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摘要 

本論文提出了一個以三軸加速度計來取代普遍用於商業滑鼠裝置的光學感

測器的新型慣性滑鼠裝置。本 論文所使用的慣性感測器為加速度計，其具有減

少能量耗損、縮減整體產品大小以及減低整體產品成本的優點，另外因為此種新

型的 慣性滑鼠裝置可以隔空使用，所以也增加了其可使用的範圍。 

 

 

 



 

ii 

本論文以光學感應器及三軸加速度計來實現所提出的 慣性滑鼠裝置，因此

能在相同環境及條件下比較兩種不同感應器﹝光學感應器及慣性感應器 ﹞的效

果。本論文以不同的數學方法以及從加速度計所得到的訊號來估測滑鼠裝置的位

移量。 在最初時，這些實現的演算法皆以個人電腦為核心並搭配慣性滑鼠裝置

來做測試，最後最適合的演算法則以微控制器來實現，整個 裝置成為一個獨立

的新型慣性滑鼠裝置。 

實 驗結果顯示出，本論文所提出的以加速度計為基礎的最佳估測技術可 以

做為新型的慣性滑鼠裝置，且應用在一般的電腦上可以順利完成大多數的工作。 
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ABSTRACT 

This work proposes and evaluates an inertial mouse device based on three-axis 

accelerometer to be a substitute of the optical sensor, which is commonly used in the majority 

of commercial mouse devices. The use of inertial sensors, such as accelerometers, will allow 

reducing power consumption, physical dimensions and final product cost, moreover will 

increase easy-of-use, since this kind of mouse could be also used in free space.  

For this purpose, a prototype containing an optical sensor and 3-axis accelerometer is 

built. In this way, it is possible to compare the two sensors under the same environment and 

conditions. In a first moment, different mathematical approaches are tested to estimate the 

displacement based on the acceleration signal. Those approaches are processed under a 

computer application connected to the prototype. By the end, the most suitable algorithms are 

ported to the microcontroller embedded in the prototype. 

The result of the experiments show that the best estimator techniques based on the 

accelerometers can be used as a mouse device to perform the majority of the tasks when 

interacting with a computer. 
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Chapter 1.  Introduction 

1.1 Motivation and Objective 

In the last decades, many commercial mouse devices were developed with 

different technologies. The first generation of a commercial mouse device is so called 

mechanical mouse, which uses a single ball that can rotate in any direction. This ball is 

connected against to two rollers. One roller detects the forward-backward motion and 

other the left-right motion. The movement of these two rollers is detected by an 

encoder and an electrical signal is send to the computer. In the computer, a driver 

software in the operation system converts the signal into motion of the mouse cursor 

along X and Y axes on the screen [15]. The disadvantage of this kind of mouse is that 

it often requires maintenance, due to the moving parts that can easily accumulate dust 

and lint. Besides that, it does not perform well in slippery surfaces, requiring in most 

of the cases a mouse pad for better performance. 

The second generation of mouse devices is so called optical mouse, which uses 

an optoelectronic sensor that takes successive pictures of the surface on which the 

mouse operates. The surface is illuminated by an LED or a laser diode. Changes 

between one frame and next are processed by the image processing part of the chip 

and translated into movement on the two axes using a block matching algorithm. 

Comparing this generation of mouse device with the previous one, it presents higher 

sensitivity and practically do not require any maintenance. However, most of the 

optical mouse do not work well in glossy and transparent surfaces and demand a 

higher average of power. 

The next generation of mouse devices that is starting to appear in the market is 
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called inertial mouse devices, which can use gyroscope or accelerometer sensors to 

detect movement for each axis supported. These two kinds of sensors consume quite 

less power than the optical sensors, also has a huge potential to cost less than optical 

sensors after mass production. Besides that, a new way to interact with computer 

systems will be allowed, since they do not require a surface to operate. Moreover, 

when using a wireless battery-powered mouse device, it will increase easy-of-use and 

due to the small consume of energy, it can be used during long period of time without 

recharging. Another benefit of using inertial sensors is their size. They are extremely 

small ICs that can easily be embedded in unusual objects, like a ring, a watch or 

glasses. Such objects that may be used as mouse devices, especially for handicap 

people.  

In the market, it is already possible to find hybrid devices that use optical 

sensor and inertial sensor. The first one is only used in a 2D surface and the second 

one is used on fly. However, adding an optical sensor would increase the final product 

cost, the power consumption and the product size. 

The objective of this thesis is to propose and evaluate an inertial device mouse 

based on a three-axis accelerometer that can substitute the optical sensor in a hybrid 

device, in this way, only inertial sensors will be embedded in the system, reducing the 

total power consumption, the production cost and size. 

1.2 Survey of Previous Work 

A patent [1] claiming an inertial mouse system based on accelerometers was filed 

in 1988, describing that such mouse would consume less power than optically based 

mouse, and offer increased sensitivity, reduced weight and increased easy-of-use. 

Since then, many accelerometer sensors were designed to be used for mouse 

applications Error! Reference source not found.. However, because the nature of 
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estimating the displacement based on acceleration signals is extremely difficult, there 

is not such a mouse device yet in the market competing with the optically based 

mouse.   

The biggest challenge is to apply accurate signal processing methods to integrate 

the acceleration signal. This integration can be as simple as the one proposed in [7], or 

as complicated as in [2], which uses Kalman Filter. Another way to estimate the 

displacement is to use pattern recognition algorithms, as the one proposed in Error! 

Reference source not found., which uses Fuzzy-Neural Networks.  

Most of the research papers used as survey for this thesis propose signal 

processing techniques to be applied with accelerometers for different applications than 

mouse devices, such as robot positioning [3], gesture recognition Error! Reference 

source not found., static balancing control of humanoid robots [20], detection of 

small displacement for portable devices [18] and detection for human actions [19]. 

Accelerometers also are common designed as a sensor for inertial navigation systems 

[17], especially in mobile robot applications, as in [21] and [22]. 

The other few papers that use accelerometers for mouse device systems are based 

on tilt angle [23], which instead of performing translation movements, as used in 

optically based mouse, the user must rotate the device to move the cursor on screen. 

This method can be used in hand gesture recognition devices [24], in handicap 

assistant devices [25] and also in gaming devices [26]. 

1.3 Thesis Subject and Contribution 

The subject of this thesis includes the design and construction of a prototype 

that contains an optical sensor and a three-axis accelerometer embedded in the same 

circuit board. The reason to have both sensors in the same board is to guarantee that 

they are under the same conditions and suffer the same displacement when moving the 
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prototype in a 2D surface. In this way, it is possible to compare the output of both 

sensors by applying the same input (the user’s interaction with the prototype).  

In the computer side, the mouse driver software only requests the relative 

displacement in X and Y directions, which physically means the velocity in both 

coordinates. The extraction of the velocity from the optical mouse is straight-forward, 

since the sensor already returns the relative motion based on the successive images 

captured by its optical sensor. For inertial systems based on accelerometers, it is 

necessary to integrate the acceleration measured by the sensor. This integration can be 

performed in many ways. In this thesis, three digital signal processing methods are 

used to integrate the acceleration: 

 Fuzzy-Neural Network Estimator; 

 Kalman-Filter; 

 State-Machine based Filter; 

The performance of each technique is determined by comparing their resultant velocity 

curve of X and Y directions with the optical sensor resultant velocity curve. A multiple 

comparison is possible by collecting data from the accelerometers and optical sensor during 

some seconds and processing it off-line using a software application running in the computer.  

After evaluating the performance of each integrator techniques, only the best ones are 

ported to run in the prototype, which has a limited microprocessor.  

 

1.4 Outlines of Thesis 

The content of this thesis is organized as follows. 

Chapter 2: details about the design and the construction of the prototype used in this 

project are described. The description includes information about the main 

components used on the circuit board, as the microcontroller, optical and 
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accelerometer sensors. It also includes the specification of the software 

running on the host and on the prototype.  

Chapter 3: the integration techniques of the acceleration coming from the 

accelerometer sensor are described. For each technique, the mathematical 

model and details of the algorithm are presented. 

Chapter 4: the experiment results are presented according to the developing steps of 

algorithms in chapter 3. Graphics containing the resultant velocity curve of 

each technique are presented, and the experimental results are discussed. 

Chapter 5: the conclusion of this thesis and the possible improvement in the future is 

presented in this chapter. 
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Chapter 2.  The Prototype 

2.1 The Components 

The prototype designed to test and evaluate an inertial mouse device based on 

accelerometers has three main components: the microcontroller, accelerometer sensor 

and optical sensor. All components are embedded in the same circuit board that was 

designed to connect to a host machine through a USB port. Each component will be 

explained in details on the next sections. 

2.1.1 Microcontroller 

The microcontroller PIC from Microchip with reference number 18F4550 is used 

in this prototype, which is responsible to read the sensors, manipulate the measured 

data and send the results to a host machine. The main reasons to use this 

microcontroller are because of the following features: 

 Support to USB v2.0, a common protocol used in mouse devices when 

connecting to a computer. The USB port also supplies the power to all 

components embedded in the prototype; 

 Analog Digital Converters (ADC), which are used to read the three-axis 

of the accelerometer sensor. 

 Support to SPI protocol, which is used to control the optical sensor. 

The oscillator crystal used to provide the clock signal to the microcontroller has 20 

MHz of frequency. The ADCs from the microcontroller has resolution of 10 bits, 

allowing quantizing the analog signal from the accelerometers to a digital value that 

varies from 0 to 1024.   
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2.1.2 Three-Axis Accelerometer 

The three-axis accelerometer used in this prototype is from Freescale 

Semiconductor and its reference number is MMA7360L. This sensor is a low power, 

low profile capacitive micro-machined accelerometer featuring signal conditioning, a 

1-pole low pass filter, temperature compensation, self test and g-Select which allows 

the selection between 2 sensitivities[11].  

On next, some of technical specification from this accelerometer is listed: 

 3mm x 5mm x 1.0mm LGA-14 Package 

 Low current consumption: 400  A 

 Sleep Mode: 3  A 

 Low Voltage Operation: 2.2 V – 3.6 V 

 High Sensitivity (800 mV/g at 1.5g) 

 Selectable Sensitivity (±1.5g, ±6g) 

For better performance in low accelerations, the most sensitive option is set (±1.5g),  

 

2.1.3 Optical Sensor 

The optical sensor used in this prototype is from Avago Technologies and its 

reference number is ADNB-6012-EV. This sensor is based on a laser diode, which 

allows operating on many surfaces that prove difficult for traditional LED-based 

optical navigation. It also has high-performance architecture, which is capable of 

sensing high-speed mouse motion – with resolution up to 2000 counts per inch. 

The subcomponents of this optical sensor include: 

 an optoelectronic sensor with CMOS technology; 

 a lens base, which is used to attach the optoelectronic; 
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 laser diode (VCEL), which also is attach to the lens base; 

 a clip to attach properly the laser diode to the lens base; 

 a base plate, which is attached to the PCB of the whole prototype. 

On Figure 1 all parts of the optical sensor are illustrated. 

 

Figure 1: Cross section of a PCB assembly 

2.2 The Layout and Physical Structure 

The schematic and layout of the prototype were designed by using the software 

Protel 99. This program allows creating the schematic circuit including all components 

described in the previous sections and other elements, such as capacitors, resistors and 

voltage regulators. Once designed the schematic, the software also can generate 

automatically a PCB board including all circuit units and route the connection between 

them. The final PCB layout from the prototype is illustrated in Figure 2. 

After the PCB is manufactured, all elements in the circuit are welded in the PCB 

board. Since the idea of this prototype is to behave as a mouse device, a physical 

structure of a commercial mouse was used to cover the PCB board. Also, a flat base 

plate was designed to be attached under the circuit board. In the base plate, there is an 

orifice, where the laser diode can reach the surface that it operates. 
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Figure 2: Prototype's layout 

 

2.3 Software Development 

2.3.1 USB Drivers and Device Classes 

Any hardware device that interacts with a computer program must use a device 

driver, which is responsible to translate data between the operation system running in 

the computer and in the embedded system. In this project, the prototype represents the 

hardware device, which is connected to the computer using a USB port. In this way, 

the computer and the prototype must use a USB bus driver. Nowadays, many computer 

USB Connector 

Accelerometer 

Optical  

Sensor 

Voltage 

regulator 

Microcontroller 
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peripherals use an USB port to connect to a computer, such as printers, USB flash 

drives, webcams, keyboards and mouse devices. For each case, not only the USB Bus 

driver is used, but also a device class that specifies the device’s functionality. In this 

project, two different device class based on USB are used: 

 Communications device class (USB CDC), which provides an easy way to 

read and write any kind of data from/to an USB device. In this thesis, this 

device class is used to emulate a COM port, which will allow a software 

application running in the computer to manipulate an USB device as a 

RS-232 device. Therefore, a simple application can be implemented to read 

data from the prototype, specifically the sensors data processed by the 

microcontroller. A comparison between how the kernel and operating system 

treat a virtual COM port and a regular COM port is illustrated in Figure 3. 

 

Figure 3: Hierarchy from Software Application to USB device 

 

 Human Interface device class (USB HID), which stands for human interface 

Software Application

Virtual COM Port

CDC Class Device

USB Bus Driver

USB Port

Serial Driver

RS-232 Port

CDC 
Compliant 

USB Device
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 devices, such as keyboards, game controllers and mouse devices. In this 

thesis, this device class is used to treat the prototype as a typical mouse 

device, which means the data sent from the prototype to the computer will be 

used to move the cursor on the screen. The packet format required when 

using the HID device class for a regular mouse device consists in 4 bytes: 

 First byte: it is used to specify the state buttons of the mouse, (1 = 

pressed, 0 = not pressed), which allows processing simultaneously 8 

different buttons. In the prototype, no buttons were added, since only 

the movement in X and Y directions are analyzed. 

 Second byte: it is used to specify the displacement in the X 

coordinate. This is an 8 bit signed variable, which can assume values 

from -128 to 127. The value ZERO means that no displacement was 

detected. 

 Third byte: it is used to specify the displacement in the Y coordinate. 

The same description from the X coordinate is applied here. 

 Forth byte: it is used to specify the displacement from the mouse 

wheel. It is also an 8 bit signed variable, where the signal corresponds 

which direction the wheel was rolled.  

2.3.2 Host Application 

A host application was created to read the data from the prototype and process it 

for generating graphics based on different velocity estimators. This application is 

written in Matlab script, which can easily be used to plot large amount of data. For this 

case, the USB CDC device class is used. Therefore, the Matlab script application can 

connect to the prototype as a serial device, by using functions to open, read and write a 

serial port. 
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In this scenario, the prototype will be responsible to send binary packets with 8 

bytes of size. The meaning of each byte is explained in Table 1. 

1
st
 byte Most significant byte from X acceleration 

2
nd

 byte Less significant byte from X acceleration 

3
rd

 byte Most significant byte from Y acceleration 

4
th

 byte Less significant byte from Y acceleration 

5
th

 byte Most significant byte from Z acceleration 

6
th

 byte Less significant byte from Z acceleration 

7
th

 byte Reference Velocity X coordinate 

8
th

 byte Reference Velocity Y coordinate 

Table 1: Binary packet sent by the prototype 

The last two bytes can refer to the optical sensor data or the velocity estimated by 

one of the integrator techniques implemented in the microcontroller. However, the 

integrator technique will be only implemented in the microcontroller after choosing 

the best option among the techniques implemented in Matlab, which has the following 

flow chart: 

 

Colecting 
Data

• Open a COM port

• Write a command in the COM port to trigger the prototype

• Start reading each 8 bytes, parsing it and storing in vectors

Estimate the 
velocity

• Based on the the acceleration data collected, the velocity is estimated by 
using different techniques to integrate the acceleration

• For each estimator technique, a vector of containing the velocity is created

• The velocity curve from the optical sensor is built 

Plotting the 
Results

• The raw acceleration of X, Y and Z are plotted.

• The  optical sensor velocity curve and the estimator technique velocity curves 
are plotted in the same graphic for X and Y axes.
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Based on the plotted velocity curves, it is possible to define which techniques 

present the best performance. Once the best techniques are defined, their algorithms 

will be implemented in the microcontroller embedded in the prototype. The same USB 

CDC driver and the same software application running in the computer can be used to 

validate the porting of this algorithm to the microcontroller. The embedded application 

only has to substitute the optical sensor measurements for the velocity estimated by the 

technique ported in the microcontroller. When plotting the graphic results using the 

host application, the curves from the ported estimate technique and the original 

implementation in Matlab must be similar. They will not be totally the same because 

the microcontroller has a limited architecture; implicating some parts of the algorithm 

are implemented with fix point representation. In Matlab, all variables are represented 

as floating numbers. 

The script is structured in different files. Each file will be clarified on next: 

 “runapp.m”, it is responsible to open the COM port and collect the data from 

the prototype; 

 “plotall.m”, it will plot all graphics for data analysis; 

 “kalman_filter.m”, this is a function file, which is responsible for estimating 

the velocity by using the Kalman filter. The output is a velocity vector and the 

input is the acceleration signal of one axis. 

 “fuzzy_integrator.m”, this is a function file, which uses a fuzzy-neural 

network to estimate the velocity. The output is also a velocity vector and the 

input is the acceleration signal of one axis. 

 “state_machine.m”, a function file that uses a series of different states to 

estimate the velocity. It has the same inputs and outputs from the other cases. 

 “kalman_state.m”, it is a combination between Kalman filter and state 

machine solutions. 
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 “combined_sm.m”, a function file that combine the state machines from axes 

X and Y, where the inputs are the acceleration signal of both axes and the 

output is the a velocity matrix containing the velocities in X and Y. 

2.3.3 Embedded Application 

The embedded application is written in C language and the compiler used is CCS 

C Compiler, which supports Microchip PIC 18x series. One of the advantages of using 

this compiler is its support to different USB device classes, including HID USB and 

CDC USB device classes. Therefore, a simple API is provided to access the USB 

driver. The applications running in the prototype can be developed and compiled in the 

host machine, and the resultant firmware is downloaded to the target by using a 

programmer provided by Microchip called MPLAB ICD 2, which uses JTAG protocol 

to transfer the binary file from the host machine to the microcontroller PIC. 

The main program to be executed in the microcontroller consists in a main loop 

flow that reads the sensor data, process it and send the result to the host machine. The 

sensor readings are split in two parts. The first part reads the optical sensor using the 

SPI protocol. The resultant data is two bytes; each byte represents one of the XY 

coordinates. The second part is responsible to read the accelerometer sensor by using 

three analog-to-digital converters from the microcontroller. For each axis (XYZ), eight 

consecutive measures are made and the mean value of them is used to smooth the 

results. The microcontroller only allows selecting one ADC channel at a time, and for 

each measurement a delay must be specified to quantize the correct value of the 

acceleration, which will define the sampling rate of the measurements. This delay is 

defined in agreement with the maximum sampling rate allowed in the ADC from the 

microcontroller. Besides that, the delay cannot be too short, or the accuracy of the 

result will be distorted. Also, it cannot be too long, or the final number of packets per 
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second send to the host machine will be too small. For instance, the number of packets 

per second that a commercial mouse device sends to the computer is around 100 

packets per second, where each packet corresponds to the format commented in 

section 2.3.1. Therefore, considering the time to measure all axes is 15% of the time 

between two consecutive packets, the sampling time of the accelerometers should be 

smaller than 1.5 ms, which will let around 8.5 ms for the embedded application 

process the data and integrate the acceleration. In this way, the quantize time for each 

ADC measurement is defined to 50  s. 

The sampling time line is illustrated in the Figure 4. 

 

 

Figure 4: Sampling time line 

Note that the time to process the data and integrate the acceleration is not 

necessary 8.8 ms; that graphic is only an estimation of the minimum sample rate 

necessary to similarly perform as the commercial mouse devices. 

The flow chart of the main program will be explained in details on next. Some 

parts of the flow will be explained in the next chapter. 
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Figure 5: Flow chart from the embedded application 
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Chapter 3.  Signal Processing Methods 

3.1  Data Preparation 

Before using any technique to integrate the acceleration signal coming from the 

three-axis accelerometer, it is necessary to prepare the data by applying some 

statistical techniques, filters and calibration.  

 

3.1.1    Statistical Techniques 

The first step, already commented in the section 2.3.3, is to obtain the average of 

N acceleration values collected in a high speed sample rate. The following equations 

are used to obtain a more accurate acceleration: 

    
 

 
   

 

 

   

           
                                         

    
 

 
   

 

 

   

           
                                         

    
 

 
   

 

 

   

           
                                          

 

In this project, the number of data N collected each time is equal 8. Another 

formula applied in the signal collected in high speed sample rate is the amplitude filter, 

which returns the difference between the maximum and minimum values. This filter is 

applied exclusively for the Z axis: 
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The value of      can be used as an indicator of the prototype’ state, since the 

Z axis can measure the vibration of the environment. Usually this vibration is a high 

frequency noisy signal. However, when the prototype is moving, this vibration tends to 

increase, which means the amplitude will be higher. This effect can be observed in the 

Figure 6. The highlighted areas indicate when the prototype is moving. 

 

Figure 6: Raw acceleration from Z Axis (no scale) 

3.1.2    Bias filtering 

All axes from the accelerometer have an output signal bias which can be observed 

when no acceleration is applied in that axis. However, if the acceleration of gravity is 

considered, it can influence in the bias factor of all axis. Since the resolution of the 

ADC is 10 bits, the acceleration can assume values from 0 to 1024. Ideally, if the 

accelerometer is not under influence from any force, the acceleration should be around 

the median value of that scale (512 without scale). However, since the Z axis is in the 

same direction of the gravity force, its bias will be higher than the other axes, as you 

see in Figure 7. The average acceleration in X axis of that group of data is 501.34; in Y 

axis is 537.99; and in Z axis is 650.12.  

An inertial mouse device working in a flat surface only requires the integration of 

X and Y accelerations. Therefore, it is necessary to apply some kind of biased filter to 

remove the bias factor in both X and Y acceleration signals. A simple way to 

compensate the signal is to subtract the raw acceleration by the average value 

Number of samples 
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measured when the prototype is stationary. However, this solution may not work well 

in case the bias factor changes dynamically, which is a common behavior when 

moving the device in a not totally flat surface.  

Figure 7: Raw acceleration of XYZ axes without moving the prototype 

 

An experimental example of the problem when applying a constant value to 

compensate the bias factor is illustrated in Figure 8. In that scenario, moving the 

prototype in one direction just few centimeters was enough to dynamically change the 

bias factor. The explanation of this variance is related to the tilt angle, which is the 

angle between the Z axis of the accelerometer and the force of gravity. If the tilt angle 

is equal zero, the gravity force will not influence the X and Y bias factor. However, if 

the tilt angle is different than zero, the gravity force will influence the X and Y bias 

factor proportionally to the tilt angle. 

Number of samples 

Number of samples 

Number of samples 
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Figure 8: After constant bias compensation 

The proposed solution to contour this problem consists in using an Impulse 

Infinite Response Filter (IIR Filter), which will eliminate the low frequencies and 

make the acceleration signal to converge slowly to zero. The transfer function in Z 

domain can be represented as: 

     
     

      
 

Considering the raw acceleration    as the input, the final output after applying 

the filter      is the unbiased acceleration   . In the discrete time domain, the 

relation between the input and output can be represented as: 

                                

In this formula, the coefficient   determines how fast the unbiased acceleration 

converges to zero. If the coefficient   is smaller and close to 1, the influence of the 

filter is reduced. The behavior of different   in the filter can be observed in the 

Figure 9 . The same data from Figure 8 is used in this analysis.   

Average Acceleration: 

0.0922 (no scale) 

Average Acceleration: 

2.0113 (no scale) 

Number of samples 

Acceleration X axis (no scale) 
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Figure 9: Unbiased acceleration after applying filter H(z) with different  : 

 a)       ,  b)        ,  c)        

(a) 

(b) 

(c) 
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Comparing the different scenarios when changing  , it is noticed that the case (a) from 

Figure 9, the distortion is smaller than the other scenarios during the movement. 

However, in the end of the movement, a small overshoot is observed and the signal 

converges slowly to zero when comparing with smaller    A closer look of the 

acceleration right before the end of the movement can be observed in the Figure 10. 

 

Figure 10: Closer look in the end of the movement 

An optimal solution would be to have an adaptive  , that increases when some 

movement is detected and decreases when there is no movement. In this way, the 

signal will not be distorted too much during the movement, and in case there is any 

overshoot in the end of the movement, the filter will converge the acceleration to zero 

really fast, since   will decrease after the displacement. Any movement from the 

prototype can be easily detected when calculating the average deviation of the signal 

(next section presents the mathematical formula). If the average deviation is large, the 

most probably state of the prototype is in movement, otherwise, would be stationary. 

An example using an adaptive   in the biased filter is show in the Figure 11 . Again, 

the same data from the previous experiments is used. In this scenario, the   changes 
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between 0.9 and 1.0, depending on current average deviation of the acceleration signal. 

When calculating the average deviation, only the last 15 points were considered.  

 

Figure 11: Adaptive biased filter 

3.1.3    Calibration Process 

Another important step before apply any estimator technique is the calibration 

process. In this procedure, some relevant parameters are extracted from the system, 

which will be used as reference to better estimate the velocity.  

Average Absolute Deviation for each axis 

The initial task to perform is to identify the average absolute deviation of the all 

axis from the accelerometer when the prototype is stationary. The formula of the 

average deviation can be expressed as: 

      
 

 
       

 

   

         
 

 
   

 

   

 

Average Acceleration: 

0.0832 (no scale) 

Average Acceleration: 

0.0712 (no scale) 
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This formula should be applied with      for a huge amount of data for each 

axis (at least 500 samples). The overlap between the points should be considered. 

Therefore, the formula can be represented in the discrete domain as: 

      
 

 
         

 

 
       

   

   

 

   

   

 

Calculating the histogram from the resultant data, it is possible to extract the most 

common value of the average absolute deviation, which will be used as one of the 

calibration parameters. 

Discrimination Windows for each axis 

During the calibration process, the biased filter can be used to converge the 

acceleration signal rapidly to zero by setting a small  . Once the acceleration reach 

some value near to zero,   is switched to value close to one. In this scenario, the 

acceleration will assume values around zero when the mouse is stationary, and the 

noise of the specific axis can be measured. Calculating the histogram of the 

acceleration after applying the biased filter (note that the average acceleration will be 

around ZERO), it is possible to identify the amplitude of the noise.  

From the histogram, 

the acceleration value 

that corresponds to 10% 

of the most common 

acceleration level is 

obtained.  

For example, in the 

histogram on left, the 

most common 
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acceleration value is around 0 unit, counting 150 times. 10% of 150 is 15, which 

corresponds to the acceleration of approximately 10 units. 

This acceleration (10 units) will define the discrimination window of the noise. That 

means any acceleration between -10 and 10 will discriminate as a noise.  

 Average Value for Z axis 

 Since the biased filter is only applied for X and Y, only the average value of Z is 

calculated. Its calculation is straight-forward, the mean value of at least 500 samples 

from Z axis is obtained when the prototype is stationary. 

3.2  The Fuzzy-Neural Integrator 

The first technique used to estimate the velocity from the accelerometer signals is 

based on the fuzzy-neural network. The reason to use this specific combination of two 

fields – fuzzy systems and neural networks – is because the synergistic integration of 

them will bring many benefits from both fields. The neural networks provide 

connectionist structure and learning abilities to the fuzzy logic systems, and the fuzzy 

logic systems provide the neural networks with a structural framework with high-level 

fuzzy IF-THEN rule thinking and reasoning. In the theory, there are many possible 

ways to integrate fuzzy systems and neural networks. The one used in this thesis is 

called “Fuzzy Modeling Networks”, which the basic idea is to realize the process of 

fuzzy reasoning by the structure of a neural network and express the parameters of 

fuzzy reasoning by the connection weights of a neural network. Therefore, it can 

automatically identify the fuzzy rules and tune the membership functions by 

modifying the connection weights of the networks using the back-propagation learning 

algorithmError! Reference source not found..  

The configuration type of the Fuzzy Modeling Network is shown in Figure 12. In 

this particular network, only three inputs are used. Later, a different version of the 
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Fuzzy-Neural Network will be introduced, including a different number of inputs and 

nodes; however all of them share the same configuration that will be explained now.  

The Fuzzy Modeling Network can be divided into premise part and consequent 

part. The premise part consists in two layers. The first layer corresponds to the number 

of inputs of the system, where each input represents a node. The second layer 

corresponds to the membership functions of each input, where each node presents a 

fuzzy variable from the membership functions.  

The consequence part also has two layers. The third layer corresponds to the 

fuzzy rules, where each node is the relation between different membership functions. 

The fourth layer is the output layer, where a unique node represents the final output. 

The consequence part can be represented as a fuzzy singleton: 

              
              

              
            

 

Figure 12: Configuration of the Fuzzy Neural Network 
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On the following sections, the modeling of the Fuzzy Neural Network is 

explained, including the mathematical model of parts of the network and the learning 

strategy. 

3.2.1    Membership functions 

A membership function is defined as the probability of any value from a physical 

or statistical quantity, such as acceleration, velocity or average deviation, belongs to a 

specific fuzzy set. Each membership function can contain one or more fuzzy sets, 

which are related to a linguistic variable. A fuzzy set is a pair       where   is a 

set and          . On next, some examples of linguistic variable are shown: 

 Acceleration：{POSITIVE, ZERO, NEGATIVE} 

 Velocity：{POSITIVE, NEGATIVE} 

Based on those linguistic variables, it is possible to define the fuzzy sets that will 

belong to the membership functions of each physical/statistical quantity.  

 

Acceleration 

The fuzzy sets that represent each linguistic variable from the acceleration can be 

expressed mathematically as: 

Consider the following parameters are based on the extraction of the 

discrimination window (   ) during the calibration process explained in section 

3.1.3   . The discrimination window represents the interval as            , 

were   is the acceleration value. 

     
   
 

       300~400 units 

maximum acceleration 
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Graphically, the above equations represent the following membership function: 

 

Figure 13: Acceleration Membership Function 

 

Velocity 

The fuzzy sets that represent each linguistic variable from the velocity can be 

expressed mathematically as: (where v is the velocity value) 
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Positive 

Velocity          

                      
 

 
 
 

 
        

                                  

  

Negative 

Velocity          

                          
  

 
 
 

 
        

                                       

  

Graphically, the above equations represent the following membership function: 

 

Figure 14: Velocity Membership function 

3.2.2    Fuzzy Rules 

The fuzzy rules define the relation between the different membership functions. 

As already commented, singleton rules are used to elaborate the relationship between 

them: 

              
              

              
            

Where              are the inputs of the fuzzy-neural network. And   
  is the 

result of a specific fuzzy set of the membership function of each input  , with 

        , in case the fuzzy-neural network has only three inputs. Mathematically, 

the result of the node can be expressed as: 
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The values of    is defined in agreement with the singleton rules. For example, 

imagine a Fuzzy-Neural Network with 3 inputs – the last three accelerations, defined 

as         . And the output is the difference velocity. Using the membership function 

for acceleration explained in the previous section, the following sentences can be 

written: 

IF    is Positive AND     is Positive  AND     is Positive,  THEN       

IF    is Negative AND     is Negative  AND     is Negative,  THEN       

IF    is Negative AND     is ZERO       AND     is ZERO     ,  THEN       

 Note that the attribution of the weights    is based on physical behavior of a 

particle submitted to some acceleration. 

3.2.3    Defuzzification 

Defuzzification is a mapping from a space of fuzzy control actions defined over an 

output universe of discourse into a space of non-fuzzy control actions Error! Reference 

source not found.. The output signal based on the configuration from Figure 12 can be 

calculate as: 

        

 

   

   

 

   

  

Where    is the node values of each fuzzy rule;    is weight of each connection 

bewteen the fuzzy rule nodes and the output. 

3.2.4    Back Propagation Algorithm 

The back-propagation learning algorithm is one of the most useful learning 

techniques used in neural networks. This learning algorithm is applied to multilayer 

feed forward networks consisting of processing elements with continuous 

differentiable activation functions.  
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To better understand how this technique can be used in this project, the following 

inputs and outputs are defined: 

Inputs Output 

Current Acceleration:  a[n] 

Velocity Difference:         
Previous Acceleration:  a[n-1] 

Previous Acceleration:  a[n-2] 

   Current Velocity:  v[n] 

Where the accelerations are the measurements coming from the accelerometers 

and the current velocity is the integration of the acceleration using the Fuzzy-Neural 

Network. 

When using back-propagation algorithm, it is necessary to have the desired output 

of the system, which will be represented by the optical sensor output. There are 3 

phases when using this technique – collecting data, training the network and validation. 

Each phase will be explained on next. 

Collecting Data 

In this phase, the training data is created by collecting the last three acceleration 

signals from accelerometers, the current velocity and the difference velocity from the 

optical sensor when moving the prototype in one axis. This procedure is performed for 

X and Y axis. The block diagram of this phase is illustrated in Figure 15. 

 

Figure 15: Block Diagram from Collecting Phase 

Training the Network 
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Once the training data is collected, the Fuzzy-Neural Network is fed with this 

data. The network’s output is compared to the desired output from the same training 

data. The error is calculated and propagated back to the network and the weights of 

each neuron are adjusted. This procedure is illustrated in the Figure 16. 

 

Figure 16: Block Diagram from Training Phase 

The equations of the learning algorithm applied in this Fuzzy-Neural Network are 

explained in the following lines: 

The output error measure (   is calculated as: 

  
 

 
                

  
  

    
    -       

  The error is propagated backward to update the weights based on the learning rate 

 : 

       
  

   
 

Splitting in partial differential equations: 

       
  

   
 

   
 

   
 

 The output     can be substituted by the equation described in section 3.2.3   

and 
  

    
 represents the output error measure  : 
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 This is the final equation to adjust the weights of the network part of the 

Fuzzy-Neural Network.  

Validation 

In this phase, the output from the trained Fuzzy-Neural Network is compared 

with the optical sensor signal. If                 , where      is the maximum 

error acceptable, and                         . If the average error is below 

the threshold, no more training is necessary. 

 

Figure 17: Diagram Block from Validation Phase 

3.2.5    Fuzzy-Neural Model 

The Fuzzy-Neural Network (FNN) proposed in this thesis consists to estimate the 

velocity of the prototype in one of X and Y axes. Therefore, the FNN has as output 

how much the current velocity should be incremented or decremented. The inputs of 

FNN are based on the measured acceleration and the current velocity for a specific 

axis. 

The modeled Fuzzy-Neural Network has the same configuration commented in 

the section 3.2.4   , when explaining how the back-propagation algorithm works. For 
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this particular configuration, all layers are quantified by counting the number of nodes, 

as observed in Table 2. Note that the number of rules is calculated based on number of 

inputs and the number of fuzzy sets of each input. The general formula is:  

                  

          
           

            
 

      
         

   

 

 

Layer 1 

Inputs 

Layer 2 

Membership 

Functions 

Layer 3 

Fuzzy Rules 

Layer 4 

Output 

Acceleration a[n] POSITIVE     
 
 

NEGATIVE    
  

ZERO        
  

     
     

     
     

 
 

     
     

     
     

  

     
     

     
     

 
 

     
     

     
     

  

     
     

     
     

 
 

  

      
     

     
     

  

      
     

     
     

 
 

      
     

     
     

  

      
     

     
     

 
 

      
     

     
     

  

Velocity 

Difference 

   
     
 
   

   
 
   

 

+     
     

     

 

 

Acceleration a[n-1] POSITIVE     
 
 

NEGATIVE    
  

ZERO        
  

Acceleration a[n-2] POSITIVE     
 
 

NEGATIVE    
  

ZERO        
  

Current velocity v[n] POSITIVE     
 
 

NEGATIVE    
  

4 nodes 11 nodes 54 nodes 1 node 

Table 2: Fuzzy-Neural Network table (first version) 

 

Another thing that is possible to notice is that the fuzzy rules are symmetric. For 

example, the first rule    should have the same absolute value than last rule    . That 

means:  

If all input accelerations are positive and the current velocity is positive, the 

output should be positive with absolute value M.  

If all input accelerations are negative and the current velocity is negative, the 

output should be negative with absolute value M. 
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The same relation can be done between    and    , as well as the next 

symmetric pairs. This specific behavior is used to correct any asymmetry with the 

weights of the FNN that was calculated using back propagation algorithm, since each 

weight corresponds to the output of a fuzzy rule. Therefore, consider the trained 

weighting vector              , where   is the number of rules. The 

following equation can be used to correct the asymmetry between the weights. 

             
           

 
  ,  where          

 

 
  

Another necessary modification on the weighting vector is when the input 

conditions have all accelerations equal ZERO. In this scenario, the FNN output should 

be equal ZERO. However, during the integration of the acceleration by using this FNN, 

it accumulates a lot of errors, which will cause a final velocity different from zero, 

even if the prototype is stationary. To avoid this behavior, a non-physical assumption is 

made when establishing the weighting vector: 

“If the acceleration is nearly to ZERO, the velocity is also nearly to ZERO” 

 Translating this assumption in a singleton rule, the two following rules should not 

be influenced when training the FNN: 

IF    is Zero AND     is Zero AND     is Zero AND   is Positive, THEN      

IF    is Zero AND     is Zero AND     is Zero AND   is Negative, THEN      

 Where                                        Note that in case that all 

input accelerations are nearly ZERO, the FNN will “push” the velocity to ZERO as 

well. 

This strategy to train and correct the weighting vector works well if the training 

data presents large acceleration. However, if the training data includes a significant 

number of acceleration close to ZERO, which is a common scenario when moving in 

low velocity, the training can deteriorate the final result of the FNN. For this reason, 

this algorithm does not work well for movements in low speed. In order to improve the 
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performance of FNN for low speed, a second version of the FNN is created. 

For better performance, the defuzzification process was modified by adding the 

output of the membership function of the current acceleration to the output signal. The 

modified Fuzzy-Neural Network is illustrated in the Figure 18. The weight p defines 

the intensity of the acceleration in the final output. 

 

 

Figure 18: Modified Fuzzy-Neural Network 
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3.3  The Kalman Filter  

The Kalman filter is a set of mathematical equations that provides an efficient 

computational means to estimate the state of a process, in a way that minimizes the 

mean of the squared error. The filter is very powerful in several aspects: it supports 

estimators of past, present, and even future states, and it can do so even when the 

precise nature of the modeled system is unknown [10]. 

This filter estimates a process by using a form of feedback control: the filter 

estimates the process state at some time and then obtains feedback in the form of 

(noisy) measurements. As such, the equations for the Kalman filter fall into two groups: 

time update equations and measurement update equations. The time update equations 

are responsible for projecting forward (in time) the current state and error covariance 

estimates to obtain the a priori estimates for the next time step. The measurement 

update equations are responsible for the feedback. 

The time update equations can also be thought of as predictor equations, while 

the measurement update equations can be thought of as corrector equations. Indeed the 

final estimation algorithm resembles that of a predictor-corrector algorithm for 

solving numerical problems as shown in Figure 19[10]. 

 

Figure 19: The discrete Kalman filter cycle 

Time Update

("Predict")

Measurement 
Update

("Correct")
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The Discrete Kalman filter time update equations are expressed as: 

   
             (Project the state ahead) 

  
        

    (Project the error covariance ahead) 

Where: 

    
  is the state estimation at time k 

   is the state transition model which is applied to the previous state        

   is the control-input model which is applied to the control vector    

   
  is the estimate error covariance 

   is the process noise covariance matrix 

The Discrete Kalman Filter measurement update equations are: 

     
       

         (Compute Kalman gain) 

       
            

   (Update estimate with measurement   ) 

            
  (Update the error covariance) 

Where: 

    is the Kalman gain 

   is the observation matrix 

   is the measurement noise covariance matrix 

    is the vector of measurements 

3.3.1    The Process to be estimated 

In this project, the Kalman filter is used to estimate the velocity based on the 

accelerations measurements. The position is not relevant here, once only the velocity 

must be sent to the host machine. Therefore, the state variables of Kalman filter are 

acceleration and velocity:    
   

    

    
 , where v[k] is current velocity and a[k] is the 

current acceleration.  



 

39 

The state transition model to represent the relation between the states can be 

defined base on the physical equation                    , therefore: 

   
   

    

    
   

   
  

  
      

      
  

 

The matrix B, the control-input model, is ignored for this application, since there 

is no control signal to be applied in this process. Note that    represents the period 

time between two consecutives measurements.  

The vector of measurements    includes the measurements from the 

accelerometer and from a tracking model of the velocity, which behaves as a virtual 

sensor. This tracking model it is also based in the same assumption made when using 

Fuzzy Neural Network. If the acceleration is nearly to zero, the velocity is also nearly 

to zero. Therefore, the following equations describe how the tracking model of the 

velocity works: 

        
                                

                
  

 

Where        is the average deviation of the last N points multiplied by the 

current acceleration, and         is the amplitude vibration in Z axis. The final vector 

of measurements is defined as:     
      

    
 . Since there are two measurements 

variables to be read, the observation matrix   is defined as  
  
   

 , where    is the 

acceleration scale to convert the quantize value sampled using ADC to a specific scale 

that can be configure to behave similarly to the scale using optical sensor. 

3.3.2    Filter Parameters and Tuning 

In the actual implementation of the filter, the measurement noise covariance R is 
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usually measured prior to operation of the filter. Measuring the measurement error 

covariance R is generally practical because the process needs to be measured anyway 

(while operating the filter), so it would be possible to take some off-line sample 

measurements in order to determine the variance of the measurement noise [10]. 

The determination of the process noise covariance Q is generally more difficult as 

typically is not possible to directly observe the process to be estimated. However, the 

covariance Q matrix can inject uncertainty into the process by selecting the elements 

from its diagonal. Consider    
   
   

  , where    is related to the uncertainty 

of the velocity state and    to the acceleration state. When moving in low speed with 

small acceleration, the signal coming from the accelerometers will be significantly 

small and the noise will have a large effect in the measurements. For this scenario,    

should have the same magnitude as   . In the other scenario, when moving in high 

speed with large acceleration, the noise from the accelerometers will not interfere too 

much in the signal, so    should be smaller than   . 

One way to dynamically change the matrix Q is to fix the value of    and apply 

the following formula for   : 

       
                                                       
                      

  

However,    should be limited in           . Note that following points 

where the acceleration is really small and there is no large deviation, the magnitude of 

   will be as large as   , forcing the prediction of the velocity to zero, since the 

tracking model of the velocity is equal zero to this scenario. In case there is higher 

acceleration, the tracking model of the velocity will not affect too much the process, 

since    will be smaller than    for this scenario. 

Using this approach, the matrix covariance Q changes dynamically, which will 

force the Kalman gain    to also change dynamically. Therefore, it will not be 
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possible to pre-compute this parameter by running the filter off-line. 

 

3.4  The State-Machine Estimator 

The Fuzzy Neural Network and Kalman-Filter solutions proposed in this thesis 

are constantly integrating the acceleration to estimate the velocity. However, this 

integration may change for different situations, like when moving with high 

acceleration and low acceleration. A general formula to represent the integration of the 

acceleration can be expressed as: 

                                  

  

  

 

 

The signal coming from the accelerometers has a bias DC component and noise. 

The bias DC component can be almost totally removed using the bias filter presented 

in the section 3.1.2    . The noise component can be reduced using the benefits of 

Kalman Filter and/or Fuzzy-Neural Network. However, the biggest problem that 

injects uncertainty in the process is the continuous integration, which accumulates 

error during the movement. This error is proportional to the time of integration 

(         . Therefore, one way to solve this problem is to break the movement in 

small parts and ignore the integration of the acceleration after    is too large. One 

way to limit the time of integration is to establish the following rule: 

After integrating the first points and the module of velocity assumes a value 

higher than a specific minimum threshold, the integration of the acceleration should 

continue until the velocity crosses to zero. 

The meaning of this rule is that the user can only move the mouse to one direction. 

If it tries to change the direction, the acceleration is ignored and the velocity is kept to 
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zero until the movement is finished. Therefore, the user will not be allowed to change 

the direction if he does not stop moving the mouse.  

Description of State-Machines 

State-Machines can be described as a model of behavior composed of a finite 

number of states, transitions between those states, and actions. For identifying the 

different behaviors when moving a mouse device, a finite number of states are 

designed to distinguish the different parts of a movement, especially to determine 

when the mouse device is not moving，accelerating and decelerating. Different 

state-machines are proposed to integrate the acceleration. Each one will be explained 

further in the following sections. 

 

3.4.1    State-Machine using simple integration method 

If a state machine is designed to describe the movement of a mouse device, the 

most obvious and initial state is when the user is not moving the mouse device. This 

state will be called IDLE state, when the acceleration signal is basically constituted by 

the intrinsic noise from the accelerometers. When a peak of acceleration is detected, a 

transition is occurred, changing the state from IDLE to another state called 

ACCELERATING state. In this state, the acceleration signal is integrated for 

estimating the velocity. This integration can be really simple, when integrating directly 

the acceleration signal, or applying some more complex technique, like Kalman Filter. 

For this initial state-machine, a simple integration of acceleration combined with the 

trapezoidal method to reduce the error of integration is used. The estimated 

instantaneous velocity can be obtained by summing the areas between two following 

sampled accelerometer signals. As observed in the Figure 20. 
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Figure 20: Approximation of the Instantaneous Velocity 

 

The trapezoid method commented previously consider the area between two 

sampled acceleration as a trapezoid, instead of a rectangle. The final formula of this 

area is represented as: 

              
             

 
     

Where    is the period between two sampled acceleration signals. Finally, the 

instantaneous velocity is represented as: 

                    

The above equation should be applied when the current state is the 

ACCELERATING state. A transition will only occur after the acceleration is integrated 

a minimum number of times and some deceleration is detected. In this scenario, there 

are two possible states to go. The first one is called HIGH SPEED state, and the 

second one is LOW SPEED state. The decision is made by observing the current 

velocity at the moment the transition occurred. If it is higher than a pre-specified 

threshold, the next state is the HIGH SPEED state, if not, the LOW SPEED state.  

For the HIGH SPEED state, the same equation to calculate the instantaneous 
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velocity is used. However, if the last points of the acceleration are too small, instead of 

integrating the acceleration, the current velocity is decremented. The reason to apply 

this strategy is because in case there is any accumulated error of integration after the 

movement is finished, the velocity will return to ZERO after some cycles. 

For the LOW SPEED state, the current velocity also is decremented if the last 

points of the acceleration are too small. However, for any other situation, the velocity 

will be kept constant, since when moving the mouse device with low speed, the 

acceleration signal also is small, which would prejudice the estimation of the velocity. 

 Once the velocity crosses to zero, a transition occurs, changing from the previous 

state to STABILIZING state. In this state, the velocity is kept in ZERO until the last 

points of acceleration are small, which will probably indicate that the user stop moving 

the device. Once non-movement is detected, the next state will return to IDLE state. 

The complete state machine is illustrated in Figure 21. 

 

Figure 21: Simple State-Machine 

A table with all states, transitions and actions is shown in the Table 3. Note that 

each axis (X and Y) will use this state machine, therefore the actions are not combined 

and each state machine may have different current states. 
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IDLE state 

Action        

Transitions a: peak detected in the acceleration signal 

ACCELERATING state 

Action                   
             

 
     

Transitions 
b: deceleration detected and current velocity small 

c: deceleration detected and current velocity high 

LOW VELOCITY state 

Action 

                                   

                                           

ELSE 

                            

Transitions d: current velocity crosses to zero 

HIGH VELOCITY state 

Action 

                                   

                                           

ELSE 

                                  
             

 
     

Transitions e: current velocity crosses to zero 

STABILIZING state 

Action        

Transitions f: average deviation combined with current acceleration is small 

Table 3: States, transitions and actions of the State-Machine using simple integration 
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Note that in the formulas from LOW/HIGH VELOCITY states, the element   

represents how much the current velocity is decremented. 

3.4.2    State-Machine using Kalman filter 

In this solution, the same state-machine from the previous section is kept. 

However, the actions are different. In this case, the Kalman filter equations are used to 

integrate the acceleration signal. The parameters used for this Kalman Filter are 

slightly different from the ones presented in section 3.3 . For instance, the process 

noise covariance matrix Q is constant, with      . Therefore, the Kalman gain will 

be also a constant after the transition phase. In this way, it is only necessary to feed the 

measurements with the current acceleration and the tracking model of velocity. The 

predicted velocity from the Kalman filter may be used to define the velocity in the 

mouse device. For simplifying the equations when building the action table, consider 

the following formula to represent the Kalman Filter: 

                 
 
 
    

  

Where: 

   
             

       
            

   

 

The transitions of this state-machine are the same than the previous one. Only the 

actions are different. Observe that even when the prediction of the Kalman Filter is not 

used, the function must be called to update the states of the filter. All states, transitions 

and actions are described in Table 4. 
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IDLE state 

Action 

       

        
 
    

   

Transitions a: peak detected in the acceleration signal 

ACCELERATING state 

Action              
      

    
   

Transitions 
b: deceleration detected and current velocity small 

c: deceleration detected and current velocity high 

LOW VELOCITY state 

Action 

                                   

                             
 
    

   

ELSE 

                              
      

 
   

Transitions d: current velocity crosses to zero 

HIGH VELOCITY state 

Action 

                                   

                              
 
    

   

ELSE 

                              
      

    
   

Transitions e: current velocity crosses to zero 

STABILIZING state 

Action        

        
 
    

   

Transitions f: average deviation combined with current acceleration is small 

Table 4: States, transitions and actions of the State-Machine using Kalman Filter 
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3.4.3    Combined Axis XY State-Machine  

Instead of using two state-machines to deal with X and Y axis, a single state-machine is 

proposed, which combines both axes when defining the transitions and actions of the 

state-machine. Since the combination of two directions is analyzed in this solution, it is 

possible to define what direction the user is moving the mouse. For example, to RIGHT or 

LEFT, BACKWARD or FORWARD and DIAGONAL. For each combination, a state is 

defined in this state-machine. Also, there are more states to classify if the movement is in low 

speed or high speed. This state-machine is illustrated in the Figure 22. 

 

Figure 22: Combined State-Machine 
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All states, transitions and actions are described in the following table. Note that 

the equations from this solution are the same as the solution using the simple 

state-machine; however, one state has actions to both axes at the same time. Moreover, 

the transitions demand the information of both axes. 

 

 

IDLE state 

Action 
        

        

Transitions a: peak detected in the acceleration signal from X or Y 

ACCELERATING state 

Action 

                     
               

 
     

                     
               

 
     

Transitions 

b: deceleration detected in X&Y and       and    is high 

c: deceleration detected in X&Y and       and    is small 

d: deceleration detected in X&Y and       and     is high 

e: deceleration detected in X&Y and       and     is small 

f: deceleration detected in X&Y and       and    is high 

g: deceleration detected in X&Y and       and    is small 

FORWARD and BACKWARD MOVEMENT (high speed) state 

Action 

                                    

                                              

                        

ELSE 

                                     
               

 
     

                        

Transitions l:    crosses to zero 
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FORWARD and BACKWARD MOVEMENT (low speed) state 

Action 

                                    

                                              

                        

ELSE 

                              

                        

Transitions m:    crosses to zero 

DIAGONAL MOVEMENT (high speed) state 

Action                                      

                                              

                                              

ELSE 

                                     
               

 
     

                                     
               

 
     

Transitions 

h:    crosses to zero 

j:    crosses to zero 

n:     crosses to zero 

DIAGONAL MOVEMENT (low speed) state 

Action                                      

                                              

                                              

ELSE 

                              

                              

Transitions 

i:    crosses to zero 

k:    crosses to zero 

o:     crosses to zero 
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RIGHT and LEFT MOVEMENT (high speed) state 

Action 

                                    

                        

                                              

ELSE 

                        

                                     
               

 
     

 

Transitions p:    crosses to zero 

RIGHT and LEFT MOVEMENT (low speed) state 

Action 

                                    

                        

                                              

ELSE 

                        

                              

Transitions q:    crosses to zero 

STABILIZING state 

Action         

        

Transitions r: average deviation combined with current acceleration in X and Y 

are smaller than a pre-defined threshold 

Table 5: States, transitions and actions of the Combined State-Machine 
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3.4.4    Combined State-Machine using motion detection sensor 

One of the most difficult problems to solve when using mouse devices based on 

accelerometers is to determine if the device is moving or not. Using only 

accelerometers, this condition can be checked observing the average deviation of the 

signal and the magnitude of the acceleration from the last points. If both are smaller 

than a pre-defined threshold, there is a higher probability that the device is stationary. 

However, this scenario can be misinterpreted when the device is moving in constant 

and low velocity, which will induce a small acceleration that is undetectable. To avoid 

this misinterpretation, a second sensor is proposed. Considering the device has a 

binary sensor that detects if there is movement or not, how much the performance can 

be improved? 

To answer this question, the same state-machine from the previous solution 

(Figure 22) is used; however the following transitions are modified: 

 Transition (a): if the motion detection sensor detects movement; 

 Transitions (l,m,n,o,p,q,r): the conditions from the previous solution OR the 

motion detection sensor detects no movement. 

The current prototype was not designed to have the motion detection sensor. 

However, the optical sensor can be used to emulate the behavior of this sensor; 

therefore it will be possible to analyze the performance improvement adding such 

sensor.  

Another sensor that was considered as a substitute for optical sensor as motion 

detection sensor was a digital microphone. In this case, the microphone is attached to 

the base plate, which let the white noise generated by the friction between the base 

plate and the surface be captured by the microphone. However, since the prototype has 

only a limited microcontroller, it is not possible to simply attach a microphone to the 



 

53 

current prototype. To overcome this limitation, a dedicated embedded platform to 

process the signal from the microphone is used, which is based on a FPGA. Therefore, 

a filter can be implemented in hardware to convert the wave signal to a binary sensor 

that follows the guidelines already explained in this section. The output of this filter is 

assigned to an output pin in the dedicated embedded platform, which is wire connected 

to an input pin in the current prototype.  

 

3.4.5    Combined State-Machine using physical button 

Following the same reasoning from the previous solution, another “sensor” is 

proposed, however in this solution, this sensor is substituted by a physical button, 

which can easily be attached to the current prototype. In this way, the user can have a 

better control of the mouse device, pressing the button when it is desired to move the 

cursor on screen. For this case, the same state-machine is also used; however, the 

transitions are modified as follow: 

 Transition (a): if the button is pushed AND a peak is detected in X or Y; 

 Transitions (l,m,n,o,p,q,r): the conditions from the previous solution OR the 

button is released. 

 

3.4.6    State-Machine using inertial behavior 

In this solution, a totally new approach is proposed to move the mouse device. 

This approach is based on the inertial behavior of an object when accelerated to any 

direction. The initial acceleration on the object originates from the force applied on it. 

Once the force is suspended, the object will still keep moving until the friction force, 

which opposes to the direction of the movement, annuls the motion. The equations that 
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describe the velocity during the movement can be split in two parts: 

The first part represents the moment that the object is under an external force, 

which is describe as: 

           

Where   is the mass of the object and    is the acceleration originated by 

applying the external force      . The velocity can be obtained by integrating this 

acceleration: 

             
  

  

 

The second part represents when the object is under the friction force, however, 

with some accumulated kinetic energy, which is so called in this project of the free 

movement moment. The equations that describe the velocity in this part can be 

obtained by using the conservation of energy equation, which says: 

        

Where    is the kinetic energy,    is the energy dissipated because of the friction 

and   is a constant. The kinetic energy is represented as    
 

 
   , and the friction 

energy is represented as          , where   is the friction coeficient,   is the 

gravity and s is the distanced traveled. Deriving the conservation of energy equation, it 

is obtained: 

       
    

  
             

Integrating the equation above, and considering that the initial velocity is the final 

velocity of the first part      , the following equation is obtained: 

                 

This indicates that the velocity will be reduced linearly during the free movement 

moment. Now, applying a similar behavior to the way the user can operate a mouse 
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device, and designed a state-machine to represent it, it is possible to define a state that 

explains the initial acceleration, which is quite similar to the state ACCELERATION 

from the other state-machines. However, once a deceleration is detected, the following 

acceleration samples should be ignored, since the idea of the free movement is 

decrement the velocity along the time, emulating an imaginary friction force. The 

number of samples to be ignored should be proportional to the number of samples 

integrated in the ACCELERATION state. Plus, the average deviation should be 

checked to confirm if the user stopped moving the mouse. Note that in this solution, 

the user only needs to perform short movements, and only the first samples of the 

acceleration will be integrated, defining the maximum velocity for that movement. 

After that, the velocity will be decremented. From the physical equations that explain 

the movement of the object, the velocity is supposed to decrement linearly. However, 

when using as mouse device, it will better work if the velocity is decremented 

exponentially, because the cursor velocity reaches zero faster, letting the user better 

control the cursor on screen. 

Another feature that the user can perform to increase even more the control to the 

cursor on screen is to have an option to stop the cursor. This can be made by simply 

taping or hitting the prototype. Every time the user applies any force in the Z direction, 

a significant increase of the vibration in the Z axis accelerometer is detected. The final 

state-machine containing all these actions and transitions are illustrated in Figure 23. 



 

56 

 

Figure 23: Free Movement State-Machine 

 

All states, transitions and actions are described in the following table. 

 

 

 

IDLE state 

Action          

        

Transitions a: peak detected in the acceleration signal of X or Y 

ACCELERATING state 

Action 

                     
               

 
     

                     
               

 
     

Transitions b: deceleration detected in X and Y 
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IGNORING state 

Action 
              

              

Transitions c: counter limited reached and small average deviation in X and Y 

FREE MOVEMENT state 

Action 
                

                

Transitions d: Huge vibration in Z and small amplitude in X and Y 

e: Peak detected in X or Y 

STABILIZING state 

Action          

        

Transitions f: counter limited reached 

Table 6: States, transitions and actions of the Free Movement State-Machine 

 

Note that in the action of the FREE MOVEMENT state,   is a number slightly 

smaller than 1, and will define how fast the velocity will converge to zero. It is also 

possible to notice that the user can change the direction of the velocity in both axes 

when the current state is in the FREE MOVEMENT state.  
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Chapter 4.  Testing and Experimental Results 

4.1   Analytical Results 

All techniques explained in the previous chapter will be compared in this section, 

having as reference the velocity curve generated by the optical sensor measurements in 

X and Y. The curves are generated by moving the prototype in specific scenarios, like 

low average speed movement, high average speed movement and sinusoidal 

movement. The data generated by reading the optical sensors and accelerometers are 

sent to the host machine. After the collecting the data, the velocity in both axes X and 

Y will be estimated using different techniques, and graphics will be generated and 

some mathematical indicators will be extract from the estimated velocities. 

The units in the graphics are based in the format data that has to be sent using the 

HID device class (from USB driver). The values of velocity can change from -128 to 

127, which represents one signed byte. The X coordinates from the graphics 

represented the number of cycles, where each cycle has a period of 8 milliseconds (the 

maximum period when sending packets using HID device class). 

 

4.1.1    Graphical Results 

Fuzzy-Neural Network with and without Training 

The differences between a Fuzzy-Neural Network without training and with 

training are illustrated in the Figure 24. After training, the velocity curve of the 

fuzzy-neural network avoids the reverse velocity case for this specific scenario (only 

one axis is analyzed). 
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Figure 24: Fuzzy-Neural Network with and without training 

 

Signal Processing Methods Comparison 

Three techniques are compared to each other and to the reference velocity from 

the optical sensor. Three scenarios are used to analyze the performance of each 

technique – high speed, low speed and sinusoidal scenarios.  

Number of Samples 

Velocity 
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Figure 25: High Speed Scenario (Kalman, Fuzzy, State) 

 

Figure 26: Low Speed Scenario (Kalman, Fuzzy, State) 

Number of 
Samples 

Number of 
Samples 
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In the high speed scenario (Figure 25), it is possible to notice that sometimes exist 

a residual velocity after stop moving the mouse device. This residual velocity is really 

prejudicial when applying to a mouse device, which can let the user lose control of the 

cursor on the screen. The worst case is when this residual velocity has different signal 

from the predominant direction of the movement, which will cause a reverse velocity 

in the end of the movement. This behavior is quite more serious in the low speed 

scenario (Figure 26), where most of the tests show a significant residual velocity. From 

the solutions analyzed, it is possible to notice that the State-Machine estimator works 

really well in high speed scenario, avoiding a negative residual velocity. In low speed 

scenario, not all cases had a good performance. 

The biggest problem when working in low speed scenario is that sometimes is not 

possible to detect any peak of acceleration, because the real acceleration is occulted by 

the noise from the accelerometer. An example is illustrated in the Figure 27. 

 

Figure 27: No peak detection when moving in low speed 

The first graphic shows the acceleration signal from X axis and the second 

Number of 
Samples 
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graphic shows the estimated velocity. It is possible to notice that the movement starts 

around the 580
th

 cycle, however if the acceleration signal is observed, there is no 

evidence of any peak of acceleration accusing some movement.  

 Another problem is when moving long movements, especially when changing the 

direction of the velocity, such as sinusoidal movements. In this scenario (Figure 28), 

no technique can work correctly. Kalman-filter and Fuzzy-Neural estimators 

accumulate huge amount of error during the integration of the acceleration. And the 

State-Machine estimator simply would ignore most of the movement, only integrating 

the first points, until the velocity crosses to zero. 

 

Figure 28: Sinusoidal Scenario (Kalman, Fuzzy, State) 

Simple Integration and Kalman Filter Comparison 

Both techniques based on the same state-machine are compared. The unique 

difference between them is the way the acceleration is integrated. The first solution 

uses a simple integration method and the second one use Kalman filter.  

Number of 
Samples 
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Figure 29: High speed Scenario (State, State with Kalman) 

 

Figure 30: Low speed Scenario (State, State with Kalman) 

Number of 
Samples 
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Observing both graphics from Figure 29 and Figure 30, their behaviors are similar, 

presenting the same problems of negative and positive residual velocities. However, it 

would be easier to port the algorithm from the state-machine using simple integration 

to the microcontroller from the prototype. It would also consumes less resources 

(memory and processor), since there is no significant advantage using Kalman filter 

for these scenarios. 

 

State-Machines Comparison 

In this case, the advantage to have a unique state-machine that combines both 

axes is presented. 

 

Figure 31: High speed Scenario (State, Combined State) 
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Figure 32: Low speed Scenario (State, Combined State) 

For the high speed scenario (Figure 31), the curves are almost identical, because both 

are submitted to the same integration equations. However, in the low speed scenario 

(Figure 32), it is possible to notice that in some cases the combined state-machine 

avoids the negative residual velocity. The main reason for that is because when 

considering both axes to trigger a transition between two states, it would have less 

misinterpretation of the acceleration. For example, the transition between 

STABILIZING state to IDLE state. This transition only should occur if the prototype 

is not moving. If only one axis is analyzed, the probability to be stationary is smaller if 

both axes are analyzed.  

 

Combined State-Machines Comparison  

In this case, it is shown the advantages of adding a motion detection sensor 

 

Number of 
Samples 
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Figure 33: High speed Scenario (Combined State, Combined State with Motion Sensor) 

 

Figure 34: Low speed Scenario (Combined State, Combined State with Motion Sensor) 
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Both solutions use the same actions and states; the unique difference is the 

conditions to trigger the transitions between states. Adding a second sensor to detect 

the beginning and the ending of the movement can be really helpful. For the high 

speed scenario (Figure 33), the detection of any acceleration peak is not a problem. 

Therefore, it is possible to notice that both solutions behave exactly the same till the 

end of the movement. Using the extra sensor, it is possible to set the velocity 

immediately to zero, avoiding the positive residual velocity. For the low speed 

scenario (Figure 34), the extra sensor can be really useful to detect the exact instant that 

the acceleration should be integrated. Also, the decrement of the velocity during LOW 

SPEED state from the Combined state-machine with Motion sensor can be smaller to 

the solution without this extra sensor, since the end of the movement can be easily 

detected, which would avoid the positive residual velocity.  

 

4.1.2    Mathematical Results 

Using the same method to collect the data used to plot the graphics from the last 

section, a mathematical analysis is obtained, which considered four indicators: 

 Negative Integration Error: it is measured in seconds and represents the interval 

of time starting at the moment that the estimated velocity crosses to zero and 

ending at the moment that the optical sensor velocity crosses to zero. 

 Positive Integration Error: it is measured in seconds and represents the interval 

of time starting at the moment the optical sensor velocity crosses to zero and 

ending at the moment that the estimated velocity crosses to zero. 

 Reverse Velocity Area: it is a percentage indicator obtained by dividing the total 

area of negative residual velocity with the total area of the velocity curve, which 

represents the total distance travelled. 

 Forward Velocity Area: it is a percentage indicator obtained by dividing the total 

area of positive residual velocity with the total area of the velocity curve, which 

represents the total distance travelled. 

The two scenarios are analyzed – low speed and high speed scenarios. The results 
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are showed in the Table 7 and Table 8. 

 

Table 7: Mathematical Analysis in High Speed Scenario 

 

Table 8: Mathematical Analysis in Low Speed Scenario 

In the tables, the total integration error is the sum of the positive and negative 

integration errors. The total error area is the sum of the reverse velocity area and the 

forward velocity area. 

The first scenario indicates the total time of the experiment was 22 seconds and 

the prototype was only moving during 8.2 seconds. The total distance travelled was 

102.4 centimeters. During the experiment, the mouse was moved 18 times.  

The second scenario indicates the total time of the experiment was also 22 

seconds, but during 10.3 seconds the prototype was moving. The total distance 

travelled was 39.9 centimeters and the mouse was moved 18 times in low speed.  

It is possible to notice that the second scenario presents worse indicators, as 

observed in the graphics plotted in previous section.  
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4.2   The Test Scenario 

The test scenario proposed in this thesis consists in asking different users to use 

the prototype as a mouse device. Each user has to perform a specific number of tasks 

that use only the movement of the cursor on the screen. The test scenarios that each 

user has to run are based on FLASH applications that can easily be accessible in the 

internet. The applications used in this test environment can be executed in the 

following websites: 

http://www.funny-games.biz/the-mouse-101.html 

http://www.surfnetkids.com/games/mouse_1_0.htm 

On Table 9, all test cases are described, including what the user should do and 

what this specific test is willing to measure.  

 

Movement Response 

 

In this test the user 

should move the cursor 

to the red ball, which 

will disappear at the 

moment the cursor 

touches it and appear 

to another place. 

The application will 

count how many times 

the user can reach the 

ball in 30 seconds. 

 

http://www.funny-games.biz/the-mouse-101.html
http://www.surfnetkids.com/games/mouse_1_0.htm
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Simple Path 

 

In this test the user 

should move the cursor 

until the white square 

without touching the 

walls. The idea is to 

check if the user can 

simply move the 

cursor using the 

prototype through a 

simple path.  

Complex Path 

 

In this test the user 

should perform the 

same task as the 

previous one; however 

the path is more 

complicated, including 

narrow passages.  

 

Synchronized Path 

 

In this test there are 

some moving obstacles 

that must be 

considered, therefore 

the user should move 

the cursor in 

synchronization with 

the obstacles.  

(the worms will block 

the way periodically)  
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Synchronized Path 

with Time Constraint 

 

In this test besides to 

perform a 

synchronized 

movement the user 

should do it in a 

limited duration, since 

the last obstacle will 

block the passage for 

some time.  

(the spiders will move 

up and down) 
 

Long Movement with 

Time Constraint 

 

In this test the user 

should move the cursor 

for a long path in a 

short period of time, 

because after a while, 

the scenario will be 

inundate with water 

coming from the 

bottom.  

Table 9: Test cases for the performance test 

4.3   Performance Results 

The test bench results are scored in the following way:  

 The movement response test is scored by counting number of object hits; 

 The other tests are scored based on the number of failures. If the user can 

pass the test in his first attempt, he gets 3 points. If he passes in his second chance, he 
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gets 2 points. In his third chance, he gets 1 point. And if in three attempts, he could not 

pass any time, no points are scored. 

Twelve people were invited to execute the tests, which means that the best score 

mouse device can have is 12 x 3 = 36 points. For the first test, the average of the 

performance of each user is calculated. 

There are eight mouse devices to be tested, where seven of them use the 

prototype and only one use a regular commercial mouse device [Normal Mouse]. 

Only the best performance techniques obtained in the section 4.1   are ported to the 

microcontroller from the prototype and tested in the test environment described in the 

previous section, which includes: 

 Combined XY Axes State-machine [Combined State-Machine (SM)] 

(section 3.4.3   ); 

 Combined State-Machine with Optical Sensor as Motion Detection Sensor 

[Combined SM with Optical Sensor] (section 3.4.4   ). 

When using the above techniques, the best sample rate obtained was around 91 

samples per second, which corresponds to a period of 11 milliseconds. Therefore, one 

of the firmware to be tested uses the optical sensor that sends 91 packets per second to 

the host machine [Prototype Mouse (11 ms)]. Moreover, the packets are pipelined 

three times, adding a delay of 33 milliseconds. In this way, it is possible to verify if 

adding a delay and decreasing the sample rate will interfere in the performance. The 

case where no delay and pipeline are added also is tested, which will indicate a sample 

rate of 125 packets per second or period of 8 milliseconds between two packets. 

[Prototype Mouse (8 ms)]. 

Other techniques ported to the prototype and tested are: 

 Combined State-Machine with Physical Button [Combined SM with Button] 

(section 3.4.5   ); 
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 Combined State-Machine with Microphone as Motion Detection Sensor 

[Combined SM with Microphone] (section 3.4.4   ). 

 State-Machine with Free-Movement [Free-Movement] (section 3.4.6   ). 

On next, the test benches of each test are illustrated: 

 

Figure 35: Movement Response test bench 

 

 

Figure 36: Simple Path test bench 
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Figure 37: Complex Path test bench 

 

 

Figure 38: Synchronized Movement test bench 
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Figure 39: Synchronized Movement with Time Constraint test bench 

 

 

Figure 40: Long Movement with Time Constraint test bench 

 

When analyzing only the mouse devices based on optical sensor, the test benches 

are quite similar, which indicates that there is almost no difference between a regular 

commercial mouse and the prototype based on optical sensor. Observing only the 
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velocity of the cursor on screen, it was possible to notice that the “Prototype Mouse 

(11 ms)” runs faster than others, which make a better mouse to solve some specific 

tasks, especially the ones based with time constraint. Sometimes the “Normal Mouse” 

has worse performance the others because it was the first one to be tested, so after the 

user tested it and failed in the first attempts, he could improve his performance on the 

next tests.  

Analyzing only the mouse devices based on accelerometer, it is possible to notice 

that the combination of the combined state-machine with motion detection sensor has 

the best performance, reaching scores almost as good as the optical sensors when there 

is no time constraint.  
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Chapter 5.  Conclusions and Future Work 

An inertial mouse device based on 3-axis accelerometer is proposed and 

evaluated in this thesis. The construction of a prototype containing an optical sensor 

and a 3-axis accelerometer allowed a very accurate comparison between different 

estimator techniques based on integration of acceleration and an equivalent 

commercial mouse device for two-dimensional use. Moreover, having a reference 

model based on the optical sensor, it is possible to tune parameters when estimating 

the velocity and/or train network structures. 

The experimental results presented in chapter 4 show that formal mathematical 

models using Kalman Filter; or probabilistic techniques and pattern association using 

Fuzzy-Neural Network are not enough to have an accurate estimation of the movement. 

However, when breaking the movement in small parts and classify each part in 

different states and defining specific transitions between the states, better results can 

be obtained in some cases, specially for short movements in low and high speed. But 

for long movements with changes in the direction, as the sinusoidal case, this 

algorithm will simply ignore the movement. 

Besides the graphical and mathematical analysis of each estimation technique, a 

test environment is proposed to simulate the use of a mouse device. From all 

techniques that use the accelerometers, the combined state-machine using motion 

detection sensor has the best performance. The digital microphone reached a 

performance as good as using optical sensor for motion detection. Both solutions can 

easily be used as a mouse device to perform the majority of tasks when interacting 

with the computer. The unique tasks that would not perform well are those that present 

time constraints. 
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As suggestion for future work, new motion detection sensors should be 

experimented to have a larger portfolio of options, and then compare their cost, size 

and power consumption, which are aligned with the advantages of the inertial mouse 

devices. Also, a new prototype should be designed using only inertial sensors and 

motion detection sensors; and a faster processor should be used to decrease the 

sampling rate, which can contribute significantly to the performance when using as a 

mouse device. The use of a FPGA is highly recommended, which will allow 

processing many sensors at the same time, besides that all states-machine solutions 

proposed in this thesis are easily implementable in hardware.  
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