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摘     要 
資料頻寬問題長久以來就是嵌入式系統效能的瓶頸。若一個系統無法提供足夠的資

料頻寬，或運算核心的頻寬需求過高，會造成運算核心缺乏足夠運算資料，因而使運算

核心無法發揮全部的運算能力，進而影響到系統的效能。為了發揮系統的效能，本論文

探討如何提高系統中可用頻寬使用率與降低頻寬需求。本論文以系統中資料傳輸的過程

為主軸，針對傳輸源頭到終端所會遭遇的頻寬問題進行改善的研究。改善方法的核心概

念是利用傳輸或存取資料之間的相關性，搭配系統中硬體裝置的工作特性提高頻寬使用

率，或是重複利用已有資料減少頻寬需求。在資料傳輸的源頭，也就是記憶體控制器的

部份，本論文探討如何透過存取排程，改善資料間的相關性，利用記憶體本身存取特性

與系統匯流排協定的工作特性來提高的資料頻寬使用率。在改善資料傳輸源頭的頻寬

後，瓶頸便落在系統匯流排上，因此本論文接著探討改善採用先進封包式協定匯流排頻

寬使用率的方法。在資料傳輸末端的運算核心部份，本論文則是根據資料間存取的空間

與時間的相關性，探討如何透過有效地資料重複使用，降低運算核心的頻寬需求。本論

文研究的運算核心功能包含了視訊編解碼與早期視覺處理，這兩類運算的頻寬需求皆十

分可觀。在視訊編解碼部份，本論文針對移動補償提出了一利用輸入移動向量與巨方塊

種類之內容特性的運算核心硬體架構，可降低頻寬需求達72%。而在早期視覺處理部

份，本論文針對平均飄移濾波演算法與立體視覺的立體匹配演算法，提出可減低頻寬需

求的運算核心硬體架構。在平均飄移濾波架構中，本論文根據平均飄移向量大小的特
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性，提出部分更新乒乓暫存記憶體架構，可減少八成畫面記憶體頻寬需求。另一方面，

在立體匹配演算法中，本論文根據演算法本身資料存取在空間與時間上的侷限性與相關

性，提出部份列資料重複使用與擴張視窗減少存取兩方法，來達到大幅減少立體匹配資

料頻寬需求。本論文基於資料相關性的頻寬改善方法，可提高可用頻寬與降低頻寬需

求，有效改善系統中資料頻寬的問題，進而幫助提高系統整體效能。 
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Abstract 
 

Data bandwidth issue has long been the performance bottleneck of an embedded system. 

The computation cores in a system cannot maximize their utilization without enough data. 

This is usually a result of insufficient available data bandwidth or excessive data bandwidth 

requirement. Being aware of the importance of the data bandwidth issue, this dissertation 

addressed the bandwidth issue from the source to the destination of data transfers. The core 

concept was to facilitate the address and data correlation among accesses to solve the data 

bandwidth issue. Exploiting these correlations can increase bandwidth utilization given a 

device’s access characteristics and can also reduce bandwidth requirement through data reuse. 

In particular, this dissertation explored methods to increase the bandwidth utilization of 

memory controllers by taking the advantage of the characteristics of external memories and 

new advanced data transfer protocol. After improving the bandwidth utilization at the source 

of data transfers, this dissertation focused on improving the bandwidth utilization of a bus 

interconnect adopting advanced protocol under the traditional share-link topology. Finally, 

bandwidth requirement reduction techniques have been studied at the destination of data 

transfers. For video coding and early vision tasks, these techniques performed data reuse 

based on algorithm’s data access characteristics, such as the spatial ad temporal locality 

among data accesses. In video coding, this dissertation proposed a combined frame memory 

motion compensation (CFMMC) architecture that was capable of reducing the bandwidth 

requirement by up to 72% based on the characteristics of input motion vector and macroblock 

type data. In early vision tasks, this dissertation proposed a meanshift filtering architecture 

that used the proposed partial-update ping-pong buffer (PUPPB), which was based on the 

access locality due to intermediate meanshift vector characteristics, to reduce the bandwidth 
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to the image memory by 81.6%. In stereo matching vision task, this dissertation proposed the 

partial column reuse (PCR) and access reduction by expanding window (AREW) techniques, 

which were based on the access locality due to the algorithm’s flow, to significantly reduce 

bandwidth requirement for the proposed mini-census adaptive support weight (MCADSW) 

stereo matching architecture. The bandwidth utilization improving and bandwidth 

requirement reduction techniques studied in this dissertation can also be applied to other 

video coding or vision systems to improve system performance. 
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Chapter 1   Introduction 
1.1. Background   

Video coding technology has been developed over the past four decades and has made 

high quality portable video playback and recording a reality. Examples of portable video 

playback include the early suitcase TV [1], recent portable media players [2], and newly 

available iPhones [3]. On the other hand, portable video recording has also been developed 

after Le Prince invented moving picture recording technology since 1890’s. Now, portable 

video recording can be found on small handheld camcoders to cell phones. These have been 

possible because of the advances in digital video coding algorithms, which have greatly 

improved the compression ratio while maintained high video quality. However, advanced 

digital video coding algorithms are often complex and computation power demanding. 

Recently, real-time and portable vision-based applications have been receiving great 

attention. Vision algorithms, particularly early vision ones, have enabled traditional 

image/video consumer electronics to become smarter than ever. For instance, face detection 

and region of interest have improved a camera’s focus capability [4] and made a camera seem 

“smarter” to human users. In addition to traditional image/video consumer electronics, vision 

algorithms have also been the core technology in robotics, autonomous vehicles, and 

intelligent surveillance. However, the drawback of using vision algorithms was the enormous 

computation requirement. The complexity of vision algorithms has been much higher than 

video coding algorithms. As a result, real-time implementations of vision algorithm were not 

as successful as in video coding technology. 

One common approach to accommodate the computation requirement is to use multi-core 

embedded systems. A multi-core embedded system may include embedded processors, DSPs, 
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high performance processors, GPUs, and dedicated hardware accelerators to satisfy the 

computation power requirement of video and vision algorithms. The large computation 

requirement issue can be easily solved by using a multi-core embedded platform. However, 

the hard part is the data bandwidth. Without the data to be processed, a computation core can 

only idle helplessly. Therefore, it is crucial to take care of the data bandwidth issue to ensure 

an embedded multi-core system works as expected. 

 

1.2. Motivation 
 Being aware of the fact that the data bandwidth is one of the key factors that affects 

the system speed, this work explored methods to improve system speed under limited 

resource. One way to improve the system speed is to increase the available BW by investing 

more hardware resource. Examples of such approach were using higher clock rate, wider data 

port width, more buses, and complex crossbar interconnect. However, this approach often led 

to expensive systems. 

Other approaches that demand less hardware resources were maximizing existing 

bandwidth utilization and reducing bandwidth requirement. Maximizing bandwidth 

utilization can be achieved by using new data transfer protocols and access methods. One 

example of new advanced data transfer protocols was AMBA AXI [7], which adopted a 

packet-based channel scheme to maximize the bandwidth utilization. Better access methods 

can increase the bandwidth utilization by taking access device’s characteristics into account. 

Reducing bandwidth requirement can be achieved by reusing data within computation 

cores so that less data transfer and access outside the cores are needed. Such data reuse often 

depends on finding data access characteristics of algorithms, such as data access spatial and 

temporal locality. Another approach in reducing bandwidth was by compressing the data to 
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be transferred. However, this approach often introduced additional compression hardware. 

Hence compression-based methods were not discussed within the scope of this dissertation. 

Motivated by the importance of bandwidth issue and the potential opportunities of the 

aforementioned approaches on maximizing bandwidth and reducing requirement, this work 

focused on the study of facilitating the features of new data transfer protocols and intrinsic 

characteristics of memory devices and algorithms to improve system performance. In this 

dissertation, the bandwidth bottlenecks in a multi-core embedded system were investigated 

from the source to the destination of data flow. In particular, the bandwidth issue at a 

memory controller, a system bus, and application specific cores were studied. 

 

1.3. Dissertation Organization 
The first chapter gave a brief introduction on the background, motivation, and the 

organization of this dissertation. The second chapter presented previous arts and related 

literatures to help readers better understand the detail background of this dissertation. Chapter 

3 presented our study on the bandwidth issue at the source of data transfer, the memory 

controller. We have presented a method to improve the bandwidth utilization taking the 

advantage of the memory device’s intrinsic characteristics as well as the new bus protocol’s 

feature. Once the bandwidth performance at the source is improved, the system bus would 

become the data transfer bottleneck. Therefore Chapter 4 analyzed the bus bandwidth issue at 

system level and provided methods of enhancing the system bus performance by facilitating 

the features of new bus protocols. Chapter 5 studied the bandwidth issues at the destination of 

data transfers, the application specific computation cores. Finally, Chapter 6 gave a 

conclusion and some future work directions.
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Chapter 2   Related Works 
 

Related works were categorized into memory controller related, data transfer related, and 

application specific computation core related. In the memory controller part, previous works 

on DRAM memory controllers were presented. In the data transfer part, researches on 

analyzing and improving the bandwidth issue on system bus were described. Finally, in the 

application specific core part, we investigated previous work on motion compensation in 

video coding, mean-shift filtering, and stereo vision. 

 

2.1. Memory Controller 
Several works have been proposed to improve DRAM performance on bandwidth 

utilization and latency. It was initially discussed for single core environment with software 

based techniques to reorder access streams [8]. Instead of software approach, Ayukawa et al. 

proposed an access-sequence controller [9] which reorders the data input and output order to 

reduce access latency. However, neither transaction nor command scheduling were 

mentioned in their work. Later, Rixner et al. proposed a memory access scheduler 

architecture [10] capable of adopting various combinations of simple DRAM command 

arbitration policies and can perform bank-interleaving. In these works, they only focused on 

single core environment and neglected the impact of the arbitration policy on system buses.  

For multicore environment, Takizawa et al. proposed a simple memory arbitration policy 

which reduces bank conflict and read/write turnaround in their MPEG-2 AV decoder system 

[11]. However, reducing bank conflict by increasing bank-interleaving would result in row 

precharge and activation increase, thereby increasing the memory power consumption. 

Recently, Lee et al. proposed an efficient quality-aware memory controller for multimedia 
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platform SoC [12]. It utilizes a quality-aware scheduler to provide quality-of-service (QoS) 

guarantees. However, their scheduler requires multiple channels which may only be suitable 

for systems adopting star topology and will result in extra hardware cost for the system. 

In the industry, Rambus proposed a pipelined memory controller [13] which includes a 

bank cache lookup and a command sequencer. Sonics Limited developed MemMax 2.0 

memory controller [14] which improves the efficiency of DRAM but must be used their own 

MicroNetwork on-chip bus standard. For packet-based bus systems, ARM Limited has 

developed a configurable AXI compliant memory controller [15].  

Despite improving bandwidth utilization and access latency, reducing memory energy 

consumption has also been discussed at system level [16][17][18]. These works essentially 

turn DRAMs into low power state during idle period by using either software or hardware 

approaches. However, reducing memory energy consumption in non-idle period should also 

be addressed to further reduce the system energy consumption. Meanwhile, the system timing 

constraint must also be met. Such issue has been briefly discussed in Burchardt’s work [19]. 

However, thorough investigation on improving memory energy efficiency in non-idle period 

still remains rare. 

 

2.2. System Bus 
With the rapid progress of system-on-a-chip (SOC) and massive data movement 

requirement, on-chip system bus becomes the central role in determining the performance of 

a SOC. Two types of on-chip bus have been widely used in current designs, which are 

pipelined-based and packet-based bus. 

For pipelined-based buses, such as ARM’s AMBA 2.0 AHB [23], IBM’s CoreConnect 

[24], and OpenCore’s WishBone [25], the cost and complexity to bridge the communications 

among on-chip designs are low. However, pipeline-based bus suffers from bus contention and 
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inherent blocking characteristics due to the protocol. The contention issue can be alleviated 

by adopting multilayer bus structure [26] or using proper arbitration policies [27][28]. 

However, the blocking characteristic, which allows a transfer to complete only if the previous 

transfer has completed, cannot be altered without changing the bus protocol. This blocking 

characteristic reduces the bus bandwidth utilization when accessing long latency devices, 

such as an external memory controller. 

To cope with the issues of pipelined-based buses, packet-based buses such as ARM 

AMBA 3.0 AXI [7], OCP-IP’s Open Core Protocol (OCP) [30], and STMicroelectronics 

STBus [31] have been proposed to support outstanding transfer and out-of-order transfer 

completion. We will focus on AXI here because of its popularity. AXI bus possesses multiple 

independent channels to support multiple simultaneous address and data streams. Besides, 

AXI also supports improved burst operation, register slicing with registered input, and 

secured transfer.  

Despite the above features, AXI requires high cost and possesses long transaction 

handshaking latency. However, a shared-link AXI interconnect can provide good 

performance while requiring less than half of the hardware required by a crossbar AXI 

implementation. This work focused on the performance analysis of a shared-link AXI. The 

handshaking latency is at least two cycles if the interface or interconnect are designed with 

registered input. This would limit the bandwidth utilization to less than 50%. To reduce the 

handshaking latency, we proposed a hybrid data locked transfer mode. Unlike the lock 

transfer in [32] which requires arbitration lock over transactions, our data locked mode is 

based on a transfer-level arbitration scheme and allows bus ownership to change between 

transactions. This gives more flexibility to arbitration policy selection. 

With the additional features of AXI, new factors that affect the bus performance are also 

introduced. The first factor is the arbitration combination. The multi-channel architecture 
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allows different and independent arbitration policies to be adopted by each channel. However, 

Existing AXI related works often assumed a unified arbitration policy where each channel 

adopts the same arbitration policy [32][33][34]. Another key factor is the interface buffer size. 

A larger interface buffer usually implies more out-of-order transactions can be handled. The 

third factor is the task access setting, which defines how the transfer modes should be used by 

the devices within a system. Proper task access settings can yield better performance. 

However, the proper setting may be different under different circumstances, such as different 

buffer sizes. 

Many works have been conducted on the communication architecture of pipelined-based 

bus. Earlier work used formal analytic approach [35][36] to explore the design space of 

communication architecture to evaluate the performance of a pipeline-based bus system. 

Although formal analytic approach can provide the average or best/worst case overall bus 

performance, such approach can hardly account for instantaneous changes of bus behavior. 

This limitation gave rise to high-level simulation-based approach which is capable of 

capturing the detailed instantaneous bus behavior with cycle accuracy [37]. Pasricha et al. 

[38] used the cycle count accurate transaction boundaries (CCATB) model in the architecture 

exploration of an MPEG AHB system. Later, Pasricha et al. also conducted experiment on 

bus architecture synthesis [39] under different given constraint. Their synthesis method 

yielded cost efficient bus matrices much faster and reliable than manual optimization. 

Most of the techniques developed in the abovementioned works can be extended for the 

analysis of packet-based bus. Pasricha et al. extended their communication architecture 

synthesis framework to AXI [34]. Their work automatically generates the best bus topology, 

arbitration policy, and parameter settings driven by throughput requirements. Besides bus 

topology exploration, comparison between packet-based bus and pipelined bus has also 

drawn attention. Pasricha et al. [40] compared the performance of a shared-link AXI and a 
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single-layered AHB. Their comparison showed that up to 30% of bandwidth utilization 

improvement can be achieved by AXI compared with AHB. They also investigated the 

impact of the transaction reordering buffer size in the memory controller. Lee et al. [41] built 

a crossbar AXI platform and a single-layered shared-link AHB platform to quantify the 

performance difference. They reported 40% communication efficiency improvement between 

AXI and AHB. Ruggiero et al. [42] studied the scalability of AHB, AXI, and STBus under 

shared bus topology. Their result showed that AXI is far more scalable to the number of 

master devices than AHB. When the number of processor reaches 8, AXI can achieve 60% 

bandwidth utilization improvement over AHB. 

Comparison of bus connectivity configuration, such as shared-link, multilayer (partial 

crossbar), and full matrix (crossbar), has also been interested as well. Lahiri et al. [43] 

proposed a design space exploration methodology and compared the performance between 

single-layer and multilayer shared-link buses. Recently, Murali et al. [44] presented a bus 

communication architecture exploration method that finds the most power-efficient crossbar 

interconnect for a packet-based bus. They also briefly compared the performance and 

normalized cost ratio among shared-link, multilayer, and crossbar configurations. 

Although the aforementioned works conducted analyses on communication architecture, 

the register slicing impact and multi-channel arbitration issues that arise with the features of 

packet-based bus have been overlooked. In addition, pervious performance comparison of 

multi-channel AXI and single-layer share-link AHB may not be fair since AXI requires much 

more hardware cost. 
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2.3. ASIP Data reuse related 
2.3.1. Motion Compensation in Video Codecs 

Motion compensation has been one of the most important tasks in a video encoder or 

decoder. Motion compensation reconstructs a predicted frame from reading frame data from a 

frame buffer. The reconstructed frame is written back into the frame memory. In many cases, 

the bandwidth requirement and size of the frame memory is usually large. To reduce the size 

of the frame memory in motion compensation, [48][49][50] adopted a merged-frame 

approach which stored the reference frame and the reconstructed frame together using one 

frame memory with the size slightly larger than one frame. Along with the reduced size frame 

memory and local buffers, these work claimed that the merged-frame approach is also 

capable of reducing the power consumption. Among these works, [48] and [49] proposed an 

in-place storage optimization for video decoders. The in-place storage used a buffer to store 

the reference frame data that are overlapped with the reconstructed current frame data in a 

snake-like manner. To handle the complex address generation and the control, they 

implemented a prototype using software. [50] also proposed a similar merged-frame memory 

architecture for motion estimation and compensation in an encoder. Although these works 

successfully reduced the frame memory size, none of them mentioned further improving the 

performance of motion compensation by exploiting the characteristic of MBs without motion 

and residue. Consequently, the bandwidth requirement could not be reduced. 

Moshnyaga’s works [47][51] on motion estimation reported the presence of block-data 

whose content remain unchanged between the adjacent frames. These unchanged block-data 

are facilitated to eliminate frame memory writes and computations during the motion 

estimation. In order to reduce memory writes for the unchanged block-data, Moshnyga’s 

work also adopted the merged-frame approach when the coding pattern has no B-frame. 
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Although the result shown was quite well for the test sequences listed in their works, the 

experiment result on video sequences with great amount of motion was absent. 

 
2.3.2. Meanshift Filtering in Segmentation 

Several hardware architectures have been proposed to improve the processing speed of 

image segmentation algorithms. However, very few architectures have been proposed for the 

Meanshift filter algorithm. For segmentation algorithms other than the Meanshift algorithm, 

Ranbabu et al. proposed a VLSI architecture for the well-known watershed segmentation 

algorithm [61]. Their architecture could speed up the speed by 3 times compared to their 

software implementation. Neuenhahn et al. also implemented the watershed algorithm on an 

FPGA with optimal parameter settings [62]. Their work could segment 576x720 resolution 

images at a frame rate of 50 FPS. Yamaoka et al. proposed a VLSI architecture that 

implemented an image-scan based region-growing segmentation algorithm [63]. The 

image-scan based region growing algorithm had regular process flow and was therefore more 

suitable for hardware implementation. Their architecture was capable of segmenting up to 

230 segments in QVGA images at a frame rate of 30 FPS.  

For clustering-based segmentation algorithms, the K-means algorithm has received great 

attention by hardware designers. Leeser et al. proposed one of the earliest architecture for 

K-means color clustering algorithm [64] one decade ago. However, Leeser’s work did not 

adapt to the characteristics of the image being processed. Maliatski and Yadid-Pecht 

proposed a hardware-driven architecture for adaptive K-means algorithm [65]. Their 

architecture was capable of processing with 64 cluster centers in QCIF images at a frame rate 

of 15 FPS. Later, Hernandez proposed a “global-quasi-systolic local-hyper-connected” VLSI 

architecture for histogram peak-climbing image segmentation algorithm [66]. Their work 

could segment images of 702x576 resolution at a maximum frame rate of 50 FPS. However, 

the cost of Hernandez’ architecture was very large and required a tremendous amount of 
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internal memories. Maruyama and Saegusa also proposed an architecture for filtered 

K-means color image segmentation algorithms [67]. They used KD-tree to filter out 

redundant cluster computations. Their FPGA implementation could perform image 

segmentation on VGA images at an average frame rate of 35 FPS. However, the maximum 

segment count in their K-mean implementation was limited to 256. Moreover, the 

performance of K-means algorithm is heavily dependent on good initial guess of the cluster 

centers. Recently, Chen et al. presented a design for K-means color segmentation [68]. Their 

work conducted detailed architectural design space analysis and provided a prototype system 

that can perform segmentation of QVGA images with a maximum segment count of 16.  

In contrast to the attention received by the K-means algorithm, the popular Meanshift 

clustering algorithm seems to have been over sighted by architecture designers despite the 

Meanshift’s well recognized performance in image segmentation. Only one architecture has 

been proposed in the past. Park et al. proposed a systolic array architecture [69] that 

implemented the dynamic Meanshift (DMS) [70] filter algorithm. The DMS computes a new 

mode from the old modes in the Meanshift window instead of the original pixel data in the 

window. The DMS can achieve super-linear convergence and can reduce the execution time 

by at least 30%. Park et al. modified the DMS to map the modes onto a regular 2-D grid 

graph to make the computation less irregular. This mapping was suitable for the systolic array 

architectures and increased the parallelism. To reduce the cost and memory of the array 

architecture, Park et al. adopted a sliding window approach. However, their DMS architecture 

would still need a memory to store the mode at each node in the grid graph. If this mode 

memory is located externally, the bandwidth requirement between the sliding window and the 

mode memory would be very large. 
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2.3.3. Stereo Matching 
A. Stereo Matching Algorithms 

Disparity estimation algorithms can be categorized into local and global approaches [72]. 

Local approach determines the disparity of a pixel based on the content similarity between 

the support windows of this pixel and its candidate pixel in the other image. The local 

approach usually has low computation complexity and storage requirement, and has been 

frequently adopted by real-time implementations [74]-[84]. Global approach determines the 

disparity of all the pixels in an image as a whole by optimizing a global energy function. 

However, the optimization is usually complex and extremely computation intensive. Hence, 

we will focus on local approaches. 

Early works on local approach studied the impact of different similarity measures 

[85][86]. Their work pointed out that census, rank [87], and mutual information [88] achieved 

better disparity estimation performance and were more robust to radiometric distortion. Later, 

[89] investigated the performance of using different color representation. Recently, [90] 

investigated the performance and speed jointly of different similarity measure and color 

representation combinations. The result showed that census-based combination achieved 

better performance, but also takes more time to compute. 

Another important research topic that has been studied is the support window size. The 

simple fixed size rectangular window adopted in early local approaches suffered from 

incorrect disparity estimation in occlusion, textureless, and repeating pattern regions. To 

remedy this, [91][92] proposed variable window size algorithms. Later, [93] also proposed a 

variable window size algorithm that adaptively adjusted the window size based on a 

reliability measure. The variable window size could effectively improve the disparity 

estimation performance in textureless and repeating pattern regions, but not in occlusion 

regions. Being aware of this, [94][95] proposed shiftable windows algorithms to improve the 
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performance. Kang et al. [96] combined both the concept of variable window size and 

shiftable window together. However, the qualitative result of their work still showed great 

room for improvement. 

The reason for not being able to completely improve the performance in the occlusion 

region is because the assumption of same disparity in the window does not hold in occlusion 

and slanted surface regions. Understanding this, Veksler [97] proposed a compact window 

class method which could model non-rectangular support windows. Although their result 

showed significant performance improvement compared to previous algorithms, the 

performance near the boundary region was still inferior to complex global approaches. Yoon 

et al. proposed an adaptive support weight (ADSW) [73] algorithm that assigned different 

weights to the pixels in a support window based on the proximity and color distances to the 

center pixel. As a result, the ADSW could achieve the effect of using a support window of 

arbitrary size and shape. With multiple iterations of aggregations, the performance of ADSW 

was comparable to some of the complex global algorithms. Later, segmentation-based 

support methods were also proposed [98][99]. The outlier rejection [98] used a binary weight 

based on the segmentation region instead of the weight used in the ADSW. Tombari et al.’s 

segment support algorithm [99] only assign weight to the pixels in the same segment the 

center pixel is in. Recently, [100] conducted a detailed comparison on the performance and 

processing speed of local algorithms. Their result showed that the segment support has the 

highest performance but is two times slower than the ADSW. The performance of the ADSW 

is only slightly inferior to the segment support algorithm. 

B. Real-time Implementations 
Real-time stereo matching implementations can be categorized into general purpose 

processor solutions, digital signal processor (DSP) solutions, graphic processing unit (GPU) 

solutions, and dedicated hardware solutions. 
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The general purpose processor solutions rely on the great computation power in 

state-of-the-art processors to accommodate the high computation complexity of stereo 

matching algorithms. Early works [76][101] tried to implement real-time stereo matching on 

general purpose processors, however they could only achieve non-video rate real-time 

performance due to limited computing power at their times. As the processor technology 

advances, [102][103][104] implemented real-time stereo matching algorithms on general 

purpose processors. They managed to achieve real-time processing, but the performance of 

their disparity map was not very high because of using simple local algorithms. Although 

simple local algorithms have been adopted by most general purpose solutions, Forstmann et 

al. [105] proposed a real-time implementation of the less complex global algorithm, the 

dynamic programming, on general purpose processors. Their performance is higher than most 

of the previous local algorithms, but their real-time processing speed is limited to images 

smaller than VGA. 

The DSPs have better processing speed on signal processing algorithms because of the 

SIMD and MIMD architectures than general purpose processors. In addition, they are often 

less expensive and less power consuming than the state-of-the-art general purpose processors. 

Hence, DSP solutions are more favorable in embedded stereo vision applications. Konolige’s 

Small Vision System [76] is one of the most famous early real-time DSP solutions. Recently, 

[84] also proposed a real-time DSP implementation with jigsaw matching templates. 

Although the DSP solutions may have more computation power than general purpose 

processors, the data word alignment and bandwidth issue often limit their capability. As a 

result, the DSP solutions are usually limited to local algorithms and cannot provide high 

performance result in real-time. 

Another powerful solution is the GPU solutions. The GPUs have extremely high 

memory bandwidth that ranges from 6.5 GB/sec to 128 GB/sec and can have up to 256 
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stream processors. With so much hardware resource, the GPU solutions [106]-[109] could 

implement high performance complex stereo matching algorithms. However, GPUs are too 

expensive and power consuming to be used in embedded applications currently. 

The dedicated hardware solutions can also provide great computation power while 

allowing the computation resource to be optimized for utilization by designing the 

architecture in a customized way. This enables the dedicated hardware solutions to be more 

cost efficient than the GPU solutions. The dedicated hardware includes both FPGA/PLD and 

applications specific integrated circuit (ASIC). Faugeras et al.’s PeRLe-1 board [110] and 

Nishihara’s PRISM-3 based stereo system [111] are two of the earliest dedicated hardware 

solutions. Later, other early dedicated hardware solutions [75][77][78][93] have also been 

proposed. Among these works, [77] and [78] are two of the first real-time implementation 

adopting the census matching. However, these early solutions only implemented simple local 

algorithms. Consequently, their performance is not high. Being aware of the performance 

limitation of local algorithms, hardware architectures have been proposed for dynamic 

programming [112] and hierarchical belief propagation (HBP) [113] algorithms [114]. Their 

performance is very high since they are based high performance global methods. However, 

their hardware cost is also very high compared to other dedicated hardware implementations. 

Recently, Tsai et al. [115] studied data reuse techniques in aggregation-based algorithms to 

reduce the internal storage size, computation resource, and bandwidth requirement. 
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Chapter 3   AXI Memory Controller 
 

3.1. Memory Controller's Role in a System 
With the rapid progress of VLSI technology, system-on-a-chip (SoC) [1] emerges and 

becomes feasible with on-chip bus compliant IPs. These SoCs possess sufficient computing 

power to implement complex and bandwidth demanding multimedia systems for various 

embedded applications. In such an embedded design, the bandwidth of memory subsystem is 

one of the major issues that have to be evaluated and optimized first to ensure the system’s 

success. 

We proposed a high bandwidth utilization memory controller which worked with a 

packet-based bus interface. In which, we have chosen AXI bus [3] as a representing case for 

packet-based bus that supported flexible out-of-order transaction completion. Packet-based 

bus not only eliminated the need to access data in request order, the additional transaction ID 

tag also provided valuable information about the source of an access request that can help in 

scheduling memory accesses. Thus, we proposed a memory controller with a two-level 

scheduling framework using such source information. The first level is the transactions-level 

scheduling which adopts a limited temporal source prioritized (LTSP) policy that used the 

temporal source correlation of accesses in a system. The second-level was the DRAM 

command-level scheduling that issues commands based on command age and type to hide 

access latency. The experimental result of a multimedia platform running a video phone 

application provided quantitative result of bandwidth usage, memory power consumption, 

and energy efficiency for different memory scheduling policies. 
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3.2. DRAM Basics 
Fig. 1 illustrates a simplified block diagram of a DRAM. A DRAM usually consists of 

four memory banks. For each bank, it includes a row buffer, several memory rows. A DRAM 

usually has only one data port and is shared for both read and write. The address port is also 

shared for both read and write.  

To access a data located in a DRAM, the row with the data must be first “opened” using 

an ACTIVATE command. The opened row is read from the memory and written to the row 

buffer. After the activation, the bank with the row being opened cannot be access for a period 

of time defined as the active to column access delay. However, other banks can still accept 

commands. Once the row is opened and the memory bank is ready to accept a command, a 

column-access READ/WRITE command is issued to access the data in the row buffer. If it is 

a READ column-access, the data would be available at the data port after a column access 

latency. Unlike the ACTIVATE command, there can be no other column-access command 

during the column-access latency because the data port is currently being used. After the 

current data have been accessed, the memory row can be “closed” by issuing a 

PRECHARGE command to this bank. Once the row is closed, it would take a period of time 

called the precharge command period before the next activation command can be issued. 
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Fig. 1.  Simplified block diagram of a DRAM 
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Similar to ACTIVATE command, other banks can accept commands within the percharge 

command period.  

Fig. 2 illustrates different DRAM bank state transitions. In Fig. 2(a), if an access happens 

on an idle bank in which no opened row is available, it is called a bank-miss access. In 

contrast, if an access happens on an opened row as shown in Fig. 2(b), it is called a row-hit 

access, which introduces the least access latency. This is because for a row-hit access, only a 

READ/WRITE column-access command is needed. However, if the access row in an active 

bank is closed as shown in Fig. 2(c), it is called a row-miss access. For a row-miss access, an 

additional PRECHARGE command must be issued before the ACTIVATE and 

READ/WRITE column-access command can be issued. Hence, a row-miss access results in 

Idle Active

ACTIVATE

PRECHARGE

READ / WRITE

1

2

3

4

 

(a) 

Idle Active

ACTIVATE

PRECHARGE

READ / WRITE

1

2

 

(b) 

Idle Active

ACTIVATE

PRECHARGE

READ / WRITE

1

2

3

4

5

6

 

(c) 

Fig. 2.  Bank state transition and related commands when (a) current bank state is idle (b) current bank state is active and 
row-hit (c) current bank state is active and row-miss 
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the longest access latency. 

 

3.3. AXI Memory Controller Policy 
3.3.1. Overall Scheduling Framework 

Fig. 3 illustrates the scheduling flow of the proposed two-level scheduling framework. 

Input transactions are dispatched to each bank for transaction-level scheduling. The goal of 

transaction-level scheduling is to increase memory row-hit opportunity. After 

transaction-level scheduling, reordered transactions are translated into DRAM commands 

with the status of each memory bank taken into consideration. Once the DRAM commands 

are available, command-level scheduling issues command to DRAM based on command age 

and the type information. The details of the two-level scheduling are explained as follows. 

3.3.2. First-level: Transaction-Level Scheduling 
 Two transaction scheduling policies are investigated: first-in first-serve (FIFS) and 

limited temporal source prioritized (LTSP). The first policy is similar to the first-ready 

scheduling policy mentioned in Rixner’s work and has been widely adopted. The second one 

is proposed and recommended in this work. The details of each scheduling policy are 

described below. 
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Fig. 3.  Overview of the two-level scheduling flow 
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A. Baseline First-In First-Serve 
The FIFS policy issues transactions based on transaction input order. The advantage of 

FIFS policy is its fairness with respect to input transactions because every transaction would 

eventually be issued. However, FIFS policy is highly dependent on the bus arbitration policy, 

which determines the transaction input order. This characteristic would make the memory 

performance sensitive to bus arbitration policy. 

B. Limited Temporal Source Prioritized 
The proposed LTSP policy sets higher priority to transaction which has the same source 

as the last issued transaction. In other words, LTSP policy groups transactions from the same 

source device together. The transactions within a group are issued consecutively based on 

their relative temporal order. If no such transaction exists at that moment, LTSP policy gives 

higher temporal priority to earlier transactions and issues the transaction with highest 

temporal priority. The pseudo code of LTSP scheduling policy is listed below. 

 

Initialize { 
    prev_source_id = null; 
    consecutive_cnt = 0; 
} 
 
LTSP Loop { 
    if( transaction_buffer not empty ) { 
        if( consecutive_cnt < limit_threshold ) { 
            next_transaction = get_transaction_with_source_id( prev_sorce_id ); 
            if( next_transaction not null ) { 
                consecutive_cnt ++; 
            }else{ 
                next_transaction = 
get_transaction_with_highest_temporal_priority( ); 
                consecutive_cnt = 0; 
            } 
        }else{ 
            next_transaction = 
get_transaction_with_highest_temporal_priority( ); 
            consecutive_cnt = 0; 
        } 
        prev_master_id = next_transaction_source_id; 
        issue next_transaction; 
    } 
} 
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We designed LTSP policy based on the observation that multimedia applications, such as 

video or audio processing, often involve massive amount of vector and block data access. 

These data are often correlated in their access location. Such correlation can be observed in 

conjunction with temporal and source locality. Therefore, the type (read or write) of 

transactions from the same master are likely the same, and the address of these transactions 

are also likely to be sequential in real multimedia application. Hence bundling transactions 

from the same source together provides more chances to achieve row-hits, which is relatively 

less energy consuming than row-misses. However, issuing multiple consecutive transactions 

from the same source increases the latency of transactions from other source. To avoid such 

starvation effect, we set a threshold to limit the maximum number of transactions in a group. 

Although LTSP is suitable for multimedia applications, it needs additional request source 

information, such as the transaction ID tag provided in AXI, to identify a transaction’s source. 

Unfortunately, such transaction source information is absent in traditional system bus such as 

AHB. Hence, scheduling transaction using transaction source information in multicore 

environment has not been possible with traditional bus under shared-link topology. 

 

3.3.3. Second-Level: Command Scheduling 
Command scheduling determines which bank can issue commands to DRAM based 

command age and type. Before selecting a command to be issued, DRAM status and timing 

constraint must be checked first. If the DRAM timing constraint inhibits any regular access 

command from being issued, a NOP command would be issued instead. If access commands 

are allowed to be issued, the oldest command is selected. However, if there are two 

commands with the same age, their command type are considered. We assign the command 

type priority as PRECHARGE>ACTIVATE>READ>WRITE.  PRECHARGE is given the 

highest priority because PRECHARGE should be issued as soon as possible to avoid 
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increasing the already very long access latency due to a row-miss. Similarly, ACTIVATE is 

given the second highest priority because of the same reason. READ is given higher priority 

than WRITE to minimize read-write turnarounds. Although there are other possible priority 

assignments, their bandwidth utilization is usually inferior to the assignment described here 

and the differences are within 3%. 

 

3.4. Simulation Result 
To evaluate the performance of a memory controller within a system, we model a 

simplified dual core platform system using SystemC [18] with different degrees of 

abstraction for different parts. For the AXI bus, each channel is modeled at transaction-level, 

whereas the memory controller is modeled at behavior-level. Note that the AXI bus and the 

memory controller models are all cycle accurate on the interface ports. 

3.4.1. Multimedia Platform Architecture 
Fig. 4 illustrates the target platform from the memory controller’s point of view.  The 

memory controller only connects with the AXI bus and the DRAM. Memory access requests 

are sent by the master devices connected to the AXI bus interconnect. The memory model is 
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Fig. 4.  The target platform 
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based on Micron’s MT46V8M16 DDR SDRAM [21]. Note that only data memory is 

considered. Instruction memory and access are excluded because instruction memory can 

often achieve high bandwidth utilization due to predictable access behavior and pattern. 

3.4.2. Videophone Application 
The target application adopted in our simulation platform is a video phone application. In 

this video phone application, the system must deliver both audio and video communication at 

the same time. The system supports 44.1 Khz stereo audio capture/output and audio 

compression/decompression. As to video, the system provides 4CIF sized video capture, 

compression/ decompression, and display with a frame rate of 30 FPS. Table 1 lists the task 

 Table 1  The task, access pattern, bandwidth, and completion time requirement of each master device 

Master Task Memory Access Pattern 
Bandwidth 
Requiremen
t 

Timing 
Constrain
t 

CPU Audio codec 
OS 

Read bitstream and PCM data 
Write bitstream and PCM data 
Random reads and writes for OS 

16.14MB/se
c 24 ms 

DSP Video 
decoding 

Read bitstream 
Read reference macroblock (YUV)
Write reconstructed macroblock 
(YUV) 
Write reconstructed macroblock 
(RGB) 
Random reads and writes 

72.48 
MB/sec 33 ms 

Accelerat
or 

Video 
encoding 

Read input macroblock (RGB) 
Read reference macroblock (YUV)
Write reconstructed macroblock 
(YUV) 
Write reconstructed macroblock 
(RGB) 
Write bitstream 

70.94 
MB/sec 33 ms 

Network Tx/Rx 
bitstream 

Read bitstream 
Write bitstream 2.30 MB/sec 33 ms 

Audio In Audio input Write PCM data 8.46 MB/sec 24 ms 
Audio 
Out Audio output Read PCM data 8.46 MB/sec 24 ms 

Video In Video input Write captured video (RGB) 36.86 
MB/sec 33 ms 

Video Out Video output Read display video (RGB) 36.86 
MB/sec 33 ms 

Total Video phone N/A 252.5 
MB/sec  
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description, minimal bandwidth requirement, and task completion time constraint of each 

master device in the video phone application. These system tasks are arranged in a pipelined 

fashion so that inter task dependency is minimized. The minimal memory bandwidth 

requirement for target performance is 252.5 MB/sec. If a memory controller can deliver more 

bandwidth, more data can be transferred within a second and better system speed can be 

achieved.  

3.5. Simulation Result 
In this section, we evaluate the performance of different memory controllers on our 

simulation platform. The memory scheduling policies for comparison are No-Scheduling 

Nor-Bank-Interleaving (NSNBI), FIFS with bank-interleaving (FIFS), and LTSP. NSNBI 

represents the simplest memory controller without bank-interleaving support. FIFS represents 

the most common memory controllers with bank-interleaving support.  

We investigated the impact of burst length, bus interface buffer size, and bus arbitration 

policy on bandwidth usage, memory power consumption, and memory energy efficiency. 

3.5.1. Evaluation Metrics 
Table 2 lists the performance evaluation metrics and their physical meaning. The 

bandwidth usage (BU) evaluates how much data a memory controller can access within a 

second; it also implies shorter effective transaction latency from a system’s point of view. 

The memory power consumption evaluates scheduling policy impact on memory’s 

power consumption. However, scheduling policy that delivers higher bandwidth usage 

may also result in higher power consumption. Hence, we also use the memory energy 

efficiency to evaluate how much data a scheduling policy can deliver per unit energy. 

With memory energy consumption being the dominant part in a system, higher memory 

energy efficiency represents longer battery life and hence longer device operation time. 
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3.5.2. Burst Length Impact 
The effect of bus burst length 2, 4, 8, and 16 on DRAM performance is investigated. 

These bus burst length corresponds to memory burst length 4, 8, 16, and 32 on DDR 

memories because of the double data rate. The buffer size in both the masters and the 

memory controller are 8 entries. 

A. Bandwidth Usage (BU) 
Fig. 5 shows the bandwidth usage of using LTSP scheduling policies is the highest 

among the compared scheduling policies. The bandwidth usage improvements compared with 

FIFS can reach up to 19.7% for burst length 2. However, for burst length 8 and 16, the 

bandwidth usage of using LTSP scheduling policy is slightly higher than that of FIFS. This is 

Table 2  Performance evaluation metrics 
Evaluation Metric Description Unit 

Bandwidth Usage  
The ratio between the total amount of data 
transferred and the total time taken to transfer the 
data. 

MB/sec 

Memory Power Consumption The power consumed by DRAM estimated with 
Micron’s DRAM power calculator [16]. mW 

Memory Energy Efficiency The amount of data that can be accessed for a 
given amount of memory energy consumption. KB/mJ 
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Fig. 5.  Bandwidth usage of different memory scheduling policies with (a)FP and (b)RR bus arbitration 
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because long burst length not only reduces the amount of row activation but also hides the 

long precharge and activation latency with the long data access time. 

B. Memory Power Consumption 
Fig. 6 shows that LTSP achieves the second lowest memory power consumption for burst 

length longer than 2. For burst length 2, however, LTSP has the highest memory power 

consumption. This is mainly due to the fact that the total time taken to transfer all the data 

when using LTSP policy is much shorter than others, hence decreasing the denominator in the 

power consumption formula. For burst length 4 and 8, at least 22 mW of power consumption 

can be reduced compared with burst length 2. However, the memory power consumptions of 

burst length 8 are almost the same as the power consumption of burst length 16. In contrast to 

LTSP’s second lowest memory power consumption, FIFS has the highest power consumption 

for burst length longer than 2. NSNBI can achieve the lowest memory power consumption in 

most cases because it performs fewer accesses within unit time than other policies. Note that 

the power consumptions are around 500mW and are at least an order larger than the power 

consumption of a memory controller itself. Hence, the power consumption overhead of the 

memory controller is insignificant compared with that of the memory module, which 

dominates the power consumption of a multimedia platform. 
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Fig. 6.  Power consumption of different memory scheduling policies with (a)FP and (b)RR bus arbitration 
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C. Memory Energy Efficiency 
Fig. 7 shows that LTSP scheduling policy provides the highest energy efficiency in all 

cases. The efficiency improvements between LTSP and FIFS are 34.1%~4.0%.  The 

improvement decreases as the burst length becomes longer due to the same reason why 

bandwidth usage saturates.  

 

In summary, LTSP scheduling policy can provide both higher bandwidth utilization and 

memory energy efficiency, which is suitable for high performance and high energy efficiency 

applications. On the other hand, FIFS is an option to provide fair bandwidth usage when long 

burst length is available. However, FIFS has very high memory power consumption 

compared with other scheduling policies. Therefore FIFS is recommended for medium 

performance applications in which power consumption is less of an issue. 

3.5.3. Transaction Buffer Size Impact 
This sub section presents the impact of using different transaction buffer size. The buffer 

size determines the number of transactions that can be scheduled. We investigate the 

scheduling policies used in previous section with buffer size 2, 4, 8, 12, and 16 entries. Each 

entry stores a transaction. The bus burst length is set to 4 for all cases. 

0

200

400

600

800

1,000

1,200

1,400

2 4 8 16

Bus Burst Length (Beats)

M
em

o
ry

 E
n
er

gy
 E

ff
ic

ie
n
cy

 (
K

B
/m

J)

NSNBI

FIFS

LTSP

0

200

400

600

800

1,000

1,200

1,400

2 4 8 16

Bus Burst Length (Beats)

M
em

o
ry

 E
n
er

g
y
 E

ff
ic

ie
n
cy

 (
K

B
/m

J)

NSNBI

FIFS

LTSP

 

(a)                                      (b)                       

Fig. 7.  Memory energy efficiency of different memory scheduling policies with (a)FP and (b)RR bus arbitration 
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A. Bandwidth Usage (BU) 
Fig. 8. illustrates the bandwidth utilization using different buffer size. For buffer size 2, 

the bandwidth utilizations of LTSP scheduling policy and FIFS are almost the same. For 

buffer size 4, the bandwidth utilization of LTSP is at least 6% higher than that of FIFS. In 

general, increasing the buffer size increases the bandwidth utilization because larger buffer 

size allows more transactions to be scheduled. Moreover, larger buffer size also reduces the 

possibility of the buffer being occupied by transactions accessing to only one particular bank. 

If all the transactions within the buffer try to access the same bank, only one transaction 

scheduler and command translator can be utilized. However, the improvement of bandwidth 

usage saturates as buffer size increases over 12. This is because all the transaction schedulers 

and command translators are already fully in use and hence scheduling capacity is reached. In 

addition, the utilization limit of the memory command bus also limits the maximum number 

of access commands that can be issued to DRAM. 

B. Memory Power Consumption 
Fig. 9. illustrates the memory power consumption using different buffer size. For buffer 

size 2, the memory power consumptions of LTSP and FIFS are almost the same. For buffer 

size 4, the memory power consumption of LTSP is the highest. However, for buffer size 

larger than 4, the memory power consumption of FIFS becomes the highest.  For buffer size 
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Fig. 8.  Bandwidth usage of different buffer size with (a)FP and (b)RR bus arbitration 
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larger than 4, the power consumptions of LTSP and FIFS decrease gradually as the buffer size 

increases. 

C. Memory Energy Efficiency 
Fig. 10 reveals that the energy efficiency increases as buffer size increases for LTSP 

scheduling policy in general. Although there is still energy efficiency improvement between 

buffer size 12 and 16 using LTSP, the improvements is only 2.1% due to the saturation effect 

explained earlier. The energy efficiency improvement of FIFS has similar trend. However, the 

energy efficiency of FIFS is inferior to that of LTSP. 

 

In summary, given that the system bus is adopting packet-based protocol, increasing the 

buffer size is an alternative way to increase the bandwidth usage and memory energy 
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Fig. 9.  Memory power consumption of different buffer size with (a)FP and (b)RR bus arbitration 
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Fig. 10.  Memory energy efficiency of different buffer size with (a)FP and (b)RR bus arbitration 
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efficiency for memory scheduling policies supporting bank-interleaving. However, the buffer 

size should not exceed 12 because of the saturation effect. Although with larger buffer size, 

the bandwidth usage of FIFS is only slightly lower than the bandwidth usage of LTSP. LTSP 

scheduling policy is still the better choice when memory energy efficiency is also an issue. 

From the simulation result, buffer size of 8 or 12 are suggested as the best trade-off on 

performance and buffer size. 

3.5.4. Bus Arbitration Policy Impact 
This sub section discusses the impact of using fixed-priority (FP) or round-robin (RR) 

bus arbitration policies on performance. 

A. Bandwidth Usage (BU) 
The bus arbitration impact on bandwidth usage result in at most 1% difference for LTSP 

policy. FIFS is also less sensitive to bus arbitration policy when the buffer size is large 

enough; however, for buffer size 2, FIFS achieves higher bandwidth usage in RR than in FP. 

In contrast to LTSP being independent of bus arbitration policy, NSNBI has 25%~ 7% higher 

bandwidth usages in RR bus arbitration than in FP bus arbitration. This is because RR bus 

arbitration would result in higher access locality than FP bus arbitration would. If FP bus 

arbitration is used with longer burst, a row which was previously accessed by another device 

with higher bus arbitration priority would be re-opened. As a result, the access pattern would 

jump back and forth from one memory row to another from time to time. In contrast, RR bus 

arbitration has higher chances to group accesses from different devices together. Thus result 

in more row-hits and fewer row re-openings. 

B. Memory Power Consumption 
In both bus arbitration policies, the power consumptions of using LTSP are almost the 

same. This is due to the fact LTSP can reorder the transactions and is thus independent of 

which bus arbitration is being used. For NSNBI, the power consumption in FP bus arbitration 
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is at least 60 mW lower than that in RR bus arbitration. This is because NSNBI can achieve 

more accesses in RR bus arbitration than in FP bus arbitration as explained earlier. 

C. Memory Energy Efficiency 
The impact of bus arbitration policy is insignificant when using LTSP scheduling policy; 

the energy efficiency in FP bus arbitration is only 0.8%~1.7% higher than the energy 

efficiency in RR bus arbitration. 

 

LTSP scheduling policy is relatively independent of which bus arbitration policy is being 

used. This allows system designer to exploit bus arbitration policy without having to take the 

memory’s scheduling policy into account. 

3.6. AXI Memory Controller Architecture 
Fig. 11 illustrates the proposed memory controller. The AXI slave interface is the first 

stage of the memory controller; it handles the communication between the memory controller 

and the AXI system bus. The AXI bus has multiple channels that enable transferring read and 

write transactions at the same time. In addition, each channel has a transaction ID bus to 

enable out-of-order data transfer. The transaction ID is also used inside our memory 

controller to identify the source of a transaction. 
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Fig. 11.  Architecture of the AXI-compatible memory controller with the two-level 
scheduling policy 
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Once a transaction is received from the bus, the transaction would be stored in the input 

buffer and queued before being issued to transaction scheduling.  If a transaction has 

finished its access, this transaction is discarded from the buffer and queue. The input 

transactions from input buffer are reordered by transaction reorder units according to the 

policies mentioned earlier. Each transaction reorder and issue unit corresponds to a DRAM 

bank. After a transaction has been reordered and sent to a local transaction buffer, this 

transaction would then be translated into DRAM commands based on the status of the bank 

to be accessed. Each bank’s status is tracked by one bank controller.  

Finally, the translated input commands are scheduled by a command controller. The 

command controller determines which command can be issued to DRAM based on the 

aforementioned priority assignment and DRAM timing constraints. If a transaction’s write 

data has been written or read data has been retrieved, the write response or read data are sent 

back to the output buffer and response queue. 

The synthesized gate count of the proposed memory controller using UMC 0.18μm 

technology is 47.6K. The memory controller is clocked at 166 MHz and has 32-bit data port. 

3.7. Summary 
We proposed a packet-based bus compatible memory controller with two-level 

scheduling scheme. By facilitating the flexibility and additional transaction source 

information available in packet-based bus protocol, the proposed memory controller can 

achieve relatively higher bandwidth usage and memory energy efficiency. In addition, the 

proposed LTSP transaction scheduling policy is independent of which bus arbitration is being 

used. The simulation result which includes the bus arbitration impact shows that the proposed 

two-level scheduling policy improves bandwidth usage and memory energy efficiency by up 

to 19.4% and 34.1% respectively. 
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Chapter 4   AXI Shared-link Bus 
4.1. System Bus' Role in a System 

With the rapid progress of system-on-a-chip (SOC) and massive data movement 

requirement, on-chip system bus has become the central role in determining the performance 

of a SOC. Two types of on-chip bus have been widely used in current designs, which are 

pipelined-based and packet-based bus. 

For pipelined-based buses, such as ARM’s AMBA 2.0 AHB [23], IBM’s CoreConnect 

[24], and OpenCore’s WishBone [25], the cost and complexity to bridge the communications 

among on-chip designs are low. However, pipeline-based bus suffers from bus contention and 

inherent blocking characteristics due to the protocol. The contention issue can be alleviated 

by adopting multilayer bus structure [26] or using proper arbitration policies [27][28]. 

However, the blocking characteristic, which allows a transfer to complete only if the previous 

transfer has completed, cannot be altered without changing the bus protocol. This blocking 

characteristic reduces the bus bandwidth utilization when accessing long latency devices, 

such as an external memory controller. 

To cope with the issues of pipelined-based buses, packet-based buses such as ARM 

AMBA 3.0 AXI [29], OCP-IP’s Open Core Protocol (OCP) [30], and STMicroelectronics 

STBus [31] have been proposed to support outstanding transfer and out-of-order transfer 

completion. We will focus on AXI here because of its popularity. AXI bus possesses multiple 

independent channels to support multiple simultaneous address and data streams. Besides, 

AXI also supports improved burst operation, register slicing with registered input, and 

secured transfer.  
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Despite the above features, AXI requires high cost and possesses long transaction 

handshaking latency. However, a shared-link AXI interconnect can provide good 

performance while requiring less than half of the hardware required by a crossbar AXI 

implementation. This work focused on the performance analysis of a shared-link AXI. The 

handshaking latency is at least two cycles if the interface or interconnect are designed with 

registered input. This would limit the bandwidth utilization to less than 50%. To reduce the 

handshaking latency, we proposed a hybrid data locked transfer mode. Unlike the lock 

transfer in [32] which requires arbitration lock over transactions, our data locked mode is 

based on a transfer-level arbitration scheme and allows bus ownership to change between 

transactions. This gives more flexibility to arbitration policy selection. 

With the additional features of AXI, new factors that affect the bus performance are also 

introduced. The first factor is the arbitration combination. The multi-channel architecture 

allows different and independent arbitration policies to be adopted by each channel. However, 

Existing AXI related works often assumed a unified arbitration policy where each channel 

adopts the same arbitration policy [32][33][34]. Another key factor is the interface buffer size. 

A larger interface buffer usually implies more out-of-order transactions can be handled. The 

third factor is the task access setting, which defines how the transfer modes should be used by 

the devices within a system. Proper task access settings can yield better performance. 

However, the proper setting may be different under different circumstances, such as different 

buffer sizes. 

Being aware of the performance factors mentioned above, we conducted a detailed 

simulation-based analysis on the performance impact of the factors. The analysis is carried 

out by simulating a multi-core platform with a shared-link AXI backbone running a video 

phone application. The performance is evaluated in terms of bandwidth utilization, average 

transaction latency, and system task completion time. In addition to the analysis on the 
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performance impact of the aforementioned factors, the performance of a corresponding 

5-layer AHB-lite bus, which has a cost comparable to a 5-channel shared-link AXI, is also 

included for comparison. 

The rest of the chapter is organized as follows. Section 4.2 presents the proposed transfer 

modes and the corresponding arbitration framework. Section 4.3 presents the simulation 

platform and evaluation metrics for performance comparison. The comparison of the 

simulation result is available in Section 4.4. Finally, Section 4.5 concludes this work. 

 

4.2. Proposed AXI Scheme 
4.2.1. Transfer Modes 
A. Normal 

This mode is the basic transfer mode in an AXI bus with registered interface. In the first 

cycle of a transfer using normal mode, initiator sets the valid signal high and sends it to the 

target. In the second cycle, the target receives the high valid signal and sets the ready signal 

high for one cycle in response. Once the initiator receives the high ready signal, the initiator 

resets the valid signal low and this transfer is completed. As a result, at least two cycles are 

needed to complete a transfer in an AXI bus with registered interface. Fig. 12 illustrates the 

transfer of two normal transactions with a data burst length of four. It takes 16 bus cycles to 

complete the eight data transfer in the two transactions. This means 50% of the bus available 

bandwidth is wasted. 
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B. Interleaved Mode 
The interleaved mode [32][42] hides transfer latency by allowing two transactions from 

different initiators to be transferred in an interleaved manner. Fig. 13 illustrates the transfer of 

the two transactions mentioned earlier using interleaved transfer mode. The one cycle latency 

introduced in the normal mode for request B is hidden by the transfer of request A. Similarly, 

the interleaved transfer mode can also be applied to data channels. As a result, transferring 

the data of the two transactions only takes 9 cycles.  

To support the interleaved mode, only the bus interconnect needs additional hardware. 

No additional hardware in device interface or modification on bus protocol is required. Hence, 

an AXI interconnect that supports the interleaved mode can be used with standard AXI 

device. 
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Fig. 12.  Normal mode transfer example 
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Fig. 13.  Interleaved mode transfer example 
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C. Proposed Data Locked Mode 
Although the interleaved mode can increase bandwidth utilization when more than one 

initiator is using the bus, the interleaved mode can not be enabled when only one standalone 

initiator is using the bus. To handle this, we proposed the data locked mode. In contrast to the 

locked transfer implemented in [33] that can only perform when the bus ownership is locked 

across consecutive transactions, the proposed data locked mode locks the ownership of the 

bus only within the period of burst data transfers. During the burst data transfer period, the 

ready signal is tied high and hence the handshaking process is bypassed. Unlike the 

interleaved mode, which can be applied to both request and data channels, the proposed data 

locked mode only supports burst data transfer. 

Fig. 14 illustrates an example of two transactions using data locked mode to transfer data. 

Device M0 sends a data locked request A and device M1 sends a data locked request B. Once 

the bus interconnect accepted request A, the bus interconnect records the transaction ID of 

request A. When a data transfer with the matched ID appears in the data channel, the bus 

interconnect uses data locked mode to transfer the data continuously. For a transaction with a 

data burst of n, the data transfer latency is n+1 cycles.  

There are two approaches to signal the bus interconnect to use the data locked mode for a 

transaction. One is using ARLOCK/AWLOCK signal in the address channels to signal the 

bus of an incoming transaction using data locked transfer. However, doing so requires 

modifying the protocol definition of these signals and the bus interface. To avoid modifying 
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Fig. 14.  Data locked mode transfer example 
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the protocol, the other approach is to assign the devices that can use the data locked mode in 

advance. The overhead of this approach is that the bus interconnect must provide mechanisms 

to configure the device transfer mode mapping. Note that these two approaches can be used 

together without conflict. 

To support the proposed data locked mode, the bus interconnect needs an additional 

buffer, called data locked mode buffer, to keep record of the transactions using the data 

locked mode. Each entry in the buffer stores one transaction ID. If all the entries in the data 

locked mode buffer are in use, no more transaction can be transferred using the data locked 

mode. 

D. Proposed Hybrid Data Locked Mode 
The hybrid data locked mode is proposed to allow additional data locked mode 

transaction requests to be transferred using the normal or interleaved mode when the data 

locked mode buffer is full. This allows more transactions to be available to the scheduler of 

the devices that support transaction scheduling. With the additional transactions, the 

scheduler of such devices may achieve better scheduling result. 

However, only a limited number of additional transactions using the data locked mode 

can be transferred using the normal or interleaved mode. This avoids bandwidth-hungry 

devices from occupying the bus with too many transactions. A hybrid mode counter is 

included to count the number of additional transactions transferred. If the counter value 

reaches the preset threshold, no more data locked mode transactions can be transferred using 

the normal or interleaved mode until the data locked mode buffer becomes not full again. 

Once the data locked mode buffer is not full, the hybrid mode counter is reset. 

 
4.2.2. Arbitration Scheme 

With the introduction of the multi-channel architecture and the proposed transfer modes, 

traditional arbitration framework that was based on single-channel architecture must be 
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revamped. Therefore, we propose an arbitration framework that supports different arbitration 

flows for address channels and data channels. In contrast to existing works which used 

unified arbitration, each independent channel in the proposed arbitration framework is 

allowed to have its own arbitration policy. This framework allows different arbitration 

policies to be combined together in a simple plug-and-play manner. 

Fig. 15 (a) illustrates the arbitration flow for address channels. Upon receiving multiple 

data locked mode transaction requests from different initiators, the arbitration flow first 

checks if the data locked mode buffer is full or not. If there is an available empty entry in the 
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Fig. 15.  Arbitration framework for a share-link AXI bus 
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data locked mode buffer, the data locked mode transaction requests are arbitrated according 

to the arbitration policy adopted for the address channel. If the data locked mode buffer is full 

and the hybrid mode counter has not reached the threshold, all data locked mode transaction 

requests are treated as normal and interleaved mode transaction requests. As a result, all 

transaction requests are arbitrated together according to the adopted arbitration policy. On the 

other hand, if the hybrid mode counter has already reached the threshold, only the original 

normal and interleaved mode transaction requests are arbitrated. This arbitration flow gives 

higher priority to data locked mode transactions than normal or interleaved mode 

transactions. 

Fig. 15 (b) illustrates the arbitration flow for data channels. The arbitration flow first 

checks if there is already a transaction transferring data using the data locked mode. If there 

is already a transaction transferring data using the data locked mode, no other transaction 

would be granted. If no transaction is transferring, data locked mode transactions would be 

arbitrated according to the arbitration policy adopted by the data channel. If there is no data 

locked mode transaction requesting to transfer data, normal and interleaved mode 

transactions are arbitrated. 

The reason for giving higher priority to the transactions using the data locked mode is 

that these transactions are often latency sensitive. To minimize the latency of these 

transactions, the transactions must be transferred using the data locked mode and given the 

highest arbitration priority. 

4.3. Simulation Setup 
To properly evaluate the performance of the proposed transfer modes and arbitration 

framework on a shared-link AXI bus, we built a high-level model of a simplified multi-core 

platform system using SystemC [45]. The simulation accuracy of this model depends on 

modeling methodology, platform architecture authenticity, and application traffics accuracy. 
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The bus and components in the platform were modeled using transaction-level and 

behavior-level modeling method respectively. Transaction-level modeling uses a transaction 

instead of a cycle as the basic simulation unit. Since a transaction takes a fixed number of 

cycles to complete in each channel, transaction-level modeling ensures bus cycle accuracy in 

our simulations. More detail on transaction-level modeling can be found in [37]. To pursue 

platform architecture authenticity, the multi-core platform model was built based on a real 

multi-core platform [46]. The real platform has been verified with portable media player and 

smartphone applications. This ensures the simulation result from our platform model to be 

practical. The application traffics were derived based on the behavior and algorithm of the 

platform components to ensure traffics accuracy. The details of the platform architecture and 

bus traffics are provided in the following subsections. 

4.3.1. Multimedia Platform Architecture 
Fig. 16 illustrates the target platform from the system bus point of view.  Note that 

when the platform is used for AHB simulation, the bus interconnect is replaced with a 

5-layer AHB-lite interconnect with each master port having one dedicated AHB-lite bus. 

Since we only focus on the transaction behavior on the bus, the devices are modeled to 

only exhibit transaction behavior and pattern. However, the CPU does generate 

transactions related to interrupt service routines (ISR) upon receiving an interrupt request 

(IRQ). In addition, the DMA controller is also programmed to carry out different data 

moving tasks to mimic the behavior of its real counterpart. Including such more detailed 

behavior enables us to include the inter task dependency between devices. Note that the 

memory controller has two slave ports to allow more transactions to be seen by the 

scheduler of the memory controller. Among all the devices, the memory controller is the 

only one with access latency ranging from 0 to 16 cycles. 
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The AXI bus is clocked at 40MHz with both the address and data widths being 32-bit 

wide. This would yield an ideal total bandwidth of 320 MB/sec with the read and write 

bandwidths being 160 MB/sec each. 

4.3.2. Video Phone Scenario 
We have selected the video phone application for analysis because it covers a variety of 

devices and traffics that are common in most multimedia consumer electronic products. The 

bandwidth requirement of the video phone application is heavier than other applications such 

as portable media player, video recording, MP3 player, and regular phone service. This heavy 

bandwidth requirement also makes the video phone application a perfect application to test 

the performance limit of a bus.  
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In the video phone application, the system must deliver both audio and video 

communication at the same time. The system supports 44.1 KHz stereo audio capture/output 

and audio compression/decompression. As to video, the system provides VGA sized video 

capture, compression, decompression, and display with a target frame rate of 30 FPS. Table 3 

lists the task description, bandwidth requirement, and task completion time constraint of each 

master device in the video phone application. Although more devices may be included in a 

system, the bus traffic is usually dominated by the master devices listed in Table 3. The total 

bus bandwidth requirement is 247.8 MB/sec, which occupies 77.5% of the 320 MB/sec 

available bus bandwidth. If the bus can achieve a bandwidth utilization higher than 77.5%, all 

the system tasks are more likely to complete within the specified timing constraints. 

4.3.3. Evaluation Metrics 
The definition and physical meaning of the evaluation metrics are explained as follows. 

Table 3  Port task description and bandwidth requirement 

Master 
Port Task 

Required 
Read BW 
(MB/sec) 

Required 
Write BW 
(MB/sec) 

Total 
Required 
BW 
(MB/sec) 

Audio codec 1.467 1.467 2.934 

OS routine 0.001 0.001 0.002 

Total ISR 0.172 0.493 2.935 
MPU 

Total Bandwidth 
Requirement 1.640 1.961 3.601 

DSP Video decode 14.836 42.473 57.309 

Video  
Encoder Video encode 59.927 14.255 74.182 

Video in to MEM 27.927 27.927 55.855 

Audio in to 
MEM 0.176 0.176 0.353 

3G 
communication 0.132 0.132 0.265 

DMAC0 

Total Bandwidth 
Requirement 28.236 28.236 56.472 

MEM to video 
out 27.927 27.927 55.855 

MEM to audio 
out 0.176 0.176 0.353 DMAC1 

Total Bandwidth 
Requirement 28.104 28.104 56.208 

System Total Bandwidth 
Requirement 132.743 115.028 247.771 
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A. Bandwidth Utilization (BWU) 
The bandwidth utilization (BWU) is defined as the percentage of available ideal bus 

bandwidth being used to actually transfer data, i.e. 

%100×=
ideal

used

B
BBWU ,                                 (1) 

where Bused and Bideal are the actually used bandwidth and available ideal bandwidth 

respectively. A higher BWU implies more data can be transferred within a period of time. It 

also implies shorter effective transaction latency from the system’s point of view. 

B. Transaction Latency 
The transaction latency we used is defined as the average of read and write transaction 

latencies. The latency of a read or write transaction is measured from the time a transaction 

request is sent from a master till the time the read data or write response is returned to the 

master. The average transaction latency, denoted as TL, can be defined as 

writeread

writeread

NN
TLTL

TL
+
+

= ∑∑ ,                              (2) 

where ∑TLread and ∑TLwrite are the sums of all read and write transaction latencies 

respectively. Nread and Nwrite are the total number of read and write transactions respectively. 

In contrast to the bandwidth, which increases as more data can be transferred, the transaction 

latency may remain the same even if the bandwidth utilization has been increased. 

C. System Task Completion Time 
The system task completion time is defined as the time when all tasks in the video phone 

application have been completed. We believe it is crucial to minimize the system task 

completion time so that the task-level timing constraint can be met. In the video phone 

application, all tasks must be done within 33 ms, otherwise we say the system violates the 

real-time constraint. 
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4.4. Experiment Result 
4.4.1. AXI Interface Buffer Size and Bus Arbitration 

Impact 
The effect of the bus interface buffer size and the combination of arbitration policies are 

investigated first. The investigated buffer sizes are 1, 2, 4, 8, and 16. Each entry keeps the 

record of a transaction. Table 4 lists the abbreviations of the investigated arbitration policy 

combinations. The weighting parameter, which is slots in the TDMA and tickets in the 

Table 4  Combinations of arbitration policies 
Arbitration policy of channels 
Combination 
Name 

Address 
channel 

Data channel Write response 
channel 

FF Fixed priority Fixed priority Round-Robin 

FT Fixed priority TDMA Round-Robin 

FR Fixed priority Round-Robin Round-Robin 

FL Fixed priority Lottery Round-Robin 

TF TDMA Fixed priority Round-Robin 

TT TDMA TDMA Round-Robin 

TR TDMA Round-Robin Round-Robin 

TL TDMA Lottery Round-Robin 

RF Round-Robin Fixed priority Round-Robin 

RT Round-Robin TDMA Round-Robin 

RR Round-Robin Round-Robin Round-Robin 

RL Round-Robin Lottery Round-Robin 

LF Lottery Fixed priority Round-Robin 

LT Lottery TDMA Round-Robin 

LR Lottery Round-Robin Round-Robin 

LL Lottery Lottery Round-Robin 

 

Table 5  Weight allocation of TDMA and Lottery arbitration schemes 
Channel Slots/Tickets of each initiator port 

CPU DSP Video Enc. DMAC0 DMAC1 Read 
Address 4 8 24 24 24 

CPU DSP Video Enc. DMAC0 DMAC1 Write 
Address 4 24 8 24 24 

Video In Mem. Ctrl. 0 Mem. Ctrl. 1 Others  Read 
Data 8 24 16 4  

CPU DSP Video Enc. DMAC0 DMAC1 Write 
Data 4 24 8 24 24 
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Lottery, are tuned to match the bandwidth requirement of the video phone application. Table 5 

lists the detail weight parameter of each channel. Since write response channel does not 

require high bandwidth, round-robin arbitration is selected for write response channel due to 

its fairness. Note that in this experiment, only the normal and the interleaved modes are used. 
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Fig. 17 shows the bandwidth utilization, average transaction latency, and completion time 

respectively. In general, the bandwidth utilization increased as the interface buffer size 

increased. However, the bandwidth utilization stopped increasing when the buffer size is 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 4 8 16

Interface buffer size (entry)

B
an

dw
id

th
 u

til
iz

at
io

n
FF FT FR FL
TF TT TR TL
RF RT RR RL
LF LT LR LL

 
(a) Bandwidth utilization 

0

50

100

150

200

250

300

350

1 2 4 8 16

Interface buffer size (entry)

La
te

nc
y 

(c
yc

le
)

FF FT FR FL TF TT TR TL
RF RT RR RL LF LT LR LL

(b) Average transaction latency 

0

11

22

33

44

55

1 2 4 8 16

Interface buffer size (entry)

C
om

pl
et

io
n 

tim
e 

(m
s)

FF FT FR FL TF TT TR TL

RF RT RR RL LF LT LR LL

(c) System task completion time 
Fig. 17.  Performance of different interface buffer size and 
arbitration policy combinations  



 51

greater than 8 because of the required bandwidth limit. The average transaction latency is also 

proportional to the interface buffer size. This is because with a larger buffer, a transaction 

would spend more time pending in the interface buffer before this transaction finishes 

transferring data. In contrast, the completion time decreases as the buffer size increases. 

It is interesting that the transaction latency did not reflect the result in bandwidth 

utilization. This is because the outstanding and out-of-order transfer capabilities, which are 

related to the buffer size, allow multiple transactions to be transferred on the bus in an 

overlapped manner. As a result, the latency of a transaction becomes longer, but the transfers 

on the bus can be arranged in a more compact way. This is one of the characteristics in a 

packet-based bus that is different from a traditional pipeline-based bus. 

For the arbitration policy, the impact on the performance was not significant when the 

buffer size is 1 and 2. After the buffer size becomes larger than 2, the combinations with data 

channels using fixed-priority, such as FF, TF, RF, and LF, usually achieved lower bandwidth 

utilization than other combinations. On the other hand, the combinations with data channels 

using TDMA, such as FT, TT, RT, and LT, usually achieved the highest bandwidth utilization. 

Similar trend is also observed in the execution time. However, this trend is weak in the 

transaction latency, which doest not reflect the result of the bandwidth utilization. 

The completion time comparison shows that when TDMA is used for data channel, the 33 

ms timing constraint can be satisfied in buffer size 8 and 16. On the other hand, no arbitration 

policy combination satisfied the 33 ms timing constraint with the buffer size smaller than 8 

In summary, bandwidth and completion time improved sub-linearly as the interface 

buffer size increased. However, the buffer size increase also increased transaction latency 

near linearly. When smaller interface buffer is used, the arbitration combination had less 

impact on performance. On the other hand, for larger buffer size, the best arbitration 

combination could yield up to 23.3 % performance gain over the worst arbitration 
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combination. The result suggests that using a fair arbitration policy on data channels should 

be more promising. For address channels, a simpler arbitration policy is good enough because 

address channel arbitration had less impact on bus performance. 

 

4.4.2. Task Access Setting Impact 
This subsection finds out how the hybrid data locked mode should be used and shows the 

performance impact delivered by using the hybrid data locked mode. A task access setting 

defines how the transfer modes should be used by the devices in a system. Table 6 lists the 

four settings investigated here. In which, the memory device is singled out because it is the 

only device with non-zero access latency. All other devices have zero access latency and 

hence are treated the same.  Note that the results here are the average over all 16 arbitration 

policy combinations. The buffer size of data locked mode and hybrid counter threshold are 

both set to one. 

Table 6  Task access settings 
Settings Memory Access Tasks Other Tasks 
NN Normal & Interleaved Normal & Interleaved 
HN Hybrid Normal & Interleaved 
NH Normal & Interleaved Hybrid 
HH Hybrid Hybrid 
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Fig. 18 shows the average bandwidth utilizations, average transaction latency, and 

completion time of different task access settings. In general, HN setting achieved the highest 

bandwidth utilization among all the task access settings except in buffer size 16. This is 

because when the buffer size is 16, the bandwidth utilization of NN, HN, and NH settings is 

already high enough to handle all the data transfer. If the buffer size is small, the use of the 

hybrid data locked mode could reduce the completion time by up to 26.8% compared with 

NN. Although HN achieved the highest performance in most cases, HH achieved the highest 
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bandwidth utilization in buffer size 1 because no out-of-order transfer can be carried out with 

the interface buffer having only 1 entry. Consequently, HH took shorter time to transfer a 

transaction and less bandwidth would be wasted. In contrast to HH’s highest bandwidth 

utilization in buffer size 1, HH setting achieved the lowest bandwidth utilization when the 

buffer size is larger than 2. This is because HH had less opportunity to enable interleaved 

transfer mode on normal transactions when the interface buffer size increases. Unlike the 

result in the bandwidth utilization, HH setting achieved the shortest average transaction 

latency among the four settings. The transaction latency of HH did not increase significantly 

as the buffer size increased. On the other hand, NN had the expected longest average 

transaction latency. The trend in completion time matches the trend in bandwidth utilization 

in general. HN setting achieved the shortest completion time and met the 33ms timing 

constraint with buffer size larger than 4. 

In summary, HN was the best task access setting in most cases in terms of bandwidth 

utilization and completion time. This suggests the hybrid data locked mode would best to be 

used by long access latency devices, but not by zero access latency devices. From the 

transaction latency perspective, HH achieved the shortest transaction latency. This suggests 

that processors or devices that require short latency should use the hybrid mode. 

 

4.4.3. Single-Layer Shared-link AXI vs. 5-Layer AHB-lite 
This subsection compares the performance between a share-link 5-channel AXI 

interconnect and a cost equivalent 5-layer AHB-lite interconnect. The 5-layer AHB-lite 

interconnect is capable of providing a maximum bandwidth of 800 MB/sec. We used two 

task access settings for the AXI case, one is NN setting and the other is HN setting. The 

interface buffer sizes we investigated are 1 and 8. Since the interface buffer size has no effect 

in AHB, only the result of buffer size 1 is available for AHB. 
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Fig. 19 compares the bandwidth utilization, average transaction latency, and completion 

time of the AHB and AXI platforms.  The bandwidth utilization of shared-link AXI is 

significantly higher than that of AHB. If the interface buffer size is 8, the bandwidth 

utilization of AXI outperformed AHB by at least 58.3%. However, AXI’s transaction latency 

can reach up to 4.7 times of AHB’s in buffer size 8. The completion time comparison shows 

that despite the long latency in AXI, the completion time in AXI reduced up to 44.2% when 
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compared with AHB. 

The result shows that a single share-link AXI outperforms a 5-layer AHB-lite 

interconnect in the videophone case study. Given that the hardware cost of a 5-layer AHB-lite 

interconnect is comparable to a shared-link AXI interconnect, using a shared-link AXI 

interconnect may be more efficient than using a multi-layer AHB interconnect. 

 

4.5. Summary 
The analysis in this work provides some insights for multimedia system design involving 

a shared-link AXI interconnect. If the buffer cost and transaction latency are not the primary 

concerns, system designers can consider using larger interface buffer to take the full 

advantage of out-of-order and outstanding transfer capabilities. However, some care must be 

taken in selecting a proper arbitration combination when using a channel-independent 

arbitration framework, especially when the interface buffer is large. The analysis showed that 

the arbitration combination could affect bus performance by up to 23.2 %. Moreover, the 

arbitration combination that yields the best system performance may vary depending on the 

interface buffer size, task access setting, and application traffic characteristic. In general, 

using a fair arbitration policy such as the TDMA is preferred for data channels. As to address 

channels, system designers can select a simpler arbitration policy to reduce the cost since the 

address channel arbitration has less impact on system performance. On the other hand, if the 

buffer cost and transaction latency do matter, system designers can use the hybrid data locked 

mode to achieve a performance similar to the case that uses only the interleaved mode, but 

with only half the interface buffer size. When the hybrid data locked mode is adopted for only 

long access latency devices, the simulation showed up to 21.1% completion time and 14.3% 

transaction latency reduction with respect to the setting without the hybrid data locked mode. 

With the short transaction latency, system designers can also consider adopting the hybrid 
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data locked mode for latency-sensitive devices, such as CPUs, to reduce transaction latency. 

Although the analysis was conducted using AXI, we believe the experience can be extended 

and applied to other shared-link packet-based bus as well. 
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Chapter 5   Bandwidth Reduction 
Techniques in Computation Cores 
 

5.1. Bandwidth Reduction Methods 
Bandwidth requirement can be reduced in two major ways. The first way is to take the 

advantage of data characteristics. Some video or vision algorithms access data according to 

input data and intermediate data. These input and intermediate data often exhibit special 

patterns that can be used to reduce the number of data access. Take motion compensation for 

instance, its data access address is determined by motion vectors and macroblock types. 

Facilitating the motion vector and macroblock type characteristics can effectively reduce the 

bandwidth requirement. Another example is Meanshift filtering, the data to be accessed is 

determined by Meanshift vectors. However, the characteristic of the Meanshift vector 

magnitude can also be facilitated to reduce bandwidth requirement. The details of the 

bandwidth reduction methods adopted in these two examples are described in the following 

two subsections. 

The other way to reduce bandwidth requirement is to reuse data based on an algorithm’s 

data access spatial and temporal locality. By paying the price of extra small buffers, the 

bandwidth requirement can be greatly reduced. This dissertation took stereo matching to 

demonstrate how data reuse can be used to significantly reduce the bandwidth requirement. 

The detail of the stereo matching case is presented in subsection 5.4. 
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5.2. CFMMC 
5.2.1. Motion Compensation's Role in a Video Decoder 

System 
Over the past two decades, the development of the video coding standard has been 

undergoing great progress. Even though the latest video coding standard provides much 

better compression performance as well as extra functionalities, all video coding standards 

are still consist of motion compensation, transform, and entropy coding. Among these 

common video coding tasks, motion compensation interacts with the frame memory most, 

and is often the bottleneck of the speed, area, and energy in a video decoder. The operation in 

motion compensation can be regarded as to copy the predicted macroblock (MB) from the 

reference frame first, and then add the predicted MB with the residual MB to reconstruct the 

MB in the current frame. This operation involves extensive amount of frame memory access. 

Consequently, the bandwidth to the frame memory would become a performance bottleneck. 

On the other hand, the frame memory access is also the dominating part in the energy 

consumption of a video decoder. In addition, the requirement of storing the great amount of 

the reference frame data and the reconstructed current frame data results in a frame memory 

which would occupy most of the silicon area in motion compensation. Therefore, the 

optimization of the frame memory architecture is of great significance in reducing the 

bandwidth requirement, cost, and energy consumption of motion compensation. 

The most common frame memory architecture for video coding without bidirectional 

prediction is the ping-pong frame memory (PPFM), which stores the reconstructed current 

frame and the reference frame in two memories. The PPFM swaps the role of the 

reconstructed current frame memory and the reference frame memory upon the completion of 

each frame’s motion compensation. Hence, the reconstructed current frame memory of a 
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previous frame (t-1) would become the reference frame memory of a current frame (t). As a 

result, the PPFM requires a memory size of two frames, which is a considerable amount. In 

addition, the read and write accesses to the frame memory result in high bandwidth 

requirement. Furthermore, the energy consumption due to accessing the large sized memories 

often accounts for approximately half of the energy in a video decoder [47]. 

Motivated by the fact that the PPFM is very bandwidth hungry, area costly, and energy 

consuming, this paper proposes to use the statistical characteristics found from the video data 

to reduce the bandwidth, area, and energy consumption. We noticed that from the statistical 

analysis on various test sequences, the percentage of MBs with zero motion vector and no 

residue in a P-frame ranges from 7%~96%. Essentially, this type of MB is identical in the 

reference frame and the reconstructed current frame. By using this characteristic, this paper 

proposes the combined frame memory (CFM) architecture, which combines the reconstructed 

current frame memory and the reference frame memory into one single memory. Unlike other 

merged-frame approaches, the CFM includes an additional table to keep track of MBs with 

zero motion vector and no residue. For each MB without motion and residue, no further 

memory access is necessary for copying the MB from the reference frame to the 

reconstructed current frame. This is because the reconstructed current frame data and the 

reference frame data are the same and is already in the same memory. Thus, it is possible to 

reduce the bandwidth requirement and energy consumption due to frame memory accesses. 

In addition, the memory size is also reduced compared with that of the PPFM. Consequently, 

the cost for the motion compensation can be reduced. For QCIF resolution with the vector 

range of [-16:+15], the total memory size of the CFM architecture is reduced to 56.6% of the 

total memory size in the PPFM architecture. 

There are two major contributions in this work. First of all, the statistical analysis and the 

concept of the combined frame memory motion compensation (CFMMC) are presented. This 
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can serve as a reference for designing a CFMMC for other video decoder in different 

standards. The other contribution is the investigation result on the hardware implementations. 

The implementations of the CFMMC and the ping-pong frame memory motion compensation 

(PPFMMC) are compared to each other. The comparison over various test sequences shows 

that the hardware architecture can achieve lower bandwidth requirement, less silicon cost, 

and can reduce the energy consumption by -32% ~ 18%. To achieve the best benefit in 

throughput and energy consumption from using the CFMMC, the video being processed must 

exhibit enough percentage of MBs without motion and residue. This suggests that the 

CFMMC is more suitable for applications with much still background, such as video 

surveillance, video telephony, and video conference. 

5.2.2. Combined Frame Memory Motion Compensation 
A. Statistics of Perfect-Matched MB 

The percentage of perfect-matched MBs within a frame determines the bandwidth 

reduction and energy consumption of the frame memory in motion compensation. A 

perfect-matched MB is one that has zero-valued MV and no residual. The reconstruction of 

such MB does not require the summation of the motion compensated (predicted) MB and the 

residual MB. For instance, a NOT-CODED MB in MPEG-4 [52] is a MB with zero-valued 

MV and no residual; hence a NOT-CODED MB is a perfect-matched MB. If a MB is a 

perfect-matched MB, the MB data read from the reference frame memory is the same as the 

MB data written to the reconstructed current frame memory in PPFM. Since the 

perfect-matched MB would be read and written with the same content at the same location, 

there is an opportunity to eliminate the redundant memory access for a perfect-matched MB. 

To eliminate the repeat accesses for a perfect-matched MB, the content of the 

perfect-matched MB must be already in the reconstructed frame memory before performing 

the motion compensation. The only way to achieve this requirement without performing extra 
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memory access is to merge the reconstructed frame memory with the reference frame. 

Therefore, it is necessary to use the merged-frame approach so that the memory accesses of a 

perfect-matched MB can be eliminated. Since the memory access reduction depends on the 

percentage of perfect-matched MBs within a frame, the reduction of bandwidth requirement 

and energy consumption is also highly dependent on this percentage. 

Table 7 lists the average percentage of perfect-matched MBs within one frame. Both the 

results for QCIF and CIF sized sequences are listed. The statistics were gathered from 

running MPEG-4 VM18 [53] with the quantization parameter (QP) set to 16. The parenthesis 

next to each sequence represents the class it belongs as classified in [53]. Class "A" to "C" 

represents different levels of spatial detail and amount of movement, where class "A" is the 

lowest class and class "C" is the highest class. The statistics shows that lower class test 

sequences, such as akiyo, container, mother_daughter, news, and hall, which exhibit large 

portion of static background have more than 70% of perfect-matched MBs in average. Other 

test sequences with more motion, such as foreman, stefan, coastguard, and mobile, have less 

than 30% of perfect-matched MBs. 

Table 7  Percentage of perfect-matched MBs when QP=16 
Test sequences QCIF (%) CIF (%) 

container (A) 91.74 88.91 
mother_daughter (A) 81.42 77.65 
hall (A) 86.21 83.86 
akiyo (A) 91.32 89.09 
coastguard (B) 10.35 2.69 
foreman (B) 24.49 23.38 
news (B) 82.53 83.01 
stefan (C) 15.71 20.90 
mobile 10.93 3.39 
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The QP used in Table 7 was 16, this QP value was relatively lower than the typical QP 

values of 16~24 adopted in practical MPEG-4 applications. Fig. 20 illustrates the impact of 

different QP values on the percentage of perfect-matched MBs. It can be seen that for most 

sequences with high percentage, the highest percentage of NOT-CODED MB appeared when 

QP=16. However, for most sequences with low percentage, the percentage of NOT-CODED 

MB significantly increased until QP=24. After QP>24, the increase became insignificant. It is 

suspected that after the QP is larger than 24, the reconstructed frame’s quality would be so 

bad that the residue becomes increasingly larger, thus resulting the decrease in the percentage 

of NOT-CODED MB. Nevertheless, for the sequences which have low percentage, since the 

percentage of NOT-CODED MBs increases when QP>16, practical video applications should 

result in higher percentage of NOT-CODED MBs than those listed in Table 7 for these 

sequences. 
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Fig. 20.  Impact of different QP values on percentage of NOT-CODED MB in MPEG-4 
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B. Combined Frame Memory 
The CFM architecture adopts the merged-frame approach with an additional look-up 

table. The reconstructed current frame data and the reference frame data are mapped to one 

single frame memory with the size of one single frame. Unlike the merged-frame approach in 

[48][49], we introduced the additional look-up table to indicate whether the predicted pixel 

data are in the frame memory or in the local buffers. There are three major parts in the 

proposed CFM architecture: the main frame memory (MFM), the vector range strip buffer 

(VRSB), and the dirty table (DT), as illustrated in Fig. 21 for QCIF size with the vector range 

of [-16:+15]. The function of each component is explained as follows. 

• Main frame memory (MFM): The MFM stores the reference frame data and the 

reconstructed frame data together. The reconstructed current frame data are stored at 

the upper part of the MFM whereas the reference frame data are stored at the lower part 

of the MFM. The size of MFM is as large as one single frame, i.e. 176x144x1.5 bytes 

for QCIF. 

• Vector range strip buffer (VRSB): The VRSB is a rectangular strip of memory which 

works as an exchange buffer for the reference frame data. If one reference MB in the 
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Fig. 21.  Memory components for QCIF with vector range of [-16:+15] in the CFM 
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MFM is to be updated by a reconstructed current MB, this reference MB would be 

copied into the VRSB as a backup in case the subsequent MB needs it. This avoids the 

reference frame data from being ruined by the reconstructed current frame data. The 

size of the VRSB is determined by the height of the vector range and the width of a 

frame, i.e. 16x(176+16)x1.5 bytes for QCIF with the vector range of [-16:+15]. 

• Dirty table (DT): The DT is the look-up table that keeps record of which pixels in the 

MFM are updated. If a MB in the MFM is updated by the reconstructed current frame 

data, the corresponding dirty bits of this MB will be set. This indicates that the 

reference pixels in that MB are stored in the VRSB for backup as mentioned earlier. If 

the subsequent MB requires the reference pixels of this MB, these reference pixels will 

be read from the VRSB instead of the MFM. The size of the DT varies according to the 

size of the VRSB, i.e. 16x(176+16) bits for QCIF with the vector range of [-16:+15]. 
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Fig. 22.  Flow chart of motion compensation process in the CFMMC 
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Fig. 22 illustrates the flow chart of the CFMMC. The process is very simple for a 

perfect-matched MB, but is complex for a non-perfect-matched MB. When processing a 

perfect-matched MB, since the reference MB and the reconstructed MB are the same and 

resides within the MFM at the same location, no memory access is performed. The only 

operation carried out is the updating of the index in the DT. For the non-perfect-matched MB 

case, the DT is checked first to determine where the predicted MB pixels are stored, each 

pixel in the predicted MB is either read out from the MFM or the VRSB according to the 

corresponding dirty bit. After the predicted MB is read out, it is summed with the residual to 

reconstruct the reconstructed MB. Then the current reference MB in the MFM must be 

copied into the VRSB before the reconstructed MB is written back to the same location. 

Finally, the reconstructed MB is written back to the MFM, and the DT and its index are 

updated at the end. Fig. 23 illustrates the motion compensation process for two consecutive 

non-perfect-matched MBs. 
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C. Analytic Estimation of Memory Size, Energy, and Latency  
The memory requirement of the CFMMC can be determined through the life time 

analysis of the collocated MB in the reconstructed current frame and the reference frame, as 

illustrated in Fig. 24. For each MB, the life time of the reconstructed current frame data and 

the reference frame data overlaps for a portion of period during the processing of one single 

frame. This overlapped lifetime of a collocated MB would be referred as MB overlapped life 

time (MBOLT) here on. The length of MBOLT is determined by the vector range’s height and 

width. For instance, the reconstruction of the current MB requires the reference pixels from 

the most upper-left corner of the vector range in the worst case; thus the reference MB having 

the required reference pixels has to remain in VRSB until the reconstruction of the current 

MB is complete. MBOLT is proportional to the raster-scan MB distance between the 

reference MB and the current MB. The larger the vector range is, the longer the MBOLT is.  
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Fig. 24.  Life time analysis of MBs 
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The maximum number of MBs having overlapped MBOLT determines the size for 

VRSB and DT. In another word, the VRSB size must be large enough to store all the 

reference MBs who are currently alive. By the term alive we mean that a reference MB may 

still be needed by further motion compensation of subsequent MBs. For example, consider 

the case of QCIF with the vector range of [-16:+15], the maximum number of MBs having 

overlapped MBOLT is 12 MBs. This means there are at most 12 reference MBs alive 

simultaneously, hence the VRSB size is 12 MBs and the DT size is 12 bits. Comparing the 

memory requirement with other merged-frame approach [48][49], the VRSB size is 1 MB 

smaller than their LIFO buffer size. We generalized the formulation of memory size 

requirement for the MFM, VRSB, and DT and listed them in Table 8. Note that this 

formulation can be applied to any given frame size and vector range. The overall memory 

size was also compared with that of the most commonly used PPFM. For the aforementioned 

QCIF case, the memory size of the CFMMC architecture is 56.6% compared to that of the 

PPFM architecture. 

Table 8  Memory sizes required in CFM 

Memory Memory Size Formula  
(bytes) 

Size for QCIF 
with SR of  
[-16, +15] (bytes)

MFM height_frame x width_frame x 
1.5 38,016 

VRSB 

floor(height_VR/height_MB) x 
height_MB x (width_frame + 
(floor(width_VR/width_MB) x 
width_MB)) x 1.5 

4,608 

DT 

floor(height_VR/height_MB) x 
height_MB x (width_frame + 
(floor(width_VR/width_MB) x 
width_MB)) x 0.125 

384 

Combined 
Total 

size_of_MFM + 
size_of_VRSB+size_of_DT 43,008 

Ping-pong 
Total 

(height_frame x width_frame x 
1.5)  x 2 76,032 
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Table 9 lists the analytic model of average bandwidth requirement, energy consumption, 

and latency due to memory accesses. The model is evaluated for processing one P-frame. In 

Table 8, DMB represents the amount of data to be read or write for one macroblock. The total 

bandwidth requirement accounts only the access with the MFM since it is common to 

implement MFM using external memories. We model the energy consumption of accessing 

one MB in the MFM and the VRSB as EMFM and EVRSB respectively. This assumes that the 

energy consumption of a memory read and a write are the same. Based on this assumption, 

the average memory energy consumption of processing a frame is listed in Table 8, where M 

represents the number of MBs in a frame, P0 represents the percentage of perfect-matched 

MBs, and k represents the ratio of EMFM to EVRSB. The energy consumed in the MFM includes 

the energy of reading predicted MBs from the MFM, reading the reference MBs for backup, 

and writing the reconstructed MBs into the MFM. Since the accesses to the MFM only occurs 

when processing a non-perfect-matched MB, only Mx(1-P0) MBs would read the MFM twice 

Table 9  Memory access energy consumption and access latency of processing one frame 

Memory Access Bandwidth 
Requirement Access Energy Consumption Access Latency 

MFM M x 3 x (1-P0) x DMB M x 3 x (1-P0) x EMFM M x  (1-P0) x 3 x CMB 

VRSB M x (1-P0) x DMB M x (1-P0) x k-1  x EMFM M x  (1-P0) x CMB 

DT M M x k-1 x EMFM  x 0.125 (neglected) M x 0.125  x CMB (neglected) 

Combined Total M x 3 x (1-P0) x DMB M x (3+ k-1) x (1-P0) x EMFM M x  (1-P0) x 4 x CMB 

Ping-pong Total M x 2 x DMB M x 2 x EMFM M x 2 x CMB 
 

Table 10  Average memory access energy consumptions and latencies for various QCIF test sequences with k=4 

K=4 Average Bandwidth Requirement Average Energy Consumptions Average Access Latency 

Test sequences 
(QCIF) 

Ping-pong 
(MxDMB) 

Combined 
( MxDMB ) 

Reduced 
bandwidth 
(%) 

Ping-pong 
(MxEMFM) 

Combined 
(MxEMFM) 

Reduced 
energy 
(%) 

Ping-pong 
(MxCMB) 

Combined 
(MxCMB) 

Reduced 
latency 
(%) 

container (A) 2 0.25 87.6 2 0.27 86.6 2 0.33 83.5 
mother_daughter (A) 2 0.56 72.1 2 0.60 69.8 2 0.74 62.8 
hall (A) 2 0.41 79.3 2 0.45 77.6 2 0.55 72.4 
akiyo (A) 2 0.26 87.0 2 0.28 85.9 2 0.35 82.6 
coastguard (B) 2 2.69 -34.5 2 2.91 -45.7 2 3.59 -79.3 
foreman (B) 2 2.27 -13.6 2 2.45 -22.7 2 3.02 -51.0 
news (B) 2 0.52 73.8 2 0.57 71.6 2 0.70 65.1 
stefan (C) 2 2.53 -26.4 2 2.74 -37.0 2 3.37 -68.6 
mobile  2 2.67 -33.6 2 2.89 -44.7 2 3.56 -78.1 
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and write it once. The energy consumption of the VRSB is mainly due to the backup of 

reference MBs, which writes the reference MBs of non-perfect-matched MBs into VRSB. 

Although some predicted pixels may have been stored in the VRSB, the worst case for 

energy consumption happens when all the predicted pixels are read from the MFM. This is 

the reason we account the energy of reading predicted pixels to the MFM’s energy 

consumption. 

The memory access latencies of processing one frame are also listed in Table 9. The 

access latencies are modeled based on the assumption that the access latencies of read and 

write to either the MFM or the VRSB are all the same, hence the memory access latency of 

accessing one MB is denoted as CMB . A typical scenario for such assumption to hold is when 

SRAM is adopted for both the MFM and the VRSB. In the CFMMC, extra memory access 

latency is introduced for a non-perfect-matched MB whereas the memory access latency for a 

perfect-matched MB is eliminated. For each non-perfect-matched MB, the predicted MB is 

first read from the MFM or the VRSB, and then the content of the current MB which resides 

in the MFM is read and written into the VRSB for reference MB backup; the reconstructed 

current frame is then written back to the MFM at the end. As a result, the memory access 

latency of four MBs is needed for each non-perfect-matched MB. However, overlapping the 

latencies of reading the reference MB from MFM and writing the reference MB into VRSB 

may reduce the total latency to Mx(1-P0)x3xCMB . According to the formulas in Table 8, the 

memory access latency in the CFMMC can be less than that of the PPFMMC when P0 is 

larger than 50%. 

The reduction of energy consumption in the CFMMC depends on the adopted memory 

type and the contents of video sequences. For instance, if on-chip SRAM [54] is used for 

both the MFM and the VRSB, k would be about 4. Note that this SRAM case may represent 

the worst case reduction of energy consumption. If external memory is adopted, such as 
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Mobile SRAM [55], k might be even larger, and the energy reduction should also be larger. 

The reduction of bandwidth requirement, memory energy consumption, and access latency in 

different test sequences when k = 4 is listed in Table 10. The CFMMC may reduce 72.1% ~ 

87.0% of memory access bandwidth compared to that of the PPFMMC for QCIF test 

sequences container, akiyo, news, hall, and mother_daughter. However, for test sequences 

with small P0, such as foreman, stefan, coastguard, and mobile, the estimated bandwidth 

requirement may increase by 13.6% ~ 34.5% compared to that of the PPFMMC. This 

analytic evaluation disregards the impact of memory banking because the memory 

organization is beyond the scope of interest in this work. 

Table 10 also lists the estimated memory access energy and latency for different test 

sequences. For test sequences with larger P0 (>70%), the memory access energy consumption 

and latencies in a QCIF frame can be reduced by 71.6% ~86.6% and 62.8% ~ 83.5% 

compared with that of the PPFMMC respectively. However, for other test sequences with 

smaller P0, such as foreman, stefan, coastguard, and mobile, the access energy consumption 

and latency are increased by 22.7% ~ 45.7% and 41.0% ~ 79.3%. However, this extra latency 

can be hidden by overlapping these latencies with the computation time of motion 

compensation. 

 
5.2.3. Architecture 

The VLSI architecture of the proposed CFMMC is designed and synthesized. Although 

hardware implementation enables overlapping of memory accesses, the complex control of 

the CFMMC would introduce extra hardware and energy consumption overheads. This extra 

hardware includes logics for block and pixel offsets computation, address generation, and 

dirty table management. The additional operations also consume extra energy consumption, 

which would reduce the energy consumption reduction of the CFMMC. To find out the 

impact of these overheads, the hardware implementations of both the CFMMC and the 
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PPFMMC are compared.  

The implementations are targeted for mobile devices, so the video format of QCIF is 

considered. Since the format size is small, SRAM is used for both the MFM and the VRSB. 

However, the CFMMC is not limited to any frame size, nor is it limited by only using 

SRAMs. The details on the architecture of the CFMMC and the PPFMC are explained in the 

following subsections. 

 

A. Architecture of the Combined Frame Memory Motion Compensation 
The architecture of the CFMMC is illustrated in Fig. 25, which consists of five major 

parts. The first part includes the mvprocessor, the pblk and inblk offsets generators, and the 

dirty table. The second part is the memory accessor, which includes the address generators 

for MFM and VRSB, the memory multiplexer, and the predicted row buffer. The third part is 

the motion compensation controller which coordinates the tasks among the modules and also 

interfaces the control signals. And the fourth part is the filter and reconstructor. The last part 

is the memories, which includes the MFM and the VRSB. Each of the key parts will be 

explained in this subsection. 
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Before introducing each part of the CFMMC architecture, the address generation will be 

explained first. Fig. 26 illustrates the relation between the motion vector and the offsets used 
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Fig. 25.  Block diagram of the CFMMC hardware 
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for the address generation. For each block with a motion vector, the blocks which contain the 

predicted pixels are referred as pblk. A predicted pixel block can cover up to 4 pblks. The 

offsets between the current block and the pblks are the pblk offsets. The base address of pblks 

can be computed using pblk offsets and the block position of the current block. The distance 

between the top of the predicted pixel block and the top boundary of the pblk within a pblk is 

the vertical inblk offset. Similarly, the distance between the left side of the predicted pixel 

block and the left boundary of the pblk within a pblk is the horizontal inblk offset. The base 

address of the predicted pixel block is computed using the inblk offsets and the base address 

of the pblk. 

The first part of the CFMMC architecture pre-processes the key information that is 

needed by the memory accessor, such as the motion vector of the chroma component, the 

pblk offsets, the inblk offsets, and the dirty status. The components are explained below. 

 MVprocessor: This module computes the motion vector of the chroma components 

from the motion vectors of the luma component. 

 Pblk offset generator: This module computes the pblk offset from the motion vector. 

The pblk offset is used to determine which entry in the dirty table is to be accessed. 

 Inblk offset generator: This module computes the inblk offset of each pblk 

according to the motion vector. The inblk offset is used by the memory accessor 

together with the pblk offset to compute the base address within the MFM and the 

VRSB. 

 Dirty Table: This module provides the dirty status of each pblk and updates the 

dirty table. The dirty status is needed by the memory accessor to determine whether 

the MFM or VRSB should be accessed. At the start of processing each frame, all 

entries in the dirty table are reset. The update procedure is done for every MB(4 

blocks) at the end of the motion compensation process. In addition, the dirty index, 
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which is computed from the pblk offset to determine the current entry in the dirty 

table, is also provided for the memory accessor to generate the address to the VRSB. 

Each entry is one bit and represents the dirty status of its corresponding block. To 

support the VRSB with the size of 12 MBs(48 blocks), the dirty table has 48 entries, 

which is implemented using a 48 bits register array. 

 

The second part is the memory accessor, which plays the major role of generating the 

addresses to the MFM and the VRSB and multiplexing data among the memories and buffers. 

The block diagram is shown in Fig. 27. Each block is explained as follow. 

 MFM Address Generator: This address generator generates the memory addresses 

for the MFM. The address includes those for reading the predicted pixels, reading 

the reference pixels for backup, and writing the reconstructed pixels. The address is 

generated from the pblk offset, inblk offset, and the counter values within the 

memory accessor. 

 

currpix 
counter

pixrow
counter

memory 
mux

MFM 
address 

generator

VRSB 
address 

generator

predrow 
buffer

MA Control

currpix

pixrow

pblk offset

inblk offset

dirty index

rec. pixels

MFM SRAM 
IF signals

VRSB SRAM 
IF signals

pred. pixels

MFM addr.

VRSB addr.

pr
ed

. p
ix

el
s

Control 
signals

Control 
signals

 
Fig. 27.  Block diagram of the memory accessor 



 76

 VRSB Address Generator: The address generator for the VRSB is similar to the 

MFM’s except it generates addresses for the VRSB. This module generates the 

address for reading the predicted pixels and the address for writing the backup 

reference pixels. The addresses are generated using the dirty index from the dirty 

table, inblk offset and the counter values. 

 Memory Multiplexer: The memory multiplexer handles the data traffic among the 

MFM, the VRSB, the predicted row buffer, and the reconstructed buffer. When the 

predicted pixels are read from the MFM and the VRSB, the pixels would be written 

into the predicted row buffer for reconstruction. If the reference pixels need to be 

backup, the pixels would be read from the MFM and then written into the VRSB. 

After the reconstruction is done, the reconstructed pixels would be read from the 

reconstructed buffer, which is located in the filter and reconstructor, and then 

written into the MFM. The control of the memory multiplexer is given from the 

memory accessor control. 

 Predicted Row Buffer: The predicted row buffer stores the predicted data before 

sending them to the filter and reconstructor. The filter and reconstructor is designed 

to handle one row of predicted pixels at a time, hence the predicted row buffer only 

stores one row of pixels. 

 Memory Accessor Control: The memory accessor control coordinates the 

operations of different modules. An internal FSM determines whether to idle, to 

read the predicted pixels, to backup the reference pixels, or to write the 

reconstructed pixels. The memory accessor is only activated when the CFMMC is 

enabled and is in the processing state. The processing state is defined as the state in 

which the CFMMC actually needs to perform memory accesses. If the CFMMC 

encounters a NOT-CODED MB, which is a perfect-matched MB by definition, the 
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CFMMC would not enter the processing state. This means the memory accessor 

would remain in the idle state. 

The filter and the reconstructor part are in charge of generating sub-pel samples and 

adding the predicted pixels with the residual pixels. The reconstructed pixels would be stored 

in the local reconstructed buffer, which is implemented with registers. Although 

implementing a 256-pixel buffer using registers is not economic, the implementation of the 

filter and reconstructor is beyond the focus of this work. To be fair during the architecture 

comparison, both the CFMMC and the PPFMMC use the same filter and reconstructor 

design. 

The memories of the MFM and the VRSB are implemented using SRAM. There are two 

reasons for using SRAM instead of external DRAM. The first reason is that the design is 

targeted for QCIF format, hence the memory size of one QCIF frame is considered to be 

acceptable. The other reason is that the SRAM model being used includes a power model 

which is more convenient for evaluating power consumption than using DRAM models. 

Since using SRAM is likely to decrease the energy consumption ratio between the MFM and 

the VRSB, which is referred as the k value, the result acquired using SRAM can be 

considered as a lower bound for the amount of energy reduction. If k is larger, which is likely 

to be the case when the MFM is implemented using DRAM, the energy reduction should be 

larger. The detailed implementation and organization of the memories are described below. 

 MFM Memory: The MFM is implemented to store both the luma and the chroma 

components. We used three 8,192 bytes and one 768 bytes single-port SRAM for 

the luma component. The total memory size of the luma component in the MFM is 

25,344(256x99) bytes. For the chroma component, we used two 6,336(64x99) bytes 

single-port SRAM. The port data width of the MFM is 1 byte because the 

bandwidth is sufficient for processing QCIF at 30 frames per second. 
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 VRSB Memory: The VRSB is implemented to backup the reference MBs for both 

the luma and the chroma components. We used a 3,072(256x12) bytes single-port 

SRAM for the luma component and two 768(64x12) bytes single port SRAM for 

the chroma components. The port data width of the VRSB is also 1 byte because of 

the same reason used in the MFM. 

B.  Architecture of the Ping-pong Frame Memory Motion Compensation 
A prototype of the PPFMMC is implemented based on the prototype of the CFMMC. 

Therefore, some of the modules are the same between the two prototypes; this would help us 

observe the differences easier. The main differences between the PPFMMC and the CFMMC 

are that there is no offsets generation, no dirty table, and no address generator for the VRSB. 

Another major difference is that the PPFMMC needs extra frame memory to store another 

frame. 

In the PPFMMC, there’s no need to compute the pblk and inblk offsets because the pixel 

data are not partitioned into blocks to correspond to the dirty bits. Without this partitioning 

and mapping, the PPFMMC not only reduces the logics for the offsets computation, it also 

eliminates the need of the dirty table. Moreover, the address generation is also simplified to 

only compute the logical coordinate of the pixels to be accessed. This address computation 

only requires the current coordinate and the motion vector. The simplified address generation 

and the elimination of the VRSB address generator reduce the area of the memory accessor. 

As a result, the area cost of the logics in the PPFMMC should be smaller than the CFMMC’s. 

The PPFMMC requires a memory to store both the reference frame and the 

reconstructed current frame. To achieve this, two MFM modules are used in the CFMMC to 

implement the ping-pong frame memory. Each MFM module is consists of three 8,192 bytes 

SRAMs, four 768 bytes SRAMs, and two 6,336 bytes SRAMs. As a result, the total frame 

memory size is 50,688 bytes. 
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C. Architecture Latency Comparison  
The latency of the CFMMC and PPFMMC hardware architectures are both dominated 

by the memory access time. The memories adopted in our hardware architectures are 

single-port SRAMs with data port width of 8-bit. However, the latencies of processing 

different MB modes, such as INTRA, INTER_INTRA, NOT_CODED, INTER, and 

INTER4V, are different. The definition of different MB modes and their processing latencies 

in the two prototypes are listed in Table 11. 

 Essentially, the processing operations of INTRA MBs and INTER-INTRA MBs are 

similar. Both the CFMMC and PPFMMC check the MB mode first, which requires one cycle. 

After that, the PPFMMC directly write the residue into the frame memory according to the 

MB’s position. This is similar to the CFMMC when processing an INTRA MB. As a result, 

the total latencies of processing an INTRA MB in both architectures and processing an 

INTER-INTRA MB in the PPFMMC are the same, which is 1+(256+64+64) = 385 cycles. 

However, for an INTER-INTRA MB, the CFMMC must back-up the collocated reference 

MB into VRSB and update the dirty table, which is not necessary for an INTRA MB. 

Consequently, the total latency of processing an INTER-INTRA MB is 1 + (256+64+64) + 1 

+ (256+64+64) = 770 cycles. 

The latency to process an INTER or INTER4V MB in the CFMMC includes the 

latencies of identifying the MB mode, computing the chroma’s motion vectors, reading the 

Table 11  Latencies of different MB modes 
MB Modes Description PPFMMC Latency (cycles) CFMMC Latency (cycles) 

INTRA Intra MB in I-frames 385 385 
INTER_INTRA Intra MB in P-frames 385 770 
INTER Inter MB with only 1 MV 770 1157 
INTER4V Inter MB with 4 MVs 770 1157 
NOT-CODED Inter MB with perfect-match 770 1 
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predicted pixels, backing up the reference pixels, and writing back the reconstructed pixels. 

The computation of chroma’s motion vectors takes 3 cycles to complete. The reconstruction 

computation, which adds the residue with the predicted pixels (Fig. 23, Step1 (2) ) is 

performed while the backup of the reference pixels (Fig. 23, Step2 (4) ) is taking place. 

Therefore, the latency of processing an MB is 1 + 3 + (256+64+64) + (256+64+64) +1 + 

(256+64+64) = 1,157 cycles. In contrast, the latency of PPFMMC only accounts the latencies 

of reading the predicted pixels, writing the reconstructed pixels, and some preprocessing time. 

The difference is that no backup of the reference pixels is needed in the PPFMMC. As a 

result, the total latency of processing an MB in the PPFMMC is 1 + (256+64+64) + 1 + 

(256+64+64) = 770 cycles.  

For NOT-CODED MBs, they are perfect-matched MBs. Thus, the CFMMC does not 

perform any memory access; the total latency of processing a NOT-CODED MB only takes 

one cycle. The one cycle latency is used to update the dirty table. On the contrary, the 

PPFMMC has to perform the operations of reading and writing the ping-pong frame memory. 

As a result, the latency of processing a NOT-CODED MB is exactly the same as that of 

processing an INTER or INTER4V MB, which is 770 cycles. 

Considering the processing latency for the worst case scenario, which is no 

perfect-matched (NOT-CODED) MB is found in a P-frame, the clock rate of the CFMMC 

would have to be 1.5 times of that in the PPFMMC. With the increased clock rate and the 

increased memory access to backup the reference pixels, the energy consumption in the 

CFMMC operating under the worst case scenario might increase by more than 50%. However, 

the negative impact of the clock rate increase in the CFMMC architecture can be minimized 

when P0 is higher than 33.4%. 

5.2.4. Implementation Result 
 



 81

A. Architecture Cost Comparison  
The prototypes of the CFMMC and the PPFMMC architectures are both synthesized 

from Verilog RTL design using UMC 0.18μm 1P6M CMOS technology [56]. Both designs 

are synthesized with the clock constrained at 50 MHz, which is more than enough to perform 

real-time decoding. The logics of the CFMMC prototype (exclude memory) have a gate 

count of 40,065. The MFM and the VRSB have the equivalent gate count of 280,749, which 

occupies 87.5% of the total cell area. As to the prototype of the PPFMMC, the logics part has 

a gate count of 28,039. The ping-pong frame memory has an equivalent gate count of 

486,643. It is obvious that the extra logics used in the CFMMC increases the gate count by 

43.4% compared with the gate count of the logic part in the PPFMMC. However, the total 

equivalent gate count, which takes the memory area into consideration, shows that the cell 

area of the CFMMC is actually 37.7% smaller compared with that of the PPFMMC. In other 

words, the total cell area of the CFMMC is only 72.3% of PPFMMCS’s total cell area. The 

detailed distributions of the gate counts in different modules excluding the memories are 

compared in Fig. 28. It can be seen that the dirty table, the pblk offset generator, the inblk 

offset generator, and the extra logics in the memory accessor are responsible for the area 

increase. Despite the increase in the area of the CFMMC’s logics part, which seems to be 

relatively large, the total cell area is significantly smaller than that of the PPFMMC. 
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Fig. 28.  Gate count distribution and comparison of the logics part in the PPFMMC and the CFMMC 
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B. Architecture Energy Consumption Comparison 
The gate-level power is reported by using Power Compiler [57]. The signal switching 

activities are gathered by running at 50 MHz for both the CFMMC and the PPFMMC. The 

reason to use such a high clock rate is to increase the numerical order of the reported power, 

which corresponds to the energy of processing 109 CIF frames in one second. This can make 

the comparison of the energy consumption between the CFMMC and the PPFMMC easier. 

Fig. 29 plots the energy consumption comparison between the CFMMC and PPFMMC 

running the manually created test patterns. There are two lines related to the CFMMC 

architectures. One is the line for the memories themselves, the other one is for the overall 

CFMMC architecture. The line of the CFMMC has smaller slope than the slope of the 

CFMMC memories line. This is due to the energy consumed by the logics which reduced the 

energy reduction. The line of the CFMMC memories has a slightly smaller slope compared 

with the slopes of the theoretical lines with k=4 and 2. This may be explained by that the 

logics and memories also consume energy even when there’s no memory access, thus 

compromising the energy model derived merely based on memory access energy. The detail 

distribution of the power consumption in the CFMMC when P0=20% and 80% are illustrated 
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Fig. 29.  Plot of the energy reduction percentages of the CFMMC at different P0 
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in Fig. 30; the power distribution of the PPFMMC is also illustrated for comparison. The 

memory accessor accounts for the second most power consumption among the logics in the 

CFMMC. This part of the energy consumption was not part of the energy consumption model 

to evaluate the percentage of reduction. 

The energy reduction percentages of the real test patterns are listed in Table 12. The 

percentages of NOT-CODED MB found in the first 15 frames of each test sequences are also 

listed. For those test sequences with more than 70% of MBs being NOT-CODED MBs, the 

energy consumptions are reduced by 11%~18%. For sequences with much less MBs being 

NOT-CODED MBs, the energy consumption are increased by 18%~32%. Fig. 31 illustrates 

the detail distribution of the power consumption evaluated for running test sequences mobile 

and akiyo, which are the sequences with the least and the most energy consumption reduction 

percentages. The result gathered from the real test patterns verifies the conclusion made in 
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Fig. 30.  Power consumption distribution and comparison of the PPFMMC and the CFMMC 

Table 12  Energy reduction percentage of the real test patterns 

Test sequences P0 of the first 15 frames 
(%) 

Energy reduction 
percentage (%) compared 
with the PPFMMC 

container (A) 92.93 15.45 
mother_daughter (A) 92.83 15.80 
hall (A) 95.96 17.19 
akiyo (A) 96.87 18.44 
container (A) 92.93 15.45 
coastguard (B) 34.95 -18.06 
foreman (B) 29.39 -21.89 
stefan (C) 15.66 -30.66 
mobile 7.47 -31.67 
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previous section which states that the CFMMC should be more suitable for applications with 

more static background and less motion. 

The hardware implementation of the CFMMC proves the feasibility of the architecture. 

The comparison with the most commonly used PPFMMC shows some advantages and 

limitations. From the cost perspective, the CFMMC has been proven to reduce the silicon 

area compared with the PPFMMC. From the latency perspective, the CFMMC prototype can 

achieve a comparable throughput when P0 is more than 33.4%. The limitation, however, is in 

the worst case scenario in which the CFMMC would need a clock which is 1.5 times faster 

than that of the PPFMMC. Nevertheless, such issue can be alleviated with the use of dynamic 

frequency scaling. In the energy consumption aspect, the CFMMC prototype can reduce 

energy consumption when P0 is high enough. Similar to the latency issue, the energy 

consumption would increase if P0 is not high enough. This issue originates from the 

architecture’s data-dependent nature, and cannot be solved. With this limitation, the suitable 

applications of the CFMMC hardware are limited to video surveillance, video telephony, and 

video conferencing. 

5.2.5. Summary 
We proposed a combined frame memory motion compensation (CFMMC) architecture 

which did not only reduce the frame memory size, but also is potential in reducing bandwidth 
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Fig. 31.  Power consumption distribution and comparison of the PPFMMC and the CFMMC for mobile and akiyo. 
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requirement, access latency, and energy consumption. The statistics on perfect-matched MB 

were investigated for the well known video sequences. Based on the statistical result, we 

derived the latency and the energy consumption model for evaluation. During the exploration, 

we found that when the percentage of perfect-matched MBs (P0) was higher than 50%, the 

CFMMC could reduce both the latency and the energy consumptions due to memory 

accesses. 

To investigate the cost of extra computation and control logics for achieving the 

aforementioned benefits, hardware architectures of the CFMMC and the most commonly 

used PPFMMC were both implemented. The hardware implementation of the CFMMC only 

required 75% of the silicon area used to implement the PPFMMC. The CFMMC architecture 

was also capable of reducing the bandwidth requirement and energy consumption up to 72% 

and 16% respectively when P0>70%. However, when P0 is not high enough , the CFMMC 

suffered from bandwidth requirement, energy consumption, and latency increases. 

Consequently, these limitations limited the application of CFMMC into video surveillance, 

video telephony, and video conferencing. For these applications, the CFMMC shall guarantee 

its bandwidth requirement, energy consumption, and latency reduction capability. 
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5.3. Meanshift 
5.3.1. Meanshift's Role in Vision Applications. 

Image segmentation has been widely adopted in applications such as intelligent 

surveillance, autonomous vehicles, and mobile robotics. These applications often require not 

only segmentation performance, but also processing speed. Among most of the image 

segmentation algorithms, the Meanshift algorithm [58][59] has been one of the most 

commonly used because of its good performance and speed. However, the processing speed 

of the Meanshift segmentation is still not fast enough for real-time (not necessarily video rate) 

applications. Table 13 lists the execution time taken by the optimized Meanshift 

segmentation program, EDISON [60], to process a VGA image.  The total execution time 

took more than 2 seconds and the Meanshift filter operation occupied more than 78% of the 

total execution time. Thus, to reduce the execution time, a VLSI implementation is necessary 

for these real-time applications. 

Motivated by the need of speed in the Meanshift filter operation, we propose a VLSI 

architecture for the Meanshift filter. However, VLSI design of the Meanshift filter encounters 

severe challenges such as huge image data access, large temporary storage, and limited 

parallelism due to the nature of the Meanshift algorithm. To conquer these challenges, this 

dissertationr presents several novel design approaches. First, for the huge image data access, 

we proposed a partial-update ping-pong buffer that significantly reduces the amount of data 

Table 13  EDISON’s execution time of VGA image “Raincoat Sam” on a PC with PentiumIV 2.8GHz 
processor and 1GB memory. 

Operation Execution time (sec.) Percentage (%) 
Meanshift Filter 1.58  78.6 

Connected Component 0.09   4.5 
Transitive Closure 0.20   9.9 

Region Pruning 0.14   7.1 
Total 2.01 100.0 
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read from the input image memory. Second, for the large temporary storage, we use a 

ping-pong local Meanshifted status buffer that reduces the size of the Meanshifted status 

memory by 50%. Third, for the limited parallelism, we propose a 4-pixel parallel 9-stage 

pipelined Meanshift vector computation unit to utilize the limited parallelism in the standard 

Meanshift algorithm. The proposed architecture can process 9.8 FPS of VGA image in 

average when clocked at 110 MHz.  

The contribution of this work is two fold. First, the proposed architecture is the first 

VLSI architecture implementing the standard Meanshift filter algorithm. The speed of the 

proposed architecture is at least 3 times higher than the software solution. This makes the 

Meanshift filter available to non-video rate real-time applications. Second, this is the first 

work that investigated the amount of data read from the image memory needed by the 

Meanshift algorithm. We believe this bandwidth requirement information would help 

implementing video rate real-time Meanshift filtering in the future. 

 
5.3.2. Meanshift Algorithm 

The Meanshift algorithm is a non-parametric clustering algorithm which finds the 

cluster belonging of each feature point in the feature space. The Meanshift algorithm clusters 

the feature points by computing a Meanshift vector (MSV) of each feature point. The 

Meanshift vector of a feature point points toward the cluster center that this feature point 

belongs to. 

In image filtering, the Meanshift vector m at a point x in the feature space can be 

computed by 
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where xi are points within the color range hc and spatial range hs of point x, the 

superscript color and space represents the color and spatial subspace components of a point, 
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and g() and k() are weight functions based on Euclidean color and spatial distance 

respectively. If g() and k() are uniform and linearly increasing respectively, the first part in eq. 

(1) is similar to finding the mass center of the space defined by hc, hs, and x. We call the first 

part of eq. (1) as the temporary mode and the spatial window defined by hs as the Meanshift 

window. The vector difference between the new temporary mode and the original point is the 

Meanshift vector. We call the computation of a Meanshift vector described above as a 

Meanshift search iteration. The Meanshift algorithm takes the new temporary mode as the 

center of the next Meanshift window. If the length of a Meanshift vector is smaller than a 

very small threshold and stops to decrease further, the Meanshift vector is said to converge. 

The temporary mode of a converged Meanshift vector is a final mode. The pixels with their 

Meanshift vector pointing toward the same mode are part of the same cluster, and are 

assigned with the same final mode’s color in Meanshift filtering.  

Supposedly, each pixel in an image should be associated to a mode through the 

Meanshift search session described above. However, the pixels or modes that are close 

enough to a mode are very likely to be associated to this mode. Using this property, a pixel 

that is within very small color and spatial distances to a mode is directly associated to this 

mode and no Meanshift search is performed. On the other hand, if a temporary mode is 

within this very small color and spatial distances to a final mode, the pixels associated to this 

temporary mode is changed to associate to this final mode. As a result, the subsequent 

Meanshift search iterations in this Meanshift search session can be skipped. We call this 

operation as the basin collection. With the basin collection, both the number of Meanshift 

search iteration and session can be reduced, thus increasing the speed of the Meanshift 

search. 

For more details on Meanshift filtering algorithm, please refer to [59][60]. 
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5.3.3. Test Images and Mean Shift Filter Parameter 

Settings 
Fig. 32 shows the VGA test images used in this work. These images include simple and 

complex indoor and outdoor scenes. We believe these scenes are common to real-time 

applications such as human recognition, robot navigation, and autonomous vehicles. Test 

image “clear sky” is the simplest image which has the minimal number of regions. Test 

image “dog & grass” is the most complex image that has the maximal number of regions. 

This parameter setting described as follows is used in this work. The spatial and color 

range of the mean shift filter are 7 and 6 respectively. The color range used in basin 

collection is 3. The mean shift search iteration limit is 100. 
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Fig. 32.  VGA test images 
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5.3.4. Meanshift Architecture 
A. Architecture Design Challenges 

The nature of the Meanshift algorithm gives rise to three main architecture design 

challenges: the huge amount of data read from the image memory, the large storage 

requirement, and the limited parallelism.  

The huge amount of data read limits the processing speed of the Meanshift algorithm. In 

a direct implementation, the pixels within a Meanshift window should be read and ready in 

the beginning of each Meanshift search iteration. Otherwise, the computation cannot be 

started and thus the processing speed is limited. For example, the amount of data read 

requirement for a VGA sized image with hc and hs being 6 and 7 respectively can reach up to 

97.56 million pixels, which is about 372.19 MB if each pixel is 32-bit wide. If the data port 

width to the image memory is only 32-bit, 97.56 million cycles would be spent on only 

reading the input data. Therefore, it is necessary to reduce the amount of data read to improve 

the processing speed. 

The second challenge is the large storage requirement. The Meanshift algorithm needs 

an input image memory, an output filtered image memory, and a Meanshifted status memory 

which keeps the record of whether a pixel is associated to a mode or not. The size of these 

memories is proportional to the image size and would be very large for VGA size images. If 

it is possible to reduce the data width of these memories, the cost of the storages in the 

Meanshift filter architecture can be reduced. 

 The limited parallelism is a result of the iterative Meanshift search process. The next 

Meanshift search iteration cannot start before the previous Meanshift search iteration ended. 

This is because the Meanshift window center of the new iteration is determined by the 

temporary mode computed from the previous iteration. Such dependency that originated from 

the algorithm’s iterative nature makes it difficult to be accelerated by using parallel 
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Meanshift search hardware. Therefore, it is necessary to exploit the available parallelism 

within each Meanshift search iteration to increase the processing speed. 

 
B. Architecture Overview 

 
Fig. 33 illustrates the block diagram of the proposed Meanshift filter architecture. The 

core architecture consists of a partial-update ping-pong buffer (PUPPB), ping-pong local 

Meanshifted status buffer (PPLMSSB), Meanshift vector computation unit (MSVCU), and 

same mode list (SML). In which, the PUPPB reuses the data in the Meanshift window to 

reduce the amount of data read from the image memory. The PPLMSSB stores part of the 

Meanshifted status internally in small local ping-pong buffers to reduce the storage size. This 

reduces the size of the Meanshifted status memory by 50%. Finally, to increase the 
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Fig. 33.  Block diagram of the proposed Meanshift filter architecture 



 92

processing speed, the parallelism in the Meanshift vector computation and basin collection is 

exploited by the 4-pixel parallel MSVCU and the SML. The details of these components are 

presented in the following sub sections. 

The work flow of the proposed Meanshift filter is explained as follows. The Meanshift 

filter processes each pixel in an image in raster-scan order. Before finding the mode of a pixel, 

the Meanshifted status of this pixel is checked first. The Meanshifted status of this pixel is 

read from the Meanshifted memory and the PPLMSSB. If the current pixel already has a 

mode, the next pixel in the image is processed. For each pixel without a mode, the pixel data 

and the Meanshifted status in the current Meanshift window are read into the PUPPB and 

PPLMSSB. 

Once the pixel data in the Meanshift window are ready, the MSVCU computes the new 

Meanshift vector and the new mode. The MSVCU also performs basin collection. The image 

coordinates and updated Meanshifted status of the pixels belonging to the same mode are 

stored in the SML. Note that the Meanshifted status in the PPLMSSB is also updated during 

the basin collection. At the end of each MSV computation, the MSVCU also checks the 

MSV’s length for convergence. 

If the MSV converges, all the pixels in the SML are written back to the filtered image 

memory with the value of the current converged mode. Their corresponding Meanshifted 

status in the Meanshifted status memory is also updated. Then the next pixel in the image will 

be processed. If the MSV did not converge, the temporary mode of this MSV would be the 

center of the new Meanshift window, and another iteration of MSV computation process 

would be performed. The Meanshift filter flow ends when the last image pixel is processed. 

 
C. Partial-Update Ping-Pong Buffer (PUPPB) 

The PUPPB reuses the image pixels in the overlapped portion of the new and old 

Meanshift windows to reduce the bandwidth requirement. The PUPPB explores two types of 
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reuse: intra Meanshift search reuse and inter Meanshift search reuse. 

 
Fig. 34 (a) illustrates the concept of the intra Meanshift search reuse. Within a Meanshift 

search session, the Meanshift window of two consecutive iterations is partially overlapped. 

The pixel data in the overlapped part are read by the previous iterations. These pixel data can 

be reused and avoid being read from the image memory again in this iteration. The size of the 

overlapped part is at least one quarter of a Meanshift window. This is because the maximum 

Meanshift vector can only point to the corner pixel positions. As a result, at least 25% of the 

bandwidth can be saved by reusing the pixel data in the overlapped part. 
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Fig. 34.  Concept of PUPP reuse 
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Fig. 34 (b) illustrates the concept of the inter Meanshift search reuse. Given the image 

pixels are processed in raster-scan order, the Meanshift window of two pixel positions is 

often overlapped when they are near each other. The pixel data in the horizontal overlapped 

part between the two Meanshift windows are reused. Only the pixel data in the 

non-overlapped part are read from the image memory column by column. Note that the 

distance between the centers of the two windows must be smaller than half the width of a 

Meanshift window. 

 
 

Fig. 35 illustrates the block diagram of the PUPPB and the interconnect among the 

buffers. The PUPP consists of three buffers. Buffer 0 is used for the inter Meanshift search 

reuse whereas buffer 1 and buffer 2 are used for the intra Meanshift search reuse. 
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Fig. 35.  Block diagram of PUPP 
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Buffer 0 is only used in the first iteration of a Meanshift search session. The pixel data 

from the image memory are written into buffer 0 column-wise. We call this process as 

“fetch”. During the fetch process, each read reads four pixels simultaneously through a 

128-bit data port. It takes four reads to read a pixel column, which consists of 15 pixels, in a 

Meanshift window. The last pixel of the fourth read is not used. 

Buffer 1 and buffer 2 are the ping-pong buffers that are used in the iterations after the 

first iteration. The pixel data of the overlapped part in a Meanshift window are updated from 

the “old” buffer that holds the data of the previous iteration. The pixel data of the 

non-overlapped part are read from the image memory. The pixel data from the old buffer or 

the image memory are written into the “new” buffer that should hold the data for the current 

iteration. We call this process as the “update” process. The “old” buffer can be any of the 

three buffers, but the “new” buffer can only be buffer 1 or 2.  

The buffers are connected to allow buffer 1 to be updated by buffer 0 or buffer 2, and to 

allow buffer 2 to be updated by buffer 1. All the buffers have two outputs. One output is for 

the MSV computation and the other is for the ping-pong update. The data width of the output 

for the MSV computation is 4 pixel wide because of the 4-pixel parallel design. The data 

width of the output for the ping-pong update is 15 pixels which correspond to a column in the 

Meanshift window. The update output of buffer 0 and buffer 2 is multiplexed to buffer 1’s 

overlapped data input. Similarly, the update output of buffer 1 is connected to buffer 2’s 

overlapped data input. In addition to the overlapped data input, all the buffers have an input 

from the image memory. For buffer 0, this input is for the fetch process; for buffer 1 and 

buffer 2, this input is for the update process to read the pixel data in the non-overlapped part. 
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Fig. 36 illustrates the image memory pixel read count and the read count reduction in 

different test images. The PUPPB can reduce the average image memory read count by 

81.6%. For ”dog & grass”, the image memory read count can be reduced by 91.1%. This is 

because the MSVs in complex images are mostly short. Therefore, the overlapped part is 

usually large. Consequently, more data can be reused and less data are read from the image 

memory. The smallest read count reduction happened in ”clear sky”, the reduction is only 

50.9%. This is because the MSVs are mostly long in simple scene. Therefore, the overlapped 

part is usually small. As a result, less data can be reused. This image complexity dependent 

characteristic of MSVs enables the PUPPB to save more bandwidth in more complex scene. 

 
D. Ping-Pong Local Meanshifted Status Buffer (PPLMSSB) 

Meanshifted status represents whether a pixel has been associated to a mode or not. If a 

pixel is already associated to a mode, either a temporary or final mode, we do not need to find 

its Meanshift vector. The Meanshifted status has three states, which are NO-MODE, 

TEMP-MODE, and FINAL-MODE. NO-MODE means the current pixel is not associated to 
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a mode yet. A NO-MODE pixel would be associated to a mode through either finding its 

Meanshift vector or the basin collection. If a pixel is associated to a temporary mode through 

the basin collection, the Meanshifted status of this pixel is TEMP-MODE. If a pixel is 

associated with a final mode, the Meanshifted status of this pixel is FINAL-MODE. 

At first glance, a Meanshifted status must be represented by at least two bits. One bit 

represents the TEMP-MODE while the other represents the FINAL-MODE. If both bits are 0, 

they represent NO-MODE. Since each pixel has a Meanshifted status, storing all the 

Meanshifted status of a VGA-sized image takes 75.0 KB of memory space, which is quite 

large in VLSI design. However, we notice that the lifetime of TEMP-MODE bit only lasts 

through the iterations in a Meanshift search session. Once the final mode is found and the 

pixels are associated to it, the TEMP-MODE bit of these pixels is no longer needed. Based on 

this observation, we decided that only the FINAL-MODE bit is stored in the external 

Meanshifted status memory. When the FINAL-MODE bit is needed, it is read from the 

memory into a local buffer. The TEMP-MODE bit is stored in a pair of local ping-pong 

buffers. Doing so reduces the storage requirement from 75.0 KB to only 37.5 KB plus the 

size of the three local buffers. The buffer size is as large as the Meanshift window size and 

each pixel is represented by only one bit. As a result, for a Meanshift window of 15x15, only 

225 bits are needed for each buffer. 

The local ping-pong buffer operates similarly to the PUPPB. The overlapped part is 

copied from the old buffer to the new one in the same manner as the PUPPB does. However, 

the non-overlapped part does not need to be updated with the Meanshifted status from the 

external Meanshifted status memory. Instead, the pixels within the non-overlapped region are 

updated from the MSVCU if they are associated with a temporary mode through the basin 

collection. 

Fig. 37 illustrates the block diagram of the PPLMSSB. Similar to the PUPPB, the 
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PPLMSSB consists of three buffers. MSSBuf 0 is used to store the FINAL-MODE bit read 

from the Meanshifted status memory, whereas MSSBuf 1 and MSSBuf 2 are the ping-pong 

buffers for the TEMP-MODE bit.  

Unlike the buffer 0 in the PUPPB, MSSBuf 0 is independent of the other two because 

their content is different. The width of the data port connecting to the external Meanshifted 

status memory is 4-bit, which corresponds to the Meanshifted status of 4 pixels. In contrast, 

MSSBuf 1 and MSSBuf 2 are connected similar to the PUPPB. However, the write path from 

the external memory is replaced by the write back path from the MSVCU. The write back 

path updates the TEMP-MODE bit in the current buffer after the basin collection. The width 

of the input and output data port connected to the MSVCU is also both 4-bit. 
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Fig. 37.  Block diagram of the PPLMSSB 
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E. MSV Computation Unit (MSVCU) 
Fig. 38 illustrates the pipelined datapath and schedule of the MSVCU. The MSVCU is a 

4-pixel parallel and 9-stage pipelined architecture. The 4-pixel parallel design enables higher 

throughput and matches the width of the data port connected to the image memory. Together 

with the 9-staged pipelined architecture, the computation resource can be better utilized. 

In the first and second stage, the pixels are checked if their color is within the color 

range. If a pixel is within the color range, it would be passed to the next stage and its weight 

would be one; otherwise, the weight would be zero. This weight assignment reflects a 

uniform kernel. In addition, this stage also checks if the pixel is within the spatial and color 

range of basin collection. 

The third stage is the accumulation stage. The pixel data and weight are both 

accumulated in accumulator xacc and wacc respectively. In addition to the accumulation, the 

coordinates of the pixels being collected are written to the SML by the basin collector. Note 

that all the pixels in the 15x15 window are checked and accumulated in the first and second 

stage before the being processed by the third stage. Since our architecture is 4-pixel parallel, 

it takes 62 cycles to accumulate all the pixels in a window. 
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Once the color and weight of all the pixels within the window are accumulated, the 

accumulated sums from the four parallel accumulator units are added together through a 

small adder tree. The final sum of pixel data and weight are denoted as xsum and wsum in the 

figure. 

In the fifth stage, the inverse of wsum is approximated by a piecewise-linear model. 

Then xsum is multiplied to the inverse of wsum to give the new MSV. 

The sixth and seventh stage checks for MSV convergence. The reason for using two 

stages is to reduce the critical path and account for the one cycle PUPPB and PPLMSSB 

access latency. The color and final Meanshifted status of the pixel pointed by the MSV 

projection, which we would refer as the MSV projected pixel, is read from the PUPPB and 

PPLMSSB. If the color difference between the MSV projected pixel and the new mode is too 

large, the length of the MSV is checked for convergence. If the color difference is smaller 

than the color range of the basin collection, the Meanshifted status of the MSV projected 

pixel is checked. If the MSV projected pixel is not associated to a final mode. In this case, 

there is only 7 cycles of pipeline delay. If the MSV projected pixel is associated to a final 

mode, the mode of the projected pixel is the new mode and the Meanshift search session ends. 

This would introduce two additional pipeline stages to read the mode of the MSV projected 

pixel from the filtered image memory. As a result, the total pipeline delay would be 9 cycles. 

In the case of 9 cycles pipeline delay, the total cycles taken to generate one MSV is 74. 

This includes one request cycle from the PUPPB and PPLMSSB to send read request to the 

input image memory and Meanshifted memory, 5 cycles to read the pixels of the first column 

into the PUPPB and PPLMSSB, 62 color range check and accumulation cycles, and 6 cycles 

for the rest of the pipeline. 

 
F. Same Mode List (SML) 

The SML stores the spatial coordinates of the pixels associated to the same mode during 
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a Meanshift search session. Once the final mode is found, all the pixels stored in the SML are 

written to the filtered image memory with the current mode color and their corresponding 

Meanshifted status in the Meanshifted memory are also updated. We call this process as the 

“SML dump” process. 

Fig. 39 illustrates the block diagram of the SML. The SML mainly consists of two 

address generators, a SRAM controller and a SRAM memory, a filtered image memory 

controller, and a Meanshifted status memory controller. The SML address generator 

generates the address for accessing the SML memory. The other address generator generates 

the address for accessing the external filtered image and Meanshifted status memory. The 

address is generated from the data in the SRAM. Each entry in the SRAM stores the pixel 

coordinates of the first pixel in a 4-pixel chunk and their updated Meanshifted status. As a 

result, the width of a word in the SRAM is 23-bit, in which 19 bits are for the image address 

and 4 bits are for the Meanshifted status. The SRAM has 384 entries and is sufficient when 

the Meanshift search iteration limit is 100. During the SML dump process, the SML writes 4 

pixels to the filtered image and the Meanshifted status memories simultaneously because of 
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the 4-pixel parallel architecture.   

5.3.5. Implementation result 
The proposed Meanshift filter design is synthesized using UMC 90 nm technology with 

standard cell and SRAM libraries. The equivalent gate-count, excluding the SRAMs, of the 

synthesized netlist is 516,533. The equivalent gate-count of each component is listed in Table 

14. The PUPPB and PPLMSSB occupy the majority of the gate-count. Despite the control 

and miscellaneous logics, the SML occupies the smallest portion of the gate-count; however, 

most of the SML’s area is contributed by the SRAM cells. Although the maximum clock rate 

is 110 MHz, there is still room to increase the clock rate by using more pipeline stages. 

 
Fig. 40 shows the clock cycles needed to filter the test images. The estimated frame rate 

 
Table 14  Synthesized gate count of each component 

Component name Equivalent gate-count Percentage % 
PUPPB 437,064 84.61 
PPLMSSB 21,702 4.20 
MSVCU 51,016 9.88 
SML 5,194 1.01 
Control 780 0.15 
Misc. 778 0.15 
Total 516,533 100.00 
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is also marked in the figure assuming a 110 MHz operating frequency. For the worst case, 

which is the “dog & grass” case, the total cycle count is 32,914,220. If the clock is 110 MHz, 

our Meanshift filter can process VGA images at a frame rate of at least 3.34 FPS. The 

average frame rate for our test images is 8.75 FPS. For QVGA images, the minimal frame 

rate is 14.20 FPS. 

Table 15 lists the specification the proposed Meanshift filter architecture and other 

existing segmentation implementations. We also include the EDISON software 

implementation for comparison. Although Park et al.’s dynamic Meanshift filter architecture 

is the first architecture for the Meanshift algorithm; they only outlined their systolic array 

architecture and have yet to provide further implementation detail. The internal memory 

usage of the proposed architecture is the smallest among the compared implementations. 

Although the throughput of other segmentation algorithm implementations is higher than the 

proposed Meanshift filter architecture, the segmentation performance of different algorithms 

Table 15  Comparison of existing segmentation implementation 
Implementation Proposed 

Meanshift 
Filter 

Dynamic 
Meanshift 
Architecture 
[69] 

Real-time 
K-means 
Architecture 
[67] 

Region 
Growing 
Architecture 
[63] 

Histogram 
Peak 
Climbing 
Architecture 
[66] 

EDISON 
Software 
[60] 

Implementation 
Type 

ASIC FPGA FPGA FPGA ASIC PC 

Max. Processing 
Region Count 

224 224 256 260 24,882 224 

Process/FPGA UMC 90 nm Not 
Available 

Xilinx 
Virtex-II 
XC2V6000 

Altera Stratix 
EP2S180 

0.13 um 0.13 um 

Operation 
frequency 

110 MHz Not 
Available 

82.7 MHz 20MHz 7 MHz 1.8GHz 

Throughput *3.34 FPS 
(VGA) 
14.20 FPS 
(QVGA) 

Not 
Available 

35 FPS 
(VGA) 

30 FPS 
(QVGA) 

50 FPS 
(DVD) 

<1 FPS 
(VGA) 
<3 FPS 
(QVGA) 

Hardware Cost 517 K gates Not 
Available 

85% slices 86 K ALUTs 9,379 K 
gates 

~11 M 
gates 

Memory 
Requirement 

1.08 KB 
(internal) 
1.03 MB 
(external) 

Not 
Available 

76% block 
ram 

230 KB 
(embedded) 

2.52 MB 
(internal) 

2.05 MB 

* worst case frame rate 
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is not the same. For instance, Meanshift based algorithm can support up to 224 segments 

whereas other algorithms can support less than 261 segments except the histogram peak 

climbing architecture. This means under segmentation is likely to happen in other algorithms. 

Moreover, the Meanshift algorithm does not rely on initial guess and does not need to give 

the number of cluster center in advance, making the Meanshift algorithm more convenient to 

use than K-means algorithms. When compared to the EDISON software, the proposed 

Meanshift filter architecture can provide a 3 times speedup with relatively much less 

hardware and lower clock rate. 

 
5.3.6. Summary 

In the proposed VLSI Meanshift filter architecture, the partial-update ping-pong buffer 

reduced the bandwidth to the image memory by 81.6%. In addition, the proposed ping-pong 

local Meanshifted status buffer reduced the size of the Meanshifted status memory by 50%. 

Finally, a 4-pixel parallel 9-stage pipelined MSV computation unit is also proposed to exploit 

the limited parallelism in the Meanshift algorithm. The synthesized gate count of the 

proposed architecture is 517K. When clocked at 110 MHz, the proposed architecture can 

perform Meanshift filtering of VGA images at the average frame rate of 8.75 FPS. We 

anticipate this work to encourage real-time implementations of complex but high 

performance vision algorithms so that more vision-based real-time application would be 

possible in the future. 

The bandwidth to external memory remained as a speed limiting issue. Therefore, 

further reducing the bandwidth requirement of the Meanshift algorithm is very important. 

Another worthy future research topic is to reduce the power consumption. The proposed 

architecture involved a lot of buffer and memory accesses which would make the architecture 

very power consuming. Therefore it is necessary to explore low power Meanshift architecture 

in the future.
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5.4. MCADSW 
5.4.1. Stereo Matching's Role in Vision Applications 

 Stereo vision is an important early vision tool that has been widely adopted by 

applications such as multiview video coding, freeview TV, 3D video conferencing, intelligent 

surveillance, autonomous vehicles, and mobile robots. Stereo vision finds the depth in a 

scene based on the stereo image pair of the scene. The depth of a pixel is inversely 

proportional to the disparity of this pixel. The disparity of a pixel is the distance of this pixel 

and the corresponding pixel in the other image. The process of finding the corresponding 

pixel is often referred as disparity estimation or stereo matching. The resulting disparity of 

each pixel in an image forms a disparity image or disparity map. For more detail on stereo 

vision, please refer to [71]. 

5.4.2. Stereo Matching Issues 
The applications adopting stereo vision often require high performance and real-time 

processing speed. The performance is usually defined by the error rate of a disparity map 

when compared to the ground truth disparity map [72]. Lower error rate implies higher 

performance. Complex disparity estimation algorithms usually achieve much better 

performance than simple algorithms. However, simple algorithms are usually much faster 

than complex algorithms. As a result, most real-time applications have adopted simple 

algorithms to trade the performance for speed. For applications that cannot accept trading 

performance for speed, complex algorithms have been adopted and implemented using 

powerful computation devices such as DSPs, GPUs, and dedicated hardwares. However, the 

computation power of DSPs is not high enough to enable complex disparity estimation 

algorithms to support real-time processing. The GPUs can support real-time disparity 

estimation, but is too expensive for embedded real-time applications. The dedicated hardware 
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approach that uses FPGAs/ASICs can provide high computation power with relatively less 

expensive hardware cost. This makes the dedicated hardware approach suitable for 

implementing complex disparity estimation algorithms for real-time applications. However, 

complex disparity estimation algorithms are often not hardware-friendly and bandwidth 

hungry. 

 

5.4.3. MCADSW algorithm 
A. Algorithm Overview 

Fig. 41 shows the overall flow of the proposed mini-census adaptive support weight 

(MCADSW) algorithm. The MCADSW algorithm consists of four major steps. First, the 

mini-census transform and matching step performs mini-census transform on the left and 

right images and computes the initial matching cost of each pixel. The second step is the 

weight generation which generates the weight coefficients needed in the cost aggregation step. 

Once both the initial matching cost and weight coefficients are available, the matching cost 

will be aggregated through a two-pass cost aggregation step. Finally, the best disparity can be 

obtained by finding the disparity with the minimum aggregated matching cost through a 

Winner-Takes-All method. 

B. Mini-Census Transform & Matching 
The mini-census transform, a modified and simplified version of census transform [87], 
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Fig. 41.  Overall flow of the proposed mini-census adaptive support weight algorithm 
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compares the luminance of the six pixels within a support window with the center pixel. The 

six pixels template is marked in Fig. 38. If a pixel’s luminance is larger than the center 

pixel’s luminance, it is given the label 0, otherwise the label 1. After the comparison of the 

six pixels, a binary bitstream is obtained which characterizes the luminance relation between 

the center pixel and its surrounding six pixels. With the mini-census bitstream, we can 

represent each pixel using only 6-bit. 

 
The mini-census matching cost between two pixels is defined as the hamming distance 

between the mini-census bitstreams. We would refer the mini-census matching cost as the 

census cost hereon for brevity, which is defined as 

),( ,,,, diRiLdi bbHE = ,                          (4) 
where Ei,d is the census cost of pixel i at disparity d; bL,i is the bitstream of pixel i in the left 

image and bR,i,d is the bitstream of pixel i at disparity d in the right image; H is the hamming 

distance function. 

Fig. 42 illustrates an example of the mini-census transform and census cost. After the 

transform, the mini-census bitstreams of the two pixels in the figure are 111000 and 111011 
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respectively. The hamming distance between the bitstreams is 2; hence, the census cost is 2. 

Since the bitstream represents relative information, the census cost is therefore much 

less sensitive to brightness bias and exposure gain. In addition, the census cost preserves the 

depth boundary in disparity maps better than the traditional SAD cost does. 

C. Weight Generation 
The adaptive weight generation was based on the proximity and color distances in the 

original adaptive support weight algorithm. However, we removed the proximity weight 

based on our observation that it mainly benefits the performance when the support window is 

larger than 19x19. We have compared the average disparity error rate of MCADSW with and 

without the proximity weight. The average disparity error rate was averaged over the overall 

error rate of tsukuba, venus, teddy, and cones stereo image pairs from the Middlebury stereo 

vision evaluation website [72]. Note that we have decided to use the overall error rate instead 

of the non-occlusion error rate because in most applications, such as robotics, freeview TV, 

and 3D modeling, prefer overall error rate over non-occlusion error rate. This is due to the 

fact these application do not just rely the depth at non-occlusion, the depth at depth 

discontinuities is also critical to the performance of these applications. From our experiment 

result, the difference of the disparity estimation error rate between using and not using the 

proximity weight was less than 3% for window size of 31x31. Therefore, we decided to trade 

the very small performance loss for the computation complexity reduction. 

The color weight was originally defined as a Gaussian function of the color distance 

between a pixel i in the support window and the center pixel c of the window. The color 

weight wi,c of pixel i with respect to pixel c is 

)exp( ,
,

c

ci
ci

C
w

γ
Δ

−= ,                       (5) 

where ΔCi,c is the color distance between pixel i and c; cγ  is a tuning constant. This weight 

allows the pixel with color similar to the center pixel to have more influence on the final 
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matching cost. Note that since we use two-pass aggregation, the weight for vertical and 

horizontal aggregations are generated separately. The vertical weight is generated with 

respect to the center pixel of each column in the support window, whereas the horizontal 

weight is generated from the center row with respect to the center pixel of the support 

window. 

To reduce computation complexity and make the algorithm more hardware-friendly, we 

proposed three simplifications to the weight generation.  

First, we adopted the YUV color representation instead of the L*a*b* color 

representation, which was originally adopted by the ADSW, in our MCADSW. Using YUV 

color representation allowed us to use hardware-friendly positive integer numbers instead of 

complex hardware-unfriendly signed floating-point numbers during the weight generation. 

Fig. 43 shows the average error rate of MCADSW using different color representations. The 

error rate was averaged over the overall error rates of the four stereo image pairs from the 

Middleburry stereo vision evaluation website [72]. From Fig. 3 we noticed that the error rate 

difference between using YUV and L*a*b* color representations was less than 2%. The error 

rate in the case of using Y-only and RGB color representations was significantly larger than 

using L*a*b*. Therefore, we have decided to adopt YUV color representation in MCADSW. 
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Fig. 43.  Disparity estimation error rate of using different color spaces 
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Second, we used Manhattan color distance instead of Euclidean color distance to 

eliminate the three square and one square root computations that was necessary for 

computing Euclidean distance. Table 16 lists the disparity estimation error rate and execution 

time on a Pentium IV 2.8GHz machine when Euclidean and Manhattan distances were used 

in MCADSW. Interestingly, the result using Manhattan color distance slightly outperformed 

using Euclidean color distance. One possible explanation is that YUV color representation is 

not perceptually uniform and linear like L*a*b* color representation is. Therefore, Euclidean 

color distance could no longer reflect the actual color distance. After using Manhattan color 

distance, the execution time of the MCADSW was reduced by 34.3%. 

Third, we proposed a scale-and-truncate approximation of the color weight function. 

The scale-and-truncate approximation approximated the exponential function by scaling it up 

by 64 then truncate it to leave only one non-zero most significant bit (MSB). The reason for 

scaling up by 64 is because the error rate stopped decreasing after the scale factor exceeds 64. 

The reason for preserving only one non-zero MSB is because the error rate difference 

Table 16  Performance comparison between using Euclidean and Manhattan color distances 
Error Rate (%) 

Method Average Error 
Rate (%) TSUKUBA VENUS TEDDY CONES

Tsukuba Execution Time 
(seconds) 

Euclidean 7.47 3.47 0.91 14.3 11.2 4.75 

Manhattan 6.94 3.08 0.59 14.0 10.1 3.12 
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between preserving one bit and two bits was less than 0.5%. With only one bit in the color 

weight being one, the multiplication between the color weight and the initial cost can be 

implemented with only one simple shift operation. The curve of the final scale-and-truncated 

weight is shown in Fig. 44. After applying the proposed approximation, the execution time 

could be reduced by 41.0%. 

 
D. Vertical and Horizontal Cost Aggregation 

The final matching cost was aggregated from the weighted cost within the support 

window using a two-pass approach proposed by Wang et al. [109]. The two pass approach 

first aggregates vertically to give a vertical aggregated cost of each column, then the vertical 

aggregated costs are aggregated horizontally together to give the final matching cost. The 

vertical aggregated cost Ev,col,d of a column col within the support window at disparity d can 

be defined as 

∑
∈

=
coli

civdidcolv wEE ,,,,, ,                          (6) 

where Ei,d is the initial census cost of the pixel i in the column, wv,i,c is the vertical weight of 

pixel i with respect to the center pixel c of the column. The horizontal aggregated cost Eh,row,d 

at disparity d, which is also the final matching cost Efinall,d, is defined as  

∑
∈

==
Wcol

cjhdcolvdrowhdfinal wEEE ,,,,,,, ,                 (7) 

where Ev,col,d is the vertical aggregated cost of the column col within the aggregation window 

W; wh,col,c is the horizontal weight of column col’s center pixel j with respect to the center 

pixel c of the window. 

The two-pass approach can reduce computation complexity when compared to the direct 

approach. If the window size is (r+1) x (r+1) and the disparity range is D, the complexity of 

the two-pass approach is O(2rD), whereas the complexity of the direct approach is O(r2D). In 

addition to the computation complexity reduction, the two-pass approach also reduces the 

internal bandwidth of the hardware design. However, [109] have reported observable quality 
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drop of the disparity map after applying the two-pass approach to the original ADSW. Our 

own experimental result on the ADSW showed approximately less than 3% average error rate 

increase after applying the two-pass approach. 

E. Performance Evaluation 
Table 17 lists the error rate and desktop PC execution time of the proposed MCADSW 

and other state-of-the art algorithms. The error rate evaluates the performance of a disparity 

estimation algorithm and is independent of which computing platform an algorithm is being 

implemented. The execution time evaluates the computing complexity of an algorithm based 

on desktop PC-based implementations. Although the execution time of an algorithm depends 

on the clock rate of the target processor and code optimization, comparing the execution time 

of different algorithms gives a rough figure of their computation complexity. The error rate 

and the execution time of other algorithms in the table were acquired from their published 

works. For ADSW, we have included the execution time provided from their published work 

as well as the execution time acquired from us running their software. The error rate and 

execution time we gathered is labeled as “Our ADSW”. For algorithms that did not provide 

the execution time of the tsukuba stereo image pair, such as RealTimeBP and RealTimeGPU, 

we estimated their execution time based on their best disparity estimation speed, which is 

usually represented in terms of million disparity estimation per second (MDE/s). For instance, 

RealTimeGPU reported a disparity estimation speed of 0.36 MDE/s on an Intel Pentium IV 

3GHz machine in their work; by dividing the number of disparity estimations needed in the 

tsukuba stereo image pair, which is 384x288x16 = 1.77 MDE, by the disparity estimation 

speed, we get an estimated execution time of 4.91 seconds. 
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The error rate of the proposed MCADSW was comparable to RealTimeBP and was 

slightly inferior to the original ADSW. When compared to the state-of-the-art CoopRegion 

[118] method, the error rate of the MCADSW was 0.46%~4.67% higher. However, the 

execution speed of the MCADSW was at least 10 times faster than CoopRegion, 30 times 

faster than the original ADSW, and near 2 times faster than the RealTimeBP. This implies the 

MCADSW is likely to have a much lower computation complexity than the compared high 

performance disparity estimation algorithms. Only SSF+MF, EffectiveAggr, and RealDP 

were faster than the MCADSW. However, these algorithms had significantly higher error rate 

than the MCADSW as well. 

 
 

Table 17  Performance comparison of the MCADSW and other algorithms 

Error Rate % 

PC Spec. 
(Brand, 

processor, clock 
rate) 

Tsukuba 
Exec. 

Time(sec) Method 

TSUKUBA VENUS TEDDY CONES   

SSD+MF[72] 7.07 5.16 24.8 19.8 
Intel CoreDuo 

2.99 GHz 
0.64 

EffectiveAggr[116] 2.11 4.75 15.2 12.6 
Intel CoreDuo 

2.14GHz 
0.20 

RealDP[105] 2.85  6.42 N.A. N.A. 
AMD AthlonXP 

2800+ 
0.02 

RealTimeBP[113] 3.40  1.90 13.2 11.6 
Intel  Pentium IV 

3.0G 
3.39 

RealTimeGPU[109] 4.22  2.98 14.4 13.7 
Intel  Pentium IV 

3.0G 
4.91 

CoopRegion[118] 1.13 0.18 9.03 7.80 
Intel Pentium M 

1.6G 
~20.00 

Original 
ADSW[73] 

1.85 1.19 13.3 9.79 
AMD AthlonXP 

2700+ 
~60.00 

Our ADSW 4.18 3.41 20.6 16.0 
Intel Pentium IV 

2.8GHz 
95.65 

MCADSW 2.80 0.64 13.70 10.1 
Intel Pentium IV 

2.8GHz 
1.84 
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5.4.4. Bandwidth Reduction Techniques for MCADSW 

Architecture 
Reducing bandwidth requirement is important because available bandwidth is limited. 

We proposed partial column reuse (PCR) and access reduction with expanded window 

(AREW) techniques to reduce the bandwidth requirement. 

A. Partial Column Reuse (PCR) 
The PCR reuses the data in each column to reduce the memory bandwidth and 

computation requirements. A column is usually a part of multiple horizontally overlapped 

windows. Therefore, the data of each column can be shared by the computation of the final 

result for these windows. The data could be original pixel data or temporary intermediate 

results. By storing these data, the number of memory access and computation can be reduced. 

As a result, each column is only read and computed once. 

Fig. 45 illustrates how the PCR is applied to the mini-census generation. The pixels in 

column x=n contribute to the generation of three mini-censuses. Fig. 46 illustrates how a 

vertical aggregated cost is shared by 18 horizontally overlapped aggregation windows. This 

reduced the read count of a pixel column from 18 to 1 for these 18 windows. Since PCR can 

reuse computation as well, PCR may also be applied to other types of implementations, such 

Mini-census template for 
pixel at x=n-2

Mini-census template for 
pixel at x=n

Mini-census template for 
pixel at x=n+2

column at x=n

 
Fig. 45.  Partial column reuse in mini-census transform 
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as processor-based, DSP-based, GPU-based, and FPGA-based, to reduce computation 

requirement. 
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Fig. 46.  Partial column reuse in cost aggregation 
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B. Access Reduction with Expanded Window (AREW) 

The AREW reduces the bandwidth requirement by deliberately expanding the size of the 

read window. The expanded window reduces the read count of a pixel by reducing the 

number of overlapping window containing this pixel. We will explain this using an example 

of vertically expanded window shown in Fig. 43. Note that we have ignored considering 

horizontal overlap for the sake of clarity. In this example, the original window size is 5x5 

pixels and the number of vertical expanded row is 3.  

Fig. 47 (a) illustrates how windows are overlapped vertically without expanding rows. 

The first window is located at row n and column k. When the window changes the row 

position at the end of a horizontal scan, the new window would be vertically overlapped with 

the old window. As a result, the second window is located at row n+1 and column k. The 

position of the first window is shown by the box with dashed line. The overlapped region is 

marked by darker color. Since we only buffer the pixel data within the read window due to 

cost consideration, the vertically overlapped region must be re-accessed. Consequently, the 

access count of a pixel is determined by the number of overlapping window containing this 

pixel. The maximal access count of a pixel is five in this case as shown in the figure. 

Fig. 47 (b) illustrates the case with expanded window. With the expanded rows, the 

vertically enlarged window would result in farther vertical jump distance when a row change 

happens. As a result, the second window is located at n+4. The maximal access count of each 

pixel is only 2, which is much smaller than in the case without expanded window. Horizontal 

expansion also reduces the access count in the same way as the vertical expansion. If we 

could enlarge the window to the size of the image, the read count of each pixel would be only 

one. However, expanding the window would also require larger internal storage size and 

more hardware resource. Therefore, the number of expanded row and column should be 

carefully selected. In our case, the number of expanded row and the number of expanded 
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column are both 17. The AREW is applied to the mini-census generation and weight 

generation. 

The bandwidth requirement to external frame memory can be estimated based on the 

read count of each pixel. The read count of a pixel is determined by the number of times it is 

overlapped by mini-census transform windows and aggregation windows. In a direct 

implementation without any data reuse, a pixel is overlapped by 3 mini-census transform 

windows in the horizontal direction, 4 mini-census transform windows in the vertical 

direction, 31 aggregation windows in the horizontal direction and 31 aggregation windows in 

the vertical direction. The read data width of a pixel in the mini-census transform is one byte, 

whereas the read data width of a pixel in the aggregation is three bytes. As a result, the total 

bandwidth requirement for a CIF size base image at 30 FPS is about 

((7x31x31)x1byte+31x31x3byte)x(352x288)x30FPS = 27.22 GB/s. neglecting the boundary 

case. If we assume the pixel data read for the weight generation already included the pixel 

 
(a) 

Read expanded 
window at
row n, column k

5

3

1+3

Read expanded 
window at
row n+4, column k

Read expanded 
window at
row n+8, column k

pixel row is 
read 2 times

3 expanded 
rows

 
(b) 

Fig. 47.  Example of access count reduction with expanded window, (a) without expanded rows, (b) with 3 
expanded rows 
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data read for the mini-census transform, the total bandwidth can be reduced to 

(31x31x3byte)x(352x288)x30FPS = 8.17 GB/s. After applying the PCR and AREW 

bandwidth reduction techniques, the average read count of a pixel can be reduced to 5.17 

times. The bandwidth requirement can therefore be reduced to 

5.17x3bytex(352x288)x30FPS= 44.99 MB/s. The proposed bandwidth reduction can also be 

applied to other aggregation based stereo matching architectures to reduce their bandwidth 

requirement. 

 

5.4.5. Real-time Architecture for MCADSW 
A. Architecture Overview 
 

Fig. 48 shows the architecture of the MCADSW. The architecture consists of a memory 

controller, mini-census transformer, weight generator, and a cost aggregator and WTA 

module. The details of each module are explained in the following subsections. 

B. Mini-Census Transformer 
Fig. 49 shows the architecture of one of the two (left and right) identical mini-census 
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Fig. 48.  Block diagram of the MCADSW 
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transform units.  Each unit consists of an input buffer, a mini-census kernel, and a 

mini-census buffer. The input buffer stores the input image data read from the external image. 

The input data are first packed into data words and stored into the word buffers. Once the 

data are ready for mini-census transform, the data in the input buffer are read into the 

mini-census kernel. The center pixel is stored in the register and compared with its 

surrounding six pixels in the mini-census template. The comparison result, the 6-bit 

mini-census bitstream, is then written into the mini-census buffer. 
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Fig. 49.  Architecture of the mini-census transformer 
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C. Weight Generation 
Fig. 50 shows the architecture of the weight generator. The architecture is similar to the 

mini-census transformer. However, there are three sets of input buffer because the weight 

generation needs all three color components. The mini-census kernel is replaced by a weight 

generation kernel which reads the input pixels column by column to generate vertical weight. 

The color distances between the center pixel and others are computed in the Manhattan color 

distance computer. Once the color distance is available, it is used to look up the 

corresponding weight from the weight table. During the column by column read from the 

input buffer, the center pixel of each column is also stored in the horizontal row buffer. After 

the vertical weight is generated, the horizontal weight is generated from the pixel data in the 
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Fig. 50.  Architecture of the weight generator 
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horizontal row buffer. This avoids reading the input buffer again during the horizontal weight 

generation. The vertical weight buffer and horizontal weight buffer store the resulting vertical 

and horizontal weight. 

 
 
D. Cost Aggregator and WTA 

Fig. 51 shows the architecture of the cost aggregator and winner-takes-all (WTA). The 

mini-census cost computation and vertical cost aggregation are shown to the left of the 

ping-pong buffer, whereas the horizontal cost aggregation and WTA are shown to the right. 

The census costs between the left and right mini-census bitstreams are computed by the 

hamming distance computation unit. To increase processing speed, each unit computes the 

census cost of all the pixels within a column in parallel. After the census costs are available, 

they are multiplied with the vertical weights and summed together to give the vertical 

aggregated cost. The vertical aggregated costs are stored in the ping-pong buffer. The 

ping-pong buffer is scheduled as shown in Fig. 52 to ensure that the aggregation can be 

performed continuously without any pause. The ping-pong buffer outputs 33 vertical 

aggregated costs to the three shifters used for horizontal aggregation. We have applied the 

PCR technique so that the first 31 costs in the 33 costs are sent to the first shifter, the second 

31 costs are sent to the second shifter, and the third 31 costs are sent to the third shifter. This 
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Fig. 51.  Architecture of the cost aggregator and WTA 
 



 122

reduces the output bandwidth requirement of the ping-pong buffer. Once the final matching 

costs are available, they are compared with the current minimal final costs in the WTA 

modules. After the cost of all the disparities are compared, the disparity with the minimal cost 

is the final output disparity. 

 
Fig. 53 illustrates the processing order of the cost aggregator. The cost aggregator is 

capable of processing eight columns of 31 pixels simultaneously. The initial pipeline delay is 

7 cycles. After the initial pipeline delay, it takes 6 cycles to process all 31x48 pixels to give 
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Fig. 52.  Schedule of the ping-pong buffer 
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Fig. 53.  Processing schedule of the cost aggregator 
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18 final matching costs. These 18 matching costs are of the same disparity. After the final 

matching costs of a disparity are computed and compared, the final matching costs of the 

next disparity are computed and compared. Once the final disparity of an 18-pixel row is 

determined, the cost aggregator and WTA start processing the next 18-pixel row. For 

example, the disparity of y=0 is estimated first, then the disparity of y=1 is estimated. After 

(7+6x64)x18 = 7,038 cycles, the disparity of an 18x18 block are determined. 

 

E. Memory Controller 
The memory controller interfaces to external memory and arbitrates the external 

memory access requests from the mini-census transformer, weight generator, and cost 

aggregator and WTA. The data port width between the image memory and the memory 

interface is 32-bit. The arbitration is a hybrid of round-robin and fixed priority strategy. The 

depth FIFO always has the highest priority due to the high penalty of suspending of the cost 

aggregator and WTA. The priority of the mini-census transformer and weight generator are 

determined by round-robin. 

F. Scheduling 
Fig. 54 illustrates the scheduling of the MCADSW architecture. The cost aggregator 

starts processing data after all the 31x48 mini-censuses and weights are available. This takes 

470 cycles to prepare the censuses and 1,536 cycles to prepare the weights. Since the cost 

aggregator and WTA take 7,038 cycles to finish, the mini-census transform and weight 

generation of the next 18x18 block can be performed at the same time. Based on this 

470 470

1536 1536

7038 7038

Mini-Census Transform

Weight Generation

Aggregation & 
WTA 18x18 disparities 18x18 disparities

Unit: cycles

 
 

Fig. 54.  Schedule of the MCADSW architecture 
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scheduling, it takes approximately 2.5 million cycles to complete the disparity estimation of 

all the 320 18x18 blocks in a CIF sized stereo image pair. 

 

5.4.6. Implementation Result and Comparison 
 
A. Gate Count and Memory Size 

The proposed MCADSW architecture was synthesized using UMC 90 nm standard cells. 

Table 18 lists the core characteristics of the synthesized design. The total equivalent 

gate-count is about 563K excluding the memories and the maximum operation frequency is 

95 MHz. The equivalent gate-count and the memory area distributions are shown in Fig. 51. 

The total gate-count was dominated by the cost aggregator and WTA, census left buffer, and 

census right buffer. This was due to the high computation resource requirement and complex 

demultiplexing circuits. The memory area was dominated by the weight generation, weight 
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Table 18  Core characteristics of the proposed MCADSW 
Technology UMC 90 nm 
Max clock rate 95 MHz 
Equivalent gate-count (excluding 
memories) 

562,642 

Memory size 21.3 KB  
Image size 352x288 (CIF) 
Disparity range 64 
Maximal frame rate 42 FPS@95MHz 
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buffer, census left buffer, and census right buffer. 

 
B. Performance Comparison 

Table 19 and Table 20 compare the disparity estimation speed and performance of the 

MCADSW architecture with other existing high performance real-time implementations 

quantitatively. In TABLE IV, the performance was evaluated using Middleburry’s stereo 

image pairs and their evaluation method [72]. The error rate is the overall error rate with the 

tolerance of one disparity level. In addition to the quantitative performance evaluation, we 

also included the disparity maps generated by different implementations in Fig. 52 for 

qualitative performance comparison.  

Table 19  Speed comparison of different implementations 

DDeessiiggnn   IImmpplleemmeennttaattiioonn   IImmaaggee  
SSiizzee   

DDiissppaarriittyy  
RRaannggee  FFPPSS   MMDDEE//ss  

PPrrooppoosseedd  
MMCCAADDSSWW UUMMCC  9900nnmm  SSttdd..  CCeellll  335522xx228888  6644  4422  227722..55  

TrellisDP[112]  Xilinx Virtex II Pro-100 320x240 128 30 294 

HBP[114] Xilinx Virtex II Pro-100 x2 320x240 32 30 73.7 

EffectAggr[116] Intel Core 2 Duo 2.14 GHz 463x370 75 1.67 18.9 

RealDP[105] AMD AthlonXP 2800 384x288 100 18.9 209 

CBiased[107] Nvidia Geforce 7900 512x512 96 24 605 

SepLaplacian[108]  Nvidia Geforce 7900 256x256 96 87 547 

RealTimeBP[113] Nvidia Geforce 7900 320x240 16 16 19.6 

RealTimeGPU[109] ATI Radeon 9800 320x240 16 16 19.6 

ReliableGPU[106] ATI Radeon 9800 N.A. N.A. 16.6  N.A. 

GradientGuided[117] ATI Radeon 9800XT 512x384 40 14.7 117 
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From the speed perspective, the TrellisDP, CBiased, and SepLaplacian outperformed the 

MCADSW architecture in terms of the MDE/s. The TrellisDP was faster because it adopted a 

fully parallel systolic array architecture with 128 PEs. Their systolic architecture maximized 

the utilization of the PEs to achieve a processing speed of 294 MDE/s. However, the systolic 

architecture would require very high bandwidth and large storage to keep the 128 PEs 

working without idling. The CBiased and SepLaplacian were at least two times faster than 

the MCADSW because they were implemented using high performance programmable GPUs. 

These high performance GPU had extremely high bandwidth and computation hardware 

resource available. For instance, Nvidia’s Geforce 7800GTX GPU had 256MB of GDDR3 

DRAM clocked at 600MHz, with a data port of 256-bit, the maximum available peak 

bandwidth can reach up to 38.4 GB/s [119]. Together with an operating clock of 430 MHz 

and 8 vertex and 16 pixel shaders, it is reasonable for GPU-based implementation to achieve 

such high processing speeds. In contrast, the MCADSW architecture required much lower 

clock rate, less bandwidth, and smaller silicon area. This makes the MCADSW more 

applicable to embedded vision applications. As to the disparity estimation performance, only 

Table 20  Performance comparison of different implementations 

DDeessiiggnn   TTssuukkuubbaa  VVeennuuss  TTeeddddyy  CCoonneess  SSaaww  TTooootthh   MMaapp   

PPrrooppoosseedd   22..8800   00..6644  1133..77  1100..11  2.11 3.21 

TrellisDP[112] 2.63  3.44  N.A. N.A. 1.88  0.91  

HBP[114] 2.85 1.92 N.A. N.A. 6.25 6.45 

EffectAggr[116] 2.11 4.75 15.2 12.6 N.A. N.A. 

RealDP[105]  2.85  6.42 N.A. N.A. 6.25  6.45  

CBiased[107] 4.77 10.2 N.A. N.A. 0.82 0.65 

SepLaplacian[108]  13.0  N.A.  N.A. N.A.  N.A.  N.A.  

RealTimeBP[113] 3.40  1.90 13.2 11.6 N.A. N.A.  

RealTimeGPU[109] 4.22  2.98 14.4 13.7 N.A.  N.A.  

ReliableGPU[106] 1.36  1.09 N.A. N.A. 2.35  0.55  

GradientGuided[117] 2.48 3.91 N.A. N.A. 1.63 0.73 
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the TrellisDP was comparable to the MCADSW in terms of the error rate, whereas both the 

performance of the Cbiased and SepLaplacian were inferior. This can also be observed in the 

disparity maps shown in Fig. 55. The disparity map of the MCADSW had more accurate 

depth-discontinuity than others in most regions except in the camera region. The reason for 

the camera region being blurry was probably due to the removal of the proximity weight. All 

in all, the MCADSW provided high disparity estimation speed and performance that was 

comparable to other high performance real-time implementations while requiring less 

bandwidth and being more suitable for embedded vision systems. 

Ground Truth Proposed Method TrellisDP 

 
HBP EffectAggr RealDP 

 
CBaised SepLaplacian RealTimeBP 

 
RealTimeGPU ReliableGPU GradientGuided 

Fig. 55.  Disparity map of different implementations 
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5.4.7. Summary 
This section presented a hardware-friendly high performance disparity estimation 

algorithm, the MCADSW, and its corresponding architecture for real-time stereo matching. 

The proposed hardware-friendly simplifications not only made the MCADSW more 

hardware-friendly, but also reduced the execution time of the MCADSW algorithm by 61.3%. 

In the design of the MCADSW architecture, we proposed the PCR and AREW techniques to 

significantly reduce bandwidth requirement. The proposed architecture was synthesized using 

UMC 90 nm standard cells. At the operation frequency of 95 MHz, the proposed architecture 

can achieve 42 FPS of CIF size disparity map with 64 disparity levels. The equivalent 

gate-count and total memory size are 562 K and 21.3KB respectively. 
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Chapter 6   Conclusion 
 This dissertation addressed the bandwidth issue from the source to the destination of 

data transfers based on the core concept of facilitating the address and data correlation among 

accesses. At the source of data transfers, this dissertation proposed a memory controller that 

increased the bandwidth utilization by facilitating access address correlation, taking the 

advantage of new advanced data transfer protocol, and the characteristics of external 

memories. After improving the bandwidth utilization at the source of data transfers, this 

dissertation focused on improving the bandwidth utilization of a bus interconnect adopting 

advanced protocol under the traditional share-link topology. Finally, the bandwidth 

requirement reduction techniques based on data and access characteristics have been studied 

at the destination of data transfers. The bandwidth requirement can be reduced in two major 

ways. The first approach is to take the advantage of data characteristics. The other approach 

is to reuse data based on an algorithm’s data access spatial and temporal locality. In video 

coding, the CFMMC architecture was capable of reducing the bandwidth requirement and 

energy consumption up to 72% and 16% respectively when the percentage of perfect matched 

macroblocks is higher than 70%. In early vision tasks, the proposed PUPP reduced the 

bandwidth to the image memory by 81.6% in the proposed meanshift architecture. Both 

CFMMC and PUPP were examples of the first approach to reduce bandwidth requirement. In 

the MCADSW stereo matching architecture, the proposed the PCR and AREW techniques, 

which were examples of the second bandwidth requirement reduction approach, could reduce 

bandwidth requirement by an order. 

 Although this dissertation has proposed methods to increase system’s effective 

bandwidth and to reduce core’s bandwidth requirement for video and vision applications, 

systematic integration of these techniques into advanced ESL design flow tools has not been 
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available. With the proposed bandwidth issue solutions, future researches can consider 

integrating these solutions into an automatic bandwidth optimizing tool. Doing so would 

enable more complex bandwidth demanding but extremely useful video and vision 

algorithms to be accelerated for real-time applications. 
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