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Multichannel Speech Enhancement

Using Relative Transfer Function Based Nullforming

Student :  Pei-Chi Tsai Advisor :  Prof. Jwu-Sheng Hu

Institute of Electrical and Control Engineering
National Chiao-Tung University

ABSTRACT

The thesis proposed a speech enhancement method for stationary and nonstationary
interfering sources. To effectively eliminate nonstationary intereferences is an important
research topic for speech enhancement. This thesis proposed an adaptive nullforming spatial
filter. The nullforming algorithm uses singular value decomposition (SVD) to find the null
space of interfering sources. Both fixed and adaptive nullforming algorithms are studied. The
adaptive nullforming uses order recursive least square estimation (ORLS) to find the subspace
of presently received signal. The algorithm assumes that the relative transfer functions (RTFs)
of sources from different direction can be obtained. The estimated subspaces from these
RTF’s contain the subspace of the desired signal. They are sorted according to the distance to
the subspace of source from every direction. Then the bases of desired signal subspace from
estimated subspace could be removed and a set of independent basis are derived using the
orthogonal triangular decomposition (QRD). The basis then comprises of the subspaces of the
interfering sources. The fixed nullforming algorithm could be appiled to generalized sidelobe
canceler (GSC) and reference signal based adaptive beamformer (RSAB) while the adaptive
one can be applied to GSC. Further, it can also be used as directional voice activity detection
(VAD) to enhance the performance. Finally, experiments using a linear microphone array
under real environment are conducted to demonstrate the performance of proposed algorithm.
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Chapter 1

Introduction

1.1 Motivation and Objective

Speech enhancement in a noisy environment is an important research issue for
speech signal processing. There are various kinds of interferences in the environment
and they are usually classified into stationary noises and nonstationary ones. One of
the approaches to solve this problem is to use microphone array where the spatial
characteristics of sound waves are.exploited: .For stationary noises, the multichannel
adaptive Wiener filter and its variations [1-4] were proposed and proved to be quite
effective. However, they do not perform well 'in real practice when nonstationary
noises such as competing speech-are present.

In spatial signal processing of a microphone array, blocking one of the sound
sources is equivalent to finding the corresponding null space within the
multi-dimensional signal space formed by the microphone measurements. To
effectively obtain the subspaces and process their signals accordingly for interference
reduction are two major focuses of the research in recent years. The difficulty is the
subspaces are usually unknown in advance and become time-varying when
environment changes. This provides the motivation of this thesis to study and propose
innovative methods to compute the subspaces for nonstationary interference reduction.
The primary target of interference considered in this thesis is competing speech. It is a
common issue for speech communication as well as recognition under multi-person

scenarios.



1.2 Literature Review

Speech enhancement using microphone array has been widely used in noisy
environment. Generally speaking, microphone array uses the spatial response of the
signals received by different microphones to separate the signal from different
directions. These kinds of signal enhancement methods are generally called
beamforming. Beamforming technique has been studied for many years. In sonar
system [5], beamforming has been used since 1960s. The earliest beamforming is
delay-and-sum (DS) beamforming, which is also called conventional beamforming.
The DS beamforming adds the signals with delay compensation but it is not effective
under reverberant environment and requires a large amount of array elements for
higher performance.

The adaptive beamforming. was originally- proposed by Griffiths [6]. This
beamforming algorithm is an-unconstrained. minimum mean square error (MMSE)
method. After that, the concept of constrained beamforming was proposed in several
research works. The most famous one is the constrained least mean square (LMS)
algorithm derived by Frost [7]. The performance of speech enhancement is greatly
influenced by the mismatch of microphones. Cox, H et al. [1] proposed a robust
adaptive filter to avoid the problem of mismatch. Griffiths and Jim reconsidered
Frost’s algorithm and proposed the generalized sidelobe canceler (GSC) [8]. GSC
comprises of three parts. The first part is a fixed beamformer, the second one is a
blocking matrix and the third one is an adaptive noise canceller. The architecture of
GSC satisfies the criterion of LCMV. To cope with wide-band signals, Nordholm et al.
[9] proposed the wide-band Wiener solutions under the Griffiths-Jim beamformer
architecture. Speech enhancement methods in a reverberant room using GSC are

suggested by some authors. Hoshuyama et al. [3] proposed an adaptive beamformer
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similar to the architecture of GSC with a modified blocking matrix to work adaptively.

To deal with the nonstationary signal, Gannot et al. proposed generalized sidelobe
canceler (GSC) with nonstationary desired source using relative transfer function (RTF)
[11]. The RTF could be used to describe the relative transfer function of room impulse
response (RIR) between microphones. The purpose of using RTF on GSC is to let the
blocking matrix blocks the nonstationary signal. Reuven et al. [10] proposed dual
source transfer function GSC (DTF-GSC), which would eliminate a single
nonstationary interfering source. In [10], the fixed beamformer (FBF) and blocking
matrix (BM) are modified to block the nonstationary signal. Therefore, the GSC would
eliminate the residual stationary noise only. For the case with two or more interfering
sources, the method cannot effectively eliminate all the interfering signals.

The RTF based BM can be used to eliminate the nonstationary signal, that is, the
BM is a nullformer of nonstationary sources. To enhance the desired signal, applying
the nullformer to adaptive filter seems to-be-a feasible method. However, in practical
environment, it’s difficult to know the-number of emitting sources. The method to
estimate BM Dby [10] for dual sources is inflexible. Therefore, it is necessary to
generate nullformer on-line in order to eliminate the unknown number of interfering
sources.

Dahl et al. [2] proposed an adaptive filter using normalized least mean square
(NLMS) criterion to perform indirect microphone calibration and minimize the speech
distortion due to the channel effect (using pre-recorded speech signals). Chen et al. [11]
proposed reference signal based frequency domain adaptive beamformer (RSAB)
using NLMS. The required computational effort would be simplified in frequency

domain.



1.3  Thesis Scope and Contribution

The thesis focuses on eliminating multiple directional nonstationary signals using
nullformer with adaptive filter. In comparison with beamformer, nullformer makes a
null space to the interfering signal which could be used to eliminate the interfering
sources.

The scope of the thesis can be divided into two parts: 1. applying nullforming to
the adaptive filter, 2. adaptive nullforming technique. The fixed nullformer constructs
the null space to the interfering sources before executing the adaptive filter for target
speech enhancement. In this case, the interfering sources are assumed unchanged
during the adaptation. The adaptive nullformer updates the nullspace in a period to
trace the change of interfering sources and corresponding nullspace.

Nullformer is applied to-two different adaptive filters in the thesis; they are
reference signal based adaptive ‘beamformer (RSAB) and generalized sidelobe
canceler (GSC). RSAB uses normalized-least mean square (NLMS) to find the
weighting of filter. The FBF and BM should be modified to satisfy the architecture
when the nullformer is applied to GSC.

For the fixed nullformer, The RTFs of interfering sources are used to find the null
space by using singular value decomposition (SVD). For the adaptive nullformer, the
RTFs from different directions are estimated before executing the enhancement
procedure. These RTFs are used to find the subspace distance between previously
known RTFs and estimated signal subspace in real-time. Therefore the existence of
desired source in each frequency can be found and processed accordingly.

The proposed adaptive nullformer on GSC is implemented and the experiment
compares the performance between the proposed speech enhancement and

conventional adaptive beamformer.



1.4 Outlines of Thesis

The thesis can be divided into two parts: The adaptive filter with nullformer and

adaptive nullforming algorithm. The topics of each chapter are described as follows.

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

The problems are formulated in this chapter. Then the reference signal
based adaptive filter (RSAB) would be reviewed, including the
architecture and mathematical descriptions

The linear constrained minimum variance (LCMYV) problem would be
described. The Frost algorithm would solve the problem. Finally the
generalized sidelobe canceler (GSC) using relative transfer function
would be derived based on Frost algorithm

Introducing differential microphone and finding null space of interfering
signal using singular value decomposition (SVD). Then Appling fixed
nullformer to RSAB and GSC

The variable nullforming-algorithm using order recursive least square
estimation (ORLS) and subspace distance. Then a voice activity
detection method using the algorithm was proposed. Finally, the variable
nullforming is applied to GSC to .

Experiment results shows the performance of RSAB, GSC, RSAB with
nullforming and GSC with nullforming

Conclusion and future study



Chapter 2

Reference Signal Based Adaptive Beamforming

2.1 Introduction

The time domain reference signal based adaptive beamforming (RSAB) was
introduced by Dahl et al. [2]. The work in [11] proposed frequency domain RSAB,
which optimize the performance at each frequency bin. From RSAB, filter weighting
adjustment has two purposes: one is to minimize the interfering sources and noises
another is to equalize the channel effect. The architecture of RSAB is discussed in the

following section.

2.2 Problem Formulation

Consider an array with M sensors in“a noisy reverberant environment receiving
one nonstationary desired source and some stationary interfering signals. The received
signal in time domain would be
x (nN)=a’(n)®s°(n)+n_(n); m=1..,M (2-1)
where each symbol represents:
® convolution operation

X,(n)  signal received by mth sensor

D
a8,(N)  the transfer function (TF) between desired source and mth microphone

sP(n)  desired source

n,(n)  the noise received by mth sensor.



The received signal is analyzed frame by frame in frequency domain so the short time

Fourier transform (STFT) can be approximately written as
x (ko) =~a’(k,w)s’(k,w) +n_(k,w); m=1..M (2-2)

where «» denotes frequency under kth frame. The approximation is justified for the

FFT size be sufficiently large. Assuming that the environment does not change

severely thusa® (w) ~ a” (k,@). The vector formulation of the equation set (2-2) can
be written as

x(k, @) = a° (@)s® (k, @) + n(k, @). (2-3)
where

x(k, ) =[x (ko) XKkao) - x, ko)

a®(0)=[a (@) af(e) - af(@)]

n(k,0)=[nke) nke) = ndko)]

For the case with two or more interfering sources, the TFs of desired source and
interfering sources are independent. Therefore the received signal in frequency domain
with one desired source and N interfering sources from different directions can be

formulated as

x(k, ) =a°(w)s® (k, 0) + ZN:ai' (w)s] (k,0) +n(k, )
i=1 (2-4)
= A(w)s(k,w) + n(w)

Where
Alw)=[a"(0) a(0) - ay(e)]
sk.o)=[s°(,0) s (ko) - shkao)]

al(@=[1 ay(@) - ay@] i=1..N



is the vector form of TFs between interfering sources and microphone array and

s' (k,w) is the ith interfering source.

2.3 Reference Signal Based Adaptive Filter

RSAB requires prior information before executing the beamformer. The prior

information is pre-recorded signals received by microphone array-s, (k, w),...,s,, (K, @)

and the reference signal-r(k,®) . A set of pre-recorded speech signals are collected by

placing a source on the desired position and letting the source emit for a short while
under quiet environment. The pre-recorded signals provide a priori information
between desired source and the microphone array. The reference signal could be the
original source or original source received by-another microphone in good quality.
After collecting the pre-recorded signal and reference signal, the procedure of the
RSAB is divided into two phases- training phase and filtering phase. Figure 2-1 shows

the overall system architecture.

Beamformer
4 Silent Stage A
NLMS e(k, )
Adaptation |«
R Criterion
s (k,m) % (k, @) 7 A
Memory s,(k, @) X R XK o) | Y(kyg)
Pre-recorded . > . > pper >
Speech Signal : . Begmformer
Sy (K, ) >X 2, o) r(k,w)
Memory
Reference Signal
\_ n, (K, o)n,(k,@)| . . . [ny (K, w) J
Mlcptophone ______ Transfer New
rray 4 Mnke) | L oS === Trained Coefficients
> \
| .. | N et B e bl N
: R Training Phase ! .’Speech Stage '
nyko) TN __ / | !
|
(K@) | e N L% (k@) |
i i Pk ko) |
: ! Filtering Phase T t > ower | Y |
|
- ! : . Beamformer !
xwKeo)| N / X, ko) !
|\ J
vap | 1| | TTTTTTTTTTTTTTTTTT T

Figure 2-1 Reference signal based adaptive beamformer
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In the algorithm, the voice activity detection (VAD) is used to detect the activity
of desired signal. When VAD shows that desired signal is inactive, the system started
training phase using normalized least mean square (NLMS). For the training phase, the

error signal at frequency « is written as
e(k,®) =r(k,0) - W' (k, o) [X(k, ) +s(k, )] (2-5)
where

wik, o) =[w(k,0) wkao) - w,kao)

(ko) =[% (ko) Xko) - Rko)

T

s(k,a)):[sl(k,a)) S,(k,@) - s, (k,a))]
and ' denotes complex conjugate_transpose. £(k,w) is error signal. r(k,) is the
pre-recorded reference signal.~W(k, @) s the filter weighting for adaption. X(k,®)

is the received signal from ‘microphone -array-in training phase. And s(k,w) is

pre-recorded desire source.
The purpose of RSAB is to minimize the mean square error between received signal

and the desired signal. The mean square error is
s =€ (K, w)e(k, w)
Then minimize the mean square error

mv\i/n Jivs = mv\i/n g (k,w)e(k, ) -0
—mi —_wt & : _wi o
= mvbn[r(k,l) w'(k, @)X (k, @) | [ r(k,1) -w'(k, ))%(k, ) |

The optimal solution would be obtained by taking the derivative to previous equation

to find a local minimum. But the optimal solution is not practical for implementation.

Therefore, the adaptive solution is introduced. For adaptive solution, the weighting



w(k,w) is updated in the steepest direction thus
a‘] LMS
w(k +1, o) =w(k,») + u — (2-7)

From (2-6) and (2-7) , using NLMS algorithm to achieve a stable solution in each

frequency. Therefore, the filter weighting update procedure is

ek, w)X" (k,w)

7+ X' (k, 0)X(K, @) (2-8)

w(k +1 @) = w(k, o) + u

When VAD detected that the received sound signal contains desired speech signal, the
system switched to the filtering phase. The system starts to filter the received signal
with w trained in training phase so

y(K, @) =W (@)x(k, ®).

Where y(k,®) denotes output signal;-and  x(k,®) denotes received signals in

filtering phase. The flow of the procedure is described in Figure 2-2.

C Start ),

VAD =1

e(k,m) = r(k,0) - W' (k, 0) [%(k, ) +5(k, ®)] \ 4

v y(k, @) =w' (@)x(k, )
e(k,w)X* (k,w)
;/+>A<T (k, w)X(k, ®)

w(k +1, @) = w(k,®) + u

No

End ?
Yes

C End )

Figure 2-2  Flow of the reference signal based domain adaptive beamformer
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Chapter 3

Linear Constrained Minimum Variance Beamforming

3.1 Introduction

Frost [7] proposed a method to minimize the target signal power under constraint.
Griffiths and Jim [8] reconsidered the Frost’s algorithm and obtained generalized
sidelobe canceler (GSC). GSC is widely used to cope with interference signal. Gannot
et al. [4] applied relative transfer function (RTF) to GSC to enhance the performance
when there’s a nonstationary desired source‘in a reverberant room. In this chapter the

Frost algorithm is introduced and then RTF GSC.

3.2 Frequency Domain Frost Algorithm

3.2.1 Optimal Solution
Starting from the same problem formulated in section 2.2. The purpose is to find a
set of weighting that filter the received signal and obtain the original desired source.

The filter weighting in vector form is
T
w(k, ®) :[Wl(k,a)) w,(K,@) - w, (k,co)] |
The set of filter weighting can be used to filter the received signal so the output would

be

y(k, @) = w'(k, 0)x(k, ®)
- w' (k, )a(k, ®)s(k, ®) + w' (k, o)n(k, ») (2-1)
é ys(k’a)) + yn(k’a))

Where Y(k,®) denotes output signal, y,(k,®) denotes signal part of filtered signal

11



andy,(k,») denotes interfering part of filtered signal. The output power would be

E{y(k, @)y (k,0)} = E{w' (k,0)x(k, @)X (k,0)w(k, )} 22
=w'(k, 0)®, (k, )W(k, 0)

where @ _ (k,») denotes power spectral density of input signal. The goal is to

minimize output power. If there’s no constraint for the problem, the trivial solution
would be zero. Therefore, a constraint is set as

y, (k@) =w' (k, w)a” (o)s(k, )

(2-3)
= f(k,w)s(k, w)
where f*(k,w) is a prescribed filter, usually let it a delay. Therefore, the linear

constrained minimum variance (LCMV) problem can be formulated as:

min (W' (k,0)®,, (k, 0)w(k, )} subjecttow!(k, w)a(w) = f(k,») (2-4)

Using complex Lagrange multipliers to solve the problem
L(w) =w'(k, @)D (k, 0)W(K, o)

+A[ W' (k, 0)a(w) - c" (k, o) |

+1"[a' (@)w(k, @) —c(k, ) |

where 1 is the Lagrange multiplier. Set the derivative of L£(w) with respect to w

to be zero yields

%(W) _d_ (K, )W(K, @)+ Aa(w) =0 (2-5)

By (2-3) and (2-5) , the optimal solution of LCMV problem would be
w(k, ) = [aT (@)D, (K, a))a(ao)]fl @k, w)a(w) f (k, ) (2-6)

3.2.2 Adaptive Solution
The constrained form of the optimal solution is impractical in the real world. It’s
difficult to find the room impulse response by using system identification method. This

constrained form can’t tract changes in the environment [4]. So by Frost [7], the

12



adaptive form was introduced, which would be more useful in practical environment.

Consider the steepest descent adaptive algorithm:

w(k +1, o) = w(k, ) - y% 27

= w(k, ) — u[®, (K, )Wk, ») + 1a(w)].

Imposing the constraint on W(k +1,@). Then

f(w) =a" (@)W(k +1, o)
=a" (@)w(k, w) — @° (0) D (K, ®)W(K, @) — 12" (w)a® (w) A '

Solving the Lagrange multiplier yields

w(k +1, ) = P(@)W(K, @) — 1P(0) D (K, )W(K, @) + T (@) (2-8)
Where
P(w) =1 —aDLaDT(Za)) e N@”7 (o) (2-9)
|a® )]
f(o) = aD(“’)Z f () e R@" (@) (2-10)
|a® (@)

P(w) is the projection matrix that project vector to the null space of a®"(w). And
N (@°(w)) represents the null space of a®(w).f(@) is the range space of a°'(w)
and R(a®'(w)) represents the range space of a°'(w). From (2-2), replacing
D, (k,w) by E{x(k,co)x*(k,a))} and rearrange (2-7), the adaptive Frost algorithm

would be

w(k +1,m) = P(w)| Wik, 0) - ux(k, 0)y’ (k, @) |+ f (@) (2-11)
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3.3 Generalized Sidelobe Canceler

From the frost algorithm, the filter weighting could be separated into two parts;
the first part is the range space of a®(w) and the second part is the null space of

a®(w) . Hence

W(K, @) = Wege (K, @) =W o (K, @) (2-12)
where

Wege (K, @) e R(@° (@) and —w e (k, @) € N (@”" (@)

comparing the filter weighting with adaptive Frost algorithm, let

Wy (k@) =F(@) =~ @)t (2-13)
|a° (@)

and

W e (K, @) = P(0)g(k, @) . (2-14)

From (2-12), (2-13) and (2-14),the outputsignal would be
y(k, ) =w' (k, w)x(k, »)

= WIT:BF (k, @)x(k, @) - WLc(k! o)X (K, @)

=T (w)x(k, ®) — 9" (k, @) P (@) x(k, )

2 Yeee (K, @) = Yanc (K, @)

(2-15)

The architecture of GSC could be separated into three parts, fixed beamformer (FBF),
blocking matrix (BM) and adaptive noise canceler (ANC). The purpose of FBF is to
obtain the signal that contains the desired source and a stationary noise. The BM
blocks the desired source to extract the stationary noise. Then the ANC uses
multichannel wiener filter to estimate the noise of FBF and cancel the noise. Figure
3-1 shows the entire architecture of GSC. Detail discussion on each element in the

architecture is given as follows.
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X, (K, ) —{ >

\ 4

X, (K, 0))—% > ™ Fixed Vege (K, @) y(k, w)
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. >+ —>
. WT - A |
FBF yNC (k,a)) |
Xy, (k, @) »D At p :
I _____ —t] — — —
I
u, (k, w)
—»> >
u, (k, ®)
> Blocking Matrix > Adaptive Noise
o . Canceler
. P (@) . 9" (k,0)
- Uy (K, @)

Figure 3-1(.-Generalized sidelobe canceler
1. Fixed Beamformer (FBF):

From (2-15), the output of FBF is

Yeer (K, @) = f! (w)x(k, w)

=3O () [a° (@)s(k, ) + (k) ] (2-16)

Ja° (@)

=VwMWwHﬁm@m“”)*

2 ()
o (@)

Because f“(w) is justa simple delay, the output of FBF contains undistorted desired
source and noise. This is an optimal solution where the desired source is just a simple
delay from output of FBF. The issue of the optimal solution is that the actual TFs are
difficult to find so Gannot et al. applied relative transfer function (RTF) to GSC to

approach the suboptimal solution [4]. The RTF is easy to obtained by system

15



identification method proposed by [12]. RTF is the ratio of RIR between two

microphones. Let the first microphone be the reference microphone then the RTF is

D
h° (k, @)= m=1...,M. (2-17)

Take the vector form

B a.DT (C{))

=1 (0) (o)) =55

If the actual TFsin (2-13) are replaced by RTFs, the FBF would be
h® (@)
2

|n° ()]

Wege (K, @) = f (@) (2-18)

By (2-15) and (2-18) ,the output of FBF would be

Yeer (K, @) = WTFBF (@)x(k, @)
_ h Dt (a))
he @)

t* () a%(@)s(k, @) +n(k,0) | (2-19)

a0l ((;))n(kz, ) £ ()
|2°(@)]

=a,(w) f(w)s(k, @) +

Therefore, a suboptimal solution is obtained with signal distorted by the transfer
function of desired source to the first microphone.
2. Blocking Matrix(BM):

The BM using RTFs could properly block the desired signal. Therefore, the
columns of BM are the bases of desired signal null space. Therefore, considering the

following matrix
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[ &0 g a0
a(0) a (o) a; (w)

0 0

P (w) = Cl) . 0
0 0 1

Then the output of BM is

a° (o)
U (k,0) = %, () =5 = o)
=a$<w)sD(k,w)+nm<w)—::g—§f);[af(w)sf’<k,w)+m(w)] (2-20)
D CU)
=n,(®) ——=—n,(w) m=1,...,M -1,
a’(w)

Therefore, output of BM would be the noise only signal.
From the criterion of GSC, the output of blocking matrix should be independent of k
because the noise is assumed-stationary.-But in practical, the BM cannot block the
entire desired signal. Thus the output-of -BM would be changed under nonstationary
source. Thus the vector form of output from BM is
u(k,m) = PT(w)x(k, ®)
= P'(v)[a(w)s(k, @) +n(k, w)] (2-21)
=P (@)n(k, w).
3. Adaptive noise canceler (ANC):
The output of ANC would be noise only signal because P'(w) is the null space
of desired signal. Thus by (2-15) and (2-21), the output of ANC is
Yanc (K, @) = g' (k, 0)u(k, )
=g'(k, 0)P"(0)x(k, ®)
=g (k, 0)P"(w)[a(@)s(k, ®) +n(k, ®)]
=g'(k, 0)P"(o)n(k, w)

(2-22)

Recalling (2-4), the purpose is to minimize the output power so minimize
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2
E{|Vear k@) -0 (K, k.0 |
Then the multichannel Wiener filter would be

9(k, ) = @ (k, 0) D, (k, ) (2-23)

where
@, (k,0) = E{u(k,0)u’ (k,»)}
@, (k, ) = E{U(k, @) Yigr (K, @)}

To track the change of environment and achieve a stable solution, Gannot et al. use

NLMS algorithm to recursively update the weighting of ANC [4], thus the weighting

of ANC would be

Uy (Ko DY@y g . (2-24)

k+1 o) =g (k,
On(k+Lo) =g, o)+ u Pk )

By [4], let
P (k@) = PP, (k=1 ) +(1- p) Y Xk @)f

m

(2-25)

where p is a forgetting factor. P (k,®) can be u'(k,w)u(k,®), which also

normalize the power and make the recursion more stable.
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Chapter 4

Nullforming

4.1 Introduction

In this chapter, several methods are introduced to achieve nullforming and the
associated algorithms are explained for the adaptive filters to enhance the desired

source.

4.2  Differential Microphone

Delay and sum beamformer is commonly. used under both the far field and free

field assumptions. The method -enhances the signal from desired direction

% (ko) sk, @)

y(k, o) d 0

Figure 4-1 Differential microphone

Elko et al. [13] proposed differential microphone to reduce the signal from target
direction. Figure 4-1 shows the architecture of differential microphone. The method
makes a nullforming using two microphones subtraction with delay compensation. The
signal is assumed a far field plain wave and the microphones are perfectly matched

thus the output of differential microphone pairs can be written as,
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You (ks ) = xl(k,a»—e"""(dsm%)xz(k,wﬂ

- : . (dsing; : dsiné (3-1)
e—m(%cj _ e_lw( %c)e_lw(w AC)}S(k, )

NIk, N~

where y,.,,(k,®) is the output of differential microphone pairs, s(k,®) is the

source, d is the distance between two microphones, r is the distance between source

and microphones, v, is the speed of sound, @ is the direction of source, 0 is the target

direction of differential microphone, x (k,®») and x,(k,w) are signals received by

microphones. Rearrange the formula, the magnitude of output would be
1 g dSin‘gl'V
|yDM (k1a))|:E x (k,w) —e [ /C)Xz(k!a))

_jw(d(sin g+sin @%J
1-e ‘

RN

2

s(k;) (3-2)

s(k, )|

. | od | . :
—(sin@ 6.
smLV (sin@+sin T)}

C

Figure 4-2 shows the beam patterns of differential microphone plotted by using
equation (3-2). The beam patterns are plotted under different distance of microphones
by letting the magnitude of source be 1, the speed of sound be 343 m/s and the target
direction be at 0°.

The differential microphone works like high pass filter so differential microphone
would enhance the noises in high frequencies. Different distance of microphones
would affect the ability to deal with different frequency band. For the short distance
differential microphone, lower band of frequencies would be eliminated from almost

every direction.
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Figure 4-2 Beam pattern of differential microphone with d=0.12 m (left) and d=0.24 m (right)

4.3 Nullforming Using Null Space of Interfering Signal

Previous section shows a nullformer for one interfering source. There may be two
or more interfering sources in practical environment. The thesis uses singular value
decomposition (SVD) to find the null space of the entire interfering signal. Assume
there are N interfering sources: in-the environment and we have the RTFs of them as

described by (2-17) in chapter 3. The RTFs of interfering sources are

8 (@)
aill (o)

h(@=[1 hy@ - hy@] = i=1... N

and take the complex conjugate of these RTFs in matrix form

H'(0)=[h'(®) h}'(@) - hi(@)]

which are the bases of interfering signal subspace. Then applying singular value
decomposition (SVD) to H' (w)

H' (w) = U(w)S(@)V' () (3-3)
Where

U(a)):[ul(a)) u,(a) -+ UM(CO)]

are the eigenvectors of H(w)H' ()
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V(o) :[Vl(a)) V(@) =+ vy (a))]

are the eigenvectors of H''(w)H' ()

_Gl(a)) 0 0
S(w) = 0 0, (o) | .
0 0 oy(w)]

are the singular values. These singular values are eigenvalues of H'’(@w)H'(w) and
H' (w)H' (w) . From [14], the zero eigenvectors of H'T(w)H'(w) corresponds to the
zero singular values

o (w)=0, Vv, (w)=0 i=N+1...,.M
u,(w) corresponds to zero singular value for i=N +1,...,M thus
H' (w)u,(w) = o, ()V, (0)= 0 T =N +1,... .M,

Therefore, u.(w) are the null-space bases of H(w)' for i=N+1,...,M, Thatis

H' @ (@) =[hl(0) Ni(0) - Thi(@)] u(e)

.
| | |
_ aIl (w) a22 (w) a,h\‘, (w) u (o)
a,(w) a’ (o) a (o)
Where 0=[0 --- 0]T is a zero vector. Therefore,

u(@eN(a' () ay(@ - aj(@) i=N+1L..,M

This null space is a fixed nullformer where

Upy (@) =[Uy4(@) Uy,,(@) -+ uy(@)] (3-4)
isan M input and N output filter.

In the following section, the fixed nullformer would be applied to RSAB and GSC.
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44  Reference Signal Based Adaptive Filter with Fixed Nullforming

The nullformer could be used to block the interfering signals thus applying the
nullformer to RSAB would eliminate the residual noise and reconstruct the desired
source. Figure 4-3 shows the architecture of adaptive filter with nullformer. The effect
of adaptive filter with nullformer could be considered as the convolution of room

impulse response and impulse response of nullformer system.

x(k,a))‘

P

Nullformer

Upy (@)

Room impulse response

A(@)

Adaptive filter
W(k, o)

d(k,a))‘

>

—>y(k,o)

Figure 4-3  System of RSAB with fixed nullformer
For the case with multiple interfering sources described in (2-3).Let the
multiplication of RIR and nullformer-be:a new.reom impulse
R(@)=U! (0)A(w) (3-5)
and the new input of adaptive filter would-be

d(k,) =U' (@)x(k,0)
= U’ (0)[A(®)s(k,») +n(o)]

_ {ufmaDsD(k,w) ; iufma:s; (k,a))} +U" (@)n(w) (3-0)
=u;aDs°(k,w)+UE: (@)n()

where

d(k, @) =[d, (k@) dy(k@) - dy (ko) (3-7)

is the output of nullformer. Therefore, the input of adaptive filter would be M-N
channels.
The nullformr would cause a great distortion for it’s a high pass filter. Therefore,

the reference signal of RSAB would be used to reconstruct the desired signal. In the

23



pre-recording procedure showed

in Figure 4-4,

the pre-recorded

signals-

s (k,m),...,S,,_n (k,w) are received by the output of nullformer and the reference

signal-r(k,®) would be the desired signal with good quality.

d,(k,
X, (K, 0) —» > 'M» — »s(k,0)
d,(k,
X, (K, w) >D M» —»s,(k,w)
. Nullforming . Memory .
' Pre-recorded
[ ) 1 [ ] [ )
. U FN (@) . Speech signal .
d K,
Xy (K, @)—{ > > (ko) —»s, (K, 0)

Figure 4-4  Pre-recording procedure of RSAB
The procedures of training phase and filtering phase are the same as described in
section 2.3. The only difference:is that there’s a nullformer before the input of adaptive

filter. Figure 4-5 shows the architecture of RSAB.

Desired signal

d,(k, w) ¢
X, (K, @) —> > > — >
X, (K, ) —»] > > AGION
. Nullforming . RSAB )
. U' () . w' (@) —— y(k,0)
Xy (K, @) —] > > v (. )
Figure 4-5 System architecture of RSAB
4.5 Generalized Sidelobe Canceler with Fixed Nullforming

Ordinary GSC does not work for the condition with nonstationary interfering

signal in the environment. The existence of nonstationary signal does not satisfy the
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criterion of GSC. The work in [10] proposed a dual-source transfer function GSC
(DTF-GSC) method to eliminate a directional nonstationary source by modify the FBF
and BM. DTF-GSC could block one nonstationary source. But when there are two or
more interfering sources, DTF-GSC is not effective in blocking all these sources.

There are some features when applying the nullformer to GSC. Figure 4-2 shows
that the nullformer is a high pass filter. The high pass feature would cause the received
signal a great distortion. Therefore, the fixed beamformer and blocking matrix must be
modified to satisfy the architecture of GSC with nullformer.

From (3-5), the effect of nullforming is the multiplication of RIR and impulse
response of nullformer. Multiply the nullformer weighting from (3-8) with desired

signal RTF. Then the new RTF is
h"! (@) =U' (0)h°(w) (3-9)

Where

h° (@) =|1

fw».“aﬂmyf@)

(@) ()| @)

is the desired signal RTF and

(@) =["" (@) W@ - ()]

Is the new RTF, which is the null space of interfering signals, from (3-4)

"' (@)a,"(0) =h*" (@)U (@)ay (@) =0.

Apply SVD to the new obtained RTF
h™! (o) = U(0) S(0) V" (w) (3-10)

Where

U) =[w(@) (@) - thyy(@)]

are the eigenvectors of h™" (w)h™"" (w)
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8@ 0 - 0 ]
S(w) = 0 3,(w) | .
0 0 8y ()]

are the singular values. These singular values are eigenvalues of h™"(w)h™"'(w)
and hNuIIT(a))hNuII (a))

:
v(a)):[vl(a)) v,(0) - vy (a))]
are the eigenvectors of h™""(w)h™" (w). The zero singular values correspond to zero
eigenvectors so

5, (0)v,(w)

8@V, (@)=0 i=2,..,M—N. (3-11)

"' (@) (@) = {
For v,(w) isan 1x1 vector, let

A ) ]
)= om@) 12

And multiply the RTF h™"'(w) with-w, (@) (3-13)

h"" (@)W, (@) = h°! (@)U, (@)W, ()
_a”(0)

U (o)  _
a1D* (@) e (@)

S, (o)v,(0)

Thus

Dt o) o -
a” ' (w)Upgy (w)—éil(a))vl(a)) =a () (3-14)

Therefore, the new FBF would be obtained

Wyege (@) = Uy (0)W,, (@) (3-15)

By (3-14) (3-15), The output of FBF would be
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Yeer (K, @) = WZFBF (0)x(k, )
= W: (a))UTFN (0)X(K,w)

()

= W U'EN (w) {aD (0)s® (k, @) + %:ai' ()s! (K, w) + n(w)} (3-16)

_{a (@)U, () 61(60)‘/1(@)} s (k’w)+5j(a))vj(a))um (0)n(w)

()

=a, (w)s (k1a))+W

Ul (o)n(@)

The FBF would block the interfering signal and make a beam to the desired signal. Let
Po(@)=[t(0) (@) - pmyya(0)]
The blocking matrix would be
Puew (@) = Upy (0)P, (@) (3-17)
Then the output of BM is
u(k,@) =P'_(0)x(k,o)

=P! (a))UTFN (w) {aD (0)s°(k,0) + ia,‘ (@)s! (k,w) + n(w)}

=
=Pl(0)'U! (0)][a°(0)s° (k,0) +Nn(0) |

[ (@)U (@), (0) -+ a° (@)U (@)tty y5(@) ] $° (ko)
+P] (@) U7 (@)n(w)
=P/ (@)'U! (0)n()

(3-18)

where
u(k’a)):[ul(k’a)) u(k,@) - uM—N—l(k’a))]

Therefore, the BM can block the desired signal and interfering signal and obtain the
stationary noise. The ANC can be used to eliminate the residual stationary noise.
Recalling section 3.3, the ANC is the same one as described in (2-24). The architecture

of GSC with nullforming is showed in Figure 4-6.
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Figure 4-6  Generalized sidelobe canceler with nullforming
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Chapter 5

Variable Nullforming Adaptive Filter

5.1 Introduction

In previous chapters, several methods to approach nullforming are introduced.
These nullforming methods are fixed so they are not able to track the interfering
sources. For example, the weighting of nullformer was previously set to one desired
direction so the nullformer works well when interfering sources emit in the exact
direction. When there are new interfering sources from other direction or the original
interfering source change the direction,-these Kinds of fixed nullformer are unable to
block the interfering sources.

In this chapter, a novel method.to construct a variable nullformer is proposed. The
nullforming algorithm could trace the change of sources. Then the algorithm applies
the variable nullforming to generalized sidelobe canceler to obtain the reconstructed

desired signal.

5.2 Variable Nullforming

52.1 Estimate Signal Subspace Using Order Recursive Least Square
Starting from the estimation of RTF vector, the estimation of RTF vector is from

the output of blocking matrix [4]. Blocking matrix contains the bases spanning the null

space of RTF vector. When there’s only one sound source in action, rearranging the

term (2-20) in chapter 3, the signal received from microphones are
X0 (K, @) = h, (K, @) %, (K, @) +u,, (K, @) - (4-1)
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Assume that the statistics of desired signal is stationary in each frame and the RIR

changes slowly in a short period. Considering the cross PSD of kth frame

P, (k,@)=h: (k,0) @Y, (k,@)+®, , (k,w) t=1...K (4-2)
where K is the number of frames for estimating RTFs. n (k,w), m=1.. M are
assumed stationary, S(k,®) and u_(k,®) are independent thus @, . (k@)

independent of the frame index k. [12] proposed a system identification method with

nonstationary signal by applying least square (LS) estimation to the following equation

(I)(Xl)xl(k,a))_ 1 (D(x&(k,a))_ D (k,0) |

N R o
: : : hy (k, @) : '

(D(X:x)l(k,a)) 1 d)(xfxl)(k,a)) i (K)(k a))

The RTFs are estimated when there’s only one source. When there is more than
one source in the environment, the method could not describe the RTF properly. The
work in [10] proposed a method. to estimate the blocking matrix when there are two
sources emitting simultaneously in‘the" environment. When number of sources
increases, the number of reference microphones increases. Increasing number of
reference microphones would increase the number of nullforming directions.

Considering N sources emitting simultaneously, the linear equation would become

_QE(::W)Xl (k’ a))_ _1 q)sl'z(l (k’ a)) (Dit)xl (k’ a)) o (DE(];\?Xl (k’ a))_ ul i (k a))
0%, (k)| |1 02 (ko) 02 (ko) - o0, (k)| M)
ml. — . 11- 21- Nl. hm(k,CC))
0 (k)| 10X (ko) oX (ko) - O (ko) hN(;( o | e
e (k@) |
. emz)(k,a))
< (ko)
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An excessive number of reference microphones are not needed when there are not
many sources in action. It’s difficult to know the number of active sources in each time
so the signal subspace is estimated by order recursive least square estimation (ORLYS).
The method works by increasing the number of reference microphones when number
of emitting sources grows. ORLS was originally used in line-fitting by increasing the

order [15]. Rewrite (4-4) to the linear equation

m, (k,@) =M, (k,0)8" (k,»)+e, (k,®) (4-5)
Where
(K, @) [(I)(l) @) d)f(i)xl(k,a)) CI)f(K)zl(k a))J

M, (ko)=[1 m (ko) m,(ke) - m (k)]
o (k.w)=[ @, (ko) M (ko) h(ko) & hi(ko)]

e, (kK,o)=[ (ko) (k) -+ (k)]

m,, (k,®) is PSD from the mthmicrophone; "M, (k,®) are the PSDs from the first

T

to the (k-1)th microphone and 0, is the mth entry of signal subspace under kth order.
e,(k,@) is the estimation error. For k=1, The first entry of the estimator is
o/ =2, , (ko).

In each order, estimate the parameters by using LS estimation then the estimator would

be

gMT (k, )M, (K, co)]1 | (k.o)m,, (ko) (4-6)

.o N+1 m=i,...,M.

To simplify the representation, the following derivation excludes the representation of

parameters-(k,a)). The previous equation can be reformulated to recursive form by
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[15]. The estimator &™ updated in the (i+1)th order is

i M) M t plrm |
o _(MiMi) Mim;,m; ,Prm,
. ' i pl
S .r_ni+1Pi mi, (4-7)
mi&lpij_mm
L miT+1PiLmi+1 |
where P =1 —Mi(MiMi)fle is the projection matrix onto the subspace being

orthogonal to that spanned by the columns of M,. The data under (i+1)th order is

M., =[M; m,,]. To enhance the efficiency, the inverse operation is formulated to

1 IMmmMT TMIm,,
4+ _
I m iT+1 PiJ_m i+l m ?+1 I:)iJ_m i+1
Ti+l = . (4'8)
_ miT+1MiTi 1
L m;r+lpilmi+1 miT+1PiJ-rni+1 N

where T, =(MiM, )71 and P'=1=MTM! is the projection matrix. The least
square error of mth microphone-under ith order .is

I =(m, ~Mor) (m, —M,8r) mLi M

the least square error could be updated by using the recursive form

1l PJ- 2
J m,i+1 _ J m,i _ (mi+1 i mi+1>
LS LS mT PJ_mi+l

i+1" i

(4-9)
Figure 5-1 shows that the least square error shrinks gradually as the order of recursion
increases. The recursion should be stopped when the error is less than a threshold.

Stop ORLS when J[%' < Jfyeshord

Because the scale of least square error would depend on the present data, a robust

stopping condition is set the threshold be the scale of the error from the first recursion.

Stop ORLS when J' <pJdM*
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Figure 5-1 Effect of choosing time of iteration on least square error

The incoming data from small-size microphone array are highly correlated thus
M?Mi would become singular. The singularity would cause the estimation result

being unstable. Tikhonov regularization [16], which is also called ridge regression is
used to avoid the ill-condition. Tikhonov, regularization reduces the singularity by
imposing a penalty term, generally the penalty term is Al . This method may result in
a biased estimation but stabilize the estimator. The nonnegative complexity parameter
A controls the amount of bias. Therefore, by the definition of Tikhonov regularization,

the new form of linear equation in (4-6)' becomes
" =(MM, + 1) Mjm, (4-10)

Applying Tikhonov regularization to ORLS, the result is

P:=(A+D)I-M, T M/

i t t t T T ]
'I'_ +[-riMimi+lmi+lMi-ri )( mi'+lmi+l J _( -I_iMimi+1 J[ mi+lmi+l ]
i T pl T T pl i
T _ I’ni+1|:)i mi+l ﬁ“+mi+lmi+l I’ni-¢-1|:)i I’niﬁ-l /1+mi+lmi+l
i+1
i t
_( mi+1l\/|i-|_i j[ mi+1mi+1 J 1
T pl T T pl
L rniJrlF)i mi+1 ﬂ’+mi+lmi+1 I‘ni+1|:)i I‘ni+l i
i i t plm |
é_m _TiMimi+1mi+1Pi m,
i i pl
Am rT.'i+lpi mi+l
= o (4-11)
mi+1 i mm
i 1
L mi+1|:)i mi+l B
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Assume the order of the estimation is N+1, the estimated RTFs in mth microphone

would be
o, =[d,, (ko) (ko) R(ko) - A (ko) m=N+L..M.
Rearranging the form to exclude @, , (k,@) and then the RTFs only vector would be

obtained as
AL =R (ko) R2(kw) - AY(ko)| m=N+1.,M
Take the matrix form

A=[ALS A - A,
(ko) R(ko) - B (ko
hia(ko) B, (ka) -~ hy (ko)

_ﬁNNﬂ(k,a)) ﬁ§+2(k,w) ﬁu(k,a))

Because the number of microphones is limited, the number of estimated TFs in each

basis reduces as the order increases.-The matrix Iil must be extended to make the

length of bases being the same as the number of microphones. Therefore,
H =[hl h, - hN]

AT
:[l H] (4-12)
10 0 Ru(ke) R(ke) - B (k)]
|01 Do (ko) (ko) 2 (k,w
0
0 0 1 hY,(ke) h,(ko) hy (k) |
Where

are the estimated subspaces of present acting sources.
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After the estimation, the number of estimated parameter shows the number of
sources to describe the subspace under each frequency. The estimated bases are linear
combination of subspaces from each source.

52.2 Estimate Subspace of Interfering Sources from Signal Subspace

The goal is to find out the null space of interfering sources. Therefore, after
estimating the signal subspace from ORLS, the desired signal subspace must be
excluded from the estimated subspace. Assume the subspaces of sources from each
direction are obtained, the similarity between estimated subspace and each previously

known subspace can be estimated by evaluating subspace distance by using the

definition in [17]. The definition of subspace distance is
N
h'b j
=1

D(H,bj):\/max(H,bj)—.
' (4-13)

f N
= N—Zlhrbj j:].,...,P

D( ) is the definition of subspace distance and - max( ) is the maximum dimension

between two subspaces. The subspace distance measurement works like doing inner

product. The work in [17] proves that the measurement has the following properties.

1. Nonnegativity: D(U,V)20,andD(U,V)=0 ifandonlyif U=V

2. Symmetry: D(UV)=D(V,U)

3. Upper boundness: D(U,V)<,max(UV), and D(U\V)=max(U,V) if
andonly if U LV . Thatis, all bases in U are orthogonal to bases in V.

And b;=[1 b/(k,w) - b} (k,co)]T is the previously estimated RTFs in P

directions. Figure 5-2 shows the subspace distance of desired source and undesired

source.
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Figure 5-2  Subspace distance of desired signal (left) and interfering signal (right)
There are P previously estimated subspaces so P values of subspace distance

would be obtained. Then by sorting these values and choose the least N RTF vectors
B=[b, b, - by | {i-ine{l-...P}

Rearrange the index of these N vectorsto 1,...,N

B=[b, b, - by] (4-14)
where the columns of B are the most probably bases of present sources. These bases

are linear combination of N RTF vectors. Rearranging the index j,,...,j, to 1...,N,

each estimated basis is

N -
h;=>cb,;; i=1..N, (4-15)
j=1

where cij is the coefficient of each RTF vector. Assume the RTF of desired source is

the dth vector in B . Then eliminating the component of desired signal yields

06, =h, —cib,
—h, -[Be] [eT(BTB)_lB*hi} (4-16)
by i
:{l—BeeT(BTB)_lB*}hi; i=1..,N

:
where 1 is a P by P identity matrix and e{o - 010 - O}
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Take the matrix form of 0,

é:[l —BeeT(BTB)‘lEﬂ]H

Where

O=[6, 6, - 0Oy].

The bases may contain dependent basis thus the orthogonal triangular decomposition
(QRD) is used to exclude the dependent basis. So

OE=QR (4-17)
where Q is a unitary matrix, R is a upper triangular matrix and E is a
permutation matrix. The permutation matrix is used to make the diagonal terms of

upper triangular matrix decreasing.. The. dependent bases correspond to the zero

diagonal terms. Therefore, let
0=0E (4-18)
O=[o0, 0, --- 0]

Where D is the number of independent bases and O contains the independent bases

of interfering signal subspace.

h
crb | -
d~d | oh/
| | G
I I
by | |
A bp |
Op 01
" s Interfering signal
* subspace
L
by

Figure 5-3 Relation of desired signal subspace and interfering signal subspace
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For the accurate estimation of signal subspace, order recursive least square
estimation needs a number of data. The alogorithm repeats the procedures to update
the nullformer. When the nonstationary signal changes rapidly, the update frequency
would be raised. Figure 5-4 shows update procedure of proposed algorithm. Assume
the algorithm uses K frames to estimate the procedure of collecting data. The uptade

procedure would be stopped when the number of collected data is K.

C Start >

Data number = 1

No

Data number =K ?

Apply ORLS to PSD
of incoming-data using
(5-6)-(5-12) v
v Collecting data and

estimate PSD by (5-4)

Finding interference
Subspace using
(5-13)-(5-18)

Data number ++

No End ?

Yes

Updating nullformer

v
( End )

Figure 5-4 The updating flow of variable nullforming
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The subspace of interfering signals could be used to find the null space of
interfering sources. The null space of interfering signals can be found by using SVD as

described in section 4.3,
Uy (a)) = [UD+1(C‘)) Up.» (a)) Uy (a))] (4-19)
where U, ,. (@) is the null space of interfering signal subspace. That is

Ui (a))EN(aiT(a)) & (@) - a:j(w))

5.2.3 Directional Voice Activity Detection

In this section, a voice activity detection (VAD) method using the algorithm
described above is proposed. Most of the VAD algorithms estimate input power to
decide whether the desired source is in action. When there are new interfering sources
from other directions with a similar magnitude. of power comparing with the desired
source, conventional VAD cannot distinguish this new source. The equation (4-15)
shows that each frequency bin-may contain-the desired signal component. Therefore,
the statistics of desired signal existence-in-each segment are compiled to decide the
existence of desired signal. From Figure 5-2, the subspace distances in lower band are
of no difference between desired source and interfering source thus choosing part band
of the frequencies to compile the statistics would be proper.

Figure 5-5 shows the statistics of the target source. In Figure 5-5, the desired
source and interfering signal overlap during 5 sec to 9 sec. The values of statistics
between 5 sec to 9 sec are less than the desired signal-only period. When the number
of sources increase, the threshold should be set lower to assure the accuracy of voice

activity detection.
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The VAD method could be used to attain more accurate interfering signal
subspace. In each frequency, the subspace distance may shows that the the desired
signal is inactive in such frequency. But actually, the desired source is active.
Therefore, the VAD could be used to show that whether the desired signal is active.
The statistics would show if the estimated subspace contains the desired signal in such
frequency bin. The VAD would decide whether the estimated subspace should be
formulated to (4-16). If VAD shows the desired source is active, the component of

desired signal should be excluded from the estimated subspace by (4-16).
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5.3 Generalized Sidelobe Canceler with Variable Nullforming

The variable nullforming could be applied on GSC to eliminate the nonstationary
interfering signal. The interfering signal subspace is obtained from the algorithm
described in previous section. Therefore, the fixed beamformer and blocking matrix
could be found by the same method described in section 4.5. Because the nullspace of
present emitting signal is obtained, the method to find blocking matrix is simplified.

From (4-12), the estimated subspace H contains the subspace of present
emitting signal so the nullspace of estimated subspace would block all present sources.

Therefore, the blocking matrix would be the nullspace of HT, that is,
Pau,. (@) € /\/(am(w) a'(0) af(0) - a:\f(a))),
where Py, (@) is the blocking matrix.

The fixed beamformer would block the interfering sources therefore applying the
nullspace of interfering signal to GSC by the method described by (3-9)-(3-15) in

section 4.5 then the fixed beamformer would be obtained. The fixed beamformer is
Wegr,. (@) = Uypp (@)W, (@)
Where W, (@) is the weighting estimated by (3-12)

In Figure 5-4, every time the variable nullformer algorithm updates the FBF and
BM, the ANC would be reset to initial value and then restart the adaption. Recalling

(2-24), the ANC is same as the one in GSC.
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Chapter 6

Experimental Result

6.1 Experimental Environment and Test Scenario

The proposed algorithm was tested by using the data recorded in a real
environment with a uniform linear microphone array of eight un-calibrated
microphones. The distance between each microphone is 6 cm. The size of the room is
5m x 4 m x 3 m and the microphone array was placed on a table at a distance of 0.5 m
from the wall. The arrangement of.microphone array and sound sources is showed in

Figure 6-1.

mic8 mic7 mich mich mic4 mic3 mic2 micl

(Q GCmQ 6cm© 6ch_i’Ci©60m Q 60m©6cm QJ
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v H -
. ] -
. / e
. . /

...........................

Figure 6-1 The location of microphone array and sources
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The desired speech signal is located at 0° consists of sentences spoken by male.
Two nonstationary interfering sources are located at 60° and -60°, one male voice from
60° and one frmale voice from -60°. One babble noise is located at -45°. The distance
between these sources and the middle of microphone array is 1m. The training data
from 7 directions are babble noise or sentences spoken by male and female, and the

locations of these training sources are described in Table 1.

Degree | -60° -45° -30° 0° 30° 45° 60°

Type Femalel Babble Femalel Malel Male2 Female2 Male2

Table 1 Sources for training data
The sound sources are recorded independently for the purpose of estimating the
segmental noise level (segNL) and log spectrum-distortion (LSD). The data for testing
purification is obtained by combining these sources with different time shifting. The
testing data for estimating the performance of beamforming methods can be separated
into five different scenarios for different time intervals. These five test scenarios are
depicted in Table 2. The waveform and frequency spectrum of original desired source,

interfering sources and noise are showed in Figure 6-2.

Scenario Time(Sec) Source Interference Stationary
C1l 0~20 P1 None -45°
C2 20~40 P1 P2 -45°
C3 40~60 P1 P2P3 -45°
C4 60~80 None P2P3 -45°
C5 80~100 None P3 -45°

Table2  Test scenario
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Figure 6-2 Frequency spectrum and waveform of sound sources
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6.2 Experimental Results of GSC with Variable Nullforming

Before executing the variable nullforming algorithm, there are some parameters to
be set. These parameters are described in Table 3. Figure 6-3 shows the comparison of

received noisy signal and the signal enhanced by GSC with variable nullforming.

Parameter Descrition Value
fs Sampling rate 8000 Hz
Neer FFT size 512 taps
FFTOVLP | The overlap size of FFT 256 taps
Lrrr The training length of RTFs 20 frames
Lsec The length for estimating signal subspace 10 frames
Tsea Period of weighting update 2 sec
n The ratio of least square error threshold for 0.7

stopping ORLS

A The factor of Tikhonov regularization 10"
Tvap The frequency band for VAD Statistics 1000 Hz~3000 Hz
THvap VAD threshold 50
U The NLMS step size 0.05

Table 3 The parameters used for GSC with variable nullforming
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Figure 6-3 Frequency spectrum and waveform of received signal and purified signal
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6.3 Performance Estimation

The performance of adaptive filter would be affected by the existence of desired
source. Therefore, the performance estimation would be tested under noncausal fixed
beamformer. The adaptive filter would approach it’s best performance after a while so
the experiment copy the weighting of adaptive beamformer to fixed beamformer when
the adaptive filter attach it’s best performance in each scenario. Then the weightings of
beamformer are used to filter the signal under such scenario. Figure 6-4 shows the test

procedure of the experiment.

X, (K, @) —»| > >
X, (K, ) ’D

¥

. Adaptive
o Beamforber

Xy (K, @) »D

— y(k,o)

{} Copy coefficients

Fixed

Beamformer | yi(k @)

R +

>

Figure 6-4 Test procedure for evaluating the performance
For the experiment, six speech enhancement methods are used for comparison.
These methods are RSAB, GSC, RSAB with nullforming (NRSAB), GSC with one
fixed nullforming to P2 (NGSC1), GSC with two fixed nullforming (NGSC2) and
GSC with variable nullforming (VNGSC).
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For RSAB, the weightings of beamformer are trained when P2 and P3 are
emitting simultaneously in training phase. The training length is 40 frames. The
experiment does not apply VAD to the RSAB method. Therefore, the beamformer is
fixed in filtering phase. The NRSAB method pre-trained the interfering sources
independently to obtain the RTFs of these interfering sources. Then use these RTFs to
generate the null space of interfering sources. The test method of NRSAB is the same
as used in RSAB.

The RTF of desired source is obtained for the GSC method. For NGSC1, the
nullformer is the null space of P2 only; while for NGSC2, the nullformer is the null
space of P2 and P3. Two different methods for the performance index are performed as
follows.

1. Segmental noise level (segNL):
One quality measure for evaluating the performance of noise reduction is

segmental noise level, which is-defined as follows

L

Seg NL (dB) =%Z(lOIoglO[ZN:ﬁ2(n+IN)D (5-1)

1=1

SegNL evaluates the noise-only signal so the desired source must be segmented
from the data and leaving the noise-only signal for testing. After filtering the
noise-only signal, the output of the beamformer would be the reduced noise signal.
The reduced noise signal is used to evaluate the segmental noise level.

The comparison of segmental noise level between different methods is
summarized in Table 4. Channel 1 is the original interfering sources received from
channel 1. Condition-C2 contains one desired source-P1 and one interfering source-P2.
NGSC1 blocks the first interfering source P1 only so the nullity of NGSC1 would be
larger than NGSC2. Comparing the noise level under condition C2, NGSC1 performs

better than NGSC2. There’s only one interfering source-P1 in the environment.
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Therefore, the larger nullity would make the spatial filter sharper.

For condition C3, there are two interfering sources-P2 P3, one desired source- P1
and one ststionary noise in the environment. NGSC2 would perform better under such
condition because the nullformer of NGSC2 has initially blocked two interfering
sources from two directions. The nullformer of NGSC1 does not block another
interfering source P3. Because the nullspace interfering sources is estimated and
updated real-timely, VNGSC performs better than NGSC1 but worse than NGSC2
under C3.

There are two interfering sources and one ststionary noise under condition C4;
one interfering source and one ststionary noise under condition C5. NGSC2 performs
better than NGSC1 cause the interfering signal- P3 is blocked by the nullformer of
NGSC2. Because the nullformer.would enhance the signal from directions other than
the desired direction, NGSC1 performs even worse than GSC under C5. The VNGSC
performs better than NGSC1 and NGSC2 when there’s no desired source.

NRSAB performs best under-every-condition because the existence of interfering

sources is already known and the weightings of beamformer are well trained.

Cl C2 C3 C4 C5
Channel 1 78.1432 80.8256 83.0169 83.9901 83.9080
RSAB 70.0936 75.9180 79.0773 79.0442 76.4045
GSC 72.6745 80.1337 81.9863 80.5743 77.1528
NRSAB 69.9616 75.2822 77.6048 77.5365 74.2547
NGSC1 72.8694 79.4318 81.6690 80.3390 77.7297
NGSC2 73.8355 79.4956 80.0839 79.1322 74.9946
VNGSC 75.4000 79.4519 80.5347 78.4874 74.8816
Table 4 Segmental noise level of different speech enhancement methods

50



2. Log spectrum distortion (LSD)

The performance of noise reduction and distortion is a trade-off of a beamformer.
The better noise reduction performance may cause more distortion. Therefore, another
quality measure for evaluating the performance of distortion is log-spectral distortion,

which is defined as

o=
N

- 2542

K
- | 5+l

[10g,, S (k.1)~ log,, ¥$ (.1 2} (5-2)

where
s (k1) = max{[s (k. o]
is used to confine the log-spectrum dynamic rang about 50 dB i.e.

_ 1(-50/10 2
5=10 mka}x{‘s(kl)‘ }

The LSD compares the ariginal desired signal with the enhanced signal. LSD of
different methods are evaluated by using the original desired source recorded by
microphone one and the enhanced signal by.each method. The condition C4 and C5
are noise-only cases so the first three conditions are compared.

The comparison of LSD between different methods is summarized in Table 5. For
C1, the environment exists desired source and a ststionary noise. The recorded desired
source contains background noise and the signal enhancement methods would
eliminate the noise. Therefore, the LSD of the enhancement method may be worse
than the original received signal under highly SNR condition. Because GSC with
nullformer eliminates more interfering signal, the LSD of NGSC1, NGSC2 and
VNGSC are worse than GSC under C1.NGSC1 performs better than NGSC2 under C2,
while NGSC2 performs better in C3. The VNGSC performs better than NGSC2 under
C2 but worse in C3, which shows that the nullforming algorithm would be change

according to the present acting interfering sources.
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C1 C2 C3
Channell 0.3347 0.6301 0.7425
RSAB 0.4328 0.5522 0.5323
GSC 0.3782 0.5938 0.5781
NRSAB 0.3994 0.5173 0.5193
NGSC1 0.4019 0.5761 0.5780
NGSC2 0.4697 0.5965 0.5524
VNGSC1 0.4141 0.5731 0.5934
Table5  Log spectrum distortion of different methods
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Chapter 7

Conclusion and Future Study

The proposed variable nullforming algorithm would be used to eliminate the
nonstationary interfering signal. The algorithm uses order recursive least square to
approach the signal subspace. Because the existence of sources from different
directions is unknown, the subspace distance would be used to find the similarity of
present estimated subspace and pre-estimated subspace from different directions.

The subspace distance would be used to find the existence of emitting sources.
Therefore, the algorithm could be used .on_multiple sources localization. Assume the
RTFs from each direction are.obtained, the statistics of subspace distance in each
frequency bin would show the-existence of sources.

The nullforming algorithm could be used as directional VAD. In the thesis, the
threshold of VAD is not discussed. Figure'5-5 shows that the statistics of VAD would
be affected by the number of sources. Therefore, a method for finding the entropy of
received signal could be used on the factor of threshold.

There are several areas for improvement. The variable nullforming is updated
from the past received data so if the existence of desired signal changed severely, the
nullformer would make a distortion to the desired signal. If a perfect VAD applied on
the algorithm, the algorithm doesn’t need the previously estimated RTFs. The VAD
could tell whether the desired source is in action alone or not in action. The interfering
signal subspace would be updated when desired source is inactive and update the RTF

of desired source when desired source is in action only.
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