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Abstract. Based on a clear physical picture, a theory of superconductivity capable 
of treating the simultaneous participation of multiple bosonic modes that mediate 
the pairing interaction is developed in terms of the dielectric function. The effect of 
mode damping is then incorporated in a simple manner that is free of the 
encumbrance of the strongcoupling,  Green function formalism usually required for 
the retardation effect. Explicit formulae including such damping are derived for the 
critical temperature T, and the energy gap A. showing, in particular, how the ratio 
2A0/T, may thus vary from sample to sample, a prediction consistent with the 
recent experimental findings on  high-T, superconductors. 

The experimental discovery of the new crop of high-T, 
superconductors  has  rekindled  theoretical  interests in 
superconductivity [ 141. Although  no definite physical 
mechanism has been identified unequivocally as the 
cause of the high critical temperature,  it seems clear that 
whatever gives rise to it  must be more complex than  the 
conventional mechanisms. Indeed,  there may be more 
than  one simple mechanism responsible for the high 
T,-phonons [l], plasmons [2], spin  fluctuations [3], 
and magnetic  couplings [4] may all play a  role in con- 
tributing to the  ultimate  superconducting  behaviour.  In 
facing these complexities it is important  to have a  theo- 
retical framework that  can bring us to the  heart of the 
physical mechanism as quickly as possible, without 
being heavily encumbered by impenetrable  mathemati- 
cal shells. For example, if some generalised BCS theory is 
still valid, we should at  least have a formalism that  can 
handle  the  pairing  mechanism with the  associated 
electron-electron  attraction via exchange of many pos- 
sible bosonic  modes all at once. In fact, Kirzhnits et a1 
[ S ]  have developed such  a  theory based on a dielectric 
formulation of the  strong-coupling system with the  aid 
of Green  functions [S]. Unfortunately  the  mathematical 
machinery is too cumbersome to yield immediate physi- 
cal insights. A more  intuitive,  heuristic version is 
urgently needed. This is accentuated by any  attempt  to 
include the effect of boson  decays on superconductivity. 
As is  well known,  boson  modes  such as phonons, plas- 
mons, magnons, excitons, etc all suffer decay in one way 
or another. If any of these bosons  are  to mediate  the 

pairing  interactions,  their decay will, inevitably, affect 
the  resultant  superconducting  properties. To incorp- 
orate this decay requires  a  treatment of the  retardation 
effect that is beyond the simple version of the original 
BCS theory [6]. A Green  function  theory of the  Kirzh- 
nits type, however, is already so ponderous  that  any 
further  complication from the decay effect would render 
it mathematically  more  unmanageable and physically 
more obscure. On the  other  hand,  the high-T, supercon- 
ductors  are so riddled with imperfections, grain  bound- 
aries, impurities,  etc that it makes  a  proper inclusion of 
the decay of the  elementary  excitations caused by them 
almost  mandatory.  The observed wide range of the 
2A0/T, ratio [7] might be a tell-tale sign of how varied 
these imperfections are. 

In  the following we shall first develop an intuitive, 
heuristic approach to the  pairing  theory of supercon- 
ductivity which enables us to take  into  account  the 
multiple  modes of bosons simultaneously. The resulting 
equations  are then  shown to be the  same as those given 
by Kirzhnits et a1 [ S ] .  Armed with such an approach, 
we can  extend with ease on physical grounds to the cal- 
culation of the decay effects of the many boson  modes 
on superconductivity.  In  particular, since each  boson 
decay rate depends generally on temperature, being 
more  pronounced at higher temperatures,  the  various 
boson  modes  contribute differently to the energy gap 
A(T) at different temperatures.  Some  modes  that con- 
tribute to A. at T = 0 may have decayed and cease to 
contribute at  temperatures close to T,. This, in turn, 
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alters  the  ratio of 2A0/T,, rendering  it  variable from 
sample to sample with the  decay-causing defects present 
in  each  sample. Explicit formulae  relating 2A0/T, to  the 
boson decay rates will  be presented. 

Consider  the  usual [8] quantum mechanical 
electron-electron  interaction  matrix  element  effecting  a 
transition  from  the  pair of states k ,   -k  to k', -k' via 
the  exchange of an undamped  boson of momentum q 
and frequency wj(q) of the  jth branch, given by 

where DI;" is the  electron-boson  interaction  matrix 
element. For any type of deformation  potential, since 
the  deformation is generally proportional  to ( l / ~ ~ ) ' ' ~  
from  normalisation, A, itself also  has  the  same 
( l / ~ ~ ) " ~  dependence.  Consequently,  when  the energy 
transfer A& = &k - &k' is negligible compared with hwj(q) 
an attractive e-e interaction  proportional  to l/mf(q) 
results from (1). At this  point, we remind ourselves that 
no  retardation effect arising  from  the  propagation of the 
boson from one  electron to the  other  has been taken 
into  account in (l), because of the  inadequacy of the 
Hamiltonian  formulation of the  electron system alone. 
Only an Eliashberg-type Green function  treatment [S] 
of the fully interacting  electron-boson system would be 
able to  handle the  retardation. We shall,  instead,  start 
from a simple physical picture adapted from Weisskopf 
ClOl. 

An electron e moving with velocity U, (U, v F ,  the 
Fermi velocity) will scatter  the e' electrons (and ions)  in 
the  surrounding  medium,  thereby  transferring  a 
momentum of magnitude p ,  causing  a  displacement of 
the  latter from their  equilibrium  configuration. The 
amount of displacement S j  depends  also  on  the type of 
harmonic  coupling of stiffness mm: that  tends to restore 
the  perturbed  charges e' to equilibrium.  The  perturbed, 
polarised region tailing  the  moving  electron e is posi- 
tively charged,  providing an  attractive  potential of 
strength U j  for other  electrons. It is proportional, of 
course, to the  displacement S j  

where d is the  distance between e and  the neighbouring 
charges. The length of the  attractive  tail is l j  = u,/wj 
since, after a  time z j  l/wj, the displaced charges in the 
tail will have bounced  back as a result of the  harmonic 
coupling,  erasing  the positive bias. The displacement 
amplitude S j  is obviously  proportional to l /wj from ele- 
mentary  considerations of momentum transfer and 
energy balance. It follows that  the electron-electron 
attractive  potential  associated with the  harmonic  mode 
w j  of the  medium is given approximately by 

Vj(r) = {? r > l j  
r l j  

where r is the  distance between the  two  electrons. The 
corresponding  matrix element of this  interaction is 

Uj l j /R  for ( k  - k')lj 1 
otherwise 

where R is the  radius of the  spherical box in which the 
relative S-wave motion of the  pair of electrons is con- 
fined. This  simple Weisskopf picture thus yields correct- 
ly the  matrix element in  the  phase  space region of 
(k - k')lj < 1, or equivalently 

is given by U j  l j  a S j l j  a l/wf , in  agreement with and 
providing  a physical basis for (l), as well as for the  orig- 
inal version of the BCS theory [lo]. 

So far,  the  harmonic  mode w j  has been assumed to be 
undamped.  The displaced  charge  would  thus oscillate as 
Sje""j'. On the  other  hand, when damping is taken  into 
account,  the  oscillatory  movement becomes 
Sje""j'e-rjti2, where Tj is the  corresponding  damping 
rate. As in  the  determination of l j  above,  the effective 
time interval for the  attractive  potential is T~ = l/wj, the 
bounce-back time. This  means that  the original S j  in (2) 
should now be replaced by Sje-rj'20j in the presence of 
damping.  In  turn,  the  interaction y ( r )  of (3) and its 
matrix element in (4) should  be modified by a  multipli- 
cative  factor e-rj2"j. In view of the  relation between (4) 
and (1) discussed above we may simply adapt this  factor 
from the generalised Weisskopf picture to rewrite our 
model  interaction? of (1) still in a  non-retarded  form 

( 0  otherwise 

( 6 )  

where we have introduced Gj as  an effective frequency 
for the jth mode which will be discussed later. 

Next we turn  our  attention  to  the  electron4ectron 
attraction  that is mediated by the  exchange of multiple 
bosons. Since each  boson  mode is like a  harmonic oscil- 
lator of definite frequency we recall first the simplest 
case of an  atomic electron identified as e'( = e) ,  of mass 
m, connected to a classical harmonic  spring of frequency 

t A more  rigorous way to derive  this  interaction  would  entail  first 
modifying  the  non-retarded  interaction (1) into  a  properly  retarded 
and  hence  frequency-dependent  form  (replacing A& clr - by ho) 

The  inverse  Fourier  transform ( k  I %(t)  I k ' )  = 5 ( k  I Vjw) I k')e"o' d o  
would  then  depend  explicitly on  the  retarded  time  interval C. Factors 
like  eioJltl  there  would  probably  have to  be  changed  to ei(uj*irj2)I'l to 
account  for  damping.  Then  another  Fourier  transform  back  to  the 
o-variable,  with W < wj, might yield (6). But even here  the  complex 
details  are  not  entirely  clear,  not  mentioning  a full-fledged Green 
function  theory. 
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t 
t, 3' 

+c 3K 
E grd  

Figure 1. Displacement of an 'atom' connected to a 
quantum spring symbolising the strength of excitation via 
various modes mi with probability f i  when perturbed by E,, . 
t q o .  

w j .  Under an external electric field E,e""' the dis- 
placement amplitude of the classical atom is 

e' 1 
m w2 - mj 

( 6 x ) j  sj = - - 2 E,* 

In the case of a quantum mechanical atom in the 
ground  state,  the  same  external field can  cause  tran- 
sitions of energy hwj,  j = 1,  2, 3, . . . to the  many pos- 
sible excited states. It is as if such an  atom were 
connected to a quantum mechanical spring which acted 
like a collection of classical springs of various fre- 
quencies m j ,  but  each with a  distinct  probability fj, 
j = 1 ,  2,  3, . . . (see figure 1). This  picture leads imme- 
diately to the well known result 

with cjfj = 1. The so-called 'oscillator strength' fj is 
given  by the familiar expression 

which is proportional to the  absolute  square of the 
atomic  dipole  transition  matrix element. For a collec- 
tion of N  such atoms in a volume R, the induced charge 
density by an external  potential 4ex(q, o) is 

where (7) has been used. 
Analogous to (2), what we need now in the Weiss- 

kopf picture is the  displacement (6x) of the  perturbed 
charge e' upon  the passing of the  electron  e with veloc- 
ity U,. Although  the field exerted by e on e'  is unlike the 
monochromatic E, in (7), we note  that the probabilityfj 
given  by (8) is independent of w, meaning that fj is an 
intrinsic  property of the atom system and is hence 
divorced from the time dependence of any  external field. 
Accordingly, the  displacement of e' is given, like the first 
equality in (7), by 

( 6 ~ )  = c (10) 
j 

where d j  is, unlike the second equality in (7), just  that 
used in  calculating U j  of (2) and y(r) of (3). Hence, 

when e' is coupled  not just  to  one  harmonic spring  but 
to a  medium symbolised by the quantum spring, the 
resulting electron4ectron interaction that generalises 
y(r) of (3) is 

W )  = c fj yo9 ' (1 1) 
j 

This is due  to the  linear  relation between U j  (and hence 
Q@)) and  the displacement dj as expressed in (2). 

At this  point  one might object that the e' electron is 
not an atomic  electron  but  one that is embedded in a 
medium consisting of other electrons, ions, etc, while the 
concept of& was introduced in (7), (8) in the  context of 
the  displacement of an electron in an atom.  Indeed, (8) 
is not  appropriate for our purpose. However, we may 
now analogously  look  upon our N-electron system as a 
'giant atom' being connected to a  giant quantum spring. 
As in the case of single atoms, this quantum spring  rep- 
resents collectively the relatioe 'stiffness' or difficulty 
with which each possible excited state of the system can 
be attained when perturbed from equilibrium. While it 
is no longer possible to introduce  the  probabilitiesfj for 
this quantum spring  through  the  calculation of the dis- 
placement of any  one electron e' which is intimately 
correlated with other charges, we can nonetheless calcu- 
late [ll], as in (S), the induced charge density pin,&, W )  

caused by an external  potential beX(q, m): 

where h o j  = E j  - Egrd and R is the volume of the 
system. Here (p,)oj is the  transition  matrix element of 
the density operator p4 between the exact eigenstate l j )  
and  the  ground  state IO). It plays the  same role as the 
dipole  matrix element xoj  in (8) or (9). Upon comparing 
(12) with (9) it is natural  to identify the 'oscillator 
strength'& in the  present case as 

fj = Nhq2 I 1 2 .  
2mw. 

The  interpretation of the  above fj as a  probability is 
indeed confirmed by the familiar dipole  sum  rule [l  l] 

Accordingly we conclude that it is this fj of (13) that 
should be  used in (1  1). This  conclusion is thus reached 
by invoking merely one general result (12) for the elec- 
tron gas. As before, this is again  independent of the 
perturbing frequency W .  The  multi-mode electron- 
electron interaction  matrix element is then generalised 
from ( 6 )  as 

h, k' = 1 fj vf!k' (14) 
j 

which retains  the simple unretarded form. 
Since the  oscillator  strength& is involved in the rela- 

tion between pin&, W )  and 4ex(q, 0) (see (9)) and so is 
the usual longitudinal dielectric function +,W), it is 
clear that these quantities  must be related. A straight- 
forward  algebraic  manipulation of the defining equation 
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of E ( q ,  W) shows that 

which links our v k ,  k‘ of (14) with the dielectric function 
and eventually with the dielectric formulation of the 
theory of superconductivity [S]. In (15), cop is the 
plasma frequency, and co,(q) are  the  longitudinal oscil- 
lation  modes of the  medium satisfying 

‘(49 WJ(q)) = O’ t 16) 
With  the  multi-modes and their  damping  incorpor- 

ated  into (14) and (6)  that retain  the simple non- 
retarded  form of the  electron  pairing  interaction, we can 
now follow pretty  much  the  usual BCS theory [14]. We 
include  also  the Coulomb repulsion among electrons in 
the style of Bogoliubov [l21 

where ‘(4, 0) is the  static  electronic screening and  the 
Fermi energy. The  total  interaction is then given by 
combining (14) with (17) 

I/( tOt?l )  = 
k .  k 1 &(qOv/b“ f vt’ (18) 

j 

where q = k - k’. This  interaction is now used to solve 
the  usual BCS gap  equation [ S ]  

t 19) 
where 

h2k2  
2m* 

is the single-particle Bloch energy measured from the 
Fermi level, and m* is the  electron effective mass. 

Recognising that hGj,  the  energy-range of the  inter- 
action v f ! k ,  of (6), is small  compared  with we may as 
usual  convert 1 k ‘  into a  product of an energy integral 
over i;,“ and a solid-angle integral  over  the  magnitude of 
the  momentum  transfer q which amounts  to  an average 
over  the  Fermi surface after the  extraction of the 
density-of-states  factor at the  Fermi surface, N F .  Equa- 
tion (19) can  then be rewritten  as 

tk=-“ &F 

x dd 
hLGj 

‘(‘’9 tanh Jm 
Jd2 + A’(&’, T) 2T 

where  the familiar approximation  appropriate for 
Ai; 4 E F ,  Ai;‘ E F ,  

and  the symmetry of A(&’, T) about  the  Fermi surface 
have been used. 

We introduce here the effective electron-boson- 
electron  attractive  coupling  strength  as  the  average of 
the  model  interaction (6) over  the  Fermi surface multi- 
plied by the  Fermi surface density of states 

Note  that  through  the dependence of the  damping  rate 
TAq, T) on  the  temperature T ,  each  mode j makes  its 
own  characteristic  contribution to e-e coupling,  chang- 
ing with T. Also, we denote  as  usual [l31 the  pseudo- 
Coulomb effective repulsion  averaged  over  the  Fermi 
surface by the  parameter p 

Equation (19) can then be solved for the  critical tem- 
perature T,  by using  the  three-step  approximation 

where coN(T) (GJ(T))max and A I  < h@, < is 
assumed.  Clearly, A t  arises from all the  bosonic  modes 
and A2 from the  direct repulsive Coulomb force. After 
some familiar algebra [l41 for  disentangling  the 
coupled A t  and A 2 ,  the resulting equation for T ,  is 
found to be 

(24) 
where 

is the well-known [ 131 renormalised  pseudo-Coulomb 
repulsion  parameter.  The  total  coupling  strength from 
all bosonic  modes,  denoted by A in (24), is just  a  sum  of 
the  contributions from the  individual  ones 

where the  proper weighting factorh for each  individual 
mode  has  already been put in / z j  of (21). 

In (24) an effective average frequency G of the  multi- 
boson  modes  that mediate  the e-e attraction  also 
emerges. It is just  the  logarithmic  average 
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in which each  mode is weighted by a  fraction that rep- 
resents its relative contribution  to  the  total e-e coup- 
ling. These weighting factors in (21), (25)  and (26) 
associated with the  various  modes satisfying (16) are 
entirely consistent with those of Kirzhnits et a1 [ S ] ,  with 
the  logarithmic  average  arising from the  integral of E' to 
the  upper limit hGj in (20) as A(&', TJ + 0. 

Unlike  the usual Bcs-type equation for T,  , our  equa- 
tion (24) must be solved self-consistently since T,  is also 
involved implicitly on  the right side through A(T& 

We can similarly solve (20) for the energy gap 
%(K) and 

A .   A 1 ( T  = 0) at zero  temperature: 

A. = 2hW(T = 0) exp 
1 -k 1(* h(UN/W(T = 0)) 

A(T = 0)  - p* 

(27) 
where W ,  oN and A are evaluated at T = 0. 

Depending  on  the  type of mechanism of damping, 
such as  Landau  damping, impurity  scattering, etc, the 
amount of damping generally increases with tem- 
perature  and is therefore minimised at zero tem- 
perature. It follows then from (21) and (25)  that 

A(T = 0) > A(T = T,). (28) 

Similarly, the  average  boson frequency W is larger at 
T = 0 since the higher frequencies in (26) can be shown 
[l51  to be more susceptible to Landau  damping at 
T > 0 and hence carries  a diminished weight compared 
with the case T = 0. As a result of (24), (27) and (28) we 
see that  the  ratio of 2A0 to kB T,  generally exceeds the 
BCS value of 3.5: 

&/kB K > 3.5 (29) 

and this value should increase as T ,  increases. This is 
qualitatively  consistent with the recent experimental 
findings [7] about  high-T, superconductors. Explicit 
numerical results on T,  and A. as well as A(T) and G(T) 
will  be given elsewhere [ 161. 

So far, the effective frequency &,(T) of the j th mode 
that  appears in (6), (20) and (26) has  not been specified. 
Since the j th mode frequency o,(q) depends generally on 
the  wavenumber q, we have to take an  appropriate 
average over q. In the presence of decay mechanisms 
such  as Landau damping,  a given mode j may have suf- 
fered serious  damping if q is too large or the tem- 
perature is too high. It should nor then be weighted as 
much in its  contribution  not only to the  averaging q- 
integral over the  Fermi surface, but  also to the E'- 

integral in (20), where the  double  integral is 
approximatedt  as a  product of two  separate integrals. 
This  approximation is  in the  spirit of a  separable  poten- 

t Strictly speaking, the upper limit of the &'-integral should have been 
w j q )  which depends on q, rendering the two integrals linked with each 
other. 

tial as  assumed in the  original BCS theory.  In conformity 
with this  approximation we propose an effective  fre- 
quency for the j th mode 

GAT) = lkF J ( 4)  e-rj(q, T)/2Uj(d d 4 

which, though  not  unique,  does  adequately  account for 
the relevant physics involved. If  we take the limit of no 
damping  and  evaluate  the  matrix elements at some 
average momentum transfer q, our present theory 
reduces to the dielectric formulation of Kirzhnits et al 
[5] based on the  Eliashberg  Green  function  theory [9]. 
However, our much simpler heuristic approach leads to 
a clearer physical picture  and, with relative ease, has 
enabled us to  incorporate  the  boson  damping effect into 
this picture,  culminating in the new results (24),  (27), (29) 
on the critical temperature T , ,  the energy gap A. and 
the  ratio 2Ao/kB T,  . 
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