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應用向量次序統計與模糊梯度於彩色影像之

自動邊緣偵測 

 
學生:劉品宏            指導教授: 張志永博士 

 

國立交通大學電機與控制工程研究所 

 

摘要 

 

本論文，提出改進基於向量次序統計之彩色邊緣偵測技術的方法，我們的邊

緣偵測方法包含兩個部份，首先，第一部份利用模糊梯度的概念來估測每個處理

像素的梯度方向，並且根據此方向來調整相對應的視窗方位；第二部部分依向量

次序統計計算向量平均距離(VMD)，如此一來，整合了向量次序統計與模糊梯度

的偵測方法能夠產生更為穩健的邊緣偵測響應。更進一步，我們將此技術整合到

我們所提出的門檻偵測方法，此方法依據影像內容自動作最佳化調整門檻，而不

需要手動選取。由測試彩色合成影像與實際影像的數據顯示，我們的自動彩色邊

緣偵測是非常方便與可靠的。 
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Applying Vector Order Statistics and Fuzzy Gradient to 

Automatic Edge Detection of Color Images 
 

STUDENT: Pin-Hung Liou       ADVISOR: Dr. Jyh-Yeong Chang 
 

Institute of Electrical and Control Engineering 
National Chiao-Tung University 

 
ABSTRACT 

 
In this thesis, we have proposed an improvement of color edge detector based on 

vector order statistics. The proposed detector consists of two stages. In the first stage, 

we use the concept of fuzzy gradient to estimate the direction of the gradient for every 

processing pixel in the image and adjust the corresponding processing window 

according to this detected direction for reliable edge detection setup. The second stage 

computes the vector mean distance (VMD) based on vector order statistics. Hence, the 

proposed detector, which integrates vector order statistics and fuzzy gradient, can 

provide more robust response for edge detection. Furthermore, we also combine the 

edge detector to our proposed thresholding method, which can automatically 

determine an optimal threshold and be adaptive to different image contents without 

manual intervention. Thus, the excellent results by our proposed edge detection 

scheme demonstrate that it is very user friendly and confident. 
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Chapter 1  Introduction 
 

1.1 Motivation 

 

Edge detection plays an important role in image processing and computer vision 

because of high-level image processing tasks such as image segmentation, object 

recognition, tracking, stereo analysis, and image coding depend on the quality of the 

edge detection procedure. The performance of these tasks is therefore tremendously 

affected by the goodness of edge detection. In grayscale edge detection, the Canny 

edge detector [1] has become a standard. This is partly because its nonmaximal 

suppression and thresholding with hysteresis stages produce thin, well-connected edge 

maps. For an image, edges exist at the boundary of objects cannot be detected in 

grayscale if there are different hues but no changes in intensities since the color cue is 

lost during grayscale conversion. Objects will be treated like one big object in the 

scene when they cannot be distinguished in grayscale. In addition, edge detection is 

sometimes difficult in low contrast images but rather sufficient results can be obtained 

in color images. 

Consequently, the recent attention has been given to the development of color 

edge detection operators. Humans can differentiate thousands of colors compared to 

about two dozen shades of gray; hence, grayscale images do not carry all the edge 

information that human visual system (HVS) can detect. In [2], Novak and Shafer 

found that luminance component makes up 90% of all edge points in a color image 

but the remaining 10% can be crucial for subsequent techniques that rely on edges in 

an image; in some cases the additional information provided by color is of utmost 

importance. This approach is compatible with that of the HVS where color plays a 
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significant role in the perception of boundaries. Multi-dimensional nature of color 

makes it more challenging to detect edges in color images, and often increases the 

computational complexity threefold compared to gray scale edge detection. Hence, 

color edge detection algorithms accept from the beginning that all of the efforts are to 

find the remaining 10% of the edges. 

In this thesis, we propose an improvement of color edge detector based on vector 

order statistics (VOS) [3], [4]. In this approach, we use the concept of fuzzy gradient 

[5], [6] to estimate the direction of the gradient for every pixel in the image. For using 

an adjustable window according to the direction of the gradient, it is more exact to 

calculate the local maximum edge response for every pixel, and an automatic 

threshold technique is adaptive to threshold the local maximum edge response for the 

image content. 

 

1.2  Color Edge Detection 

 

In the review paper on color image segmentation, Ruzon and Tomasi [7] go 

further and group color edge detection methods into three categories: output fusion 

methods, multidimensional gradient methods and vector methods. Output fusion 

methods apply single-channel edge detection techniques to each color plane and then 

combine the results.  

In multidimensional gradient methods, the gradients from the individual channels 

are recombined before the edge decision, giving rise to a single edge estimate. Early 

work by Scharcanski and Venetsanopoulos [8] is an approach based on the VOS. 

Trahanias and Venetsanopoulos employed the reduced ordering (R-Ordering) by the 

VOS edge detectors of [3], [4]. The robust color morphological gradient (RCMG) 

edge detector [9] identifies the maximum and minimum pixels in one operation, 



 3

although it does not distinguish between them. This is in contrast to the VOS edge 

detectors that sort the pixels in ascending order from the vector median to the vector 

extremum. The matrices are then summed over all channels and the edge magnitude 

and direction given by the principal eigenvalue and the related eigenvector, 

respectively. Variations of this approach have been used by Cumani [10]. 

    The main problem with both output fusion and multidimensional gradient 

methods is how to combine the channels to give a final result. For example, The 

simplest VOS operator is the vector range edge detector that measures the distance 

between the lowest and highest ranked vectors, i.e., the vector median and the vector 

extremum, respectively. The minimum vector dispersion (MVD) was shown to be the 

most effective that proposed to increase the robustness to noise . However, the MVD 

is unable to provide an estimate of edge direction. 

 

1.4 Automatic Thresholding Technique 

 

Thresholding is a fundamental technique applied in many image processing 

applications. To enable the building of robust machine vision systems, it would be 

preferable to automate the edge thresholding process which is adaptive to different 

image contents without manual intervention. 

There are many thresholding algorithms published in the literature. The Otsu [11] 

algorithm is based on discriminant analysis and uses the zeroth-order and the 

first-order cumulative moments of the histogram for calculating the value of the 

thresholding level. The Rosin algorithm [12] fits a straight line from the peak of the 

intensity histogram to the last non-empty bin. The point of maximum deviation 

between the line and the histogram curve will usually be located at a corner which is 

selected as the threshold value. The new feature image proposed by Rakesh [13] 
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makes it easier to determine hysteresis thresholds. 

Selecting an appropriate thresholding algorithm can be a difficult task. The 

problem is that different algorithms typically produce different results since they 

make different assumptions about the image content. Therefore, we will introduce an 

automatic thresholding method that can find the best hysteresis thresholds from all 

possible parameters. 

 

1.5 Thesis Outline 
 

The thesis is organized as follows. Before introducing the technique of our edge 

detection and automatic thresholding method, the basic concepts concerning the VOS 

and color edge detector base on VOS are introduced in Chapter 2. In Chapter 3, we 

describe our method that improve the disadvantage of the color edge detector which is 

introduced in Chapter 2, and we also in details describe our automatic thresholding 

method. In Chapter 4, the experiment results of our automatic color edge detection 

techniques are shown and compared. At last, we conclude this thesis with a discussion 

in Chapter 5. 
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Chapter 2  Introduction to Vector Order Statistics 

and VMD Color Edge Detector 
 

In this chapter, we briefly explain the basic concepts of vector order statistics and 

VMD (vector mean distance) color edge detector. 

 

2.1  Vector Order Statistics  

 

2.1.1 Vector Order Statistics Review 

 

Scalar order statistics have played an important role in the design of robust signal 

analysis techniques. This is due to the fact that any outliers will be located in the 

extreme ranks in the sorted data. Consequently, these outliers can be isolated and 

filtered out before the signal is further processed. Ordering of univariate data is well 

defined and has been extensively studied in order statistics [14]. Let the n  random 

variables iX , i  = 1, 2, …, n , be arranged in ascending order of magnitude as 

                    (1) (2) ( )... nX X X≤ ≤ ≤                        (1)     

Then the i-th random variable ( )iX  is the so-called thi  order statistic. The 

minimum (1)X , the maximum ( )nX , and the median ( 2)nX  are among the most 

important order statistics, resulting the min, the max, and the median filters, 

respectively. 

The concepts are, however, not straightforwardly expanded to multivariate data 

since there is not any universal way of defining an ordering in multivariate data. 

There has been a number of ways proposed to perform multivariate data ordering that 
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are generally classified into the ordering of multivariate data [15]: marginal ordering 

(M-ordering), reduced or aggregate ordering (R-ordering), partial ordering 

(P-ordering), and conditional ordering (C-ordering). 

 

2.1.2  Characteristics of Vector Order Statistics 

 

Let X  represent a -dimensionalp  multivariate X = 1 2[ , ,..., ]T
pX X X  where 

,lX  l = 1, 2, …, p  are random variables and let ,iX  i = 1, 2, …, n  be an 

observation of .X  Each iX  is a -dimensionalp  vector iX = 1 2[ , ,..., ] .i i i T
pX X X  

In M-ordering, the multivariate samples are ordered along each one of the 

-dimensionsp  independently. For color signals, this is equivalent to the separable 

method where each one of the colors is processed independently. The i-th marginal 

order statistic is the vector ( ) ( ) ( ) ( )
1 2[ , ,..., ] ,i i i i T

pX X X X=  where ( )i
rX  is the thi  

largest element in the r-th channel. The marginal order statistic ( )iX  may not 

correspond to any of the original samples 1 2, ,..., nX X X  as it does in one dimension. 

In R-ordering, each multivariate observation iX  is reduced to a scalar value id  

according to a distance criterion. A metric that is often used is the generalized distance 

to some point. The samples are often arranged in ascending order of magnitude of the 

associated metric value .id  

In P-ordering, the objective is to partition the data into groups or sets of samples, 

such that the groups can be distinguished with respect to order, rank, or extremeness. 

This type of ordering can be accomplished by using the notion of convex hulls. 

However, the determination of the convex hull is difficult to do in more than two 

dimensions. Other ways to achieve P-ordering are special partitioning procedures and 
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thus are not preferred. Another drawback associated with P-ordering is that there is no 

ordering within the groups and thus it is not easily expressed in analytical terms. 

These properties make P-ordering infeasible for implementation in digital image 

processing. 

In C-ordering, the multivariate samples are ordered conditionally on one of the 

marginal sets of observations. This has the disadvantage in digital image processing 

that only the information in one component (channel) is used. 

From the above, it is evident that R-ordering is more appropriate for color image 

processing than the other vector ordering methods. If we employ as a distance metric 

the aggregate distance of iX  to the set of vectors 1 2, ,..., nX X X , then 

                 
1

 ,
n

i k
i

k
d X X

=

= −∑  1,  2, ..., i n=                 (2) 

where   ⋅  represents an appropriate vector norm. The arrangement of the id s in 

ascending order ( )(1) (2) ( )... nd d d≤ ≤ ≤ , associates the same ordering to the 

multivariate iX s. 

     (1) (2) ( )... nX X X≤ ≤ ≤                       (3) 

In the ordered sequence, (1)X  is the vector median of the data samples which is 

introduced by vector median filters [16]. It is defined as the vector contained in the 

given set whose distance to all other vectors is a minimum. Moreover, vectors 

appearing in low ranks in the ordered sequence are vectors centrally located in the 

population, whereas vectors appearing in high ranks are vectors that diverge mostly 

from the data population. These samples are generally called “outliers.” It follows that 

this ordering scheme gives a natural definition of the median of a population and of 

the outliers of a population. 
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2.2 VMD Detector 

  

For a color image I of size nm× , each pixel location ( )ji,  is represented by a 

three-tuple color vector ( ) ( ) ( ) ( )( )jiIjiIjiIjiI ,,,,,, 321= , in which ( )jiI p ,  

denoting the p-th component of a color space for mi ...,,2,1=  and nj ...,,2,1= . 

For each pixel location ( )ji, , by using a 3 3×  window, we compute the local sum of 

distances to describe the relationship between the current pixel vector ( )jiI ,  and its 

neighboring pixel vectors. Let ( )jidl ,  be the local sum of distances for the current 

pixel vector ( )jiI , , then 

               ( ) ( ) ( )∑ ∑
+

−=

+

−=

−=
1

1

1

1

,,,
i

ik

j

jh
l hkIjiIjid                 (4) 

where   ⋅  represents a 2-norm. After we have computed the local sum of distances 

( )jidl ,  of the current pixel location ( )ji, , we sort the distance values in the 

neighboring area in ascending order (1) (2) (9)... .l l ld d d≤ ≤ ≤  The distance values 

(1)ld and (9)ld  correspond to the minimum and the maximum of the nine distance 

values, respectively. 

By the concept of R-ordering, the ordering of (1) (2) (9)...l l ld d d≤ ≤ ≤  

associates the same ordering to the pixel vectors, (1) (2) (9)... ,X X X≤ ≤ ≤ which 

means that (1)X  is the pixel vector having the smallest local sum of distances and 

(9)X  is the pixel vector having the largest local sum of distances. Therefore, if the 

current pixel location ( )ji,  has an edge, the vector ( )jiI ,  must have a larger 

response of ( )jidl , . 

Although we now obtain the information on the smallest and the largest local 

sum of distances, the information contained among vectors (1) (2) (9),  ,  ...,  X X X  
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should also be captured and be useful for edge detection. The maximal variation 

among vectors is an indication of the distribution of the nine vectors. Since that 

vectors (1) (2) (9),  ,  ...,  X X X  correspond to the ordering of the aggregate distances, 

the confined maximal variation cMV  among these vectors can be simply defined as 

         ( ) ( )( )1max +−= ii
c XXMV , 1,  2, ..., 8i =                (5)         

When the value cMV  is determined, we can also determine the exact two 

vectors ( )iX  and ( 1)iX +  which correspond to cMV .  ( )iX  and ( 1)iX +  further 

suggest that (1) (2) (9),  ,  ...,  X X X  can be classified into two clusters: (1) vectors, 

(1) (2) ( ),  ,  ...,  ,iX X X  from smaller side of the edge, and (2) vectors, 

( 1) ( 2) (9),  ,  ...,  ,i iX X X+ +  from larger side of the edge. Let sM  and lM  be the mean 

vector of the vectors (1) (2) ( ),  ,  ...,  ,iX X X  and the vectors ( 1) ( 2) (9),  ,  ...,  i iX X X+ +  

respectively. Thus, VMD can be defined as 

                     l sVMD M M= −                          (6) 

VMD detect the variation between two sides of edge (larger and smaller side) by 

a distance measure. Consequently, in a uniform area, where all vector values are close 

to each other, the output of  VMD will be small. On the other hand, the output of 

VMD will be large since sM  and lM  are the mean vectors of two sides of the edge. 
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Chapter 3  The Improvement of VMD Detector and 

Automatic Threshold Selection 

  

3.1  The Proposed Method 

     

The VMD method suffers from the disadvantage of the weak ability for detecting 

oblique edges due to the fact that its gradient magnitude is derived from the fixed 

window with the distance between the mean vector of the large side and the mean 

vector of the small side. In addition, in the presense of noise and for non-ideal edges, 

the maximal variation that splits the window into the large side and small side may 

not represent the distribution among the vectors in the fixed window, and then the 

VMD may produce an edge response that is not necessarily representative of the real 

gradient.  

To avoid these problems, we use an adjustable window that can rotate its 

orientation according to the direction of the gradient. In the 33×  window, we 

classify the direction of the gradient to four orientations, i.e., W−E direction ( o0 ), 

SW−NE direction ( o45 ), S−N direction ( o90 ), and SE−NW direction ( o135 ) that can 

be determined by the fuzzy gradient value which is introduced by the fuzzy image 

filter [5] and the fuzzy random impulse noise reduction method (FRINR) [6]. Thus, 

the new proposed method will combine VMD with the fuzzy image filter and FRINR 

that have the ability to estimate the direction of the gradient for each pixel and adjust 

the window for more exactly detecting edge response. 

In our approach, there are two steps that are used to define the direction of the 

gradient for each pixel in the color image. First, consider a color image I with size 

nm×  be represented by color vector ( ) ( ) ( ) ( )( )jiIjiIjiIjiI ,,,,,, 321= , in which 



 11

( )jiI p ,  denoting the p-th component of a color space, we calculate )( jig ,  and 

)( jimg ,  in the 33×  window as 

( )
( ) ( )

8

,,
,

1

1

1

1
∑∑
−= −=

−++
= k h

jiIhjkiI
jig                       (7) 

( )
( ) ( )

8

,,
,

1

1

1

1
∑∑
−= −=

−++
= k h

jighjkig
jimg                     (8) 

where   ⋅  represents a 2-norm and )( ji,  represents the i-th row and j-th column 

in the color image I. Because edge pixels and corrupted impulse noise pixels generally 

cause large )( jig ,  value, we also calculate )( jimg ,  that can help us to distinguish 

edge pixels and noise pixels. To discriminate edge pixels and noise pixels, we can 

define a fuzzy set denoted as large, and it corresponds to the membership function 

which is shown in Fig. 3.1. We see that we have to determine two important 

parameters a and b. The parameters a and b can be defined as 

             ( ) )( jimgjia ,, =                                         (9) 

             ( ) )( ( )jiajiajib ,2.0,, +=                                 (10) 

 

Fig. 3.1. The membership function corresponds to large. 

 

Second, we consider a 33×  neighborhood around the central pixel )( jiI , . 

Each of the eight neighbors of )( jiI ,  corresponds to one direction {North West 

(NW), North (N), North East (NE), East (E), South East (SE), South (S), South West 
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(SW), West (W)} that is displayed in Fig. 3.2(a). We use the concept of the fuzzy 

gradient value which contains the basic gradient value and the related gradient value. 

The basic gradient value is donated as )( jiID ,∇  of pixel position )( ji,  in direction 

set D ( { }SWSSEEWNENNWD ,,,,,,,∈ ). For example, 

             ( ) ) ( )( jiIjiIjiINW ,1,1, −−−=∇                           (11) 

( ) ) ( )( jiIjiIjiIN ,1,, −−=∇                              (12) 

 

 

(a) 

 
(b) 

Fig. 3.2. (a) The neighborhood around the central pixel )( jiI , . (b) Pixel 

indicated in gray are used to compute the fuzzy gradient value of  pixel )( jiI ,  

for NW direction. 
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TABLE 3.1 
The fuzzy gradient in each direction 

 

D Basic gradient Related gradient Correspond direction

NW 

N 

NE 

W 

E 

SW 

S 

SE 

)( jiINW ,∇  

)( jiIN ,∇  

)( jiINE ,∇  

)( jiIW ,∇  

)( jiIE ,∇  

)( jiISW ,∇  

)( jiIS ,∇  

)( jiISE ,∇  

)( 1,1 −+∇ jiINW , )( 1,1 +−∇ jiINW  

)( 1, −∇ jiIN , )( 1, +∇ jiIN  

)( 1,1 −−∇ jiINE , )( 1,1 ++∇ jiINE  

)( jiIW ,1−∇ , )( jiIW ,1+∇  

)( jiIE ,1−∇ , )( jiIE ,1+∇  

)( 1,1 −−∇ jiISW , )( 1,1 ++∇ jiISW  

)( 1, −∇ jiIS , )( 1, +∇ jiIS  

)( 1,1 +−∇ jiISE , )( 1,1 −+∇ jiISE  

SW−NE ( o45 ) 

W−E ( o0 ) 

SE−NW ( o135 ) 

S−N ( o90 ) 

S−N ( o90 ) 

SE−NW ( o135 ) 

W−E ( o0 ) 

SW−NE ( o45 ) 

 

Next, we also calculate the related gradient value which corresponds to each of eight 

directions. For example, Fig. 3.2(b) shows the related gradient of the NW direction 

and it can be expressed as 

            ( ) ) ( ) ( )( 1,12,1,1, −+−−=−+∇=∇′ jiIjiIjiIjiI NWNW        (13)  

       ( ) ) ( ) ( )( 1,1,21,1, +−−−=+−∇=∇ ′′ jiIjiIjiIjiI NWNW        (14) 

In Table 3.1, we show a detail of the eight directions in the column 1, the basic 

gradient corresponds to each direction in column 2, the two related gradients 

correspond to each direction in column 3, and the correspond perpendicular direction 

in column 4. Actually, in the 33×  window, the direction of the gradient only belong 

to W−E direction ( o0 ), SW−NE direction ( o45 ), S−N direction ( o90 ), and SE−NW 

direction ( o135 ). Thus, we can only compute the fuzzy gradient for the direction set 

ED where { }WNENNWED ,,,∈  that contains all the orientations in the 33×  

window. For example, computing the fuzzy gradient for the NW direction and SE 
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direction are both equivalent to computing the gradient for the SW−NE direction 

( o45 ). 

For each direction of the direction set ED, we calculate the fuzzy derivative 

donated as ( )jiP ,γ  in each pixel ( )ji,  for direction P, where EDP∈ . This is 

realized by the following fuzzy rule 1 : 

 

Fuzzy Rules 1. 

IF  

( )jiIP ,∇  is large AND ( )jiIP ,∇′  is large AND ( )jiIP ,∇ ′′  is large 

OR 

   ( )jiIP ,∇  is large AND ( )jiIP ,∇′  is not large AND ( )jiIP ,∇ ′′  is large 

OR 

   ( )jiIP ,∇  is large AND ( )jiIP ,∇′  is large AND ( )jiIP ,∇ ′′  is not large 

THEN ( )jiP ,γ  is large in direction P. 

 

The AND operator (OR operator) can be the minimum (maximum) that are the 

well-known triangular norms (together with their dual co-norms) in the fuzzy logic. 

For the not operator, we use the standard negator ( ) xxN −= 1  with ]1,0[∈x . The 

large is the fuzzy set corresponds the membership function LARGE that was defined 

above. The idea of this rule is to consider an edge passing though the pixel )( jiI ,  

and its neighborhood for the direction, i.e. SW-NE direction ( o45 ), not only the basic 

gradient value ( )jiIP ,∇  will be large, but also the related gradient ( )jiIP ,∇′  or 

( )jiIP ,∇ ′′  can expect to be large. Therefore, if two out of three gradient values are 

small, it is safe to assume that no edge exists in the considered direction. 
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Fig. 3.3. The membership function corresponds to absolute value 

 

Next, we again use a rule for each direction. The idea behind the rule is that if a 

pixel is assumed to be large in rule 1, then it probably can be consider as an edge for 

direction P, and the derivative value will be used to estimate the gradient direction of 

this pixel. Thus, we use the following rule 2 to compute P
gradientD . 

 

Fuzzy Rules 2. 

IF  
( )jiP ,γ  is large AND ( )jiIP ,∇  is absolute value 

THEN P
gradientD  is absolute value in direction P. 

 

where the fuzzy set absolute value corresponds to the membership function which is 

shown as Fig. 3.3 and the parameter 255=L  is used in the experiment. The AND 

operator is also the minimum in the fuzzy logic. 

    The final step in the computation of the fuzzy gradient is the defuzzification. We 

are interested in obtaining the direction that has maximum value of P
gradientD . *P , 

which is estimated to be the gradient direction in pixel ( )ji, , is determined by 

           ( )jiIDP P
gradientEDP

,maxarg
∈

∗ =                          (15) 

Finally, we rotate the window with the angle that corresponds to *P . For using 

the adjustable window, the VMD method will be more robust for detecting the edge 
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response. The experiment will be discussed in Chapter 4. 

 

3.2 Automatic Threshold Selection 

 

To automatically obtain the best threshold that is adaptive to the image contents, 

we propose a new method for hysteresis thresholding method combining the merits of 

Yitzhaky and Peli [17] and Medina et al. [18] methods. Yitzhaky and Peli can find the 

best thresholds within a set of possible values, but the performance will depend on the 

set of possible values choosen. On the other hand Medina et al. method is similar to 

Yitzhaky and Peli, but the performance will depend on one’s choice of the subset and 

the overset. In the following, we will introduce how to apply the thresholding 

methods to VMD method. 

 

3.2.1 Determine Parameter Set 

   Fig. 3.3 shows the symbolic graphic of the choice of parameter set. For an image I, 

let IE  be the unknown true edge points set of the image I with the condition 

III BEA ⊆⊆  where IA  and IB  are the subset and the overset of the image I. For 

a possible hysteresis thresholds set C, for example 

  { }highlowhighlowhighlow ttttttC <∈= ],1,0[,),(   

we want to find the parameter set T in the region between the subset IA  and the 

overset IB . Thus, we will get the best edge map 
highlow ttE ,  determined by hysteresis 

thresholds lowt  and hight  with Ttt highlow ∈),(  in the next section. 
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Fig. 3.3. The symbolic graphic of the choice of parameter set [18]. 

 

    Considering the feature image histogram is usually unimodal, we use the Otsu 

method [11] and the Rosin method [12] to determine the subset IA  and the overset 

IB . The Otsu method is not very sensitive on unimodal histograms and performs 

rigorously on detecting edge points for edge detection, but edge pixels detected by the 

Otsu method have a high probability of being true edge points. Thus, the edge map 

OtsuE  can be utilized as the subset of the image. The Rosin method is very sensitive 

on unimodal histograms and it can be noisy for edge detection, but the Rosin method 

can usually detect the true edge pixels together with many fakery ones. Thus, the edge 

map sinRoE  can be employed as the overset of the image. If the conditions 

sin, Rott EE
highlow

⊆  and 
highlow ttOstu EE ,⊆ hold, then the following expression can easily 

be proved  

0),( sin, =Rott EEFP
highlow

  

0),( , =Ostutt EEFN
highlow

                              (16) 

where FP and FN are False Positive and False Negative in ROC analysis [19]. Here, 

FP indicates that the points were decided as edges in 
highlow ttE ,  and coincide with 
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non-edge points in sinRoE . FN indicates that the points were decided as non-edges in 

highlow ttE , and coincide with edge points in OstuE . 

    Actually, there is some error probability may exist between OtsuE  and sinRoE  

such that we can not find any hysteresis thresholds lowt  and hight  with 

Ctt highlow ∈),(  and satisfing 0),( sin, =Rott EEFP
highlow

 and 0),( , =Ostutt EEFN
highlow

. 

For this case, we can consider whether the following expressions are true or not. 

               0),( sin, ≠Rott EEFN
highlow

 

0),( , ≠Ostutt EEFP
highlow

                               (17) 

0),( sin, ≠Rott EEFN
highlow

 implies that there are negatives in the edge map 
highlow ttE , that 

are positives in the set sinRoE , and 0),( , ≠Ostutt EEFP
highlow

 implies that there are 

positives in the edge map 
highlow ttE , that are negatives in the set OtsuE . Thus, let HC  

and KC  be the sets that define as 

{ }CttttC highlowhighlowH ∈= ,),(  with the condition (16) 

{ }CttttC highlowhighlowK ∈= ,),(  with the condition (17) 

 

The parameter set T can be determined by 

               If Φ≠HC  

Then the parameter set HCT =  

               Else if Φ≠KC  

Then the parameter set KCT =  

Else 

          Then the parameter set CT =  
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3.2.2 The Best Threshold Selection 

 

Here, we will find the best hysteresis thresholds within the parameter set T 

determined above. For a parameter set T, in the first, we can construct an image map 

PGT (potential ground truth) using all edge maps 
highlow ttE ,  that determined by the 

hysteresis thresholds with Ttt highlow ∈),( . Defining an edge pixel as  “1” and a 

non-edge pixel as “0” for all edge maps 
highlow ttE , , each pixel of the PGT image will get 

a value from the sum of the correspond pixel of all edge maps 
highlow ttE , . For example, 

consider a pixel Ip∈ , there are q different edge maps 
highlow ttE ,  with different 

hysteresis thresholds lowt  and hight , where Ttt highlow ∈),( , detect the pixel p as an 

edge pixel, then we mark the value of q to this pixel in the PGT image. It means that 

there are q hysteresis threshold sets support the pixel p to be an edge. 

Second, we will compute the maximum value of the PGT image. If the 

maximum value is L, then the iPGT  can be obtained by threshold the PGT image 

with possible thresholds 1...,,1,0 −= Li . For each iPGT  edge map, we calculate TP, 

TN, FP and FN that indicate True Positive, True Negative, False Positive and False 

Negative from comparing with each 
highlow ttE , , and the average of all the probabilities 

resulting are computed by 

∑
∈

=
)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
TP

N
TP   with 1...,,1,0 −= Li        (18) 

∑
∈

=
)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
TN

N
TN   with 1...,,1,0 −= Li        (19) 
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∑
∈

=
)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
FP

N
FP   with 1...,,1,0 −= Li        (20) 

∑
∈

=
)(

,
,

,

1
Ttt

EPGTPGT
highlow

hightlowtii
FN

N
FN   with 1...,,1,0 −= Li       (21) 

where 
hightlowti EPGTTP

,, indicates the pixels are edges in the iPGT  and coincide with 

edges in the
highlow ttE , .  

hightlowti EPGTTN
,, indicates the pixels are non-edges in the iPGT  

and coincide with non-edges in the
highlow ttE , . 

hightlowti EPGTFP
,,  indicates the pixels are 

edges in the iPGT  but detected as non-edges in the
highlow ttE , . 

hightlowti EPGTFN
,,  indicates 

the pixels are non-edges in the iPGT  but detected as edges in the
highlow ttE , . N represents 

the cardinality of the parameter set T. Next, the Chi-square test of the optimal 

threshold can be calculated by 

        
( )

i

ii

i

ii

i
PGT

PGTPGT

PGT

PGTPGT
PGT Q

QSp
Q

QSn −−

−

−
=

1
1

2χ                          (22) 

where 

        
iii PGTPGTPGT FPTPQ +=  

        
ii

i

i

PGTPGT

PGT
PGT FNTP

TP
Sn

+
=  

ii

i

i

PGTPGT

PGT
PGT FPTN

TN
Sp

+
=  

    Finally, a higher 2
iPGTχ  can obtain a better threshold. The best threshold in 

parameter set T is correspond to the value of i that maximizes 2
iPGTχ . Thus, we have 

the following conclusion: If 
{ }

2

1,...,1,0
maxarg

iPGT
Li

k χ
−∈

= , then the hysteresis thresholds 
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( )
( )

( )
highlow

highlow

tt
Ttt

thightlow Ett
,

,

** maxarg, μ
∈

=  will be the best choice, where 

( )
highlow ttE

,
μ  

2
,, khightlowt PGTEχ=  

( )
hightlowtk

hightlowtkhightlowtk

hightlowtk

hightlowtkhightlowtk

EPGT

EPGTEPGT

EPGT

EPGTEPGT

Q
QSp

Q
QSn

,

,,

,

,,

,
*

,
*

,
*

,
*

,
*

,
* 1

1
−−

−
−

=     (23) 

and 

hightlowtkhightlowtkhightlowtk EPGTEPGTEPGT FPTPQ
,,, ,,,

* +=  

hightlowtEkPGThightlowtEkPGT

hightlowtEkPGT

hightlowtk FNTP

TP
EPGTSn

,,,,

,,

,,
*

+
=  

hightlowtEkPGThightlowtEkPGT

hightlowtEkPGT

hightlowtk FPTN

TN
EPGTSp

,,,,

,,

,,
*

+
=  

 

One of  the drawbacks of Yitzhaky and Peli method is that the result depends 

on the parameter set we choose. For different parameter sets, very different results 

will be obtained. Thus, after the improvement of the choice of the parameter set, a 

more reliable result will be obtained. 
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Chapter 4  Experimental Results 
 

In Chapter 4, we compare our method with the original VMD detector on simple 

synthetic images in Section 4.1. In Section 4.2, the synthetic color images are 

generated for assessing the performance comparison with different automatic 

thresholding techniques. In the end of this chapter, for comparison, the compass 

operator of Ruzon and Tomasi [7], Canny edge detector [1], RCMG detector [9], and 

MVD edge detector [4] are used. We evaluate the edge detection techniques 

quantitatively by using Pratt’s Figure of Merit (FOM) [20] and Receiver Operating 

Characteristic (ROC) analysis [19]. 

 

4.1 Comparison with the Original VMD Detector 
 

We mentioned that VMD detector has weak ability for detecting oblique edges in 

Section 3.1, and for improving the drawbacks of the VMD detector, we also proposed 

the method that adjusted the orientation of window according to the direction of the 

gradient which was derived from the fuzzy gradient method.  

To verify our approach is useful for VMD detector, some simple tests are shown 

as Figs. 4.1 − 4.5. As shown in Figs. 4.1 − 4.5, we treat these test images for 

partitioning into white, black, and gray regions, and the edges for different directions 

are salient. Examining the edge strength as scale value from the original VMD 

detector and the improved VMD detector, the results are plotted. Fig. 4.1 and Fig. 4.2 

show the test images with the salient edges for o0  and o90 of the edge directions, 

respectively. We can see the edge responses of the original VMD detector and the 

improved VMD detector are similar in Figs. 4.1(b)− (c), and Figs. 4.2(b)− (c) show 

that the edge response of the original VMD detector becomes blunter than the edge  
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(b) (c) 

Fig. 4.1. Comparison of the edge response for o0  edges. (a) The test image. (b) The 

edge response of the original VMD detector. (c) The edge response of the improved 

VMD detector. 

 

response of the improved VMD detector. Also the ideal edges for o45  and o135 of 

the edge directions shown as Fig. 4.3(a) and Fig. 4.4(a), respectively, both the edge 

responses of the original VMD detector are less distinguishable in the Figs. 

4.3(b)− (c)and Figs. 4.4(b)− (c). An oblique edge for the arbitrary direction is shown 

as Fig. 4.5(a). For Figs. 4.5(b)− (c), the original VMD detector produce three peaks 

such that a worse edge map may occur with wrong edges. 

    However, a strong and sharp response is much distinguishable for edge detection. 

The proposed improved VMD detector can maintain the shaper response for different 

edge directions. These experiments show that the propose method is more robust and  
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(b) (c) 

Fig. 4.2. Comparison of the edge response for o90  edges. (a) The test image. (b) 

The edge response of the original VMD detector. (c) The edge response of the 

improved VMD detector. 

 

reliable. 
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(b) (c) 

Fig. 4.3. Comparison of the edge response for o45  edges. (a) The test image. (b) 

The edge response of the original VMD detector. (c) The edge response of the 

improved VMD detector. 
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(b) (c) 

Fig. 4.4. Comparison of the edge response for o135  edges. (a) The test image. (b) 

The edge response of the original VMD detector. (c) The edge response of the 

improved VMD detector. 
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Fig. 4.5. Comparison of the edge response for an oblique edge with the arbitrary 

direction. (a) The test image. (b) The edge response of the original VMD detector. (c) 

The edge response of the improved VMD detector. 
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4.2 Comparison with Different Automatic Thresholding Techniques 
 

4.2.1 Quantitative Evaluation 

     

    The evaluations of edge detectors are usually subjective by observers [21]. Most 

of the objective evaluation methods assume that the specific features of images are 

known such as boundaries in simple synthetic images. In such cases, for the known 

ideal edges considered to be the ground truth (GT), the quantitative of the edge 

detection can be measured. In nature images, Bowyer [22] manually created 

specification of the edges to form a GT, and Fernandez [23] used an automatic 

statistical method to generate GT images. However, for a quantitative evaluation, 

different criteria will produce different result. The approach adopted here is to use the 

GT images generated from synthetic image with the widely used performance 

measures, FOM [20] and ROC analysis [19].  

First, The FOM is defined by  

         
{ } ( )2

1

1 1 100%
max ,  1

DI

iD I i

FOM
I I dα=

= ×
+

∑                 (24) 

where DI  and II  are the number of detected and number of ideal edge points 

respectively, ( ) >0α  is a calibration constant, and id  is the edge deviation for the 

i-th detected edge pixel. In all cases 0 FOM 1;< ≤  for a perfect match between the 

detected and the ideal edges FOM 1=  whereas the detected edges deviate more and 

more from the ideal ones FOM goes to zero. The scaling constant 2.0=α  proposed 

in [9] has been adopted.  

Next, we would like to introduce the True Positive Rate (TPR), True Negative 

Rate (TNR) and Normalized Accuracy (NACC) of ROC analysis. The TPR is defined 

by  
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( )
100%TPTPR

TP FN
= ×

+
                     (25) 

where TP represents the number of pixels which are detected as an edge pixel and 

belong to an ideal edge pixel, and FN represents the number of pixels which are 

detected as an edge pixel but belong to an ideal non-edge pixel. On the other hand, the 

TNR is defined as  

100%TNTNR
TN FP

= ×
+

                      (26) 

where TN represents the number of pixels which are detected as an non-edge pixel 

and belong to an ideal non-edge pixel, and FP represents the number of pixels which 

are detected as an non-edge pixel but belong to an ideal edge pixel. Finally, we 

calculate the normalized accuracy (NACC) by 

                    100%
2

TPR TNRNACC +
= ×                     (27) 

NACC = 100% corresponds to a perfect match between the ideal edge and detected 

edge points and as the deviation of the edge points increase, the NACC approaches to 

zero percentage. 

 

4.2.2 Edge Results of Different Threshold Methods in Synthetic Color Images 

 

In this experiment, eleven 128×128 and eleven 256×256 synthetic color images 

were used. The 128×128 and 256×256 synthetic images individually have the same 

form with different color components. We compared the performance of the improved 

VMD detector, where thresholds were determine by Yitzhaky and Peli method [17], 

Medina et al. method [18], and our thresholding method, respectively. In Figs. 

4.6−4.9, we show some of the edge detection results of the synthetic color images for  
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(a) 

  

(b) (c) 

 

(d) 

Fig. 4.6. Edge detection results of the 128×128 synthetic image Sample 1 detected by 

the improved VMD detector, where the thresholds are determined by different 

methods. (a) Original image. (b) Thesholding by Yitzhaky and Peli method. (c) 

Thesholding by Medina et al. method. (d) Thesholding by our method. 

 

comparison. For Figs. 4.6(b)− (d), the edge map thresholding by our method detects 

more true edges than the other two thresholding method. Fig. 4.7(b) represents the 

edge map thresholding by Yitzhaky and Peli method is less sensitive than the other 

two shown as Figs. 4.7(c) and (d). In 256×256 synthetic images, our thresholding 

method also gets more robust results when the color components vary in Figs. 4.8 and 

4.9. 
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(a) 

  

(b) (c) 

 

(d) 

Fig. 4.7. Edge detection results of the 128×128 synthetic image Sample 2 detected by 

the improved VMD detector, where the thresholds are determined by different 

methods. (a) Original image. (b) Thesholding by Yitzhaky and Peli method. (c) 

Thesholding by Medina et al. method. (d) Thesholding by our method. 

 

Tables 4.1, 4.2 and 4.3 show the average performances of the eleven 128×128, 

256×256 synthetic images and the total images detected by the improved VMD 

detector with various thresholding methods which is shown in the order of column 1. 

The column 2 to column 5 shows the value of FOM, TPR, TNR, and NACC, 

respectively. From Tables 4.1−4.3, we can see that our thresholding method performs 

well than the others. 
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(a)                (b) 

 

(c) (d) 

Fig. 4.8. Edge detection results of the 256×256 synthetic image Sample 3 detected by 

the improved VMD detector, where the thresholds are determined by different 

methods. (a) Original image. (b) Thesholding by Yitzhaky and Peli method. (c) 

Thesholding by Medina et al. method. (d) Thesholding by our method. 
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(a)                (b) 

 

(c) (d) 

Fig. 4.9. Edge detection results of the 256×256 synthetic image Sample 4 detected by 

the improved VMD detector, where the thresholds are determined by different 

methods. (a) Original image. (b) Thesholding by Yitzhaky and Peli method. (c) 

Thesholding by Medina et al. method. (d) Thesholding by our method. 
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TABLE 4.1 
The average evaluation results of the eleven 128×128 synthetic color images detected 

by the improved VMD detector with the following thresholding methods 

 

Thresholding Method FOM (%) TPR (%) TNR (%) NACC (%)
Yitzhaky and Peli 384.89  99.98 99.17 358.99  

Medina et al. 286.96  99.98 99.74 286.99  

Our method 154.99  99.98 99.96 197.99  

 
 
 

TABLE 4.2 
The average evaluation results of the eleven 256×256 synthetic color images detected 

by the improved VMD detector with the following thresholding methods 
 
Thresholding Method FOM (%) TPR (%) TNR (%) NACC (%)

Yitzhaky and Peli 355.93  99.96 99.63 380.99  

Medina et al. 298.96  99.96 99.83 290.99  

Our method 140.99  99.96 99.96 196.99  

 
 
 

TABLE 4.3 
The average evaluation results of the total synthetic color images detected by the 

improved VMD detector with the following thresholding methods 
 
Thresholding Method FOM (%) TPR (%) TNR (%) NACC (%)

Yitzhaky and Peli 370.91  99.97 99.40 369.99  

Medina et al. 292.96  99.97 99.78 288.99  

Our method 147.99  99.97 99.96 197.99  

 

4.2.3 Edge Results of Different Threshold Methods in Nature Color Images 

     

In nature color images, the subjective performance of the edge detection remains 

a fundamental component of results interpretation. Figs. 4.10 and 4.11 show the  
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(a) 

 

(b) (c) 

 

(d) 

Fig. 4.10. Edge detection results of the Peppers image detected by the improved VMD 

detector, where the thresholds are determined by different methods. (a) Original 

image. (b) Thesholding by Yitzhaky and Peli method. (c) Thesholding by Medina et al. 

method. (d) Thesholding by our method. 
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(a) 

 

(b) (c) 

(d) 

Fig. 4.11. Edge detection results of the Lena image detected by the improved VMD 

detector, where the thresholds are determined by different methods. (a) Original 

image. (b) Thesholding by Yitzhaky and Peli method. (c) Thesholding by Medina et al. 

method. (d) Thesholding by our method. 

 



 37

Peppers and Lena images for comparison. The Medina et al. method supplies the most 

sensitive result within three thresholding methods in comparison, but it also detect 

more noise. The Yitzhaky and Peli method performs most rigorously and miss some 

edges that really exist in the image. In comparison, our thresholding method not only  

detects more true edges than the Yitzhaky and Peli method but also be less noisy than 

the Medina et al. method. 

 

4.3 Comparison with Other Color Edge Detector 
 

4.3.1 Quantitative Evaluation in Synthetic Color Images 

     

Canny [1] presented the very popular aspects that good edge detection must not 

miss the true edge nor detect non-edge points as the edge points and produce thin and 

continuous lines. For these criteria, we also use the eleven 128×128 and eleven 

256×256 synthetic color images for quantitative evaluation of the color edge detectors. 

The performances of our automatic color edge detection techniques are compared to 

those by the compass operator of Ruzon and Tomasi [7], Canny edge detector [1], 

RCMG detector [9], and MVD edge detector [4].  

Fig. 4.12 show the edge detection results of 128×128 synthetic images for 

comparison. For the Fig. 4.12(b), using the parameter 94.0=σ , the figure is obtained 

by subjectively adjust the hysteresis thresholds for the compass operator with 

nonmaximal suppression (NMS). In contrast with Fig. 4.12(b), Fig. 4.12(c) shows the 

result that we adopted the Medina et al. thresolding method for the compass operator 

with NMS. We can see that both the result in Figs. 4.12(b) and (c) detect much noise 

in the regions near the corners. Setting the parameters to 2=k  and 4=l , the 

problem in Fig. 4.12(d), which is obtained by MVD detector, is that it has thicker  
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(a) 

  

(b) (c) 

 

  

(d) (e) 

 

  

(f) (g) 
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(h) 

Fig. 4.12. Edge detection results of the 128×128 synthetic image Sample 1 detected by 

different color edge detectors. (a) Original image. (b) Compass result, (c) The 

compass operator with NMS and thresholding by Medina et al. method. (d) MVD 

result. (e) MVD with thinning process and thresholding by Medina et al. method. (f) 

Color Canny result. (g) RCMG with thinning process and thresholding by Medina et 

al. method. (h) Our automatic color edge detector. 

 

responses for every edge point. Therefore, the thinning process is applied to MVD 

detector, and we also use the Medina et al. method for the edge detection and shown 

as Fig. 4.12(e). To apply Canny detector to color images, a method named Color 

Canny individually use Canny detector to detect edges for three dimensions in the 

color space, and determine the edge result by the majority vote fusion rule. In the 

edge result detected by Color Canny detector, which is shown in Fig. 4.12(f), the 

continuity of the edges perform worse than the others, especially in the corners. Fig. 

4.12(g) shows the result detected by RCMG with the parameter 1=s  in the 33×  

window . Fig. 4.12(h) shows the result with our method, and it detects less noise and 

produce continuous lines for edge detection. More results are shown in Figs. 

4.13−4.15. In Fig. 4.13(c), some ideal edges are missed by the compass operator 

thresholding by Medina et al. method. 
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(a) 

  

(b) (c) 

 

  

(d) (e) 

 

  

(f) (g) 
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(h) 

Fig. 4.13. Edge detection results of the 128×128 synthetic image Sample 2 detected by 

different color edge detectors. (a) Original image. (b) Compass result, (c) The 

compass operator with NMS and thresholding by Medina et al. method. (d) MVD 

result. (e) MVD with thinning process and thresholding by Medina et al. method. (f) 

Color Canny result. (g) RCMG with thinning process and thresholding by Medina et 

al. method. (h) Our automatic color edge detector. 
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(a) 

  

(b) (c) 

 

(d) (e) 
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(f) (g) 

(h) 

Fig. 4.14. Edge detection results of the 256×256 synthetic image Sample 3 detected by 

different color edge detectors. (a) Original image. (b) Compass result, (c) The 

compass operator with NMS and thresholding by Medina et al. method. (d) MVD 

result. (e) MVD with thinning process and thresholding by Medina et al. method. (f) 

Color Canny result. (g) RCMG with thinning process and thresholding by Medina et 

al. method. (h) Our automatic color edge detector. 
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(a) 

  

(b) (c) 

 

(d) (e) 
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(f) (g) 

(h) 

Fig. 4.15. Edge detection results of the 256×256 synthetic image Sample 4 detected by 

different color edge detectors. (a) Original image. (b) Compass result, (c) The 

compass operator with NMS and thresholding by Medina et al. method. (d) MVD 

result. (e) MVD with thinning process and thresholding by Medina et al. method. (f) 

Color Canny result. (g) RCMG with thinning process and thresholding by Medina et 

al. method. (h) Our automatic color edge detector. 

 

Tables 4.4, 4.5 and 4.6 show the average performances of the eleven 128×128, 

256×256 synthetic images and the total images for the compared detector. The order  
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of the column 1 are the compass operator with NMS, the compass operator with NMS  

and Medina et al. method, MVD detector, MVD detector with thinning process and 

Medina et al. method, Color Canny detector, RCMG detector with thinning process 

and Medina et al. method, and our automatic color edge detector. The column 2 to 

column 5 represents the quantitative evaluations of FOM, TPR, TNR, and NACC in 

percentage, respectively. For the criteria, a detector, which can detect less erroneous, 

thin, and continuous edges, will get high values of the FOM and NACC.  

 

TABLE 4.4 
The average evaluation results of the eleven 128×128 synthetic color images detected 

by the following detectors 

 

Method FOM (%) TPR (%) TNR (%) NACC (%)
Compass with NMS with 

manual thresholding 448.99  96.87 99.87 437.98  

Compass with NMS and 
Medina et al. method 584.98  96.80 99.93 437.98  

MVD with manual 
thresholding 686.93  63.18 100.00 759.81  

MVD with thinning and 
Medina et al. method 168.99  98.10 99.91 201.99  

Color Canny with manual 
thresholding 779.83  70.65 97.47 606.84  

RCMG with thinning and 
Medina et al. method 349.99  98.11 99.87 399.98  

Our method 254.99  99.98 99.96 197.99  
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TABLE 4.5 
The average evaluation results of the eleven 256×256 synthetic color images detected 

by the following detectors 

 

Detector FOM (%) TPR (%) TNR (%) NACC (%)
Compass with NMS with 

manual thresholding 599.98  93.98 99.92 595.96  

Compass with NMS and 
Medina et al. method 406.99  94.50 99.96 423.97  

MVD with manual 
thresholding 686.93  63.20 99.99 760.81  

MVD with thinning and 
Medina et al. method 170.99  98.53 99.91 321.99  

Color Canny with manual 
thresholding 770.89  71.59 98.46 603.85  

RCMG with thinning and 
Medina et al. method 262.99  98.53 99.91 222.99  

Our method 340.99  99.96 99.96 196.99  

 
TABLE 4.6 

The average evaluation results of the total synthetic color images detected by the 
following detectors 

 

Detector FOM (%) TPR (%) TNR (%) NACC (%)
Compass with NMS with 

manual thresholding 423.99  95.43 99.89 566.97  

Compass with NMS and 
Medina et al. method 595.98  95.65 99.95 480.97  

MVD with manual 
thresholding 686.93  63.19 99.99 759.81  

MVD with thinning and 
Medina et al. method 169.99  98.31 99.91 211.99  

Color Canny with manual 
thresholding 774.86  71.12 97.97 654.84  

RCMG with thinning and 
Medina et al. method 256.99  98.32 99.89  211.99  

Our method 347.99  99.97 99.96 197.99  
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A noisy edge map may be high performance in the FOM evaluation due to the 

FOM only considers the accuracy of edge points and uses a scaling constant α for 

the penalty between smeared and offset edges. In other hand, the NACC calculates 

not only the accuracy of edge points but also the accuracy of non-edge points and 

rigorously forbids the deviation between ideal and detected edge (non-edge) points. 

Thus, although both MVD and RCMG with thinning and Medina et al. method are 

better than our method for the FOM evaluation, TPR and TNR shows the fact that 

they produce more smeared edge points and misses more ideal edge points than our 

method. Indeed, the NACC evaluation supply more reliable results by using the TPR 

and TNR, and our method is the best one in the NACC evaluation. 

 

4.3.2 Comparison in Nature Color Images 

     

In this section, we will compare our method in nature color images with other 

detectors mentioned above. Unlike the synthetic images, we can not use the FOM 

evaluation or ROC analysis to provide the absolute quality measures when GT images 

in real world images are both difficultly and subjectively chosen, but we can provide 

the information for relatively robustness and reliability.  

Figs. 4.16 and 4.17 show the edge detection results of the Peppers and Lena 

image. We also use the parameter 94.0=σ  for the compass operator, 2=k  and 

4=l  for MVD detector. For Fig. 4.16(b), the hysteresis threshold, 275.0=lowt  and 

55.0=hight , are chosen subjectively for the compass operator with NMS, and the very 

noisy edge result for thresholding by Medina et al. method is shown as Fig. 4.16(c). 

Both MVD result, where thresholding by hysteresis threshold 15=lowt  and 

30=hight  shown as Fig. 4.16(d) and thresholding by Medina et al. method with  
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(a) 

  

(b) (c) 

 

  

(d) (e) 
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(f) (g) 

 

(h) 

Fig. 4.16. Edge detection results of the Peppers image detected by different color edge 

detectors. (a) Original image. (b) Compass result, (c) The compass operator with 

NMS and thresholding by Medina et al. method. (d) MVD result. (e) MVD with 

thinning process and thresholding by Medina et al. method. (f) Color Canny result. (g) 

RCMG with thinning process and thresholding by Medina et al. method. (h) Our 

automatic color edge detector. 

 

thinning process shown as Fig 4.16(e), detect more true edges but less noise although 

they provide the very thick responses. Figs. 4.16(f)− (h) show the result of Color 

Canny, RCMG and our method. Color Canny and our method not only provide  
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(a) 

  

(b) (c) 

 

  

(d) (e) 
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(f) (g) 

 

(h) 

Fig. 4.17. Edge detection results of the Lena image detected by different color edge 

detectors. (a) Original image. (b) Compass result, (c) The compass operator with 

NMS and thresholding by Medina et al. method. (d) MVD result. (e) MVD with 

thinning process and thresholding by Medina et al. method. (f) Color Canny result. (g) 

RCMG with thinning process and thresholding by Medina et al. method. (h) Our 

automatic color edge detector. 

 

Thinner and less noisy edges but also catch the boundaries such as the three marked 

black ellipse regions that are difficult to distinguish.  

Another experiment for compared results is shown as Fig. 4.17. We are 
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interesting in comparing the marked rectangle regions. Figs. 4.17(c) and (e) detect 

more edge in these regions, but they also provide too much noise. In the left rectangle 

region, the compass operator shown as Fig. 4.17(b) produces stronger response for 

edge detection, but in the regions of the middle and right rectangles, the results of 

Figs. 4.17(f) and (h) detected by color Canny and our method are better than the 

compass operator. 
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Chapter 5  Conclusion 
 

In this thesis, we have proposed to apply vector order statistics and fuzzy 

gradient to our automatic color edge detection. By using the fuzzy derivative 

estimation, the fuzzy rules are fired to consider the gradient direction of every 

processing pixel. Additionally, the shape of the membership function is adapted to the 

local variation around the processing pixel. Therefore, the proposed detector improve 

the drawbacks of the original VMD detector due to the gradient directions are exactly 

estimated, and our thresholding method choose an reasonable parameter set from all 

possible values and find the best hysteresis threshold set within it. 

Experimental results have shown that our automatic color edge detection 

techniques produce excellent edge detection accuracy in the synthetic and nature 

images. In this way, the performances of higher level image processing tasks such as 

segmentation and object recognition can be improved because of the improvement of 

edge detection result.  
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