

國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

具有相互影響之遞迴式自我演化類神經模糊系統及其應用

A Novel Recurrent Self-evolving Neural Fuzzy System and

Its Applications

研 究 生：林洋印

指導教授：張志永 教授

中 華 民 國 一 百 零 二 年 四 月

具有相互影響之遞迴式自我演化類神經模糊系統及其應用

A novel Recurrent Self-evolving Neural Fuzzy System and

Its Applications

研 究 生：林洋印 Student：Yang-Yin Lin

指導教授：張志永 博士 Advisor：Dr. Jyh-Yeong Chang

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Electrical and Control Engineer

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

April 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年四月

i

具有相互影響之遞迴式自我演化類神經模糊系

統及其應用

研究生：林洋印 指導教授：張志永 博士

國立交通大學電機與控制工程學系﹙研究所﹚博士班

摘 要

本篇論文提出以相互影響地遞迴式架構為基礎之類神經模糊系統及其應用於動態

系統辨識。而此論文主要分成四大部份, 第二部份詳細介紹相互影響地遞迴式架構與類

神經模糊系統作結合，並且在後鑑部份使用輸入變數的非線性組合，不同於傳統

Takagi-Sugeno-Kang （TSK）架構，它是利用函數展開的方式，能在高維度的輸入空間

中提供良好的非線性決策能力，因此，可使網路輸出更具體且更逼近目標輸出。在架構

學習上，使用線上學習模糊分群法，而此演算法能有效地處理時變特徵問題。在參數學

習上，後鑑部參數的更新是由可變動維度之卡爾曼濾波器演算法調整,可具有高精密學習

的性能。前鑑部及遞迴式參數則利用梯度下降法去做參數更新的動作。在第三部份中，

我們提出區間第二類型模糊邏輯系統結合發展出的遞迴式網路，即相互影響地遞迴式區

間第二類型類神經模糊系統。區間第二類型模糊邏輯系統具有良好的雜訊容忍度，能直

接處理規則的不確定性，這是第一類型模糊邏輯系統所不能達到的。在架構學習上，相

互影響之遞迴式區間第二類型類神經模糊系統最初不包含任何規則，所有規則的產生是

由線上第二類型模糊分群所取得。在參數學習上，後鑑部參數的更新是由排序後規則之

卡爾曼濾波器演算法調整以改善系統的性能。前鑑部及遞迴參數的更新由梯度下降法做

調整。在此，我們提出參數消除的方法針對無效的遞迴參數，因規則數太大，會產生許

多遞迴參數，我們將冗餘的遞迴參數刪除，來減少網路的計算量。模擬結果顯示出針對

ii

動態系統在無喧雜的狀況下，所提出的相互影響之遞迴式模糊類神經網路具有優越的性

能。最後，我們將與其他方法做比較，證實所提出的架構是卓越的。

iii

A Novel Recurrent Self-evolving Neural Fuzzy

System and Its Applications

Student：Yang-Yin Lin Advisor：Dr. Jyh-Yeong Chang

Department of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

This dissertation mainly describes two different kinds of recurrent neural fuzzy systems,

involving a novel recurrent self-evolving fuzzy neural network for identification and

prediction of time-varying plants and a novel recurrent interval type-2 neural fuzzy system

with self-evolving structure and parameter for dynamic system processing under noise-free

and noise environment. For the first kind, we describe a novel recurrent self-evolving neural

fuzzy system, namely an interactively recurrent self-evolving fuzzy neural network (IRSFNN).

The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by

feeding the rule firing strength of each rule to others rules and itself. The consequent part in

the IRSFNN can be chosen by a Takagi-Sugeno-Kang (TSK) or functional-link-based type.

The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent

part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural

network, the FLNN in the consequent part is a nonlinear function of input variables. An

IRSFNN’s learning starts with an empty rule base and all of rules are generated and learned

online through a simultaneous structure and parameter learning. The consequent update

parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and

recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN

for the prediction and identification of dynamic plants and compare it to other well-known

iv

recurrent FNNs. The proposed model obtains enhanced performance results. For the second

kind, we introduce a mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS)

with self-evolving structure and parameters for system identification under both noise-free

and noisy environments. The MRIT2NFS employs interval type-2 set in the premise clause in

order to enhance noise tolerance of system. The consequent part of each recurrent fuzzy rule

is defined using the Takagi-Sugeno-Kang (TSK) type with interval weights. The structure

learning of MRIT2NFS uses on-line type-2 fuzzy clustering to determine number of fuzzy

rules. For parameter learning, the consequent part parameters are tuned by rule-ordered

Kalman filter algorithm to reinforce parameter learning ability. The type-2 fuzzy sets in the

antecedent and weights representing the mutual feedback are learned by gradient descent

algorithm. After the training, a weight-elimination scheme eliminates feedback connections

that do not have much effect on the network behavior. This method can efficiently remove

redundant recurrence weights. Simulation results show that the MRIT2NFS produces smaller

root mean squared errors using the same number of iterations.

v

Acknowledgment

在這研究期間裡，首先要感謝我的博士班指導教授 張志永博士和林進

燈博士，在二位教授豐富的學識、殷勤的教導及嚴謹的督促下，使我學習

到許多的寶貴知識及在面對事情中應有的處理態度、方法，並且在研究與

投稿論文的過程中，二位教授有許多深入的見解及看法且對於斟酌字句、

思慮周延，更是我該學習的目標。師恩浩蕩，指導提攜，銘感於心。

由衷感謝口試委員李祖聖教授、蘇順豐教授、洪宗貝教授、楊谷洋教授、

及林正堅教授給予許多寶貴的建議與指正，使得這篇論文更加完整。同時

要感謝交大腦科學中心全體同學，在研究的過程中不斷的互相砥礪及討

論。感謝過去 97級中興電機所的同學，在這過程中，一起分享不同的經驗。

感謝一路走來陪伴身邊的所有朋友，使得我的研究生涯變得多采多姿。

特別要感謝我的父親、母親、姐姐，在這段日子中不斷的給予支持及鼓

勵，讓我能夠專心於研究的工作並完成博士學位。最後誠摯地以本論文研

究成果獻給我的師長、父母、家人及所有的朋友們。

林洋印

一百零二年四月二十三日

vi

Contents

Abstract in Chinese .. i

Abstract in English .. iii

Acknowledgment .. v

Contents ... vi

List of Tables .. vii

List of Figures .. viii

1 Introduction .. 1

2 An Interactively Recurrent Self-evolving Fuzzy Neural Network (IRSFNN) 7

2.1 Brief Survy of Some Existing Methods ... 7

2.2 IRSFNN Structure ... 8

2.3 IRSFNN Learning ... 14

2.3.1 Structure Learning .. 14

2.3.2 Parameter Learning .. 15

2.4 Simulation Results ... 18

3 A Mutually Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) 31

3.1 Brief Introduction of Type-2 Fuzzy Systems... 31

3.2 MRIT2NFS Structure .. 34

3.3 MRIT2NFS Learning .. 43

3.3.1 Structure Learning .. 43

3.3.2 Parameter Learning .. 44

3.4 Simulation Results ... 49

4 Conclusions .. 68

Bibliography…………………………………………………………………………………..70

Vita.. 80

Publication List ... 81

vii

List of Tables

Table 2.1 PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR

DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 1 21

Table 2.2: PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR

DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 2. 23

Table 2.3: PEFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR

CHAOTIC SEQUENCE PREDICTION IN EXAMPLE 3. 25

Table 2.4: PERFORMANCE OF IRSFNN AND OTHER MODELS FOR MACKEY-GLASS

CHAOTIC SEQUENCE PREDICTION PROBLEM IN EXAMPLE 4. 27

Table 2.5: PERFORMANCE OF IRSFNN AND OTHER MODELS FOR BOX-JENKINS

PREDICTION IN EXAMPLE 5. ... 30

Table 3.1: PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR

SISO PLANT IDENTIFICATION IN EXAMPLE 1... 52

Table 3.2: INFLUENCE OF thf and  ON THE PERFORMANCE OF MRIT2NFS WITH

0.5  IN EXAMPLE 1. ... 53

Table 3.3: INFLUENCE OF  ON THE PERFORMANCE OF MRIT2NFS WITH 0.02thf  . .. 55

Table 3.4: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT

MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 1 56

Table 3.5: PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR SISO

PLANT IDENTIFICATION IN EXAMPLE 2 .. 58

Table 3.6: INFLUENCE OF thf and  ON THE PERFORMANCE OF AN MRIT2NFS WITH

0.5  59

Table 3.7: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT

MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 2. 60

Table 3.8: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT

MODELS IN EXAMPLE 3. .. 62

Table 3.9: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT

MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 3. 62

Table 3.10: PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR MIMO

PLANT IDENTIFICATION IN EXAMPLE 4 .. 65

Table 3.11: PERFORMANCE OF MRIT2NFS AND OTHER MODELS WITH DIFFERENT NOISE

LEVELS IN EXAMPLE 4. .. 65

Table 3.12: PERFORMANCE OF MRIT2NFS- AND OTHER MODELS FOR MODELING OF

NONLINEAR SYSTEM IN EXAMPLE 5. ... 67

viii

List of Figures

Figure 2.1: Structure of FLANN. ... 9

Figure 2.2: Structure of the proposed IRSFNN model ... 10

Figure 2.3: Flowchart of the structure and parameter learning of the IRSFNN. 14

Figure 2.4: Outputs of the dynamic plant, IRSFNN, RSEFNN_LF, and TRFN. 21

Figure 2.5: Test errors between the IRSFNN-FuL and actual plant outputs. 21

Figure 2.6: Outputs of the dynamic plant and IRSFNN-FuL. .. 23

Figure 2.7: Test errors between the IRSFNN-FuL and actual plant outputs 23

Figure 2.8: Results of the phase plot for the chaotic system RSEFNN_FL, TRFN and

IRSFNN-FuL .. 24

Figure 2.9: Test result of chaotic series prediction using IRSFNN-FuL. 26

Figure 2.10: Prediction errors between the IRSFNN-FuL and actual outputs. 27

Figure 2.11: Test result of Box-Jenkins series using IRSFNN-FuL with three rules. 29

Figure 2.12: Prediction errors between the IRSFNN-FuL and actual outputs. 30

Figure 3.1: Structure of a Type-2 FLS. ... 31

Figure 3.2: The different forms of type-2 fuzzy sets. ... 32

Figure 3.3: The plots of complexity comparison with five type-reducers 33

Figure 3.4: The proposed six-layer MRIT2NFS structure. .. 35

Figure 3.5: An interval type-2 fuzzy set with Gaussian shape whose center (mean) is not

known with certainty (the mean has an uncertainty). ... 36

Figure 3.6: Outputs of the dynamic plant and MRIT2NFS in example 1. 51

Figure 3.7: Test errors between the MRIT2NFS and actual plant outputs 51

Figure 3.8: Outputs of the dynamic plant and MRIT2NFS in example 2 57

Figure 3.9: Test errors between the MRIT2NFS and actual plant outputs 57

Figure 3.10: Results of the phase plot for the chaotic system (O) and MRIT2NFS (X) 61

Figure 3.11: Output of the MIMO system and MRIT2NFS in Example 4. (a) Output yp1. (b)

Output yp2 ... 64

Figure 3.12: A pictorial representation of HANG. ... 66

1

Chapter 1

Introduction

Dynamic systems depend on past inputs, past outputs, or both, and identification and

modeling of such systems is not as straightforward as that for static / algebraic systems. For

dynamic system processing, practical problems are encountered in a variety of areas, such as

control, pattern recognition, time series prediction, and signal processing. Recently, the

combination of recurrent structures and fuzzy neural networks has become popular to identify

and recognize temporal behaviors [1–16, 43–44]. Therefore, recurrent structures enable

effectively address temporal sequences responding to memory information from prior system

states.

In contrast with pure feed-forward FNN, we have to know the number of lagged inputs

and outputs in advance, and feed these lagged values as feed-forward FNN input. The exact

order of dynamic system is usually unknown, and thus, we do not know the number of lagged

values to provide. Moreover, the lagged values increase input dimensions and result in a

larger network size. Apparently, the use of a feed-forward FNN is unsuitable for constructing

dynamic system. Therefore, some recurrent fuzzy neural networks (RFNNs) have already

been proposed [1–16, 43–44] for solving the temporal characteristics of dynamic systems, and

have been shown to outperform feed-forward FNNs and recurrent neural networks. Recently,

a considerable research effort has being devoted toward developing recurrent neural-fuzzy

models that are separated into two major categories. One category of recurrent FNNs uses

feedback from the network output as the recurrence structure [2–4], [9]. In [2], recurrent

self-organizing neural fuzzy inference network (RSONFIN) uses a global feedback structure,

where the firing strengths of all rules are summed and fed back as internal network inputs.

The other approach of recurrent FNNs uses feedback from internal state variables as its

recurrence [10, 12, 14, 44]. In [14], the authors presented a recurrent self-evolving fuzzy

2

neural network with local feedbacks for dynamic system identification, where the recurrent

firing values are influenced by both prior and current values.

One import purpose is to design consequent part of FNN which is able to impact the

performance on using different types. Researchers usually use two types of fuzzy if-then rules

and fuzzy reasoning employed, i.e., Mamdani-type and TSK-type. For Mamdani-type fuzzy

neural networks [2, 6, 17–19], the minimum fuzzy implication is adopted in fuzzy reasoning.

For TSK-type fuzzy neural networks [5, 9, 14, 20, 21], the consequent part of each rule is a

linear function of input variables. Several studies [14, 20, 21] indicate that the performance of

a feedforward TSK-type fuzzy network in network size and learning accuracy is superior to

those of Mamdani-type fuzzy networks. A feedforward TSK-type fuzzy network appears to

have more free parameters to adjust input space mapping. However, each consequent part of

each fuzzy rule in a standard TSK-type fuzzy neural network does not take full advantage of

the mapping capabilities of local approximation by rule hyper-planes. Therefore, several

studies [22–28] consider trigonometric functions to replace the traditional TSK-type fuzzy

reasoning and also obtain the better performance.

In this view, the functional-link neural networks (FLANN) [22, 23] have been proposed

using trigonometric functions to construct consequent part. The functional expansion

increases the dimensionality of the input vector and thus, creation of nonlinear decision

boundaries in the multidimensional space and identification of complex nonlinear functions

become simple with this network. It seems to be more efficient, based on these results, to

include the functional-link fuzzy rules into the design of recurrent fuzzy network.

With above mentioned motivations, this study presents the combination of a novel

recurrent structure and a FLANN to construct the consequent part, called an interactively

recurrent self-evolving fuzzy neural network (IRSFNN), for dynamic system identification

and prediction. The proposed IRSFNN contains four major contributions as follows:

(1) A recurrent structure with interaction feedback incorporates the advantages of local

3

feedback and global feedback. The global feedback in the proposed network means that

the necessary information is obtained from the other fuzzy rules. Local source (a rule

gets feedback from itself only) is not sufficient to represent the necessary information.

Therefore, external (global) backward connection is aim to reimburse the shortcoming

of local information and then achieve comprehensive information requirement.

(2) Many studies [1–13] have only considered the past states in recurrent structure, which is

insufficient without referring to current states. Previous studies [14, 29] were provided

the strong evidences that compatibly use past and current states to be more desirable.

Therefore, the proposed recurrent structure depends on current states along with

previous states in order to obtain excellent compromise with temporal.

(3) We use the FLNN to replace the traditional TSK-type fuzzy reasoning, and compare

their performance. As has explained before, the functional expansion increases the

dimensionality of the input pattern and thus, creation of nonlinear decision boundaries

in the multidimensional space and identification of complex nonlinear functions

become simple with this network.

(4) We use hybrid learning algorithms for parameter learning to reinforce the network

performance.

For structure learning, all of the rules and fuzzy sets are generated on-line in an IRSFNN,

which helps automate rule generation. We do not need to set any initial IRSFNN structure in

advance. The antecedent part and recurrent parameters are learned by gradient descent

algorithm. The consequent parameters in an IRSFNN are tuned using a variable-dimensional

Kalman filter algorithm. This algorithm handles inputs with variable dimensions, a

phenomenon caused by incremental rules during the structure learning process.

All of the recurrent FNNs that we have discussed so far use type-1 fuzzy sets. In recent

years, studies on type-2 fuzzy logic systems (FLSs) have drawn much attention [45–49,

78–87]. Type-2 FLSs are extensions of type-1 FLSs, where the membership functions

4

involved in the fuzzy rules are type-2 fuzzy sets. We shall refer to such rules as trype-2 fuzzy

rules or type-2 rules. The membership values of a type-2 fuzzy set are type-1 fuzzy sets.

Type-2 FLSs appear to be more promising than their type-1 counterparts in handling

uncertainties, that allow researchers to model and minimize the effect of uncertainties

associated with rule-base system, and have already been successfully applied in several areas

[49–53, 75–77, 88–91]. The uncertainties in type 2 fuzzy sets can arise from different sources.

Four types of uncertainties are described in [46] and [47]. One of them is related to the

answers of experts to the same question in different manners. The second type of uncertainty

is related to the estimation of the membership function of the same linguistic value by

different experts, the third is connected with the noise of measurements that activate type-1

FLS, and the last one is related to the noisy data that are used to tune the parameters of type-1

FLSs. Type-1 fuzzy systems cannot directly model these types of uncertainties. Because the

membership functions of type 2 fuzzy systems are themselves fuzzy, they provide a powerful

framework to represent and handle such types of uncertainties.

Usually, the T2FNN is computationally more expensive than that of its Type-1

counterpart primarily due to the complexity of type reduction from Type-2 to Type-1. An

Interval Type-2 Fuzzy set (IT2FS) is a special case of a general type-2 fuzzy set, which

reduces the computational overhead of a general type-2 fuzzy system significantly. For an

IT2FS, the membership associated with an element is a sub-interval of [0, 1]. In this

dissertation we use the interval type-2 fuzzy modeling to simplify the computational efforts to

some extent. In [54]–[59], some interval type-2 FNNs are proposed for designing of interval

type-2 FLS. In [29, 60–69, 92], the authors have proposed automatic design of fuzzy rules,

which are used in a variety of applications. A self-evolving interval type-2 fuzzy neural

network (SEIT2FNN) is proposed in [62], which learns the structure and parameters in an

online manner. The premise and consequent parameters in an SEIT2FNN are tuned by

gradient descent and rule ordered Kalman filter algorithm, respectively. The performances of

5

SEIT2FNN are especially good for time varying systems. Several Interval type-2 FNNs [29,

67–69], which use feedback/recurrent structure are proposed for modeling of dynamic

systems. In [67], a recurrent interval type-2 fuzzy neural network (RIT2FNN-A) that uses

interval asymmetric type-2 fuzzy sets is proposed. This five-layer FNN uses a four-layer

forward network and a feedback layer. In [68], the authors propose an internal/interconnection

recurrent type-2 fuzzy neural network (IRT2FNN) structure that is suitable for dealing with

time-varying systems. All free parameters of the IRT2FNN are updated via gradient descent

algorithm. Moreover, recurrent interval type-2 FNNs with local feedbacks are proposed in [29,

69], where the recurrent property is achieved by locally feeding the firing strength of each

rule back to itself. In [29], the consequent part of the recurrent self-evolving interval type-2

fuzzy neural network (RSEIT2FNN) is a linear function of current and past outputs and inputs.

On the other hand, the consequent part in the RIFNN [69] is of Mamdani type, which is

formulated as an interval-valued fuzzy set. In many papers, it has been seen that the

Takagi-Sugeno-Kang (TSK) type modeling can do an excellent job of modeling dynamic

systems [7, 14, 21, 62, 66, 68].

Here, we propose a Mutually Recurrent Interval Type-2 Neural Fuzzy System

(MRIT2NFS) for dynamic system identification. The MRIT2NFS has a self-evolving ability

such that it can automatically evolve to acquire the required network structure as well as its

parameters based on the training data. Therefore, to start the learning process no pre-assigned

network structure is necessary. In this proposed MRIT2NFS, we have three major

contributions as follows:

(1) We propose a novel recurrent NFS structure utilizing interval type-2 fuzzy sets. Our

network incorporates the advantage of local feedback and effective delivery of

information through mutual feedbacks in order to achieve information completeness.

In our network, the internal feedback and interaction loops in the antecedent part are

formed by feeding the firing strength of each rule back to itself and to other rules.

6

Based on the view of networks, many studies employ external registers to memorize

prior states that could cause network’s complexity when number of rules is bigger.

Therefore, a internal register is used for reducing network’s complexity.

(2) An innovative learning algorithm for the structure and parameters of the system is

suitable for handling time-varying systems, i.e., self-evolving structure and parameter

mechanism.

(3) We also propose an interesting scheme to eliminate the less-useful recurrent weights.

During the learning process, the MRIT2NFS may generate many recurrent weights

when the rule base is bigger. As a result of elimination of the less-useful recurrent

weights, our system achieves a significant reduction in both complexity and

computational requirements.

The consequent parameters in the MRIT2NFS are tuned by a rule-ordered Kalman

filter algorithm. The antecedent parameters and all of the rule recurrent weights are

learned by a gradient descent learning algorithm. To demonstrate the performance of

MRIT2NFS, several simulations have been conducted. The performance of MRIT2NFS is

also compared with that of recurrent type-1 FNNs, feed-forward type-1 FNNs, and other

type-2 FNNs.

7

Chapter 2

An Interactively Recurrent Self-evolving Fuzzy

Neural Network (IRSFNN)

2.1 Brief Survey of Existing Methods

Recently, considerable research has been devoted toward these developing recurrent

fuzzy neural networks, and these networks can be separated into two major categories. One

category of recurrent FNNs in studies [1–9, 16], the recurrent structure uses global feedbacks.

In [2], a recurrent self-organizing neural fuzzy inference network (RSONFIN) computes the

values of the internal feedback variables using all rule firing strengths and the consequent

parts are fuzzy sets. The recurrent structure in the RSONFIN just considers past state. For

parameter learning, the RSONFIN uses gradient descent algorithm to tune free parameters.

The authors in [3] and [4] proposed an output-recurrent fuzzy neural network where the

output values are fed back as input values. In [7], the TSK-type recurrent fuzzy network’s

structure is similar to an RSONFIN. The recurrent neuron-fuzzy network in [9] feeds back the

network output values not only globally to all the rule inputs, but also locally to the

consequent part of each rule, in the form of the autoregressive moving average with

exogenous inputs model. The recurrent high-order neural network (RHONN) [16] trained

with an extended Kalman filter algorithm was proposed for optimal control of nonlinear

systems.

The other approach of recurrent FNNs [10–14] uses feedback loops from internal state

variables as its recurrence structure. The design of local recurrent structures seems to be

simpler than that of global recurrent structures, and also obtains superior performance. In [10]

and [11], the recurrent property is achieved by feeding the output of each membership

8

function back to itself; thus each membership value is only influenced by its previous value.

The recurrent property in study [14], a recurrent self-evolving fuzzy neural network with local

feedback (RSEFNN-LF), is achieved by locally feeding the output of temporal firing strength

back to itself; thus, temporal firing strength is influenced by current and past states.

As mentioned earlier, many researchers frequently use Mandani-type or TSK-type to

construct consequent part of fuzzy rules. Many studies indicate that TSK-type fuzzy systems

significantly outperform Mandani-type fuzzy systems. However, TSK-type fuzzy neural

network does not take full advantage of the mapping capabilities of local approximation by

rule hyper-planes. In order to overcome this problem, our proposed model employs the

FLANN [22], [23] to strength the mapping ability of input space. Therefore, nonlinear

function (trigonometric function) to the consequent part shall be able to effectively

discriminate in mapping input space. Previous studies [22–28] indicated that the use of

trigonometric function obtains better performances than the use of TSK-type. As a result, in

this dissertation the marriage of a novel recurrent structure and functional-link-based NN is a

significant research for addressing the temporal problems as demonstrated by every example.

2.2 IRSFNN Structure

This section introduces the structure of the functional link neural network and

multiple-input-single-output IRSFNN. The recurrent structure in the IRSFNN uses interaction

feedback that has the ability to capture critical information from other rules. The consequent

part of each recurrent fuzzy rule is functional link and executes a nonlinear model. Next, we

have described the structure of functional link neural network.

2.2.1 Structure of a Functional-link Artificial Neural Network

The functional link artificial neural network (FLANN) is basically a single layer

9

structure in which nonlinearity is introduced by enhancing the input pattern with nonlinear

functional expansion. Therefore, the FLANN structure considers trigonometric functions. Fig

2.1 shows the structure of FLANN, where each of the input patterns is passed through a

functional expansion block yielding a corresponding N -dimensional expanded vector.

Suppose that for the input pattern X is of a two-dimensional input (1 2,x x) the expanded

inputs are using trigonometric functions to be taken. The expanded input variables can be

denoted as  =(1, 1x , 1sin()x , 1cos()x , 2x , 2sin()x , 2cos()x) .

Fig. 2.1. Structure of FLANN.

The theory of the FLANN for multidimensional function approximation has been discussed

and analyzed below [22, 23]. Let us consider a set of basis functions { ()}k kB A   ΚΦ ,

with the following properties; (1) 1 =1 ; (2) the subset
1

{ }
k

N

j kB B


  is a linearly

independent set, that is, if
1

0
N

k k

k

w


 , then 0kw  for 1, ,k j ; and (3)

1/2
2

1
sup

j

j k Ak



   
  . Next,

1
{ }

k

N

N kB 


 is a set of a set of basis functions to be

considered, as shown in Fig. 2.1. Hence, output of functional expansion block is composed by

(1 , 2 , …, N) NB with the following input–output relationship for the j th output.

ˆ ()j jy S ;
1

()
N

j kj k

k

S w X


 (2.1)

10

where
nX A  , that is, 1 2(, , ,)T

nX x x x is the input dimension and

1 2(, ,...,)T

j j jNW w w w is the weight vector associated with the jth output of the FLANN. The

vector S is a matrix of linear outputs of the FLANN, and the output vector is ˆ Vy , that is,

1 2
ˆ ˆ ˆ ˆ(, , ,)T

Vy y y y . The nonlinear function can be denoted as

    t a n h    (2.2)

In the IRSFNN model, the corresponding weights of functional link bases do not exist in the

initial state, and the amount of the corresponding weights of functional link bases generated

by the online learning algorithm is consistent with the number of fuzzy rules. Section 2.3

describes the self-evolving technology.

Fig. 2.2. Structure of the proposed IRSFNN model, where each recurrent fuzzy rule in layer 4

forms a locally and globally recurrent structure and each node in layer 5 combines

functional-link-based.

11

2.2.2 Structure of IRSFNN

This sub-section describes the IRSFNN model that employs FLANN to the consequent

part of the IRSFNN for enhancing network’s performance. Fig 2.2 shows the proposed

six-layered IRSFNN structure. The detailed function of each layer is discussed next.

For a clear understanding of the mathematical function of each node, we will describe

function relationship between each layer. The net input to the ith node in layer l is represented

as
()l

iu and the output value is represents as
()l

iO

Layer 1 (Input layer): The inputs are crisp values and 1(, ,)nx x x are fed as inputs

to this layer. This is in contrast to feed-forward FNNs where both current and past states are

fed as inputs to input layer when such networks are used to model time-varying systems.

Weight requiring adjustment in this layer is absent.

Layer 2 (Fuzzification layer): Each node in this layer defines a Gaussian membership

function (MF) and performs a fuzzification operation. For the i th fuzzy set
i

jA on the input

variable jx , 1,...,j n , a Gaussian MF is computed by Eq. (1.3)

2
(2)

(2) (2) (1)1
() exp , and

2

i

j ji

j j i j ji

j

u m
x O u O



   
      

   

 (2.3)

Layer 3 (Spatial firing layer): Each node in this layer represents one fuzzy rule that

computes the firing strength. Because this layer does not depend on any temporal input, we

call this layer “spatial” to distinguish it from the “temporal” firing strength computed in the

next layer. For the obtained spatial firing strength
i , each node performs a fuzzy meet

operation on inputs it receives from layer 2 using an algebraic product operation.

There are M nodes in this layer, and the spatial firing strength is computed as

12

(3) (3) (3) (2)

1

, and
n

i

i j j j

j

O u u O


   (2.4)

where M is the total number of rules.

Layer 4 (Temporal firing layer): Each node in this layer is a recurrent rule node, which

formulates an internal feedback (self-loop) and external interaction feedback loop. The ideal

of temporal firing strength is extended from the concept of Infinite Impulse Response (IIR)

filter that formulates recursive function of prior states and current observation. The output of a

recurrent rule node is a temporal firing strength that depends not only on current spatial firing

strength but also on the previous temporal firing strength. The temporal firing strength is a

linear combination function expressed as

(4) (4) (4) (4) (3)

1

((1)) (1) , and q q

i ik k i i i i

k

O O t u u O 


       (2.5)

that is,

1

() ((1)) (1) (),

 1, , and 1, ,

q q q q i

i ik k i

k

O

t t t

i M q n

    


     

 



(2.6)

where
1

M
q q

i ik

k

 


 and

q
q ik
ik

C

M
  (0 1q

ikC ) is the rule interaction weight between

itself and other rules. For the updated recurrent weights, the proposed approach uses a

gradient descent algorithm to derive the optimal values. The recurrent weights q

ik determine

the compromised ratio between the current and previous inputs to the network outputs.

Layer 5 (Consequent layer): Each node in this layer is an optional node, called a

consequent layer, and can be TSK-type or functional-link-based fuzzy rules. The weight of the

link from a node in layer 4 to one in layer 5 is 0

q

ia , for 1, , oq n and 1, ,i M . For

the TSK-type IRSFNN, the node output is a linear combination of current input states

1, , nx x . The output of TSK-type
q

iv of the i th rule node connecting to the q th output

variable is computed as follows:

13

(5) (4) (4) (1)

0

, and
n

q q
i i ij j j j

j

v O a u u O


    (2.7)

where 0 1x  .

For the functional-link-based IRSFNN, the output uses a functional expansion as given

by the trigonometric polynomial basis function

1 1 1 2 2 2[sin() cos() sin() cos()]x x x x x x    for two-dimensional input variables.

The output of functional-link-based ()
q

iv t is expressed by

(5)

0

, 3 ()
tn

q q
i i ik k t u

k

v O a n n n


      (2.8)

where 0 1  .

The coefficient un denotes lag numbers of system output or control input. If we do not use

extra lagged values (un =0), 1 1 1(,sin(),cos(), , x ,sin(),cos())k n n nx x x x x    

and 1, , tk n . The constant tn is an amount of basis expansion according to input

variables.

Layer 6 (Output layer): Each node in this layer corresponds to one output variable. For

defuzzification operations, the q th output layer node computes the network output variable

qy by using the weighted average method.

For the TSK-type IRSFNN, the output can be expressed as

(5)
(4)

1 0(6) 1

(4)

1 1

()

()

M nM
q q

i i ij ji
i ji

q M M
q

i i

i i

t a xO O

y O

O t





 

 

 

  

 

 
, 1, , oq n (2.9)

where v denotes the consequent value and a denotes the parameters.

For the functional-link-based IRSFNN, the output is

14

(4) (5)

(6) 1 1 0

(4)

1 1

()

()

tnM M
q q

i i i ik j

i i k
q M M

q

i i

i i

O O t a

y O

O t

 



  

 

 

  
  

 
, 1, , oq n

(2.10)

where v denotes the consequent value and a denotes the parameters.

2.3 IRSFNN Learning

In this section, two phase learning is used for constructing the IRSFNN. There are no

rules in an IRSFNN. All of the recurrent fuzzy rules evolve from the simultaneous structure

and parameter learning after receiving each piece of training data. Fig. 2.3 presents flowchart

of the IRSFNN’s learning scheme. The parameter learning phase describes the use of a

gradient descent algorithm and a variable-dimensional Kalman filter algorithm.

Fig. 2.3. Flowchart of the structure and parameter learning of the IRSFNN.

15

2.3.1 Structure Learning

The first task in structure learning is to determine whether a new rule should be extracted

from the training data and to determine the number of fuzzy sets in the universe of discourse

of each input variable because one cluster in the input space corresponds to one potential

fuzzy rule, in which
i

jm represents the mean and
i

j represents the variance of that cluster.

The spatial firing strength
i in (2.4) is used to determine whether a new rule should be

generated. The first incoming data point x is used to generate the first fuzzy rule, and the

mean and width of the fuzzy membership functions associated with this rule are set as:

1

j jm x and
1

j fixed  , 1, ,j n (2.11)

where fixed is a predefined value (we use fixed =0.3 in this paper) that determines the

width of the memberships associated with a new rule. For subsequent new incoming data x(t)

we find

1 ()
arg max ()i

c
i M t

I f t
 

 (2.12)

where M(t) is the number of existing rules at time t. If ()I

c thf t f (thf is a pre-specified

threshold), then a new fuzzy rule is generated and M(t+1)=M(t)+1. In this approach, if the

present data do not match well according to the existing rules, then a new rule is evolved. We

also use the same procedure to assign the mean of fuzzy sets as we have done for first rule.

For a new rule, the mean and width of corresponding fuzzy sets are defined as

() 1M t

j jm x  and
() 1M t I

j j jx m     , 1, ,j n (2.13)

where  is an overlap coefficient. Eq. (1.13) indicates that the initial width is equal to the

Euclidean distance between current input data x and the center of the best matching rule for

this data point times an overlapping parameter  . In this study  is set to 0.5, so that the

width of new fuzzy set is half of the Euclidean distance from the best matching center, and a

16

suitable overlap between adjacent rules is realized.

2.3.2 Parameter Learning

In addition with the structure, all free parameters in an IRSFNN are also learned,

including those newly generated and previously existing. For clarification, we consider the

single-output case and define the objective to minimize the error function as

21
() ()

2
q dE y t y t    (2.14)

where ()qy t represents the IRSFNN output and ()dy t represents the desired output.

Parameters in the consequent part of the TSK-type IRSFNN are learned based on the

variable-dimensional Kalman filter algorithm as discussed in [14]. According to [14], Eq.

(2.10) of a functional-link-based IRSFNN can be re-written as

()T

q FuL FuLy t a (2.15)

where

1 1

1 (1)1 1
0 0

1 1 1 1

() () () ()
() , , , , , ,

() () () ()

t t

t

t t

n n

q q q q
n MT M M

FuL n nM M M M
q q q q

i i i i

i i i i

t t t t
t

t t t t

   
    

   

 

  

   

 
 
  
 
  
   

 (2.16)

and

(1) 1

10 1 0, , , , , , t

t t

T
M nq q q q

FuL n M Mna a a a a
      (2.17)

and

0 1 1 1 1[, , ,] [1, ,sin(),cos(), , ,sin(),cos()]
tn n n nx x x x x x       (2.18)

The consequent parameter vector FuLa is updated by executing the following

variable-dimensional Kalman filtering algorithm:

17

(1) () (1) (1)((1) (1) ()),

() (1) (1) ()1
(1) ()

(1) () (1)

FuL

FuL

FuL FuL FuLFuL d FuL

T

FuL

T

FuL

a t a t S t t y t t a t

S t t t S t
S t S t

t S t t

 

 

   

       

  
   

    

 (2.19)

where  is a forgetting factor and lies in [0,1] ( =0.99995 in this paper). Once a new rule

is generated, the dimension of the vectors FuLa , FuL , and the matrix S increases

accordingly. When a new rule evolves at time t+1, the new vector (1)FuL t  becomes

1 1

1 (1) (1)1 1 1 1
0 0

1 1 1 1

() () () ()
(1) , , , , , ,

() () () ()

t t

t

t t

n n

q q q q
n MT M M

FuL n nM M M M
q q q q

i i i i

i i i i

t t t t
t

t t t t

   
    

   

 

    

   

 
 
   
 
  
   

 (2.20)

An IRSFNN augments ()FuLa t and ()S t on the right-hand side of Eq. (2.17) as follows:

(1) (1) 1
_ , (1)0 (1), , t

t

T
M nq q

FuL new FuL M M na a a a
   

 
    (2.21)

and

(1)(1) (1)(1)
() [()] t tM n M n

newS t block diag S t C I
    

   (2.22)

where C is a large positive constant (we use C=10).

This paper uses resetting operations to keep S bounded and to avoid divergence

problems. After a period of training, the matrix S is re-set as C I . Simulation results in

Section 2.4 show that the learning of the IRSFNN achieves good training and test

performance. A gradient descent algorithm tunes the antecedent parameters of the IRSFNN.

This gradient descent algorithm is performed once for each piece of incoming datum.

By using a gradient descent algorithm for the updated recurrent weights, we have

(1) ()q q

ik ik q

ik

E
t t  




  


 (2.23)

where  is the learning rate and

18

1

 () () ((1) ()) / ()

q
q i

q q q

ik q i ik

M
q q i q

q d i q k i

i

yE E

y

y y v y t t t



  

  


  


   

       
 (2.24)

The antecedent part of parameter
i

jm is updated as

(1) ()i i

j j i

j

E
m t m t

m



  


 (2.25)

where

2

1

() 2()
 () (1)

()
()

iq i
q ji

i q i i i

j q i j j

q i

i q j jq i

q d iM i
q j
i

i

yE E

m y m

v y x m
y y

t

 

  

 





   


     

 
      



 (2.26)

The antecedent part of parameter
i

j is updated as

(1) ()i i

j j i

j

E
t t  




  


 (2.27)

where

2

3

1

() 2()
 () (1)

()
()

iq i
q ji

i q i i i

j q i j j

q i

i q j jq i

q d iM i
q j
i

i

yE E

y

v y x m
y y

t

 

    

 





   


     

 
      



 (2.28)

2.4 Simulation Results

This section presents five examples to assess the performance of IRSFNN and

MRIT2NFS. These simulation studies include two types of dynamic system problems

(Examples 1–2) and three types of prediction problems (Examples 3–5). These examples are

19

also used to compare the performance of the IRSFNN with those of existing recurrent FNNs.

For dynamic system identification, the recurrent structure in the proposed approach shows the

advantages, as listed in Tables 2.1–2.5.

2.4.1. Example 1 (Dynamic System Identification)

This example uses an IRSFNN to identify a nonlinear dynamic system, which is a

nonlinear plant with multiple time delays that has been studied in [7]. The dynamic system is

described by the following difference equation

 (1) ((), (1), (2), (), (1))p p p py t f y t y t y t u t u t     (2.29)

where

1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

(1)
(, , , ,)

1

x x x x x x
f x x x x x

x x




 
 (2.30)

The dynamic system output depends on three previous outputs and two previous inputs. In

this study, only two current values, ()u t and ()py t , are fed as input to the IRSFNN input

layer. Here, we do not use extra lagged values (un =0) in the consequent part. The desired

output of the IRSFNN is (1)dy t  . In the training procedure of the IRSFNN, we follow the

same computational protocols as in [7] and [14], i.e., we use only 10 epochs, with 900 time

steps in each epoch. In each epoch, the first 350 inputs are random values uniformly

distributed over [-2, 2] and the remaining 550 training inputs are generated from a sinusoid,

1.05sin(/ 45)t .

We follow this strategy for an online training process because a similar procedure was

followed in [14], where the total number of online training time steps is 9000. The structure

learning threshold thf

decides the number of rules to be generated. After training, three rules

are generated when the structure learning threshold is set to 0.01. Table 2.1 shows the

20

root–mean-squared error (RMSE) of training data. The testing input signal ()u t is guided by

sin(), 250
25

1.0, 250 t<500

() 1.0, 500 t<750

0.3sin() 0.1sin()
25 32

 +0.6sin(),
10

t
t

u t

t t

t



 







  



 750 t<1000
















 (2.31)

Fig. 2.4 shows a comparison of the actual output with the output produced by the IRSFNN for

the test input. Fig. 2.5 shows the error difference between the actual plant output and the

IRSFNN. Figs. 2.4–2.5 show a very good match, suggesting that IRSFNN architecture

combined with the proposed system identification scheme adequately identifies the dynamic

system with feedback.

Table 2.1 shows the performance of the IRSFNN compared with the other recurrent networks,

including a recurrent self-organizing neural fuzzy inference network (RSONFIN) [2], a

wavelet recurrent fuzzy neural network (WRFNN) [11], a TSK-type recurrent fuzzy network

(TRFN) [7], a HO-RNFS [6], and a recurrent self-evolving fuzzy neural network with local

feedback (RSEFNN-LF) [14].

The consequent part in the RSEFNN-LF is composed by a first-order TSK-type that

performs a linear combination of input variables. As in the IRSFNN, all these networks use

the same information including the number of input variables, training data, test data, and

training epochs. For a fair comparison, the total number of parameters of the IRSFNN is kept

similar to that of the compared networks. The result indicates that the IRSFNN achieves better

identification than the other recurrent networks.

21

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

Time Step

O
u

tp
u

t

ideal output

IRSFNN-FuL

RSEFNN-LF

TRFN

Fig. 2.4. Outputs of the dynamic plant (blue line), IRSFNN (red line), RSEFNN_LF (green

line), and TRFN (black line) in Example 1.

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time Step

E
rr

o
r

Fig. 2.5. Test errors between the MRIT2FNN and actual plant outputs.

Fig. 5. Test errors between the MRIT2FNN and actual plant outputs

TABLE 2.1 PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR DYNAMIC

SYSTEM IDENTIFICATION IN EXAMPLE 1

Models RSONFIN

[2]

WRFNN

[11]

HO-RNFS

[6]

TRFN

[7]

RSEFNN-LF

[14]

IRSFNN

(TSK)

IRSFNN

(FuL)

Rules 4 5 3 3 4 3 3

Number of

parameters

36 55 45 33 32 30 42

Training

RMSE

0.025 0.064 0.054 0.032 0.020 0.015 0.011

Test

RMSE

0.078 0.098 0.082 0.047 0.040 0.036 0.031

*FuL denotes Functional-Link-based

22

2.4.2. Example 2 (Dynamic System Identification)

This example considers the use of the IRSFNN for dynamic system identification with

longer input delays that is described by

2

1 1 1(1) 0.72 () 0.025 (1) (1) 0.01 (2) 0.2 (3)p p py t y t y t u t u t u t         (2.32)

This plant is the same as the one used in [7]. This plant output depends on four previous

inputs and two previous outputs. As shown in Example 1, the current variables ()u t and

()py t are fed as inputs to the IRSFNN input layer. In this example, we do not use extra

lagged values (un =0) in the consequent part. The training data and time steps are the same as

those used in Example 1. When the structure learning threshold thf is set to 0.05, three rules

are generated. The test signal used in Example 1 is also adopted here to assess the identified

system. Fig. 2.6 shows the outputs of the plant and the IRSFNN for these test inputs. Fig. 2.7

shows the test error between the outputs of the IRSFNN and the desired plant. Table 1.2

shows the number of rules, total number of parameters, and training and test RMSEs of the

IRSFNN. The performance of the IRSFNN is compared with that of recurrent models,

including an RSONFIN [2], a TRFN [7], a WRFNN [11], and an RSEFNN-LF [14]. These

models use identical numbers of input variables, training data, test data, and training epochs

as designed by the IRSFNN. For a fair comparison, the numbers of parameters in the IRSFNN

have been kept similar to those in these compared models.

Apparently in Table 2.2, the RSEFNN-LF only uses local source, which is not enough to

capture critical information for the system, thus the test error of the IRSFNN_TSK is lower

than that of the RSEFNN-LF, even using fewer rules. Here, we also investigate the

performance comparison of the IRSFNN-TSK and the IRSFNN-FuL, and results show that

the IFSFNN-FuL achieves better performance. Finally, the results show that the test RMSEs

of the IRSFNN-FuL and IRSFNN-TSK are smaller than those of the other networks.

23

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time Step

O
u

tp
u

t

ideal output

IRSFNN-FuL

RSEFNN-LF

TRFN

Fig. 2.6. Outputs of the dynamic plant (blue line) and IRSFNN-FuL (red line) in Example 2.

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time Step

E
rr

o
r

Fig. 2.7. Test errors between the IRSFNN-FuL and actual plant outputs.

TABLE 2.2 PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR DYNAMIC

SYSTEM IDENTIFICATION IN EXAMPLE 2

Models RSONFIN

[2]

WRFNN

[11]

TRFN

[7]

RSEFNN-LF

[14]

IRSFNN

(TSK)

IRSFNN

(FuL)

Rules 6 5 3 4 3 2

Number of

Parameters

36 55 33 30 30 26

Training RMSE 0.03 0.057 0.007 0.016 0.014 0.011

Test RMSE 0.06 0.083 0.031 0.028 0.026 0.022

24

2.4.3. Example 3 (Chaotic Series Prediction)

As introduced in [30], the IRSFNN is applied to predict the Henon chaotic sequence of a

dynamic system with one delay and two sensitive parameters generated by the following

equation:

2(1) - () (1) 1.0p p py t P y t Q y t       (2.33)

Eq. (2.33), with P=1.4 and Q=0.3, produces a chaotic attractor. The initial states

[(1), (0)] [0.4,0.4]p py y  generate 2000 patterns, with the 1000 patterns used for training and

the remaining 1000 patterns used for testing. In this example, we do not use extra lagged

values (un =0) in the consequent part. The training procedure uses the plant output (1)py t 

as the desired output (1)dy t  . The system has a single output so that only output variable

()py t is fed as input to the IRSFNN. The training epoch in the IRSFNN is set to 90. The

structure learning threshold thf is set to 0.2 and number of rules generated is 5 after the

training procedure. Fig. 2.8 shows the phase plot of the actual and IRSFNN predicted results

for the test patterns

Fig. 2.8. Results of the phase plot for the chaotic system(blue), RSEFNN_FL (green),

TRFN(black) and IRSFNN-FuL(red).

Table 2.3 includes the network size, parameter numbers, and training and test RMSEs of the

IRSFNN. The TSK-type IRSFNN and functional-link-based IRSFNN both use four rules. We

25

find that the latter achieves greater learning performance. In a meaningful comparison, the

number of parameters of the IRSFNN must be similar to that of compared models. The

compared recurrent models include a recurrent FNN [12], a wavelet recurrent FNN [13], a

TSK-type recurrent fuzzy network [9], and a recurrent self-evolving FNN with local feedback

[16], where the locally recurrent is a simple structure but its performance is superior to that of

other compared models. The training epochs, training data and test data of the compared

models are identical to the conditions of the IRSFNN. Table 2.3 shows that the IRSFNN

exhibits the best performance by using an interactively recurrent structure.

2.4.4. Example 4 (Mackey-Glass Chaotic Series Prediction)

The time series prediction problem used in this example is the well-known

Mackey-Glass chaotic series. The Mackey-Glass time series is generated from the delay

differential equation:

10

() 0.2 ()
0.1 ()

1 ()

dx t x t
x t

dt x t






 

 
 (2.34)

where  =17 and the initial value is given as (0)x =1.2. Four past values are used to predict

()x t , and the input-output data format is [(24), (18), (12), (6); ()]x t x t x t x t x t    . As

discussed in [3, 9, 14, 16], 1000 patterns are generated from t=124 to t=1123, with the first

TABLE 2.3 PEFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR CHAOTIC

SEQUENCE PREDICTION IN EXAMPLE 3

Models RFNN

[10]

WRFNN

[11]

TRFN-S

[7]

RSEFNN-LF

[14]

IRSFNN

(TSK)

IRSFNN

(FuL)

Rules 15 7 6 9 4 3

Number of

Parameters

60 70 66 45 32 40

Training RMSE 0.463 0.191 0.028 0.032 0.017 0.016

Test RMSE 0.469 0.188 0.027 0.023 0.015 0.014

26

500 patterns being used for training and the remaining 500 for testing. The IRSFNN’s training

epoch is set to 500, and its structure threshold thf is set to 0.001. After 500 epochs of

training procedure, seven rules are generated. The four input dimensions contain 28 fuzzy sets.

Fig. 2.9 displays the prediction results of the IRSFNN-FuL, and Fig. 2.10 shows the

prediction error between desired output and the IRSFNN. Figs. 2.9–2.10 show an excellent

match, suggesting that the proposed scheme in the network indicates and excellent ability to

predict the Mackey-Glass time series. Table 2.4 shows the performance, including rules, a

total number of parameters, and training and test RMSE for the TSK-type and

Functional-ink-based IRSFNNs.

Table 2.4 lists the performance comparison of the IRSFNN with recently developed

fuzzy systems designed by particle swarm algorithms or neural learning ([1], [7], [12], [14],

and [31–37]). Both local linear wavelet NN (LLWNN) [36] and fuzzy wavelet NN (FWNN)

[37] employ the wavelet neural network in the consequent part, which has the ability to

localize in both time and frequent space. The compared models with particle swarm algorithm

were proposed as a clustering-aided simplex particle swarm optimization (CSPSO) [34], a

self-evolving evolutionary learning algorithm (SEELA) designed for neural fuzzy inference

system [32] and FLNFN-CCPSO [35]. The FLNFN-CCPSO also uses the function-link-based

neural network to the consequent part in the FLNFN-CCPSO.

Fig. 2.9. Test result of chaotic series prediction using IRSFNN-FuL.

27

0 50 100 150 200 250 300 350 400 450 500
-8

-6

-4

-2

0

2

4

6

8
x 10

-4

Time Step

E
rr

o
r

Fig. 2.10. Prediction errors between the IRSFNN-FuL and actual outputs in Example 4.

The proposed models, especially the IRSFNN-FuL, show superior performance to

compared models. Although the performance of the IRSFNN-TSK is similar to that of

TABLE 2.4 PERFORMANCE OF IRSFNN AND OTHER MODELS

FOR MACKEY-GLASS CHAOTIC SEQUENCE PREDICTION

PROBLEM IN EXAMPLE 4

Models Rules Number of

parameters

Train

RMSE

Test

RMSE

D-FNN [12] 10 100 – 0.0082

G-FNN [1] 10 90 – 0.0056

Recurrent ANFIS

[31]

– – – 0.0013

SEELA [32] 9 198 0.0067 0.0068

SuPFuNIS [33] 10 94 – 0.0057

TRFN-S [7] 5 95 – 0.0124

CSPSO [34] 10 104 – 0.0064

FLNFN-CCPSO

[35]

– – 0.0083 0.0084

LLWNN+Hybrid

[36]

– 110 0.0033 0.0036

FWNN [37] 16 128 0.0023 0.0023

RSEFNN-LF [14] 9 94 0.0032 0.0031

IRSFNN (TSK) 5 90 0.0040 0.0039

IRSFNN (FuL) 4 100 0.0002 0.0002

28

RSEFNN-LF and FWNN, rule number used in the IRSFNN-TSK is fewer than those in

RSEFNN-LF and FWNN. The FWNN does not use recurrent structure to memorize previous

states and only considers wavelet characteristic in the consequent part to address dynamic

systems. Hence larger rules should be taken by FWNN to obtain good performance. Unlike

the FWNN’s consequent, the consequent of IRSFNN-TSK uses a simple structure of linear

combination of input variables. For a fair comparison of using nonlinear system in the

consequent part, the test RMSE of IRSFNN-FuL is 11 times lower than that of FWNN.

Finally, our proposed IRSFNN-FuL has obtained the best performance among the

competitors.

2.4.5. Example 5 (Prediction of Box-Jenkins Time Series)

In this example, we consider the use of a real word data set to assess the IRSFNN

performance. Many literatures [31, 36–41] use Box-Jenkins time series to assess the

performance of real word data. Box-Jenkins time series data (gas furnace data) was

downloaded from UCI repository, which were recorded from a combustion process of a

methane-air mixture [36, 42], describes the operation of a gas furnace process with a gas flow

rate ()u t and a concentration of CO2 ()y t . To predict the process, (4)u t  and (1)y t 

are fed as inputs to the IRSFNN for predicting output ()y t . If the appropriate lag number un

is known in advance, then more past values can be included in the IRSFNN-FuL consequent

part for obtaining a greater performance. Therefore, the past value (3)u t  , i.e.,
un =1, is used

for the IRSFNN-FuL consequent part. The Box-Jenkins time series data provide the 296

available input-output pairs.

For a meaningful comparison, the training samples from the first 200 pairs are used, and

the remaining 92 pairs are used for the test samples to predict IRSFNN performance. The

structure learning threshold thf is set at 0.01, and the learning factor  is set at 0.08. After

100 training epochs of an IRSFNN-FuL, four rules are generated. The training epoch in the

29

IRSFNN is the same as that in these existing models. As in an IRSFNN, the compared models,

except the Recurrent ANFIS [31], LLWNN [36] and HyFIS [38], utilize the identical data set

which is normalized. The three models, Recurrent ANFIS, LLWNN and HyFIS, use identical

data set but with a scaled down output to estimate the performance. Hence they could obtain a

lower test RMSE than other compared models. We could assume that the performance of

IRSFNN_TSK is superior to that of the above models in terms of the same training and test

data set. Fig. 2.11 shows the prediction results of the IRSFNN. Fig. 2.12 displays the

prediction error between the actual time-series output and the IRSFNN output. As shown in

Example 4, Table 2.5 lists the parameter numbers, training RMSE, and test RMSE. Table 2.5

also shows rules, a total number of network parameters, and training and test error of these

compared models, including an HyFIS [38], a local linear wavelet NN with hybrid learning

(LLWNN+hybrid) [36], a recurrent ANFIS [31], a tree-based neural fuzzy inference system

(TNFIS) [39], a Fuzzy neural network (FuNN) [40], a fuzzy wavelet NN (FWNN) [37], and

TSK-type recurrent fuzzy network with supervised learning (TRFN-S) [7]. As can be seen in

Table 2.5, the IRSFNN-TSK utilizes fewer rules and achieves a similar performance with the

FWNN. For a fair comparison in the consequent part, the test error of IRSFNN-FuL is 31

times lower than that of FWNN. Generally, the results from real world data indicate that the

IRSFNN achieves smaller test RMSE than the other compared models.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time Step

O
u

tp
u

t

ideal output

IRSFNN-FuL

RSEFNN-LF

TRFN

Fig. 2.11. Test result of Box-Jenkins series using IRSFNN-FuL with three rules in Example 5.

30

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

3

4

5
x 10

-3

Time Step

E
rr

o
r

Fig. 2.12. Prediction errors between the IRSFNN-FuL and actual outputs in Example 5.

Table 2.5 PERFORMANCE OF IRSFNN AND OTHER MODELS FOR

BOX-JENKINS PREDICTION IN EXAMPLE 5

Models Rules Number of

parameters

Train

RMSE

Test

RMSE

HyFIS [31] – – – 0.0205

Recurrent ANFIS

[23]

– – 0.006 0.0193

TRFN-S [9] 5 65 0.0524 0.0482

TNFIS [32] – 43 0.0245 0.0230

FuNN [33] – – – 0.0226

LLWNN+Hybrid

[28]

– 56 – 0.0138

FWNN [29] 9 57 0.0189 0.0279

RSEFNN-LF [16] 7 56 0.0172 0.0344

IRSFNN (TSK) 5 65 0.0121 0.0297

IRSFNN (FuL) 3 51 0.00062 0.0009

31

Chapter 3

A Mutually Recurrent Interval type-2 Neural

Fuzzy System (MRIT2NFS)

3.1 Brief Introduction of Type-2 Fuzzy Systems

This section describes the structure of a Type-2 FLS, which is a system that effectively

addresses uncertainties associated with fuzzy rule base, but does not explicitly account for

input measurement uncertainties. The entire structure of a type-2 FLS is exhibited in Fig. 3.1.

The overall structure of s type-2 FLS is very similar to that of a type-1 FLS, the major

structural difference being that the defuzzifier block of a type-1 FLS is replaced by the output

processing block in a type-2 FLS. The output processing block includes type-reduction and

defuzzification. The detailed mathematic function of each block is introduced below.

Fig. 3.1. Structure of a Type-2 FLS

(1) Fuzzifier: Let a crisp value become a type-2 fuzzy set. Fig 3.2 shows different types of

type-2 fuzzy sets, including (a) Gaussian MF with uncertain spread, (b) Gaussian MF

with uncertain mean, (c) sigmoid MF with inflection uncertainty; (d) triangular type-2

32

MF; (e) Granulated sigmoid MF with granulation uncertainties. In this paper, a Gaussian

type-2 fuzzy set that is differentiable with uncertain mean is widely used.

Fig. 3.2. The shaded region of FOU for different type-2 fuzzy sets; (a) Gaussian MF with

uncertain spread; (b) Gaussian MF with uncertain modal value; (c) sigmoid MF with

inflection uncertainty; (d) triangular type-2 MF; (e) Granulated sigmoid MF with granulation

uncertainties.

(2) Rules: Consider a type-2 FLS have n input variables 1 1, , n nx X x X  and one

output variable y Y and hence, the rules can be expressed as follows

1 1: IF is and and is , THEN is 1, ,i i i i

n nR x A x A y G i M (3.1)

where M is a total number of rules. This rule represents a type-2 relation between the

input space 1 nX X  , and the output space, Y , of the type-2 FLS.

(3) Inference Engine: The inference engine in a type-2 FLS is very similar to that in a

type-1 FLS. The inference engine combines rules and gives a mapping from input type-2

fuzzy sets to output type-2 fuzzy sets. To do this procedure need to compute unions and

33

intersections of type-2 fuzzy sets, as well as compositions of type-2 relations. Let

1

i i i

nA A F   ; then, Eq. (3.1) can be re-written as

1:i i i i i i

nR A A G F G     (3.2)

Therefore, the membership function can be expressed as

(,) (,)i i iR F G
y y 


x x (3.3)

In general, we only use the product or minimum t-norms for the meet. Each rule iR

determines a type-2 fuzzy set
i iB A R

X and hence, the input-output relation is as

follows:

() () [() (,)]i i i iAB B A R R
x X

y y y    


  
XX

x x (3.4)

(4) Type-Reduction: As the type-2 fuzzy output sets are derived, the system must be

processed next by the output processor. The output processor consists of type-reduction

and defuzzification. For the first operation of the output processor, it represents a

mapping of a type-2 fuzzy set into a type-1 fuzzy set. Type-reduction methods, including

centroid, center-of-sums, height, modified, and center-of-sets type-reduction, have been

discussed. Here, we also concern computational complexity of type-reduction methods.

Fig 3.3 illustrates the location of five type-reduction methods on a complexity scale. As

seen by Fig. 3.3 the centroid and center-of-sums type-reducers are more computational

load. Apparently, height and modified height type-reducers will significantly reduce the

computational complexity; however, there can be a problem with only one rule

generated. As a result, the center-of-sets type-reducer is superior to other type-reducers.

Fig. 3.3. The plots of complexity comparison with five type-reducers

34

(5) Defuzzification: An interval set is given from the completed type-reduction process, and

then, we defuzzify it based on the average of ly and ry . Finally, the defuzzified

output of type-2 FLS is

()
2

l ry y
y


x (3.5)

3.2 MRIT2NFS Structure

This section introduces the structure of an MRIT2NFS. This multi-input multi-output

(MIMO) system consists of un inputs and on outputs.

We represent the input and output of

the dynamic system by u and py

, respectively, where 1(, ,)

u

T

nu uu and

1(, ,)
o

T

p pny y
p

y . Fig. 3.4 shows the proposed six-layered MRIT2NFS structure. The

detailed function of each layer is discussed next.

Layer 1 (Input layer): The inputs are crisp values. Only the current state

() ((), ())px t u t y t is fed as input to this layer. This is in contrast to usual feed-forward FNNs

where both current and some past states are fed as inputs to input layer when such networks

are used to model time varying systems. To further clarify the inputs used in the system, we

consider a system with one control input u(t) and one system output y(t). Then at t=1, u(1)

and y(1) are used as inputs and the system output computed by the rules consequents is y(2).

Similarly at t=2, u(2) and y(2) are used as inputs and the computed system output is y(3).

Thus, current input and output, both are used to define the rule antecedent. Note that, this is a

fan-out layer and hence there is no weight to be adjusted in this layer.

35

Fig. 3.4. The proposed six-layer MRIT2NFS structure, where each recurrent fuzzy rule in

layer 4 forms an internal feedback and an interaction loop and each node in layer 5 performs a

linear combination of current and lagged network inputs.

Layer 2 (MF layer): Each node in this layer performs fuzzification of one of the (nu + no)

input variables using an interval type-2 membership function (MF), where nu and no are the

numbers of control inputs and system outputs. For the i
th

 interval type-2 fuzzy set
i

jA on the

input variable jx ,)(,...,1 ou nnj  , a Gaussian primary MF having a fixed standard

deviation  and an uncertain mean that takes on values in 1 2[,]m m is used as shown in Eq.

(3.6):

21
exp{ () } (, ;)

2
i
j

i

j j i i

j j jiA
j

x m
N m x 




   , 1 2[,]i i i

j j jm m m (3.6)

Fig. 3.5 depicts one such membership function [52]. The uncertainty associated with the

36

primary membership can be modeled in a more general manner. For example, we can consider

uncertainty about the center of the membership function as well as that about the spread of the

membership function. Here, following the protocol used in most type-2 neural fuzzy systems in

the literature, we assumed that there is uncertainty only about the mean (the mean is not known

with certainty) of the Gaussian membership function. This choice yields an interval type-2

fuzzy set as depicted in Fig. 3.5.

Fig. 3.5. An interval type-2 fuzzy set with Gaussian shape whose center (mean) is not known

with certainty (the mean has an uncertainty). The mean can vary between m1 and m2, m1 < m2.

The footprint of uncertainty (FOU) [52] (the shaded region in Fig. 3.5) of this MF can be

represented by the two bounding membership functions: upper MF,
i

j and lower MF,
i

j ,

where

1 1

1 2

2 2

(, ;),

()= 1, <

(, ;),

i i i

j j j j j

i i i

j j j j j

i i i

j j j j j

N m x x m

x m x m

N m x x m







 







(3.7)

and

1 2

2

1 2

1

(, ;),
2

()=

(, ;),
2

i i

j ji i

j j j j
i

j j i i

j ji i

j j j j

m m
N m x x

x
m m

N m x x







 








 (3.8)

37

Thus, the output of each node can be represented by an interval [
i

j ,
i

j] [52]. Another

popular choice for type-2 membership function is Trapezoidal MF. A general trapezoidal MF

involves 8 parameters to define it while our Gaussian MF needs just three parameters and

thereby drastically reduces the degrees of freedom (number of free variables) of the system.

Moreover, the Gaussian function is differentiable, which helps us to use gradient based tuning

methods and hence we use it here.

Layer 3 (Spatial firing layer): Each node in this layer represents the antecedent part of a

fuzzy rule and it computes the spatial firing strength. We call it “spatial” as it does not depend

on any temporal input and also we distinguish it from the “temporal” firing strength that is

computed in the next layer. To compute the spatial firing strength iF , each node performs a

fuzzy meet operation on the inputs that it receives from layer 2 using an algebraic product

operation. There are M nodes in this layer, where each node corresponds to one rule. Each

node in this layer is connected with nu+no nodes of the previous layer. The structure learning

process starts with no rule (M=0) and the first data point is used to generate the first rule

making M=1.Then with new incoming data points, depending on how well a new data point

matches with existing rules, new rules are generated. In Chapter 3.3.1 we explain in details

how these M rules are generated. The spatial firing strength is an interval [45] and is

computed as follows [59]:

[,]i i iF f f , 1,...,i M (3.9)

1

u on n
i i

j

j

f 




  ,
1

u on n
i i

j

j

f 




  (3.10)

 As explained earlier, in Eq. (3.9) M is the total number of rules. Use of Eq. (3.10) to

compute the firing strength is probably the most common compared to the use of other

T-norms [29, 46, 53, 57, 58, 60–69]. Product is also used for computing rule firing strength

even with Type-1 Takagi-Sugeno type systems [2, 4, 6–10, 12, 14, 21, 40]. A first look at Eq.

38

(3.10) suggests that with a large number of antecedents the firing strength will approach zero.

But this actually does not cause a problem for two reasons. The main reason is that the

defuzzified output is computed as a convex combination of consequent values, where the

weights of the convex combinations are the normalized temporal firing strength, which is

computed using the firing strengths in Eq. (3.10). Moreover, for practical systems, the

number of antecedent clauses involved in a rule is usually not very large. One can of course

use minimum as the T-norm to compute the firing interval, but min is not differentiable

(while product is) and hence it is difficult to use gradient based tuning algorithm, which we

use here. The problem associated with the use of minimum can be avoided by using a softer

but differentiable version of minimum [43, 44], but this makes the learning rules quite

complicated. So we restrict ourselves to product only.

Layer 4 (Temporal firing layer): There are onM  nodes in this layer. Each node in

this layer is a recurrent rule node, which generates an internal feedback (self-loop) and

external interconnection with mutual feedbacks. As a result, the recurrent weights s are

represented as self-loop and interconnection weights. The output of a recurrent rule node is a

temporal firing strength that depends not only on current spatial firing strength but also on the

previous temporal firing strength. In order to compute the temporal firing strength using Eq.

(3.11), the nodes in this layer store the immediately past temporal firing strength (i.e., each

node is equipped with some memory). Once the training is starting, the initial value of the

past temporal firing strength is set to zero.

The temporal firing strength [(), ()]
q q

i i
t t  , 1, ,i M and 1, , oq n is computed

combining the spatial firing strength ()iF t and previous temporal firing strength (1)q

i t 

using the following equation

1

() ((1)) (1) ()q q q q i

i ik k i

k

t t F t   


     

(3.11)

39

where ()q

i t s lie in [0,1], and

q
q ik
ik

C

M
  is the rule interaction weight between itself and

other rules. Here
q

ikC is the feedback related to node i of layer 4 from node k of layer 4 that

is related to the q
th

 output node. Thus for local (internal) feedback i=k and for i not equal to k,

we get external feedback to the i
th

 node of layer 4 from the k
th

 rule (antecedents in layer 4)

node. When a new rule is generated, the initial value of
q

ikC

in local feedback (i.e., for i=k) ,

is set to 0.5 and for i not equal to k,
q

ikC is set to 0.2. The initial
q

ikC may be adjusted for

different examples to yield better results. Thus the total feedback to the i
th

 rule node (Layer 4)

for the q
th

 output node is
1

M
q q

i ik

k

 


 . The interval in Eq. (3.11) now may be written as

1

[(), ()] [(1), (1)] (1) [(), ()]
M

q q iq q iq q

i kik ii k
k

t t t t f t f t     


      

(3.12)

where

i

1

() ((1)) (1) ()
q qq q

i kik i

k

t t f t   


     

(3.13)

and

1

() ((1)) (1) ().
q q iq q

ik ii k
k

t t f t   


     

(3.14)

 Note that for the first epoch of the online learning, i.e., for t=1, Eq. (3.11) will only use

(1) ()q i

i F t  because the initial past temporal firing strength is set to 0. For subsequent

epochs, since the nodes in the layer 4 store past firing strengths, Eq. (3.11) can be computed

without any problem.

Layer 5 (Consequent layer): Each node in this layer is called a consequent node and

functions as a linear model with exogenous inputs and lagged values. The output of a

consequent node is a linear combination of current input states

1 1() ((), ()) ((), , (), (), , ())
u op n p pnx t u t y t u t u t y t y t 

and their lagged values

40

((1), , (), (1), , ()j j j pk pk ju t u t N y t y t O   ). In Fig. 3.4, a consequent node is zoomed to

elaborate its functioning. The output (1)i

qy t  , 1,...,i M ; 1,..., oq n , of the i th
 rule node

connecting to the q th
 output variable is computed as follows:

()

0 0 1 0

(1) () ()
j ju o

u

N On n
i i i

q jkq j j n kq pj

j k j k

y t a u t k a y t k

   

     

 (3.15)

where 0 () 1u t  and 0N  0, jN and jO are the numbers of lagged control input

()ju t and system output ()pjy t , respectively, and
i

jkqa s are interval valued coefficient

denoted by

[,]i i i i i

jkq jkq jkq jkq jkqa c s c s  

 (3.16)

where
i

jkqc and
i

jkqs are the center and spread of an interval type-1 set respectively. For an

interval type-1 set, the membership value of every point over the interval [
i

jkqc -
i

jkqs ,
i

jkqc +

i

jkqs] is unity. Note that, in order to compute Eq. (3.15) some past values of u and y are

needed and these values are stored at appropriate nodes in this layer. In other words, nodes in

this layer have some local memory. The inclusion of lagged values of ()u t and ()py t in

the linear consequent part instead of the antecedent part simplifies the computation process of

the network for modeling of dynamic systems, especially when interval type-2 fuzzy sets are

used. The output (1)i

qy t  is an interval type-1 set, denoted by [,]i i

lq rqy y , where indices l

and r denote left and right limits, respectively. According to Eqs. (3.15) and (3.16), the

node output is

0 0

() () () ()

1 0

[,] [,] ()

 [,] ()

ju

jo

u u u u

Nn
i i i i i i i

q lq rq jkq jkq jkq jkq j

j k

On
i i i i

j n kq j n kq j n kq j n kq pj

j k

y y y c s c s u t k

c s c s y t k

 

   

 

     

    





 (3.17)

41

That is,

() ()

0 0 1 0 0 0 1 0

() () | () | | () |
j j j ju o u o

u u

N O N On n n n
i i i i i

lq jkq j j n kq pj jkq j j n kq pj

j k j k j k j k

y c u t k c y t k s u t k s y t k 

       

          

(3.18)

and

() ()

0 0 1 0 0 0 1 0

() () | () | | () |
j j j ju o u o

u u

N O N On n n n
i i i i i

rq jkq j j n kq pj jkq j j n kq pj

j k j k j k j k

y c u t k c y t k s u t k s y t k 

       

          

(3.19)

Layer 6 (Output layer): Each node in this layer corresponds to one output variable. For

defuzzification operation, the q th
 output layer node computes the network output variable qy

using type-reduction. The type-reduced set is an interval set [,]lq rqy y  . The outputs lqy and

rqy can be computed using the Karnik-Mendel (KM) iterative procedure [45]. Using the KM

procedure, we shall rewrite the expressions for lqy and rqy of [,]lq rqy y  in suitable forms so

that we can derive the learning rules easily. In KM procedure, the consequent values are

re-ordered in ascending order. Let lqy and rqy be the original consequent values and ˆ
lqy and

ˆ
rqy be the corresponding rule ordered (in ascending order) consequent values. Then the

relationship between lqy , rqy , ˆ
lqy , and ˆ

rqy is

ˆ
lq l lqy Q y and ˆ

rq r rqy Q y (3.20)

here lQ and rQ are M M appropriate permutation matrices to reorder the values. Let

TM

qqq ttt
q

))(...)(),((21   and
1 2

((), ()... ())
M T

q q q q
t t t    . According to [59], the

output lqy can be computed as follows:

42

1 1

1 1

ˆ ˆ() ()

() ()

L Mi i T T

l q i lq l q i lq q qi i L
lq L M

q ql q i l q ii i L

Q y Q y
y

Q Q

  

  

 
  



 

 

T T T T

l 1 1 l lq l 2 2 l lq

T T

l l l l

Q E E Q y Q E E Q y

p Q b Q

   

  
 (3.21)

where L and R denote the left and right crossover-over points, respectively. The

end-points L and R are defined in [45]. The other vectors and matrices involved in Eq. (3.21)

are defined as

1(1,1, ,1,0, ,0)T M

L

 lp , 1(0,...,0,1,...,1)T M

M L





 lb (3.22)

 1 2(, ,..., ,0,...,0) L M

Le e e  
1

E , and
()

1 2(0,...,0, , ,...,) M L M

M L    

 
2

E , (3.23)

where
1L

i

e and
M L

i

 are unit vectors, whose all but i
th

 element is zero and the i
th

element is one. In Eq. (3.21),)(qlQ  produces a vector in M dimension where the

components of)(qlQ  are permuted version of components in q . Also iqlQ)(

represents the i
th

 component of)(qlQ  . Thus, equation (3.24) computes a convex

combination of Miyi

rq ...,,1;  values. The weights of the convex combination are computed

from the components of)(qlQ  , which are nothing but the temporal firing strength in Eq.

(3.12).

Similarly, the output rqy can be computed as follows:

1 1

1 1

ˆ ˆ() ()

() ()

R Mi i T T

r q i rq r q i rq q qi i R
rq R M

q qr q i r q ii i R

Q y Q y
y

Q Q

  

  

 
  



 

 

T T T T

r 3 3 r rq r 4 4 r rq

T T

r r r r

Q E E Q y Q E E Q y

p Q b Q

   

  
 (3.24)

where

1(1,1,...,1,0,...0)T M

r

R

 p , 1(0,...,0,1,...,1)T M

r

M R





 b (3.25)

 1 2(, ,..., , ,...,) R M

R

 
3

E 0 0e e e ,
()

1 2(,..., , , ,...,) M R M

M R

 

 
4

E 0 0    , (3.26)

and where
1R

i

e and
M R

i

 are unit vectors (all but i
th

 element are zero and the i
th

element is 1). All of unit vectors are defined in [59]. Such an expression is helpful in deriving

43

the proposed parameter learning algorithm discussed in Chapter 3.3.2. Finally, the

defuzzification operation defuzzifies the interval set [,]lq rqy y  by computing the average of

lqy and rqy . Hence, the defuzzified output for network output variable qy is

2

lq rq

q

y y
y

 
  . (3.27)

3.3 MRIT2NFS Learning

Initially, there is no rule in an MRIT2NFS. All of the recurrent type-2 fuzzy rules evolve

from simultaneous structure and parameter learning. The following sections introduce the

structure and parameter learning algorithm explicitly.

3.3.1 Structure learning

The on-line rule is generated according to the structure learning algorithm. A previous

study [62] utilized the rule firing strength as a criterion for type-1 fuzzy rule generation. This

idea is extended to type-2 fuzzy rule generation using an MRIT2NFS. The spatial firing

strength iF in Eq. (3.9) is used to decide whether a new rule should be generated. The

type-2 rule firing strength is an interval. The center of the spatial firing interval,

1
(),

2

i i

cf f f  is used as a criterion for rule generation. The first incoming data point x is

used to generate the first fuzzy rule, and the uncertain mean and width of the type-2 fuzzy

membership functions associated with this rule are set as :

1 1

1 2 fixed[,] [0.1, 0.1] and =

 1, , ,

j j j j

u o

m m x x

j n n

   

 

(3.28)

where fixed is a predefined value (we use fixed =0.3 in this paper) that determines the width

of the memberships associated with a new rule. Subsequently, for each of new incoming data

x(t) we find

44

1 ()
arg max (),i

c
i M t

I f t
 

 (3.29)

where ()M t is the number of existing rules at time t . If ()I

c thf t f (thf is a pre-specified

threshold), then a new fuzzy rule is generated. The idea is that if the present data point does

not match well with any of the existing rules, then a new rule is generated. Here also we use

the same procedure to assign the uncertain mean as done for the very first rule; i.e., for the

new rule, the means of the corresponding type-2 fuzzy sets are defined as

() 1 () 1

1 2[,] [() 0.1, () 0.1]M t M t

j j j jm m x t x t     ; j=1, …, nu+no. (3.30)

The width of the each fuzzy set associated with a new rule is defined as follows:

1
1 2() 1 2 2

1

(())
2

u o
I In n
j jM t

j

j

m m
x 







   (3.31)

 In Eq. (3.29), I is the index of the best matching rule, and
1

I

jm and
2

I

jm are the means of

the membership function of the j
th

 antecedent clause of the I
th

 Rule. Eqs. (3.28) and (3.30)

indicate that for the mean, the width of the uncertain region is 0.2. If the uncertainty

associated with the mean is made too small, then the type-2 fuzzy sets become similar to

type-1 fuzzy sets. On the other hand, if the width of the uncertain region is too large, then the

uncertain mean covers most of input domain. Eq. (3.31) indicates that the initial width is

equal to the Euclidean distance between current input data x and the center of best matching

rule for this data point times an overlapping parameter  . In this study  is set to 0.5, so

that the width of new type-2 fuzzy set is half of the Euclidean distance from the center of the

best matching rule, and an adequate overlap between adjacent rules is realized.

3.3.2 Parameter Learning

Along with the learning of the structure, the parameters are also learnt. All free

parameters of the MRIT2NFS are adjusted with each incoming training data regardless of

45

whether a rule is generated or not. For clarity, let us just consider the q
th

 output of the network.

The parameter learning process updates the network parameters minimizing the error function

21
[(1) (1)] ,

2
q dE y t y t   

 (3.32)

where (1)qy t  and (1)dy t  represent the MRIT2NFS output and the desired output,

respectively. The parameters in the consequent part are learned based on the rule-ordered

Kalman filter algorithm [29] as described next. To compute '

lqy and '

rqy in the KM iterative

procedure, the required precondition is that
lqy and

rqy are rearranged in an ascending

order. As the consequent values
lqy and

rqy change, their rule-ordering may also change.

The Eq. (3.20) indicated the arranged consequent values with respect to the original rule order.

According to the mapping Eqs. (3.21) and (3.24) are expressed by
lqy and

rqy

as follows

[29]:

T

lq lqy  
lq

y ,
1

T T

q q M

lq

q q

 


 


T T T T

l 1 1 l l 2 2 l

T T

l l l l

Q E E Q Q E E Q

p Q b Q

 

 
 (3.33)

T

rq rqy  
rq

y ,
1

T T

q q r M

rq

q q

Q
 


 



T T T T

r 3 3 r r 4 4

T T

r r r r

Q E E Q Q E E

p Q b Q

 

 
 (3.34)

Thus, the output qy in Eq. (3.27) can be re-expressed as

1

1 1

1

1 1
() () []

2 2

 []

lq

q lq rq lq lq rq rq lq rq

rq

lq

M

lqM M

lq lq rq rq

rq

M

rq

y y y

y

y

y

y

   

 
        

  

 
 
 
 

  
 
 
 
  

   T T T T
y

y y
y

 (3.35)

where 0.5lq lq T T and 0.5rq rq T T . According to Eqs. (3.18) and (3.19), Eq. (3.35) can be

46

further expressed as follows [29],

1 1

1 1 1 1

() ()

0 0 1 0 0 0 1 0

(

0 0

[] []

() () | () | | () |

()

j j j ju o u o

u u

ju

lq M M

q lq rq lq lq rq rq

rq

N O N On n n n

jkq j j n kq pj jkq j j n kq pj

j k j k j k j k

Nn
M

jkq j j

j k

y

c u t k c y t k s u t k s y t k

c u t k c

   

 

       

 

 
   

  

      

 

   



 T T
y

y

) ()

1 0 0 0 1 0

1 1 1 1

() ()

0 0 1 0 0 0 1 0

() | () | | () |

() () | () | | ()

j j jo u o

u u

j j j ju o u o

u u

O N On n n
M M M

n kq pj jkq j j n kq pj

j k j k j k

N O N On n n n

jkq j j n kq pj jkq j j n kq pj

j k j k j k j k

y t k s u t k s y t k

c u t k c y t k s u t k s y t k

 

     

 

       

    

      

  

   

() ()

0 0 1 0 0 0 1 0

|

() () | () | | () |
j j j ju o u o

u u

N O N On n n n
M M M M

jkq j j n kq pj jkq j j n kq pj

j k j k j k j k

c u t k c y t k s u t k s y t k 

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 

       
  



   

(3.36)

In Eq. (3.36)
l

jkqc and
l

jkqs are the coefficients of the linear equations involved in the

consequents. During the on-line structure learning, the dimension of lqy and rqy increases

with time, and the positions of jkqc and jkqs change accordingly within the same vector.

For keeping the position of jkqc and jkqs unaltered in the vector, the rule-ordered Kalman

filtering algorithm rearranges elements in rule order in Eq. (3.36). Let TSKv denote the vector

all consequent parameters, i.e.,

1 1 1 1

00 () 00 () 00 () 00 ()[]
o u n o u n o u n o u no o o o

M M M M T

TSK q n n N q q n n N q q n n N q q n n N qc c s s c c s s   v

(3.37)

where the consequent parameters are placed according to the rule order. Eq. (3.36) can now be

re-expressed as

1 0 1 1 0 1

0 0

[() | | | () |

 () | | | () |]

o o o o

o o o o

q c c pn n s s pn n

cM cM pn n sM sM pn n TSK

T

TSK TSK

y u y t O u y t O

u y t O u y t O

   

   

     

   



v

v = 

 (3.38)

47

where
j j j

cq lq rq    and
j j j

sq rq lq    , 1, ,j M . The consequent parameter vector

TSKv is updated by executing the following rule-ordered Kalman filtering algorithm [29]

 = ((1))

1
[]

d

TSK TSK TSK TSK TSK

TSK TSK

TSK TSK

y t 



 

   

 
 

 

v (t +1) v (t) S(t +1) (t +1) (t +1)v (t)

S(t) (t +1) (t +1)S(t)
S(t +1) S(t)

(t +1)S(t)

 

 

 

 (3.39)

where 0 1  is a forgetting factor. (Just to keep parity with a previous study [29], we have

used  =0.99995; however, our experience suggests that one can use  =1.0 without much

effect, as expected, on the overall performance.) The dimension of TSKv and
TSK
 , and the

matrix S increases when a new rule is generated. When a new rule evolves, MRIT2NFS

augments S(t) as follows

0 1 0 1
2(1)((1) (1)) 2(1)((1) (1))

 []
n n n nu o u o

j j j jj j j j
M N O M N O

block diag C I    
           

  S(t) S(t) (3.40)

where C is a large positive constant (we use C=10) and the size of the identity matrix I is

2(
0 1
(1) (1)

u on n

j jj j
N O

 
   )2(

0 1
(1) (1)

u on n

j jj j
N O

 
   ) (3.41)

Note that S(0) is 1x1 matrix. We used S(0)=[10]. The antecedent parameters of MRIT2NFS

are tuned by the gradient descent algorithm. For convenience of notations for the gradient

descent learning rules, according to [59], Eq. (3.21) can be re-written as

T T

q lq q lq

lq T T

q lq q lq

y


 


a b

c d

 

 
 (3.42)

where

1M T T

lq l 1 1 l lq
a Q E E Q y , 1MT T

lq l 2 2 l lq
b = Q E E Q y (3.43)

1MT

lq l l
c = Q p , 1MT

lq l l
d = Q b . (3.44)

Similarly, Eq. (3.24) can be re-written as

T T

q rq q rq

rq T T

q rq q rq

y


 


a b

c d

 

 
 (3.45)

48

where

1MT T

rq r 3 3 r rq
a = Q E E Q y , 1MT T

rq r 4 4 r rq
b = Q E E Q y (3.46)

1MT

rq r r
c = Q p , 1MT

rq r r
d = Q b (3.47)

Using gradient descent algorithm, we have

(1) ()
()

q q

ik ik q

ik

E
t t

t
  




  


 (3.48)

where  is a learning constant ( 0.075 in this paper) and

1
() ()[() ()]

2

qq
iq lq q rq lq rq lq rqi

q dq q q q q q q q q

ik q lq ik rq ik i i ik i i ik

y y y y y y y yE E
y y

y y y



        

                
      

             
 (2.49)

Where

lq lqi lq lqi

q T T

i q lq q lq

y a y c



  


 c d 
,

rq rqi rq rqi

q T T

i q rq q rq

y b y d



  


 c d 
 (3.50)

lq lqi lq lqi

q T T

i q lq q lq

y b y d



  


 c d 
,

rq rqi rq rqi

q T T

i q rq q rq

y a y c



  


 c d 
 (3.51)

(1) ()
q

q ii
kq

ik

t f t






  


, (1) ()

q

i q i

kq

ik

t f t






  


 (3.52)

Details of the learning equations for parameters, including 1jm , 2jm ,and  , of the

antecedents can be found in [59].

Pruning of less-Important Rules: Our system involves many recurrent weights.

Depending on the nature of the underlying system that we are trying to model, all of these

recurrent feedbacks may not be important. In fact, if the magnitude of a recurrent weight is

very low, then that weight will not have much effect on the system output and hence such

weights / feedbacks can be dropped. This is what we do. If the absolute value of a recurrent

weight is less than a pre-defined threshold , we delete that connection. Once we delete some

49

recurrent weights (feedback connections), we must adapt the system in its new environment

and hence, we retrain the network a few epochs (here we use only five epochs). The

MRIT2NFS that use this type of recurrent weight elimination approach is called

MRIT2NFS-  . It can be kept similar performance and effectively reduces less-useful

recurrent weights.

3.4 Simulation Results

 This section describes application of MRIT2NFS on five problems. These examples

include identification of two single-input-single-output (SISO) dynamic systems (Examples

1–2), one multi-input-multi-output (MIMO) dynamic system (Example 3), prediction of

chaotic time series (Example 4), and identification of nonlinear system plant (Example 5). For

all but Example 5, we normalize the data sets in [-1, 1]. Example 5 is not a dynamical system,

and it is comparatively easy to learn. So we did not normalize the data, but we have used the

same membership definition as in Eq. (3.28). We shall see later that even in this case the

performance of the system is very satisfactory indicating the robustness of our system. The

performance of MRIT2NFS is compared with that of recurrent and feedback type-1 and

type-2 FNNs.

3.4.1 Example 1 (SISO Dynamic System Identification).

This example uses MRIT2NFS to identify an SISO linear time-varying system, which

was introduced in [7]. The dynamic system with lagged inputs is guided by the following

difference equation:

 (1) ((), (1), (2), (), (1))p p p py t f y t y t y t u t u t    

(3.53)

where

1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

(1)
(, , , ,)

1

x x x x x x
f x x x x x

x x




 
 (3.54)

50

The system has a single input (i.e., nu=1) and a single output (i.e., no=1). The current

variables ()u t and ()py t

are fed as inputs to the MRIT2NFS input layer. The current output

of the plant depends on two previous outputs and one previous input. Therefore, the

consequent part parameters of MRIT2NFS are set as N1 = 2 and O1=1. The training procedure

minimizes the square error between the output of the system (1)py t  and the target output

 (1)dy t  . To train the MRIT2NFS, we follow the same computational protocols as in [7], i.e.,

we use only ten epochs and there are 900 time steps in each epoch. In each epoch, the first

350 inputs are random values uniformly distributed over [-2, 2] and the remaining 550

training inputs are generated from a sinusoid defined by 1.05sin(/ 45)t . This type of training

is analogous to an online training process, where the total number of online training time steps

is 9000. The structure learning threshold thf influences the number of fuzzy rules to be

generated. After training, two recurrent fuzzy rules are generated when thf

is set to 0.02.

Table 3.1 shows the root–mean-squared error (RMSE) on the training data. To validate the

identified system, as adopted in [9] and we use the following input:

sin(), 250
25

1.0, 250 t<500

() 1.0, 500 t<750

0.3sin() 0.1sin()
25 32

 +0.6sin(),
10

t
t

u t

t t

t



 







  



 750 t<1000
















(3.55)

Fig. 3.6 compares the actual output with the output produced by MRIT2NFS for the test input

generated using Eq. (3.55), while Fig. 3.7 shows the test error between the desired output and

actual output produced by MRIT2NFS. Fig. 3.6 and Fig. 3.7 together reveal a very good

match suggesting that MRIT2NFS architecture along with our system identification scheme

does a very good job of identifying the dynamical system with feedback.

51

Fig. 3.6. Outputs of the dynamic plant (dashed-dotted line) and MRIT2NFS (dotted line) in

Example 1.

0 100 200 300 400 500 600 700 800 900 1000
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time step

E
rr

o
r

Fig. 3.7. Test errors between the MRIT2NFS and actual plant outputs.

Table 3.1 compares the performance of MRIT2NFS with that of seven different

approaches including TSK-type feed-forward type-1 and type-2 FNNs, a recurrent NN, and

type-1 recurrent FNNs. The comparison is done in terms of number of rules, number of free

parameters, training RMSE, and test RMSE. As in MRIT2NFS, all these networks use the

same information including number of input variables, training data, test data, and training

epochs. In order to make a fair comparison, the total number of parameters of the

feed-forward type-1 FNN is kept similar to that of feed-forward interval type-2 FNN. The

52

number of parameters in an interval type-2 FNN is larger than that in a feed-forward type-1

FNN because of extra free parameters in type-2 fuzzy sets and rule consequent part.

Consequently, the number of rules used in a feed-forward type-1 FNN is larger than that in a

feed-forward interval type-2 FNN, as shown in Table 3.1.

The compared feed-forward type-2 FNN is an interval type-2 FNN with uncertain means,

where all network parameters are learned by gradient descent algorithm. Our result reveals the

advantage of using recurrent structure in the MRIT2NFS, which achieves smaller test RMSE

than that by the feed-forward type-2 FNN. All of the compared recurrent type-2 FNNs use the

same fuzzy sets in the antecedent part, i.e., interval type-2 fuzzy sets with uncertain means.

The performance of MRIT2NFS is also compared with other interval type-2 FNNs with

recurrent structure, including a recurrent self-evolving interval type-2 fuzzy neural network

with uncertain means (RSEIT2FNN-UM) [29] and a recurrent interval-valued fuzzy neural

network (RIFNN) [69]. In these cases also, MRIT2NFS yields a better test accuracies.

TABLE 3.1. PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS

FOR SISO PLANT IDENTIFICATION IN EXAMPLE 1.

Models Number of

Rules

Number of

Parameters

Training

RMSE

Test

RMSE

Feedforward

Type-1 FNN

7 42 0.0178 0.0528

WRFNN [11] 5 55 0.064 0.098

TRFN-S [7] 5 60 0.021 0.041

RSEFNN [14] 4 32 0.02 0.0397

Feedforward

Type-2 FNN

4 48 0.032 0.052

RSEIT2FNN

-UM [29]

2 38 0.0048 0.049

RIFNN [69] 4 36 0.023 0.0465

MRIT2NFS 2 40 0.0008 0.0078

53

However, RIFNN and RSEIT2FNN-UM use a marginally lower number of free parameters.

Our results demonstrate that MRIT2NFS can effectively capture information about the system

using mutual feedbacks and outperforms the RSEIT2FNN, which only uses local feedbacks.

The recurrent type-1 FNNs considered include, the wavelet-based RFNN (WRFNN) [11],

TSK-type recurrent fuzzy network with supervised learning (TRFN-S) [7], and recurrent

self-evolving fuzzy neural network with local feedback (RSEFNN-LF) [14]. Table 3.1

indicates that the test error of the TRFN and the RIFNN are very close for the noise-free

environment, but for noisy environment the TRFN-S is found to perform better. We have also

compared the performance between TRFN and RSEIT2FNN. The recurrent structure with

only local feedbacks in RSEIT2FNN may not be adequate for this example because the rules

lack the information from other rules. For this reason, the performance of the TRFN is found

to be better than that of the RSEIT2FNN (Table 3.1).

TABLE 3.2 INFLUENCE OF thf and  ON THE PERFORMANCE OF MRIT2NFS

WITH 0.5 

Models
thf

Number of Rules Number of

Parameters

Training

RMSE

Test

RMSE

MRIT2NFS 0.02 2 40 0.0008 0.0078

0.15 3 63 0.0007 0.0075

0.25 4 88 0.0009 0.0060

MRIT2NFS-
thf

Number

of Rules

 Number of

Parameters

Training

RMSE

Test

RMSE

0.02 2 0.4 40 0.0008 0.0071

0.6 40 0.00077 0.0076

0.8 38 0.0009 0.0088

0.15 3 0.4 63 0.0005 0.00772

0.6 61 0.00068 0.00768

0.8 58 0.00075 0.0078

0.25 4 0.4 87 0.0006 0.0055

0.6 86 0.001 0.0040

0.8 83 0.0007 0.0066

54

Like any other Type-2 method, the proposed type-2 methods demand more computation

but it can yield more quality outputs. Moreover, although each learning step is

computationally more expensive compared to that of its Type-1 counterpart, our network,

using the same number of iterations, yields a better solution (faster convergence) than the

Type-1 systems.

There are a few parameters, , ,and thf   , that are involved in the learning of MRIT2NFS.

We now investigate the influence of these parameters on the performance of MRIT2NFS. In

addition we shall also consider the robustness of the system against noise in the inputs. The

threshold parameter, thf , decides the number of rules in the MRIT2NFS while the parameter

 in MRIT2NFS– is used to decide the feedback connections in layer 4 that could be

removed. Table 3.2 shows the MRIT2NFS performance for different values of thf and 

when 0.5  .

As expected, larger values of thf result in larger numbers of rules and larger  reduces

the number of tunable parameters in the system. Table 3.2 suggests that different choices of

thf

and  although change the number of rules marginally, the training and test errors

practically do not change. Thus at least for this data set, our system is quite robust with

respect to the choice of these two parameters. From a user point of view, the network with the

smallest number of free parameters that can provide the desired level of performance should

be the preferred network. Because with a larger degrees of freedom, the chances of having

more local optima and getting stuck to one of them would usually be higher. Next, we

investigate the effect of  on the performance of MRIT2NFS for a constant value of thf . A

small value of  generates larger numbers of rules because of the smaller width of the initial

type-2 fuzzy sets.

55

Table 3.3 shows the performance of MRIT2NFS for different values of  when

thf =0.02. From Table 3.3 we observe that the network performance (both training and test

error) is not sensitive to variations in  when thf =0.02, although the number of rules

decreases as  increases. It is interesting to note that as  increases from 0.2 to 0.7, the

number of rules decreases from 5 to 2 without affecting the performance of the system. In fact,

with 2 rules, both the training and test performances are slightly improved over the case with

5 rules. However, for a given problem, if the goal is to find the optimal parameters, we can

use a two-level cross validation mechanism.

TABLE 3.3 INFLUENCE OF  ON THE PERFORMANCE OF MRIT2NFS WITH

0.02thf 

 0.2 0.3 0.5 0.6 0.7

Number of Rules 5 4 2 2 2

Training RMSE 0.0016 0.0009 0.0008 0.00076 0.00078

Test RMSE 0.0098 0.0091 0.0078 0.008 0.0087

 Next we assess how robust the network is with respect to measurement noise in the plant

output. Since the plant output py is fed back as an input to the network, a noise in the

measurement of the plant output py is likely to have an effect on the performance of the

system. The experiment also uses the control input sequence in Eq. (3.55). We consider three

levels of Gaussian noise with standard deviations (STDs): 0.1, 0.3, and 0.5. We use 30

simulations for the statistical analysis. Table 3.4 shows the performance of MRIT2NFS for the

three different noisy environments. For the purpose of comparison, we also use the same

noisy environment to assess the noise tolerance of the other networks, including feed-forward

type-1 and type-2 FNN, TRFN [7], RSEIT2FNN [29], and RIFNN [69]. The results in Table

56

3.4 indicate that the feed-forward type-2 FNN can deal with noise much better than the

feed-forward type-1 FNN. The consequent part of the TRFN is a function of current input

variables. The consequent part in the RSEIT2FNN and the MRIT2NFS is of

Takagi-Sugeno-Kang (TSK)-type that consists of system output py and its previous values.

As a result of this, the rate of increase in the RMSE with increase in  for MRIT2NFS may be

marginally higher than that for other networks which do not use feedback of system outputs.

Finally, The MRIT2NFS achieves better performance than the other compared FNNs for

noise-free and noisy cases.

TABLE 3.4 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND

RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 1

Models Feedforward

Type-1

FNN

TRFN-S

[7]

Feedforward

Type-2

FNN

RSEIT2FNN

-UM[29]

RIFNN

[69]

MRIT2NFS

Number of Rules 7 5 4 2 4 2

Number of

Parameters

42 60 48 38 36 40

Test

RMSE

STD=0.1 0.121 0.062 0.056 0.168 0.057 0.021

STD=0.3 0.312 0.133 0.242 0.522 0.192 0.05

STD=0.5 0.458 0.162 0.361 0.783 0.315 0.098

3.4.2 Example 2 (SISO Dynamic System Identification)

We now consider the following dynamic system with longer input delays:

2

1 1 1(1) 0.72 () 0.025 (1) (1) 0.01 (2) 0.2 (3)p p py t y t y t u t u t u t        

(3.56)

This plant is the same as the one used in [7]. This system has a single input (nu=1) and a

single output (no=1). Thus, the current values of ()u t and ()py t are fed as inputs to the

MRIT2NFS input layer. The current output of the plant depends on one previous output and

three previous inputs. Therefore, for MRIT2NFS N1 =3 and O1=1. The training data and time

57

steps are the same as those used in Example 1. In MRIT2NFS training, the structure learning

threshold is set to 0.02. After 90 epochs of training, two rules are generated. To test the

identified system, the test signal used in Example 1 is also adopted here. Fig. 3.8 shows the

outputs of the plant and those of the MRIT2NFS for these test inputs. Fig. 3.9 shows the test

error between the outputs of MRIT2NFS and of the plant. Table 3.5 shows the structure, and

training and test RMSEs of MRIT2NFS. The performance of MRIT2NFS- (0.6  is used in

this paper) with the same network size is also shown in Table 3.6. Like Example 1, Table 3.6

shows that MRIT2NFS and MRIT2NFS- have similar performance.

Fig. 3.8. Outputs of the dynamic plant (dashed-dotted line) and MRIT2NFS (dotted line) in

Example 2.

0 100 200 300 400 500 600 700 800 900 1000
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time Step

E
rr

o
r

Fig. 3.9. Test errors between the MRIT2NFS and actual plant outputs.

58

The performance of MRIT2NFS is compared with that of feed-forward type-1 and typ-2

FNNs and recurrent type-1 FNNs. These models also use the same number of training epochs

and training and test data as used for the MRIT2NFS. Table 3.5 also depicts the number of

rules and parameters, and the training and test RMSEs of these compared networks. These

results show that the MRIT2NFS achieves better performance than that of other networks. In

Table 3.6 we investigate the effect of different choices thf and  on the performance of

MRIT2NFS when 0.5  .

TABLE 3.5 PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR

SISO PLANT IDENTIFICATION IN EXAMPLE 2.

Models Number of

Rules

Number of

Parameters

Training

RMSE

Test

RMSE

Feedforward

Type-1 FNN

7 49 0.007 0.032

WRFNN [11] 5 55 0.0574 0.083

TRFN-S [7] 5 60 0.0076 0.0286

RSEFNN [14] 4 30 0.0156 0.0279

Feedforward

Type-2 FNN

4 48 0.0155 0.038

RSEIT2FNN

-UM [29]

2 45 0.0034 0.006

RIFNN [69] 4 36 0.0125 0.0288

MRIT2NFS 2 44 0.0013 0.0028

 As done for Example 1, here also using the same computational protocols we study the

robustness of MRIT2NFS in noisy environments. Table 3.7 summarizes the results for the

MRIT2NFS with different noise levels (Gaussian noise with STD of 0.1, 0.3, and 0.5, and

with 30 Monte Carlo realizations for each case). As revealed by Table 3.7, for noisy

environments, the MRIT2NFS achieves smaller RMSE than the other compared FNNs except

the RIFNN. Note that, for noise-free data for the same problem, Table 3.5 reveals that

59

MRIT2NFS performs better than RIFNN, but with noisy data RIFNN performs better. A

possible reason for this may be that the consequent part in the RIFNN is a constant

interval-valued set and is not a function of the system output, py , that are noisy. But for

MRIT2NFS the rule consequents are functions of current output py , which are noisy.

Therefore, the impact of noise on RIFNN is much weaker than that on MRIT2NFS. These

results show that MRIT2NFS and MRIT2NFS- have similar performance. Table 3.5 reveals

that the test error for the MRIT2NFS is smaller than that of the feed-forward type-1 and

type-2 FNNs and recurrent type-1and type-2 FNNs.

TABLE 3.6 INFLUENCE OF thf and  ON THE PERFORMANCE OF AN MRIT2NFS

WITH 0.5 

Models
thf

Number of Rules Number of

Parameters

Training

RMSE

Test

RMSE

MRIT2NFS 0.02 2 44 0.0013 0.0028

0.15 3 69 0.0005 0.00274

0.25 4 96 0.0008 0.0032

MRIT2NFS-
thf

Rules  Number of

Parameters

Training

RMSE

Test

RMSE

0.02 2 0.4 44 0.00173 0.0025

0.6 42 0.0011 0.0031

0.8 42 0.0014 0.0032

0.15 3 0.4 69 0.00051 0.00287

0.6 69 0.00052 0.00366

0.8 64 0.00059 0.0041

0.25 4 0.4 96 0.0007 0.0042

0.6 94 0.0065 0.0048

0.8 87 0.0009 0.0051

60

TABLE 3.7 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND

RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 2

Models Feedforward

Type-1

FNN

TRFN-S Feedforward

Type-2

FNN

RIFNN RSEIT2FNN

-UM

MRIT2NFS

Number of Rules 7 5 4 4 2 2

Number of

Parameters

49 60 48 36 42 44

Test

RMSE

STD=0.1 0.145 0.097 0.087 – 0.072 0.056

STD=0.3 0.309 0.276 0.246 0.15 0.217 0.202

STD=0.5 0.501 0.453 0.416 0.23 0.358 0.327

3.4.3 Example 3 (Chaotic Series prediction)

In this example, which is introduced in [71], we use MRIT2NFS to predict the chaotic

behavior of a dynamic system with one delay and two sensitive parameters that are generated

by the following equation:

2(1) - () (1) 1.0p p py t P y t Q y t       (3.57)

Eq. (3.57), with P=1.4 and Q=0.3, produces a chaotic attractor. The system has no control

input (i.e., un =0) and a single output (i.e., on =1) so that only output variable ()py t is fed

as input to the MRIT2NFS. It is a second order system with one delay, therefore, 1O = 1. The

training procedure uses the plant output (1)py t  as the desired output (1)dy t  . Starting

from the initial state [(1), (0)]p py y = [0.4, 0.4], two thousand patterns are generated of which

the first 1000 patterns are used for training and the remaining 1000 patterns are used for

testing. Here also the structure learning threshold thf is set to 0.2 and number of rules

generated is 5 after 90 epochs of training.

61

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

y(t)

y
(t

-1
)

ideal output

MRIT2NFS

Fig. 3.10 Results of the phase plot for the chaotic system (O) and MRIT2NFS (X).

Fig. 3.10 displays the phase plot of the actual and MRIT2NFS predicted results for the

test patterns. Table 3.8 includes the network size, and training and test RMSEs of MRIT2NFS.

The performance of MRIT2NFS- is also depicted in Table 3.8. Like the other two examples,

the performance of MRIT2NFS and MRIT2NFS- are quite similar. The performance of

MRIT2NFS is also compared with that of feed-forward type-1 and type-2 FNNs, and

recurrent type-1 FNNs, including WRFNN [11], TRFN-S [7], and RSEFNN [14]. From Table

3.8 we find that MRIT2NFS- exhibits the best performance using almost the minimum

number free parameters, while MRIT2NFS achieves the next best performance although it

uses a few more free parameters.

In this case, we study the noise tolerance of our system with three levels of Gaussian

noise with standard deviations of 0.3, 0.5, and 0.7. Based on 30 Monte Carlo realizations, in

Table 3.9, we summarize the test RMSEs of the feed-forward type-1 and type-2 FNNs,

recurrent type-1 FNNs, and MRIT2NFS. Table 3.8 shows that the test error of the MRIT2NFS

is much smaller than that of the RIFNN for noise-free data. However, Table 3.9 depicts that

the test error of the MRIT2NFS for noisy environment is very close to that of the RIFNN. The

62

possible reason for this is the same as explained in Example 2.These results also reveal that

the test error of MRIT2NFS is smaller than those of the compared networks for all of the three

noise levels.

TABLE 3.8 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND

RECURRENT MODELS IN EXAMPLE 3

Models Number of

Rules

Number of

Parameters

Training

RMSE

Test

RMSE

Feedforward

Type-1 FNN

15 60 0.234 0.240

WRFNN [11] 7 70 0.191 0.188

TRFN-S [7] 6 66 0.0296 0.0245

RSEFNN [14] 7 35 0.032 0.021

Feedforward

Type-2 FNN

8 56 0.201 0.200

RSEIT2FNN

-UM [29]

6 60 0.0043 0.0047

RIFNN [69] 9 54 0.073 0.051

MRIT2NFS

- (0.6)

5 57 0.0028 0.0023

MRIT2NFS 5 70 0.0041 0.0037

TABLE 3.9 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND

RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 3

3.4.4 Example 4 (MIMO Dynamic System Identification)

Models Feedforward

Type-1

FNN

TRFN-S Feedforward

Type-2

FNN

RIFNN

RSEIT2FNN

-UM

MRIT2NFS

Number of Rules 15 5 4 9 6 5

Number of

Parameters

60 60 48 54 60 70

Test

RMSE

STD=0.3 0.621 0.604 0.617 0.575 0.528 0.513

STD=0.5 1.114 0.955 0.917 0.725 0.803 0.814

STD=0.7 1.706 1.256 1.180 1.040 1.020 1.032

63

In this example, we consider the plant described by the following equation

1

1 12

2

()
(1) 0.5 [(1)]

1 ()

p

p

p

y t
y t u t

y t
    



(3.58)

1 2

2 22

2

() ()
(1) 0.5 [(1)]

1 ()

p p

p

p

y t y t
y t u t

y t
    


 (3.59)

This MIMO dynamic system was also studied in [7]. This plant has two inputs (un =2) and

two outputs (on =2). So four current input-output values 1()u t , 2 ()u t ,
1()py t , and

2 ()py t

are fed to the input layer of the network. The present output of the plant depends on control

inputs with one time-step delay and current plant states. Therefore, the lag numbers
1N ,

2N ,

1O and
2O in MRIT2NFS are set to 1, 1, 0, and 0, respectively. The desired outputs for

MRIT2NFS training are
1(1)py t  and

2 (1)py t  . The MRIT2NFS is trained in an online

manner from time step 1t  to t =11000. The two control inputs 1()u t and 2 ()u t are

independent and identically distributed (i.i.d) uniform random sequences over [1.4 , 1.4] for

t =1 to t =4000. For the remaining 7000 times steps sinusoid signals generated by

sin(/ 45)t are used for both 1()u t and 2 ()u t . The learning coefficient  and the

threshold thf are set to 0.075 and 0.05, respectively. Based on a compromise between

network size and performance, the threshold value 0.05 is used, as discussed in Example 1.

For this data set, the training results in three rules. Table 3.10 shows the structure and RMSE

of MRIT2NFS. To evaluate the effectiveness of the identified network, we use the following

two control input sequences:

1 2

sin(/ 25), 1001 1250

1.0, 1250 1500
() ()

1.0,

t t

t
u t u t

  

 
 

 1500 1750

0.3sin(/ 25) 0.1sin(/ 32) 0.6sin(/10), 1750 2000

t

t t t t  






 
    

 (3.60)

Fig. 3.10 shows a very good match between the actual output and the network output. Table

64

3.10 shows the test RMSEs of 1py and 2py . We also compare the performance of

MRIT2NFS with that of memory NN (MNN) [70], feed-forward type-1 and type-2 FNNs, and

recurrent type-1 FNNs. The MNN is a kind of recurrent NN and has been applied to the same

problem in [7]. For the recurrent FNNs, we use the same training data, test data, and the

number of training epochs as those for MRIT2NFS, except in the case of the MNN, where a

total number of 77000 time steps are used in [70]. Table 3.10 shows that the performance of

MRIT2NFS is better than that of feed-forward and recurrent networks.

In this case also we investigate the noise tolerance of MRIT2NFS with the same three

levels of noise that are used in the previous example. Table 3.11 summarizes the results for

feed-forward type-1 and type-2 FNNs, TRFN [7], RSEIT2FNN [29], and MRIT2NFS over 30

Monte Carlo realizations. In this case too we find that under noisy environments, the test

RMSEs of MRIT2NFS is better than those of the compared networks.

Fig. 3.11. Output of the MIMO system (dashed-dotted curve) and MRIT2NFS (dotted curve)

in Example 4. (a) Output yp1. (b) Output yp2

65

TABLE 3.10 PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS

FOR MIMO PLANT IDENTIFICATION IN EXAMPLE 4.

Models Number of

Rules

Number of

Parameters

Training

RMSE

Test RMSE

1py

Test RMSE

2py

Feedforward

Type-1 FNN

7 126 0.0422 0.0373 0.0480

MNN [70] – 131 – 0.0186 0.0327

RFNN [10] 13 182 0.0687 0.0824 0.0801

WRFNN

[11]

7 182 0.0449 0.0472 0.0502

TRFN-S [7] 7 189 0.0382 0.0396 0.0383

Feedforward

Type-2 FNN

4 128 0.0496 0.0411 0.0423

RSEIT2FNN

[29]

3 126 0.0036 0.0081 0.0113

MRIT2NFS 3 132 0.0039 0.0066 0.0116

TABLE 3.11 PERFORMANCE OF MRIT2NFS AND OTHER MODELS WITH

DIFFERENT NOISE LEVELS IN EXAMPLE 4.

Models Feedforward

Type-1 FNN

Feedforward

Type-2 FNN

TRFN-S

RSEIT2FNN

MRIT2NFS

Number of

Rules

7 4 7 3 3

Number of

Parameters

126 128 189 126 132

Test

RMSE

1py

STD=0.3 0.256 0.189 0.188 0.16 0.165

STD=0.5 0.417 0.307 0.316 0.316 0.258

STD=0.7 0.578 0.420 0.427 0.427 0.354

Test

RMSE

2py

STD=0.3 0.197 0.145 0.143 0.090 0.078

STD=0.5 0.322 0.233 0.226 0.155 0.122

STD=0.7 0.443 0.323 0.298 0.227 0.193

66

3.4.5 Example 5 (HANG nonlinear system)

This example uses an MRIT2NFS- to deal with the nonlinear characteristics of a plant.

This is a very well studied system but it is not recurrent in nature. The HANG [72] system is

defined by the equation:

1 1.5 2

1 2 1 2 (1) , 1 , 5.y x x x x     

(3.61)

To obtain the training data as done in [72], we have generated 50 random pairs of

(21, xx), 5,1 21  xx , and computed the corresponding outputs using Eq. (3.61). This system

has only two current control inputs 1()x t and 2 ()x t (un =2) and no external output (on =0).

Therefore, only two input states x1 and x2 are fed as input to the MRIT2NFS. The current

output of the plant depends on current control inputs with no time delay. Thus, in this case we

set 1N =0 and 1O =0 in the MRIT2NFS consequent part. Fig. 3.12 shows a pictorial

representation of HANG. The threshold thf is set to be 0.02, and the number of rules is 3

after 100 epochs of training. Table 3.12 shows the number of rules, parameters, and test

RMSE of the MRIT2NFS. For comparison, Table 3.12 also shows the test RMSEs of

feed-forward type-1 and type-2 FNNs, and TRFN using the same I-O data. The result shows

that the test error of the MRIT2NFS- is marginally better than feed-forward type-2 FNN.

Since this is not a dynamic system, the recurrent architecture is not likely to yield any

additional benefits.

Fig. 3.12. A pictorial representation of HANG.

67

TABLE 3.12 PERFORMANCE OF MRIT2NFS- AND OTHER MODELS FOR

MODELING OF NONLINEAR SYSTEM IN EXAMPLE 5.

Models Feedforward

 Type-1 FNN

TRFN-S

[7]

Feed-forward

Type-2 FNN

MRIT2NFS

- (0.8)

Iteration 100 100 100 100

Number of

Rules

5 3 3 3

Number of

Parameters

35 30 36 40

Test

RMSE

0.312 0.244 0.26 0.206

68

Chapter 4

Conclusions

This dissertation proposes the combination of a novel recurrent structure and type-1 and

type-2 NFSs, namely an interactively recurrent self-evolving fuzzy neural network (IRSFNN)

and a mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS), respectively, to

identify time-varying systems (systems with temporal behavior). Identification of such

systems is difficult because the plant output depends on the present state as well as on

previous states and past outputs. Both IRSFNN and MRIT2NFS approaches are quite

effective in modeling dynamic systems because of their on-line learning manner and recurrent

structure. For the two proposed models, their learning methods are based on simultaneous

structure and parameter learning. The online structure learning algorithm enables the network

to efficiently identify the required structure of the network and does not need to set any initial

structure in advance. The proposed recurrent structure not only effectively stores local

(internal) information but also collects critical information from global transaction.

Additionally, we next introduce the rest of IRSFNN’s merit. The IRSFNN employs the

functional-link NN (FLNN) for the consequent part of its fuzzy rule. In the simulations, the

functional-link-based IRSFNN outperformed the TSK-type IRSFNN. The learning algorithm

of the variable-dimensional Kalman filter helps improve network accuracy by tuning the

consequent part parameters, and accounts for the change in the network size during learning.

Next, we introduce the MRIT2NFS structure and its merits. Unlike the IRSFNN, the

MRIT2NFS uses type-2 fuzzy sets in the premise clause of fuzzy rules, which is able to

effectively address rule uncertainties associated with information and data in the knowledge

base. For the structure learning of MRIT2NFS, we have used type-2 fuzzy set theoretic

concepts to evolve the structure of the network in an online manner. We use the rule-ordered

Kalman filter algorithm to tune the consequent parameters to yield a very effective learning.

69

We have also proposed a strategy to eliminate redundant recurrent weights. This is quite

effective particularly when we have more rules. We have tested our system on several

dynamic systems and one algebraic (non-recurrent) system and compared the performance

with several existing state-of-the-art systems. We have compared the performance of our

system with both Type-1 and Type-2 state-of-the-art FNNs. Among the two Type-1 FNNs, one

is of feed-forward type and other is a recurrent network with linear consequents. Our results

have demonstrated the consistently superior performance of MRIT2NFS over both the Type-1

(recurrent and feed-forward) systems as well as recurrent Type-2 systems. We have

demonstrated the superior performance both in terms of modeling capability as well as noise

handling capability. Our system is found to be quite robust with respect to noisy data. In order

to make a fair comparison, we have tried to keep the number of free parameters in all systems

comparable.

In the future, we would like to reduce the consequent parameters because too many

parameters may result in computational intensive when number of rules and input variables

are larger. The FLNN consists of trigonometric functions to replace conventional TSK-type in

the consequent part of the IRSFNN. Therefore, the choice of useful features is an important

issue. In this investigation for the consequent part of MRIT2NFS, we have assumed

knowledge about the system order and number of delayed inputs. In absence of this

information, one can use sufficiently large number of delayed inputs and past outputs in the

consequents and then find the useful ones using a concept similar to the feature attenuating

gates as done in [44]. However, use of such a concept may not ensure that all useful delayed

inputs and outputs are consecutive in time. The other alternative could be to use a validation

scheme to find the best combination of number of lagged inputs and outputs to be used in the

consequents. Second, our proposed models enable to widely use in a variety of applications,

that is, prediction and estimation of bio-engineering, and visual and speech recognizing.

70

Bibliography

[1] Y. Gao and M. J. Er, “NARMAX time series model prediction: feedforward and

recurrent fuzzy neural network approaches,” Fuzzy Sets and Syst., vol. 150, no. 2,

pp.331–350, Mar. 2005.

[2] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy inference network,”

IEEE Trans. Neural Networks, vol. 10, no. 4, pp. 828–845, Jul. 1999.

[3] G. C. Mouzouris and J. M. Mendel, “Dynamic nonsingleton fuzzy logic systems for

nonlinear modeling,” IEEE Trans. Fuzzy Syst., vol. 5, no. 2,pp. 199–208, May 1997.

[4] Y. C. Wang, C. J. Chien, and C. C. Teng, “Direct adaptive iterative learning control of

nonlinear systems using an output-recurrent fuzzy neural network,” IEEE Trans. Syst.,

Man, Cybern. B, Cybern., vol. 34, no. 5, 2144–2154, Jun. 2004.

[5] D. G. Stavrakoudis and J. B. Theocharis, “A recurrent fuzzy neural network for adaptive

speech prediction,” in Proc. IEEE Internat. Conf. on Syst., Man, Cybern., Montreal, QC,

Canada, Oct. 2007, pp. 2056–2061.

[6] J. B. Theocharis, “A high-order recurrent neuro-fuzzy system with internal dynamics:

application to the adaptive noise cancellation,” Fuzzy Sets and Syst., vol.157, no. 4, pp.

471–500, Feb. 2006.

[7] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by

neural network and genetic algorithm,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp.

155–170, Apr. 2002.

[8] C. F. Juang and J. S. Chen, “Water bath temperature control by a recurrent fuzzy

controller and its FPGA implementation,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp.

941–949, Jun. 2006.

[9] J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for nonlinear process

modeling,” IEEE Trans. Neural Networks, vol. 10, no. 2, pp. 313–326, Mar. 1999.

71

[10] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent

fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 349–366, Aug. 2000.

[11] C. J. Lin and C. C. Chin, Prediction and identification using wavelet-based recurrent

fuzzy neural networks, IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 5, pp.

2144–2154, Oct. 2004.

[12] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic

system identification,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 32, no.2, pp.

176–190, Apr. 2002.

[13] J. S. Wang and Y. P. Chen, “A Hammerstein Recurrent Neurofuzzy Network with an

Online Minimal Realization Learning Algorithm,” IEEE Trans. Fuzzy Syst. vo.16, no. 6,

pp.1597–1612, Dec. 2008.

[14] C. F. Juang, Y. Y. Lin, and C. C. Tu, “A recurrent self-evolving fuzzy neural network

with local feedbacks and its application to dynamic system processing,” Fuzzy Sets and

Systems, vol. 161, pp. 2552–2568, Oct. 2010.

[15] J. Hu and J. Wang, “Global Stability of Complex-valued Recurrent Neural Networks

with Time-Delays,” IEEE Trans. Neural Networks Learning Syst., vol. 23, no. 6, pp.

853–865, Jun. 2012.

[16] F. Ornelas-Tellez, E. N. Sanchez, and A. G. Loukianov, “Discrete -Time Neural Inverse

Optimal Control for Nonlinear via Passivation,” IEEE Trans. Neural Networks. Learning

Syst., vol. 23, no. 8, pp. 1327–1339, Aug. 2012.

[17] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,”

IEEE Trans Syst., Man, Cybern., vol. 22, no. 6, pp. 1414–1427, Nov. –Dec. 1992.

[18] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control network,” IEEE

Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477–496, Nov. 1997.

72

[19] W. S. Lin, C. H. Tsai, and J. S. Liu, “Robust neuro-fuzzy control of multivariable

systems by tuning consequent membership functions,” Fuzzy Sets and Syst., vol. 124, no.

2, pp. 181–195, Dec. 2001.

[20] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. on

Syst., Man, and Cybern., vol. 23, pp. 665–685, Jun. 1993.

[21] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network

and its applications,” IEEE Trans. Fuzzy Syst., vol. 6, no.1, pp. 12–31, Feb. 1998.

[22] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, MA: Addison–Wesley,

1989.

[23] J. C. Patra, R. N. Pal, and B. N. Chatterji, and G. Panda, “Identification of nonlinear

dynamic systems using functional link artificial neural networks,” IEEE Trans Syst.,

Man, Cybern., vol. 29, pp. 254–262, Apr. 1999.

[24] M. Alci, “Fuzzy Rule-base Driven Orthogonal Approximation,” Neural Comp. Appl., vol.

17, nos. 5–6, pp. 501–507, 2008.

[25] M. Alci, “Fuzzy Systems on Orthogonal Bases,” Dynamics of Continuous Discrete and

Impulsive Systems-Series A Mathematical Analysis, vol. 14, 2007, pp. 671–676.

[26] M. Alci and S. Beyhan, “Trigonometric Functions Based Neural Networks for System

Identification,” in Proc. 5th IFAC Intl., May 2007, pp. 141–144.

[27] S. Beyhan and M. Alci, “An orthogonal ARX network for Identification and Control of

Nonlinear Systems,” in Proc. XXII Int. Symp. Inf., Commun. Autom. Technolo., Oct.

2009, pp. 1–5.

[28] J. Y. Chang, Y. Y. Lin, M. F. Han, and C. T. Lin, “A functional-link based Interval

Type-2 Compensatory Fuzzy Neural Network for Nonlinear System modeling,” in Proc.

IEEE Int. Conf. Fuzzy Syst., Jun. 2011, pp. 939–943.

[29] C. F. Juang, R. B. Huang, and Y. Y. Lin, “A recurrent self-evolving interval type-2 fuzzy

neural network for dynamic system processing,” IEEE Trans. Fuzzy Syst., vol. 17, no. 5,

73

pp. 1092–1105, Oct. 2009.

[30] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a wiener-type cascade

model,” IEEE Trans. Contr. Syst., vol. 17, no. 5, pp. 29–36, Oct. 1997.

[31] H. Tamura, K. Tanno, H. Tanaka, C. Vairappan, and Z. Tang, “Recurrent type ANFIS

using local search technique for time series prediction,” in Proc. IEEE Asia Pacific Conf.

Circuits Syst., Dec. 2008, pp. 380–383.

[32] C. J. Lin, C. H. Chen, and C. T. Lin, “Efficient self-evolving evolutionary learning for

neuro-fuzzy inference systems,” IEEE Trans. Fuzzy Syst., vol.16, no. 6, pp. 1476–1490,

Dec. 2008.

[33] S. Paul, S. Kumar, “Subsethood-product fuzzy neural inference system (SuPFuNIS),”

IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 578–599, May 2002.

[34] C. F. Juang, C. H. Hsu, and I. F. Chung, “Automatic construction of

feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm

optimization,” Fuzzy Sets and Syst., vol. 158, no. 18, pp. 1979–1996, Sep. 2007.

[35] C. J. Lin, C. H. Chen, and C. T. Lin, “A hybrid of cooperative particle swarm

optimization and cultural algorithm for neural fuzzy networks and its prediction

applications,” IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 39, no. 1, pp. 55–68,

Jan. 2009.

[36] Y. Chen, B. Yang, and J. Dong, “Time-series prediction using a local linear wavelet

neural network,” Neurocomput., vol. 69, nos. 4–6, pp. 449–465, Jan. 2006.

[37] S. Yilmaz and Y. Oysal, “Fuzzy wavelet neural network models for prediction and

identification of dynamic system,” IEEE Trans. Neural Networks, vol. 21, no.10, pp.

1599–1609, Oct. 2010.

[38] J. Kim and N. Kasabov, “HyFIS: Adaptive neuro-fuzzy inference systems and their

application to nonlinear dynamical systems,” Neural Netw., vol. 12, no. 9, pp.

1301–1319, Nov. 1999.

74

[39] E. Y. Cheu, H. C. Quek, and S. K. Ng, “TNFIS: Tree-based neural fuzzy inference

system,” in Proc. IEEE Int. Joint Conf. Neural Netw., Jun. 2008, pp. 398–405.

[40] N. K. Kasabov, J. Kim, M. J. Watts, and A. R. Gray, “FuNN/2—Afuzzy neural network

architecture for adaptive learning and knowledgeacquisition,” Inform. Sci., vol. 101, nos.

3–4, pp. 155–175, Oct. 1997.

[41] M. Alci and M. H. Asyali, “Nonlinear system identification via Laguerre network based

fuzzy system,” Fuzzy Sets and Syst., vol. 160, no. 24, Dec. 2009.

[42] G. E. P. Box, Time Series Analysis, Forecasting and Control, San Francisco, CA:

Holden Day, 1970.

[43] J. B. Theocharis and G. Vachtsevanos, “Recursive learning algorithms for training fuzzy

recurrent models,” Int. J. Intell. Syst., vol. 11, no. 12, pp. 1059–1098, 1996.

[44] C. F. Juang and C. D. Hsieh, “A Locally recurrent fuzzy neural network with support

vector regression for dynamic-system modeling,” IEEE Trans. Fuzzy Syst., vol.18, no. 2,

pp. 261–273, Apr. 2010.

[45] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Trans.

Fuzzy Syst., vol.7, no. 6,pp. 643–658, Dec. 1999.

[46] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction and New

Directions, Prentice Hall, Upper Saddle River, NJ, 2001.

[47] J. M. Mendel and R.I. John, “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy Syst.,

vol. 10, no.2, pp.117–127, Apr. 2002.

[48] J. M. Mendel, “Type-2 fuzzy sets and systems: An overview”, IEEE Computational

Intelligence Magazine, vol. 2, no. 1, pp 20–29, 2007.

[49] R. John and S.Coupland, “Type-2 fuzzy logic: A historical view,” IEEE Computational

Intelligence Magazine, vol. 2, no.1, pp57–62, 2007.

[50] J. Zeng, L. Xie, and Z. Q. Liu, “Type-2 fuzzy Gaussian mixture models,” Pattern

Recognition, vol. 41,no. 12, pp 3636–3643, Dec. 2008.

75

[51] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying channels using

type-2 fuzzy adaptive filters,” IEEE Trans. Fuzzy Syst., vol. 8, no. 551–563, Oct. 2000.

[52] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,”

IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.

[53] H. Hagras, “Comments on dynamical optimal training for interval type-2 fuzzy neural

network (T2FNN),” IEEE Trans. Syst., Man, Cybern. B, vol. 36, no. 5, pp. 1206–1209,

Oct. 2006.

[54] J. Zeng and Z. Q. Liu, “Type-2 fuzzy hidden Markov models and their application to

speech recognition,” IEEE Trans. Fuzzy Syst., vol. 14, no. 3, pp. 454–467, Jun. 2006.

[55] C. H. Wang and F.C. H Rhee.” Uncertain fuzzy clustering: interval type-2 fuzzy

approach to C-means,” IEEE Trans. Fuzzy Syst., vol. 15, no. 1, pp. 107–120, Feb. 2007.

[56] G. M. Mendez and O. Castillo, “Interval type-2 TSK fuzzy logic systems using hybrid

learning algorithm, ”in Proc. IEEE Int. Conf. Fuzzy Syst., pp. 230–235, May 22–25,

2005.

[57] C. H. Lee, Y. C. Lin, and W. Y. Lai, “Systems identification using type-2 fuzzy neural

network (Type-2 FNN) systems,” in Proc. IEEE Int. Symp. Computational Intelligence

in Robotics and Automation, vol. 3, pp. 1264–1269, Jul. 16–20, 2003.

[58] C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical optimal training for interval type-2

fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 3, pp.

1462-1477, Jun. 2004.

[59] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic system,” IEEE

Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, Feb. 2004.

[60] Y. C. Lin and C. H. Lee, “System Identification and Adaptive Filter Using a Novel

Fuzzy Neuro system,” Int. Journal of Computational Cognition, vol. 5, no. 1, pp. 15–26,

2007.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477

76

[61] W. S. Chan, C. Y. Lee, C. W. Chang, and Y. H. Chang, “Interval type-2 fuzzy neural

network for ball and beam systems,” IEEE conf. Syst. Sci. Eng., pp. 315–320, Jul. 1–3,

2010.

[62] C. F. Juang and Y. W. Tsao, ”A self-evolving interval type-2 fuzzy neural network with

online structure and parameter learning,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp.

1411–1424, Dec. 2008.

[63] C. D. Li, J. Q. Yi, and D. B. Zhao, “Interval type-2 fuzzy neural network controller

(IT2FNNC) and its application to a coupled-tank liquid-level control system, “in Proc.

Int. Conf. Innovative Comput. Inf. Contr., pp. 508, Jun. 18–20, 2008.

[64] F. J. Lin and P. H. Chou, “Adaptive control of two-axis motion control system using

interval type-2 fuzzy neural network,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp.

178–193, Jan. 2009.

[65] C. F. Juang, R. B. Huang, and W. Y. Cheng, “An Interval Type-2 Fuzzy Neural Network

with Support Vector Regression for Noisy Regression Problems,” IEEE Trans. Fuzzy

Syst., vol. 18, no. 4, pp. 686–699, Aug. 2010.

[66] R. H. Abiyev and O. Kaynak, “Type-2 Fuzzy Neural Structure for Identification and

control of time-varying plants,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp.

4147–4159, Dec. 2010.

[67] C. H. Lee, H. H. Chang, C. T. Kuo, J. C. Chien, and T. W. Hu, “A Novel Recurrent

Interval Type-2 Fuzzy Neural Network for Nonlinear Channel Equalization,” in Proc. Int.

Muticonf. Engineers and computer scientists, vol. 1, March 18–20, 2009.

[68] Y. Y. Lin, J. Y. Chang, and C.T. Lin,” An Internal/Interconnection Recurrent Type-2

Fuzzy Neural Network (IRT2FNN) for Dynamic System Identification,” in Proc. IEEE

Int. Conf. Syst., Man, Cybern., pp. 733–737, Oct 10–13, 2010.

77

[69] C. F. Juang, Y. Y. Lin, and R. B. Huang, ”Dynamic system modeling using a recurrent

interval-valued fuzzy neural network and its hardware implementation,” Fuzzy Sets Syst.,

vol. 179, pp. 83–99, May 2011.

[70] P. S. Sastry, G. Ssntharam, and K. P. Unnikrishnan, “Memory neural networks for

identification and control of dynamic systems,” IEEE Trans. Neural Networks, vol. 5, pp.

306–319, Mar. 1994.

[71] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a wiener-type cascade

model,” IEEE Trans. Contr. Syst., pp. 29–36, Oct. 1997.

[72] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,”

IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7–31, Feb. 1993.

[73] A. Laha, N. R. Pal and J. Das, “Land cover classification using fuzzy rules and

aggregation of contextual information through evidence theory,” IEEE Trans. Geosci.

Remote Sensing, vol. 24, no. 6, pp.1633–1641, 2006.

[74] N. R. Pal and S. Saha, “Simultaneous Structure Identification and Fuzzy Rule Generation

for Takagi–Sugeno Models,” IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 6, pp.

1626–1638, Dec. 2008.

[75] C. S. Lee, M. H. Wang, and H. Hagras, “A Type-2 Fuzzy Ontology and Its Application

to Personal Diabetic-Diet Recommendation,” IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp.

374–395, Apr. 2010.

[76] D. Hidalgo, O. Castillo, and P. Melin, “Type-1 and Type-2 fuzzy inference systems as

integration methods in modular neural networks for multimodal biometry and its

optimization with genetic algorithms,” Inform. Sci., vol. 179, pp. 2121–2145, 2009.

[77] X. Chen, Y. Li, R. Harrison, and Y. Q. Zhang, “Type-2 fuzzy logic-based classifier

fusion for support vector machines,” Applied Soft Computing, vol. 8, pp.1222–1231,

2008.

78

[78] X. Liu and J. M. Mendel, “Connect Karnik–Mendel Algorithms to Root-Finding for

Computing the Centroid of an Interval Type-2 Fuzzy Set,” IEEE Trans. Fuzzy Syst., vol.

19, no. 4, pp. 652–565, Aug. 2011.

[79] D. Wu, J. M. Mendel, and S. Coupland, “Enhanced Interval Approach for Encoding

Words Into Interval Type-2 Fuzzy Sets and Its Convergence Analysis,” IEEE Trans.

Fuzzy Syst., vol. 20, no. 3, pp. 499–513, June. 2012.

[80] D. Wu and J. M. Mendel, “Linguistic Summarization Using IF–THEN Rules and

Interval Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 136–151, Feb.

2011.

[81] O. Linda and M. Manic, “General Type-2 Fuzzy C-Means Algorithm for Uncertain

Fuzzy Clustering,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 883–897, Oct. 2012.

[82] D. Wu and J. M. Mendel, “On the Continuity of Type-1 and Interval Type-2 Fuzzy

Logic Systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 179–192, Feb 2011.

[83] C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, “An Enhanced Type-Reduction Algorithm for

Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 227–240, Apr. 2011.

[84] D. Zhai and J. M. Mendel, “Enhanced Centroid-Flow Algorithm for Computing the

Centroid of General Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp.

939–956, Oct. 2012.

[85] D. Zhai and J. M. Mendel, “Comment on “Toward General Type-2 Fuzzy Logic Systems

Based on zSlices,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 996–997, Oct. 2012.

[86] D. Zhai and J. M. Mendel, “Computing the Centroid of a General Type-2 Fuzzy Set by

Means of the Centroid-Flow Algorithm,” IEEE Trans. Fuzzy Syst., vol. 19, no.3, pp.

401–422, June. 2011.

[87] O. Linda and M. Manic, “Monotone Centroid Flow Algorithm for Type Reduction of

General Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 805–819, Oct.

2012.

79

[88] R. Hosseini, S. D. Qanadli, S. Barman, M. Mazinani, T. Ellis, and J. Dehmeshki, “An

Automatic Approach for Learning and Tuning Gaussian Interval Type-2 Fuzzy

Membership Functions Applied to Lung CAD Classification System,” IEEE Trans.

Fuzzy Syst., vol. 20, no. 2, pp. 224–234, Apr. 2012.

[89] M. Nie and W. W. Tan, “Analytical Structure and Characteristics of Symmetric

Karnik–Mendel Type-Reduced IntervalType-2 Fuzzy PI and PD Controllers,” IEEE

Trans. Fuzzy Syst., vol. 20, no. 3, pp. 416–430, 2012.

[90] D. Wu, “On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy

Logic Controllers,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 832–848, Oct. 2012.

[91] S. Barkat, A. Tlemcani, and H. Nouri, “Noninteracting Adaptive Control of PMSM

Using Interval Type-2 Fuzzy Logic Systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 5, pp.

925–936, Oct. 2011.

[92] R. A. Aliev, W. Pedrycz, B. G. Guirimov, R. R. Aliev, U. Ilhan, M. Babagil, and S.

Mammadli, “Type-2 fuzzy neural networks with fuzzy clustering and differential

evolution optimization,” Inf. Sci., vol. 181, pp. 1591–1608, 2011.

80

Vita

博士候選人學經歷資料

姓名：林洋印 (Yang-Yin Lin)

性別：男

生日：民國 71 年 5 月 28 日

出生地：高雄市

論文題目：

中文：具有相互影響之遞迴式自我演化類神經模糊系統及其應用

英文：A Novel Recurrent Self-evolving Neural Fuzzy System and Its

Applications

學歷：

 民國 94年 6 月，高雄應用科技大學電子工程系畢業

 民國 97年 6 月，中興大學電機工程所碩士班畢業

 民國 102年 4 月，國立交通大學電機與控制工程學系博士班，提博士論

文口試

81

Publication List

著作目錄

姓名：林洋印(Yang-Yin Lin)

已刊登或被接受之期刊論文：

[1] Yang-Yin Lin, Jyh-Yeong Chang, and Chin-Teng Lin, “Identification and Prediction of

Dynamic Systems Using an Interactively Recurrent Self-evolving Fuzzy Neural Network

(IRSFNN),” IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 2, pp. 310–321, Feb.

2013.

[2] Yang-Yin Lin, Jyh-Yeong Chang, and Chin-Teng Lin, “A TSK-type-based Self-Evolving

Compensatory Interval Type-2 Fuzzy Neural Network (TSCIT2FNN) and Its

Applications,” accepted to appear in IEEE Trans. on Ind. Electron., 2013.

[3] Yang-Yin Lin, Jyh-Yeong Chang, Nikhil R. Pal and Chin-Teng Lin, “A Mutually

Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) with Self-evolving

Structure and Parameters,” IEEE Trans. Fuzzy Syst., vol. 21, no. 6, 2013.

[4] Chia-Feng Juang, Yang-Yin Lin, Ren-Bo Huang, “Dynamic system modeling using a

recurrent interval-valued fuzzy neural network and its hardware implementation,” Fuzzy

Sets and Syst., vol. 179, no.1, pp. 83-99, 2011.

[5] Chia-Feng Juang, Yang-Yin Lin, Chiu-Chuan Tu: A recurrent self-evolving fuzzy neural

network with local feedbacks and its application to dynamic system processing. Fuzzy

Sets and Syst., vol. 161, no. 19, pp. 2552-2568, 2010.

[6] Chia-Feng Juang, Ren-Bo Huang, Yang-Yin Lin, “A Recurrent Self-Evolving Interval

Type-2 Fuzzy Neural Network for Dynamic System Processing,” IEEE Trans. on Fuzzy

Syst., vol.17, no. 5, pp. 1092-1105, 2009.

研討會論文：

[1] Jyh-Yeong Chang, Yang-Yin Lin, Ming-Feng Han and Chin-Teng Lin, “A

Functional-Link based Interval Type-2 Compensatory Fuzzy Neural Network for

Nonlinear System Modeling,” 2011 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE 2011), Taipei, Taiwan, pp. 939–943 ,Jun. 27–30, 2011.

[2] Chin-Teng Lin, Ming-Feng Han, Yang-Yin Lin, Shih-Hui Liao and Jyh-Yeong Chang,

“Neuro-Fuzzy System Design Using Differential Evolution with Local Information,”

2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei,

Taiwan, pp. 1003–1006, Jun. 27–30, 2011.

[3] Jyh-Yeong Chang, Yang-Yin Lin, Chin-Teng Lin, Chia-Feng Juang and Li-Wei Ko, “A

http://www.informatik.uni-trier.de/~ley/pers/hd/j/Juang:Chia=Feng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Huang:Ren=Bo.html
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss179.html#JuangLH11
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss179.html#JuangLH11
http://www.informatik.uni-trier.de/~ley/pers/hd/j/Juang:Chia=Feng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tu:Chiu=Chuan.html
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss161.html#JuangLT10
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss161.html#JuangLT10
http://www.informatik.uni-trier.de/~ley/pers/hd/j/Juang:Chia=Feng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Huang:Ren=Bo.html

82

Function-Link based Type-2 Fuzzy Neural Network for identification and modeling of

time-varying plants,” The 17th National Conference on Fuzzy Theory and its

Applications, Hualien, Taiwan, Nov. 3–4, 2010.

[4] Chin-Teng Lin, Ming-Feng Han, Yang-Yin Lin, Jyh-Yeong Chang and Li-Wei Ko,

“Differential Evolution based Optimization of Locally Recurrent Neuro-Fuzzy System

for Dynamic System Identification,” The 17th National Conference on Fuzzy Theory and

its Applications, Hualien, Taiwan, pp. 702–707, Nov. 3–4, 2010.

[5] Yang-Yin Lin, Jyh-Yeong Chang and Chin-Teng Lin, “An Internal/Interconnection

Recurrent Type-2 Fuzzy Neural Network (IRT2FNN) for dynamic system

identification,” IEEE International Conference on Systems, Man and Cybernetics, pp.

733–737, 2010.

