. For these applications, the CFMMC shall guarantee

its bandwidth requirement, energy consumption, and latency reduction capability.

 86

5.3. Meanshift
5.3.1. Meanshift's Role in Vision Applications.

Image segmentation has been widely adopted in applications such as intelligent

surveillance, autonomous vehicles, and mobile robotics. These applications often require not

only segmentation performance, but also processing speed. Among most of the image

segmentation algorithms, the Meanshift algorithm [58][59] has been one of the most

commonly used because of its good performance and speed. However, the processing speed

of the Meanshift segmentation is still not fast enough for real-time (not necessarily video rate)

applications. Table 13 lists the execution time taken by the optimized Meanshift

segmentation program, EDISON [60], to process a VGA image. The total execution time

took more than 2 seconds and the Meanshift filter operation occupied more than 78% of the

total execution time. Thus, to reduce the execution time, a VLSI implementation is necessary

for these real-time applications.

Motivated by the need of speed in the Meanshift filter operation, we propose a VLSI

architecture for the Meanshift filter. However, VLSI design of the Meanshift filter encounters

severe challenges such as huge image data access, large temporary storage, and limited

parallelism due to the nature of the Meanshift algorithm. To conquer these challenges, this

dissertationr presents several novel design approaches. First, for the huge image data access,

we proposed a partial-update ping-pong buffer that significantly reduces the amount of data

Table 13 EDISON’s execution time of VGA image “Raincoat Sam” on a PC with PentiumIV 2.8GHz
processor and 1GB memory.

Operation Execution time (sec.) Percentage (%)
Meanshift Filter 1.58 78.6

Connected Component 0.09 4.5
Transitive Closure 0.20 9.9

Region Pruning 0.14 7.1
Total 2.01 100.0

 87

read from the input image memory. Second, for the large temporary storage, we use a

ping-pong local Meanshifted status buffer that reduces the size of the Meanshifted status

memory by 50%. Third, for the limited parallelism, we propose a 4-pixel parallel 9-stage

pipelined Meanshift vector computation unit to utilize the limited parallelism in the standard

Meanshift algorithm. The proposed architecture can process 9.8 FPS of VGA image in

average when clocked at 110 MHz.

The contribution of this work is two fold. First, the proposed architecture is the first

VLSI architecture implementing the standard Meanshift filter algorithm. The speed of the

proposed architecture is at least 3 times higher than the software solution. This makes the

Meanshift filter available to non-video rate real-time applications. Second, this is the first

work that investigated the amount of data read from the image memory needed by the

Meanshift algorithm. We believe this bandwidth requirement information would help

implementing video rate real-time Meanshift filtering in the future.

5.3.2. Meanshift Algorithm

The Meanshift algorithm is a non-parametric clustering algorithm which finds the

cluster belonging of each feature point in the feature space. The Meanshift algorithm clusters

the feature points by computing a Meanshift vector (MSV) of each feature point. The

Meanshift vector of a feature point points toward the cluster center that this feature point

belongs to.

In image filtering, the Meanshift vector m at a point x in the feature space can be

computed by

x
xxxx

xxxxx
xm

x

x −
−−

−−
=

∑
∑

∈

∈

)(

)(

)()(

)()(
)(

wi

spacespace
i

colorcolor
i

wi
i

spacespace
i

colorcolor
i

kg

kg
, (3)

where xi are points within the color range hc and spatial range hs of point x, the

superscript color and space represents the color and spatial subspace components of a point,

 88

and g() and k() are weight functions based on Euclidean color and spatial distance

respectively. If g() and k() are uniform and linearly increasing respectively, the first part in eq.

(1) is similar to finding the mass center of the space defined by hc, hs, and x. We call the first

part of eq. (1) as the temporary mode and the spatial window defined by hs as the Meanshift

window. The vector difference between the new temporary mode and the original point is the

Meanshift vector. We call the computation of a Meanshift vector described above as a

Meanshift search iteration. The Meanshift algorithm takes the new temporary mode as the

center of the next Meanshift window. If the length of a Meanshift vector is smaller than a

very small threshold and stops to decrease further, the Meanshift vector is said to converge.

The temporary mode of a converged Meanshift vector is a final mode. The pixels with their

Meanshift vector pointing toward the same mode are part of the same cluster, and are

assigned with the same final mode’s color in Meanshift filtering.

Supposedly, each pixel in an image should be associated to a mode through the

Meanshift search session described above. However, the pixels or modes that are close

enough to a mode are very likely to be associated to this mode. Using this property, a pixel

that is within very small color and spatial distances to a mode is directly associated to this

mode and no Meanshift search is performed. On the other hand, if a temporary mode is

within this very small color and spatial distances to a final mode, the pixels associated to this

temporary mode is changed to associate to this final mode. As a result, the subsequent

Meanshift search iterations in this Meanshift search session can be skipped. We call this

operation as the basin collection. With the basin collection, both the number of Meanshift

search iteration and session can be reduced, thus increasing the speed of the Meanshift

search.

For more details on Meanshift filtering algorithm, please refer to [59][60].

 89

5.3.3. Test Images and Mean Shift Filter Parameter

Settings
Fig. 32 shows the VGA test images used in this work. These images include simple and

complex indoor and outdoor scenes. We believe these scenes are common to real-time

applications such as human recognition, robot navigation, and autonomous vehicles. Test

image “clear sky” is the simplest image which has the minimal number of regions. Test

image “dog & grass” is the most complex image that has the maximal number of regions.

This parameter setting described as follows is used in this work. The spatial and color

range of the mean shift filter are 7 and 6 respectively. The color range used in basin

collection is 3. The mean shift search iteration limit is 100.

Sam & Danny Raincoat Sam Corridor Rainy Road

ds
Lab Clear Sky Parking Lot Parking Space

Farm Road Bike Road Dog & Grass Kids

Cloudy Sky Sun & Cloud

Fig. 32. VGA test images

 90

5.3.4. Meanshift Architecture
A. Architecture Design Challenges

The nature of the Meanshift algorithm gives rise to three main architecture design

challenges: the huge amount of data read from the image memory, the large storage

requirement, and the limited parallelism.

The huge amount of data read limits the processing speed of the Meanshift algorithm. In

a direct implementation, the pixels within a Meanshift window should be read and ready in

the beginning of each Meanshift search iteration. Otherwise, the computation cannot be

started and thus the processing speed is limited. For example, the amount of data read

requirement for a VGA sized image with hc and hs being 6 and 7 respectively can reach up to

97.56 million pixels, which is about 372.19 MB if each pixel is 32-bit wide. If the data port

width to the image memory is only 32-bit, 97.56 million cycles would be spent on only

reading the input data. Therefore, it is necessary to reduce the amount of data read to improve

the processing speed.

The second challenge is the large storage requirement. The Meanshift algorithm needs

an input image memory, an output filtered image memory, and a Meanshifted status memory

which keeps the record of whether a pixel is associated to a mode or not. The size of these

memories is proportional to the image size and would be very large for VGA size images. If

it is possible to reduce the data width of these memories, the cost of the storages in the

Meanshift filter architecture can be reduced.

 The limited parallelism is a result of the iterative Meanshift search process. The next

Meanshift search iteration cannot start before the previous Meanshift search iteration ended.

This is because the Meanshift window center of the new iteration is determined by the

temporary mode computed from the previous iteration. Such dependency that originated from

the algorithm’s iterative nature makes it difficult to be accelerated by using parallel

 91

Meanshift search hardware. Therefore, it is necessary to exploit the available parallelism

within each Meanshift search iteration to increase the processing speed.

B. Architecture Overview

Fig. 33 illustrates the block diagram of the proposed Meanshift filter architecture. The

core architecture consists of a partial-update ping-pong buffer (PUPPB), ping-pong local

Meanshifted status buffer (PPLMSSB), Meanshift vector computation unit (MSVCU), and

same mode list (SML). In which, the PUPPB reuses the data in the Meanshift window to

reduce the amount of data read from the image memory. The PPLMSSB stores part of the

Meanshifted status internally in small local ping-pong buffers to reduce the storage size. This

reduces the size of the Meanshifted status memory by 50%. Finally, to increase the

Same Mode List
(SML)

Partial-Update
Ping-Pong (PUPP)

Buffer

Mean Shift Vector Computation Unit
(MSVCU)

Ping-Pong Local
Mean Shifted Status

(PPLMSS) Buffer

Image Memory
Controller

Mean Shifted Status
Memory Controller

Filtered Image
Memory Controller

rd_mss_signals
(FINAL_MODE)

w
r_

bc
k_

m
ss

(T
E

M
P

_M
O

D
E

)

wr_coord_mss_singals

rw_mode_signals

rw_mss_signals
(FINAL_MODE)

cu
rr

_m
sv

/c
ur

r_
m

od
e

rd_img_signals

rd_img_signals
rd_mss_signals
(FINAL_MODE+
TEMP_MODE)

To/from filtered img. memory

From input img. memory From/to mean shifted status memory

Fig. 33. Block diagram of the proposed Meanshift filter architecture

 92

processing speed, the parallelism in the Meanshift vector computation and basin collection is

exploited by the 4-pixel parallel MSVCU and the SML. The details of these components are

presented in the following sub sections.

The work flow of the proposed Meanshift filter is explained as follows. The Meanshift

filter processes each pixel in an image in raster-scan order. Before finding the mode of a pixel,

the Meanshifted status of this pixel is checked first. The Meanshifted status of this pixel is

read from the Meanshifted memory and the PPLMSSB. If the current pixel already has a

mode, the next pixel in the image is processed. For each pixel without a mode, the pixel data

and the Meanshifted status in the current Meanshift window are read into the PUPPB and

PPLMSSB.

Once the pixel data in the Meanshift window are ready, the MSVCU computes the new

Meanshift vector and the new mode. The MSVCU also performs basin collection. The image

coordinates and updated Meanshifted status of the pixels belonging to the same mode are

stored in the SML. Note that the Meanshifted status in the PPLMSSB is also updated during

the basin collection. At the end of each MSV computation, the MSVCU also checks the

MSV’s length for convergence.

If the MSV converges, all the pixels in the SML are written back to the filtered image

memory with the value of the current converged mode. Their corresponding Meanshifted

status in the Meanshifted status memory is also updated. Then the next pixel in the image will

be processed. If the MSV did not converge, the temporary mode of this MSV would be the

center of the new Meanshift window, and another iteration of MSV computation process

would be performed. The Meanshift filter flow ends when the last image pixel is processed.

C. Partial-Update Ping-Pong Buffer (PUPPB)

The PUPPB reuses the image pixels in the overlapped portion of the new and old

Meanshift windows to reduce the bandwidth requirement. The PUPPB explores two types of

 93

reuse: intra Meanshift search reuse and inter Meanshift search reuse.

Fig. 34 (a) illustrates the concept of the intra Meanshift search reuse. Within a Meanshift

search session, the Meanshift window of two consecutive iterations is partially overlapped.

The pixel data in the overlapped part are read by the previous iterations. These pixel data can

be reused and avoid being read from the image memory again in this iteration. The size of the

overlapped part is at least one quarter of a Meanshift window. This is because the maximum

Meanshift vector can only point to the corner pixel positions. As a result, at least 25% of the

bandwidth can be saved by reusing the pixel data in the overlapped part.

Reuse data from previous window

Read from image memory

current buffer

mean-shift
vector

Previous mean-shift window

overlapped
region

non-overlapped
region

overlapped
region

New mean-shift window

(a) Intra Meanshift search reuse

Reuse data from previous session window

Read from image memory

current buffer

Next
session

mean shift
window

overlapped
columns

Previous
session
mean-shift
window

overlapped
columns

(b) Inter Meanshift search reuse

Fig. 34. Concept of PUPP reuse

 94

Fig. 34 (b) illustrates the concept of the inter Meanshift search reuse. Given the image

pixels are processed in raster-scan order, the Meanshift window of two pixel positions is

often overlapped when they are near each other. The pixel data in the horizontal overlapped

part between the two Meanshift windows are reused. Only the pixel data in the

non-overlapped part are read from the image memory column by column. Note that the

distance between the centers of the two windows must be smaller than half the width of a

Meanshift window.

Fig. 35 illustrates the block diagram of the PUPPB and the interconnect among the

buffers. The PUPP consists of three buffers. Buffer 0 is used for the inter Meanshift search

reuse whereas buffer 1 and buffer 2 are used for the intra Meanshift search reuse.

Buffer 0

Buffer 1

Buffer 2

buf0to1_data/wr

buf1to2_data/wr

buf2to1_data/wr

buf1_data_out

buf2_data_out

buf0_data_out

colblk_data

img_data

PUPPB Control colblk_data_vldimg_data_vld

bufsrc_sel

img_data_req

bufcur_sel

colblk_data_req

REG

REG

Buf0_ctrl

Buf1_ctrl

Buf2_ctrl

Fig. 35. Block diagram of PUPP

 95

Buffer 0 is only used in the first iteration of a Meanshift search session. The pixel data

from the image memory are written into buffer 0 column-wise. We call this process as

“fetch”. During the fetch process, each read reads four pixels simultaneously through a

128-bit data port. It takes four reads to read a pixel column, which consists of 15 pixels, in a

Meanshift window. The last pixel of the fourth read is not used.

Buffer 1 and buffer 2 are the ping-pong buffers that are used in the iterations after the

first iteration. The pixel data of the overlapped part in a Meanshift window are updated from

the “old” buffer that holds the data of the previous iteration. The pixel data of the

non-overlapped part are read from the image memory. The pixel data from the old buffer or

the image memory are written into the “new” buffer that should hold the data for the current

iteration. We call this process as the “update” process. The “old” buffer can be any of the

three buffers, but the “new” buffer can only be buffer 1 or 2.

The buffers are connected to allow buffer 1 to be updated by buffer 0 or buffer 2, and to

allow buffer 2 to be updated by buffer 1. All the buffers have two outputs. One output is for

the MSV computation and the other is for the ping-pong update. The data width of the output

for the MSV computation is 4 pixel wide because of the 4-pixel parallel design. The data

width of the output for the ping-pong update is 15 pixels which correspond to a column in the

Meanshift window. The update output of buffer 0 and buffer 2 is multiplexed to buffer 1’s

overlapped data input. Similarly, the update output of buffer 1 is connected to buffer 2’s

overlapped data input. In addition to the overlapped data input, all the buffers have an input

from the image memory. For buffer 0, this input is for the fetch process; for buffer 1 and

buffer 2, this input is for the update process to read the pixel data in the non-overlapped part.

 96

Fig. 36 illustrates the image memory pixel read count and the read count reduction in

different test images. The PUPPB can reduce the average image memory read count by

81.6%. For ”dog & grass”, the image memory read count can be reduced by 91.1%. This is

because the MSVs in complex images are mostly short. Therefore, the overlapped part is

usually large. Consequently, more data can be reused and less data are read from the image

memory. The smallest read count reduction happened in ”clear sky”, the reduction is only

50.9%. This is because the MSVs are mostly long in simple scene. Therefore, the overlapped

part is usually small. As a result, less data can be reused. This image complexity dependent

characteristic of MSVs enables the PUPPB to save more bandwidth in more complex scene.

D. Ping-Pong Local Meanshifted Status Buffer (PPLMSSB)

Meanshifted status represents whether a pixel has been associated to a mode or not. If a

pixel is already associated to a mode, either a temporary or final mode, we do not need to find

its Meanshift vector. The Meanshifted status has three states, which are NO-MODE,

TEMP-MODE, and FINAL-MODE. NO-MODE means the current pixel is not associated to

0.00E+00 2.00E+07 4.00E+07 6.00E+07 8.00E+07 1.00E+08 1.20E+08

Sun & Cloud

Cloudy Sky

Kids

Dog & Grass

Bike Road

Farm Road

Parking Space

Parking Lot

Clear Sky

Lab

Rainy Road

Corridor

Raincoat Sam

Sam & Danny

Im
ag

es

Img. pixel read count (pixels)

PUPP
without PUPP

75.96%
88.77%

85.09%
91.06%

80.80%

80.95%
79.78%

86.92%
50.94%

85.73%

88.45%
69.61%

91.41%

87.34%

Fig. 36. Image memory pixel read count comparison between using PUPP and not using PUPP

 97

a mode yet. A NO-MODE pixel would be associated to a mode through either finding its

Meanshift vector or the basin collection. If a pixel is associated to a temporary mode through

the basin collection, the Meanshifted status of this pixel is TEMP-MODE. If a pixel is

associated with a final mode, the Meanshifted status of this pixel is FINAL-MODE.

At first glance, a Meanshifted status must be represented by at least two bits. One bit

represents the TEMP-MODE while the other represents the FINAL-MODE. If both bits are 0,

they represent NO-MODE. Since each pixel has a Meanshifted status, storing all the

Meanshifted status of a VGA-sized image takes 75.0 KB of memory space, which is quite

large in VLSI design. However, we notice that the lifetime of TEMP-MODE bit only lasts

through the iterations in a Meanshift search session. Once the final mode is found and the

pixels are associated to it, the TEMP-MODE bit of these pixels is no longer needed. Based on

this observation, we decided that only the FINAL-MODE bit is stored in the external

Meanshifted status memory. When the FINAL-MODE bit is needed, it is read from the

memory into a local buffer. The TEMP-MODE bit is stored in a pair of local ping-pong

buffers. Doing so reduces the storage requirement from 75.0 KB to only 37.5 KB plus the

size of the three local buffers. The buffer size is as large as the Meanshift window size and

each pixel is represented by only one bit. As a result, for a Meanshift window of 15x15, only

225 bits are needed for each buffer.

The local ping-pong buffer operates similarly to the PUPPB. The overlapped part is

copied from the old buffer to the new one in the same manner as the PUPPB does. However,

the non-overlapped part does not need to be updated with the Meanshifted status from the

external Meanshifted status memory. Instead, the pixels within the non-overlapped region are

updated from the MSVCU if they are associated with a temporary mode through the basin

collection.

Fig. 37 illustrates the block diagram of the PPLMSSB. Similar to the PUPPB, the

 98

PPLMSSB consists of three buffers. MSSBuf 0 is used to store the FINAL-MODE bit read

from the Meanshifted status memory, whereas MSSBuf 1 and MSSBuf 2 are the ping-pong

buffers for the TEMP-MODE bit.

Unlike the buffer 0 in the PUPPB, MSSBuf 0 is independent of the other two because

their content is different. The width of the data port connecting to the external Meanshifted

status memory is 4-bit, which corresponds to the Meanshifted status of 4 pixels. In contrast,

MSSBuf 1 and MSSBuf 2 are connected similar to the PUPPB. However, the write path from

the external memory is replaced by the write back path from the MSVCU. The write back

path updates the TEMP-MODE bit in the current buffer after the basin collection. The width

of the input and output data port connected to the MSVCU is also both 4-bit.

MSSBuf 0

MSSBuf 1

MSSBuf 2

buf1to2_mss

buf2to1_mss

buf1_data_out

buf2_data_out

buf0_data_out

mss_temp_mode

mss_mem_data

PPLMSSB Control mss_vldmss_data_vld

MSSBuf0_ctrl

MSSBuf1_ctrl

MSSBuf2_ctrl

mss_data_req

mss_final_mode

bufcur_selwrbck_mss

mss_req

(from MSVCU)

REG

REG

REG

Fig. 37. Block diagram of the PPLMSSB

 99

E. MSV Computation Unit (MSVCU)
Fig. 38 illustrates the pipelined datapath and schedule of the MSVCU. The MSVCU is a

4-pixel parallel and 9-stage pipelined architecture. The 4-pixel parallel design enables higher

throughput and matches the width of the data port connected to the image memory. Together

with the 9-staged pipelined architecture, the computation resource can be better utilized.

In the first and second stage, the pixels are checked if their color is within the color

range. If a pixel is within the color range, it would be passed to the next stage and its weight

would be one; otherwise, the weight would be zero. This weight assignment reflects a

uniform kernel. In addition, this stage also checks if the pixel is within the spatial and color

range of basin collection.

The third stage is the accumulation stage. The pixel data and weight are both

accumulated in accumulator xacc and wacc respectively. In addition to the accumulation, the

coordinates of the pixels being collected are written to the SML by the basin collector. Note

that all the pixels in the 15x15 window are checked and accumulated in the first and second

stage before the being processed by the third stage. Since our architecture is 4-pixel parallel,

it takes 62 cycles to accumulate all the pixels in a window.

Accumulator unit 3

In wnd
check

0

0

wacc

xacc

1

Basin
collector

pixel 3

Accumulator unit 2

In wnd
check

0

0

wacc

xacc

1

Basin
collector

pixel 2

Accumulator unit 1

In wnd
check

0

0

wacc

xacc

1

Basin
collector

pixel 1

x

Convergence
check

new_msv

msv_prj_modecurr_mode

converge

wsum_inv

1/w

To SML and PPLMSSB

Weight adder tree

+

+

wsum

+

Data adder tree

+

+

+
xsum

Accumulator unit 0 0

0

wacc

xacc

1

Basin
collector

pixel 0

+

msv_prj_clr msv_prj_mss

new_mode

msv_prj_mode_sel

msv_prj_addr

mode_prj_addr

1st 2nd 3rd 4th

5th 6th 7th 8th

In wnd check

... ...

60 4-pixels

Color
Range
Check

Accum.
& Basin
Collect

Data &
Weight
Sum

MSV
Compute

MSV
Proj.
Pixel
Req.

Convergence
Check

MSV
Proj.
Mode
Req.

MSV
Proj.
Mode
Read

9th

Fig. 38. Datapath and pipeline schedule of the MSVCU

 100

Once the color and weight of all the pixels within the window are accumulated, the

accumulated sums from the four parallel accumulator units are added together through a

small adder tree. The final sum of pixel data and weight are denoted as xsum and wsum in the

figure.

In the fifth stage, the inverse of wsum is approximated by a piecewise-linear model.

Then xsum is multiplied to the inverse of wsum to give the new MSV.

The sixth and seventh stage checks for MSV convergence. The reason for using two

stages is to reduce the critical path and account for the one cycle PUPPB and PPLMSSB

access latency. The color and final Meanshifted status of the pixel pointed by the MSV

projection, which we would refer as the MSV projected pixel, is read from the PUPPB and

PPLMSSB. If the color difference between the MSV projected pixel and the new mode is too

large, the length of the MSV is checked for convergence. If the color difference is smaller

than the color range of the basin collection, the Meanshifted status of the MSV projected

pixel is checked. If the MSV projected pixel is not associated to a final mode. In this case,

there is only 7 cycles of pipeline delay. If the MSV projected pixel is associated to a final

mode, the mode of the projected pixel is the new mode and the Meanshift search session ends.

This would introduce two additional pipeline stages to read the mode of the MSV projected

pixel from the filtered image memory. As a result, the total pipeline delay would be 9 cycles.

In the case of 9 cycles pipeline delay, the total cycles taken to generate one MSV is 74.

This includes one request cycle from the PUPPB and PPLMSSB to send read request to the

input image memory and Meanshifted memory, 5 cycles to read the pixels of the first column

into the PUPPB and PPLMSSB, 62 color range check and accumulation cycles, and 6 cycles

for the rest of the pipeline.

F. Same Mode List (SML)

The SML stores the spatial coordinates of the pixels associated to the same mode during

 101

a Meanshift search session. Once the final mode is found, all the pixels stored in the SML are

written to the filtered image memory with the current mode color and their corresponding

Meanshifted status in the Meanshifted memory are also updated. We call this process as the

“SML dump” process.

Fig. 39 illustrates the block diagram of the SML. The SML mainly consists of two

address generators, a SRAM controller and a SRAM memory, a filtered image memory

controller, and a Meanshifted status memory controller. The SML address generator

generates the address for accessing the SML memory. The other address generator generates

the address for accessing the external filtered image and Meanshifted status memory. The

address is generated from the data in the SRAM. Each entry in the SRAM stores the pixel

coordinates of the first pixel in a 4-pixel chunk and their updated Meanshifted status. As a

result, the width of a word in the SRAM is 23-bit, in which 19 bits are for the image address

and 4 bits are for the Meanshifted status. The SRAM has 384 entries and is sufficient when

the Meanshift search iteration limit is 100. During the SML dump process, the SML writes 4

pixels to the filtered image and the Meanshifted status memories simultaneously because of

SRAM Ctrl.SML AG

SRAM

addr_push

SML Control

coord_mss_data

wr_push

Img. AG

rd_dump

SML
Filtered Img.

Memory
Contoller

coord. data

addr_mdimg

w
en

oe
n

ce
n

ad
dr

.
D

Q m
ode_dum

p
m

ss_dum
p

acc_mode
mode_addr
rd_mode_data

curr_mode

m
ss. data

SML Mean
Shifted Status

Memory
Controller

wr_mode_data
rdy_mode

acc_mss
mss_addr
rd_mss_data
wr_mss_data
rdy_mss

To mean shifted status memory controller

To filtered img. memory controller

From basin collector

Fig. 39. Block diagram of the SML

 102

the 4-pixel parallel architecture.

5.3.5. Implementation result
The proposed Meanshift filter design is synthesized using UMC 90 nm technology with

standard cell and SRAM libraries. The equivalent gate-count, excluding the SRAMs, of the

synthesized netlist is 516,533. The equivalent gate-count of each component is listed in Table

14. The PUPPB and PPLMSSB occupy the majority of the gate-count. Despite the control

and miscellaneous logics, the SML occupies the smallest portion of the gate-count; however,

most of the SML’s area is contributed by the SRAM cells. Although the maximum clock rate

is 110 MHz, there is still room to increase the clock rate by using more pipeline stages.

Fig. 40 shows the clock cycles needed to filter the test images. The estimated frame rate

Table 14 Synthesized gate count of each component

Component name Equivalent gate-count Percentage %
PUPPB 437,064 84.61
PPLMSSB 21,702 4.20
MSVCU 51,016 9.88
SML 5,194 1.01
Control 780 0.15
Misc. 778 0.15
Total 516,533 100.00

0.00E+00 5.00E+06 1.00E+07 1.50E+07 2.00E+07 2.50E+07 3.00E+07 3.50E+07

Sun & Cloud

Cloudy Sky

Kids

Dog & Grass

Bike Road

Farm Road

Parking Space

Parking Lot

Clear Sky

Lab

Rainy Road

Corridor

Raincoat Sam

Sam & Danny

Te
st

 Im
ag

es

Cycle count (cycles)

7.83 fps

4.04 fps

24.91 fps
7.35 fps

11.48 fps

44.19 fps

6.86 fps

15.96 fps

15.13 fps

12.94 fps
3.34 fps

8.67 fps

7.63 fps

24.29 fps

Fig. 40. Processing cycles and estimated frame rate of each test images

 103

is also marked in the figure assuming a 110 MHz operating frequency. For the worst case,

which is the “dog & grass” case, the total cycle count is 32,914,220. If the clock is 110 MHz,

our Meanshift filter can process VGA images at a frame rate of at least 3.34 FPS. The

average frame rate for our test images is 8.75 FPS. For QVGA images, the minimal frame

rate is 14.20 FPS.

Table 15 lists the specification the proposed Meanshift filter architecture and other

existing segmentation implementations. We also include the EDISON software

implementation for comparison. Although Park et al.’s dynamic Meanshift filter architecture

is the first architecture for the Meanshift algorithm; they only outlined their systolic array

architecture and have yet to provide further implementation detail. The internal memory

usage of the proposed architecture is the smallest among the compared implementations.

Although the throughput of other segmentation algorithm implementations is higher than the

proposed Meanshift filter architecture, the segmentation performance of different algorithms

Table 15 Comparison of existing segmentation implementation
Implementation Proposed

Meanshift
Filter

Dynamic
Meanshift
Architecture
[69]

Real-time
K-means
Architecture
[67]

Region
Growing
Architecture
[63]

Histogram
Peak
Climbing
Architecture
[66]

EDISON
Software
[60]

Implementation
Type

ASIC FPGA FPGA FPGA ASIC PC

Max. Processing
Region Count

224 224 256 260 24,882 224

Process/FPGA UMC 90 nm Not
Available

Xilinx
Virtex-II
XC2V6000

Altera Stratix
EP2S180

0.13 um 0.13 um

Operation
frequency

110 MHz Not
Available

82.7 MHz 20MHz 7 MHz 1.8GHz

Throughput *3.34 FPS
(VGA)
14.20 FPS
(QVGA)

Not
Available

35 FPS
(VGA)

30 FPS
(QVGA)

50 FPS
(DVD)

<1 FPS
(VGA)
<3 FPS
(QVGA)

Hardware Cost 517 K gates Not
Available

85% slices 86 K ALUTs 9,379 K
gates

~11 M
gates

Memory
Requirement

1.08 KB
(internal)
1.03 MB
(external)

Not
Available

76% block
ram

230 KB
(embedded)

2.52 MB
(internal)

2.05 MB

* worst case frame rate

 104

is not the same. For instance, Meanshift based algorithm can support up to 224 segments

whereas other algorithms can support less than 261 segments except the histogram peak

climbing architecture. This means under segmentation is likely to happen in other algorithms.

Moreover, the Meanshift algorithm does not rely on initial guess and does not need to give

the number of cluster center in advance, making the Meanshift algorithm more convenient to

use than K-means algorithms. When compared to the EDISON software, the proposed

Meanshift filter architecture can provide a 3 times speedup with relatively much less

hardware and lower clock rate.

5.3.6. Summary

In the proposed VLSI Meanshift filter architecture, the partial-update ping-pong buffer

reduced the bandwidth to the image memory by 81.6%. In addition, the proposed ping-pong

local Meanshifted status buffer reduced the size of the Meanshifted status memory by 50%.

Finally, a 4-pixel parallel 9-stage pipelined MSV computation unit is also proposed to exploit

the limited parallelism in the Meanshift algorithm. The synthesized gate count of the

proposed architecture is 517K. When clocked at 110 MHz, the proposed architecture can

perform Meanshift filtering of VGA images at the average frame rate of 8.75 FPS. We

anticipate this work to encourage real-time implementations of complex but high

performance vision algorithms so that more vision-based real-time application would be

possible in the future.

The bandwidth to external memory remained as a speed limiting issue. Therefore,

further reducing the bandwidth requirement of the Meanshift algorithm is very important.

Another worthy future research topic is to reduce the power consumption. The proposed

architecture involved a lot of buffer and memory accesses which would make the architecture

very power consuming. Therefore it is necessary to explore low power Meanshift architecture

in the future.

 105

5.4. MCADSW
5.4.1. Stereo Matching's Role in Vision Applications

 Stereo vision is an important early vision tool that has been widely adopted by

applications such as multiview video coding, freeview TV, 3D video conferencing, intelligent

surveillance, autonomous vehicles, and mobile robots. Stereo vision finds the depth in a

scene based on the stereo image pair of the scene. The depth of a pixel is inversely

proportional to the disparity of this pixel. The disparity of a pixel is the distance of this pixel

and the corresponding pixel in the other image. The process of finding the corresponding

pixel is often referred as disparity estimation or stereo matching. The resulting disparity of

each pixel in an image forms a disparity image or disparity map. For more detail on stereo

vision, please refer to [71].

5.4.2. Stereo Matching Issues
The applications adopting stereo vision often require high performance and real-time

processing speed. The performance is usually defined by the error rate of a disparity map

when compared to the ground truth disparity map [72]. Lower error rate implies higher

performance. Complex disparity estimation algorithms usually achieve much better

performance than simple algorithms. However, simple algorithms are usually much faster

than complex algorithms. As a result, most real-time applications have adopted simple

algorithms to trade the performance for speed. For applications that cannot accept trading

performance for speed, complex algorithms have been adopted and implemented using

powerful computation devices such as DSPs, GPUs, and dedicated hardwares. However, the

computation power of DSPs is not high enough to enable complex disparity estimation

algorithms to support real-time processing. The GPUs can support real-time disparity

estimation, but is too expensive for embedded real-time applications. The dedicated hardware

 106

approach that uses FPGAs/ASICs can provide high computation power with relatively less

expensive hardware cost. This makes the dedicated hardware approach suitable for

implementing complex disparity estimation algorithms for real-time applications. However,

complex disparity estimation algorithms are often not hardware-friendly and bandwidth

hungry.

5.4.3. MCADSW algorithm
A. Algorithm Overview

Fig. 41 shows the overall flow of the proposed mini-census adaptive support weight

(MCADSW) algorithm. The MCADSW algorithm consists of four major steps. First, the

mini-census transform and matching step performs mini-census transform on the left and

right images and computes the initial matching cost of each pixel. The second step is the

weight generation which generates the weight coefficients needed in the cost aggregation step.

Once both the initial matching cost and weight coefficients are available, the matching cost

will be aggregated through a two-pass cost aggregation step. Finally, the best disparity can be

obtained by finding the disparity with the minimum aggregated matching cost through a

Winner-Takes-All method.

B. Mini-Census Transform & Matching
The mini-census transform, a modified and simplified version of census transform [87],

Left Image

Right Image

Mini‐Census
Transform &
Matching

Vertical
Cost Aggregation

Horizontal
Cost Aggregation

Winner‐Takes‐All
(WTA)

Weight
Generation

Disparity
Map

Fig. 41. Overall flow of the proposed mini-census adaptive support weight algorithm

 107

compares the luminance of the six pixels within a support window with the center pixel. The

six pixels template is marked in Fig. 38. If a pixel’s luminance is larger than the center

pixel’s luminance, it is given the label 0, otherwise the label 1. After the comparison of the

six pixels, a binary bitstream is obtained which characterizes the luminance relation between

the center pixel and its surrounding six pixels. With the mini-census bitstream, we can

represent each pixel using only 6-bit.

The mini-census matching cost between two pixels is defined as the hamming distance

between the mini-census bitstreams. We would refer the mini-census matching cost as the

census cost hereon for brevity, which is defined as

),(,,,, diRiLdi bbHE = , (4)
where Ei,d is the census cost of pixel i at disparity d; bL,i is the bitstream of pixel i in the left

image and bR,i,d is the bitstream of pixel i at disparity d in the right image; H is the hamming

distance function.

Fig. 42 illustrates an example of the mini-census transform and census cost. After the

transform, the mini-census bitstreams of the two pixels in the figure are 111000 and 111011

5

7

38

52

19 4134

1

1

0

0

1 0X

Mini-Census Transform

Bitstream: 111000

1st pixel

9

40

42

47

47 5349

1

1

1

1

1 0X

Bitstream: 111011

2nd pixel

Hamming Distance = 2

Fig. 42. The census transform and matching

 108

respectively. The hamming distance between the bitstreams is 2; hence, the census cost is 2.

Since the bitstream represents relative information, the census cost is therefore much

less sensitive to brightness bias and exposure gain. In addition, the census cost preserves the

depth boundary in disparity maps better than the traditional SAD cost does.

C. Weight Generation
The adaptive weight generation was based on the proximity and color distances in the

original adaptive support weight algorithm. However, we removed the proximity weight

based on our observation that it mainly benefits the performance when the support window is

larger than 19x19. We have compared the average disparity error rate of MCADSW with and

without the proximity weight. The average disparity error rate was averaged over the overall

error rate of tsukuba, venus, teddy, and cones stereo image pairs from the Middlebury stereo

vision evaluation website [72]. Note that we have decided to use the overall error rate instead

of the non-occlusion error rate because in most applications, such as robotics, freeview TV,

and 3D modeling, prefer overall error rate over non-occlusion error rate. This is due to the

fact these application do not just rely the depth at non-occlusion, the depth at depth

discontinuities is also critical to the performance of these applications. From our experiment

result, the difference of the disparity estimation error rate between using and not using the

proximity weight was less than 3% for window size of 31x31. Therefore, we decided to trade

the very small performance loss for the computation complexity reduction.

The color weight was originally defined as a Gaussian function of the color distance

between a pixel i in the support window and the center pixel c of the window. The color

weight wi,c of pixel i with respect to pixel c is

)exp(,
,

c

ci
ci

C
w

γ
Δ

−= , (5)

where ΔCi,c is the color distance between pixel i and c; cγ is a tuning constant. This weight

allows the pixel with color similar to the center pixel to have more influence on the final

 109

matching cost. Note that since we use two-pass aggregation, the weight for vertical and

horizontal aggregations are generated separately. The vertical weight is generated with

respect to the center pixel of each column in the support window, whereas the horizontal

weight is generated from the center row with respect to the center pixel of the support

window.

To reduce computation complexity and make the algorithm more hardware-friendly, we

proposed three simplifications to the weight generation.

First, we adopted the YUV color representation instead of the L*a*b* color

representation, which was originally adopted by the ADSW, in our MCADSW. Using YUV

color representation allowed us to use hardware-friendly positive integer numbers instead of

complex hardware-unfriendly signed floating-point numbers during the weight generation.

Fig. 43 shows the average error rate of MCADSW using different color representations. The

error rate was averaged over the overall error rates of the four stereo image pairs from the

Middleburry stereo vision evaluation website [72]. From Fig. 3 we noticed that the error rate

difference between using YUV and L*a*b* color representations was less than 2%. The error

rate in the case of using Y-only and RGB color representations was significantly larger than

using L*a*b*. Therefore, we have decided to adopt YUV color representation in MCADSW.

Er
ro
r
Ra

te
 %

Support Window Size

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

RGB
Y
YUV
LAB

Fig. 43. Disparity estimation error rate of using different color spaces

 110

Second, we used Manhattan color distance instead of Euclidean color distance to

eliminate the three square and one square root computations that was necessary for

computing Euclidean distance. Table 16 lists the disparity estimation error rate and execution

time on a Pentium IV 2.8GHz machine when Euclidean and Manhattan distances were used

in MCADSW. Interestingly, the result using Manhattan color distance slightly outperformed

using Euclidean color distance. One possible explanation is that YUV color representation is

not perceptually uniform and linear like L*a*b* color representation is. Therefore, Euclidean

color distance could no longer reflect the actual color distance. After using Manhattan color

distance, the execution time of the MCADSW was reduced by 34.3%.

Third, we proposed a scale-and-truncate approximation of the color weight function.

The scale-and-truncate approximation approximated the exponential function by scaling it up

by 64 then truncate it to leave only one non-zero most significant bit (MSB). The reason for

scaling up by 64 is because the error rate stopped decreasing after the scale factor exceeds 64.

The reason for preserving only one non-zero MSB is because the error rate difference

Table 16 Performance comparison between using Euclidean and Manhattan color distances
Error Rate (%)

Method Average Error
Rate (%) TSUKUBA VENUS TEDDY CONES

Tsukuba Execution Time
(seconds)

Euclidean 7.47 3.47 0.91 14.3 11.2 4.75

Manhattan 6.94 3.08 0.59 14.0 10.1 3.12

Manhattan Color Distance

Sc
al
ed

 W
ei
gh
t

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Fig. 44. Scaled, truncated, and non-zero MSB preserved weight function

 111

between preserving one bit and two bits was less than 0.5%. With only one bit in the color

weight being one, the multiplication between the color weight and the initial cost can be

implemented with only one simple shift operation. The curve of the final scale-and-truncated

weight is shown in Fig. 44. After applying the proposed approximation, the execution time

could be reduced by 41.0%.

D. Vertical and Horizontal Cost Aggregation

The final matching cost was aggregated from the weighted cost within the support

window using a two-pass approach proposed by Wang et al. [109]. The two pass approach

first aggregates vertically to give a vertical aggregated cost of each column, then the vertical

aggregated costs are aggregated horizontally together to give the final matching cost. The

vertical aggregated cost Ev,col,d of a column col within the support window at disparity d can

be defined as

∑
∈

=
coli

civdidcolv wEE ,,,,, , (6)

where Ei,d is the initial census cost of the pixel i in the column, wv,i,c is the vertical weight of

pixel i with respect to the center pixel c of the column. The horizontal aggregated cost Eh,row,d

at disparity d, which is also the final matching cost Efinall,d, is defined as

∑
∈

==
Wcol

cjhdcolvdrowhdfinal wEEE ,,,,,,, , (7)

where Ev,col,d is the vertical aggregated cost of the column col within the aggregation window

W; wh,col,c is the horizontal weight of column col’s center pixel j with respect to the center

pixel c of the window.

The two-pass approach can reduce computation complexity when compared to the direct

approach. If the window size is (r+1) x (r+1) and the disparity range is D, the complexity of

the two-pass approach is O(2rD), whereas the complexity of the direct approach is O(r2D). In

addition to the computation complexity reduction, the two-pass approach also reduces the

internal bandwidth of the hardware design. However, [109] have reported observable quality

 112

drop of the disparity map after applying the two-pass approach to the original ADSW. Our

own experimental result on the ADSW showed approximately less than 3% average error rate

increase after applying the two-pass approach.

E. Performance Evaluation
Table 17 lists the error rate and desktop PC execution time of the proposed MCADSW

and other state-of-the art algorithms. The error rate evaluates the performance of a disparity

estimation algorithm and is independent of which computing platform an algorithm is being

implemented. The execution time evaluates the computing complexity of an algorithm based

on desktop PC-based implementations. Although the execution time of an algorithm depends

on the clock rate of the target processor and code optimization, comparing the execution time

of different algorithms gives a rough figure of their computation complexity. The error rate

and the execution time of other algorithms in the table were acquired from their published

works. For ADSW, we have included the execution time provided from their published work

as well as the execution time acquired from us running their software. The error rate and

execution time we gathered is labeled as “Our ADSW”. For algorithms that did not provide

the execution time of the tsukuba stereo image pair, such as RealTimeBP and RealTimeGPU,

we estimated their execution time based on their best disparity estimation speed, which is

usually represented in terms of million disparity estimation per second (MDE/s). For instance,

RealTimeGPU reported a disparity estimation speed of 0.36 MDE/s on an Intel Pentium IV

3GHz machine in their work; by dividing the number of disparity estimations needed in the

tsukuba stereo image pair, which is 384x288x16 = 1.77 MDE, by the disparity estimation

speed, we get an estimated execution time of 4.91 seconds.

 113

The error rate of the proposed MCADSW was comparable to RealTimeBP and was

slightly inferior to the original ADSW. When compared to the state-of-the-art CoopRegion

[118] method, the error rate of the MCADSW was 0.46%~4.67% higher. However, the

execution speed of the MCADSW was at least 10 times faster than CoopRegion, 30 times

faster than the original ADSW, and near 2 times faster than the RealTimeBP. This implies the

MCADSW is likely to have a much lower computation complexity than the compared high

performance disparity estimation algorithms. Only SSF+MF, EffectiveAggr, and RealDP

were faster than the MCADSW. However, these algorithms had significantly higher error rate

than the MCADSW as well.

Table 17 Performance comparison of the MCADSW and other algorithms

Error Rate %

PC Spec.
(Brand,

processor, clock
rate)

Tsukuba
Exec.

Time(sec) Method

TSUKUBA VENUS TEDDY CONES

SSD+MF[72] 7.07 5.16 24.8 19.8
Intel CoreDuo

2.99 GHz
0.64

EffectiveAggr[116] 2.11 4.75 15.2 12.6
Intel CoreDuo

2.14GHz
0.20

RealDP[105] 2.85 6.42 N.A. N.A.
AMD AthlonXP

2800+
0.02

RealTimeBP[113] 3.40 1.90 13.2 11.6
Intel Pentium IV

3.0G
3.39

RealTimeGPU[109] 4.22 2.98 14.4 13.7
Intel Pentium IV

3.0G
4.91

CoopRegion[118] 1.13 0.18 9.03 7.80
Intel Pentium M

1.6G
~20.00

Original
ADSW[73]

1.85 1.19 13.3 9.79
AMD AthlonXP

2700+
~60.00

Our ADSW 4.18 3.41 20.6 16.0
Intel Pentium IV

2.8GHz
95.65

MCADSW 2.80 0.64 13.70 10.1
Intel Pentium IV

2.8GHz
1.84

 114

5.4.4. Bandwidth Reduction Techniques for MCADSW

Architecture
Reducing bandwidth requirement is important because available bandwidth is limited.

We proposed partial column reuse (PCR) and access reduction with expanded window

(AREW) techniques to reduce the bandwidth requirement.

A. Partial Column Reuse (PCR)
The PCR reuses the data in each column to reduce the memory bandwidth and

computation requirements. A column is usually a part of multiple horizontally overlapped

windows. Therefore, the data of each column can be shared by the computation of the final

result for these windows. The data could be original pixel data or temporary intermediate

results. By storing these data, the number of memory access and computation can be reduced.

As a result, each column is only read and computed once.

Fig. 45 illustrates how the PCR is applied to the mini-census generation. The pixels in

column x=n contribute to the generation of three mini-censuses. Fig. 46 illustrates how a

vertical aggregated cost is shared by 18 horizontally overlapped aggregation windows. This

reduced the read count of a pixel column from 18 to 1 for these 18 windows. Since PCR can

reuse computation as well, PCR may also be applied to other types of implementations, such

Mini-census template for
pixel at x=n-2

Mini-census template for
pixel at x=n

Mini-census template for
pixel at x=n+2

column at x=n

Fig. 45. Partial column reuse in mini-census transform

 115

as processor-based, DSP-based, GPU-based, and FPGA-based, to reduce computation

requirement.

31 census costs

w
indow

 0

Vertical
Aggregation

j-th vertical aggregated cost for window m

column j

w
indow

 m

w
indow

 17

colum
n i

colum
n j

colum
n k

w
indow

 0

w
indow

 m

w
indow

 17

i-th vertical aggregated cost for window m

k-th vertical aggregated cost for window 17

Horizontal
Aggregation

horizontal aggregated cost of window 0

Horizontal
Aggregation

Horizontal
Aggregation

Vertical aggregated cost from column j in window m

horizontal aggregated cost of window m

horizontal aggregated cost of window 17

Shared by
window 0

Shared by
window m

Shared by
window 17

Fig. 46. Partial column reuse in cost aggregation

 116

B. Access Reduction with Expanded Window (AREW)

The AREW reduces the bandwidth requirement by deliberately expanding the size of the

read window. The expanded window reduces the read count of a pixel by reducing the

number of overlapping window containing this pixel. We will explain this using an example

of vertically expanded window shown in Fig. 43. Note that we have ignored considering

horizontal overlap for the sake of clarity. In this example, the original window size is 5x5

pixels and the number of vertical expanded row is 3.

Fig. 47 (a) illustrates how windows are overlapped vertically without expanding rows.

The first window is located at row n and column k. When the window changes the row

position at the end of a horizontal scan, the new window would be vertically overlapped with

the old window. As a result, the second window is located at row n+1 and column k. The

position of the first window is shown by the box with dashed line. The overlapped region is

marked by darker color. Since we only buffer the pixel data within the read window due to

cost consideration, the vertically overlapped region must be re-accessed. Consequently, the

access count of a pixel is determined by the number of overlapping window containing this

pixel. The maximal access count of a pixel is five in this case as shown in the figure.

Fig. 47 (b) illustrates the case with expanded window. With the expanded rows, the

vertically enlarged window would result in farther vertical jump distance when a row change

happens. As a result, the second window is located at n+4. The maximal access count of each

pixel is only 2, which is much smaller than in the case without expanded window. Horizontal

expansion also reduces the access count in the same way as the vertical expansion. If we

could enlarge the window to the size of the image, the read count of each pixel would be only

one. However, expanding the window would also require larger internal storage size and

more hardware resource. Therefore, the number of expanded row and column should be

carefully selected. In our case, the number of expanded row and the number of expanded

 117

column are both 17. The AREW is applied to the mini-census generation and weight

generation.

The bandwidth requirement to external frame memory can be estimated based on the

read count of each pixel. The read count of a pixel is determined by the number of times it is

overlapped by mini-census transform windows and aggregation windows. In a direct

implementation without any data reuse, a pixel is overlapped by 3 mini-census transform

windows in the horizontal direction, 4 mini-census transform windows in the vertical

direction, 31 aggregation windows in the horizontal direction and 31 aggregation windows in

the vertical direction. The read data width of a pixel in the mini-census transform is one byte,

whereas the read data width of a pixel in the aggregation is three bytes. As a result, the total

bandwidth requirement for a CIF size base image at 30 FPS is about

((7x31x31)x1byte+31x31x3byte)x(352x288)x30FPS = 27.22 GB/s. neglecting the boundary

case. If we assume the pixel data read for the weight generation already included the pixel

(a)

Read expanded
window at
row n, column k

5

3

1+3

Read expanded
window at
row n+4, column k

Read expanded
window at
row n+8, column k

pixel row is
read 2 times

3 expanded
rows

(b)

Fig. 47. Example of access count reduction with expanded window, (a) without expanded rows, (b) with 3
expanded rows

 118

data read for the mini-census transform, the total bandwidth can be reduced to

(31x31x3byte)x(352x288)x30FPS = 8.17 GB/s. After applying the PCR and AREW

bandwidth reduction techniques, the average read count of a pixel can be reduced to 5.17

times. The bandwidth requirement can therefore be reduced to

5.17x3bytex(352x288)x30FPS= 44.99 MB/s. The proposed bandwidth reduction can also be

applied to other aggregation based stereo matching architectures to reduce their bandwidth

requirement.

5.4.5. Real-time Architecture for MCADSW
A. Architecture Overview

Fig. 48 shows the architecture of the MCADSW. The architecture consists of a memory

controller, mini-census transformer, weight generator, and a cost aggregator and WTA

module. The details of each module are explained in the following subsections.

B. Mini-Census Transformer
Fig. 49 shows the architecture of one of the two (left and right) identical mini-census

Memory Controller

Y_left

Mini‐Census Transformer Weight Generator

Cost Aggregator and WTA

Image. & Disparity Memory

U_leftV_leftY_left Y_right

mc_left mc_right v_weight_color

disparity

h_weight_color

YL Buf UL Buf VL Buf

Weight Generation Kernel

VW Buf HW Buf

YL Buf YR Buf

Left Mini‐
Census Kernel

Right Mini‐
Census Kernel

MCL Buf MCR Buf

Aggregation and WTA Circuit Disparity FIFO Buf

Fig. 48. Block diagram of the MCADSW

 119

transform units. Each unit consists of an input buffer, a mini-census kernel, and a

mini-census buffer. The input buffer stores the input image data read from the external image.

The input data are first packed into data words and stored into the word buffers. Once the

data are ready for mini-census transform, the data in the input buffer are read into the

mini-census kernel. The center pixel is stored in the register and compared with its

surrounding six pixels in the mini-census template. The comparison result, the 6-bit

mini-census bitstream, is then written into the mini-census buffer.

Census Comparators

shifter

Packed Input Word REG

Upper Word
Buffer (Y)

Lower Word
Buffer (Y)

shifter shifter

Packed Output Word REG

Input Buffer Control

Center Pixel REG

M
ini‐Census Kernel

Control

shifter

Packed Input Word REG

Upper Word
Buffer

(Mini‐Census)

Lower Word
Buffer

(Mini‐Census)

shifter shifter

Packed Output Word REG

M
ini‐Census Buffer Control

M
ini‐Census Transform

er Control

Input Buffer (YL Buf, YR Buf)
M
ini‐Census Kernel

M
ini‐Census Buffer (M

CL Buf, M
CR Buf)

From Memory Controller (Y_left, Y_right)

To Cost Aggregator (MC_left, MC_right)

Fig. 49. Architecture of the mini-census transformer

 120

C. Weight Generation
Fig. 50 shows the architecture of the weight generator. The architecture is similar to the

mini-census transformer. However, there are three sets of input buffer because the weight

generation needs all three color components. The mini-census kernel is replaced by a weight

generation kernel which reads the input pixels column by column to generate vertical weight.

The color distances between the center pixel and others are computed in the Manhattan color

distance computer. Once the color distance is available, it is used to look up the

corresponding weight from the weight table. During the column by column read from the

input buffer, the center pixel of each column is also stored in the horizontal row buffer. After

the vertical weight is generated, the horizontal weight is generated from the pixel data in the

Manhattan Color Distance Computer

shifter

Packed Input Word REG

Upper Word
Buffer (Y)

Lower Word
Buffer (Y)

shifter shifter

Packed Output Word REG

Input Buffer Control (Y)

Center Pixel REG (Y)

W
eight G

eneration Kernel Control

shifter

Packed Input Word REG

Upper Word
Buffer
(VW)

Lower Word
Buffer
(VW)

shifter shifter

Packed Output Word REG

V
ertical W

eight Buffer Control

W
eight G

enerator Control

Input Buffer (YL Buf)
W
eight G

eneration Kernel

V
ertical W

eight Buffer (V
W
 Buf)

From Memory Controller (Y_left)

To Cost Aggregator (v_weight_color)

shifter

Packed Input Word REG

Upper Word
Buffer (U)

Lower Word
Buffer (U)

shifter shifter

Packed Output Word REG

Input Buffer Control (U
)

Input Buffer (U
L Buf)

From Memory Controller (U_left)

shifter

Packed Input Word REG

Upper Word
Buffer (V)

Lower Word
Buffer (V)

shifter shifter

Packed Output Word REG

Input B
uffer Control (V

)

Input Buffer (V
L Buf)

From Memory Controller (V_left)

Center Pixel REG (U) Center Pixel REG (V) Horinzontal Row Buffer (YUV)

Weight Table

shifter

Packed Input Word REG

Upper Word
Buffer
(HW)

Lower Word
Buffer
(HW)

shifter shifter

Packed Output Word REG

H
orizontal W

eight Buffer Control

H
orizontal W

eight Buffer (H
W
 Buf)

To Cost Aggregator (h_weight_color)

Fig. 50. Architecture of the weight generator

 121

horizontal row buffer. This avoids reading the input buffer again during the horizontal weight

generation. The vertical weight buffer and horizontal weight buffer store the resulting vertical

and horizontal weight.

D. Cost Aggregator and WTA

Fig. 51 shows the architecture of the cost aggregator and winner-takes-all (WTA). The

mini-census cost computation and vertical cost aggregation are shown to the left of the

ping-pong buffer, whereas the horizontal cost aggregation and WTA are shown to the right.

The census costs between the left and right mini-census bitstreams are computed by the

hamming distance computation unit. To increase processing speed, each unit computes the

census cost of all the pixels within a column in parallel. After the census costs are available,

they are multiplied with the vertical weights and summed together to give the vertical

aggregated cost. The vertical aggregated costs are stored in the ping-pong buffer. The

ping-pong buffer is scheduled as shown in Fig. 52 to ensure that the aggregation can be

performed continuously without any pause. The ping-pong buffer outputs 33 vertical

aggregated costs to the three shifters used for horizontal aggregation. We have applied the

PCR technique so that the first 31 costs in the 33 costs are sent to the first shifter, the second

31 costs are sent to the second shifter, and the third 31 costs are sent to the third shifter. This

Ham
MC_left (col 0, 31 pixels)

MC_right (col 0, 31 pixels)

InitCost
(col 0, 31 pixels) shifter

Vertical Weight
(col 0, 31 pixels)

Vertical
Aggregated Cost
(col 0)

Ping-Pong B
uffer

Adder
Tree

Weighted Cost
(col 0, 31 pixels)

Ham
MC_left (col 1, 31 pixels)

MC_right (col 1, 31 pixels)

InitCost
(col 1, 31 pixels) shifter

Vertical Weight
(col 1, 31 pixels)

Vertical
Aggregated Cost
(col 1)Adder

Tree

Weighted Cost
(col 1, 31 pixels)

…

Ham
MC_left (col 8, 31 pixels)

MC_right (col 8, 31 pixels)

InitCost
(col 8, 31 pixels) shifter

Vertical Weight
(col 8, 31 pixels)

Vertical
Aggregated Cost
(col 8)Adder

Tree

Weighted Cost
(col 8, 31 pixels)

Vertical
Aggregated Cost
(row at 0, 31 cols) shifter

Horizontal Weight
(row at 0, 31 cols)

Final Cost
(row at 0)Adder

Tree

Weighted Cost
(row at 0, 31 cols)

Vertical
Aggregated Cost
(row at 1, 31 cols) shifter

Horizontal Weight
(row at 1, 31 cols)

Final Cost
(row at 1)Adder

Tree

Weighted Cost
(row at 1, 31 cols)

Vertical
Aggregated Cost
(row at 2, 31 cols) shifter

Horizontal Weight
(row at 1, 31 cols)

Final Cost
(row at 2)Adder

Tree

Weighted Cost
(row at 2, 31 cols)

WTA 0

WTA 1

WTA 2

Disparity 0

Disparity 1

Disparity 2

Fig. 51. Architecture of the cost aggregator and WTA

 122

reduces the output bandwidth requirement of the ping-pong buffer. Once the final matching

costs are available, they are compared with the current minimal final costs in the WTA

modules. After the cost of all the disparities are compared, the disparity with the minimal cost

is the final output disparity.

Fig. 53 illustrates the processing order of the cost aggregator. The cost aggregator is

capable of processing eight columns of 31 pixels simultaneously. The initial pipeline delay is

7 cycles. After the initial pipeline delay, it takes 6 cycles to process all 31x48 pixels to give

C
yc

le

C
yc

le

Fig. 52. Schedule of the ping-pong buffer

…

8 8 8 8 8 8

31 31 31 31 31 31

6 cycles

d=0

d=1

d=63

64 times

y=0

…

8 8 8 8 8 8

31 31 31 31 31 31

d=0

d=1

d=63

y=1

…

8 8 8 8 8 8

31 31 31 31 31 31

d=0

d=1

d=63

y=17

…
…

64 times

64 times

Fig. 53. Processing schedule of the cost aggregator

 123

18 final matching costs. These 18 matching costs are of the same disparity. After the final

matching costs of a disparity are computed and compared, the final matching costs of the

next disparity are computed and compared. Once the final disparity of an 18-pixel row is

determined, the cost aggregator and WTA start processing the next 18-pixel row. For

example, the disparity of y=0 is estimated first, then the disparity of y=1 is estimated. After

(7+6x64)x18 = 7,038 cycles, the disparity of an 18x18 block are determined.

E. Memory Controller
The memory controller interfaces to external memory and arbitrates the external

memory access requests from the mini-census transformer, weight generator, and cost

aggregator and WTA. The data port width between the image memory and the memory

interface is 32-bit. The arbitration is a hybrid of round-robin and fixed priority strategy. The

depth FIFO always has the highest priority due to the high penalty of suspending of the cost

aggregator and WTA. The priority of the mini-census transformer and weight generator are

determined by round-robin.

F. Scheduling
Fig. 54 illustrates the scheduling of the MCADSW architecture. The cost aggregator

starts processing data after all the 31x48 mini-censuses and weights are available. This takes

470 cycles to prepare the censuses and 1,536 cycles to prepare the weights. Since the cost

aggregator and WTA take 7,038 cycles to finish, the mini-census transform and weight

generation of the next 18x18 block can be performed at the same time. Based on this

470 470

1536 1536

7038 7038

Mini-Census Transform

Weight Generation

Aggregation &
WTA 18x18 disparities 18x18 disparities

Unit: cycles

Fig. 54. Schedule of the MCADSW architecture

 124

scheduling, it takes approximately 2.5 million cycles to complete the disparity estimation of

all the 320 18x18 blocks in a CIF sized stereo image pair.

5.4.6. Implementation Result and Comparison

A. Gate Count and Memory Size

The proposed MCADSW architecture was synthesized using UMC 90 nm standard cells.

Table 18 lists the core characteristics of the synthesized design. The total equivalent

gate-count is about 563K excluding the memories and the maximum operation frequency is

95 MHz. The equivalent gate-count and the memory area distributions are shown in Fig. 51.

The total gate-count was dominated by the cost aggregator and WTA, census left buffer, and

census right buffer. This was due to the high computation resource requirement and complex

demultiplexing circuits. The memory area was dominated by the weight generation, weight

0.0%
30.5%

32.0%

6.7%

27.9%

0.9%
0.9%1.1%

2.1%

0.0%

0.0%

33.1%

14.5%

33.1%

15.1%

2.1%

Weight Generation

Weight Buffer

Census L

Census R

Aggregation+WTA

Arbiter

Census Lbuffer

Census Rbuffer
Gate count Memory Area

Fig. 54. Percentage of the memory area and combinational gate counts

Table 18 Core characteristics of the proposed MCADSW
Technology UMC 90 nm
Max clock rate 95 MHz
Equivalent gate-count (excluding
memories)

562,642

Memory size 21.3 KB
Image size 352x288 (CIF)
Disparity range 64
Maximal frame rate 42 FPS@95MHz

 125

buffer, census left buffer, and census right buffer.

B. Performance Comparison

Table 19 and Table 20 compare the disparity estimation speed and performance of the

MCADSW architecture with other existing high performance real-time implementations

quantitatively. In TABLE IV, the performance was evaluated using Middleburry’s stereo

image pairs and their evaluation method [72]. The error rate is the overall error rate with the

tolerance of one disparity level. In addition to the quantitative performance evaluation, we

also included the disparity maps generated by different implementations in Fig. 52 for

qualitative performance comparison.

Table 19 Speed comparison of different implementations

DDeessiiggnn IImmpplleemmeennttaattiioonn IImmaaggee
SSiizzee

DDiissppaarriittyy
RRaannggee FFPPSS MMDDEE//ss

PPrrooppoosseedd
MMCCAADDSSWW UUMMCC 9900nnmm SSttdd.. CCeellll 335522xx228888 6644 4422 227722..55

TrellisDP[112] Xilinx Virtex II Pro-100 320x240 128 30 294

HBP[114] Xilinx Virtex II Pro-100 x2 320x240 32 30 73.7

EffectAggr[116] Intel Core 2 Duo 2.14 GHz 463x370 75 1.67 18.9

RealDP[105] AMD AthlonXP 2800 384x288 100 18.9 209

CBiased[107] Nvidia Geforce 7900 512x512 96 24 605

SepLaplacian[108] Nvidia Geforce 7900 256x256 96 87 547

RealTimeBP[113] Nvidia Geforce 7900 320x240 16 16 19.6

RealTimeGPU[109] ATI Radeon 9800 320x240 16 16 19.6

ReliableGPU[106] ATI Radeon 9800 N.A. N.A. 16.6 N.A.

GradientGuided[117] ATI Radeon 9800XT 512x384 40 14.7 117

 126

From the speed perspective, the TrellisDP, CBiased, and SepLaplacian outperformed the

MCADSW architecture in terms of the MDE/s. The TrellisDP was faster because it adopted a

fully parallel systolic array architecture with 128 PEs. Their systolic architecture maximized

the utilization of the PEs to achieve a processing speed of 294 MDE/s. However, the systolic

architecture would require very high bandwidth and large storage to keep the 128 PEs

working without idling. The CBiased and SepLaplacian were at least two times faster than

the MCADSW because they were implemented using high performance programmable GPUs.

These high performance GPU had extremely high bandwidth and computation hardware

resource available. For instance, Nvidia’s Geforce 7800GTX GPU had 256MB of GDDR3

DRAM clocked at 600MHz, with a data port of 256-bit, the maximum available peak

bandwidth can reach up to 38.4 GB/s [119]. Together with an operating clock of 430 MHz

and 8 vertex and 16 pixel shaders, it is reasonable for GPU-based implementation to achieve

such high processing speeds. In contrast, the MCADSW architecture required much lower

clock rate, less bandwidth, and smaller silicon area. This makes the MCADSW more

applicable to embedded vision applications. As to the disparity estimation performance, only

Table 20 Performance comparison of different implementations

DDeessiiggnn TTssuukkuubbaa VVeennuuss TTeeddddyy CCoonneess SSaaww TTooootthh MMaapp

PPrrooppoosseedd 22..8800 00..6644 1133..77 1100..11 2.11 3.21

TrellisDP[112] 2.63 3.44 N.A. N.A. 1.88 0.91

HBP[114] 2.85 1.92 N.A. N.A. 6.25 6.45

EffectAggr[116] 2.11 4.75 15.2 12.6 N.A. N.A.

RealDP[105] 2.85 6.42 N.A. N.A. 6.25 6.45

CBiased[107] 4.77 10.2 N.A. N.A. 0.82 0.65

SepLaplacian[108] 13.0 N.A. N.A. N.A. N.A. N.A.

RealTimeBP[113] 3.40 1.90 13.2 11.6 N.A. N.A.

RealTimeGPU[109] 4.22 2.98 14.4 13.7 N.A. N.A.

ReliableGPU[106] 1.36 1.09 N.A. N.A. 2.35 0.55

GradientGuided[117] 2.48 3.91 N.A. N.A. 1.63 0.73

 127

the TrellisDP was comparable to the MCADSW in terms of the error rate, whereas both the

performance of the Cbiased and SepLaplacian were inferior. This can also be observed in the

disparity maps shown in Fig. 55. The disparity map of the MCADSW had more accurate

depth-discontinuity than others in most regions except in the camera region. The reason for

the camera region being blurry was probably due to the removal of the proximity weight. All

in all, the MCADSW provided high disparity estimation speed and performance that was

comparable to other high performance real-time implementations while requiring less

bandwidth and being more suitable for embedded vision systems.

Ground Truth Proposed Method TrellisDP

HBP EffectAggr RealDP

CBaised SepLaplacian RealTimeBP

RealTimeGPU ReliableGPU GradientGuided

Fig. 55. Disparity map of different implementations

 128

5.4.7. Summary
This section presented a hardware-friendly high performance disparity estimation

algorithm, the MCADSW, and its corresponding architecture for real-time stereo matching.

The proposed hardware-friendly simplifications not only made the MCADSW more

hardware-friendly, but also reduced the execution time of the MCADSW algorithm by 61.3%.

In the design of the MCADSW architecture, we proposed the PCR and AREW techniques to

significantly reduce bandwidth requirement. The proposed architecture was synthesized using

UMC 90 nm standard cells. At the operation frequency of 95 MHz, the proposed architecture

can achieve 42 FPS of CIF size disparity map with 64 disparity levels. The equivalent

gate-count and total memory size are 562 K and 21.3KB respectively.

 129

 130

Chapter 6 Conclusion
 This dissertation addressed the bandwidth issue from the source to the destination of

data transfers based on the core concept of facilitating the address and data correlation among

accesses. At the source of data transfers, this dissertation proposed a memory controller that

increased the bandwidth utilization by facilitating access address correlation, taking the

advantage of new advanced data transfer protocol, and the characteristics of external

memories. After improving the bandwidth utilization at the source of data transfers, this

dissertation focused on improving the bandwidth utilization of a bus interconnect adopting

advanced protocol under the traditional share-link topology. Finally, the bandwidth

requirement reduction techniques based on data and access characteristics have been studied

at the destination of data transfers. The bandwidth requirement can be reduced in two major

ways. The first approach is to take the advantage of data characteristics. The other approach

is to reuse data based on an algorithm’s data access spatial and temporal locality. In video

coding, the CFMMC architecture was capable of reducing the bandwidth requirement and

energy consumption up to 72% and 16% respectively when the percentage of perfect matched

macroblocks is higher than 70%. In early vision tasks, the proposed PUPP reduced the

bandwidth to the image memory by 81.6% in the proposed meanshift architecture. Both

CFMMC and PUPP were examples of the first approach to reduce bandwidth requirement. In

the MCADSW stereo matching architecture, the proposed the PCR and AREW techniques,

which were examples of the second bandwidth requirement reduction approach, could reduce

bandwidth requirement by an order.

 Although this dissertation has proposed methods to increase system’s effective

bandwidth and to reduce core’s bandwidth requirement for video and vision applications,

systematic integration of these techniques into advanced ESL design flow tools has not been

 131

available. With the proposed bandwidth issue solutions, future researches can consider

integrating these solutions into an automatic bandwidth optimizing tool. Doing so would

enable more complex bandwidth demanding but extremely useful video and vision

algorithms to be accelerated for real-time applications.

 132

References

[1] Sentinel 400 7-inch television receiver, 1948, Science and Society Picture Library

Search, available online: http://www.scienceandsociety.co.uk/results.asp?image=10463744

[2] Portable Media Player on Wikipedia, available online:

http://en.wikipedia.org/wiki/Portable_media_player

[3] Apple iPhone homepage, available online: http://www.apple.com/iphone/

[4] Canon Ixus 850IS 產品介紹, available online:

http://www.rainbowphoto.com.tw/ixus850is/main_850is.htm

Memory Controller
[5] R. Saleh et al., “System-on-Chip: Reuse and Integration,” in Proceedings of the IEEE,

vol. 94, pp. 1050-1069, June 2006.

[6] S. Przybylski, “Sorting out the new DRAMs,” in Hot Chips Tutorial, Stanford, CA,

1997.

[7] ARM Limited, “AXI Protocol, “ [online]. Available:

http://www.arm.com/products/solutions/AMBA3AXI.html

[8] S. MacKee et al., “Dynamic access ordering for streamed computations,” IEEE Trans.

Computers, vol. 49, no. 11, pp. 1255-1271, Nov. 2000.

[9] K. Ayukawa, T. Watanabe, and S. Narita, “An access-sequence control scheme to

enhance random-access performance of embedded DRAM’s,” IEEE J. Solid-State Circuit,

vol. 33, no. 5, pp. 800-806, May 1998.

[10] S. Rixner, et al., “Memory access scheduling,” in Proc. 27th Annual Int’l Symp.

Computer Architecture, Vancouver, Canada, June 2000, pp. 128–138.

 133

[11] T. Takizawa and M. Hirasawa, “An efficient memory arbitration algorithm for a single

chip MPEG2 AV decoder,” IEEE Trans. Consumer Electronics, vol. 47, no. 3, pp.

660-665, August 2001.

[12] K. –B. Lee, T. –C. Lin, and C. –W. Jen, “An efficient quality-aware memory controller

for multimedia platform SoC,” IEEE Trans. Circuits and Systems for Video Technology,

vol. 15, pp. 620-633, May 2005.

[13] P. K. Nizar and M. W. Williams, “Method and apparatus for providing a pipelined

memory controller,” U.S. Patent, no. 621261, April 2001.

[14] MemMax 2.0 Multi-threaded DRAM access scheduler, Sonics Limited,

http://www.sonicsinc.com/documets/MemMax_2.0_Data_Sheet.pdf

[15] PrimeCell AXI SDRAM Controller PL340, ARM Limited, [online] available

http://www.arm.com/products/solutions/PL340AXIController.html

[16] V. De La Luz, et al., “Hardware and software techniques for controlling DRAM power

modes,” IEEE Trans. Computers, vol. 50, pp. 1154–1173, Nov. 2001.

[17] Y. Joo et al., “Energy exploration and reduction of SDRAM memory systems,” in Proc.

Design Automation Conf., June 2002, pp. 892-897.

[18] N. –Y. Ker and C. –H. Chen, “An effective SDRAM power mode management scheme

for performance and energy sensitive embedded systems,” in Proc. Asia and South Pacific

Design Automation Conf., Jan. 2003, pp. 515–518.

[19] A. Burchardt et al., “A real-time streaming memory controller,” in Proc. Design,

Automation and Test in Europe, March 2005, vol. 3, pp. 20-25.

[20] Jeff Janzen, “Calculating memory system power for DDR SDRAM,” in Micron

Designline, quarter 2, 2001.

[21] Micron Technology Inc., MT46V8M16 128Mb DDR SDRAM [online]. Available:

http://download.micron.com/pdf/datasheets/dram/ddr/128MBDDRx4x8x16D.pdf

 134

[22] Open SystemC Initiative (OSCI), “SystemC” [online]. Available: http://systemc.org

System Bus
[23] ARM Limited, “AMBA 2 Specification,” [online]. Available:

http://www.arm.com/products/solutions/amba2overview.html

[24] IBM Microelectronics, “CoreConnect bus architecture,” [online]. Available:

http://www-306.ibm.com/chips/products/coreconnect/

[25] OpenCore, “SoC Interconnect: Wishbone,” [online]. Available:

http://www.opencores.org/projects.cgi/web/wishbone/wishbone

[26] ARM Limited. “Multi-layer AHB Overview,” May 2004.

[27] F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance Analysis of

Arbitration Polices for SoC Communication Architectures,” Design Automation for

Embedded System, vol. 8, no. 2-3, June 2003, pp. 189-210.

[28] K. Lahir, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS: a new

high-performance communication architecture for system-on-chip designs,” in Proc. 38th

Design Automation Conf., June 2001, pp. 15-20.

[29] ARM Limited, “AXI Protocol, “ [online]. Available:

http://www.arm.com/products/solutions/AMBA3AXI.html

[30] Open Core Protocol International Partnership (OCP-IP), “Open Core Protocol,”

[online]. Available: http://www.ocpip.org/

[31] ST Microelectronics, “STBus Interconnect,” [online]. Available:

http://www.st.com/stonline/products/technologies/soc/stbus.htm

[32] Arm Limited, “PrimeCell AXI Interconnect (PL300) Technical Reference Manual,”

October 2005.

 135

[33] Synopsis Inc. “DesignWare IP solutions for AMBA Interconnect,” [online]. Available:

http://www.synopsys.com/products/designware/amba_solutions.html

[34] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Automated Throughput driven Synthesis of

Bus-based Communication Architectures", In Proc. of ASPDAC Feb. 2005.

[35] K. Richter, M. Jersak, and R. Ernst., "A Formal Approach to MpSoC Performance

Verification," IEEE Computer, 36:60–67, April 2003.

[36] G. Madl, S. Pasricha, Q. Zhu, L. Bathen, N. Dutt, "Formal performance evaluation of

AMBA-based system-on-chip designs," in Proc. 6th ACM & IEEE Int'l Conf. Embedded

Software, 2006, pp.311-320.

[37] L. Cai, D. Gajski, “Transaction Level Modeling: An Overview”, in Proc. 2nd

IEEE/ACM/IFIP Int'l Conf. Hardware/Software Codesign, Oct. 2003, pp. 19-24.

[38] S. Pasricha, N. Dutt, M. Ben-Romdhance, "Fast exploration of bus-based on-chip

communication architectures," in Proc. 2nd IEEE/ACM/IFIP Int'l Conf.

Hardware/Software Codesign and System Synthesis, Sep. 2004, pp.242-247.

[39] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-driven bus matrix synthesis

for MPSoC,” in Proc. ASPDAC, Jan. 2006, pp. 30–35.

[40] S. Pasricha, N. Dutt, M. Ben-Romdhane, "High Level Design Space Exploration of

Shared Bus Communication Architectures", CECS Technical Report 04-06, March, 2004.

[41] S. Lee, C. Lee, H.-J. Lee, “A new multi-channel on-chip-bus architecture for

system-on-chips,” in Proc. of IEEE Int’l SOC Conf., September 2004, pp. 305-308.

[42] M. Ruggiero et al., “Scalability Analysis of Evolving SoC Interconnect Protocols,” in

Proc. Int’l. Symp. System-on-Chip, Nov. 2004, pp.169-172.

[43] K. Lahiri, A. Raghunathan, S. Dey, "Design space exploration for optimizing on-chip

communication architectures," IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systmes, vol. 23, no. 6, June 2004, pp.952-961.

 136

[44] S. Murali, L. Benini, G. De Micheli, "An Application-Specific Design Methodology for

On-Chip Crossbar Generation," IEEE Trans. Coputer-Aided Design of Inegrated Circuits

and systems, vol. 26, no. 7, July 2007, pp. 1283-1296.

[45] Open SystemC Initiative (OSCI), “SystemC” [online]. Available: http://systemc.org

[46] T.-J. Lin, C.-N. Liu, S.-Y. Tseng, Y.-H. Chu, A.-Y. Wu, “Overview of ITRI PAC

project - from VLIW DSP processor to multicore computing platform,” in Proc. IEEE

Int’l Symp. VLSI Design, Automation, and Test, April 2008, pp.188-191.

Motion Compensation
[47] V. G. Moshnyaga, "Reducing Energy Dissipation of Frame Memory by Adaptive

Bit-Width Compression" IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 12, no.8, pp.713-718, August 2002.

[48] F. Catthoor et al., "Low power storage exploration for H.263 video decoder," in 4th

Workshop on VLSI Signal Processing, pp.115 - 124, 30 Oct.-1 Nov. 1996.

[49] L. Nachtergaele et al., "Low-power data transfer and storage exploration for H.263

video decoder system," in IEEE Journal on Selected Areas in Communications, Vol. 16 ,

Issue 1 , pp.120 - 129, Jan. 1998.

[50] K. Denolf et al., "Memory Centric Design of An MPEG-4 Video Encoder," in IEEE

Trans. Circuit and System for Video Technology, vol. 15, pp.609-pp.619, May 2005.

[51] V. G. Moshnyaga, K. Masunaga, and N. Kajiwara, "A data reusing architecture for

MPEG video coding," Proc. Int'l Conf. Circuits and Systems (ISCAS'04), vol. 3,

pp.797-pp.800, May 2004.

[52] ISO/IEC 14496-2, "Information technology - Coding of audio-visual objects," 2nd

edition, Switzerland, Dec. 2001.

 137

[53] ISO/IEC JTC1/SC29/WG11 N3908, MPEG-4 Video Verification Model version 18.0,

Jan. 2001.

[54] Artisan Components, Inc. "UMC 0.18um Process High-Speed single Port SRAM

Generator User Manual," Release 4.0, August 2000.

[55] NEC Inc., "16M-bit CMOS Mobile Specified RAM Datasheet," [online]

http://www.necel.com/memory/pdfs/M15085EJ5V0DS00.pdf

[56] UMC Free-of-Charge Libraries, [online] http://www.umc.com/english/design/b_3.asp.

[57] Synopsy Inc., “Power Compiler User Guide,” Release W-2004.12, January 2005.

Meanshift Filtering
[58] Y. Cheng, "Meanshift, mode seeking, and clustering," IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 17, no. 9, pp.790-799, Aug. 1995.

[59] D. Comaniciu and P. Meer, "Meanshift: a robust approach toward feature space

analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp.

603-619, May 2002.

[60] C. Christoudias, B. Georgescu, and P. Meer, “Synergism in Low Level Vision,＂ in

Proc. Int’l Conf. Pattern Recognition, vol. 4, August 2002, pp.150-155.

[61] C. Rambabu, I. Chakrabarti, and A. Mahanta, “Flooding-based watershed algorithm

and its prototype hardware architecture,” in IEE Proc. Vision, Image and Signal

Processing, vol. 151, pp.224-234, June 2004.

[62] M. Neuenhahn, H. Blume, and T. G. Noll, "Pareto optimal design of an FPGA-based

real-time watershed image segmentation," in 15th Annual Workshop on Circuits systems

on Signal processing, Nov. 2004.

[63] K. Yamaoka, T. Morimoto, H. Adachi, K. A. A. K. Awane, T. A. K. T. Koide, and H. J.

A. M. H. J. Mattausch, "Multi-object tracking VLSI architecture using image-scan based

 138

region growing and feature matching," in Proc. IEEE Int’l Symp. Circuit and System,

2006, p. 4.

[64] M. Leeser, N. Kitaryeva, and J. Crisman, “Spatial and color clustering on an

FPGA-based computer system,” in Proc. SPIE, vol. 3526, Nov. 1998, pp. 25-33.

[65] B. Maliatski and O. Yadid-Pecht, “Hardware-driven adaptive k-means clustering for

real-time video imaging,” IEEE Tran. Circuit and System for Video Technology, vol. 15,

no. 1, pp. 164-166, Jan. 2005.

[66] O. J. Hernandez, "A high-performance VLSI architecture for the histogram

peak-climbing data clustering algorithm," IEEE Trans. Very Large Scale Integration

Systems, issue 2, vol. 14, pp. 111-121, Feb. 2006.

[67] T. Maruyama, "Real-time K-Means Clustering for Color Images on Reconfigurable

Hardware," in 18th Int’l Conf. Pattern Recognition, 2006, pp. 816-819.

[68] T. –W. Chen, C. –H. Sun, J. –Y. Bai, H. –R. Chen, and S. –Y. Chien, “Architectural

Analyses of K-Means silicon intellectual property for image segmentation,” in IEEE Int’l

Symp. Circuit and System, May 2008, pp.2578-2781.

[69] S. Park, Y. Ha, and H. Jeong, "A Parallel and Memory-Efficient Meanshift Filter on a

Regular Graph," in Proc. Int’l Conf. Intelligent Pervasive Computing, Oct. 2007, pp.

254-259.

[70] K. Zhang, J. T. Kwok, and M. Tang, “Accelerated convergence using dynamic

Meanshift,” in Proc. European Conf. Computer Vision, vol. 2, May 2006, pp. 257-268.

Stereo Matching
[71] M. Brown, D. Burschka, and G. Hager, “Advances in computational stereo,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, August 2003.

 139

[72] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame

Stereo Correspondence Algorithms," Int'l Journal on Computer Vision, vol. 47, no. 1-3,

pp.7-42, April 2002.

[73] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for correspondence

search,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, issue 4,

pp.650-656, April 2006.

[74] T. Kanade, M. Okutomi, and T. Nakahara, “A multiple-baseline stereo method,” in

Proc. ARPA Image Understanding Workshop, 1992, pp. 409-426.

[75] S. Kimura, T. Kanade, H. Kano, A. Yoshida, E. Kawamura, and K. Oda, “CMU

Video-Rate Stereo Machine,” Proc. Mobile Mapping Symp. 1995.

[76] K. Konolige, “Small vision systems: hardware and implementation,” in Proc. Eighth

Int’l Symp. Robotics Research, Oct. 1997, pp.203-212.

[77] J. Woodfill and B. Von Herzen, “Real-time stereo vision on the PARTS reconfigurable

computer,” in Proc. IEEE Workshop FPGAs for Custom Computing Machines, 1997, pp.

240-250.

[78] P. Corke and P. Dunn, “Real-time stereopsis using FPGAs,” in Proc. IEEE TENCON –

Speech and Image Tech. for computing and Telecommunications, Apr. 1997, pp.

235-238.

[79] S. Kimura et al. “A convolver-based real-time stereo machine (SAZAN),” in Proc.

Conf. Computer Vision and Pattern Recognition, vol. 1, 1999, pp. 457-463.

[80] M. Hariyama et al., “FPGA implementation of a stereo matching processor based on

window-parallel-and-pixel-parallel architecture,” in Proc. 48th Midwest Symp. Circuit

and System, vol.2, August 2005, pp. 1219-1222.

 140

[81] M. Gong and Y. -H. Yang, “Near real-time reliable stereo matching using

programmable graphics hardware,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, vol. 1, June 2005, pp. 924-931.

[82] M. Hariyama, H. Sasaki, and M. Kameyama, ”Architecture of a stereo matching VLSI

processor based on hierarchically parallel memory access”, IEICE Trans. Info. and Syst.,

vol. E88-D, no. 7, pp.1486-1491, 2005.

[83] D. Masrani and J. MacLean, “A real-time large disparity range stereo-system using

FPGAs,” in Proc. IEEE Conf. Computer Vision Systems, Jan, pp. 13-13. 2006.

[84] N. Chang, T.-M. Lin, T.-H. Tsai, Y.-C. Tseng, "Real-time DSP implementation on

local stereo matching," in Proc. IEEE Conf. Multimedia and Expo, July 2007,

pp.2090-2093.

[85] J. Banks and P. Corke, “Quantitative evaluation of matching methods and validity

measures for stereo vision,” Int’l Journal of Robotics Research, vol. 20, no. 7, pp.512-532,

July 2001.

[86] H. Hirschmuller and D. Scharstein, "Evaluation of cost functions for stereo matching,"

in IEEE Proc. Conf. Computer Vision and Pattern Recognition, June 2007, pp.1-8.

[87] R. Zabih and J. Woodfill, “Non-Parametric Local Transforms for Computing Visual

Correspondence,” in Proc. Third European Conf. Computer Vision, pp. 150-158, 1994.

[88] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching

and mutual information,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,

vol. 2, June 2005, pp.807-814.

[89] M. Bleyer, S. Chambon, U. Poppe, and M. Gelautz, "Evaluation of different methods

for using colour information in global stereo matching approaches," The Congress of the

International Society for Photogrammetry and Remote Sensing, July 2008.

 141

[90] N. Chang, Y.-C. Tseng, and T.-S. Chang, "Analysis of color space and similarity

measure impact on stereo block matching," to be appeared in Proc. IEEE Asia Pacific

Conf. Circuits and Systems, Dec. 2008.

[91] M. Okutomi and T. Kanade, "A locally adaptive window for signal matching," Int'l

Journal of Computer Vision, vol. 7, pp. 143-162, Jan. 1992.

[92] T. Kanade and M. Okutomi, " A stereo matching algorithm with an adaptive window:

theory and experiment," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16,

issue 9, pp.920-930, Sept. 1994.

[93] M. Hariyama, T. Takeuchi, and M. Kameyama, "Reliable stereo matching for

highly-safe intelligent vehicles and its VLSI implementation," in Proc. IEEE Intelligent

Vehicles Symposium, Oct. 2000, pp.128-133.

[94] R. Arnold, "Automated stereo perception," Technical Report AIM-351, Artificial

Intelligence Laboratory, Stanford University, 1983.

[95] A. F. Bobick and S. S. Intille, "Large Occlusion Stereo," Int'l Journal on Computer

Vision, vol. 33, no. 3, pp.181-200, Sep. 1999.

[96] S.-B. Kang, R. Szeliski, and J. Chai, "Handling occlusions in dense multi-view Stereo,"

in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, 2001,

pp.103-110.

[97] O. Veksler, "Stereo matching by compact windows via minimum ratio cycle," in Proc.

IEEE Int'l Conf. Computer Vision, vol. 1, July 2001, pp.540-547.

[98] M. Gerrits and P. Bekaert, "Local stereo matching with segmentation-based outlier

rejection," in Proc. 3rd Canadian Conference on Computer and Robot Vision, June

2006, pp.66-66.

 142

[99] F. Tombari, S. Mattoccia, and L. Di Stefano, "Segmentation-based adaptive support for

accurate stereo correspondence," Lecture Notes in Computer Science, vol.4872,

p.427-438, Dec. 2007.

[100] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, “Classification and

evaluation of cost aggregation methods for stereo correspondence," in Proc. IEEE Int'l

Conf. Computer Vision and Pattern Recognition, June, 2008, pp.1-8.

[101] Point Grey Research Inc., Digiclops, 1997.

[102] Point Grey Research Inc. , Triclops, 2001.

[103] H. Hirschmuller, "Improvements in real-time correlation-based stereo vision," in Proc.

IEEE Workshop on Stereo and Multi-Baseline Vision, Dec. 2001, pp. 141-148.

[104] H. Hirschmuller, P. R. Innocent, and J. Garibaldi, “Real-time correlation-based stereo

vision with reduced border errors,” Int’l Journal of Computer Vision, vol. 47, no. 1-3,

pp.229-246, Nov. 2004.

[105] S. Forstmann, Y. Kanou, O. Jun, S. Thuering, and A. Schmitt, "Real-time stereo by

using dynamic programming," in Proc. Computer Vision and Pattern Recognition

Workshop on Real-Time 3D Sensor and Their Use, June 2004, pp.29-29.

[106] G. Minglun and Y. Yee-Hong, "Near real-time reliable stereo matching using

programmable graphics hardware," in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, vol.1, June 2005, pp.924-931.

[107] L. Jiangbo, G. Lafruit, and F. Catthoor, "Fast variable center-biased windowing for

high-speed stereo on programmable graphics hardware," in Proc. IEEE Int'l Conf. Image

Processing, vol. 6, Oct. 2007, pp.568-571.

[108] L. Jiangbo, S. Rogmans, G. Lafruit, and F. Catthoor, "Real-time stereo correspondence

using a truncated separable Laplacian kernel approximation on graphics hardware," in

Proc. IEEE Int'l Conf. Multimedia and Expo, July 2007, pp.1946-1949.

 143

[109] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, "High-quality real-time stereo

using adaptive cost aggregation and dynamic programming," in Proc. 3rd Int'l Symp. 3D

Data Processing, Visualization, and Transmission, June 2006, pp.798-805.

[110] O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E. Theron, L. Moll, G.

Berry, J. Vuillemin, P. Bertin, and C. Proy, “Real time correlation-based stereo: algorithm,

implementations and applications,” INRIA Technical Report 2013, 1993.

[111] H. K. Nishihara, “Real-time stereo- and motion-based figure-ground discrimination and

tracking using LOG sign-Correlation,” in Proc. 27th Asilomar Conf. Signals, Systems,

and Computers, 1993, pp. 95-100.

[112] S. Park, H. Jeong, "Real-time stereo vision FPGA chip with low error rate," in Proc.

Int'l Conf. Multimedia and Ubiquitous Engineering, April 2007, pp.751-756.

[113] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, "Real-time global stereo

matching using hierarchical belief propagation," in Proc. The British Machine Vision

Conference, 2006.

[114] S. Park, C Chen, and H Jeong. “VLSI architecture for MRF based stereo matching,”

Lecture Notes in Computer Science, vol. 4599, pp.55-64, Aug. 2007.

[115] T.-H. Tsai, N. Chang, and T.-S. Chang, “Data reuse analysis of local stereo matching,”

in Proc. Int’l Symp. Circuits and Systems, May 2008, pp. 812-815.

[116] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. “Near real-time stereo

based on effective cost aggregation,” in Proc. Int’l Conf. Computer Vision and Pattern

Recognition, 2008.

[117] M. Gong and R. Yang, "Image-gradient-guided real-time stereo on graphics hardware,"

in Proc. Fifth Int’l Conf. 3-D Digital Imaging and Modeling, 2005, pp. 548-555.

[118] Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative optimization. CVPR

2008.

 144

[119] S. Wattson, “NVIDIA’s GeForce 7800 GTX graphics processor,” The Tech Report, June 2005. [online]

http://techreport.com/articles.x/8466/5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

