
國 立 交 通 大 學

電控工程研究所

碩 士 論 文

使用加速規之慣性滑鼠裝置訊號處理方法評估

Evaluations of Signal Processing Methods for an Inertial

Mouse Device Using Accelerometers

研 究 生： 活 多 福

指導教授： 胡 竹 生 博士

中 華 民 國 九 十 九 年 六 月

i

使用加速規之慣性滑鼠裝置訊號處理方法評估

研究生：活 多 福 指導教授：胡 竹 生 博士

國立交通大學

電控工程研究所碩士班

摘要

本論文提出了一個以三軸加速度計來取代普遍用於商業滑鼠裝置的光學感

測器的新型慣性滑鼠裝置。本 論文所使用的慣性感測器為加速度計，其具有減

少能量耗損、縮減整體產品大小以及減低整體產品成本的優點，另外因為此種新

型的 慣性滑鼠裝置可以隔空使用，所以也增加了其可使用的範圍。

ii

本論文以光學感應器及三軸加速度計來實現所提出的 慣性滑鼠裝置，因此

能在相同環境及條件下比較兩種不同感應器﹝光學感應器及慣性感應器 ﹞的效

果。本論文以不同的數學方法以及從加速度計所得到的訊號來估測滑鼠裝置的位

移量。 在最初時，這些實現的演算法皆以個人電腦為核心並搭配慣性滑鼠裝置

來做測試，最後最適合的演算法則以微控制器來實現，整個 裝置成為一個獨立

的新型慣性滑鼠裝置。

實 驗結果顯示出，本論文所提出的以加速度計為基礎的最佳估測技術可 以

做為新型的慣性滑鼠裝置，且應用在一般的電腦上可以順利完成大多數的工作。

iii

Evaluations of Signal Processing Methods for an Inertial

Mouse Device Using Accelerometers

Student： Rodolfo Gondim Lóssio Advisor： Prof. Jwu-Sheng Hu

Institute of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

This work proposes and evaluates an inertial mouse device based on three-axis

accelerometer to be a substitute of the optical sensor, which is commonly used in the majority

of commercial mouse devices. The use of inertial sensors, such as accelerometers, will allow

reducing power consumption, physical dimensions and final product cost, moreover will

increase easy-of-use, since this kind of mouse could be also used in free space.

For this purpose, a prototype containing an optical sensor and 3-axis accelerometer is

built. In this way, it is possible to compare the two sensors under the same environment and

conditions. In a first moment, different mathematical approaches are tested to estimate the

displacement based on the acceleration signal. Those approaches are processed under a

computer application connected to the prototype. By the end, the most suitable algorithms are

ported to the microcontroller embedded in the prototype.

The result of the experiments show that the best estimator techniques based on the

accelerometers can be used as a mouse device to perform the majority of the tasks when

interacting with a computer.

iv

Acknowledgments

My first words will go to my family in Brazil, which will be written in Portuguese:

“Aos meus pais e irmãos, gostaria de agradeçe-los por todo o suporte que vocês me

deram durante esses dois anos e pouco que estive no exterior estudando e trabalhando.

Sem esse suporte, acredito que não conseguiria ir tão longe nos meus estudos e na

minha vida profissional. Sinto muita falta de vocês e gostaria muito que vocês

estivessem na minha cerimônia de graduação. Mas por causa da distância, tempo e

dinheiro, esse desejo torna-se quase impossível. Mesmo assim, espero que no futuro

vocês possam conhecer esse país que me conquistou e deu enorme oportunidades para

meu crescimento profissional e acadêmico.”

For the people from Taiwan, at first I would like to thank my advisor, Prof. Hu, for

accepting to orientate my research for these two years. It was a pleasure for me to have

worked together with such a really competent and qualified professor.

Also, I would like to thank my labmates from X-Lab, who helped me a lot, specially

with the bureaucratic stuff that concerns with the academic life. I made really good

friends in here, and I hope we can keep in touch for a long time.

And for last, I would like to thank my girlfriend, Charlene, for helping me since my

first month in Taiwan. It is not easy to stay far away from family. But with her help, I

overcome this problem, and she is one of the main reasons I feel at home in Taiwan

now.

v

Contents

摘要 ... i

ABSTRACT ... iii

Acknowledgments .. iv

Contents ... v

List of Tables ... vii

List of Figures .. viii

Chapter 1. Introduction .. 1

1.1 MOTIVATION AND OBJECTIVE .. 1

1.2 SURVEY OF PREVIOUS WORK ... 2

1.3 THESIS SUBJECT AND CONTRIBUTION .. 3

1.4 OUTLINES OF THESIS ... 4

Chapter 2. The Prototype.. 6

2.1 THE COMPONENTS ... 6

2.1.1 Microcontroller ... 6

2.1.2 Three-Axis Accelerometer ... 7

2.1.3 Optical Sensor .. 7

2.2 THE LAYOUT AND PHYSICAL STRUCTURE .. 8

2.3 SOFTWARE DEVELOPMENT .. 9

2.3.1 USB Drivers and Device Classes ... 9

2.3.2 Host Application ... 11

2.3.3 Embedded Application .. 14

Chapter 3. Signal Processing Methods .. 17

3.1 DATA PREPARATION ... 17

3.1.1 Statistical Techniques ... 17

3.1.2 Bias filtering ... 18

3.1.3 Calibration Process .. 23

3.2 THE FUZZY-NEURAL INTEGRATOR ... 25

3.2.1 Membership functions .. 27

3.2.2 Fuzzy Rules ... 29

3.2.3 Defuzzification .. 30

vi

3.2.4 Back Propagation Algorithm .. 30

3.2.5 Fuzzy-Neural Model ... 33

3.3 THE KALMAN FILTER... 37

3.3.1 The Process to be estimated ... 38

3.3.2 Filter Parameters and Tuning .. 39

3.4 THE STATE-MACHINE ESTIMATOR ... 41

3.4.1 State-Machine using simple integration method .. 42

3.4.2 State-Machine using Kalman filter ... 46

3.4.3 Combined Axis XY State-Machine .. 48

3.4.4 Combined State-Machine using motion detection sensor..................................... 52

3.4.5 Combined State-Machine using physical button .. 53

3.4.6 State-Machine using inertial behavior ... 53

Chapter 4. Testing and Experimental Results .. 58

4.1 ANALYTICAL RESULTS ... 58

4.1.1 Graphical Results ... 58

4.1.2 Mathematical Results ... 67

4.2 THE TEST SCENARIO .. 69

4.3 PERFORMANCE RESULTS.. 71

Chapter 5. Conclusions and Future Work .. 77

References .. 79

vii

List of Tables

TABLE 1: BINARY PACKET SENT BY THE PROTOTYPE ... 12

TABLE 2: FUZZY-NEURAL NETWORK TABLE (FIRST VERSION) .. 34

TABLE 3: STATES, TRANSITIONS AND ACTIONS OF THE STATE-MACHINE USING SIMPLE INTEGRATION 45

TABLE 4: STATES, TRANSITIONS AND ACTIONS OF THE STATE-MACHINE USING KALMAN FILTER 47

TABLE 5: STATES, TRANSITIONS AND ACTIONS OF THE COMBINED STATE-MACHINE .. 51

TABLE 6: STATES, TRANSITIONS AND ACTIONS OF THE FREE MOVEMENT STATE-MACHINE 57

TABLE 7: MATHEMATICAL ANALYSIS IN HIGH SPEED SCENARIO .. 68

TABLE 8: MATHEMATICAL ANALYSIS IN LOW SPEED SCENARIO ... 68

TABLE 9: TEST CASES FOR THE PERFORMANCE TEST ... 71

viii

List of Figures

FIGURE 1: CROSS SECTION OF A PCB ASSEMBLY .. 8

FIGURE 2: PROTOTYPE'S LAYOUT ... 9

FIGURE 3: HIERARCHY FROM SOFTWARE APPLICATION TO USB DEVICE .. 10

FIGURE 4: SAMPLING TIME LINE ... 15

FIGURE 5: FLOW CHART FROM THE EMBEDDED APPLICATION ... 16

FIGURE 6: RAW ACCELERATION FROM Z AXIS (NO SCALE) ... 18

FIGURE 7: RAW ACCELERATION OF XYZ AXES WITHOUT MOVING THE PROTOTYPE .. 19

FIGURE 8: AFTER CONSTANT BIAS COMPENSATION ... 20

FIGURE 9: UNBIASED ACCELERATION AFTER APPLYING FILTER H(Z) WITH DIFFERENT : 21

FIGURE 10: CLOSER LOOK IN THE END OF THE MOVEMENT ... 22

FIGURE 11: ADAPTIVE BIASED FILTER... 23

FIGURE 12: CONFIGURATION OF THE FUZZY NEURAL NETWORK ... 26

FIGURE 13: ACCELERATION MEMBERSHIP FUNCTION .. 28

FIGURE 14: VELOCITY MEMBERSHIP FUNCTION ... 29

FIGURE 16: BLOCK DIAGRAM FROM COLLECTING PHASE .. 31

FIGURE 17: BLOCK DIAGRAM FROM TRAINING PHASE ... 32

FIGURE 18: DIAGRAM BLOCK FROM VALIDATION PHASE ... 33

FIGURE 19: MODIFIED FUZZY-NEURAL NETWORK ... 36

FIGURE 20: THE DISCRETE KALMAN FILTER CYCLE .. 37

FIGURE 21: APPROXIMATION OF THE INSTANTANEOUS VELOCITY .. 43

FIGURE 22: SIMPLE STATE-MACHINE ... 44

FIGURE 23: COMBINED STATE-MACHINE ... 48

FIGURE 24: FREE MOVEMENT STATE-MACHINE ... 56

FIGURE 25: FUZZY-NEURAL NETWORK WITH AND WITHOUT TRAINING .. 59

FIGURE 26: HIGH SPEED SCENARIO (KALMAN, FUZZY, STATE) .. 60

FIGURE 27: LOW SPEED SCENARIO (KALMAN, FUZZY, STATE) ... 60

FIGURE 28: NO PEAK DETECTION WHEN MOVING IN LOW SPEED ... 61

FIGURE 29: SINUSOIDAL SCENARIO (KALMAN, FUZZY, STATE) .. 62

FIGURE 30: HIGH SPEED SCENARIO (STATE, STATE WITH KALMAN) ... 63

FIGURE 31: LOW SPEED SCENARIO (STATE, STATE WITH KALMAN) .. 63

FIGURE 32: HIGH SPEED SCENARIO (STATE, COMBINED STATE) ... 64

FIGURE 33: LOW SPEED SCENARIO (STATE, COMBINED STATE) .. 65

FIGURE 34: HIGH SPEED SCENARIO (COMBINED STATE, COMBINED STATE WITH MOTION SENSOR) 66

FIGURE 35: LOW SPEED SCENARIO (COMBINED STATE, COMBINED STATE WITH MOTION SENSOR) 66

FIGURE 36: MOVEMENT RESPONSE TEST BENCH .. 73

ix

FIGURE 37: SIMPLE PATH TEST BENCH .. 73

FIGURE 38: COMPLEX PATH TEST BENCH .. 74

FIGURE 39: SYNCHRONIZED MOVEMENT TEST BENCH ... 74

FIGURE 40: SYNCHRONIZED MOVEMENT WITH TIME CONSTRAINT TEST BENCH .. 75

FIGURE 41: LONG MOVEMENT WITH TIME CONSTRAINT TEST BENCH .. 75

1

Chapter 1. Introduction

1.1 Motivation and Objective

In the last decades, many commercial mouse devices were developed with

different technologies. The first generation of a commercial mouse device is so called

mechanical mouse, which uses a single ball that can rotate in any direction. This ball is

connected against to two rollers. One roller detects the forward-backward motion and

other the left-right motion. The movement of these two rollers is detected by an

encoder and an electrical signal is send to the computer. In the computer, a driver

software in the operation system converts the signal into motion of the mouse cursor

along X and Y axes on the screen [15]. The disadvantage of this kind of mouse is that

it often requires maintenance, due to the moving parts that can easily accumulate dust

and lint. Besides that, it does not perform well in slippery surfaces, requiring in most

of the cases a mouse pad for better performance.

The second generation of mouse devices is so called optical mouse, which uses

an optoelectronic sensor that takes successive pictures of the surface on which the

mouse operates. The surface is illuminated by an LED or a laser diode. Changes

between one frame and next are processed by the image processing part of the chip

and translated into movement on the two axes using a block matching algorithm.

Comparing this generation of mouse device with the previous one, it presents higher

sensitivity and practically do not require any maintenance. However, most of the

optical mouse do not work well in glossy and transparent surfaces and demand a

higher average of power.

The next generation of mouse devices that is starting to appear in the market is

2

called inertial mouse devices, which can use gyroscope or accelerometer sensors to

detect movement for each axis supported. These two kinds of sensors consume quite

less power than the optical sensors, also has a huge potential to cost less than optical

sensors after mass production. Besides that, a new way to interact with computer

systems will be allowed, since they do not require a surface to operate. Moreover,

when using a wireless battery-powered mouse device, it will increase easy-of-use and

due to the small consume of energy, it can be used during long period of time without

recharging. Another benefit of using inertial sensors is their size. They are extremely

small ICs that can easily be embedded in unusual objects, like a ring, a watch or

glasses. Such objects that may be used as mouse devices, especially for handicap

people.

In the market, it is already possible to find hybrid devices that use optical

sensor and inertial sensor. The first one is only used in a 2D surface and the second

one is used on fly. However, adding an optical sensor would increase the final product

cost, the power consumption and the product size.

The objective of this thesis is to propose and evaluate an inertial device mouse

based on a three-axis accelerometer that can substitute the optical sensor in a hybrid

device, in this way, only inertial sensors will be embedded in the system, reducing the

total power consumption, the production cost and size.

1.2 Survey of Previous Work

A patent [1] claiming an inertial mouse system based on accelerometers was filed

in 1988, describing that such mouse would consume less power than optically based

mouse, and offer increased sensitivity, reduced weight and increased easy-of-use.

Since then, many accelerometer sensors were designed to be used for mouse

applications Error! Reference source not found.. However, because the nature of

3

estimating the displacement based on acceleration signals is extremely difficult, there

is not such a mouse device yet in the market competing with the optically based

mouse.

The biggest challenge is to apply accurate signal processing methods to integrate

the acceleration signal. This integration can be as simple as the one proposed in [7], or

as complicated as in [2], which uses Kalman Filter. Another way to estimate the

displacement is to use pattern recognition algorithms, as the one proposed in Error!

Reference source not found., which uses Fuzzy-Neural Networks.

Most of the research papers used as survey for this thesis propose signal

processing techniques to be applied with accelerometers for different applications than

mouse devices, such as robot positioning [3], gesture recognition Error! Reference

source not found., static balancing control of humanoid robots [20], detection of

small displacement for portable devices [18] and detection for human actions [19].

Accelerometers also are common designed as a sensor for inertial navigation systems

[17], especially in mobile robot applications, as in [21] and [22].

The other few papers that use accelerometers for mouse device systems are based

on tilt angle [23], which instead of performing translation movements, as used in

optically based mouse, the user must rotate the device to move the cursor on screen.

This method can be used in hand gesture recognition devices [24], in handicap

assistant devices [25] and also in gaming devices [26].

1.3 Thesis Subject and Contribution

The subject of this thesis includes the design and construction of a prototype

that contains an optical sensor and a three-axis accelerometer embedded in the same

circuit board. The reason to have both sensors in the same board is to guarantee that

they are under the same conditions and suffer the same displacement when moving the

4

prototype in a 2D surface. In this way, it is possible to compare the output of both

sensors by applying the same input (the user’s interaction with the prototype).

In the computer side, the mouse driver software only requests the relative

displacement in X and Y directions, which physically means the velocity in both

coordinates. The extraction of the velocity from the optical mouse is straight-forward,

since the sensor already returns the relative motion based on the successive images

captured by its optical sensor. For inertial systems based on accelerometers, it is

necessary to integrate the acceleration measured by the sensor. This integration can be

performed in many ways. In this thesis, three digital signal processing methods are

used to integrate the acceleration:

 Fuzzy-Neural Network Estimator;

 Kalman-Filter;

 State-Machine based Filter;

The performance of each technique is determined by comparing their resultant velocity

curve of X and Y directions with the optical sensor resultant velocity curve. A multiple

comparison is possible by collecting data from the accelerometers and optical sensor during

some seconds and processing it off-line using a software application running in the computer.

After evaluating the performance of each integrator techniques, only the best ones are

ported to run in the prototype, which has a limited microprocessor.

1.4 Outlines of Thesis

The content of this thesis is organized as follows.

Chapter 2: details about the design and the construction of the prototype used in this

project are described. The description includes information about the main

components used on the circuit board, as the microcontroller, optical and

5

accelerometer sensors. It also includes the specification of the software

running on the host and on the prototype.

Chapter 3: the integration techniques of the acceleration coming from the

accelerometer sensor are described. For each technique, the mathematical

model and details of the algorithm are presented.

Chapter 4: the experiment results are presented according to the developing steps of

algorithms in chapter 3. Graphics containing the resultant velocity curve of

each technique are presented, and the experimental results are discussed.

Chapter 5: the conclusion of this thesis and the possible improvement in the future is

presented in this chapter.

6

Chapter 2. The Prototype

2.1 The Components

The prototype designed to test and evaluate an inertial mouse device based on

accelerometers has three main components: the microcontroller, accelerometer sensor

and optical sensor. All components are embedded in the same circuit board that was

designed to connect to a host machine through a USB port. Each component will be

explained in details on the next sections.

2.1.1 Microcontroller

The microcontroller PIC from Microchip with reference number 18F4550 is used

in this prototype, which is responsible to read the sensors, manipulate the measured

data and send the results to a host machine. The main reasons to use this

microcontroller are because of the following features:

 Support to USB v2.0, a common protocol used in mouse devices when

connecting to a computer. The USB port also supplies the power to all

components embedded in the prototype;

 Analog Digital Converters (ADC), which are used to read the three-axis

of the accelerometer sensor.

 Support to SPI protocol, which is used to control the optical sensor.

The oscillator crystal used to provide the clock signal to the microcontroller has 20

MHz of frequency. The ADCs from the microcontroller has resolution of 10 bits,

allowing quantizing the analog signal from the accelerometers to a digital value that

varies from 0 to 1024.

7

2.1.2 Three-Axis Accelerometer

The three-axis accelerometer used in this prototype is from Freescale

Semiconductor and its reference number is MMA7360L. This sensor is a low power,

low profile capacitive micro-machined accelerometer featuring signal conditioning, a

1-pole low pass filter, temperature compensation, self test and g-Select which allows

the selection between 2 sensitivities[11].

On next, some of technical specification from this accelerometer is listed:

 3mm x 5mm x 1.0mm LGA-14 Package

 Low current consumption: 400 A

 Sleep Mode: 3 A

 Low Voltage Operation: 2.2 V – 3.6 V

 High Sensitivity (800 mV/g at 1.5g)

 Selectable Sensitivity (±1.5g, ±6g)

For better performance in low accelerations, the most sensitive option is set (±1.5g),

2.1.3 Optical Sensor

The optical sensor used in this prototype is from Avago Technologies and its

reference number is ADNB-6012-EV. This sensor is based on a laser diode, which

allows operating on many surfaces that prove difficult for traditional LED-based

optical navigation. It also has high-performance architecture, which is capable of

sensing high-speed mouse motion – with resolution up to 2000 counts per inch.

The subcomponents of this optical sensor include:

 an optoelectronic sensor with CMOS technology;

 a lens base, which is used to attach the optoelectronic;

8

 laser diode (VCEL), which also is attach to the lens base;

 a clip to attach properly the laser diode to the lens base;

 a base plate, which is attached to the PCB of the whole prototype.

On Figure 1 all parts of the optical sensor are illustrated.

Figure 1: Cross section of a PCB assembly

2.2 The Layout and Physical Structure

The schematic and layout of the prototype were designed by using the software

Protel 99. This program allows creating the schematic circuit including all components

described in the previous sections and other elements, such as capacitors, resistors and

voltage regulators. Once designed the schematic, the software also can generate

automatically a PCB board including all circuit units and route the connection between

them. The final PCB layout from the prototype is illustrated in Figure 2.

After the PCB is manufactured, all elements in the circuit are welded in the PCB

board. Since the idea of this prototype is to behave as a mouse device, a physical

structure of a commercial mouse was used to cover the PCB board. Also, a flat base

plate was designed to be attached under the circuit board. In the base plate, there is an

orifice, where the laser diode can reach the surface that it operates.

9

Figure 2: Prototype's layout

2.3 Software Development

2.3.1 USB Drivers and Device Classes

Any hardware device that interacts with a computer program must use a device

driver, which is responsible to translate data between the operation system running in

the computer and in the embedded system. In this project, the prototype represents the

hardware device, which is connected to the computer using a USB port. In this way,

the computer and the prototype must use a USB bus driver. Nowadays, many computer

USB Connector

Accelerometer

Optical

Sensor

Voltage

regulator

Microcontroller

10

peripherals use an USB port to connect to a computer, such as printers, USB flash

drives, webcams, keyboards and mouse devices. For each case, not only the USB Bus

driver is used, but also a device class that specifies the device’s functionality. In this

project, two different device class based on USB are used:

 Communications device class (USB CDC), which provides an easy way to

read and write any kind of data from/to an USB device. In this thesis, this

device class is used to emulate a COM port, which will allow a software

application running in the computer to manipulate an USB device as a

RS-232 device. Therefore, a simple application can be implemented to read

data from the prototype, specifically the sensors data processed by the

microcontroller. A comparison between how the kernel and operating system

treat a virtual COM port and a regular COM port is illustrated in Figure 3.

Figure 3: Hierarchy from Software Application to USB device

 Human Interface device class (USB HID), which stands for human interface

Software Application

Virtual COM Port

CDC Class Device

USB Bus Driver

USB Port

Serial Driver

RS-232 Port

CDC
Compliant

USB Device

11

 devices, such as keyboards, game controllers and mouse devices. In this

thesis, this device class is used to treat the prototype as a typical mouse

device, which means the data sent from the prototype to the computer will be

used to move the cursor on the screen. The packet format required when

using the HID device class for a regular mouse device consists in 4 bytes:

 First byte: it is used to specify the state buttons of the mouse, (1 =

pressed, 0 = not pressed), which allows processing simultaneously 8

different buttons. In the prototype, no buttons were added, since only

the movement in X and Y directions are analyzed.

 Second byte: it is used to specify the displacement in the X

coordinate. This is an 8 bit signed variable, which can assume values

from -128 to 127. The value ZERO means that no displacement was

detected.

 Third byte: it is used to specify the displacement in the Y coordinate.

The same description from the X coordinate is applied here.

 Forth byte: it is used to specify the displacement from the mouse

wheel. It is also an 8 bit signed variable, where the signal corresponds

which direction the wheel was rolled.

2.3.2 Host Application

A host application was created to read the data from the prototype and process it

for generating graphics based on different velocity estimators. This application is

written in Matlab script, which can easily be used to plot large amount of data. For this

case, the USB CDC device class is used. Therefore, the Matlab script application can

connect to the prototype as a serial device, by using functions to open, read and write a

serial port.

12

In this scenario, the prototype will be responsible to send binary packets with 8

bytes of size. The meaning of each byte is explained in Table 1.

1
st
 byte Most significant byte from X acceleration

2
nd

 byte Less significant byte from X acceleration

3
rd

 byte Most significant byte from Y acceleration

4
th

 byte Less significant byte from Y acceleration

5
th

 byte Most significant byte from Z acceleration

6
th

 byte Less significant byte from Z acceleration

7
th

 byte Reference Velocity X coordinate

8
th

 byte Reference Velocity Y coordinate

Table 1: Binary packet sent by the prototype

The last two bytes can refer to the optical sensor data or the velocity estimated by

one of the integrator techniques implemented in the microcontroller. However, the

integrator technique will be only implemented in the microcontroller after choosing

the best option among the techniques implemented in Matlab, which has the following

flow chart:

Colecting
Data

• Open a COM port

• Write a command in the COM port to trigger the prototype

• Start reading each 8 bytes, parsing it and storing in vectors

Estimate the
velocity

• Based on the the acceleration data collected, the velocity is estimated by
using different techniques to integrate the acceleration

• For each estimator technique, a vector of containing the velocity is created

• The velocity curve from the optical sensor is built

Plotting the
Results

• The raw acceleration of X, Y and Z are plotted.

• The optical sensor velocity curve and the estimator technique velocity curves
are plotted in the same graphic for X and Y axes.

13

Based on the plotted velocity curves, it is possible to define which techniques

present the best performance. Once the best techniques are defined, their algorithms

will be implemented in the microcontroller embedded in the prototype. The same USB

CDC driver and the same software application running in the computer can be used to

validate the porting of this algorithm to the microcontroller. The embedded application

only has to substitute the optical sensor measurements for the velocity estimated by the

technique ported in the microcontroller. When plotting the graphic results using the

host application, the curves from the ported estimate technique and the original

implementation in Matlab must be similar. They will not be totally the same because

the microcontroller has a limited architecture; implicating some parts of the algorithm

are implemented with fix point representation. In Matlab, all variables are represented

as floating numbers.

The script is structured in different files. Each file will be clarified on next:

 “runapp.m”, it is responsible to open the COM port and collect the data from

the prototype;

 “plotall.m”, it will plot all graphics for data analysis;

 “kalman_filter.m”, this is a function file, which is responsible for estimating

the velocity by using the Kalman filter. The output is a velocity vector and the

input is the acceleration signal of one axis.

 “fuzzy_integrator.m”, this is a function file, which uses a fuzzy-neural

network to estimate the velocity. The output is also a velocity vector and the

input is the acceleration signal of one axis.

 “state_machine.m”, a function file that uses a series of different states to

estimate the velocity. It has the same inputs and outputs from the other cases.

 “kalman_state.m”, it is a combination between Kalman filter and state

machine solutions.

14

 “combined_sm.m”, a function file that combine the state machines from axes

X and Y, where the inputs are the acceleration signal of both axes and the

output is the a velocity matrix containing the velocities in X and Y.

2.3.3 Embedded Application

The embedded application is written in C language and the compiler used is CCS

C Compiler, which supports Microchip PIC 18x series. One of the advantages of using

this compiler is its support to different USB device classes, including HID USB and

CDC USB device classes. Therefore, a simple API is provided to access the USB

driver. The applications running in the prototype can be developed and compiled in the

host machine, and the resultant firmware is downloaded to the target by using a

programmer provided by Microchip called MPLAB ICD 2, which uses JTAG protocol

to transfer the binary file from the host machine to the microcontroller PIC.

The main program to be executed in the microcontroller consists in a main loop

flow that reads the sensor data, process it and send the result to the host machine. The

sensor readings are split in two parts. The first part reads the optical sensor using the

SPI protocol. The resultant data is two bytes; each byte represents one of the XY

coordinates. The second part is responsible to read the accelerometer sensor by using

three analog-to-digital converters from the microcontroller. For each axis (XYZ), eight

consecutive measures are made and the mean value of them is used to smooth the

results. The microcontroller only allows selecting one ADC channel at a time, and for

each measurement a delay must be specified to quantize the correct value of the

acceleration, which will define the sampling rate of the measurements. This delay is

defined in agreement with the maximum sampling rate allowed in the ADC from the

microcontroller. Besides that, the delay cannot be too short, or the accuracy of the

result will be distorted. Also, it cannot be too long, or the final number of packets per

15

second send to the host machine will be too small. For instance, the number of packets

per second that a commercial mouse device sends to the computer is around 100

packets per second, where each packet corresponds to the format commented in

section 2.3.1. Therefore, considering the time to measure all axes is 15% of the time

between two consecutive packets, the sampling time of the accelerometers should be

smaller than 1.5 ms, which will let around 8.5 ms for the embedded application

process the data and integrate the acceleration. In this way, the quantize time for each

ADC measurement is defined to 50 s.

The sampling time line is illustrated in the Figure 4.

Figure 4: Sampling time line

Note that the time to process the data and integrate the acceleration is not

necessary 8.8 ms; that graphic is only an estimation of the minimum sample rate

necessary to similarly perform as the commercial mouse devices.

The flow chart of the main program will be explained in details on next. Some

parts of the flow will be explained in the next chapter.

x y z

50 s 50 s 50 s

1.2 ms

 8.8 ms

16

Figure 5: Flow chart from the embedded application

17

Chapter 3. Signal Processing Methods

3.1 Data Preparation

Before using any technique to integrate the acceleration signal coming from the

three-axis accelerometer, it is necessary to prepare the data by applying some

statistical techniques, filters and calibration.

3.1.1 Statistical Techniques

The first step, already commented in the section 2.3.3, is to obtain the average of

N acceleration values collected in a high speed sample rate. The following equations

are used to obtain a more accurate acceleration:

In this project, the number of data N collected each time is equal 8. Another

formula applied in the signal collected in high speed sample rate is the amplitude filter,

which returns the difference between the maximum and minimum values. This filter is

applied exclusively for the Z axis:

18

The value of can be used as an indicator of the prototype’ state, since the

Z axis can measure the vibration of the environment. Usually this vibration is a high

frequency noisy signal. However, when the prototype is moving, this vibration tends to

increase, which means the amplitude will be higher. This effect can be observed in the

Figure 6. The highlighted areas indicate when the prototype is moving.

Figure 6: Raw acceleration from Z Axis (no scale)

3.1.2 Bias filtering

All axes from the accelerometer have an output signal bias which can be observed

when no acceleration is applied in that axis. However, if the acceleration of gravity is

considered, it can influence in the bias factor of all axis. Since the resolution of the

ADC is 10 bits, the acceleration can assume values from 0 to 1024. Ideally, if the

accelerometer is not under influence from any force, the acceleration should be around

the median value of that scale (512 without scale). However, since the Z axis is in the

same direction of the gravity force, its bias will be higher than the other axes, as you

see in Figure 7. The average acceleration in X axis of that group of data is 501.34; in Y

axis is 537.99; and in Z axis is 650.12.

An inertial mouse device working in a flat surface only requires the integration of

X and Y accelerations. Therefore, it is necessary to apply some kind of biased filter to

remove the bias factor in both X and Y acceleration signals. A simple way to

compensate the signal is to subtract the raw acceleration by the average value

Number of samples

19

measured when the prototype is stationary. However, this solution may not work well

in case the bias factor changes dynamically, which is a common behavior when

moving the device in a not totally flat surface.

Figure 7: Raw acceleration of XYZ axes without moving the prototype

An experimental example of the problem when applying a constant value to

compensate the bias factor is illustrated in Figure 8. In that scenario, moving the

prototype in one direction just few centimeters was enough to dynamically change the

bias factor. The explanation of this variance is related to the tilt angle, which is the

angle between the Z axis of the accelerometer and the force of gravity. If the tilt angle

is equal zero, the gravity force will not influence the X and Y bias factor. However, if

the tilt angle is different than zero, the gravity force will influence the X and Y bias

factor proportionally to the tilt angle.

Number of samples

Number of samples

Number of samples

20

Figure 8: After constant bias compensation

The proposed solution to contour this problem consists in using an Impulse

Infinite Response Filter (IIR Filter), which will eliminate the low frequencies and

make the acceleration signal to converge slowly to zero. The transfer function in Z

domain can be represented as:

Considering the raw acceleration as the input, the final output after applying

the filter is the unbiased acceleration . In the discrete time domain, the

relation between the input and output can be represented as:

In this formula, the coefficient determines how fast the unbiased acceleration

converges to zero. If the coefficient is smaller and close to 1, the influence of the

filter is reduced. The behavior of different in the filter can be observed in the

Figure 9 . The same data from Figure 8 is used in this analysis.

Average Acceleration:

0.0922 (no scale)

Average Acceleration:

2.0113 (no scale)

Number of samples

Acceleration X axis (no scale)

21

Figure 9: Unbiased acceleration after applying filter H(z) with different :

 a) , b) , c)

(a)

(b)

(c)

22

Comparing the different scenarios when changing , it is noticed that the case (a) from

Figure 9, the distortion is smaller than the other scenarios during the movement.

However, in the end of the movement, a small overshoot is observed and the signal

converges slowly to zero when comparing with smaller A closer look of the

acceleration right before the end of the movement can be observed in the Figure 10.

Figure 10: Closer look in the end of the movement

An optimal solution would be to have an adaptive , that increases when some

movement is detected and decreases when there is no movement. In this way, the

signal will not be distorted too much during the movement, and in case there is any

overshoot in the end of the movement, the filter will converge the acceleration to zero

really fast, since will decrease after the displacement. Any movement from the

prototype can be easily detected when calculating the average deviation of the signal

(next section presents the mathematical formula). If the average deviation is large, the

most probably state of the prototype is in movement, otherwise, would be stationary.

An example using an adaptive in the biased filter is show in the Figure 11 . Again,

the same data from the previous experiments is used. In this scenario, the changes

23

between 0.9 and 1.0, depending on current average deviation of the acceleration signal.

When calculating the average deviation, only the last 15 points were considered.

Figure 11: Adaptive biased filter

3.1.3 Calibration Process

Another important step before apply any estimator technique is the calibration

process. In this procedure, some relevant parameters are extracted from the system,

which will be used as reference to better estimate the velocity.

Average Absolute Deviation for each axis

The initial task to perform is to identify the average absolute deviation of the all

axis from the accelerometer when the prototype is stationary. The formula of the

average deviation can be expressed as:

Average Acceleration:

0.0832 (no scale)

Average Acceleration:

0.0712 (no scale)

24

This formula should be applied with for a huge amount of data for each

axis (at least 500 samples). The overlap between the points should be considered.

Therefore, the formula can be represented in the discrete domain as:

Calculating the histogram from the resultant data, it is possible to extract the most

common value of the average absolute deviation, which will be used as one of the

calibration parameters.

Discrimination Windows for each axis

During the calibration process, the biased filter can be used to converge the

acceleration signal rapidly to zero by setting a small . Once the acceleration reach

some value near to zero, is switched to value close to one. In this scenario, the

acceleration will assume values around zero when the mouse is stationary, and the

noise of the specific axis can be measured. Calculating the histogram of the

acceleration after applying the biased filter (note that the average acceleration will be

around ZERO), it is possible to identify the amplitude of the noise.

From the histogram,

the acceleration value

that corresponds to 10%

of the most common

acceleration level is

obtained.

For example, in the

histogram on left, the

most common

F
re

q
u
en

cy

Acceleration

25

acceleration value is around 0 unit, counting 150 times. 10% of 150 is 15, which

corresponds to the acceleration of approximately 10 units.

This acceleration (10 units) will define the discrimination window of the noise. That

means any acceleration between -10 and 10 will discriminate as a noise.

 Average Value for Z axis

 Since the biased filter is only applied for X and Y, only the average value of Z is

calculated. Its calculation is straight-forward, the mean value of at least 500 samples

from Z axis is obtained when the prototype is stationary.

3.2 The Fuzzy-Neural Integrator

The first technique used to estimate the velocity from the accelerometer signals is

based on the fuzzy-neural network. The reason to use this specific combination of two

fields – fuzzy systems and neural networks – is because the synergistic integration of

them will bring many benefits from both fields. The neural networks provide

connectionist structure and learning abilities to the fuzzy logic systems, and the fuzzy

logic systems provide the neural networks with a structural framework with high-level

fuzzy IF-THEN rule thinking and reasoning. In the theory, there are many possible

ways to integrate fuzzy systems and neural networks. The one used in this thesis is

called “Fuzzy Modeling Networks”, which the basic idea is to realize the process of

fuzzy reasoning by the structure of a neural network and express the parameters of

fuzzy reasoning by the connection weights of a neural network. Therefore, it can

automatically identify the fuzzy rules and tune the membership functions by

modifying the connection weights of the networks using the back-propagation learning

algorithmError! Reference source not found..

The configuration type of the Fuzzy Modeling Network is shown in Figure 12. In

this particular network, only three inputs are used. Later, a different version of the

26

Fuzzy-Neural Network will be introduced, including a different number of inputs and

nodes; however all of them share the same configuration that will be explained now.

The Fuzzy Modeling Network can be divided into premise part and consequent

part. The premise part consists in two layers. The first layer corresponds to the number

of inputs of the system, where each input represents a node. The second layer

corresponds to the membership functions of each input, where each node presents a

fuzzy variable from the membership functions.

The consequence part also has two layers. The third layer corresponds to the

fuzzy rules, where each node is the relation between different membership functions.

The fourth layer is the output layer, where a unique node represents the final output.

The consequence part can be represented as a fuzzy singleton:

Figure 12: Configuration of the Fuzzy Neural Network

27

On the following sections, the modeling of the Fuzzy Neural Network is

explained, including the mathematical model of parts of the network and the learning

strategy.

3.2.1 Membership functions

A membership function is defined as the probability of any value from a physical

or statistical quantity, such as acceleration, velocity or average deviation, belongs to a

specific fuzzy set. Each membership function can contain one or more fuzzy sets,

which are related to a linguistic variable. A fuzzy set is a pair where is a

set and . On next, some examples of linguistic variable are shown:

 Acceleration：{POSITIVE, ZERO, NEGATIVE}

 Velocity：{POSITIVE, NEGATIVE}

Based on those linguistic variables, it is possible to define the fuzzy sets that will

belong to the membership functions of each physical/statistical quantity.

Acceleration

The fuzzy sets that represent each linguistic variable from the acceleration can be

expressed mathematically as:

Consider the following parameters are based on the extraction of the

discrimination window () during the calibration process explained in section

3.1.3 . The discrimination window represents the interval as ,

were is the acceleration value.

 300~400 units

maximum acceleration

28

Positive

Acceleration

Zero

Acceleration

Negative

Acceleration

Graphically, the above equations represent the following membership function:

Figure 13: Acceleration Membership Function

Velocity

The fuzzy sets that represent each linguistic variable from the velocity can be

expressed mathematically as: (where v is the velocity value)

29

Positive

Velocity

Negative

Velocity

Graphically, the above equations represent the following membership function:

Figure 14: Velocity Membership function

3.2.2 Fuzzy Rules

The fuzzy rules define the relation between the different membership functions.

As already commented, singleton rules are used to elaborate the relationship between

them:

Where are the inputs of the fuzzy-neural network. And
 is the

result of a specific fuzzy set of the membership function of each input , with

 , in case the fuzzy-neural network has only three inputs. Mathematically,

the result of the node can be expressed as:

30

The values of is defined in agreement with the singleton rules. For example,

imagine a Fuzzy-Neural Network with 3 inputs – the last three accelerations, defined

as . And the output is the difference velocity. Using the membership function

for acceleration explained in the previous section, the following sentences can be

written:

IF is Positive AND is Positive AND is Positive, THEN

IF is Negative AND is Negative AND is Negative, THEN

IF is Negative AND is ZERO AND is ZERO , THEN

 Note that the attribution of the weights is based on physical behavior of a

particle submitted to some acceleration.

3.2.3 Defuzzification

Defuzzification is a mapping from a space of fuzzy control actions defined over an

output universe of discourse into a space of non-fuzzy control actions Error! Reference

source not found.. The output signal based on the configuration from Figure 12 can be

calculate as:

Where is the node values of each fuzzy rule; is weight of each connection

bewteen the fuzzy rule nodes and the output.

3.2.4 Back Propagation Algorithm

The back-propagation learning algorithm is one of the most useful learning

techniques used in neural networks. This learning algorithm is applied to multilayer

feed forward networks consisting of processing elements with continuous

differentiable activation functions.

31

To better understand how this technique can be used in this project, the following

inputs and outputs are defined:

Inputs Output

Current Acceleration: a[n]

Velocity Difference:
Previous Acceleration: a[n-1]

Previous Acceleration: a[n-2]

 Current Velocity: v[n]

Where the accelerations are the measurements coming from the accelerometers

and the current velocity is the integration of the acceleration using the Fuzzy-Neural

Network.

When using back-propagation algorithm, it is necessary to have the desired output

of the system, which will be represented by the optical sensor output. There are 3

phases when using this technique – collecting data, training the network and validation.

Each phase will be explained on next.

Collecting Data

In this phase, the training data is created by collecting the last three acceleration

signals from accelerometers, the current velocity and the difference velocity from the

optical sensor when moving the prototype in one axis. This procedure is performed for

X and Y axis. The block diagram of this phase is illustrated in Figure 15.

Figure 15: Block Diagram from Collecting Phase

Training the Network

32

Once the training data is collected, the Fuzzy-Neural Network is fed with this

data. The network’s output is compared to the desired output from the same training

data. The error is calculated and propagated back to the network and the weights of

each neuron are adjusted. This procedure is illustrated in the Figure 16.

Figure 16: Block Diagram from Training Phase

The equations of the learning algorithm applied in this Fuzzy-Neural Network are

explained in the following lines:

The output error measure (is calculated as:

 -

 The error is propagated backward to update the weights based on the learning rate

 :

Splitting in partial differential equations:

 The output can be substituted by the equation described in section 3.2.3

and

 represents the output error measure :

33

 This is the final equation to adjust the weights of the network part of the

Fuzzy-Neural Network.

Validation

In this phase, the output from the trained Fuzzy-Neural Network is compared

with the optical sensor signal. If , where is the maximum

error acceptable, and . If the average error is below

the threshold, no more training is necessary.

Figure 17: Diagram Block from Validation Phase

3.2.5 Fuzzy-Neural Model

The Fuzzy-Neural Network (FNN) proposed in this thesis consists to estimate the

velocity of the prototype in one of X and Y axes. Therefore, the FNN has as output

how much the current velocity should be incremented or decremented. The inputs of

FNN are based on the measured acceleration and the current velocity for a specific

axis.

The modeled Fuzzy-Neural Network has the same configuration commented in

the section 3.2.4 , when explaining how the back-propagation algorithm works. For

34

this particular configuration, all layers are quantified by counting the number of nodes,

as observed in Table 2. Note that the number of rules is calculated based on number of

inputs and the number of fuzzy sets of each input. The general formula is:

Layer 1

Inputs

Layer 2

Membership

Functions

Layer 3

Fuzzy Rules

Layer 4

Output

Acceleration a[n] POSITIVE

NEGATIVE

ZERO

Velocity

Difference

+

Acceleration a[n-1] POSITIVE

NEGATIVE

ZERO

Acceleration a[n-2] POSITIVE

NEGATIVE

ZERO

Current velocity v[n] POSITIVE

NEGATIVE

4 nodes 11 nodes 54 nodes 1 node

Table 2: Fuzzy-Neural Network table (first version)

Another thing that is possible to notice is that the fuzzy rules are symmetric. For

example, the first rule should have the same absolute value than last rule . That

means:

If all input accelerations are positive and the current velocity is positive, the

output should be positive with absolute value M.

If all input accelerations are negative and the current velocity is negative, the

output should be negative with absolute value M.

35

The same relation can be done between and , as well as the next

symmetric pairs. This specific behavior is used to correct any asymmetry with the

weights of the FNN that was calculated using back propagation algorithm, since each

weight corresponds to the output of a fuzzy rule. Therefore, consider the trained

weighting vector , where is the number of rules. The

following equation can be used to correct the asymmetry between the weights.

 , where

Another necessary modification on the weighting vector is when the input

conditions have all accelerations equal ZERO. In this scenario, the FNN output should

be equal ZERO. However, during the integration of the acceleration by using this FNN,

it accumulates a lot of errors, which will cause a final velocity different from zero,

even if the prototype is stationary. To avoid this behavior, a non-physical assumption is

made when establishing the weighting vector:

“If the acceleration is nearly to ZERO, the velocity is also nearly to ZERO”

 Translating this assumption in a singleton rule, the two following rules should not

be influenced when training the FNN:

IF is Zero AND is Zero AND is Zero AND is Positive, THEN

IF is Zero AND is Zero AND is Zero AND is Negative, THEN

 Where Note that in case that all

input accelerations are nearly ZERO, the FNN will “push” the velocity to ZERO as

well.

This strategy to train and correct the weighting vector works well if the training

data presents large acceleration. However, if the training data includes a significant

number of acceleration close to ZERO, which is a common scenario when moving in

low velocity, the training can deteriorate the final result of the FNN. For this reason,

this algorithm does not work well for movements in low speed. In order to improve the

36

performance of FNN for low speed, a second version of the FNN is created.

For better performance, the defuzzification process was modified by adding the

output of the membership function of the current acceleration to the output signal. The

modified Fuzzy-Neural Network is illustrated in the Figure 18. The weight p defines

the intensity of the acceleration in the final output.

Figure 18: Modified Fuzzy-Neural Network

37

3.3 The Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient

computational means to estimate the state of a process, in a way that minimizes the

mean of the squared error. The filter is very powerful in several aspects: it supports

estimators of past, present, and even future states, and it can do so even when the

precise nature of the modeled system is unknown [10].

This filter estimates a process by using a form of feedback control: the filter

estimates the process state at some time and then obtains feedback in the form of

(noisy) measurements. As such, the equations for the Kalman filter fall into two groups:

time update equations and measurement update equations. The time update equations

are responsible for projecting forward (in time) the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement

update equations are responsible for the feedback.

The time update equations can also be thought of as predictor equations, while

the measurement update equations can be thought of as corrector equations. Indeed the

final estimation algorithm resembles that of a predictor-corrector algorithm for

solving numerical problems as shown in Figure 19[10].

Figure 19: The discrete Kalman filter cycle

Time Update

("Predict")

Measurement
Update

("Correct")

38

The Discrete Kalman filter time update equations are expressed as:

 (Project the state ahead)

 (Project the error covariance ahead)

Where:

 is the state estimation at time k

 is the state transition model which is applied to the previous state

 is the control-input model which is applied to the control vector

 is the estimate error covariance

 is the process noise covariance matrix

The Discrete Kalman Filter measurement update equations are:

 (Compute Kalman gain)

 (Update estimate with measurement)

 (Update the error covariance)

Where:

 is the Kalman gain

 is the observation matrix

 is the measurement noise covariance matrix

 is the vector of measurements

3.3.1 The Process to be estimated

In this project, the Kalman filter is used to estimate the velocity based on the

accelerations measurements. The position is not relevant here, once only the velocity

must be sent to the host machine. Therefore, the state variables of Kalman filter are

acceleration and velocity:

 , where v[k] is current velocity and a[k] is the

current acceleration.

39

The state transition model to represent the relation between the states can be

defined base on the physical equation , therefore:

The matrix B, the control-input model, is ignored for this application, since there

is no control signal to be applied in this process. Note that represents the period

time between two consecutives measurements.

The vector of measurements includes the measurements from the

accelerometer and from a tracking model of the velocity, which behaves as a virtual

sensor. This tracking model it is also based in the same assumption made when using

Fuzzy Neural Network. If the acceleration is nearly to zero, the velocity is also nearly

to zero. Therefore, the following equations describe how the tracking model of the

velocity works:

Where is the average deviation of the last N points multiplied by the

current acceleration, and is the amplitude vibration in Z axis. The final vector

of measurements is defined as:

 . Since there are two measurements

variables to be read, the observation matrix is defined as

 , where is the

acceleration scale to convert the quantize value sampled using ADC to a specific scale

that can be configure to behave similarly to the scale using optical sensor.

3.3.2 Filter Parameters and Tuning

In the actual implementation of the filter, the measurement noise covariance R is

40

usually measured prior to operation of the filter. Measuring the measurement error

covariance R is generally practical because the process needs to be measured anyway

(while operating the filter), so it would be possible to take some off-line sample

measurements in order to determine the variance of the measurement noise [10].

The determination of the process noise covariance Q is generally more difficult as

typically is not possible to directly observe the process to be estimated. However, the

covariance Q matrix can inject uncertainty into the process by selecting the elements

from its diagonal. Consider

 , where is related to the uncertainty

of the velocity state and to the acceleration state. When moving in low speed with

small acceleration, the signal coming from the accelerometers will be significantly

small and the noise will have a large effect in the measurements. For this scenario,

should have the same magnitude as . In the other scenario, when moving in high

speed with large acceleration, the noise from the accelerometers will not interfere too

much in the signal, so should be smaller than .

One way to dynamically change the matrix Q is to fix the value of and apply

the following formula for :

However, should be limited in . Note that following points

where the acceleration is really small and there is no large deviation, the magnitude of

 will be as large as , forcing the prediction of the velocity to zero, since the

tracking model of the velocity is equal zero to this scenario. In case there is higher

acceleration, the tracking model of the velocity will not affect too much the process,

since will be smaller than for this scenario.

Using this approach, the matrix covariance Q changes dynamically, which will

force the Kalman gain to also change dynamically. Therefore, it will not be

41

possible to pre-compute this parameter by running the filter off-line.

3.4 The State-Machine Estimator

The Fuzzy Neural Network and Kalman-Filter solutions proposed in this thesis

are constantly integrating the acceleration to estimate the velocity. However, this

integration may change for different situations, like when moving with high

acceleration and low acceleration. A general formula to represent the integration of the

acceleration can be expressed as:

The signal coming from the accelerometers has a bias DC component and noise.

The bias DC component can be almost totally removed using the bias filter presented

in the section 3.1.2 . The noise component can be reduced using the benefits of

Kalman Filter and/or Fuzzy-Neural Network. However, the biggest problem that

injects uncertainty in the process is the continuous integration, which accumulates

error during the movement. This error is proportional to the time of integration

(. Therefore, one way to solve this problem is to break the movement in

small parts and ignore the integration of the acceleration after is too large. One

way to limit the time of integration is to establish the following rule:

After integrating the first points and the module of velocity assumes a value

higher than a specific minimum threshold, the integration of the acceleration should

continue until the velocity crosses to zero.

The meaning of this rule is that the user can only move the mouse to one direction.

If it tries to change the direction, the acceleration is ignored and the velocity is kept to

42

zero until the movement is finished. Therefore, the user will not be allowed to change

the direction if he does not stop moving the mouse.

Description of State-Machines

State-Machines can be described as a model of behavior composed of a finite

number of states, transitions between those states, and actions. For identifying the

different behaviors when moving a mouse device, a finite number of states are

designed to distinguish the different parts of a movement, especially to determine

when the mouse device is not moving，accelerating and decelerating. Different

state-machines are proposed to integrate the acceleration. Each one will be explained

further in the following sections.

3.4.1 State-Machine using simple integration method

If a state machine is designed to describe the movement of a mouse device, the

most obvious and initial state is when the user is not moving the mouse device. This

state will be called IDLE state, when the acceleration signal is basically constituted by

the intrinsic noise from the accelerometers. When a peak of acceleration is detected, a

transition is occurred, changing the state from IDLE to another state called

ACCELERATING state. In this state, the acceleration signal is integrated for

estimating the velocity. This integration can be really simple, when integrating directly

the acceleration signal, or applying some more complex technique, like Kalman Filter.

For this initial state-machine, a simple integration of acceleration combined with the

trapezoidal method to reduce the error of integration is used. The estimated

instantaneous velocity can be obtained by summing the areas between two following

sampled accelerometer signals. As observed in the Figure 20.

43

Figure 20: Approximation of the Instantaneous Velocity

The trapezoid method commented previously consider the area between two

sampled acceleration as a trapezoid, instead of a rectangle. The final formula of this

area is represented as:

Where is the period between two sampled acceleration signals. Finally, the

instantaneous velocity is represented as:

The above equation should be applied when the current state is the

ACCELERATING state. A transition will only occur after the acceleration is integrated

a minimum number of times and some deceleration is detected. In this scenario, there

are two possible states to go. The first one is called HIGH SPEED state, and the

second one is LOW SPEED state. The decision is made by observing the current

velocity at the moment the transition occurred. If it is higher than a pre-specified

threshold, the next state is the HIGH SPEED state, if not, the LOW SPEED state.

For the HIGH SPEED state, the same equation to calculate the instantaneous

44

velocity is used. However, if the last points of the acceleration are too small, instead of

integrating the acceleration, the current velocity is decremented. The reason to apply

this strategy is because in case there is any accumulated error of integration after the

movement is finished, the velocity will return to ZERO after some cycles.

For the LOW SPEED state, the current velocity also is decremented if the last

points of the acceleration are too small. However, for any other situation, the velocity

will be kept constant, since when moving the mouse device with low speed, the

acceleration signal also is small, which would prejudice the estimation of the velocity.

 Once the velocity crosses to zero, a transition occurs, changing from the previous

state to STABILIZING state. In this state, the velocity is kept in ZERO until the last

points of acceleration are small, which will probably indicate that the user stop moving

the device. Once non-movement is detected, the next state will return to IDLE state.

The complete state machine is illustrated in Figure 21.

Figure 21: Simple State-Machine

A table with all states, transitions and actions is shown in the Table 3. Note that

each axis (X and Y) will use this state machine, therefore the actions are not combined

and each state machine may have different current states.

45

IDLE state

Action

Transitions a: peak detected in the acceleration signal

ACCELERATING state

Action

Transitions
b: deceleration detected and current velocity small

c: deceleration detected and current velocity high

LOW VELOCITY state

Action

ELSE

Transitions d: current velocity crosses to zero

HIGH VELOCITY state

Action

ELSE

Transitions e: current velocity crosses to zero

STABILIZING state

Action

Transitions f: average deviation combined with current acceleration is small

Table 3: States, transitions and actions of the State-Machine using simple integration

46

Note that in the formulas from LOW/HIGH VELOCITY states, the element

represents how much the current velocity is decremented.

3.4.2 State-Machine using Kalman filter

In this solution, the same state-machine from the previous section is kept.

However, the actions are different. In this case, the Kalman filter equations are used to

integrate the acceleration signal. The parameters used for this Kalman Filter are

slightly different from the ones presented in section 3.3 . For instance, the process

noise covariance matrix Q is constant, with . Therefore, the Kalman gain will

be also a constant after the transition phase. In this way, it is only necessary to feed the

measurements with the current acceleration and the tracking model of velocity. The

predicted velocity from the Kalman filter may be used to define the velocity in the

mouse device. For simplifying the equations when building the action table, consider

the following formula to represent the Kalman Filter:

Where:

The transitions of this state-machine are the same than the previous one. Only the

actions are different. Observe that even when the prediction of the Kalman Filter is not

used, the function must be called to update the states of the filter. All states, transitions

and actions are described in Table 4.

47

IDLE state

Action

Transitions a: peak detected in the acceleration signal

ACCELERATING state

Action

Transitions
b: deceleration detected and current velocity small

c: deceleration detected and current velocity high

LOW VELOCITY state

Action

ELSE

Transitions d: current velocity crosses to zero

HIGH VELOCITY state

Action

ELSE

Transitions e: current velocity crosses to zero

STABILIZING state

Action

Transitions f: average deviation combined with current acceleration is small

Table 4: States, transitions and actions of the State-Machine using Kalman Filter

48

3.4.3 Combined Axis XY State-Machine

Instead of using two state-machines to deal with X and Y axis, a single state-machine is

proposed, which combines both axes when defining the transitions and actions of the

state-machine. Since the combination of two directions is analyzed in this solution, it is

possible to define what direction the user is moving the mouse. For example, to RIGHT or

LEFT, BACKWARD or FORWARD and DIAGONAL. For each combination, a state is

defined in this state-machine. Also, there are more states to classify if the movement is in low

speed or high speed. This state-machine is illustrated in the Figure 22.

Figure 22: Combined State-Machine

49

All states, transitions and actions are described in the following table. Note that

the equations from this solution are the same as the solution using the simple

state-machine; however, one state has actions to both axes at the same time. Moreover,

the transitions demand the information of both axes.

IDLE state

Action

Transitions a: peak detected in the acceleration signal from X or Y

ACCELERATING state

Action

Transitions

b: deceleration detected in X&Y and and is high

c: deceleration detected in X&Y and and is small

d: deceleration detected in X&Y and and is high

e: deceleration detected in X&Y and and is small

f: deceleration detected in X&Y and and is high

g: deceleration detected in X&Y and and is small

FORWARD and BACKWARD MOVEMENT (high speed) state

Action

ELSE

Transitions l: crosses to zero

50

FORWARD and BACKWARD MOVEMENT (low speed) state

Action

ELSE

Transitions m: crosses to zero

DIAGONAL MOVEMENT (high speed) state

Action

ELSE

Transitions

h: crosses to zero

j: crosses to zero

n: crosses to zero

DIAGONAL MOVEMENT (low speed) state

Action

ELSE

Transitions

i: crosses to zero

k: crosses to zero

o: crosses to zero

51

RIGHT and LEFT MOVEMENT (high speed) state

Action

ELSE

Transitions p: crosses to zero

RIGHT and LEFT MOVEMENT (low speed) state

Action

ELSE

Transitions q: crosses to zero

STABILIZING state

Action

Transitions r: average deviation combined with current acceleration in X and Y

are smaller than a pre-defined threshold

Table 5: States, transitions and actions of the Combined State-Machine

52

3.4.4 Combined State-Machine using motion detection sensor

One of the most difficult problems to solve when using mouse devices based on

accelerometers is to determine if the device is moving or not. Using only

accelerometers, this condition can be checked observing the average deviation of the

signal and the magnitude of the acceleration from the last points. If both are smaller

than a pre-defined threshold, there is a higher probability that the device is stationary.

However, this scenario can be misinterpreted when the device is moving in constant

and low velocity, which will induce a small acceleration that is undetectable. To avoid

this misinterpretation, a second sensor is proposed. Considering the device has a

binary sensor that detects if there is movement or not, how much the performance can

be improved?

To answer this question, the same state-machine from the previous solution

(Figure 22) is used; however the following transitions are modified:

 Transition (a): if the motion detection sensor detects movement;

 Transitions (l,m,n,o,p,q,r): the conditions from the previous solution OR the

motion detection sensor detects no movement.

The current prototype was not designed to have the motion detection sensor.

However, the optical sensor can be used to emulate the behavior of this sensor;

therefore it will be possible to analyze the performance improvement adding such

sensor.

Another sensor that was considered as a substitute for optical sensor as motion

detection sensor was a digital microphone. In this case, the microphone is attached to

the base plate, which let the white noise generated by the friction between the base

plate and the surface be captured by the microphone. However, since the prototype has

only a limited microcontroller, it is not possible to simply attach a microphone to the

53

current prototype. To overcome this limitation, a dedicated embedded platform to

process the signal from the microphone is used, which is based on a FPGA. Therefore,

a filter can be implemented in hardware to convert the wave signal to a binary sensor

that follows the guidelines already explained in this section. The output of this filter is

assigned to an output pin in the dedicated embedded platform, which is wire connected

to an input pin in the current prototype.

3.4.5 Combined State-Machine using physical button

Following the same reasoning from the previous solution, another “sensor” is

proposed, however in this solution, this sensor is substituted by a physical button,

which can easily be attached to the current prototype. In this way, the user can have a

better control of the mouse device, pressing the button when it is desired to move the

cursor on screen. For this case, the same state-machine is also used; however, the

transitions are modified as follow:

 Transition (a): if the button is pushed AND a peak is detected in X or Y;

 Transitions (l,m,n,o,p,q,r): the conditions from the previous solution OR the

button is released.

3.4.6 State-Machine using inertial behavior

In this solution, a totally new approach is proposed to move the mouse device.

This approach is based on the inertial behavior of an object when accelerated to any

direction. The initial acceleration on the object originates from the force applied on it.

Once the force is suspended, the object will still keep moving until the friction force,

which opposes to the direction of the movement, annuls the motion. The equations that

54

describe the velocity during the movement can be split in two parts:

The first part represents the moment that the object is under an external force,

which is describe as:

Where is the mass of the object and is the acceleration originated by

applying the external force . The velocity can be obtained by integrating this

acceleration:

The second part represents when the object is under the friction force, however,

with some accumulated kinetic energy, which is so called in this project of the free

movement moment. The equations that describe the velocity in this part can be

obtained by using the conservation of energy equation, which says:

Where is the kinetic energy, is the energy dissipated because of the friction

and is a constant. The kinetic energy is represented as

 , and the friction

energy is represented as , where is the friction coeficient, is the

gravity and s is the distanced traveled. Deriving the conservation of energy equation, it

is obtained:

Integrating the equation above, and considering that the initial velocity is the final

velocity of the first part , the following equation is obtained:

This indicates that the velocity will be reduced linearly during the free movement

moment. Now, applying a similar behavior to the way the user can operate a mouse

55

device, and designed a state-machine to represent it, it is possible to define a state that

explains the initial acceleration, which is quite similar to the state ACCELERATION

from the other state-machines. However, once a deceleration is detected, the following

acceleration samples should be ignored, since the idea of the free movement is

decrement the velocity along the time, emulating an imaginary friction force. The

number of samples to be ignored should be proportional to the number of samples

integrated in the ACCELERATION state. Plus, the average deviation should be

checked to confirm if the user stopped moving the mouse. Note that in this solution,

the user only needs to perform short movements, and only the first samples of the

acceleration will be integrated, defining the maximum velocity for that movement.

After that, the velocity will be decremented. From the physical equations that explain

the movement of the object, the velocity is supposed to decrement linearly. However,

when using as mouse device, it will better work if the velocity is decremented

exponentially, because the cursor velocity reaches zero faster, letting the user better

control the cursor on screen.

Another feature that the user can perform to increase even more the control to the

cursor on screen is to have an option to stop the cursor. This can be made by simply

taping or hitting the prototype. Every time the user applies any force in the Z direction,

a significant increase of the vibration in the Z axis accelerometer is detected. The final

state-machine containing all these actions and transitions are illustrated in Figure 23.

56

Figure 23: Free Movement State-Machine

All states, transitions and actions are described in the following table.

IDLE state

Action

Transitions a: peak detected in the acceleration signal of X or Y

ACCELERATING state

Action

Transitions b: deceleration detected in X and Y

57

IGNORING state

Action

Transitions c: counter limited reached and small average deviation in X and Y

FREE MOVEMENT state

Action

Transitions d: Huge vibration in Z and small amplitude in X and Y

e: Peak detected in X or Y

STABILIZING state

Action

Transitions f: counter limited reached

Table 6: States, transitions and actions of the Free Movement State-Machine

Note that in the action of the FREE MOVEMENT state, is a number slightly

smaller than 1, and will define how fast the velocity will converge to zero. It is also

possible to notice that the user can change the direction of the velocity in both axes

when the current state is in the FREE MOVEMENT state.

58

Chapter 4. Testing and Experimental Results

4.1 Analytical Results

All techniques explained in the previous chapter will be compared in this section,

having as reference the velocity curve generated by the optical sensor measurements in

X and Y. The curves are generated by moving the prototype in specific scenarios, like

low average speed movement, high average speed movement and sinusoidal

movement. The data generated by reading the optical sensors and accelerometers are

sent to the host machine. After the collecting the data, the velocity in both axes X and

Y will be estimated using different techniques, and graphics will be generated and

some mathematical indicators will be extract from the estimated velocities.

The units in the graphics are based in the format data that has to be sent using the

HID device class (from USB driver). The values of velocity can change from -128 to

127, which represents one signed byte. The X coordinates from the graphics

represented the number of cycles, where each cycle has a period of 8 milliseconds (the

maximum period when sending packets using HID device class).

4.1.1 Graphical Results

Fuzzy-Neural Network with and without Training

The differences between a Fuzzy-Neural Network without training and with

training are illustrated in the Figure 24. After training, the velocity curve of the

fuzzy-neural network avoids the reverse velocity case for this specific scenario (only

one axis is analyzed).

59

Figure 24: Fuzzy-Neural Network with and without training

Signal Processing Methods Comparison

Three techniques are compared to each other and to the reference velocity from

the optical sensor. Three scenarios are used to analyze the performance of each

technique – high speed, low speed and sinusoidal scenarios.

Number of Samples

Velocity

60

Figure 25: High Speed Scenario (Kalman, Fuzzy, State)

Figure 26: Low Speed Scenario (Kalman, Fuzzy, State)

Number of
Samples

Number of
Samples

61

In the high speed scenario (Figure 25), it is possible to notice that sometimes exist

a residual velocity after stop moving the mouse device. This residual velocity is really

prejudicial when applying to a mouse device, which can let the user lose control of the

cursor on the screen. The worst case is when this residual velocity has different signal

from the predominant direction of the movement, which will cause a reverse velocity

in the end of the movement. This behavior is quite more serious in the low speed

scenario (Figure 26), where most of the tests show a significant residual velocity. From

the solutions analyzed, it is possible to notice that the State-Machine estimator works

really well in high speed scenario, avoiding a negative residual velocity. In low speed

scenario, not all cases had a good performance.

The biggest problem when working in low speed scenario is that sometimes is not

possible to detect any peak of acceleration, because the real acceleration is occulted by

the noise from the accelerometer. An example is illustrated in the Figure 27.

Figure 27: No peak detection when moving in low speed

The first graphic shows the acceleration signal from X axis and the second

Number of
Samples

62

graphic shows the estimated velocity. It is possible to notice that the movement starts

around the 580
th

 cycle, however if the acceleration signal is observed, there is no

evidence of any peak of acceleration accusing some movement.

 Another problem is when moving long movements, especially when changing the

direction of the velocity, such as sinusoidal movements. In this scenario (Figure 28),

no technique can work correctly. Kalman-filter and Fuzzy-Neural estimators

accumulate huge amount of error during the integration of the acceleration. And the

State-Machine estimator simply would ignore most of the movement, only integrating

the first points, until the velocity crosses to zero.

Figure 28: Sinusoidal Scenario (Kalman, Fuzzy, State)

Simple Integration and Kalman Filter Comparison

Both techniques based on the same state-machine are compared. The unique

difference between them is the way the acceleration is integrated. The first solution

uses a simple integration method and the second one use Kalman filter.

Number of
Samples

63

Figure 29: High speed Scenario (State, State with Kalman)

Figure 30: Low speed Scenario (State, State with Kalman)

Number of
Samples

64

Observing both graphics from Figure 29 and Figure 30, their behaviors are similar,

presenting the same problems of negative and positive residual velocities. However, it

would be easier to port the algorithm from the state-machine using simple integration

to the microcontroller from the prototype. It would also consumes less resources

(memory and processor), since there is no significant advantage using Kalman filter

for these scenarios.

State-Machines Comparison

In this case, the advantage to have a unique state-machine that combines both

axes is presented.

Figure 31: High speed Scenario (State, Combined State)

Number of
Samples

65

Figure 32: Low speed Scenario (State, Combined State)

For the high speed scenario (Figure 31), the curves are almost identical, because both

are submitted to the same integration equations. However, in the low speed scenario

(Figure 32), it is possible to notice that in some cases the combined state-machine

avoids the negative residual velocity. The main reason for that is because when

considering both axes to trigger a transition between two states, it would have less

misinterpretation of the acceleration. For example, the transition between

STABILIZING state to IDLE state. This transition only should occur if the prototype

is not moving. If only one axis is analyzed, the probability to be stationary is smaller if

both axes are analyzed.

Combined State-Machines Comparison

In this case, it is shown the advantages of adding a motion detection sensor

Number of
Samples

66

Figure 33: High speed Scenario (Combined State, Combined State with Motion Sensor)

Figure 34: Low speed Scenario (Combined State, Combined State with Motion Sensor)

67

Both solutions use the same actions and states; the unique difference is the

conditions to trigger the transitions between states. Adding a second sensor to detect

the beginning and the ending of the movement can be really helpful. For the high

speed scenario (Figure 33), the detection of any acceleration peak is not a problem.

Therefore, it is possible to notice that both solutions behave exactly the same till the

end of the movement. Using the extra sensor, it is possible to set the velocity

immediately to zero, avoiding the positive residual velocity. For the low speed

scenario (Figure 34), the extra sensor can be really useful to detect the exact instant that

the acceleration should be integrated. Also, the decrement of the velocity during LOW

SPEED state from the Combined state-machine with Motion sensor can be smaller to

the solution without this extra sensor, since the end of the movement can be easily

detected, which would avoid the positive residual velocity.

4.1.2 Mathematical Results

Using the same method to collect the data used to plot the graphics from the last

section, a mathematical analysis is obtained, which considered four indicators:

 Negative Integration Error: it is measured in seconds and represents the interval

of time starting at the moment that the estimated velocity crosses to zero and

ending at the moment that the optical sensor velocity crosses to zero.

 Positive Integration Error: it is measured in seconds and represents the interval

of time starting at the moment the optical sensor velocity crosses to zero and

ending at the moment that the estimated velocity crosses to zero.

 Reverse Velocity Area: it is a percentage indicator obtained by dividing the total

area of negative residual velocity with the total area of the velocity curve, which

represents the total distance travelled.

 Forward Velocity Area: it is a percentage indicator obtained by dividing the total

area of positive residual velocity with the total area of the velocity curve, which

represents the total distance travelled.

The two scenarios are analyzed – low speed and high speed scenarios. The results

68

are showed in the Table 7 and Table 8.

Table 7: Mathematical Analysis in High Speed Scenario

Table 8: Mathematical Analysis in Low Speed Scenario

In the tables, the total integration error is the sum of the positive and negative

integration errors. The total error area is the sum of the reverse velocity area and the

forward velocity area.

The first scenario indicates the total time of the experiment was 22 seconds and

the prototype was only moving during 8.2 seconds. The total distance travelled was

102.4 centimeters. During the experiment, the mouse was moved 18 times.

The second scenario indicates the total time of the experiment was also 22

seconds, but during 10.3 seconds the prototype was moving. The total distance

travelled was 39.9 centimeters and the mouse was moved 18 times in low speed.

It is possible to notice that the second scenario presents worse indicators, as

observed in the graphics plotted in previous section.

69

4.2 The Test Scenario

The test scenario proposed in this thesis consists in asking different users to use

the prototype as a mouse device. Each user has to perform a specific number of tasks

that use only the movement of the cursor on the screen. The test scenarios that each

user has to run are based on FLASH applications that can easily be accessible in the

internet. The applications used in this test environment can be executed in the

following websites:

http://www.funny-games.biz/the-mouse-101.html

http://www.surfnetkids.com/games/mouse_1_0.htm

On Table 9, all test cases are described, including what the user should do and

what this specific test is willing to measure.

Movement Response

In this test the user

should move the cursor

to the red ball, which

will disappear at the

moment the cursor

touches it and appear

to another place.

The application will

count how many times

the user can reach the

ball in 30 seconds.

http://www.funny-games.biz/the-mouse-101.html
http://www.surfnetkids.com/games/mouse_1_0.htm

70

Simple Path

In this test the user

should move the cursor

until the white square

without touching the

walls. The idea is to

check if the user can

simply move the

cursor using the

prototype through a

simple path.

Complex Path

In this test the user

should perform the

same task as the

previous one; however

the path is more

complicated, including

narrow passages.

Synchronized Path

In this test there are

some moving obstacles

that must be

considered, therefore

the user should move

the cursor in

synchronization with

the obstacles.

(the worms will block

the way periodically)

71

Synchronized Path

with Time Constraint

In this test besides to

perform a

synchronized

movement the user

should do it in a

limited duration, since

the last obstacle will

block the passage for

some time.

(the spiders will move

up and down)

Long Movement with

Time Constraint

In this test the user

should move the cursor

for a long path in a

short period of time,

because after a while,

the scenario will be

inundate with water

coming from the

bottom.

Table 9: Test cases for the performance test

4.3 Performance Results

The test bench results are scored in the following way:

 The movement response test is scored by counting number of object hits;

 The other tests are scored based on the number of failures. If the user can

pass the test in his first attempt, he gets 3 points. If he passes in his second chance, he

72

gets 2 points. In his third chance, he gets 1 point. And if in three attempts, he could not

pass any time, no points are scored.

Twelve people were invited to execute the tests, which means that the best score

mouse device can have is 12 x 3 = 36 points. For the first test, the average of the

performance of each user is calculated.

There are eight mouse devices to be tested, where seven of them use the

prototype and only one use a regular commercial mouse device [Normal Mouse].

Only the best performance techniques obtained in the section 4.1 are ported to the

microcontroller from the prototype and tested in the test environment described in the

previous section, which includes:

 Combined XY Axes State-machine [Combined State-Machine (SM)]

(section 3.4.3);

 Combined State-Machine with Optical Sensor as Motion Detection Sensor

[Combined SM with Optical Sensor] (section 3.4.4).

When using the above techniques, the best sample rate obtained was around 91

samples per second, which corresponds to a period of 11 milliseconds. Therefore, one

of the firmware to be tested uses the optical sensor that sends 91 packets per second to

the host machine [Prototype Mouse (11 ms)]. Moreover, the packets are pipelined

three times, adding a delay of 33 milliseconds. In this way, it is possible to verify if

adding a delay and decreasing the sample rate will interfere in the performance. The

case where no delay and pipeline are added also is tested, which will indicate a sample

rate of 125 packets per second or period of 8 milliseconds between two packets.

[Prototype Mouse (8 ms)].

Other techniques ported to the prototype and tested are:

 Combined State-Machine with Physical Button [Combined SM with Button]

(section 3.4.5);

73

 Combined State-Machine with Microphone as Motion Detection Sensor

[Combined SM with Microphone] (section 3.4.4).

 State-Machine with Free-Movement [Free-Movement] (section 3.4.6).

On next, the test benches of each test are illustrated:

Figure 35: Movement Response test bench

Figure 36: Simple Path test bench

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

Normal Mouse

Prototype Mouse (8 ms)

Prototype Mouse (11 ms)

Combined State-Mahcine (SM)

Combined SM with Optical Sensor

Combined SM with Button

Combined SM with Microphone

Free Movement

Movement Response

0 5 10 15 20 25 30 35 40

Normal Mouse

Prototype Mouse (8 ms)

Prototype Mouse (11 ms)

Combined State-Mahcine (SM)

Combined SM with Optical Sensor

Combined SM with Button

Combined SM with Microphone

Free Movement

Simple Path

74

Figure 37: Complex Path test bench

Figure 38: Synchronized Movement test bench

0 5 10 15 20 25 30 35 40

Normal Mouse

Prototype Mouse (8 ms)

Prototype Mouse (11 ms)

Combined State-Mahcine (SM)

Combined SM with Optical Sensor

Combined SM with Button

Combined SM with Microphone

Free Movement

Complex Path

0 5 10 15 20 25 30 35 40

Normal Mouse

Prototype Mouse (8 ms)

Prototype Mouse (11 ms)

Combined State-Mahcine (SM)

Combined SM with Optical Sensor

Combined SM with Button

Combined SM with Microphone

Free Movement

Synchronized Movement

75

Figure 39: Synchronized Movement with Time Constraint test bench

Figure 40: Long Movement with Time Constraint test bench

When analyzing only the mouse devices based on optical sensor, the test benches

are quite similar, which indicates that there is almost no difference between a regular

commercial mouse and the prototype based on optical sensor. Observing only the

0 5 10 15 20 25 30 35

Normal Mouse

Prototype Mouse (8 ms)

Prototype Mouse (11 ms)

Combined State-Mahcine (SM)

Combined SM with Optical Sensor

Combined SM with Button

Combined SM with Microphone

Free Movement

Synchronized Movement with Time Constraint

0 5 10 15 20 25

Normal Mouse

Prototype Mouse (8 ms)

Prototype Mouse (11 ms)

Combined State-Mahcine (SM)

Combined SM with Optical Sensor

Combined SM with Button

Combined SM with Microphone

Free Movement

Long Movement with Time Constraint

76

velocity of the cursor on screen, it was possible to notice that the “Prototype Mouse

(11 ms)” runs faster than others, which make a better mouse to solve some specific

tasks, especially the ones based with time constraint. Sometimes the “Normal Mouse”

has worse performance the others because it was the first one to be tested, so after the

user tested it and failed in the first attempts, he could improve his performance on the

next tests.

Analyzing only the mouse devices based on accelerometer, it is possible to notice

that the combination of the combined state-machine with motion detection sensor has

the best performance, reaching scores almost as good as the optical sensors when there

is no time constraint.

77

Chapter 5. Conclusions and Future Work

An inertial mouse device based on 3-axis accelerometer is proposed and

evaluated in this thesis. The construction of a prototype containing an optical sensor

and a 3-axis accelerometer allowed a very accurate comparison between different

estimator techniques based on integration of acceleration and an equivalent

commercial mouse device for two-dimensional use. Moreover, having a reference

model based on the optical sensor, it is possible to tune parameters when estimating

the velocity and/or train network structures.

The experimental results presented in chapter 4 show that formal mathematical

models using Kalman Filter; or probabilistic techniques and pattern association using

Fuzzy-Neural Network are not enough to have an accurate estimation of the movement.

However, when breaking the movement in small parts and classify each part in

different states and defining specific transitions between the states, better results can

be obtained in some cases, specially for short movements in low and high speed. But

for long movements with changes in the direction, as the sinusoidal case, this

algorithm will simply ignore the movement.

Besides the graphical and mathematical analysis of each estimation technique, a

test environment is proposed to simulate the use of a mouse device. From all

techniques that use the accelerometers, the combined state-machine using motion

detection sensor has the best performance. The digital microphone reached a

performance as good as using optical sensor for motion detection. Both solutions can

easily be used as a mouse device to perform the majority of tasks when interacting

with the computer. The unique tasks that would not perform well are those that present

time constraints.

78

As suggestion for future work, new motion detection sensors should be

experimented to have a larger portfolio of options, and then compare their cost, size

and power consumption, which are aligned with the advantages of the inertial mouse

devices. Also, a new prototype should be designed using only inertial sensors and

motion detection sensors; and a faster processor should be used to decrease the

sampling rate, which can contribute significantly to the performance when using as a

mouse device. The use of a FPGA is highly recommended, which will allow

processing many sensors at the same time, besides that all states-machine solutions

proposed in this thesis are easily implementable in hardware.

79

References

[1] L. Olson, “Inertial Mouse System”, US Patent (4,787,051), 1988.

[2] Grewal, M.S.; Henderson, V.D.; Miyasako, R.S.; , "Application of Kalman

filtering to the calibration and alignment of inertial navigation systems,"

Automatic Control, IEEE Transactions on , vol.36, no.1, pp.3-13, Jan 1991.

[3] Helmi, N.; Helmi, M.; , "Applying a neuro-fuzzy classifier for gesture-based

control using a single wrist-mounted accelerometer," Computational Intelligence

in Robotics and Automation (CIRA), 2009 IEEE International Symposium on ,

vol., no., pp.216-221, 15-18 Dec. 2009.

[4] Liu, H.; Pang, G.; , "Accelerometer for mobile robot positioning," Industry

Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference

Record of the 1999 IEEE , vol.3, no., pp.1735-1742 vol.3, 1999

[5] Lin, C.-T., & Lee, C. S. G. “Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent Systems”. Upper Saddle River, NJ: Prentice Hall, 1996.

[6] Seongbae Lee; Gi-Joon Nam; Junseok Chae; Hanseup Kim; Drake, A.J.; ,

"Two-dimensional position detection system with MEMS accelerometer for

mouse applications," Design Automation Conference, 2001. Proceedings , vol.,

no., pp. 852- 857, 2001.

[7] Kurt. Seifert, and Oscar Camacho, “Implementing Positioning Algorithms using

Accelerometers”, Freescale Semiconductor Application Note, 2007.

[8] Tracey, M.; Winters, J.; , "Neuro-fuzzy advisor for mouse setting in Microsoft

Windows," [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and

the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS

Conference, 1999. Proceedings of the First Joint , vol.1, no., pp.664 vol.1, 1999

80

[9] Catlin, Donald E. “Estimation, control, and the discrete kalman filter”, In Applied

Mathematical Sciences 71, 1989.

[10] G. Welch, and G. Bishop, “An Introduction to the Kalman Filter”, University of

North Carolina at Chapel Hill, Department of Computer Science, 2004.

[11] “MMA7360L Data Sheet”, Freescale Semiconductor,

http://www.freescale.com/files/sensors/doc/data_sheet/MMA7360L.pdf, 2007

[12] “PIC18F2458/2553/4458/4553 Data Sheet”, Microchip,

http://ww1.microchip.com/downloads/en/DeviceDoc/39887c.pdf, 2007

[13] “ADNB-6011-EV and ADNB-6012-EV Data Sheet”, Avago Technologies,

http://www.avagotech.com.tw/docs/AV02-1410EN, 2006.

[14] Hegner, H.; Skovsgaard, T.; , "Estimating acceptable noise-levels on gaze and

mouse selection by zooming," Student Paper, 2008 Annual IEEE Conference ,

vol., no., pp.1-4, 15-26 Feb. 2008.

[15] “Mouse (computing)”, Wikipedia,

http://www.wikipeida.org/wiki/Mouse_(computing)

[16] M. S. Grewal and A. P. Andrews, Kalman Filtering : Theory and Practice Using

MATLAB, 2nd ed. Wiley-Interscience, January 2001.

[17] Chin-Woo Tan; Sungsu Park; , "Design of accelerometer-based inertial

navigation systems," Instrumentation and Measurement, IEEE Transactions on ,

vol.54, no.6, pp. 2520- 2530, Dec. 2005.

[18] Liu, R.; Ming Liu; Xiaokun Sun; Yawen Wei; , "Signal Processing and

Accelerometer-based Design for Portable Small Displacement Measurement

Device," Embedded Software and Systems, 2008. ICESS '08. International

Conference on , vol., no., pp.575-579, 29-31 July 2008.

[19] Hsu-Yang Kung; Chin-Yu Ou; Shin-Di Li; Chun-Hao Lin; Hong-Jie Chen;

Yu-Lun Hsu; Miao-Han Chang; Che-I Wu; , "Efficient movement detection for

http://www.freescale.com/files/sensors/doc/data_sheet/MMA7360L.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39887c.pdf
http://www.avagotech.com.tw/docs/AV02-1410EN
http://www.wikipeida.org/wiki/Mouse_(computing)

81

human actions using triaxial accelerometer," Consumer Electronics (ICCE), 2010

Digest of Technical Papers International Conference on , vol., no., pp.113-114,

9-13 Jan. 2010.

[20] Ching-Chang Wong; Chi-Tai Cheng; Hao-Che Chen; Yue-Yang Hu; Chii-Sheng

Yin; , "Static balancing control of humanoid robot based on accelerometer," SICE

Annual Conference, 2008 , vol., no., pp.2836-2840, 20-22 Aug. 2008.

[21] Piedrahita,; Andres, Giovanny; Guayacundo,; Marcela, Diana; , "Evaluation of

Accelerometers as Inertial Navigation System for Mobile Robots," Robotics

Symposium, 2006. LARS '06. IEEE 3rd Latin American , vol., no., pp.84-90, 26-27

Oct. 2006.

[22] North, E.; Georgy, J.; Tarbouchi, M.; Iqbal, U.; Noureldin, A.; , "Enhanced

mobile robot outdoor localization using INS/GPS integration," Computer

Engineering & Systems, 2009. ICCES 2009. International Conference on , vol.,

no., pp.127-132, 14-16 Dec. 2009.

[23] Blackmon, F.R.; Weeks, M.; , "Target acquisition by a hands-free wireless tilt

mouse," Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International

Conference on , vol., no., pp.33-38, 11-14 Oct. 2009.

[24] Pandit, A.; Dand, D.; Mehta, S.; Sabesan, S.; Daftery, A.; , "A Simple Wearable

Hand Gesture Recognition Device Using iMEMS," Soft Computing and Pattern

Recognition, 2009. SOCPAR '09. International Conference of , vol., no.,

pp.592-597, 4-7 Dec. 2009.

[25] Dand, D.; Mehta, S.; Sabesan, S.; Daftery, A.; , "Handicap Assistance Device for

Appliance Control Using User-Defined Gestures," Machine Learning and

Computing (ICMLC), 2010 Second International Conference on , vol., no.,

pp.55-60, 9-11 Feb. 2010.

[26] Tiexiang Wen; Lei Wang; Jia Gu; Bangyu Huang; , "An acceleration-based

82

control framework for interactive gaming," Engineering in Medicine and Biology

Society, 2009. EMBC 2009. Annual International Conference of the IEEE , vol.,

no., pp.2388-2391, 3-6 Sept. 2009.

