
 

 

國 立 交 通 大 學 

電控工程研究所 
 

 

碩 士 論 文 
 

 

 

 

 

多通道語音強化 

使用相對轉移函數建構之零波束形成 

 

 

Multichannel Speech Enhancement 

Using Relative Transfer Function Based Nullforming 

 

 

研 究 生： 蔡  沛  錡 

指導教授： 胡  竹  生 博士 

 

 

 

 

中 華 民 國 九 十 九 年 七 月



 

i 

 

多通道語音強化 

使用相對轉移函數建構之零波束形成 

 

 

 

研究生：蔡  沛  錡 指導教授：胡  竹 生 博士 

 

 

 

國立交通大學 

電控工程研究所碩士班 

 

 

 

 

 

摘要 

本論文提出一個針對穩態或是非穩態干擾聲源消除的語音強化方法。消除非穩態

雜訊是目前語音純化研究中相當重要的問題，本論文提出一個以適應性濾波器為

基礎並結合零波束形成演算法的空間濾波器。零波束形成演算法是利用奇異值分

解法找出干擾聲源的零空間當作零波束形成器。論文中零波束形成器分為固定式

和可變式。可變式零波束形成器以階數回歸最小平方誤差估計的方法找出當前麥

克風收到訊號的子空間，並使用子空間相似度的演算法，剔除目標聲源子空間並

利用正交上三角分解產生一組獨立基底。這些基底組成了干擾聲源的子空間。零

波束形成演算法可應用在不同適應性濾波器上，本論文將固定式零波束形成器應

用在廣義旁瓣對消器和參考訊號架構為基礎之濾波器；可變式零波束形成器則應

用在廣義旁瓣對消器。所提出的零波束形成演算法同時可對目標聲源做語音活動

偵測以加強適應性濾波器的效能。本論文最後以線型麥克風陣列在實際環境下的

實驗結果說明本演算法的效能。  
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ABSTRACT 

The thesis proposed a speech enhancement method for stationary and nonstationary 

interfering sources. To effectively eliminate nonstationary intereferences is an important 

research topic for speech enhancement. This thesis proposed an adaptive nullforming spatial 

filter. The nullforming algorithm uses singular value decomposition (SVD) to find the null 

space of interfering sources. Both fixed and adaptive nullforming algorithms are studied. The 

adaptive nullforming uses order recursive least square estimation (ORLS) to find the subspace 

of presently received signal. The algorithm assumes that the relative transfer functions (RTFs) 

of sources from different direction can be obtained. The estimated subspaces from these 

RTF’s contain the subspace of the desired signal. They are sorted according to the distance to 

the subspace of source from every direction. Then the bases of desired signal subspace from 

estimated subspace could be removed and a set of independent basis are derived using the 

orthogonal triangular decomposition (QRD). The basis then comprises of the subspaces of the 

interfering sources. The fixed nullforming algorithm could be appiled to generalized sidelobe 

canceler (GSC) and reference signal based adaptive beamformer (RSAB) while the adaptive 

one can be applied to GSC. Further, it can also be used as directional voice activity detection 

(VAD) to enhance the performance. Finally, experiments using a linear microphone array 

under real environment are conducted to demonstrate the performance of proposed algorithm.  
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Chapter 1  

Introduction 

1.1 Motivation and Objective 

Speech enhancement in a noisy environment is an important research issue for 

speech signal processing. There are various kinds of interferences in the environment 

and they are usually classified into stationary noises and nonstationary ones. One of 

the approaches to solve this problem is to use microphone array where the spatial 

characteristics of sound waves are exploited. For stationary noises, the multichannel 

adaptive Wiener filter and its variations [1-4] were proposed and proved to be quite 

effective. However, they do not perform well in real practice when nonstationary 

noises such as competing speech are present. 

In spatial signal processing of a microphone array, blocking one of the sound 

sources is equivalent to finding the corresponding null space within the 

multi-dimensional signal space formed by the microphone measurements. To 

effectively obtain the subspaces and process their signals accordingly for interference 

reduction are two major focuses of the research in recent years. The difficulty is the 

subspaces are usually unknown in advance and become time-varying when 

environment changes. This provides the motivation of this thesis to study and propose 

innovative methods to compute the subspaces for nonstationary interference reduction. 

The primary target of interference considered in this thesis is competing speech. It is a 

common issue for speech communication as well as recognition under multi-person 

scenarios. 
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1.2 Literature Review 

Speech enhancement using microphone array has been widely used in noisy 

environment. Generally speaking, microphone array uses the spatial response of the 

signals received by different microphones to separate the signal from different 

directions. These kinds of signal enhancement methods are generally called 

beamforming. Beamforming technique has been studied for many years. In sonar 

system [5], beamforming has been used since 1960s. The earliest beamforming is 

delay-and-sum (DS) beamforming, which is also called conventional beamforming. 

The DS beamforming adds the signals with delay compensation but it is not effective 

under reverberant environment and requires a large amount of array elements for 

higher performance. 

The adaptive beamforming was originally proposed by Griffiths [6]. This 

beamforming algorithm is an unconstrained minimum mean square error (MMSE) 

method. After that, the concept of constrained beamforming was proposed in several 

research works. The most famous one is the constrained least mean square (LMS) 

algorithm derived by Frost [7]. The performance of speech enhancement is greatly 

influenced by the mismatch of microphones. Cox, H et al. [1] proposed a robust 

adaptive filter to avoid the problem of mismatch. Griffiths and Jim reconsidered 

Frost’s algorithm and proposed the generalized sidelobe canceler (GSC) [8]. GSC 

comprises of three parts. The first part is a fixed beamformer, the second one is a 

blocking matrix and the third one is an adaptive noise canceller. The architecture of 

GSC satisfies the criterion of LCMV. To cope with wide-band signals, Nordholm et al. 

[9] proposed the wide-band Wiener solutions under the Griffiths-Jim beamformer 

architecture. Speech enhancement methods in a reverberant room using GSC are 

suggested by some authors. Hoshuyama et al. [3] proposed an adaptive beamformer 
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similar to the architecture of GSC with a modified blocking matrix to work adaptively.  

To deal with the nonstationary signal, Gannot et al. proposed generalized sidelobe 

canceler (GSC) with nonstationary desired source using relative transfer function (RTF) 

[11]. The RTF could be used to describe the relative transfer function of room impulse 

response (RIR) between microphones. The purpose of using RTF on GSC is to let the 

blocking matrix blocks the nonstationary signal. Reuven et al. [10] proposed dual 

source transfer function GSC (DTF-GSC), which would eliminate a single 

nonstationary interfering source. In [10], the fixed beamformer (FBF) and blocking 

matrix (BM) are modified to block the nonstationary signal. Therefore, the GSC would 

eliminate the residual stationary noise only. For the case with two or more interfering 

sources, the method cannot effectively eliminate all the interfering signals. 

The RTF based BM can be used to eliminate the nonstationary signal, that is, the 

BM is a nullformer of nonstationary sources. To enhance the desired signal, applying 

the nullformer to adaptive filter seems to be a feasible method. However, in practical 

environment, it’s difficult to know the number of emitting sources. The method to 

estimate BM by [10] for dual sources is inflexible. Therefore, it is necessary to 

generate nullformer on-line in order to eliminate the unknown number of interfering 

sources. 

Dahl et al. [2] proposed an adaptive filter using normalized least mean square 

(NLMS) criterion to perform indirect microphone calibration and minimize the speech 

distortion due to the channel effect (using pre-recorded speech signals). Chen et al. [11] 

proposed reference signal based frequency domain adaptive beamformer (RSAB) 

using NLMS. The required computational effort would be simplified in frequency 

domain. 

 



 

4 

 

1.3 Thesis Scope and Contribution 

The thesis focuses on eliminating multiple directional nonstationary signals using 

nullformer with adaptive filter. In comparison with beamformer, nullformer makes a 

null space to the interfering signal which could be used to eliminate the interfering 

sources. 

The scope of the thesis can be divided into two parts: 1. applying nullforming to 

the adaptive filter, 2. adaptive nullforming technique. The fixed nullformer constructs 

the null space to the interfering sources before executing the adaptive filter for target 

speech enhancement. In this case, the interfering sources are assumed unchanged 

during the adaptation. The adaptive nullformer updates the nullspace in a period to 

trace the change of interfering sources and corresponding nullspace. 

Nullformer is applied to two different adaptive filters in the thesis; they are 

reference signal based adaptive beamformer (RSAB) and generalized sidelobe 

canceler (GSC). RSAB uses normalized least mean square (NLMS) to find the 

weighting of filter. The FBF and BM should be modified to satisfy the architecture 

when the nullformer is applied to GSC. 

For the fixed nullformer, The RTFs of interfering sources are used to find the null 

space by using singular value decomposition (SVD). For the adaptive nullformer, the 

RTFs from different directions are estimated before executing the enhancement 

procedure. These RTFs are used to find the subspace distance between previously 

known RTFs and estimated signal subspace in real-time. Therefore the existence of 

desired source in each frequency can be found and processed accordingly. 

The proposed adaptive nullformer on GSC is implemented and the experiment 

compares the performance between the proposed speech enhancement and 

conventional adaptive beamformer. 
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1.4 Outlines of Thesis 

The thesis can be divided into two parts: The adaptive filter with nullformer and 

adaptive nullforming algorithm. The topics of each chapter are described as follows. 

Chapter 2: The problems are formulated in this chapter. Then the reference signal 

based adaptive filter (RSAB) would be reviewed, including the 

architecture and mathematical descriptions 

Chapter 3: The linear constrained minimum variance (LCMV) problem would be 

described. The Frost algorithm would solve the problem. Finally the 

generalized sidelobe canceler (GSC) using relative transfer function 

would be derived based on Frost algorithm 

Chapter 4: Introducing differential microphone and finding null space of interfering 

signal using singular value decomposition (SVD). Then Appling fixed 

nullformer to RSAB and GSC 

Chapter 5: The variable nullforming algorithm using order recursive least square 

estimation (ORLS) and subspace distance. Then a voice activity 

detection method using the algorithm was proposed. Finally, the variable 

nullforming is applied to GSC to .  

Chapter 6: Experiment results shows the performance of RSAB, GSC, RSAB with 

nullforming and GSC with nullforming 

Chapter 7: Conclusion and future study 
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Chapter 2  

Reference Signal Based Adaptive Beamforming 

2.1 Introduction 

The time domain reference signal based adaptive beamforming (RSAB) was 

introduced by Dahl et al. [2]. The work in [11] proposed frequency domain RSAB, 

which optimize the performance at each frequency bin. From RSAB, filter weighting 

adjustment has two purposes: one is to minimize the interfering sources and noises 

another is to equalize the channel effect. The architecture of RSAB is discussed in the 

following section. 

2.2 Problem Formulation 

Consider an array with M sensors in a noisy reverberant environment receiving 

one nonstationary desired source and some stationary interfering signals. The received 

signal in time domain would be
 

( ) ( ) ( ) ( );    1,...,D D

m m mx n a n s n n n m M   
 

(2-1) 

where each symbol represents: 

   convolution operation 

( )mx n  signal received by mth sensor 

( )D

ma n  the transfer function (TF) between desired source and mth microphone 

( )Ds n  desired source 

( )mn n  the noise received by mth sensor. 
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The received signal is analyzed frame by frame in frequency domain so the short time 

Fourier transform (STFT) can be approximately written as 

( , ) ( , ) ( , ) ( , );     1,...,D D

m m mx k a k s k n k m M     
 

(2-2)
 

where   denotes frequency under kth frame. The approximation is justified for the 

FFT size be sufficiently large. Assuming that the environment does not change 

severely thus ( ) ( , )D D

m ma a k  . The vector formulation of the equation set (2-2) can 

be written as 

( , ) ( ) ( , ) ( , )D Dk s k k    x a n . (2-3) 

where 

 1 2( , ) ( , ) ( , ) ( , )
T

Mk x k x k x k   x
 

1 2( ) ( ) ( ) ( )
T

D D D D

Ma a a      a
 

 1 2( , ) ( , ) ( , ) ( , )
T

Mk n k n k n k   n
. 

 For the case with two or more interfering sources, the TFs of desired source and 

interfering sources are independent. Therefore the received signal in frequency domain 

with one desired source and N interfering sources from different directions can be 

formulated as 

1

( , ) ( ) ( , ) ( ) ( , ) ( , )

( ) ( , ) ( )

N
D D I I

i i

i

k s k s k k

k

     

  



  

 

a

A

a

s n

x n

 (2-4) 

Where 

1( ) ( ) ( ) ( )D I I

N      A a a a

 

1( , ) ( , ) ( , ) ( , )
T

D I I

Nk s k s k s k      s  

2     1,( ) 1 ( ( ) ,)I I
T

I

i Mi ia a i N    a
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is the vector form of TFs between interfering sources and microphone array and 

( , )I

is k   is the ith interfering source. 

2.3 Reference Signal Based Adaptive Filter 

RSAB requires prior information before executing the beamformer. The prior 

information is pre-recorded signals received by microphone array- 1( , ),..., ( , )Ms k s k   

and the reference signal- ( , )r k  . A set of pre-recorded speech signals are collected by 

placing a source on the desired position and letting the source emit for a short while 

under quiet environment. The pre-recorded signals provide a priori information 

between desired source and the microphone array. The reference signal could be the 

original source or original source received by another microphone in good quality. 

After collecting the pre-recorded signal and reference signal, the procedure of the 

RSAB is divided into two phases- training phase and filtering phase. Figure 2-1 shows 

the overall system architecture. 

1
M

)(nxM

VAD = 1

)(1 nx



Microphone 

Array 

VAD = 0



VAD

Training Phase

Filtering Phase

Beamformer

1( , )x k 





1( , )x k 

( , )Mx k 

Lower

Beamformer

Memory

Pre-recorded 

Speech Signal 

1( , )s k 

2 ( , )s k 

( , )Ms k 

Upper

Beamformer

Transfer New 

Trained Coefficients

( , )y k 

( , )k 

( , )r k 

1̂( , )x k 

-

Silent Stage

Speech Stage



2
ˆ ( , )x k 

ˆ ( , )Mx k 
Memory

Reference Signal

2 ( , )x k 



1( , )n k  2 ( , )n k  ( , )Mn k 

1( , )n k 

( , )Mn k 

( , )Mx k 

NLMS 

Adaptation 

Criterion

ˆ( , )y k 

 

Figure 2-1 Reference signal based adaptive beamformer 
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In the algorithm, the voice activity detection (VAD) is used to detect the activity 

of desired signal. When VAD shows that desired signal is inactive, the system started 

training phase using normalized least mean square (NLMS). For the training phase, the 

error signal at frequency   is written as 

 † ˆ( , ) ( , ) ( , ) ( , ) ( , )k r k k k k       w x s
 

(2-5)
 

where 

 1 2( , ) ( , ) ( , ) ( , )
T

Mk w k w k w k   w
 

 1 2
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

T

Mk x k x k x k   x
 

 1 2( , ) ( , ) ( , ) ( , )
T

Mk s k s k s k   s   

and 
†
 denotes complex conjugate transpose. ( , )k   is error signal. ( , )r k   is the 

pre-recorded reference signal. ( , )k w  is the filter weighting for adaption. ˆ( , )k x  

is the received signal from microphone array in training phase. And ( , )k s  is 

pre-recorded desire source. 

The purpose of RSAB is to minimize the mean square error between received signal 

and the desired signal. The mean square error is 

( , ) ( , )LMSJ k k   
. 

Then minimize the mean square error 

† †

min min ( , ) ( , )

ˆ ˆmin ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

LMSJ k k

r k l k k r k l k k

   

   







        

W W

W
w x w x

 

(2-6)

  

The optimal solution would be obtained by taking the derivative to previous equation 

to find a local minimum. But the optimal solution is not practical for implementation. 

Therefore, the adaptive solution is introduced. For adaptive solution, the weighting 



 

10 

 

( , )k w  is updated in the steepest direction thus 

( 1, ) ( , ) LMSJ
k k  

 
     

w w
w . 

(2-7) 

From (2-6) and (2-7) , using NLMS algorithm to achieve a stable solution in each 

frequency. Therefore, the filter weighting update procedure is 

†

ˆ( , ) ( , )
( 1, ) ( , )

ˆ ˆ( , ) ( , )

k k
k k

k k

  
  

  



  


x
w w

x x
. 

(2-8) 

When VAD detected that the received sound signal contains desired speech signal, the 

system switched to the filtering phase. The system starts to filter the received signal 

with w  trained in training phase so 

†( , ) ( ) ( , )y k k   w x . 

Where ( , )y k   denotes output signal, and ( , )k x  denotes received signals in 

filtering phase. The flow of the procedure is described in Figure 2-2. 

End ?

End

Yes

VAD = 0

VAD Result?
VAD = 1

 † ˆ( , ) ( , ) ( , ) ( , ) ( , )k r k k k k       w x s

†

ˆ( , ) ( , )
( 1, ) ( , )

ˆ ˆ( , ) ( , )

k k
k k

k k

  
  

  



  


x
w w

x x

†( , ) ( ) ( , )y k k   w x

No

Start

 

Figure 2-2 Flow of the reference signal based domain adaptive beamformer 
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Chapter 3  

Linear Constrained Minimum Variance Beamforming 

3.1 Introduction 

Frost [7] proposed a method to minimize the target signal power under constraint. 

Griffiths and Jim [8] reconsidered the Frost’s algorithm and obtained generalized 

sidelobe canceler (GSC). GSC is widely used to cope with interference signal. Gannot 

et al. [4] applied relative transfer function (RTF) to GSC to enhance the performance 

when there’s a nonstationary desired source in a reverberant room. In this chapter the 

Frost algorithm is introduced and then RTF GSC. 

3.2 Frequency Domain Frost Algorithm 

3.2.1 Optimal Solution 

Starting from the same problem formulated in section 2.2. The purpose is to find a 

set of weighting that filter the received signal and obtain the original desired source. 

The filter weighting in vector form is 

 1 2( , ) ( , ) ( , ) ( , )
T

Mk w k w k w k   w
. 

The set of filter weighting can be used to filter the received signal so the output would 

be 

†

† †

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ).s n

y k k k

k k s k k k

y k y k

  

    

 



 



w x

w a w n

 

(2-1)

 

Where ( , )y k   denotes output signal, ( , )sy k   denotes signal part of filtered signal 
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and ( , )ny k   denotes interfering part of filtered signal. The output power would be 

   † †

†

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

E y k y k E k k k k

k k k

     

  

 

 
xx

w x x w

w w  

(2-2) 

where ( , )k 
xx  denotes power spectral density of input signal. The goal is to 

minimize output power. If there’s no constraint for the problem, the trivial solution 

would be zero. Therefore, a constraint is set as 

†( , ) ( , ) ( ) ( , )

( , ) ( , )

D

sy k k s k

f k s k

   

 





w a

 

(2-3)

 

where ( , )f k   is a prescribed filter, usually let it a delay. Therefore, the linear 

constrained minimum variance (LCMV) problem can be formulated as:  

 † †min ( , ) ( , ) ( , )  subject to ( , ) ( ) ( , )k k k k f k      
xx

w
w w w a

 
(2-4)

 

Using complex Lagrange multipliers to solve the problem 

†

†

†

( ) ( , ) ( , ) ( , )

( , ) ( ) ( , )

( ) ( , ) ( , )

k k k

k c k

k c k

  

   

   





 

   

   

xx
w w w

w a

a w  

where   is the Lagrange multiplier. Set the derivative of ( )w  with respect to w  

to be zero yields 

( )
( , ) ( , ) ( ) 0k k   


   


xx

w
w a

w  
(2-5)

 

By (2-3) and (2-5) , the optimal solution of LCMV problem would be 

1
† 1 1( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )k k k f k      


     xx xx

w a a a
 

(2-6)
 

3.2.2 Adaptive Solution 

The constrained form of the optimal solution is impractical in the real world. It’s 

difficult to find the room impulse response by using system identification method. This 

constrained form can’t tract changes in the environment [4]. So by Frost [7], the 
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adaptive form was introduced, which would be more useful in practical environment. 

Consider the steepest descent adaptive algorithm:  

 

( )
( 1, ) ( , )

( , ) ( , ) ( , ) ( ) .

L
k k

k k k

  

     


  



   xx

w
w w

w

w w a
 

(2-7) 

Imposing the constraint on ( 1, )k w . Then 

†

† † †

( ) ( ) ( 1, )

( ) ( , ) ( ) ( , ) ( , ) ( ) ( )

D

D D D D

f k

k k k

  

         

 

   xx

a w

a w a w a a . 

Solving the Lagrange multiplier yields 

( 1, ) ( ) ( , ) ( ) ( , ) ( , ) ( )k k k k           
xx

w P w P w f
 

(2-8)
 

Where 

†
†

2

( ) ( )
( ) ( ( ))

( )

D D
D

D

 
 


  

a a
P I a

a
 

(2-9)

 

†

2

( )
( ) ( ) ( ( ))

( )

D
D

D
f


  


 

a
f a

a
 

(2-10)

 

( )P  is the projection matrix that project vector to the null space of †( )D a . And 

†( ( ))D a  represents the null space of †( )D a . ( )f  is the range space of †( )D a  

and  †( )D a  represents the range space of †( )D a . From (2-2), replacing 

( , )k 
xx  by  †( , ) ( , )E k k x x  and rearrange (2-7), the adaptive Frost algorithm 

would be 

( 1, ) ( ) ( , ) ( , ) ( , ) ( )k k k y k           w P w x f  (2-11) 

 



 

14 

 

3.3 Generalized Sidelobe Canceler 

From the frost algorithm, the filter weighting could be separated into two parts; 

the first part is the range space of ( )D a  and the second part is the null space of 

( )D a . Hence 

FBF ANC( , ) ( , ) ( , )k k k   w w w
 

(2-12)
 

where  

†

FBF( , ) ( ( ))Dk  w a  
and †

ANC( , ) ( ( ))Dk   w a  

comparing the filter weighting with adaptive Frost algorithm, let 

FBF 2

( )
( , ) ( ) ( )

( )

D

D
k f


  


 

a
w f

a
 

(2-13)

 

and 

ANC( , ) ( ) ( , )k k  w P g . (2-14) 

From (2-12), (2-13) and (2-14),the output signal would be 

†

† †

FBF NC

† † †

FBF ANC

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( ) ( , ) ( , ) ( ) ( , )

( , ) ( , )

y k k k

k k k k

k k k

y k y k

  

   

    

 



 

 



w x

w x w x

f x g P x
 

(2-15) 

The architecture of GSC could be separated into three parts, fixed beamformer (FBF), 

blocking matrix (BM) and adaptive noise canceler (ANC). The purpose of FBF is to 

obtain the signal that contains the desired source and a stationary noise. The BM 

blocks the desired source to extract the stationary noise. Then the ANC uses 

multichannel wiener filter to estimate the noise of FBF and cancel the noise. Figure 

3-1 shows the entire architecture of GSC. Detail discussion on each element in the 

architecture is given as follows. 
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Fixed 

Beamforber

Blocking Matrix Adaptive Noise 

Canceler

†

FBFw

†( )P
†( , )k g

+
FBF ( , )y k 

NC ( , )y k 

( , )y k 
+

-

․
․
․

․
․
․

․
․
․

1( , )x k 

2 ( , )x k 

( , )Mx k 

1( , )Mu k 

1( , )u k 

2 ( , )u k 

 

Figure 3-1 Generalized sidelobe canceler 

1. Fixed Beamformer (FBF): 

From (2-15), the output of FBF is 

†

FBF

†

2

†

2

( , ) ( ) ( , )

( )
( ) ( ) ( , ) ( , )

( )

( ) ( , )
( ) ( , ) ( )

( )

D
D

D

D

D

y k k

f s k k

k
f s k f

  


   



 
  





 



   

 

f x

a
a n

a

a n

a
. 

(2-16)

 

Because ( )f   is just a simple delay, the output of FBF contains undistorted desired 

source and noise. This is an optimal solution where the desired source is just a simple 

delay from output of FBF. The issue of the optimal solution is that the actual TFs are 

difficult to find so Gannot et al. applied relative transfer function (RTF) to GSC to 

approach the suboptimal solution [4]. The RTF is easy to obtained by system 



 

16 

 

identification method proposed by [12]. RTF is the ratio of RIR between two 

microphones. Let the first microphone be the reference microphone then the RTF is 

 
1

( )
,     1, ,

( )

m

m

D

D

D

a
h k m M

a





  . (2-17) 

Take the vector form 

   
1

1

( )

)
1

(

T
D D

M D

D
T

D h h
a


 


   

a
h

 

If the actual TFs in (2-13) are replaced by RTFs, the FBF would be 

FBF 2

( )
( , ) ( )

( )

D

D
k f


 




h
w

h . 

(2-18)

 

By (2-15) and (2-18) ,the output of FBF would be 

FBF

†

1

FBF

†

2

†

2

( , ) ( ) ( , )

( )
( ) ( ) ( , )

(

( , )
( )

( ) ( , )
( ) ( , ) ( )

( )
)

D
D

D

D

D

y k k

f s k

a

k

k
f s k f

  


   



 
  






 



   

 

w x

h
a n

h

a n

a
 

(2-19)

 

Therefore, a suboptimal solution is obtained with signal distorted by the transfer 

function of desired source to the first microphone.

 
2. Blocking Matrix(BM): 

The BM using RTFs could properly block the desired signal. Therefore, the 

columns of BM are the bases of desired signal null space. Therefore, considering the 

following matrix 
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32

1 1 1

1 0

( )( ) ( )

( ) ( ) ( )

0
( )

0 1 0

0 0 1

M
aa a

a a a



 

  

 





  
  
 
 
 
 

  
 
 
 
  

P

. 

Then the output of BM is 

1

1

1

1

1 1

1

( , ) ( , ) ( , )

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( )                                   

( )

( )

( )

 1, , 1.

( )

( )
=

( )

m

m

m

m m

D D D

D

D

D

D

m m

m

D

D

D

u k x k x k

a s k n a

a

a

a

a
s k n

n
a

a
n m M

  

     
















 

   

 

 





 

(2-20)

 

Therefore, output of BM would be the noise only signal.

 
From the criterion of GSC, the output of blocking matrix should be independent of k 

because the noise is assumed stationary. But in practical, the BM cannot block the 

entire desired signal. Thus the output of BM would be changed under nonstationary 

source. Thus the vector form of output from BM is 

 

†

†

†

( , ) ( ) ( , )

( ) ( ) ( , ) ( , )

( ) ( , ).

k k

s k k

k

  

   

 



 



u P x

P a n

P n  

(2-21) 

3. Adaptive noise canceler (ANC): 

The output of ANC would be noise only signal because †( )P  is the null space 

of desired signal. Thus by (2-15) and (2-21), the output of ANC is 

 

†

ANC

† †

† †

† †

( , ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( ) ( ) ( , ) ( , )

( , ) ( ) ( , )

y k k k

k k

k s k k

k k

  

  

    

  





 



g u

g P x

g P a n

g P n  

(2-22) 

Recalling (2-4), the purpose is to minimize the output power so minimize 
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 
2

†

FBF( , ) ( , ) ( , )E y k k k  g u
 

Then the multichannel Wiener filter would be 

1( , ) ( , ) ( , )yk k k   
uu u

g  
(2-23)

 

where 

 †( , ) ( , ) ( , )k E k k   uu u u
 

 FBF( , ) ( , ) ( , ) .y k E k y k   u u
 

To track the change of environment and achieve a stable solution, Gannot et al. use 

NLMS algorithm to recursively update the weighting of ANC [4], thus the weighting 

of ANC would be 

( , ) ( , )
( 1, ) ( , )     1, , 1

( , )

m
m m

est

u k y k
g k g k m M

P k

 
  





     . (2-24) 

By [4], let 

 
2

( , ) ( 1, ) 1 ( , )est est

m

P k P k x k        
 

(2-25) 

where   is a forgetting factor. ( , )estP k   can be †( , ) ( , )k k u u , which also 

normalize the power and make the recursion more stable.
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Chapter 4  

Nullforming 

4.1 Introduction 

In this chapter, several methods are introduced to achieve nullforming and the 

associated algorithms are explained for the adaptive filters to enhance the desired 

source. 

4.2 Differential Microphone 

Delay and sum beamformer is commonly used under both the far field and free 

field assumptions. The method enhances the signal from desired direction 

-
sin T

c

d
j

v
e


   
 

( , )y k 
θ

( , )s k 
1( , )x k 

2 ( , )x k 

d

 

Figure 4-1 Differential microphone 

Elko et al. [13] proposed differential microphone to reduce the signal from target 

direction. Figure 4-1 shows the architecture of differential microphone. The method 

makes a nullforming using two microphones subtraction with delay compensation. The 

signal is assumed a far field plain wave and the microphones are perfectly matched 

thus the output of differential microphone pairs can be written as,  



 

20 

 

sin

DM 1 2

sin sin

1
( , ) ( , ) ( , )

2

1
( , )

2

T

c

T

c c c

d
j

v

d drj j j r
v v v

y k x k e x k

e e e s k




   

  



   
 

             
     

 
  

 

 
  

   

(3-1)

 

where 
DM ( , )y k   is the output of differential microphone pairs, ( , )s k   is the 

source, d is the distance between two microphones, r is the distance between source 

and microphones, 
cv  is the speed of sound, θ is the direction of source, θ is the target 

direction of differential microphone, 
1( , )x k   and 

2( , )x k   are signals received by 

microphones. Rearrange the formula, the magnitude of output would be 

 

 

sin

1 2

sin sin

1
( , ) ( , ) ( , )

2

1
1 ( , )

2

sin sin sin ( , )
2

T

c

T

cc

d
j

v

DM

d
r jj vv

T

c

y k x k e x k

e e s k

d
s k

v




 


  




  

   
 

      
   

 

 

 
  

   

(3-2)

 

Figure 4-2 shows the beam patterns of differential microphone plotted by using 

equation (3-2). The beam patterns are plotted under different distance of microphones 

by letting the magnitude of source be 1, the speed of sound be 343 m/s and the target 

direction be       .  

The differential microphone works like high pass filter so differential microphone 

would enhance the noises in high frequencies. Different distance of microphones 

would affect the ability to deal with different frequency band. For the short distance 

differential microphone, lower band of frequencies would be eliminated from almost 

every direction. 
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Figure 4-2 Beam pattern of differential microphone with d=0.12 m (left) and d=0.24 m (right) 

4.3 Nullforming Using Null Space of Interfering Signal 

Previous section shows a nullformer for one interfering source. There may be two 

or more interfering sources in practical environment. The thesis uses singular value 

decomposition (SVD) to find the null space of the entire interfering signal. Assume 

there are N interfering sources in the environment and we have the RTFs of them as 

described by (2-17) in chapter 3. The RTFs of interfering sources are 

2

1

( ) 1 ( ) (
( )

    1, ,
( )

)
T

IT
I I i
i iM I

i

I

i h h i N
a

  



   h

a

 

and take the complex conjugate of these RTFs in matrix form  

1 2( ) ( ) ( ) ( )I I I I

N        H h h h
 

which are the bases of interfering signal subspace. Then applying singular value 

decomposition (SVD) to ( )I H  

†( ) ( ) ( ) ( )I    H U S V  (3-3) 

Where 

 1 2( ) ( ) ( )         ) (M   U u u u
 

are the eigenvectors of †( ) ( ) H H  
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 1 2( ) ( ) ( )         ( )N   V v v v
 

are the eigenvectors of †( ) ( )I I H H  
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 
 
 

S

 

are the singular values. These singular values are eigenvalues of †( ) ( )I I H H  and 

†( ) ( )I I H H . From [14], the zero eigenvectors of †( ) ( )I I H H  corresponds to the 

zero singular values 

( ) ( )0,     0    1, ,i i i N M      v
. 

( )i u  corresponds to zero singular value for 1, ,i N M    thus 

†( ) ( ) ( ) (   0    1,) ,I

i i i i N M       H u v .
 

Therefore, ( )i u
 
are the null space bases of
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Where  0 0
T

0 is a zero vector. Therefore, 

 1 2( ) ( ) ( )   (   1, ,) I I I

i N i N M        u a a a
 

This null space is a fixed nullformer where 

 1 2( ) ( ) (        ) (   )FN N N M    U u u u
 

(3-4)
 

is an M input and N output filter. 

In the following section, the fixed nullformer would be applied to RSAB and GSC. 
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4.4 Reference Signal Based Adaptive Filter with Fixed Nullforming 

The nullformer could be used to block the interfering signals thus applying the 

nullformer to RSAB would eliminate the residual noise and reconstruct the desired 

source. Figure 4-3 shows the architecture of adaptive filter with nullformer. The effect 

of adaptive filter with nullformer could be considered as the convolution of room 

impulse response and impulse response of nullformer system.  

Room impulse response Nullformer Adaptive filter

 FN U A  ,k W
 ,s k   ,y k 

 n 

 ,x k   ,d k 

 

Figure 4-3 System of RSAB with fixed nullformer 

 For the case with multiple interfering sources described in (2-3).Let the 

multiplication of RIR and nullformer be a new room impulse 

†( ) ( ) ( )
FN

  R U A
 

(3-5)
 

and the new input of adaptive filter would be 

 
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†

† † †
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† †
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D D

k k

k

s k s k

s k

 

 





   

 

 







 
  






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
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d U x

U A ns

U a U a U n
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(3-6)

 

where 

 1 2( , ) ( , ) ( , ) ( , )
T

M Nk d k d k d k   d
 

(3-7)
 

is the output of nullformer. Therefore, the input of adaptive filter would be M-N 

channels.
 

The nullformr would cause a great distortion for it’s a high pass filter. Therefore, 

the reference signal of RSAB would be used to reconstruct the desired signal. In the 
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pre-recording procedure showed in Figure 4-4, the pre-recorded signals-

1( , ),..., ( , )M Ns k s k   
are received by the output of nullformer and the reference 

signal- ( , )r k   would be the desired signal with good quality. 

Nullforming Memory
Pre-recorded
Speech signal

․
․
․

1( , )x k 

2 ( , )x k 

( , )Mx k 

․
․
․

․
․
․

† ( )
FN
U

1( , )d k 

2 ( , )d k 

( , )M Nd k 

1( , )s k 

2 ( , )s k 

( , )M Ns k 

 

Figure 4-4 Pre-recording procedure of RSAB 

The procedures of training phase and filtering phase are the same as described in 

section 2.3. The only difference is that there’s a nullformer before the input of adaptive 

filter. Figure 4-5 shows the architecture of RSAB. 

Nullforming RSAB
․
․
․

1( , )x k 

2 ( , )x k 

( , )Mx k 

․
․
․

† ( )
FN
U

1( , )d k 

2 ( , )d k 

( , )M Nd k 

( , )y k †( )w

Desired signal

 

Figure 4-5 System architecture of RSAB 

4.5 Generalized Sidelobe Canceler with Fixed Nullforming 

Ordinary GSC does not work for the condition with nonstationary interfering 

signal in the environment. The existence of nonstationary signal does not satisfy the 
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criterion of GSC. The work in [10] proposed a dual-source transfer function GSC 

(DTF-GSC) method to eliminate a directional nonstationary source by modify the FBF 

and BM. DTF-GSC could block one nonstationary source. But when there are two or 

more interfering sources, DTF-GSC is not effective in blocking all these sources. 

There are some features when applying the nullformer to GSC. Figure 4-2 shows 

that the nullformer is a high pass filter. The high pass feature would cause the received 

signal a great distortion. Therefore, the fixed beamformer and blocking matrix must be 

modified to satisfy the architecture of GSC with nullformer. 

 From (3-5), the effect of nullforming is the multiplication of RIR and impulse 

response of nullformer. Multiply the nullformer weighting from (3-8) with desired 

signal RTF. Then the new RTF is 

†) ( )( )(
FN

Null D h U h
 

(3-9)
 

Where 

2 2

1 1 1

( ) ( ) ( )
( ) 1

( ) ( ) ( )

T
D D D

D

D D D

a a

a a a

  


  

 
  
  

a
h

 

is the desired signal RTF and 

1 2
( ) ( ) ( ) ( )

M N

T
Null Null Null Nullh h h   



   h
 

is the new RTF, which is the null space of interfering signals, from (3-4) 

† † † †

1 1( ) ( ) ( ) ( ) ( ) 0Null I D I

FN     h a h U a . 

Apply SVD to the new obtained RTF 

( ) ( ) ( ) ( )Null H   h  (3-10) 

Where 

 1 2( ) ( ) ( ) ( )
T

M N      
 

are the eigenvectors of †( ) ( )Null Null h h
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 


 
 
 

   

are the singular values. These singular values are eigenvalues of †( ) ( )Null Null h h  

and †( ) ( )Null Null h h . 

   1 2( ) ( ) ( )
T

M N      
 

are the eigenvectors of †( ) ( )Null Null h h . The zero singular values correspond to zero 

eigenvectors so 
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For 1( )  is an 1×1 vector, let 
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1 1
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

w

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(3-12)

 

And multiply the RTF †( )Null h  with ( )u w (3-13)
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(3-14)

 

Therefore, the new FBF would be obtained 

( ) ( ) ( )FNFB nNF   w wU
 

(3-15) 

 

By (3-14) (3-15), The output of FBF would be 
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(3-16) 

The FBF would block the interfering signal and make a beam to the desired signal. Let 

 2 2 1( ) ( ) ( ) ( )n M N    P   
.
 

The blocking matrix would be 

( ) ( ) ( )NBM FN n  P PU
 

(3-17)
 

Then the output of BM is 
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(3-18) 

where 

 1 2 1( , ) ( , ) ( , ) ( , )M Nk u k u k u k    u
 

Therefore, the BM can block the desired signal and interfering signal and obtain the 

stationary noise. The ANC can be used to eliminate the residual stationary noise. 

Recalling section 3.3, the ANC is the same one as described in (2-24). The architecture 

of GSC with nullforming is showed in Figure 4-6. 
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Figure 4-6 Generalized sidelobe canceler with nullforming 
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Chapter 5  

Variable Nullforming Adaptive Filter 

5.1 Introduction 

In previous chapters, several methods to approach nullforming are introduced. 

These nullforming methods are fixed so they are not able to track the interfering 

sources. For example, the weighting of nullformer was previously set to one desired 

direction so the nullformer works well when interfering sources emit in the exact 

direction. When there are new interfering sources from other direction or the original 

interfering source change the direction, these kinds of fixed nullformer are unable to 

block the interfering sources. 

In this chapter, a novel method to construct a variable nullformer is proposed. The 

nullforming algorithm could trace the change of sources. Then the algorithm applies 

the variable nullforming to generalized sidelobe canceler to obtain the reconstructed 

desired signal. 

5.2 Variable Nullforming 

5.2.1 Estimate Signal Subspace Using Order Recursive Least Square 

Starting from the estimation of RTF vector, the estimation of RTF vector is from 

the output of blocking matrix [4]. Blocking matrix contains the bases spanning the null 

space of RTF vector. When there’s only one sound source in action, rearranging the 

term (2-20) in chapter 3, the signal received from microphones are 

  1

1( , ) ( , ) (, , )mm mx k xh k k u k    . (4-1) 
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Assume that the statistics of desired signal is stationary in each frame and the RIR 

changes slowly in a short period. Considering the cross PSD of kth frame 

       
1 1 1 1

( ) 1 ( )Φ , , Φ , Φ ,     1, ,
m m

t t

x x m x x u xk h k k k t K     
 

(4-2)
 

where K is the number of frames for estimating RTFs. ( , ),     1,...,mn k m M   are 

assumed stationary, ( , )s k   and ( , )mu k 
 
are independent thus  

1
Φ ,

mu x k   is 

independent of the frame index k. [12] proposed a system identification method with 

nonstationary signal by applying least square (LS) estimation to the following equation 
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. (4-3) 

The RTFs are estimated when there’s only one source. When there is more than 

one source in the environment, the method could not describe the RTF properly. The 

work in [10] proposed a method to estimate the blocking matrix when there are two 

sources emitting simultaneously in the environment. When number of sources 

increases, the number of reference microphones increases. Increasing number of 

reference microphones would increase the number of nullforming directions. 

Considering N sources emitting simultaneously, the linear equation would become 
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An excessive number of reference microphones are not needed when there are not 

many sources in action. It’s difficult to know the number of active sources in each time 

so the signal subspace is estimated by order recursive least square estimation (ORLS). 

The method works by increasing the number of reference microphones when number 

of emitting sources grows. ORLS was originally used in line-fitting by increasing the 

order [15]. Rewrite (4-4) to the linear equation 

       , , , ,m

m

m i ik k k k   m eM 
 

(4-5)
 

Where 
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 ,m k m  is PSD from the mth microphone,  ,i k M  are the PSDs from the first 

to the (k-1)th microphone and 
m

k  is the mth entry of signal subspace under kth order. 

 ,m k e  is the estimation error. For k=1, The first entry of the estimator is

 
11 ,=Φ

m

m

u x k  . 

In each order, estimate the parameters by using LS estimation then the estimator would 

be 
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M M M m

 

(4-6)

 

To simplify the representation, the following derivation excludes the representation of 

parameters-  ,k  . The previous equation can be reformulated to recursive form by 
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[15]. The estimator ˆm

i  updated in the (i+1)th order is 
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where  
1

† †

i i i i i


  P I M M M M  is the projection matrix onto the subspace being 

orthogonal to that spanned by the columns of iM . The data under (i+1)th order is

 1 1i i i M M m . To enhance the efficiency, the inverse operation is formulated to 
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where  
1

†

i i i



T M M  and 
†

i i i i

  P I M TM  is the projection matrix. The least 

square error of mth microphone under ith order is 

   
†

, ˆ ˆ     , ,m i m m

LS m i i m i iJ m i M   m M m M 
 

the least square error could be updated by using the recursive form 

 
2

†

1 1, 1 ,

†

1 1

i i im i m i

LS LS

i i i

J J



 



 

 
m P m

m P m
. 

(4-9)

 

Figure 5-1 shows that the least square error shrinks gradually as the order of recursion 

increases. The recursion should be stopped when the error is less than a threshold. 

Stop ORLS when ,m i threshold

LS LSJ J  

Because the scale of least square error would depend on the present data, a robust 

stopping condition is set the threshold be the scale of the error from the first recursion. 

Stop ORLS when , ,1m i M

LS LSJ J  
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Figure 5-1 Effect of choosing time of iteration on least square error 

The incoming data from small-size microphone array are highly correlated thus 

†

i iM M  would become singular. The singularity would cause the estimation result 

being unstable. Tikhonov regularization [16], which is also called ridge regression is 

used to avoid the ill-condition. Tikhonov regularization reduces the singularity by 

imposing a penalty term, generally the penalty term is I . This method may result in 

a biased estimation but stabilize the estimator. The nonnegative complexity parameter 

  controls the amount of bias. Therefore, by the definition of Tikhonov regularization, 

the new form of linear equation in (4-6) becomes 

 
1

† †ˆm

i i i i m


 M M I M m
. 

(4-10)
 

Applying Tikhonov regularization to ORLS, the result is 
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Assume the order of the estimation is N+1, the estimated RTFs in mth microphone 

would be 

       
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   
 
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Rearranging the form to exclude  
1

Φ̂ ,
mu x k   and then the RTFs only vector would be 

obtained as 
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Take the matrix form 
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Because the number of microphones is limited, the number of estimated TFs in each 

basis reduces as the order increases. The matrix Ĥ  must be extended to make the 

length of bases being the same as the number of microphones. Therefore, 
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Where 
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are the estimated subspaces of present acting sources. 
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After the estimation, the number of estimated parameter shows the number of 

sources to describe the subspace under each frequency. The estimated bases are linear 

combination of subspaces from each source.

 
5.2.2 Estimate Subspace of Interfering Sources from Signal Subspace 

The goal is to find out the null space of interfering sources. Therefore, after 

estimating the signal subspace from ORLS, the desired signal subspace must be 

excluded from the estimated subspace. Assume the subspaces of sources from each 

direction are obtained, the similarity between estimated subspace and each previously 

known subspace can be estimated by evaluating subspace distance by using the 

definition in [17]. The definition of subspace distance is 

    †
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j j i j
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H b H b h b

h b
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(4-13)

 

   is the definition of subspace distance and  max  is the maximum dimension 

between two subspaces. The subspace distance measurement works like doing inner 

product. The work in [17] proves that the measurement has the following properties. 

1. Nonnegativity:     , 0,  and , 0    if and only if U V U V U V    

2. Symmetry:     , ,U V V U  

3. Upper boundness:    , max ,U V U V , and    , max ,U V U V   if 

and only if U V . That is, all bases in U are orthogonal to bases in V. 

And    1 , ,1 j

Mj

j
T

b k b k    b
 
is the previously estimated RTFs in P 

directions. Figure 5-2 shows the subspace distance of desired source and undesired 

source. 
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Figure 5-2 Subspace distance of desired signal (left) and interfering signal (right) 

There are P previously estimated subspaces so P values of subspace distance 

would be obtained. Then by sorting these values and choose the least N RTF vectors 

   
1 2 1    , , 1, ,

Nj j j Nj j P   B b b b
 

Rearrange the index of these N vectors to 1,…,N 

 1 2 NB b b b
 

(4-14) 

where the columns of B  are the most probably bases of present sources. These bases 

are linear combination of N RTF vectors. Rearranging the index 1, , Nj j  to 1, , N , 

each estimated basis is 

1

;    1,...,
N

i

i j j

j

c i N


 h b , (4-15) 

where i

jc  is the coefficient of each RTF vector. Assume the RTF of desired source is 

the dth vector in B . Then eliminating the component of desired signal yields 
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(4-16)

 

where I is a P by P identity matrix and
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Take the matrix form of ˆ
io
 

 
1

† † †ˆ   
  

O I Bee B B B H
 

Where 

1 2
ˆ ˆ ˆ ˆ

N  O o o o . 

The bases may contain dependent basis thus the orthogonal triangular decomposition 

(QRD) is used to exclude the dependent basis. So 

ˆ OE QR  (4-17) 

where Q  is a unitary matrix, R  is a upper triangular matrix and E  is a 

permutation matrix. The permutation matrix is used to make the diagonal terms of 

upper triangular matrix decreasing. The dependent bases correspond to the zero 

diagonal terms. Therefore, let 

ˆO OE  (4-18) 

1 2 D
 
 

O o o o  

Where D is the number of independent bases and O  contains the independent bases 

of interfering signal subspace. 
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Figure 5-3 Relation of desired signal subspace and interfering signal subspace 
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For the accurate estimation of signal subspace, order recursive least square 

estimation needs a number of data. The alogorithm repeats the procedures to update 

the nullformer. When the nonstationary signal changes rapidly, the update frequency 

would be raised. Figure 5-4 shows update procedure of proposed algorithm. Assume 

the algorithm uses K frames to estimate the procedure of collecting data. The uptade 

procedure would be stopped when the number of collected data is K. 

End ?

End

Yes

Yes

Data number = K ?
No

Collecting data and 

estimate PSD by (5-4)

Apply ORLS to PSD 

of incoming data using 

(5-6)-(5-12)

Finding interference 

Subspace using 

(5-13)-(5-18)

No

Start

Data number ++

Data number = 1

Updating nullformer

 

Figure 5-4 The updating flow of variable nullforming 
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The subspace of interfering signals could be used to find the null space of 

interfering sources. The null space of interfering signals can be found by using SVD as 

described in section 4.3, 

       1 2           VAR D D M       U u u u
 

(4-19)
 

where  VAR U  is the null space of interfering signal subspace. That is 

   † † †

1 2( ) ( ) ( )I I I

VAR N   U a a a
. 

5.2.3 Directional Voice Activity Detection 

In this section, a voice activity detection (VAD) method using the algorithm 

described above is proposed. Most of the VAD algorithms estimate input power to 

decide whether the desired source is in action. When there are new interfering sources 

from other directions with a similar magnitude of power comparing with the desired 

source, conventional VAD cannot distinguish this new source. The equation (4-15) 

shows that each frequency bin may contain the desired signal component. Therefore, 

the statistics of desired signal existence in each segment are compiled to decide the 

existence of desired signal. From Figure 5-2, the subspace distances in lower band are 

of no difference between desired source and interfering source thus choosing part band 

of the frequencies to compile the statistics would be proper. 

Figure 5-5 shows the statistics of the target source. In Figure 5-5, the desired 

source and interfering signal overlap during 5 sec to 9 sec. The values of statistics 

between 5 sec to 9 sec are less than the desired signal-only period. When the number 

of sources increase, the threshold should be set lower to assure the accuracy of voice 

activity detection. 
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Figure 5-5 (a) The target source (b) Interfering source (c) Received signal (d) desired source statistics 

The VAD method could be used to attain more accurate interfering signal 

subspace. In each frequency, the subspace distance may shows that the the desired 

signal is inactive in such frequency. But actually, the desired source is active. 

Therefore, the VAD could be used to show that whether the desired signal is active. 

The statistics would show if the estimated subspace contains the desired signal in such 

frequency bin. The VAD would decide whether the estimated subspace should be 

formulated to (4-16). If VAD shows the desired source is active, the component of 

desired signal should be excluded from the estimated subspace by (4-16). 
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5.3 Generalized Sidelobe Canceler with Variable Nullforming 

The variable nullforming could be applied on GSC to eliminate the nonstationary 

interfering signal. The interfering signal subspace is obtained from the algorithm 

described in previous section. Therefore, the fixed beamformer and blocking matrix 

could be found by the same method described in section 4.5. Because the nullspace of 

present emitting signal is obtained, the method to find blocking matrix is simplified. 

From (4-12), the estimated subspace H  contains the subspace of present 

emitting signal so the nullspace of estimated subspace would block all present sources. 

Therefore, the blocking matrix would be the nullspace of †
H , that is, 

          † † † †

BM 1 2VAR

D I I I

N    P a a a a , 

where  BMVAR
P  is the blocking matrix. 

 The fixed beamformer would block the interfering sources therefore applying the 

nullspace of interfering signal to GSC by the method described by (3-9)-(3-15) in 

section 4.5 then the fixed beamformer would be obtained. The fixed beamformer is 

v( ) ( ) ( )
VAR VABF RF    Uw w

 

Where  v w
 
is the weighting estimated by (3-12) 

In Figure 5-4, every time the variable nullformer algorithm updates the FBF and 

BM, the ANC would be reset to initial value and then restart the adaption. Recalling 

(2-24), the ANC is same as the one in GSC. 
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Chapter 6  

Experimental Result 

6.1 Experimental Environment and Test Scenario 

The proposed algorithm was tested by using the data recorded in a real 

environment with a uniform linear microphone array of eight un-calibrated 

microphones. The distance between each microphone is 6 cm. The size of the room is 

5m × 4 m × 3 m and the microphone array was placed on a table at a distance of 0.5 m 

from the wall. The arrangement of microphone array and sound sources is showed in 

Figure 6-1. 

6 cm 6 cm 6 cm 6 cm

P3

1 m

60∘

6 cm 6 cm 6 cm

-60∘

mic1mic8 mic7 mic6 mic5 mic4 mic3 mic2

P2

1 m

1 m

P1

0∘

Babble noise

1 m

-45∘

 

Figure 6-1 The location of microphone array and sources 
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The desired speech signal is located at 0° consists of sentences spoken by male. 

Two nonstationary interfering sources are located at 60° and -60°, one male voice from 

60° and one frmale voice from -60°. One babble noise is located at -45°. The distance 

between these sources and the middle of microphone array is 1m. The training data 

from 7 directions are babble noise or sentences spoken by male and female, and the 

locations of these training sources are described in Table 1. 

 

Degree -60° -45° -30° 0° 30° 45° 60° 

Type Female1 Babble Female1 Male1 Male2 Female2 Male2 

Table 1 Sources for training data 

The sound sources are recorded independently for the purpose of estimating the 

segmental noise level (segNL) and log spectrum distortion (LSD). The data for testing 

purification is obtained by combining these sources with different time shifting. The 

testing data for estimating the performance of beamforming methods can be separated 

into five different scenarios for different time intervals. These five test scenarios are 

depicted in Table 2. The waveform and frequency spectrum of original desired source, 

interfering sources and noise are showed in Figure 6-2. 

 

Scenario Time(Sec) Source Interference Stationary 

C1 0~20 P1 None -45° 

C2 20~40 P1 P2 -   ° 

C3 40~60 P1 P2P3 -45° 

C4 60~80 None P2P3 -45° 

C5 80~100 None P3 -45° 

Table 2 Test scenario 
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(a)Desired signal P1 

 

(b)Interfering signal P1 
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(c)Interfering signal P2 

 

 (d)Babble noise 

Figure 6-2 Frequency spectrum and waveform of sound sources 
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6.2 Experimental Results of GSC with Variable Nullforming 

Before executing the variable nullforming algorithm, there are some parameters to 

be set. These parameters are described in Table 3. Figure 6-3 shows the comparison of 

received noisy signal and the signal enhanced by GSC with variable nullforming. 

Table 3 The parameters used for GSC with variable nullforming 

 

 

 

 

 

Parameter Descrition Value 

fs Sampling rate 8000 Hz 

NFFT FFT size 512 taps 

FFTOVLP The overlap size of FFT 256 taps 

LRTF The training length of RTFs 20 frames 

LSEG The length for estimating signal subspace 10 frames 

TSEG Period of weighting update 2 sec 

η The ratio of least square error threshold for 

stopping ORLS 

0.7 

λ The factor of Tikhonov regularization 10
10

 

TVAD The frequency band for VAD Statistics 1000 Hz~3000 Hz 

THVAD VAD threshold 50 

μ The NLMS step size 0.05 
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(a)Received signal from first microphone 

 

 (b)Purified signal by GSC with variable nullformer 

Figure 6-3 Frequency spectrum and waveform of received signal and purified signal 
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6.3 Performance Estimation 

The performance of adaptive filter would be affected by the existence of desired 

source. Therefore, the performance estimation would be tested under noncausal fixed 

beamformer. The adaptive filter would approach it’s best performance after a while so 

the experiment copy the weighting of adaptive beamformer to fixed beamformer when 

the adaptive filter attach it’s best performance in each scenario. Then the weightings of 

beamformer are used to filter the signal under such scenario. Figure 6-4 shows the test 

procedure of the experiment. 

( , )y k 
Adaptive 

Beamforber

Fixed 

Beamformer
( , )iy k 

․
․
․

․
․
․

1( , )x k 

2 ( , )x k 

( , )Mx k 

Copy coefficients

 

Figure 6-4 Test procedure for evaluating the performance 

 For the experiment, six speech enhancement methods are used for comparison. 

These methods are RSAB, GSC, RSAB with nullforming (NRSAB), GSC with one 

fixed nullforming to P2 (NGSC1), GSC with two fixed nullforming (NGSC2) and 

GSC with variable nullforming (VNGSC).  
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For RSAB, the weightings of beamformer are trained when P2 and P3 are 

emitting simultaneously in training phase. The training length is 40 frames. The 

experiment does not apply VAD to the RSAB method. Therefore, the beamformer is 

fixed in filtering phase. The NRSAB method pre-trained the interfering sources 

independently to obtain the RTFs of these interfering sources. Then use these RTFs to 

generate the null space of interfering sources. The test method of NRSAB is the same 

as used in RSAB. 

The RTF of desired source is obtained for the GSC method. For NGSC1, the 

nullformer is the null space of P2 only; while for NGSC2, the nullformer is the null 

space of P2 and P3. Two different methods for the performance index are performed as 

follows. 

1. Segmental noise level (segNL): 

One quality measure for evaluating the performance of noise reduction is 

segmental noise level, which is defined as follows 

 2

10

1 1

1
ˆ  (dB) 10log

L N

l n

Seg NL n n lN
L  

  
   

  
 

. 

(5-1) 

 SegNL evaluates the noise-only signal so the desired source must be segmented 

from the data and leaving the noise-only signal for testing. After filtering the 

noise-only signal, the output of the beamformer would be the reduced noise signal. 

The reduced noise signal is used to evaluate the segmental noise level. 

The comparison of segmental noise level between different methods is 

summarized in Table 4. Channel 1 is the original interfering sources received from 

channel 1. Condition-C2 contains one desired source-P1 and one interfering source-P2. 

NGSC1 blocks the first interfering source P1 only so the nullity of NGSC1 would be 

larger than NGSC2. Comparing the noise level under condition C2, NGSC1 performs 

better than NGSC2. There’s only one interfering source-P1 in the environment. 
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Therefore, the larger nullity would make the spatial filter sharper. 

For condition C3, there are two interfering sources-P2 P3, one desired source- P1 

and one ststionary noise in the environment. NGSC2 would perform better under such 

condition because the nullformer of NGSC2 has initially blocked two interfering 

sources from two directions. The nullformer of NGSC1 does not block another 

interfering source P3. Because the nullspace interfering sources is estimated and 

updated real-timely, VNGSC performs better than NGSC1 but worse than NGSC2 

under C3. 

There are two interfering sources and one ststionary noise under condition C4; 

one interfering source and one ststionary noise under condition C5. NGSC2 performs 

better than NGSC1 cause the interfering signal- P3 is blocked by the nullformer of 

NGSC2. Because the nullformer would enhance the signal from directions other than 

the desired direction, NGSC1 performs even worse than GSC under C5. The VNGSC 

performs better than NGSC1 and NGSC2 when there’s no desired source. 

NRSAB performs best under every condition because the existence of interfering 

sources is already known and the weightings of beamformer are well trained. 

  C1 C2 C3 C4 C5 

Channel 1  78.1432 80.8256 83.0169 83.9901 83.9080 

RSAB  70.0936 75.9180 79.0773 79.0442 76.4045 

GSC  72.6745 80.1337 81.9863 80.5743 77.1528 

NRSAB  69.9616 75.2822 77.6048 77.5365 74.2547 

NGSC1  72.8694 79.4318 81.6690 80.3390 77.7297 

NGSC2  73.8355 79.4956 80.0839 79.1322 74.9946 

VNGSC  75.4000 79.4519 80.5347 78.4874 74.8816 

Table 4 Segmental noise level of different speech enhancement methods 
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2. Log spectrum distortion (LSD) 

The performance of noise reduction and distortion is a trade-off of a beamformer. 

The better noise reduction performance may cause more distortion. Therefore, another 

quality measure for evaluating the performance of distortion is log-spectral distortion, 

which is defined as 

   

1
2

21 2

10 10

0 02

1 1 ˆ log , log ,
1

K
L

K
l k

LSD S k l S k l
L



 

          
 

 

(5-2) 

where 

    2

, max , ,S k l S k l    

is used to confine the log-spectrum dynamic rang about 50 dB i.e. 

  250 10

,
10 max ,

k l
S k l 

. 

  The LSD compares the original desired signal with the enhanced signal. LSD of 

different methods are evaluated by using the original desired source recorded by 

microphone one and the enhanced signal by each method. The condition C4 and C5 

are noise-only cases so the first three conditions are compared. 

The comparison of LSD between different methods is summarized in Table 5. For 

C1, the environment exists desired source and a ststionary noise. The recorded desired 

source contains background noise and the signal enhancement methods would 

eliminate the noise. Therefore, the LSD of the enhancement method may be worse 

than the original received signal under highly SNR condition. Because GSC with 

nullformer eliminates more interfering signal, the LSD of NGSC1, NGSC2 and 

VNGSC are worse than GSC under C1.NGSC1 performs better than NGSC2 under C2, 

while NGSC2 performs better in C3. The VNGSC performs better than NGSC2 under 

C2 but worse in C3, which shows that the nullforming algorithm would be change 

according to the present acting interfering sources. 
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  C1 C2 C3 

Channel1  0.3347 0.6301 0.7425 

RSAB  0.4328 0.5522 0.5323 

GSC  0.3782 0.5938 0.5781 

NRSAB  0.3994 0.5173 0.5193 

NGSC1  0.4019 0.5761 0.5780 

NGSC2  0.4697 0.5965 0.5524 

VNGSC1  0.4141 0.5731 0.5934 

Table 5 Log spectrum distortion of different methods 
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Chapter 7  

Conclusion and Future Study 

The proposed variable nullforming algorithm would be used to eliminate the 

nonstationary interfering signal. The algorithm uses order recursive least square to 

approach the signal subspace. Because the existence of sources from different 

directions is unknown, the subspace distance would be used to find the similarity of 

present estimated subspace and pre-estimated subspace from different directions. 

The subspace distance would be used to find the existence of emitting sources. 

Therefore, the algorithm could be used on multiple sources localization. Assume the 

RTFs from each direction are obtained, the statistics of subspace distance in each 

frequency bin would show the existence of sources. 

The nullforming algorithm could be used as directional VAD. In the thesis, the 

threshold of VAD is not discussed. Figure 5-5 shows that the statistics of VAD would 

be affected by the number of sources. Therefore, a method for finding the entropy of 

received signal could be used on the factor of threshold. 

There are several areas for improvement. The variable nullforming is updated 

from the past received data so if the existence of desired signal changed severely, the 

nullformer would make a distortion to the desired signal. If a perfect VAD applied on 

the algorithm, the algorithm doesn’t need the previously estimated RTFs. The VAD 

could tell whether the desired source is in action alone or not in action. The interfering 

signal subspace would be updated when desired source is inactive and update the RTF 

of desired source when desired source is in action only. 
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