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Video Human Silhouette Extraction and Human

Head Detection Based on Temporal Difference

STUDENT: Chia-Lin Chen ADVISOR: Dr. Jyh-Yeofihang

Institute of Electrical Control Engineering
National Chiao-Tung University

ABSTRACT

Foreground-background segmentation .is the prodessparating the objects of
interest (foreground) from the rest of the imagde (background). lis often the fist
step in mam visual-based surveillance systems and therefamei@al process. The
following processes such as tracking, pose estimat@nd action recognition are
highly dependent on the accuracy of the segmentagsults. In this thesis, we
propose a human silhouette extraction method basetemporal differencing for
extracting complete human silhouettghout a pre-built background model. The
proposed method adapts quickly to changes in tleemes@and can extract human
silhouette from incompletely controlled environme(dutdoor or indoor with
illumination change). We combine the temporal défecing from three successive
video frames, current together with previous anel miext, and the edge image to
subtract the outline of moving object in the frare outline of the moving object
could be incomplete therefore a non-closed curvendd, we propose a novel
background region growing technique which grows llaekground region and then

obtains the foreground silhouette from the incortgpéEige image.



The shape of a human is often very different frédva shape of other objects.
Shape-based detection of humans can therefore pbewarful cue. Human head
(including face) is the most important feature hie uman shape. We take temporal
differencing method as a pre-processing step bdéfonean head detection, which can
simplify the complex backgrounds and reduce thealetg area. Then we propose a
fuzzy theory based pattern-matching technique whkimmbines the shape and color
information to locate human head. We begin withiding left head-shape model,
right head-shape model, skin color model and haliorcmodel. Detecting with two
head-shape models gives somewhat size toleranabditgpin human head width and
adapts to different view angles, such as frontelwilateral view, diagonal view, and
so on. We compare the edge map of the given imahethe pre-built left head-shape
model and right head-shape model: to 'detect headidates. Then we use skin and
hair color model to compute the belongness- degfeeaoh pixel within the head
candidate area. Consequently, we combine the smapehing technique and color
matching technique to better estimate the locadioa human head. The resultant of
human head detection can confirm the foregrounchetdd is human silhouette and is

useful for face recognition, face tracking and motiecognition.
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Chapter 1 Introduction

1.1. Motivation

Multimedia applications in daily life become widespd used for education,
security, entertainment and medicine, and provideenadditional value for clients.
Many image segmentation techniques are used irimmadta applications and service
robot, can subdivide an image or video frame itgoconstituent regions or objects
and then become an important topic in recent y&drs.objects of interested can be
extracted from an image as the foreground andreme ised in industrial inspection,
autonomous target acquisition, medicine image @%og, traffic flow magnitude
monitored, human detection, depth estimation, and e

Foreground-background segmentation is often apg@iedhe fist step in man
visual-based surveillance systems and thereforeuaiat process. One method of
foreground-background segmentation-is temporakficing which adapts quickly
to changes in the scene and does not-need a prdsackground model. However,
pixels from the foreground that have not moved rer @amilar to their neighbors are
not detected. Therefore the detection result oftdis into pieces. The incomplete
detecting results cannot provide enough informatiotne following process.

The shape of a human is often very different fréva $hape of other objects.
Shape-based detection of humans can therefore pewarful cue. Human head
(including face) is the most important feature e thuman shape. The location of
human head is useful for identification and motiecognition.

In summary, this motivates us to design a humarogétte extraction method
based on temporal difference and edge informatibichvhaving good adaptability to
changes in the scene and coping with the incongpledf the detection results. Then

we take human silhouette extraction method as gpmeessing step before human



head detection, which can simplify the complex lgmoknds and reduce the detecting
area. Finally, we propose a fuzzy theory basedepathatching technique which
combines the shape and color information to lodatenan head. The system

flowchart is illustrated in Fig 1.1.

| v
I
: Color
Previous 1 | Canny edge
image | | : detection Coincidence
I edge
Current : | Temporal detection
image : difference
: A\ 4
Next [ I Adaptive Projection
image : thresholding histogram
| technique method
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: Extract
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o —— I
: Color Shape ‘: : iz:i:r: . Edge
| | matching matching | 1 | i trimming
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: | | I |
| v L !
! Extract ! : Extract Background
: human : I _human N regicl)n
! face | : silhouette growing
L e e — L e e e e e e e e e e e e e e e e m— =
Human Face Detection Human Silhouette Extraction

Fig. 1.1 System flowchart.



1.2. Human Silhouette Extraction

Foreground-background segmentation is the prodessparating the objects of
interest (foreground) from the rest of the imade (background). It is often applied
as the first step in many visual-based surveillasggtems and therefore a crucial
process. This is evident by looking at the numideesearches devoted to such topics
which tend to achieve much faster and more premselts [1]. The following
processes such as tracking, pose estimation, arvénmemnt recognition are highly
dependent on the accuracy of the segmentationtseJiie results have a great effect
on the whole system and even can decide the riljabnd the precision of the
system. Therefore the performance of the foregrehauwkground segmentation could
be a conclusive gauge of whether a surveillancesyss good or bad.

The methods of foreground-background segmentataon ke roughly divided
into two categories: (1) background subtraction g8y temporal differencing.
Background subtraction is the process to deteeigfmund by subtracting each pixel
in the current frame from those in the pre-builtckigound model. Temporal
differencing is the process to detect foregroundshptracting each pixel in the
current frame from those in the previous frames.

Background subtraction was known as a powerful gpogessing step in
controlled indoor environments which can be represeg as a stable background
model. Subtracting each pixel in the current frafmen those in the background
model could yield complete foreground silhouettdauffer and Grimson[2]
presented the idea of representing each pixel byxéure of Gaussians (MoG) and
updating each pixel with new Gaussians during mmet This allows background
subtraction to be used in outdoor environments.midlly the updating was done

recursively, which can model slow changes in a scént not rapid changes like



clouds.

Temporal differencing adapts quickly to changedhie scene. This approach
assumes that the objects in the foreground aremgaontinuously. However, pixels
from the foreground that have not moved or are lamtd their neighbors are not
detected. Therefore the detection result oftens falito pieces. The incomplete
detecting results cannot provide enough informatitotine following process.

Among all foreground objects, human extraction frithie background is a highly
active research area due both to the number ohpaktepplications and its inherent
complexity. Previously approaches were mostly testecontrolled environments and
with only a few people present in the scene. Régeatgorithms have addressed
more natural outdoor scenarios where multiple peapld occlusions are present and
have focused on detection of humans in still.

In this thesis, we propose ‘an improvement to astiexy temporal differencing
method, and incorporate a novel technique for eWtra of complete human

silhouette without a pre-built background model.

1.3. Human Head Detection

The shape of a human is often very different frown shape of other objects in a
scene. Shape-based detection of humans can therbfora powerful cue. The
advances are first of all to allow human detectamd tracking in an uncontrolled
environment on the premise that reliable silhouetittines can describe the shape of
the humans in the image sequence. Furthermore,nedsaare to allow human
representation and segmentation in still images.

Many researches are specifically interested irktnrgchuman heads or faces due

to they are the most important feature in the hustape [3]. Because it is difficult to



automatically detect human heads or faces in imagesig complex backgrounds,
much previous research dealt only with images lgpsimple backgrounds. However,
for many practical applications, automatically @éten and tracking of human heads
should not be limited to simple backgrounds.

Most of the previous research concentrated on duasial view faces [4][5][6].
This is because the prior knowledge of the geomedtation with regard to the facial
topology of frontal view faces can help the detactof facial features and it also
makes the face modeling with a generic patterniplessHowever, the quasi-frontal
view assumption limits the kind of faces that canpbocessed. Another disadvantage
is that the facial-feature-based approaches relyttan performance of feature
detectors. For small faces or low quality imagés, proposed feature detectors are
not likely to perform well.

In this thesis, we take temporal differencing mettas a pre-processing step
before human head detection, which can simplify toenplex backgrounds and
reduce the detecting area. We propose a fuzzy yheased pattern-matching
technique, and use it to detect head silhouettéineat from the edge map, the

extracted skin and hair regions.

1.4. Thesis Outline

The thesis is organized as follows. An improvedhuodtof temporal differencing
which can extract complete human silhouette isritesd in Chapter 2. In Chapter 3,
a human head extraction method by fuzzy shape mgt@nd skin-color/hair-color
extraction is introduced. In Chapter 4, the expenimresults of our object
segmentation and human head extraction systenmhavens At last, we conclude this

thesis with a discussion in Chapter 5.



Chapter 2 Human Silhouette Extraction

In this chapter, we extract human silhouette by steps. First, we use the color
Canny edge map and combine with the temporal éiffee from three successive
frames to extract human outline. Then we propodsaekground region growing
method to extract human silhouette from the humattine even when the outline is

not a closed curve.

2.1. Human Outline Extraction

We combine color edge information with the tempodéference to obtain
coincidence edges which are edges of the curreagjenand also have great value in

their temporal difference. We use the coinciderdges to capture the human outline.

2.1.1. Color Canny Edge

Most edge detection schemes are based on findiagnmaxima in the first
derivative of the image function or zero-crossingsthe second derivative of the
image function. The difficulty in extending deriixa approaches to color images
arises from the fact that the image function isteegalued. Whenever the gradients
of the image components are computed, the questioains of how to combine them
into one result. Several approaches already existdlor edge detection. Perhaps the
simplest one is to apply an edge detector for giagsto the three color channels
independently and to combine the results usingldgperation.

In this way, we run each color channel through @&nny edge detector
separately to yield edge maps in R chanrig}) in G channel E;), and in B

channel E€;). There are many ways to combine three edge imamesie general



edge image. We choose “OR” operator to reserve eugt information, i.e., if there

is an edge in any one of the three colored edggesjave add it to the general edge

image E ).

E(i,')={l if Eqii)=1 0 Eei.j)=1 O Eg(i.j)=1 (1)

0, otherwise

The human silhouette extraction method proposddigmthesis is based on the
edge image. Hence if the edge information is Itst, silhouette we extract will be
incomplete.

Some results of edge detection are shown in Eifj.and 2.2. It should be
noticed that the outline of the human can not teaeted completely from the edge
image. See Figs. 2.1(b) and 2.1(f) for exampleg, Eil(b) shows a frame image of
Daria performing “waving-two-hands” action and Fay1(f) is the edge image of Fig.
2.1(b). Comparing the frame image and the edge emag can find that Daria’s
hands are not detected in the edge image. Therdfmesilhouette of Daria’s hands
will be lost in the silhouette extraction method.

The outline of the human is often a non-closed euee Figs. 2.1(d) and 2.1(h) for
examples, Fig. 2.1(d) shows a frame image of Daeréorming “galloping-

sideways” action and Fig. 2.1(h) is the edge imafy€ig. 2.1(d). Comparing these
two images we can find that the sole of Daria’'s febt in the edge image is not
detected, hence the outline of Daria’s body is a-closed curve. If the outline of an
object is a closed curve, extracting its silhouetieeasy by applying connected
component labeling [7However, it is a relatively challenging task torextsilhouette
of an object whose outline is a non-closed curve.

The outline of a person in clothes which have simdolor to background is

especially detected incompletely as shown is E@. 2hahar wears white trousers

7



Fig. 2.1. (a)-(d) Daria performing “bending”, “waving-two-handsjumping-forward-
on-two-legs” and “galloping-sideways” actions; {€h) corresponding edge images by
color Canny edge detection.

Fig. 2.2. (a)(d) Shahar performing “bending”, “waving-two-hand§umping-
forward-on-two-legs” and “galloping-sideways” act&) (e)-(h) corresponding edge
images by color Canny edge detection.



whose color is similar to the background; hencedthiine of the trousers can not be
detected completely by the edge detector. This lpnokis un-avoidable in every

foreground-background segmentation method, however.

2.1.2. Temporal Difference Image

We extract the motive information by making a temgbalifference image from
successive frames in a video stream. First, we rgémecurrent imagel,, N
previous imagesl,_, l,_y.s ---» |y, @and N following images|,,,, l.,, ...,
l..» from successive frames in an video stream. Thedn®s when we apply this
method in real time, it will delay foN frames. Then we summarize the absolute
difference between current image and all previous @llowing images. We call a

resultant image a temporal difference imabdi, j) as given by

D(i,j)=g| lt_k(i,j)—lt(i,j)|+g| ool 1) =16, 1)1 @)

In the implementation,N is set to 1. It is to be noted that the systenpuubas to
delay one time frame for we employ imdge in Eq. (2).

Fig. 2.3 shows an example of temporal differencagen Fig. 2.3(d) is absolute
difference image between the current image (b)thagrevious image (a), Fig. 2.3(e)
is absolute difference image between the curreager(b) and the following image (c)
and Fig. 2.3(f) is the sum of (d) and (e) whichexhttemporal difference image. Each
difference image is shown in 8-bit grey level whiotaximum value is 255 and
indicated by the lightest color in the figure. liietintensity of the difference image is
larger than 255, it is also indicated by the lighteolor.

In the difference image, the great values occuhatlocation occupied by the

foreground in one image but occupied by the baakgidn another image. Therefore



the human silhouette in the difference image isaeded.

absolute
difference

summarize

A

absolute
difference

Fig. 2.3. (a)-(c) Successive three; previous, current and nextnds of Daria
performing “running” action, (d) Absolute differemdémage between the current
and previous image, (e) Absolute difference imagwevben the current and the
next image, (f) The resulting (from summing (d) aed) temporal difference
image.

Intuitively, stationary regions can be eliminatédough the subtraction process
and only regions that have been moved can appédhe idifference picture. However,
in reality, the temporal difference image obtaineften contains extraneous
information because of changes in the illuminatondition and noise (see Fig. 2.3(f),
there is much salt-and-pepper noise in the backgpouHence, stationary regions
may frequently survive the differencing process.

A adaptive thresholding technique was developedcdpe with the above
mentioned problem by analyzing the shape of thepteal difference image
histogram (i.e. occurring frequency versus intgnsftthe temporal difference image)

[8]. It is assumed that (1) the area of the statipimegions is larger than or equal to

10



the area covered by the regions in motion andh@)pixels within all the stationary
regions undergo approximately the same intensitgngh with small variation.
Consequently, the pixels from the stationary regiare grouped under a few peaks in
the histogram with large area while the pixels witthe moving regions are grouped
under a number of peaks with relatively small area.

Fig. 2.4(a) illustrates an example with peaks V a&kdcorresponding to the
stationary regions and peaks X, Y and Z correspantth the moving regions. The
areas under the peaks are 20, 60, 7, 7 and 6% obthl area, respectively. Fig. 2.4(b)
shows the accumulated area from valley paitt pointf in Fig. 2.4(a). It should be
noted that the curve is plotted versus the valleyngs which are spaced at equal
interval. Also the area between two consecutiveeyaoints in Fig. 2.4(a) is equal to
the slope of the line between the two'correspongmigts in Fig. 2.4(b). The change
in the slope at a valley point gives an indicatwrthe difference of contribution due
to the next peak. Because of the assumptions @Y2n the separation between the
stationary regions and the moving regions occutbetalley point with the largest

slope change. This valley point is then chosemaghreshold value.

100~
80—
=
E g ol
< g
Lo ) a a0
201
[ ] L1 ] |
E ] ) 3 d e 1
Intensity difference Valley point
(a) (b)

Fig. 2.4. (a) An example of temporal difference gmdistogram distribution, (b)
accumulative area chart of (a) [8].
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Fig. 2.5 shows one real example of temporal diffeeeimage and the charts
used to deciding its threshold. Fig. 2.5(a) showsame image of Daria performing
“running” action and Fig. 2.5(b) shows the tempatiffierence images of (a). We can
observe that (1) the background area is larger ¢hagual to the area covered by the
regions in motion and (2) there is salt-and-pepese spread in the background area
which means the assumptions of the adaptive thidisigotechnique are satisfied in
our case. A part of the histogram distribution @f. 2.5(b) is shown in Fig. 2.5(d) and
we mark the valley points with red dots. There afew peaks in the histogram with
large area while a number of peaks with relativetpall area. A part of the
accumulated area line chart of Fig. 2.5(d) is shawirig. 2.5(e) and we mark the
valley point with the largest slope change whichsigoposed to be the separation
between the background regions and the:moving megibhe coordinate of the valley
point (v1, 95.13) means the threshold value is ehas be vl and there are 95.13
percentage of area in the temporal difference in@geled as background region. Fig.
2.5(e) shows the temporal difference image aftegstiolding and major part of the
extraneous information due to changes in the ilhation condition and noise is
eliminated.

All movements in the Weizmann human action datalzase roughly divided
into “whole body movement” and “partial movemenf’hen human perform “whole
body movement” such as “running”, “walking”, “jummg-jack”, “jumping-in-place-
on-two-legs”, “jumping-forward-on-one-leg”, “jumpipforward-on-two-legs” and
“galloping-sideways”, each part of their bodies hdisplacement and there are
relatively complete human shapes in temporal diffiee images (see Fig. 2.6).
However when human perform “partial movement” jpatts of their bodies move
and there are incomplete human shapes in tempifatethce image (see Fig. 2.7).

When human perform “waving-two-hands” or “wavingeshand” movement just

12



their hands have displacement and other partsedf Hody stay still. When human
perform “bending” movement just upper part of thieadies has displacement and

lower part of their bodies stay still.

2.1.3. Coincidence Edge

The coincidence edges are edges of the currenteimagd also have non-zero
values in temporal difference image. We use th@aidence edges to capture the
edges of the moving objects. The moving edge detedechnique can generate a
more complete outline of the moving object becaumsetion information is
accumulated and tracked. The algorithm is basedhendifference picture method
developed by Jain and Nagel [9], [10] together witie coincidence edge
accumulation process proposed in this'thesis. dhrecidence edge image is obtained

by combining the edge information and the tempdiféérence image as follows:

CE(i'j):{D(i,j), if E(i,j)=1 @)

o} otherwise

In the background subtraction method, the projectistogram is a commonly
used method to roughly segment foreground regiom fthe image. In this thesis, we
try to segment foreground region from projectiostbgram of the edge image, the
temporal difference image and the coincidence @udgge, and we find the projection
histogram of the coincidence edge image is a usefkthod which can segment
foreground region precisely.

Fig. 2.8 shows an example of using projection lgiton to extract motion region
in background subtraction method. LEk,y) be a result binary image of background

subtraction which represents a detected motiororedihe coordinate system of
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Fig. 2.5. (a) Daria performing “running” image, (bie temporal difference image of (a), (c)
The temporal difference image after thresholdid,Histogram distribution of (b), the valley
points marked with red dots, (e) Accumulative azkart of (d), valley point with the largest
slope change marked with red dot.
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Fig. 2.6. Top row: Daria performing “jumping-in-place-on-twegs”,
jack”,

“jumping-

“walking” and “jumping-forward-on-one-legimages; Second row: The

corresponding temporal difference images; Third:rdle temporal difference images
after thresholding; Forth row: The partial histagsaof the temporal difference image,
intensity values changing from 0 to 40; Bottom ravine accumulated area line chart
of the corresponding above histogram.
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Fig. 2.7. Top row: Daria performing “bending”, “wiag-one-hand” and “waving-two-
hands” images. Second row: The corresponding temhpdference images. Third row: The
temporal difference images after thresholding. lFodw: The partial histograms of the
temporal difference image, intensity values chaggirom 0 to 40. Bottom row: The
accumulated area line chart of the correspondingehistogram.
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image | is expressed witk in the horizontal direction angl in the vertical direction.
Let H and W be, respectively, the height and width of the imbgThe vertical
projection histogram of imagkis acquired by projecting pixels onto the horizbnt

coordinate of the image as follows:
) H
proj, () = 1(xy), xO[LW] 4
y=1

Proj(x) looks like a range of mountains with peaks antleya. The region
surrounding each mountain peak is likely to conthenmotion region. The peaks and
their surrounding areas g¥roj,(x) above some threshold are extracted to produce a
vertical slice of the image. Next, a horizontal jpotion is created from the slice to

determine the motion regions as follows:

proj, (y) = .1, Y), ¥ O[LH] (5)

Extraction of the peaks and surrounding areaproi,(y) results in an initial set
of motion region.

In this thesis, we apply the projection histogramtimod to the edge image, the
temporal difference image and the coincidence @ugege. It should be noted that the
edge image contains binary information while thmperal difference image and the
coincidence edge image contain analog information.

Fig. 2.9 and Fig. 2.10 show examples of the vdrpecajection histogram from
frames of Daria performing “whole body movementh @e other hand, Fig. 2.11
and Fig. 2.12 show examples of the vertical prapechistogram from frames of

Daria performing “partial movement”. The red linase marked manually as a
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projv(x)

reference to locate the motive region.

It is obvious that the projection histogram of #age image can extract human
region in the simple background, but it also extragions without human (see Fig.
2.9(e), Fig. 2.10(e), Fig. 2.11(e), and Fig. 2.)J2(€he projection histogram of the
temporal difference image can extract the motiggore while human perform “whole
body movement”. However, when human perform “partiavement”, the separation
between the stationary region and the moving regdiurred (see Fig. 2.11(f) and

Fig. 2.12(f)). In Fig. 2.9(g) and Fig. 2.10(g), w&n find that the projection histogram

y coordinate
I\

AN
0 20 40 60 80
X coordinate

(b) (€)

Fig. 2.8. (a) Resultant binary imadg,y) of background subtraction, (b) The vertical
projection histogram of, (c) The peaks and their surrounding areagudj,(xX) above
some threshold extracted to produce a vertica¢ slicthe image which is marked with a
red frame, (d) The horizontal projection histografthe vertical slice marked with a red
frame in (c), (e) Resultant image confineddoygj,(x) andproju(y).

I R
100 120 140 160 180
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of the coincidence edge image can extract thevaaggion while human perform
“whole body movement” as the projection histogramtiee temporal difference
imagecan do. Besides, in Fig. 2.11(g) and Fig. (@)1 2he projection histogram of the
coincidence edge image also can extract the huegiarr due to the accumulation of
small temporal differences on the human edge. To 8p, the projection histogram
of the coincidence edge image is a useful methodhmtan segment human region
precisely no matter human performing “whole body veraent” or “partial
movement”.

The simple uniform threshold is marked by greeredinn each projection
histogram of the coincidence images (see FigsgP-92.12(g)). The peaks and their
surrounding areas of the vertical projection histog above the threshold are
extracted to produce a vertical slice:of the imadext, a horizontal projection of the

coincidence edge image is created from the slicetermine the human regions.
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Fig. 2.9. (a) Daria performing “jumping-jack” whicht a “whole body movement”, (b)
The edge image, (c) The temporal difference imé&djeThe coincidence edge image,
(e)—(g) the corresponding projection histograms.
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Fig. 2.10. (a) Daria performing “running” whichas‘whole body movement”, (b) The
edge image, (c) The temporal difference imageT(a) coincidence edge image,{e)
(g) the corresponding projection histograms.
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Fig. 2.11. (a) Daria performing “waving-one-handhieh is a “partial movement”, (b)
The edge image, (c) The temporal difference imédjeThe coincidence edge image,
(e)—(g) the corresponding projection histograms.
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Fig. 2.12. (a) Daria performing “bending” which as“partial movement”, (b) The
edge image, (c) The temporal difference imageT (W coincidence edge image, {e)
(g) the corresponding projection histograms.
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2.1.4. Edge Trimming

Using horizontal and vertical projection histogrémnextract human region is a
rough method whose resultant region is bounded bgctangle. In the resultant
human region, there are still some edges not bdlmgiman outline and we want to
make out and trim away.

Most of the edges surrounding human outline areegdy the floor. The edge
pixels of floor are often continuous on a vertiiake. In the human region, if pixel
number of a vertical line is more than half widfitlee human region, the vertical line
is regarded as floor line. Every edge pixel on tloer line has lower temporal
difference than threshold will be trimmed off.

Besides, the outline of an object (including humaiften not a single line
because the object has volume. Due to'this, wegdedifour trimming matrixes,
T,, T3 and T4 (shown is Fig. 2.13) which have pixel Os in thetee region and 1s
surrounding, but a split pin in upper boundary, domoundary, left boundary and
right boundary, respectively. If we defirte as the edge image, and we calculate

T-scoreas follows:

T-socre=T,*E (6)

where * here denotes the 2-dimensional convolutaperation andl<i<4.
T-scores0 means there is a single edge line in the ceatgon. Every edge pixel on

the single edge line has lower temporal differethe@ threshold will be trimmed off..

Fig. 2.14 shows some resultant edge image afteg &itgming. Images in the

first column, the third column, the fifth column dathe seventh are edges in the
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human region extracted by projection histogram. déreesponding images below are

the edge image after edge trimming.

1/1/1|1/1}1|1|1(1|1|1
1/1/1|1/1}1|1|1(1|1|1
1/1/1|1/1}1|1|1(1|1|1
1/1/1/0/0/0|0|0f1|1|1
1/1/1/0/0/0|0|0f1|1|1
1/1/1/0/0/0|0|0f1|1|1
1/1/1/0/0(0(0|O0f1(1(1
1/1/1/0/0(0(0|O0f1(1(1
1/1/1/1/0/0(0f2|1(1(1
1/1/1/1/0(0(0f2|1(1(1

1/1/1{1/0/0|0|2f1|1|1

1/1/1|1/1}1|1|1(1|1|1
1/1]1|{1/1}1|1|1(1|1|1
1/1/1|1/1j1|1|1(1|1|1
1/1/1/0/0/0|0|0f1|1|1

1/1/1/{0/0/0|0|0(0]|0O]|O
1/1/1/{0/0/0|0|0(0]|0O]|O
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1j1/1j1/1{1(1|1/1|1|1

1(1(1(1/0/0|0f2|21|1|1
11/1/1/0/0|0f2/1|1|1
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11/1/0(0/0|0/01|1|1
11/1/0(0/0|0/01|1|1
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1/1j1|11(1j1j1/1/1|1|1
1/1j1|11(1j1j1/1/1|1|1

1141|121 /1|1}]1/1|1|1|1
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0/0/0j0|0|0O|O0|0O|2|2(1
0/0/0/0|0|0O|O0O]|0O]|2|2(1
0/0/0/0|0|0O|O0]|0O]|2|2(1

1/1/1/0(0|0|0|01|1|12
1/1/1{1/1|1}1/1|]1|1|1
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Fig. 2.13 Trimming matrixes to detect single edge.l
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Fig. 2.14 The resultant edge images after edgertmu.
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2.2. Background Region Growing

If the outline of human silhouette extracted isl@sed curve, it is easy to mark
the human silhouette which is the inner part of ttlesed curve. In the
implementation, however, the outline of human gsiktte extracted is often not
continuous; it does not form a closed curve dusa¢ocolor edge being not continuous.
Consequently, we proposed a simple background megfiowing method so that the
human silhouette can be better marked. The algoridipplies divide-and-conquer

strategy and is described below:

Step 1. Prepare a new image whose pixels areitdllired to —1 which represents
as background. The human region substitute forctimeesponding region in
the new image with pixel value 1 represented as eyl pixel value 0
represented as non-edge. An example is shown i2Fi§(a), in which the
pixels with value -1 being represent as gray color; the pixels withugad
being represent as black color and the pixels watlne 1 being represent as
white color. The outer human region is set to be fibst operating region

which is marked with red frame in Fig. 2.15(b).

Step 2: For the operating region above, we willwgthe background region from
left red boundary to right until the vertical lirmntaining an edge pixel.
Similarly we will grow the background region frotmet bottom red boundary
to upper, from the right red boundary to left arahi the upper red boundary
to bottom. After this showing process, we will dhtéhe new outer human

region shown in Fig. 2.15(c).
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Fig. 2.15 lllustrative images to show the procedafrbackground region growing, (a)
An example image in which background region matrkegray color, edge marked in
white color and non-edge region marked in blackoGo{b) The operating region
(whole human region) marked with red frame, (c) Tésultant image after applying
background region growing, (d) Dividing equally tbperating region into four new
operating regions. Repeating the above procesgawebtain (e) from (d), (g) from
(f) and (i) from (h) respectively, (j) The resultamage.
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Step 3: We further divide the operating region ifdgar equal quadrants (see Fig.
2.15(d)), re-apply the above divide-and-conquercgdore, we will obtain
the background grown image Fig. 2.15(e).

Step 4: Repeat Step 2 and Step 3 to grow backgroegidn we can obtain Figs.
2.15(f)—2.15(i) respectively, until all new operating reggohave length or

width shorter than threshold preset.

All 64 operating regions in Fig. 2.15(i) have widthorter than threshold which

is preset to be 10 in this example, therefore thekfround region growing is

completed and the resultant image is shown isZEidh(j).
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Chapter 3 Human Head Detection

In this chapter, we propose a human head outliiea@&ion method in color
images that can be used to extract head outlindifierent view angles, such as
frontal view, lateral view, diagonal view, and so. ®@ur method uses color Canny
edge information in conjunction with skin and healor to locate heads in the given
images. Firstly, we compare the edge map of thergimnage with the pre-built left
head-shape model and right head-shape model totdetad candidates. Detecting
with the above two models gives somewhat size dolss capability in one$ head
width. Secondly, we compute the occupying propadiof the skin area or hair area
with the head candidate area. Namely, we combiaehiape matching technique and

color matching technique to better estimate thatloo of a human head.

3.1. Shape Matching

The shape of a human is often very different frbm shape of other objects in a
scene. Shape-based detection of humans can trerbtora powerful cue. The
advances are first of all to allow human detectma tracking in the uncontrolled
environments. Due to the method mentioned in tise ¢hapter, reliable silhouette
outlines can describe the shape of the humanseinnthge sequence. Furthermore,

the silhouette outline can be advanced to help sagng human of an image frame.

3.1.1. Building Head-Shape Model
Human heads in different view angles have anineushape similar to A ”.
Because our processing video signal captures ampsmsmewhat far away, we ignore

the details of facial features and only consider ditline of the head to build the
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head-shape model which can also be adapted toatiffeiew angles.

The size of human head changes from person to medifierent capturing
distance and different view angle. To cope withséhevariations, we built left
head-shape model and right head-shape model selyatat give somewhat size
tolerance capability in human head width.

The head-shape model is built based on fuzzy seryhA fuzzy set is a class of
points possessing a continuum of membership gradbsre there is no sharp
boundary among elements that belong to this cladgteose that do not [11]. We can
express this membership grade by a mathematicattifum called membership
function or characteristic functiom,(x ). This function assigns to each element in
the set a membership grade in the interval [0L&].X be the universe of discourse,

with a generic element denoted by:X.:={x,,,,....x,}. A fuzzy setA in X is

formally defined as follows:

A={x i % OX )

whereA is characterized by the function, (0, which associates with each point

x, X a membership gradquA(xi)D[O,l]. In this work, the S-function is used for

modeling the characteristic function. Such a fuorcis defined as follows:

0, Xx<a
e sl
b-a) -
ta, (X)=S(xab) = ) ®)
2x-bf  arb)
b-a) = 2
1 b<x
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where O<sas< 1 0<b<1, and a<b. The parametera andb control the shape of
the function (se&ig. 3.1). Whera is close tdb, the function will behave like a step
function. Ifais set to a big value, the output of the functrath decrease, and i is

set to a small value, the output will increase.

1.0 “Outp?ut ..........

0 a (a+b)/2 b 10

Fig. 3.1 The S-function used for modeling the characteristnction.

The procedure to build head-shape model is lisetovia
Step 1: Manually select the head region from thgeeedap of training database (see
Fig. 3.2). The number of all head regionshs,.,,. Each head region is a two

dimension data with different lengtim, and width n,:

1 edge
0, non-edge

Headx(i,j)={ 9)
wherel< k< N, 4, 1<i<m, 1<j<n,.

Step 2: Decide the sizenxn of the head-shape model by computing the mean and
standard deviation of the head region width andgtlen In the

implementation, m is set to 8 and n is set to 6.
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Step 3. Manually select the left patt_Head and the right partR_Head of
head from the head region selected in step 1 (ge8R). The boundary box
of L_Headand R_Head is located to have maximum number of edge
pixels in the second row and second column as wilild the left
head-shape model (or simply LHSM) by calculatingepby-pixel mean

percent value as follows:

Nhead
LHsM=—_1 > L_Head, 10)
head k=1

Similarly build the right head-shape model (or SynfRHSM) from the right

part of all head regions:

Nhead
RHSM= = > R_ Head, (11)
head k=1

Step 4: To normalize the head-shape models, wengs8 type standard functions to
renew each LHSM and RHSM.

LHSM(i, j) « S(LHSM(i, j),a,b)

RHSM(i, j) « S(RHSM(i, j),a,b) (12)

Step 5: To ignore the details of facial featured anly consider the outline of the
head, we manually select the ignored region whsamoit outline of head, i.e.
the inner region and the outer region. Assign ae/din the implementation,
the value is set to-1) to each point in the ignored regions and ignbeart
when we estimate the similarity between the moddl @ mxn rectangle

region in the edge majt of the input image.
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Fig. 3.2 lllustrative images to show the procedure to blaftthead-shape model

and right head-shape model.
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3.1.2. Shape Pattern Matching

Let REu, V) denote a rectangular region of dimensi®8r  inthe edge mag
with its upper left pixel at(u,v). To estimate the similarity between the LHSM model
andRGu, V). We compute the sum of absolute difference betveseh pixel in the
LHSM and the corresponding pixel RGu, ) except the pixels we want to ignore.

The result is recorded tdBft_shape_score(u,v).

left_shape_scordu,v)=>">"| RG(u,v;i, j) - LHSM(i, j)| (13)
i=1 j=1
Similarly we compute the sum of absolute differebeéwveen each pixel in the

RHSM andRQu, V) except the pixels we want to ignore. The resslteicorded to

right_shape_scordu,v).

right _shape_scordu,v)= Zmlzn] RG(u,v;i, j) - RHSM(, j)| (14)

=1 j=1
For eachleft_shape score, there is a corresponding right head search megio
R(u,v) defined as follows:

R(u,v)={(u',v)|u-1su'su+lvsv<v+e} (15)

The maximum of allright _shape _score within the right head search region
R(u,v) is called max_right_shape_score(u,v) and indicate the corresponding
right head.

max_ right _ shape_ scordu, v)= max | right _ shape_ scordu’, v')

u',v)OR(u, v

(16)
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Then the total shape matching score is decidechbly é&ft _shape score and

max_right _shape_score as follows:

shape_scordu,v) = %[Ieft_shape_ scordu,v)+max_right _shape_scordu,v)|

(17)

An example of head-shape pattern matching is shewvig. 3.3. In Fig. 3.3(a)
R4, 3 denote the rectangular region marked with reché&ravhose upper left pixel
is the pixel marked in pink a(4,3). The corresponding right head search region
R(43) is marked with green frame. The maximum of &ljht _shape score
within R(43) indicates the corresponding right head.

When we built the head-shape model there are twanpetersa andb in the

S-function. We leta vary from 0:t0 0.2 andb vary from 0.3 to 0.7 and use them to
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Fig. 3.3 (a) lllustrative images to show the pragedf head shape pattern
matching, (b) the head edge found, (c) the headmdgund.
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estimate the training database. The accuracysdisted inTable I .

TABLE 1

THE ACCURACY RATE OF HUMAN HEAD DETECTION
FROM SHAPE PATTERN MATCHING

b\a 0 0.1 0.2

0.3 0.75 0.78 0.71
0.4 0.80 0.77 0.70
0.5 0.79 0.74 0.69
0.6 0.79 0.73 0.67
0.7 0.78 0.71 0.67

According to the result listed. .in. Tablé , the parametersa and b in the
S-function are set to be 0 and 0.4 respectivelgnFiable I, the highest accuracy

rate of human head detection using head-shape m@tsh0.8.

3.2. Color Matching

Color information is also an important feature ioiman head extraction. Due to
the goal of this research is to detect human heaifferent view angle, we not only
use a skin color detector but also a hair coloeatet color analysis and the fuzzy
theory to combine and then extract the head recgonlidates. Several color spaces
suitable for segmenting the skin-color and haiecoin an image have been
proposed. Choosing the representative and disaie color space for the color
modeling becomes very important. Although differeates have different skin
colors, several studies have shown that the majterehce lies largely between

their luminance rather than their chrominaftg]. In [13], YGC; and HSV color
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spaces for skin-color segmentation have been ilgatst. It was concluded that the
skin color distribution in YEC, color space is more centralized than HSV color
space. The color space of Y&, which revises the color space of YUV, can divide
luminance component (Y) and two chromatic bluenemsiponent (¢), redness
component (§. The transformation between ¥C and RGB is linear and is

represented as follows:

Y 0257 0504 0098 | R 16
C,|=1-0148 -0291 0439 |G |+|128 (18)
C, 0439 -0368 -0071|B 128

The YG,C, model is naturally related to MPEG and JPEG cadlig skin color
distribution in YGC; color space:is more centralized than other cqlacss, and the
advantage of converting the image to the,@Ccolor space is that the effect of
luminosity can be decoupled with coloring comporehiring the image processing.

For this reason, we utilize ¥,C; color space for skin color region detection.

3.2.1. Building Skin and Hair Color Models

The terms skin color and hair color are subjechuenan concepts. Because of
this, the color representation should be similath® color sensitivity of human eyes
to obtain a stable output similar to the one gibgrthe human visual system. Such a
color representation is called the perceptuallyarm color system or simply UCS.

In conventional methods, all visible colors areidiad into two groups: skin color
and non-skin color. However, consider two colorarrtee boundary of the skin part.
Although the difference between them is almost ticeable by a human viewer, one

is regarded as ‘skin color’ and the other is ndtisTis unnatural and is considered as
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one of the reasons of instability in convention&tinods for skin color detection. We
assign a value within [0.0, 1.0] to each pointhia tolor space to indicate how much a
visible color looks like the skin color. We caligtvalue as skin color likeness and use
a table to describe the skin color likeness ofvalible colors. We call it the Skin
Color Distribution Model, or simply SCDM. The SCDisl a fuzzy set of skin color.
We use a large image set from Weizmann datasetioang faces to derive the
distribution of color of the human skin region inder to build the SCDM. The

procedure to build the SCDM is as follows:

Step 1. Manually select skin regions in each trejnmage .

Step 2: Prepare a table to record the two dimeabkicmromatic histogram of skin
regions, and initialize all the .entries with zero.

Step 3: Convert the chromaticity_value of each Ipinehe skin regions from RGB
color space to YCbCr calor space, and then incredhseentry of the
chromatic histogram corresponding to it by one.

Step 4: Normalize the table by dividing all entnggh the greatest entry in the table.

We use a model similar to SCDM to describe the balior. We call it the Hair
Color Distribution Model, or simply HCDM. The HCDMescribes the hair color

likeness of all visible colors.

3.2.2. Color Pattern Matching

We use SCDM and HCDM to extract the skin color @agand the hair color
region, respectively. The average in each pixetlaeeskin/hair color likeness of each
pixel in the input image. We call them the Skin @dbimilarity Map (or SCSM) and

Hair Color Similarity Map (or HCSM).
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{SCSM: scgp) = scom(C,(p).C, (p)) (19)

HCSM = HeS(p) = HCDM(C, (p).C, (p))

where C,(p) and C, (p) are the chromaticity of pixed in the input imageSC%p)
and HCSp) are the skin color likeness and the hair col@eriess of pixelp,
respectively.

In the case that the skin (or hair) color regioresrapresented in binary images,
the skin (or hair) color area can be estimateddunting the number of skin (or hair)
color pixels. Here, we apply a method based orfubey theory to estimate the skin

(or hair) proportion from the average SCS and thexage HCS of the head region

candidates. We called the resulblor . score . described below:

> max(scSp), HCH p))

color _score= 2129

(20)
n

wheren is the number of pixels in the head region cartdida
We use the method of color pattern matching torege the accuracy of the

training database and obtain a testing accura®ysof.

3.3. Human Head Detection

We combine the shape and color matching performamgaroportion to their
respectively testing accuracies. In this way, we lcance locate the human head by

the following equation:
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total _score= wx shape score+ (1— W)>< color _score (21)

The pixels in the possible region which has thénégg total score is defined as the
head region.

The weight w betweenshape_scoreand color_scoreis in proportional to the
accuracy rates of shape pattern matching and palidern matching, respectively, as

follows:

W= accuracyateof shapgatternmatching
accuracyateof shapegatternmatching+ accuracyateof colorpatternmatching

(22)

This leads towzi = 058, which is the proportional constant or weight for

0.8+0.57

shape feature. Namely, this implies '0.42 propodiaronstant for color feature in

computing the head matching score of a region.
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Chapter 4 Experimental Results

There are two parts in this chapter. The first pkedals with human silhouette
extraction. The second part is the human head titatedVe present experimental
results on the Weizmann human action database tegpam [14]. The database
contains 80 low resolution (180 144 pixels resolution at 25 fps) video sequences
depicting eight persons, namely, Daria, Denis, lda, Lyova, Moshe and Shahar,
performing ten actions, i.e., “running”, “walking*bending”, “galloping-sideways”,
“jJumping-forward-on-two-legs”, “jumping-forward-oane-legs”, “jumping-jack”,
“jlumping-in-place-on-two-legs”, “waving-two-hands”’and *“waving-one-hand”.

Samples of the successive frames of the activiggoaies are shown in Fig. 4.1.

4.1. Human silhouette extraction

It should be noted that these database videosaken twith static camera and
simple background in outdoor environments with ¢ in the illumination.
Therefore there is no unique background video flodaabase videos. The database
also contains some background videos and provideslap table, in which each
movement videos are assigned a corresponding baakdvideo.

In order to calculate the person segmentation acgurate, the ground truth
images are obtained by manually extracting humlaiosette from each image frame
to be tested. Each video contains about 70 framesverage. Due to most actions in
the video database are periodical, we produce 2Qngr truth images from 20
successive frame images for each person and edicim.athere are totally 1600
ground truth images produced and some of themhanersin Fig. 4.2.

To calculate the accuracy rate, a minimum regiomosmding the human

silhouette of the ground truth image and the segadehuman silhouette of the
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corresponding image in order to void the bias legrno the background area, which
constitute a major portion of an image in generale positive pixels are these pixels
classified to human silhouette both in the groumdhtimage and in the segmented
image; while true negative pixels are these pigklssified as background both in the
ground truth image and in the segmented image.

Hence, the true positive rate, true negative ratethe accuracy rate can now

be calculated as follows:

true_ positive_rate =

number otrue posiive pixels (23)
number opixels clasified ashuman sihouette inthe grounl truth image

true _ negtive_rate =
number ofrue negtie pixels (24)
number opixels clasified ashackgroumd in regian disscussd of thegroundtruth image

true_ positive_rate+true__negtive_rate

accuracy_rate = 5

(25)

We compare our method with the method of mediarkdgracind subtraction
which described in Section 4.1.2,*Wiethod in gray scale which described in Section
4.1.3 and W method in color scale which described in Sectidn44 The results of
median background subtraction and f¥ethod underwent a noise filter and a shadow

filter which described in Section 4.1.5.
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Fig. 4.1 Example images from video sequences iMthzmann human action database [14]
which depicting eight persons performing ten acion
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Fig. 4.2 Some ground truth images obtained by mgnextracting human silhouette
from the image frame to be tested.

43



4.1.1. Results of our method

In this thesis, we propose a human silhouette etitra method based on
temporal differencing, and incorporate a novel lgaoknd region growing technique
for extraction of complete human silhouette withaupre-built background model.
We combine the temporal differencing from threecsssive video frames and the
edge image to subtract the outline of motive objedhe frame. Some examples of
outline images extracted is shown in the secondneolin Fig. 4.3. The outline of the
motive object could not be complete and is a nased curve. Hence, we propose a
novel background region growing technique whichwgng the background region
and then obtain the human silhouette from incomeplaiige imageThe resultant
human silhouetteamages are shown in the third column in Fig. 4.Be Taverage

accuracy rate is listed in Table II.

TABLE Il
THE ACCURACY RATE OF HUMAN SILHOUETTE EXTRACTION
USING OUR METHOD

bend | jack | jump |pjump| side | skip | run | walk |wavel|wave2|average

daria | 0.94| 0.93| 0.93|0.94| 091| 092|091 0.90| 0.94| 0.93| 0.92

denis | 0.89| 0.89| 0.92| 0.87| 0.87| 0.90| 0.88| 0.89| 0.92| 0.94| 0.90

eli 093/ 091|095/ 090|092|094| 092|091 0.92| 0.92| 0.92

ido [ 094)092/092|091/091091|0.92|0.92|0.92| 0.92| 0.92

ira 094091090 091|0.89|0.89| 0.87|0.88| 0.92| 0.91| 0.90

lyova | 0.90| 0.91| 0.89| 0.92| 0.92| 0.92| 0.88| 0.90| 0.94| 0.93| 0.91

moshe | 0.93| 0.89| 0.92| 0.91| 0.89| 0.89| 0.89| 0.90| 0.72| 0.93| 0.89

shahar | 0.90| 0.93| 0.84| 0.88| 0.86| 0.93| 0.92| 0.82| 0.86| 0.91| 0.88

average | 0.921 091|091 0.91| 0.90| 0.91| 0.90| 0.89| 0.90| 0.92| 0.91
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Fig. 4.3 Examples of the resultant images usingneethod First column: sample image
frames from the Weizmann dataset. Second colummahuedge image extracted. Third
column: resultant images after background regioowgrg of human edge images
extracted.
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4.1.2. Median background subtraction

The foreground-background separation method of Waim is described briefly
in [14] as follows: “To obtain space-time shapestt# actions, we subtracted the
median background from each of the sequences asdl aisimple thresholding in
color-space. The resulting silhouettes containezhK$” and “intrusions” due to
imperfect subtraction, shadows and color similesitivith the background (see Fig.
4.4 for examples).” According to the statements[1d], we built the median
background model and used a simple thresholdirgplor-space. LeV be an array
containingN consecutive imaged/ (i, j ,k) be thek-th color channel intensity of a
pixel (i, j) in thet-th image ofV, A (i, j, k be median value df-th color channel
intensities at pixeli(j) in all images irV, respectively. The initial background model
for a pixel , j) is formed by (i, j, k)

After the training period, an initial background deb is obtained. Then, each
input imagel; of the video sequence is compared to the backgrovodel, and a

pixel I; (i, j, K) is classified as a background pixel if:

.G, j, )=2G, j, 1<k, and
.G, }, 2)-4(), j,2)| <k, and (26)
1G5, 3) = 2G, ), ) <k,

wherekq, is a fixed constant .

The resultant images underwent noise filter anddeafilter described in
Section 4.5. Fig. 4.5. shows some resultant imégedifferent threshold valuds,. It
is noted that the human silhouette extracted diffesm threshold values and there is
no unique threshold value suitable for all videdke line chart of accuracy rate

versus threshold value for person and for actigriaged is Fig. 4.6. and Fig. 4.7. The
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peak of each curve in the chart pointed to theabletthreshold value which differs

from person to person and from action to actiore @bcuracy rate calculated under

kn=30, a better value from several trials, is ligtedablelll.

Fig. 4.4 Examples of video sequences and extraitealiettes from Weizmann’s
database [14].
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k=20 kn =25 ky, =30 Ky, =35 Ky, =40

Fig. 4.5 Examples of the resultant images usingrtedian background model and
undergoing noise filter and shadow filter for diffat threshold valuds,.
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TABLE Il
THE ACCURACY RATE OF HUMAN SILHOUETTE EXTRACTION
USING MEDIAN BACKGROUND MODEL AND kqy =30

bend | jack | jump |pjump| run | side | skip | walk |wavel|wave2|average

daria | 0.91| 0.87| 0.94| 0.92| 0.89| 0.91| 0.90| 0.90| 0.89| 0.85| 0.90

denis | 0.89| 0.80| 0.87| 0.80| 0.84| 0.87| 0.84| 0.87| 0.85| 0.83| 0.85

eli 092 0.88|0.94| 0.81|0.90| 091|0.92| 0.90| 0.78| 0.73| 0.87

ido | 0.87|0.84|090|0.88|0.88]091|091|0.90| 0.86| 0.83| 0.88

ra | 0.90| 0.84|0.86| 0.87| 0.86| 0.86| 0.81| 0.81| 0.84| 0.81| 0.85

lyova | 0.88| 0.85| 0.87| 0.90| 0.89| 0.89| 0.89| 0.89| 0.87| 0.85| 0.88

moshe | 0.89| 0.87| 0.89| 0.88| 0.91| 0.89| 0.91| 0.90| 0.89| 0.86| 0.89

shahar | 0.79] 0.90| 0.76| 0.80| 0.79| 0.93| 0.93| 0.91| 0.79| 0.77| 0.84

average | 0.88 | 0.86| 0.88| 0.86| 0.87| 0.90| 0.89| 0.88| 0.85| 0.82| 0.87

4.1.3. W method in gray scale

W* uses a model of background variation that is aobimh distribution
constructed from order statistics of backgrounduesal during a training period,
obtaining robust background model even if therenaoging foreground objects in the
field of view, such as walking people, moving caes; [15]. It uses a two stage
method based on excluding moving pixels from baokgd model computation. In
the first stage, a pixel wise median filter ovendiis applied to several seconds of
video (typically 20-40 seconds) to distinguish nmayvipixels from stationary pixels
(however, our experiments showed that 50 fram@sseconds are typically enough
for the training period, if not too many moving ebis are present). In the second
stage, only those stationary pixels are processembiistruct the initial background
model. LetV be an array containinly consecutive image¥,(i, j) be the intensity of

a pixel (, j) in thek-thimage otV, ¢ (i, j) andx (i, j) be the standard deviation and

49



0.95

0.9

0.85

0.8

0.75

Accuracy rate

0.7

0.65

0.6
20 25 30 35 40
threshold valueg,

Fig. 4.6 The line chart of accuracy ra susghold value for action using median

background model.
455N

0.95

0.9

0.85

=
00

0.75

Accuracy rate

0.7

0.65

0.6

20 25 30 35 40
threshold valug,

Fig. 4.7 The line chart of accuracy rate versusghold value for person using median
background model.

50



median value of intensities at pixel ) in all images inV, respectively. The initial
background model for a pixel, (j) is formed by a three-dimensional vector: the
minimum m(i, j) and maximumn(i, j) intensity values and the maximum intensity
differenced(i, j) between consecutive frames observed during thigihg period.

The background mod&(i, j) = [m(i, j),n(i, j),d(i, j)], is obtained as follows:

m(. j) minV, G, j)
nG, ) [=|  maxv,G, ) (27)
d. )] [ map, G, i) =V, )

wherez are frames satisfyin@/z(i, J) = A, j)| < 20(i, j). This condition guarantees

that only stationary pixels are computed in thekgemund model, i.e.V/i, j) is
classified as a stationary pixel.

After the training period, an initial background aebB(i, j) is obtained. Then,
each input imagé of the video sequence is comparedfq j), and a pixel; (i, j) is

classified as a background pixel if:

(i, )—m(@i, DI <kgu or Je(i, )—n(i, )] < kgu (28)

wherep is the median of the largest interframe absolifferénce imagel(i, j), and
kq is a fixed constant (the authors suggested theekgha 2).

The improvement method classlfy(i, j) as a foreground pixel if:

le (i D>(M0, J)—kgn) and 1e (i, )<(n(i, j)+kgw) (29)

The resultant images underwent noise filter anddewafilter described in
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Section 4.5. Fig. 4.8. shows some resultant im&gedifferent threshold valuel,.

The line chart of accuracy rate versus thresholdevéor person and for action is

plotted is Fig. 4.9. and Fig. 4.10. The peak oheaave concentrated in the chart and

pointed to a suitable threshold value. The accuramycalculated undég=4, a better

value from several trials, is listed TablelV.

TABLE IV

THE ACCURACY RATE OF HUMAN SILHOUETTE EXTRACTION
USING W* BACKGROUND MODEL IN GRAY SCALE AND ky=4

bend | jack | jump |pjump| run | side | skip | walk |wavel|wave2|average

daria | 0.94| 0.93| 0.96| 0.96| 0.95| 0.95| 0.94| 0.95| 0.94| 0.92| 0.94
denis | 0.89| 0.87| 0.88| 0.86| 0.85]:0.90 | 0.88| 0.89| 0.89| 0.88| 0.88
eli 0.95| 0.93| 0.94| 0.894 0.930.95}0.95| 0.94| 0.93| 0.92| 0.93
ido [0.92|0.92|0.91|0.92|090]091|091|091|0.92| 0.90| 0.91
ira | 0.92| 0.90| 0.84| 0.9010.86[0.87/0.84| 0.85| 0.91| 0.90| 0.88
lyova | 0.94| 0.91| 0.89| 0.94| 0.77.+0.92| 0.91| 0.92| 0.93| 0.92| 0.91
moshe | 0.93| 0.90| 0.94| 0.93| 0.90| 0.93| 0.94| 0.93| 0.95| 0.93| 0.93
shahar | 0.89| 0.93| 0.82| 0.88| 0.83| 0.96| 0.96| 0.95| 0.90| 0.89| 0.90
average| 0.92 | 0.91| 0.90| 0.91| 0.87| 0.92| 0.92| 0.92| 0.92| 0.91| 0.91
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Fig. 4.8 Examples of the resultant images usingM®&ackground model in gray scale
and undergoing noise filter and shadow filter fffedent threshold valuel,.
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4.1.4. W method in color scale

We spread W method to color scale whose background model amthree
color channels. Le¥ be an array containiny consecutive image¥4(i, j, h) be the
h-th color channel intensity of at pixdl {) in thet-th image ofV, o (i, j, h) andA (i, j,

h) be the standard deviation and median value oh#tiecolor channel intensities at
pixel (, j) in all images irV, respectively. The initial background model fauizel (i,

j) is formed by the minimum(i, j, h) and maximumm(i, j, h) intensity values and the
maximum intensity differencd(i, j, h) between consecutive frames observed during
this training period. The background mo@éi, j, h) = [m(i, j, h), n(i, j, h), d(i, j, h)],

is obtained as follows:

m(, j, h) minV, (i, h)
n@, j,h) | = maxV; (i J,h) (30)
d, 5.0 ] | max G js ) -V, G j.h)

where z are frames satisfyinqu(i,j,h)—)\(i,j,h)|s20(i,j,h). This condition

guarantees that only stationary pixels are compiatéte background model.
After the training period, an initial background debB(i, j, h) is obtained. Then,
each input imagé; of the video sequence is comparedB{g, j, h), and a pixel is

classified as a background pixel if:

le (i, J, >(mG, J, h)=keu(h)) and ¢ (i, j, h)<(n(i, j, h)+keu(h)) (31)

whereu(h) is the median of the largest interframe absadliifference imageil(i, j, h),

andk. is a fixed constant.
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The resultant images underwent noise filter anddeWafilter described in
Section 4.5. Fig. 4.11. shows some resultant iméyegifferent threshold valuds.
The line chart of accuracy rate versus thresholdevéor person and for action is
plotted is Fig. 4.12. and Fig. 4.13. The peak atheeurve concentrated in the chart
and pointed to a suitable threshold value. The racgurate calculated undis=5, a

better value from several trials, is listedlableV.

TABLE V
THE ACCURACY RATE OF HUMAN SILHOUETTE EXTRACTION
USING W* BACKGROUND MODEL IN COLOR SCALE AND k=5

bend | jack | jump |pjump| run | side | skip | walk |wavel|wave2|average

daria | 0.80| 0.82| 0.94| 0.93| 0:91{093| 091 0.91| 0.83| 0.76| 0.88

denis | 0.76 | 0.78 | 0.82| 0.7540.81| 0.84|-0.80| 0.82| 0.77| 0.77| 0.79

eli 0.82| 0.51| 0.64| 0.79| 0.7810.91|0.91| 0.84| 0.78| 0.73| 0.77

ido | 0.92|0.90| 0.83| 0.92{0.7210.80{0.79| 0.77| 0.91| 0.89| 0.85

ra | 0.81]0.81|0.82| 0.83| 0.83}0.83|0.80| 0.77| 0.82| 0.79| 0.81

lyova | 0.82| 0.91| 0.83| 0.90| 0.64| 0.84| 0.82| 0.80| 0.84| 0.82| 0.82

moshe | 0.94| 0.89| 0.88| 0.93| 0.88| 0.88| 0.88| 0.87| 0.95| 0.87| 0.90

shahar | 0.83] 0.62| 0.76| 0.91| 0.74| 0.74| 0.58 | 0.88| 0.89| 0.91| 0.79

average | 0.84| 0.78| 0.81| 0.87| 0.79| 0.85| 0.81| 0.83| 0.85| 0.82| 0.83
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Fig. 4.11 Examples of the resultant images usied/ibackground model in color scale
and undergoing noise filter and shadow filter fiffedent threshold valuels.
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background model in color scale.
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4.1.5. Noise filter and shadow filter

The resultant silhouettes of median backgroundraation and W method
contained “leaks” and “intrusions” due to imperfecibtraction, shadows and color
similarities with the background. Therefore, theuleant images underwent a noise
filter and a shadow filter described below.

In noise region, we apply a “majority vote” methtmdremove salt-and-pepper
noise and fill the leaks inside human silhouettes.I(i, ) be an resultant image in
which I(i, j)=1 if pixel (, j) belonging to the foreground amd, j)=0 if pixel (, j)
belonging to the background. For each pixelj), consider a (8 +1)x(2N +1)
templateN;; such thatNi; (n,m) = I(i+n, j+m), for -N <n <N, -N <m< N (i.e. N;;
corresponds to a neighborhood of pixelj)). If the sum of every elements y; is
larger than (R +1)x(2N +1)x0.5.(i.e. foreground pixels are the majority in the
neighborhood of pixeli(])), the value ofi(i, j) is set 1 which means pixel, ()
belonging to the foreground. Similarly, if the swifmevery elements ifN;; is less than
(2N +1)x (2N +1)x0.5 (i.e. background pixels are the majority in tleégghborhood of
pixel (i, j)), the value ofi(i, j) is set 0 which means pixel, {) belonging to the
background. In the implementatiddjs set to 1.

In shadowed regions, it is assumed that the obdantensity of shadow pixels
is directly proportional to incident light; consemuily, shadowed pixels are scaled
versions (darker) of corresponding pixels in thekigagound model. The normalized
crosscorrelation (NCC) is used as an initial stapshadow detection, and refine the
process using local statistics of pixel ratios [16]

Let B(i, j) be the background image formed by temporal mefili@ning, andi (i,

) be an image of the video sequence. For each @pjebelonging to the foreground,

consider a (R +1)x (2N +1) templateT;j such thafT;; (n,m) = I(i+n, j+tm), for—-N <n
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<N, -N <m< N (i.e. Tjj corresponds to a neighborhood of pixelj)). Then, the

NCC between templafg; and imageB at pixel {, j) is given by:

NCCG, |) :% (32)
where
ERE. )= 3 3 B0+nj+mT, (nm)
E.(, j) :\/ iN ZN_:NB(i +nj+m?, and (33)
E, = \/ i“N ZN_:NTij (n,m)?.

For a pixel {, j) in a shadowed region, the NCC in a neighboringjoreT; ;

should be large (close to one), and the enefgy of this region should be lower

than the energfs(i, j) of the corresponding region in the backgroundgend hus, a

pixel (, j) is pre-classified as shadow if:

NCC(i, j) = Lnec and E-rif < Esg(i, j), (34)

whereL is a fixed threshold (the authors suggested thee\a..= 0.95 andN = 4).
The NCC provides a good initial estimate aboutltitation of shadowed pixels,
by detecting pixels for which the surrounding néighhood is approximately scaled
with respect to the reference background. Howeseme background pixels related
to valid moving objects may be wrongly classifiedslhadow pixels. To remove such

false positives, a refinement stage is applied.
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The proposed refinement stage consists of veriffinige ratiol(i, j)/B(i, ) in a
neighborhood around each shadow pixel candidatepoximately constant, by
computing the standard deviation Kf, j)/B(i, j) within this neighborhood. More
specifically, we consider a regidgdwith (2M+1)x(2M+1) pixels (we usei = 1 in
all experiments) centered at each shadow pixelidatel (, j), and classify it as a

shadow pixel if:

sth(MJ <Ly  and L., < (M] <], (35)
B(, )) B, j)

where std{%} is the standard deviation of quantitigg j)/B(i, j) over the
iy ]
regionR, andLgyg, Liow are thresholds suggested to be 0.05 and 0.5 tesggc

4.2. Human head detection

We propose a human head outline extraction meth@wdlor images that can be
used to extract head outline in different view asgkuch as frontal view, lateral view,
diagonal view, and so on. The human silhouetteaekitn method is taken as a
pre-processing step before human head detectioithwdan simplify the complex
backgrounds and reduce the detecting area. Thepraymse a fuzzy theory based
pattern-matching technique which combines the shapecolor information to locate
human head.

We present experimental results of human head tilmteon the same testing
images as human silhouette extraction which costaight persons performing ten

actions. There are totally 1600 testing images aA€l of them detected head

correctly. The accuracy rate for head detectio%—gsg—(l =93%.
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Chapter 5 Conclusion

In this thesis, we propose a human silhouette etktra method based on
temporal differencing, and incorporate a novel lgaoknd region growing technique
for extraction of complete human silhouette withaupre-built background model.
The proposed method adapts quickly to changeseirstiene and can extract human
silhouette from incompletely controlled environméoatitdoor or indoor with change
of illumination). We combine the temporal differemg from three successive video
frames and the edge image to subtract the outlimeodive object in the frame. The
outline of the motive object could not be completel is a non-closed curve. Hence,
we propose a novel background region growing tepiawhich gradually grows the
background region and then obtain the foregroutitbsette from incomplete edge
image.

We also propose a human head outline extractiomadein color images that
can be used to extract head outline in differeetwangles, such as frontal view,
lateral view, diagonal view, and so on. We takeperal differencing method as a
pre-processing step before human head detectiolchwdan simplify the complex
backgrounds and reduce the detecting area. Theprogose a fuzzy theory based
pattern-matching technique which combines the slaapecolor information to locate
human head.

Experiment results have shown that our approachegéiact human silhouette
without pre-built background model and have goatlieacy rate competitive to those
by the background subtraction methods. Experimesults have also shown that our
approach can also obtain good results on humandetadtion.

To investigate further, extracting multiple (occba) people from more

complicated scene without a pre-built backgroundleh@s our future work.
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