Al

N

w)
v’
B
//_/

i“n -

ERP RS A

,Eﬂ

ELE 2

EF I RE kN p AFEN SR AR AR
A novel Recurrent Self-evolving Neural Fuzzy System and

Its Applications

o4 iRERE Student * Yang-Yin Lin

R IREA BL Advisor : Dr. Jyh-Yeong Chang

A Dissertation
Submitted to Department of Electrical and Control Engineer
College of Electrical Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy.
in
Electrical and Control Engineering
April 2013
Hsinchu, Taiwan, Republic of China

Jm

7 ad

B2 dhiw 5N p AU S HOR,
2 H R

N
’|

DHREE AR B L

R 28R e o es s (g5 45

#* &

G 8 = DR CALE R L N S LR A S L (AR L
Takagi-Sugeno-Kang (TSK) ZEH > ¢ & 1| #* Sl B 0= 5% > iU A3 BR i »

PR A dF ezt R LA 4o F b T ,épéﬁ»’;ﬂi%] WL ER T (BiTP 1‘9%@15: ° BIEH
FYy P o R*REVHIPAFRE 0 A SRR T kR R R R S
Vo aE sl ATEd PRFAE I EE RARREZ2ARTET AMHBEY
el i o FFRE MR GV RBCP I B R T R E S R R ATed it o Ak Z i o

APRNFTY - AR SR RS EF R N ke R TR T B R R

IR RN RS A SO B2 ¢ E PR AT RRhA 4 A

o A AT o AR BE Y o S EFV SRR T AT BR SRR 2

g

WA
R R BIFE E AR L A Ahl G o m ERNE vE 2B ATd BB T E R
%ﬁoi&’ﬂWﬁﬂéﬁﬁ%**%%i‘*-m R S SIS SRR P =

ifin g S AR SRS 0 RGR O R R R RS S AT D A

Bk B B ARIRT o ik) e 3 R 2 ik SO AT (SRR L G RAR el

Roe il o AP E G S R Ot B B TR D 02 L AR e

A Novel Recurrent Self-evolving Neural Fuzzy
System and Its Applications

Student : Yang-Yin Lin Advisor : Dr. Jyh-Yeong Chang

Department of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

This dissertation mainly describes two different kinds of recurrent neural fuzzy systems,
involving a novel recurrent self-evolving fuzzy neural network for identification and
prediction of time-varying plants and a novel recurrent interval type-2 neural fuzzy system
with self-evolving structure and parameter for dynamic system processing under noise-free
and noise environment. For the first kKind, we describe a novel recurrent self-evolving neural
fuzzy system, namely an interactively recurrent self-evolving fuzzy neural network (IRSFNN).
The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by
feeding the rule firing strength of each rule to others rules and itself. The consequent part in
the IRSFNN can be chosen by a Takagi-Sugeno-Kang (TSK) or functional-link-based type.
The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent
part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural
network, the FLNN in the consequent part is a nonlinear function of input variables. An
IRSFNN’s learning starts with an empty rule base and all of rules are generated and learned
online through a simultaneous structure and parameter learning. The consequent update
parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and
recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN

for the prediction and identification of dynamic plants and compare it to other well-known
ii

recurrent FNNs. The proposed model obtains enhanced performance results. For the second
kind, we introduce a mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS)
with self-evolving structure and parameters for system identification under both noise-free
and noisy environments. The MRIT2NFS employs interval type-2 set in the premise clause in
order to enhance noise tolerance of system. The consequent part of each recurrent fuzzy rule
is defined using the Takagi-Sugeno-Kang (TSK) type with interval weights. The structure
learning of MRIT2NFS uses on-line type-2 fuzzy clustering to determine number of fuzzy
rules. For parameter learning, the consequent part parameters are tuned by rule-ordered
Kalman filter algorithm to reinforce parameter learning ability. The type-2 fuzzy sets in the
antecedent and weights representing the mutual feedback are learned by gradient descent
algorithm. After the training, a weight-elimination scheme eliminates feedback connections
that do not have much effect on the network behavior. This method can efficiently remove
redundant recurrence weights. Simulation results show that the MRIT2NFS produces smaller

root mean squared errors using the same number of iterations.

Acknowledgment
ERCX N R R S = el g & :‘_Hiﬁ W R A AR L fopkie

C B R G OEE S KPR EE FF T o RAFY

F R AR A WERY OB FULILIER - E > X Y B
Pfawm > hilBARY o Z RRERG IR hRfEE 2 2 AT o
L { AAZEY P . D2 ’iﬁ%fs‘fﬁ%’ﬁf\ e
R R R F A R R FRIRE IR T RRE SRR
AT BRI FIF T RE g E o RECRAHY L K o PR
ERFRAGHEY S 2HES > LT O ARY P UTOE PRS2 3

o RIS 07 ol B PArhk o gAY o - Aok 33 e -

A kL fara P o RENGE T ERT I REL o
R R A R ML A A e BiE P P 7 ETEE A L 32 3L
B BRARNR RO TY R A B L F o AP ARE A%
T RRREAN TR R S R

s R R 90T PR e

Contents

ADSTFACT TN CRINESE ...t b bbbt ettt b ettt [
ADSEFACE IN ENQGIISN ..o s iii
ACKNOWIEAGMENT ...ttt e s te e e esre e te e e e s reenteaneesraens v
(000] 11 (=] 1 ST TTUR SRRSO Vi
LISE OF TADIES ..t bbbt bbb b vii
LIS OF FIQUIES ...ttt et et e s be e e s s e e reeteeneesreenteaneenres viii
Introduction g . Y . R —E . A................coeeeeeeee e 1

An Interactively Recurrent Self-evolving Fuzzy Neural Network (IRSFNN)................... 7

2.1 Brief Survy of Some EXisting Methods...........cccoevveiiiie s csiiee e 7

2.2 IRSENN SEIUCTUIE ... ittt ss e 0000000 ket e e ek s n e et e b e nbeenne s 8

2.3 IRSERNIE car i " D . I —_—_— ... DRa................. 14
R AStructulSTEIIION. . B R 14

RedPfy ParamelBCLearninoy M. " 89 8. VN . o ... D0 15

P gy ErTaTe MR ATr— . Se— g R B S 18

3 A Mutually Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS).................. 31
3.1 Brief Introduction of Type-2 FUZZY SYSIEMS........coveivveveeeeieiiiiiecneesanaesnaesee e 31

3.2 IMRITZNFS SITUCTUIE ... ittt ettt e efa et an e e anneate e see e 34

3.3 MRIT2NFS LEAINING ...coieiueneeisieiuaarueisaesseasseasaessssssisseesseassesseessessesinnessasnssssssseeeneenns 43
3.3.0\ StruCture LLEarNING.......uosmesssssssssmsnssesmsnmsssmsusssmsnss o eeenees shan o dnssunstiieeeeenneens 43

3.3.2 " Parameter Learningo.ocss..ooee Mo 0 b it s s enatl e 44

3.4 SIMUIATION RESUITS . ..itiueiiteiutereesieeiite st st i s e eneesbeane st eeadbnendane e bannt e seesbeseenreas 49

O O] [0 11 5] o] ST SO R ST 68
B OGPy ... i e e e 70
AV/|r: FOUUUOURUR A Ay ep, ORTRTRRRRRR T o SRR 80
Publication List.............. 0. .40 . R . W ..., 81

Vi

List of Tables

Table 2.1 PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR
DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE L.....ccoovvvvevoorerere. 21
Table 2.2: PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR
DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 2......covvvveeveeeeree. 23
Table 2.3: PEFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR
CHAOTIC SEQUENCE PREDICTION IN EXAMPLE 3......ccooovvvveereveecreesnerenns 25
Table 2.4: PERFORMANCE OF IRSFNN AND OTHER MODELS FOR MACKEY-GLASS
CHAOTIC SEQUENCE PREDICTION PROBLEM IN EXAMPLE 4............... 27
Table 2.5: PERFORMANCE OF IRSFNN AND OTHER MODELS FOR BOX-JENKINS
PREDICTION AN EXAMPLE 5.ovoooeeeeeoeeeeeee s ttbine ittt eseesreens 30
Table 3.1; PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR
SISO PLANT IDENTIFICATION IN EXAMPLE L.............coeooooeeitiosteeroneeeeee 52
Table 3.2: INFLUENCE OF f,“and ¢ ON THE PERFORMANCE OF MRIT2NFS WITH
B=05 INEXAMPLE L. .o e e rasbeesiesetbie e ee oot bt 53
Table 3:3: INFLUENCE OF 3 ON THE PERFORMANCE OF MRIT2NFS WITH f,20.02...55
Table 3:4: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT
MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE L.ccoooottiiiiiennreenns 56
Table 3:5: PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR SISO
PLANT IDENTIFICATION IN EXAMPLE 2oooottueeoveeeoeeeeeeeees oo bes b e 58
Table 3.6: INFLUENCE OF f, ‘and ¢ ON THE PERFORMANCE OF AN MRIT2NFS WITH
gAY .. U N e lelod. 59
Table 3.7: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT
MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 2. .ve..iottecoeeereeeee. 60
Table 3.8: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT
MODELS IN EXAMPLEv..oooeeeeeosstibileeeesiiiesse e fiesseeeeeseseeeeesseseesesneeee 62
Table 3.9: PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT
MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 3.......ovvvecerrerecreen. 62
Table 3.10: PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR MIMO
PLANT IDENTIFICATION IN EXAMPLE 4oovveeeeeeeeeeeeeeeeseeeeeeeeeseseeseseeereons 65
Table 3.11: PERFORMANCE OF MRIT2NFS AND OTHER MODELS WITH DIFFERENT NOISE
LEVELS IN EXAMPLE 4. o..ccoieveeoeeeeeeeoeeeeeeeeeeseeseeeeeseseeeeeeeeseesasesseeseeeeese e 65
Table 3.12: PERFORMANCE OF MRIT2NFS-¢ AND OTHER MODELS FOR MODELING OF
NONLINEAR SYSTEM IN EXAMPLE 5........ocoueeveeeeeeeeereeseeeeeesesseeeesessesessesseens 67

vii

List of Figures

Figure 2.1: Structure OF FLANN.ooiiiie e 9
Figure 2.2: Structure of the proposed IRSFNN MOdelcccccoiveiieiiiiciiece e 10
Figure 2.3: Flowchart of the structure and parameter learning of the IRSFNN....................... 14
Figure 2.4: Outputs of the dynamic plant, IRSFNN, RSEFNN_LF, and TRFN.c........... 21
Figure 2.5: Test errors between the IRSFNN-FuL and actual plant outputs.cccccceevvenee 21
Figure 2.6: Outputs of the dynamic plant and IRSFNN-FUL.ccccooeiiiiiiiiieinece e 23
Figure 2.7: Test errors between the IRSFNN-FuL and actual plant outputscccccceevvenene 23
Figure 2.8: Results of the phase plot for the chaotic system RSEFNN_FL, TRFN and
RSN, Th ™ o ey O P 24
Figure 2.9: Test result of chaotic series prediction using IRSFNN-FUL.cc........c.ccoovevnennne 26
Figure 2.10: Prediction errors between the IRSFNN-FuL and actual outputs. 27
Figure 2.11: Test result of Box-Jenkins series using IRSFNN-FuL with three rules. 29
Figure 2.12: Prediction errors between the IRSFNN-FuL and actual outputs.c..c.....c......... 30
Figure 3.1: Structure of a TYPE-2 FELS. bbb et 31
Figure 3.2: The different forms of type-2 fUZzy SEtS.cccvvveiviiieiieeiiiic s 32
Figure 3.3: The plots of complexity comparison with five type-reducers.............cccccevvvvrnenne 33
Figure 3.4: The proposed siX-layer MRIT2NFES StrUCLUFE.cocovvviieiiiereaiae s iaesnesnneseeeneens 35
Figure 3.5: An interval type-2 fuzzy set with Gaussian shape whose center (mean) is not
known with certainty (the mean has an uncertainty)................cceecoveiiiii e 36
Figure 3.6: Outputs of the dynamic plant and MRIT2NES in example 1.cccociiinennennne 51
Figure 3.7: Test errors between the MRIT2NFS and actual plant OUtputs...........cccciie e 51
Figure 3.8: Outputs of the dynamic plant and MRIT2NFS in example 2..........ccccceovviieiinennnne 57
Figure 3.9: Test errors between the MRIT2NFS and actual plant OUtputS........c......cccevverveenene 57

Figure 3.10: Results of the phase plot for the chaotic system (O) and MRIT2NFS (X).......... 61
Figure 3.11: Output of the MIMO system and MRIT2NFS in Example 4. (a) Output yp:. (b)

Output Yoo . . . P .. W, 64
Figure 3.12: A pictorial representation Of HANG.c.....coii i 66

viii

Chapter 1

Introduction

Dynamic systems depend on past inputs, past outputs, or both, and identification and
modeling of such systems is not as straightforward as that for static / algebraic systems. For
dynamic system processing, practical problems are encountered in a variety of areas, such as
control, pattern recognition, time series prediction, and signal processing. Recently, the
combination of recurrent structures and fuzzy neural networks has become popular to identify
and recognize temporal behaviors [1-16, 43-44]. Therefore, recurrent structures enable
effectively address temporal sequences responding to memory information from prior system
states.

In contrast with pure feed-forward FNN, we have to know the number of lagged inputs
and outputs in advance, and feed these lagged values as feed-forward FNN input. The exact
order of dynamic system is usually unknown, and thus, we do not know the number of lagged
values to provide. Moreover, the lagged values increase input dimensions and result in a
larger network size. Apparently, the use of a feed-forward FNN is unsuitable for constructing
dynamic system. Therefore, some recurrent fuzzy neural networks (RFNNSs) have already
been proposed [1-16, 43-44] for solving the temporal characteristics of dynamic systems, and
have been shown to outperform feed-forward FNNs and recurrent neural networks. Recently,
a considerable research effort has being devoted toward developing recurrent neural-fuzzy
models that are separated into two major categories. One category of recurrent FNNs uses
feedback from the network output as the recurrence structure [2-4], [9]. In [2], recurrent
self-organizing neural fuzzy inference network (RSONFIN) uses a global feedback structure,
where the firing strengths of all rules are summed and fed back as internal network inputs.
The other approach of recurrent FNNs uses feedback from internal state variables as its

recurrence [10, 12, 14, 44]. In [14], the authors presented a recurrent self-evolving fuzzy

1

neural network with local feedbacks for dynamic system identification, where the recurrent
firing values are influenced by both prior and current values.

One import purpose is to design consequent part of FNN which is able to impact the
performance on using different types. Researchers usually use two types of fuzzy if-then rules
and fuzzy reasoning employed, i.e., Mamdani-type and TSK-type. For Mamdani-type fuzzy
neural networks [2, 6, 17-19], the minimum fuzzy implication is adopted in fuzzy reasoning.
For TSK-type fuzzy neural networks [5, 9, 14, 20, 21], the consequent part of each rule is a
linear function of input variables. Several studies [14, 20, 21] indicate that the performance of
a feedforward TSK-type fuzzy network in network size and learning accuracy is superior to
those of Mamdani-type fuzzy networks. A feedforward TSK-type fuzzy network appears to
have more free parameters to-adjust input space mapping. However, each consequent part of
each fuzzy rule in a standard TSK-type fuzzy neural network does not take full advantage of
the mapping capabilities of local approximation by rule hyper-planes. Therefore, several
studies [22-28] consider trigonometric functions to replace the traditional TSK-type fuzzy
reasoning and also obtain the better performance.

In this view, the functional-link neural networks (FLANN) [22, 23] have been proposed
using trigonometric functions to construct consequent part. The functional expansion
increases the dimensionality of the input vector and thus, creation of nonlinear decision
boundaries in the multidimensional space and identification of complex nonlinear functions
become simple with this network. It seems to be more efficient, based on these results, to
include the functional-link fuzzy rules into the design of recurrent fuzzy network.

With above mentioned motivations, this study presents the combination of a novel
recurrent structure and a FLANN to construct the consequent part, called an interactively
recurrent self-evolving fuzzy neural network (IRSFNN), for dynamic system identification
and prediction. The proposed IRSFNN contains four major contributions as follows:

(1) A recurrent structure with interaction feedback incorporates the advantages of local
2

feedback and global feedback. The global feedback in the proposed network means that
the necessary information is obtained from the other fuzzy rules. Local source (a rule
gets feedback from itself only) is not sufficient to represent the necessary information.
Therefore, external (global) backward connection is aim to reimburse the shortcoming
of local information and then achieve comprehensive information requirement.

(2) Many studies [1-13] have only considered the past states in recurrent structure, which is
insufficient without referring to current states. Previous studies [14, 29] were provided
the strong evidences that compatibly use past and current states to be more desirable.
Therefore, the proposed recurrent structure depends on current states along with
previous states in order to obtain excellent compromise with temporal.

(3) We use the FLNN to replace the traditional TSK-type fuzzy reasoning, and compare
their performance. As has explained before, the functional expansion increases the
dimensionality of the input pattern and thus, creation of nonlinear decision boundaries
in the multidimensional space and identification of complex nonlinear functions
become simple with this network.

(4) We use hybrid learning algorithms for parameter learning to reinforce the network

performance.

For structure learning, all of the rules and fuzzy sets are generated on-line in an IRSFNN,
which helps automate rule generation. \We do not need to set any initial IRSFNN structure in
advance. The antecedent part and recurrent parameters are learned by gradient descent
algorithm. The consequent parameters in an IRSFNN are tuned using a variable-dimensional
Kalman filter algorithm. This algorithm handles inputs with variable dimensions, a
phenomenon caused by incremental rules during the structure learning process.

All of the recurrent FNNs that we have discussed so far use type-1 fuzzy sets. In recent
years, studies on type-2 fuzzy logic systems (FLSs) have drawn much attention [45-49,

78-87]. Type-2 FLSs are extensions of type-1 FLSs, where the membership functions
3

involved in the fuzzy rules are type-2 fuzzy sets. We shall refer to such rules as trype-2 fuzzy
rules or type-2 rules. The membership values of a type-2 fuzzy set are type-1 fuzzy sets.
Type-2 FLSs appear to be more promising than their type-1 counterparts in handling
uncertainties, that allow researchers to model and minimize the effect of uncertainties
associated with rule-base system, and have already been successfully applied in several areas
[49-53, 75-77, 88-91]. The uncertainties in type 2 fuzzy sets can arise from different sources.
Four types of uncertainties are described in [46] and [47]. One of them is related to the
answers of experts to the same question in different manners. The second type of uncertainty
is related to the estimation of the membership function of the same linguistic value by
different experts, the third is.connected with the noise of measurements that activate type-1
FLS, and the last one is related to the noisy data that are used to tune the parameters of type-1
FLSs. Type-1 fuzzy systems cannot directly model these types of uncertainties. Because the
membership functions of type 2 fuzzy systems are themselves fuzzy, they provide a powerful
framework to represent and handle such types of uncertainties.

Usually, the T2FNN is computationally more expensive than that of its Type-1
counterpart primarily due to the complexity of type reduction from Type-2 to Type-1. An
Interval Type-2 Fuzzy set (IT2FS) is a special case of a general type-2 fuzzy set, which
reduces the computational overhead of a general type-2 fuzzy system significantly. For an
IT2FS, the membership associated with an element is a sub-interval of [0, 1]. In this
dissertation we use the interval type-2 fuzzy modeling to simplify the computational efforts to
some extent. In [54]-[59], some interval type-2 FNNs are proposed for designing of interval
type-2 FLS. In [29, 60-69, 92], the authors have proposed automatic design of fuzzy rules,
which are used in a variety of applications. A self-evolving interval type-2 fuzzy neural
network (SEIT2FNN) is proposed in [62], which learns the structure and parameters in an
online manner. The premise and consequent parameters in an SEIT2FNN are tuned by

gradient descent and rule ordered Kalman filter algorithm, respectively. The performances of
4

SEIT2FNN are especially good for time varying systems. Several Interval type-2 FNNs [29,
67-69], which use feedback/recurrent structure are proposed for modeling of dynamic
systems. In [67], a recurrent interval type-2 fuzzy neural network (RIT2FNN-A) that uses
interval asymmetric type-2 fuzzy sets is proposed. This five-layer FNN uses a four-layer
forward network and a feedback layer. In [68], the authors propose an internal/interconnection
recurrent type-2 fuzzy neural network (IRT2FNN) structure that is suitable for dealing with
time-varying systems. All free parameters of the IRT2FNN are updated via gradient descent
algorithm. Moreover, recurrent interval type-2 FNNs with local feedbacks are proposed in [29,
69], where the recurrent property is achieved by locally feeding the firing strength of each
rule back to itself. In [29], the consequent part of the recurrent self-evolving interval type-2
fuzzy neural network (RSEIT2FNN) is a linear function of current and past outputs and inputs.
On the other hand, the consequent part in the RIENN [69] Is of Mamdani type, which is
formulated as an interval-valued fuzzy set. In many papers, it has been seen. that the
Takagi-Sugeno-Kang (TSK) type modeling can do an excellent job of modeling dynamic
systems [7, 14, 21, 62, 66, 68].

Here, we propose a Mutually Recurrent Interval Type-2 Neural Fuzzy System
(MRIT2NFS) for dynamic system identification. The MRIT2NFS has a self-evolving ability
such that it can automatically evolve to acquire the required network structure as well as its
parameters based on the training data. Therefore, to start the learning process no pre-assigned
network structure is necessary. In this proposed MRIT2NFS, we have three major
contributions as follows:

(1) We propose a novel recurrent NFS structure utilizing interval type-2 fuzzy sets. Our
network incorporates the advantage of local feedback and effective delivery of
information through mutual feedbacks in order to achieve information completeness.
In our network, the internal feedback and interaction loops in the antecedent part are

formed by feeding the firing strength of each rule back to itself and to other rules.
5

Based on the view of networks, many studies employ external registers to memorize
prior states that could cause network’s complexity when number of rules is bigger.
Therefore, a internal register is used for reducing network’s complexity.

(2) An innovative learning algorithm for the structure and parameters of the system is
suitable for handling time-varying systems, i.e., self-evolving structure and parameter
mechanism.

(3) We also propose an interesting scheme to eliminate the less-useful recurrent weights.
During the learning process, the MRIT2NFS may generate many recurrent weights
when the rule base is bigger. As a result of elimination of the less-useful recurrent
weights, our system..achieves a significant reduction in both complexity and
computational requirements.

The consequent parameters in the MRIT2NFS are tuned by a rule-ordered Kalman
filter algorithm. The antecedent parameters and all of the rule recurrent weights are
learned by a gradient descent learning algorithm. To demonstrate the performance of
MRIT2NFS, several simulations have been conducted. The performance of MRIT2NFS is
also compared with that of recurrent type-1 FNNs, feed-forward type-1 FNNSs, and other

type-2 FNNs.

Chapter 2
An Interactively Recurrent Self-evolving Fuzzy
Neural Network (IRSFNN)

2.1 Brief Survey of Existing Methods

Recently, considerable research has been devoted toward these developing recurrent
fuzzy neural networks, and these networks can be separated into two major categories. One
category of recurrent FNNs.in studies [1-9, 16], the recurrent structure uses global feedbacks.
In [2], a recurrent self-organizing-neural fuzzy inference network (RSONFIN) computes the
values of the internal feedback variables using all rule firing strengths and the consequent
parts are fuzzy sets. The recurrent structure in the RSONFIN just considers past state. For
parameter learning, the RSONFIN uses gradient descent algorithm to tune free parameters.
The authors in [3] and [4] proposed an output-recurrent fuzzy neural network where the
output values are fed back as input values. In [7], the TSK-type recurrent fuzzy network’s
structure is similar to an RSONFIN. The recurrent neuron-fuzzy network in [9] feeds back the
network output values not only globally to all the rule inputs, but also locally to the
consequent part of each rule, in the form of the autoregressive moving average with
exogenous inputs model. The recurrent high-order neural network (RHONN) [16] trained
with an extended Kalman filter algorithm was proposed for optimal control of nonlinear
systems.

The other approach of recurrent FNNs [10-14] uses feedback loops from internal state
variables as its recurrence structure. The design of local recurrent structures seems to be
simpler than that of global recurrent structures, and also obtains superior performance. In [10]

and [11], the recurrent property is achieved by feeding the output of each membership

7

function back to itself; thus each membership value is only influenced by its previous value.
The recurrent property in study [14], a recurrent self-evolving fuzzy neural network with local
feedback (RSEFNN-LF), is achieved by locally feeding the output of temporal firing strength
back to itself; thus, temporal firing strength is influenced by current and past states.

As mentioned earlier, many researchers frequently use Mandani-type or TSK-type to
construct consequent part of fuzzy rules. Many studies indicate that TSK-type fuzzy systems
significantly outperform Mandani-type fuzzy systems. However, TSK-type fuzzy neural
network does not take full advantage of the mapping capabilities of local approximation by
rule hyper-planes. In order to overcome this problem, our proposed model employs the
FLANN [22], [23] to strength the mapping ability of input space. Therefore, nonlinear
function (trigonometric function) to the consequent part shall be able to effectively
discriminate in mapping input space. Previous studies [22-28] indicated that the use of
trigonometric function obtains better performances than the use of TSK-type. As a result, in
this dissertation the marriage of a novel recurrent structure and functional-link-based NN is a

significant research for addressing the temporal problems as demonstrated by every example.

2.2 IRSFNN Structure

This section introduces the structure of the functional link neural network and
multiple-input-single-output IRSFENN. The recurrent structure in the IRSFNN uses interaction
feedback that has the ability to capture critical information from other rules. The consequent
part of each recurrent fuzzy rule is functional link and executes a nonlinear model. Next, we

have described the structure of functional link neural network.

2.2.1 Structure of a Functional-link Artificial Neural Network

The functional link artificial neural network (FLANN) is basically a single layer

8

structure in which nonlinearity is introduced by enhancing the input pattern with nonlinear
functional expansion. Therefore, the FLANN structure considers trigonometric functions. Fig
2.1 shows the structure of FLANN, where each of the input patterns is passed through a

functional expansion block yielding a corresponding N -dimensional expanded vector.
Suppose that for the input pattern X is of a two-dimensional input (x,X,) the expanded
inputs are using trigonometric functions to be taken. The expanded input variables can be

denoted as ¢ =(1, x,,sin(wx,) ,Cos(7X,), X, Sin(zX,) ,CoS(7X,)) .

J_>J’V

Fig. 2.1. Structure of FLANN.

The theory of the FLANN for multidimensional function approximation has been discussed

and analyzed below [22, 23]. Let us consider a set of basis functions B ={@, € ®(A)}, .« -

with the following properties; (1) ¢, =1 ; (2) the subset B, :{(pkeB}kN:1 is a linearly

N
independent set, that is, if Z(pkwkzo, then w, =0 for K=1---,]; and (3)

k=1

f 1/2
supj[zliﬂ”gokni] <. Next, B, :{(pk}kN:1 is a set of a set of basis functions to be

considered, as shown in Fig. 2.1. Hence, output of functional expansion block is composed by

(P, Py, ...,P\)e B, with the following input—output relationship for the j th output.

¥, =p(S)); S; :Zqokjwk(x) (2.1)
k=1

9

where XeAc®R" |, that is, X=(X,%, %) is the input dimension and

W = (Wjp,Wjp e Wy)" is the weight vector associated with the jth output of the FLANN. The
vector S is a matrix of linear outputs of the FLANN, and the output vector is § € R", that is,

)7 = ()71,)72, ey)7\,)T . The nonlinear function can be denoted as

p() stanh) 22

In the IRSFNN model, the corresponding weights of functional link bases do not exist in the
initial state, and the amount of the corresponding weights of functional link bases generated
by the online learning algorithm_is consistent with the number of fuzzy rules. Section 2.3

describes the self-evolving technology.

Layer6

Layer5

Layerd

Layer3

Layer2

Layer1

X

Fig. 2.2. Structure of the proposed IRSFNN model, where each recurrent fuzzy rule in layer 4
forms a locally and globally recurrent structure and each node in layer 5 combines
functional-link-based.

10

2.2.2 Structure of IRSFNN

This sub-section describes the IRSFNN model that employs FLANN to the consequent
part of the IRSFNN for enhancing network’s performance. Fig 2.2 shows the proposed
six-layered IRSFNN structure. The detailed function of each layer is discussed next.

For a clear understanding of the mathematical function of each node, we will describe
function relationship between each layer. The net input to the ith node in layer | is represented

)

| .
as Ui(and the output value is represents as O

Layer 1 (Input layer): The inputs are crisp values and X = (X,==-,X,) are fed as inputs

to this layer. This is in contrast to feed-forward FNNs where both current and past states are
fed as inputs to input layer when such networks are used to model time-varying systems.
Weight requiring adjustment in this layer is absent.

Layer 2 (Fuzzification layer): Each node in this layer defines a Gaussian membership

function (MF) and performs a fuzzification operation. For the i th fuzzy set A} on the input

variable Xj, j =1,...,n; a Gaussian MF is computed by Eq. (1.3)

2\ 2
i 1 u(_2) -m
#; (%) =0 =exp —ELT} , anduf? = Of (2.3)
J

Layer 3 (Spatial firing layer): Each node in this layer represents one fuzzy rule that
computes the firing strength. Because this layer does not depend on any temporal input, we

call this layer “spatial” to distinguish it from the “temporal” firing strength computed in the

[
next layer. For the obtained spatial firing strength ¢ , each node performs a fuzzy meet

operation on inputs it receives from layer 2 using an algebraic product operation.

There are M nodes in this layer, and the spatial firing strength is computed as

11

n
i@ _ @) @ _ Q@
¢ =0 =] Juf?, and uf? = O] (2.4)

j=1
where M is the total number of rules.

Layer 4 (Temporal firing layer): Each node in this layer is a recurrent rule node, which
formulates an internal feedback (self-loop) and external interaction feedback loop. The ideal
of temporal firing strength is extended from the concept of Infinite Impulse Response (IIR)
filter that formulates recursive function of prior states and current observation. The output of a
recurrent rule node is a temporal firing strength that depends not only on current spatial firing
strength but also on the previous temporal firing strength. The temporal firing strength is a

linear combination function expressed as

O = > (-0t =)+ @A~y -4, and " =0 (55

k=1
that is,

VO = (4w D)+ A7) -4 0),

(2.6)
I=1---,M andq=1,---,n,

M

cd

where 7 =Z/1.E and Ay :Vlk (0<Cj <1) is the rule interaction weight between
k=1

itself and other rules. For the updated recurrent weights, the proposed approach uses a

gradient descent algorithm to derive the optimal values. The recurrent weights 18 determine

the compromised ratio between the current and previous inputs to the network outputs.
Layer 5 (Consequent layer): Each node in this layer is an optional node, called a

consequent layer, and can be TSK-type or functional-link-based fuzzy rules. The weight of the
link from a node in layer 4 to one in layer 5is a3, for q=21---,n, and i=1---,M . For
the TSK-type IRSFNN, the node output is a linear combination of current input states

=q .
X,y X, . The output of TSK-type Vi of the ith rule node connecting to the (th output

variable is computed as follows:
12

n

A6 _ (4) 4 _ AW

vi =0® =>"a!-ul”, and u{” =Of 2.7)
j=0

where X, =1.

For the functional-link-based IRSFNN, the output uses a functional expansion as given
by the trigonometric polynomial basis function

[x, sin(zx) cos(zx) X, sin(zX,) cos(zX,)] for two-dimensional input variables.
%q

The output of functional-link-based Vi (t) is expressed by

~q Mt

(5
Vi :Oi()zzai?(°¢k’ n, =3x(N+n,) (2.8)
k=0

where @ =1.
The coefficient 1, denotes lag numbers of system output or control input. If we do not use

extra lagged values (N, =0), @ = (X,Sin(zx),cos(zx), -, X,,,Sin(7X,),cos(7X.))

and K=1::-,n,. The constant N; is an amount of basis expansion according to input

variables.

Layer 6 (Output layer): Each node in this layer corresponds to one output variable. For

defuzzification operations, the th output layer node computes the network output variable

Y, by using the weighted average method.

For the TSK-type IRSFNN, the output can be expressed as

M el M n
> 090 D)) alx
yq _ O(e) — i:lM i=1 j=0

>0 Ywe

i=1

, 9=1---,n, (2.9)

where v denotes the consequent value and a denotes the parameters.
For the functional-link-based IRSFNN, the output is

13

M _ M n
Zoi(4)oi(5) Z‘//iq (t)- Zai(ll "9
y =0® = i:1|v| _ =l k=0

q

Z Oi(4) Z '//iq (t)

i=1

q=L---,n, (2.10)

where V denotes the consequent value and @ denotes the parameters.

2.3 IRSFNN Learning

In this section, two phase learning is used for constructing the IRSFNN. There are no
rules in an IRSENN. All of the recurrent fuzzy rules evolve from the simultaneous structure
and parameter learning after receiving each piece of training data. Fig. 2.3 presents flowchart
of the IRSENN’s learning-scheme. The parameter learning phase describes the use of a

gradient descent algorithm and a variable-dimensional Kalman filter algorithm.

Initialization

Structure Learning

s X; the first
input data ?

Generate a new rule with

sk s
O — x

M@+ 7
o :ﬁ“‘.\‘_ 7m‘.|

Fig. 2.3. Flowchart of the structure and parameter learning of the IRSFNN.

14

2.3.1 Structure Learning

The first task in structure learning is to determine whether a new rule should be extracted
from the training data and to determine the number of fuzzy sets in the universe of discourse

of each input variable because one cluster in the input space corresponds to one potential

fuzzy rule, in which mij represents the mean and G} represents the variance of that cluster.

The spatial firing strength ¢i in (2.4) is used to determine whether a new rule should be

generated. The first incoming data point x is used to generate the first fuzzy rule, and the

mean and width of the fuzzy membership functions associated with this rule are set as:
s ik .
mj — Xj and O = Ofiyeq., J =1---,n (2.11)

where Oyieq IS @ predefined value (we use Opye.q =0.3 in this paper) that determines the

width of the memberships associated with a new rule. For subsequent new incoming data x(t)
we find

| =arg M f. (t) (2.12)

where M(t) is the number of existing rules at time t. If ' ()< f. (T, is a pre-specified

threshold), then a new fuzzy rule is generated and M(t+1)=M(t)+1. In this approach, if the
present data do not match well according to the existing rules, then a new rule is evolved. We
also use the same procedure to assign the mean of fuzzy sets as we have done for first rule.

For a new rule, the mean and width of corresponding fuzzy sets are defined as

M (t)+1
i

m =X; and aj“"“)”:ﬂ-‘xj—m”, j=1---,n (2.13)
where S is an overlap coefficient. Eq. (1.13) indicates that the initial width is equal to the

Euclidean distance between current input data X and the center of the best matching rule for
this data point times an overlapping parameter /£. In this study [is set to 0.5, so that the

width of new fuzzy set is half of the Euclidean distance from the best matching center, and a

15

suitable overlap between adjacent rules is realized.

2.3.2 Parameter Learning

In addition with the structure, all free parameters in an IRSFNN are also learned,
including those newly generated and previously existing. For clarification, we consider the

single-output case and define the objective to minimize the error function as
1 2
E =E[yq -y, ®] (2.14)

where yq(t) represents the IRSFNN output and Y, (t) represents the desired output.

Parameters in the consequent-part of the TSK-type IRSFNN are learned based on the
variable-dimensional Kalman-filter algorithm as discussed in [14]. According to [14], Eq.

(2.10) of a functional-link-based IRSFNN can be re-written as

Yo = WOk 3r (2.15)
where
r n+l nt:l]
B q q ar q
s, 0, D000, | e
YO D Yl Yl
L i=l i=1 i=1 i=1 N
and
- T
arL = [afof . aiqnt Jee "al(\1/IO’. . .’a&nt :| c me(nﬁl)xl (2.47)
and
(90,0, 0, 1= [L X, sin(zx,), €os(7), -+, X, Sin(zX,), cos(zx,)] (2.18)

The consequent parameter vector arL s updated by executing the following

variable-dimensional Kalman filtering algorithm:

16

Ak (t+1) = @k () + S+ e (E+D(Y, (E+D) 7, (E+DaRL D)),

S(t+1) = l S(t) - S(t)l/fFuL (t +l)l/7m Et +1)S(t) (2.19)
K K‘H//IuL (t+D)S(t)we, (t+1)

where K is a forgetting factor and lies in [0,1] (& =0.99995 in this paper). Once a new rule

is generated, the dimension of the vectors g, , e » and the matrix S increases

accordingly. When a new rule evolves at time t+1, the new vector ¥, (t+1) becomes

n+1 n+1
_ q t q t q t q t (M
W(t+1)|TEuL: M‘//l() A0 Ml//l() e ?\[A/Mﬂ() s VM/M+1() (pm eiRlX(n‘ Dx(M+1) (2.20)
Z‘//iq(t) ZWiq(t) Z‘//iq(t) Z‘//iq(t)
i=1 i=1 i=1 i=1

An IRSFNN augments ag, (t) and S(t) on the right-hand side of Eq. (2.17) as follows:

) _ T
aFUL_neW = [aFUL, aE:IM +1)O 0 . .’ a(qM +l)nt] e m(M +1) (nt +1) 1 (221)
and

S, (t) =block diag[S(t) C-1]e RM DM) 59y

where C isa large positive constant (we use C=10).

This paper uses resetting operations to keep S bounded and to avoid divergence
problems. After a period of training, the matrix S is re-set as- C - | . Simulation results in
Section 2.4 show that the learning of the IRSENN achieves good training and test
performance. A gradient descent algorithm tunes the antecedent parameters of the IRSFNN.

This gradient descent algorithm is performed once for each piece of incoming datum.

By using a gradient descent algorithm for the updated recurrent weights, we have

oE
Ay (t+1) = A3 (1) _na—ﬂ,ﬁ (2.23)

where 77 is the learning rate and

17

OE OE 0y, Oy
O Oy, Oy O

= (g = Ya) (4 = ¥) ({1 -1) — ¢ (t))/Z%q (t)

The antecedent part of parameter m‘j is updated as

i i oE

j

where

0E OE 0y, oy a¢" o,
om. oy, owl-o¢ oyl om!

J

(v = o) 20— m))
= (yq 5 yd)'M—q'(1—7/iq)'¢ %
Z‘//iq ® (O-j)
i=1
The antecedent part of parameter O ; is updated as
i i oE
g
where
0E ¢E .0y, oy’ o4 ou
0oy Oy, dyit@¢' ou; 0o
(V' —y,) L 20 —mp)’
= (yq = yd)'M—q°(1_7iq)'¢ J—usj
Z‘/’iq (t) (Gj)
i=1

2.4 Simulation Results

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

This section presents five examples to assess the performance of IRSFNN and

MRIT2NFS. These simulation studies include two types of dynamic system problems

(Examples 1-2) and three types of prediction problems (Examples 3-5). These examples are

18

also used to compare the performance of the IRSFNN with those of existing recurrent FNNS.
For dynamic system identification, the recurrent structure in the proposed approach shows the

advantages, as listed in Tables 2.1-2.5.

2.4.1. Example 1 (Dynamic System ldentification)

This example uses an IRSFNN to identify a nonlinear dynamic system, which is a
nonlinear plant with multiple time delays that has been studied in [7]. The dynamic system is

described by the following difference equation
Yot +D =1 (y, (1), y,(t-1),y,({t-2),ut),u(t=1)) (2.29)
where

) - X1X2X3X5 (Xs —1)X4
B L_.%K
2 3

f(xi’ X21 X3 X4: X5 (2.30)

The dynamic system output depends on three previous outputs and two previous.inputs. In

this study, only two current values, u(t) and Y,(t), are fed as input to the IRSFNN input
layer. Here, we do not use extra lagged values (n,=0) in the consequent part. The desired

output of the IRSFNN is 'y, (t+1) . In the training procedure of the IRSFNN, we follow the

same computational protocols as in [7] and [14], i.e., we use only 10 epochs, with 900 time
steps in each epoch. In each epoch, the first 350 inputs are random values uniformly

distributed over [-2, 2] and the remaining 550 training inputs are generated from a sinusoid,

1.05sin(zt/45) .

We follow this strategy for an online training process because a similar procedure was

followed in [14], where the total number of online training time steps is 9000. The structure

learning threshold f, decides the number of rules to be generated. After training, three rules

are generated when the structure learning threshold is set to 0.01. Table 2.1 shows the

19

root-mean-squared error (RMSE) of training data. The testing input signal u(t) is guided by

sin(ZY), t < 250
25
1.0, 250 < t<500
u(t) =1-1.0, 500 < t<750 (2.31)

. ot . 7t
0.3sin(—) +0.1sin(—
(25) (32)

+o.6sin(f—(;), 750 < t<1000

Fig. 2.4 shows a comparison of the actual output with the output produced by the IRSFNN for
the test input. Fig. 2.5 shows the error difference between the actual plant output and the
IRSFNN. Figs. 2.4-2.5 show a very good match, suggesting that IRSFNN architecture
combined with the proposed. system identification scheme adequately identifies the dynamic
system with feedback.

Table 2.1 shows the performance of the IRSFNN compared with the other recurrent networks,
including a recurrent self-organizing neural fuzzy inference network (RSONFIN) [2], a
wavelet recurrent fuzzy neural network (WRFNN) [11], a TSK-type recurrent fuzzy network
(TRFN) [7], a HO-RNFS [6], and a recurrent self-evolving fuzzy neural network with local
feedback (RSEFNN-LF) [14].

The consequent part in the RSEFNN-LF is composed by a first-order TSK-type that
performs a linear combination of input variables. As in the IRSFNN, all these networks use
the same information including the number of input variables, training data, test data, and
training epochs. For a fair comparison, the total number of parameters of the IRSFNN is kept
similar to that of the compared networks. The result indicates that the IRSFNN achieves better

identification than the other recurrent networks.

20

05

Qutput

05

—ideal output
IRSFNN-FuL
RSEFNN-LF

— TRFN

100 200

300 400

500 600

Time Step

1000

Fig. 2.4. Outputs of the dynamic plant (blue line), IRSFNN (red line), RSEFNN_LF (green
line), and TRFN (black line) in Example 1.

£
Time Step

Fig. 2.5. Test errors between the MRIT2FNN and actual plant outputs.

TABLE 2.1 PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR DYNAMIC
SYSTEM IDENTIFICATION IN EXAMPLE 1

Models RSONFIN | WRFNN | HO-RNFS | TRFN | RSEFNN-LF | IRSFNN | IRSFNN
[2] [11] [6] [7] [14] (TSK) (FuL)

Rules 4 5 3 3 4 3 3

Number of 36 55 45 33 32 30 42

parameters

Training 0.025 0.064 0.054 0.032 0.020 0.015 0.011

RMSE

Test 0.078 0.098 0.082 0.047 0.040 0.036 0.031

RMSE

*FuL denotes Functional-Link-based

21

2.4.2. Example 2 (Dynamic System lIdentification)

This example considers the use of the IRSFNN for dynamic system identification with

longer input delays that is described by
y,(t+1) =072y (t) +0.025y (t-)u,(t -1) +0.01u,(t-2) +0.2u,(t -3) (2.32)

This plant is the same as the one used in [7]. This plant output depends on four previous

inputs and two previous outputs. As shown in Example 1, the current variables u(t) and

yp(t) are fed as inputs to the IRSFNN input layer. In this example, we do not use extra
lagged values (n, =0) in the consequent part. The training data and time steps are the same as

those used in Example 1. When the structure learning threshold f,, is set to 0.05, three rules

are generated. The test signal used in Example 1 is also adopted here to assess the identified
system. Fig. 2.6 shows the outputs of the plant and the IRSFNN for these test inputs. Fig. 2.7
shows. the test error between the outputs of the IRSFNN and the desired plant. Table 1.2
shows the number of rules, total number of parameters, and training and test RMSEs of the
IRSFNN. The performance of the IRSFNN is compared with that of recurrent models,
including an RSONFIN [2], a TRFN [7], @ WRFNN [11], and an RSEFNN-LF [14]. These
models use identical numbers of input variables, training data, test data, and training epochs
as designed by the IRSFNN. For a fair comparison, the numbers of parameters in the IRSFNN
have been kept similar to those in these compared models.

Apparently in Table 2.2, the RSEFNN-LF only uses local source, which is not enough to
capture critical information for the system, thus the test error of the IRSFNN_TSK is lower
than that of the RSEFNN-LF, even using fewer rules. Here, we also investigate the
performance comparison of the IRSFNN-TSK and the IRSFNN-FuL, and results show that
the IFSFNN-FuL achieves better performance. Finally, the results show that the test RMSEs

of the IRSFNN-FuL and IRSFNN-TSK are smaller than those of the other networks.
22

RSEF!
—TRFN

—ideal output
IRSFNN-FuL

NN-LF

0 100

200 300

400

500
Time Step

600

700 800

900

1000

Fig. 2.6. Outputs of the dynamic plant (blue line) and IRSFNN-FuL (red line) in Example 2.

Fig. 2.7. Test errors between the IRSFNN-FuL and actual plant outputs.

TABLE 2.2 PERFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR DYNAMIC
SYSTEM IDENTIFICATION IN EXAMPLE 2

Models RSONFIN | WRFNN TRFN RSEFNN-LF | IRSFNN IRSFNN
[2] [11] [7] [14] (TSK) (FuL)

Rules 6 5 3 4 3 2

Number of 36 55 33 30 30 26

Parameters

Training RMSE 0.03 0.057 0.007 0.016 0.014 0.011

Test RMSE 0.06 0.083 0.031 0.028 0.026 0.022

23

2.4.3. Example 3 (Chaotic Series Prediction)

As introduced in [30], the IRSFNN is applied to predict the Henon chaotic sequence of a
dynamic system with one delay and two sensitive parameters generated by the following
equation:

Yo+ =-P-y, (1) +Q-y,(t-1)+1.0 (2.33)

Eqg. (2.33), with P=1.4 and Q=0.3, produces a chaotic attractor. The initial states
[y,®,y,(0)]=[0.4,0.4] generate 2000 patterns, with the 1000 patterns used for training and

the remaining 1000 patterns used for testing. In this example, we do not use extra lagged
values (n,=0).in the consequent part. The training procedure uses the plant output vy, (t+1)
as the desired output y,(t+1). The system has a single output so that only output variable

y,(t) isfed as input to the IRSFNN. The training epoch in the IRSFNN is set to 90. The

structure learning threshold f, is set to 0.2 and number of rules generated is 5 after the

training procedure. Fig. 2.8 shows the phase plot of the actual and IRSFNN predicted results
for the test patterns

o ideal output
RSEFNN-LF

it e Ry o TRFN
o ~ Oy IRSFNN-FuL

Fig. 2.8. Results of the phase plot for the chaotic system(blue), RSEFNN_FL (green),
TRFN(black) and IRSFNN-FuL (red).

Table 2.3 includes the network size, parameter numbers, and training and test RMSEs of the

IRSFNN. The TSK-type IRSFNN and functional-link-based IRSFNN both use four rules. We

24

find that the latter achieves greater learning performance. In a meaningful comparison, the
number of parameters of the IRSFNN must be similar to that of compared models. The
compared recurrent models include a recurrent FNN [12], a wavelet recurrent FNN [13], a
TSK-type recurrent fuzzy network [9], and a recurrent self-evolving FNN with local feedback
[16], where the locally recurrent is a simple structure but its performance is superior to that of
other compared models. The training epochs, training data and test data of the compared
models are identical to the conditions of the IRSFNN. Table 2.3 shows that the IRSFNN

exhibits the best performance by using an interactively recurrent structure.

TABLE 2.3 PEFORMANCE OF IRSFNN AND OTHER RECURRENT MODELS FOR CHAOQOTIC

SEQUENCE PREDICTION IN EXAMPLE 3

Models RFNN WRFNN TRFN-S RSEFNN-LF IRSFNN IRSFNN
[10] [11] [7] [14] (TSK) (FuL)

Rules 15 7 6 9 4 3

Number of 60 70 66 45 32 40

Parameters

Training RMSE 0.463 0.191 0.028 0.032 0.017 0.016

Test RMSE 0.469 0.188 0.027 0.023 0.015 0.014

2.4.4. Example 4 (Mackey-Glass Chaotic Series Prediction)

The time series prediction problem used in this example is the well-known
Mackey-Glass chaotic series. The Mackey-Glass time series is generated from the delay

differential equation:

dx(t) 0.2x(t—7)
dt 1+x°(t—1)

—0.1x() (2.34)

where 7 =17 and the initial value is given as x(0)=1.2. Four past values are used to predict
X(t), and the input-output data format is [Xx(t —24), x(t —18), x(t —12), x(t —6); x(t)] . As

discussed in [3, 9, 14, 16], 1000 patterns are generated from t=124 to t=1123, with the first

25

500 patterns being used for training and the remaining 500 for testing. The IRSFNN’s training

epoch is set to 500, and its structure threshold f, is set to 0.001. After 500 epochs of

training procedure, seven rules are generated. The four input dimensions contain 28 fuzzy sets.
Fig. 2.9 displays the prediction results of the IRSFNN-FuL, and Fig. 2.10 shows the
prediction error between desired output and the IRSFNN. Figs. 2.9-2.10 show an excellent
match, suggesting that the proposed scheme in the network indicates and excellent ability to
predict the Mackey-Glass time series. Table 2.4 shows the performance, including rules, a
total number of parameters, and training and test RMSE for the TSK-type and
Functional-ink-based IRSFNNs.

Table 2.4 lists the performance comparison of the IRSENN with recently developed
fuzzy systems designed by particle swarm algorithms or neural learning ([1], [7], [12], [14],
and [31-37]). Both local linear wavelet NN (LLWNN) [36] and fuzzy wavelet NN (FWNN)
[37] employ the wavelet neural network in the consequent part, which has the ability to
localize in both time and frequent space. The compared models with particle swarm algorithm
were proposed as a clustering-aided simplex particle swarm optimization (CSPSO) [34], a
self-evolving evolutionary learning algorithm (SEELA) designed for neural fuzzy inference
system [32] and FLNFN-CCPSO [35]. The FLNFN-CCPSO also uses the function-link-based

neural network to the consequent part in the FLNFN-CCPSO.

T T T - . : -
13 f
W
* +
&
" ¢ % 4
LA f i L4 7'
¥ M s H f" (] M N i k
& $e s ! . H e : § g !
) $ I 3 R e b s 8 $ e b
1 E ¥ 3 13 e ¢ 9 AN $ 8 r
§ 4 . &
SRR TR RN RERR R A,
Bt ¢ 0P P R OF 2 5 e £ § 9
L TP A R ¢ g7 &g g
o |5 f 5 te %o 2 : ¢ Y %o : 5 $
'] " & g * IRl s @ El e * $ ¢
ey * iR LI ? * T P * g M P ¢
* e © g ¢ + 1K) H ¢ by M
* * L L * %, ts LN $e 4
wEeE ¥ 18 § . & iy P 3 !
it [¥ M L i, ia
4 38 N L % [L
e ? [% ideal outout | @ & 8¢ 4.
oF #4 RSFANFUL| & ® 2‘ P
08 ¥ ¥ RSEFNMLF e‘; ; I
1 TREN ;;
[| | |§ | | | |

Fig. 2.9. Test result of chaotic series prediction using IRSFNN-FuL.
26

24 4
2
i

2

300

20
Time Step

Fig. 2.10. Prediction errors between the IRSENN-FuL and actual outputs in Example 4.

TABLE 2.4 PERFORMANCE OF IRSFNN AND OTHER MODELS
FOR MACKEY-GLASS CHAOTIC SEQUENCE PREDICTION
PROBLEM IN EXAMPLE 4

Models Rules Number of Train Test
parameters RMSE RMSE
D-FNN [12] 10 100 - 0.0082
G-FNN [1] 10 90 - 0.0056
Recurrent ANFIS — — — 0.0013
[31]
SEELA [32] 9 198 0.0067 0.0068
SuPFuNIS [33] 10 94 - 0.0057
TRFN-S [7] 5 95 - 0.0124
CSPSO [34] 10 104 - 0.0064
FLNFN-CCPSO - - 0.0083 0.0084
[35]
LLWNN+Hybrid - 110 0.0033 0.0036
[36]
FWNN [37] 16 128 0.0023 0.0023
RSEFNN-LF [14] 9 94 0.0032 0.0031
IRSFNN (TSK) 5 90 0.0040 0.0039
IRSFNN (FuL) 4 100 0.0002 0.0002

The proposed models, especially the IRSFNN-FuL, show superior performance to

compared models. Although the performance of the IRSFNN-TSK is similar to that of

27

RSEFNN-LF and FWNN, rule number used in the IRSFNN-TSK is fewer than those in
RSEFNN-LF and FWNN. The FWNN does not use recurrent structure to memorize previous
states and only considers wavelet characteristic in the consequent part to address dynamic
systems. Hence larger rules should be taken by FWNN to obtain good performance. Unlike
the FWNN’s consequent, the consequent of IRSFNN-TSK uses a simple structure of linear
combination of input variables. For a fair comparison of using nonlinear system in the
consequent part, the test RMSE of IRSFNN-FuL is 11 times lower than that of FWNN.
Finally, our proposed IRSENN-FuL has obtained the best performance among the

competitors.

2.4.5. Example 5 (Prediction of Box-Jenkins Time Series)

In this example, we consider the use of a real word data set to assess the IRSFNN
performance. Many literatures [31, 36-41] use Box-Jenkins time series to assess the
performance of real word data. Box-Jenkins time series data (gas furnace data) was
downloaded from UCI repository, which were recorded from a combustion process of a
methane-air mixture [36, 42], describes the operation of a gas furnace process with a gas flow

rate u(t) and a concentration of CO, Y(t). To predict the process, u(t—4) and y(t—1)
are fed as inputs to the IRSFNN for predicting output y(t) . If the appropriate lag number n,

is known in advance, then more past values can be included in the IRSFNN-FuL consequent
part for obtaining a greater performance. Therefore, the past value u(t—3),i.e.,n,=1, is used
for the IRSFNN-FuL consequent part. The Box-Jenkins time series data provide the 296
available input-output pairs.

For a meaningful comparison, the training samples from the first 200 pairs are used, and

the remaining 92 pairs are used for the test samples to predict IRSFNN performance. The
structure learning threshold fth is set at 0.01, and the learning factor 77 is set at 0.08. After

100 training epochs of an IRSFNN-FuL, four rules are generated. The training epoch in the
28

IRSFNN is the same as that in these existing models. As in an IRSFNN, the compared models,
except the Recurrent ANFIS [31], LLWNN [36] and HyFIS [38], utilize the identical data set
which is normalized. The three models, Recurrent ANFIS, LLWNN and HyFIS, use identical
data set but with a scaled down output to estimate the performance. Hence they could obtain a
lower test RMSE than other compared models. We could assume that the performance of
IRSFNN_TSK is superior to that of the above models in terms of the same training and test
data set. Fig. 2.11 shows the prediction results of the IRSFNN. Fig. 2.12 displays the
prediction error between the actual time-series output and the IRSFNN output. As shown in
Example 4, Table 2.5 lists the parameter numbers, training RMSE, and test RMSE. Table 2.5
also shows rules, a total number of network parameters, and training and test error of these
compared models, including-an-HyFIS [38], a local linear wavelet NN with hybrid learning
(LLWNN-+hybrid) [36], a recurrent ANFIS [31], a tree-based neural fuzzy inference system
(TNFIS) [39], a Fuzzy neural network (FUNN) [40], a fuzzy wavelet NN (FWNN) [37], and
TSK-type recurrent fuzzy network with supervised learning (TRFN-S) [7]. As can be seen in
Table 2.5, the IRSFNN-TSK utilizes fewer rules and achieves a similar performance with the
FWNN. For a fair comparison in the consequent part, the test error of IRSFNN-FuL is 31
times lower than that of FWNN. Generally, the results from real world data indicate that the

IRSFNN achieves smaller test RMSE than the other compared models.

— ideal output
IRSFNN-FUL
RSEFNN-LF

—TRFN

Output

50
Time Step

Fig. 2.11. Test result of Box-Jenkins series using IRSFNN-FuL with three rules in Example 5.
29

E)
Time Step

Fig. 2.12. Prediction errors between the IRSFNN-FuL and actual outputs in Example 5.

Table 2.5 PERFORMANCE OF IRSFNN AND OTHER MODELS FOR
BOX-JENKINS PREDICTION IN EXAMPLE 5

Models Rules Number of Train Test
parameters RMSE RMSE
HyFIS [31] — - - 0.0205
Recurrent ANFIS | — — 0.006 0.0193
[23]
TRFN-S [9] 5 65 0.0524 0.0482
TNFIS [32] - 43 0.0245 0.0230
FuNN [33] — - - 0.0226
LLWNN+Hybrid | - 56 - 0.0138
[28]
FWNN [29] 9 57 0.0189 0.0279
RSEFNN-LF [16] | 7 56 0.0172 0.0344
IRSFNN (TSK) |5 65 0.0121 0.0297
IRSFNN (FuL) 3 51 0.00062 0.0009

30

Chapter 3
A Mutually Recurrent Interval type-2 Neural
Fuzzy System (MRIT2NFS)

3.1 Brief Introduction of Type-2 Fuzzy Systems

This section describes the structure of a Type-2 FLS, which is a system that effectively
addresses uncertainties associated with fuzzy rule base, but does not explicitly account for
input measurement uncertainties. The entire structure of a type-2 FLS is exhibited in Fig. 3.1.
The overall structure of s.type-2.FLS is very similar to that of a type-1 FLS, the major
structural difference being that the defuzzifier block of a type-1 FLS is replaced by the output
processing block in a type-2 FLS. The output processing block includes type-reduction and

defuzzification. The detailed mathematic function of each block is introduced below.

Output Processing
™ ey J . /
i i
I ~ A ! Crisp output
Rules t | Defuzzifier [H———> ¥

1
: 7 i

o i ’ i

Crisp inputs - I i Type-reduced

7o g | [Tpeadice 4o
! S ¥ pe-
- A i
] i
- _= 1 .
A
Fuzzy mput sets . Fuzzy output sets
>| Inference

Fig. 3.1. Structure of a Type-2 FLS

(1) Fuzzifier: Let a crisp value become a type-2 fuzzy set. Fig 3.2 shows different types of
type-2 fuzzy sets, including (a) Gaussian MF with uncertain spread, (b) Gaussian MF

with uncertain mean, (c) sigmoid MF with inflection uncertainty; (d) triangular type-2
31

MF; (e) Granulated sigmoid MF with granulation uncertainties. In this paper, a Gaussian

type-2 fuzzy set that is differentiable with uncertain mean is widely used.

e

Upper MF

Footprint of
uncerdinty
(FOY)

Low¢r MF

0 x 0 0 x 0 X

Fig. 3.2. The shaded region of FOU for different type-2 fuzzy sets; (a) Gaussian MF with
uncertain spread; (b) Gaussian MF with uncertain modal value; (c) sigmoid MF with
inflection uncertainty; (d) triangular type-2 MF; (e) Granulated sigmoid MF with granulation
uncertainties.
(2) Rules: Consider a type-2 FLS have n input variables X, € X;,---,X. € X, and one
output variable y eY and hence, the rules can be expressed as follows
R':IFx isA and - and x, isA,, THENy isG' i=1---,M (3.1)
where M is a total number of rules. This rule represents a type-2 relation between the

input space X, x---x X, and the output space, Y, of the type-2 FLS.

(3) Inference Engine: The inference engine in a type-2 FLS is very similar to that in a
type-1 FLS. The inference engine combines rules and gives a mapping from input type-2

fuzzy sets to output type-2 fuzzy sets. To do this procedure need to compute unions and

32

intersections of type-2 fuzzy sets, as well as compositions of type-2 relations. Let

A X A: =F'; then, Eq. (3.1) can be re-written as
R:Ax--xA G =F »G (3.2)
Therefore, the membership function can be expressed as
Mo (% Y) = e s (X, Y) (3.3)
In general, we only use the product or minimum t-norms for the meet. Each rule R'
determines a type-2 fuzzy set B' = ,55(oR' and hence, the input-output relation is as

follows:

H (W)= g =g, () = (J Lz, 002 (%, V)] (3.4)

xe X

(4) Type-Reduction: As- the type-2 fuzzy output sets are derived, the system must be
processed next by the output processor. The output processor consists of type-reduction
and.defuzzification. For the first operation of the output processor, it represents a
mapping of a type-2 fuzzy set into a type-1 fuzzy set. Type-reduction methods, including
centroid, center-of-sums, height, modified, and center-of-sets type-reduction, have been
discussed. Here, we also concern computational complexity of type-reduction methods.
Fig 3.3 illustrates the location of five type-reduction methods on a complexity scale. As
seen by Fig. 3.3 the centroid and center-of-sums type-reducers are more computational
load. Apparently, height and modified height type-reducers will significantly reduce the
computational complexity; however, there can be a problem with only one rule

generated. As a result, the center-of-sets type-reducer is superior to other type-reducers.

-Height c ofosets -Center-of-sums
-Modified Height -Center-of-sets -Centroid

simplicity Complexity
Fig. 3.3. The plots of complexity comparison with five type-reducers

33

(5) Defuzzification: An interval set is given from the completed type-reduction process, and

then, we defuzzify it based on the average of y, and y,. Finally, the defuzzified

output of type-2 FLS is

y(x) = % (3.5)

3.2 MRIT2NES Structure

This section introduces the structure of an MRIT2NFS. This multi-input multi-output

(MIMO) system consists of N, inputs and N, outputs. We represent the input and output of
the dynamic system by u and Yy, ., respectively, where u=(u1,---,unu)T and

yp=(yp1,---,ypno)T. Fig. 3.4 shows the proposed six-layered MRIT2NFS structure. The

detailed function of each layer is discussed next.

Layer 1 (Input layer): The inputs are crisp values. Only the current state

x(t) = (u(t), y,(t))is fed as input to this layer. This.is in contrast to usual feed-forward FNNs

where both current and some past states are fed as inputs to input layer when such networks
are used to model time varying systems. To further clarify the inputs used in the system, we
consider a system with one control input u(t) and one system output y(t). Then at t=1, u(1)
and y(1) are used as inputs and the system output computed by the rules consequents is y(2).
Similarly at t=2, u(2) and y(2) are used as inputs and the computed system output is y(3).
Thus, current input and output, both are used to define the rule antecedent. Note that, this is a

fan-out layer and hence there is no weight to be adjusted in this layer.

34

Layer6

Layer5

Layer4

Layer3

Layer2

Layer1

Fig. 3.4. The proposed six-layer MRIT2NFS structure, where each recurrent fuzzy rule in
layer 4 forms an internal feedback and an interaction loop and each node in layer 5 performs a
linear combination of current and lagged network inputs.

Layer 2 (MF layer): Each node in this layer performs fuzzification of one of the (n, + n,)

input variables using an interval type-2 membership function (MF), where n, and n, are the

numbers of control inputs and system outputs. For the i interval type-2 fuzzy set A} on the
input variable x; , j=1,...,(n, +n,), a Gaussian primary MF having a fixed standard

deviation ¢ and an uncertain mean that takes on values in [m;,m,] is used as shown in Eq.
(3.6):

1 Xi_mij 2v _ i . i i i
M zexp{—E(—Gi)’}=N(mi, o x;), m;ye[my, m,] (3.6)
j

Fig. 3.5 depicts one such membership function [52]. The uncertainty associated with the
35

primary membership can be modeled in a more general manner. For example, we can consider
uncertainty about the center of the membership function as well as that about the spread of the
membership function. Here, following the protocol used in most type-2 neural fuzzy systems in
the literature, we assumed that there is uncertainty only about the mean (the mean is not known
with certainty) of the Gaussian membership function. This choice yields an interval type-2
fuzzy set as depicted in Fig. 3.5.

my m,

Fig. 3.5. An interval type-2 fuzzy set with Gaussian shape whose center (mean) is not known

with certainty (the mean has an uncertainty). The mean can vary between m; and my, m; < ms.

The footprint of uncertainty (FOU) [52] (the shaded region in Fig. 3.5) of this MF can be

represented by the two bounding membership functions: upper MF, ﬁ} and lower MF, /_1} :

where
N (M}, &5 %;), X; < mj,
Zx)=1 1 mj;, < X;<m, (3.7)
N(mi,, o} X;), X; >m,
and
o m', +m'
N(m',,otix,), X, 5%
H; (XJ): m +m (3.8)
N(m';, ot x,), X, >—= > 12

36

Thus, the output of each node can be represented by an interval [}, ;] [52]. Another

popular choice for type-2 membership function is Trapezoidal MF. A general trapezoidal MF
involves 8 parameters to define it while our Gaussian MF needs just three parameters and
thereby drastically reduces the degrees of freedom (number of free variables) of the system.
Moreover, the Gaussian function is differentiable, which helps us to use gradient based tuning
methods and hence we use it here.

Layer 3 (Spatial firing layer): Each node in this layer represents the antecedent part of a
fuzzy rule and it computes the spatial firing strength. We call it ““spatial” as it does not depend
on any temporal input and also we distinguish it from the “temporal” firing strength that is
computed in the next layer.-To-compute the spatial firing strength F', each node performs a
fuzzy meet operation on the-inputs that it receives from layer 2 using an algebraic product
operation. There are M nodes in this layer, where each node corresponds to one rule. Each
node in this layer is connected with n,+n, nodes of the previous layer. The structure learning
process starts with no rule (M=0) and the first data point is used to generate the first rule
making M=1.Then with new incoming data points, depending on how well a new data point
matches with existing rules, new rules are generated. In Chapter 3.3.1 we explain in details
how these M rules are generated. The spatial firing strength is an interval [45] and is

computed as follows [59]:

Fi=[f 1 i=1..,M (3.9)
f'=11m, '=114 (3.10)
j-1 j=1

As explained earlier, in Eq. (3.9) M is the total number of rules. Use of Eq. (3.10) to
compute the firing strength is probably the most common compared to the use of other
T-norms [29, 46, 53, 57, 58, 60-69]. Product is also used for computing rule firing strength

even with Type-1 Takagi-Sugeno type systems [2, 4, 6-10, 12, 14, 21, 40]. A first look at Eqg.

37

(3.10) suggests that with a large number of antecedents the firing strength will approach zero.
But this actually does not cause a problem for two reasons. The main reason is that the
defuzzified output is computed as a convex combination of consequent values, where the
weights of the convex combinations are the normalized temporal firing strength, which is
computed using the firing strengths in Eq. (3.10). Moreover, for practical systems, the
number of antecedent clauses involved in a rule is usually not very large. One can of course
use minimum as the T-norm to compute the firing interval, but min is not differentiable
(while product is) and hence it is difficult to use gradient based tuning algorithm, which we
use here. The problem associated with the use of minimum can be avoided by using a softer
but differentiable version of minimum [43, 44], but this makes the learning rules quite

complicated. So we restrict ourselves to product only.

Layer 4 (Temporal firing layer): There are M xn, nodes in this layer. Each node in

this layer Is a recurrent rule node, which generates an internal feedback (self-loop) and
external interconnection with mutual feedbacks. As a result, the recurrent weights s are
represented as self-loop and interconnection weights. The output of a recurrent rule node is a
temporal firing strength that depends not only on current spatial firing strength but also on the
previous temporal firing strength. In order to compute the temporal firing strength using Eq.
(3.11), the nodes in this layer store the immediately past temporal firing strength (i.e., each
node is equipped with some memory). Once the training is starting, the initial value of the

past temporal firing strength is set to zero.

is computed

(o]

The temporal firing strength [y_/?(t),g?(t)], i=1---,Mand gq=1---,n

combining the spatial firing strength F'(t) and previous temporal firing strength wl(t-1)

using the following equation

wi(t) =) (Al vl t-1)+1-y)-F'(t) (3.12)

k=1

38

q
where (t)s lie in [0,1], and A, :% is the rule interaction weight between itself and

other rules. Here C;! is the feedback related to node i of layer 4 from node k of layer 4 that

is related to the g™ output node. Thus for local (internal) feedback i=k and for i not equal to k,

we get external feedback to the i"" node of layer 4 from the k™ rule (antecedents in layer 4)

node. When a new rule is generated, the initial value of C; in local feedback (i.e., for i=k) ,

is set to 0.5 and for i not equal to k, C; is set to 0.2. The initial C; may be adjusted for

different examples to yield better results. Thus the total feedback to the i" rule node (Layer 4)

M
for the g™ output node is e Zilﬂ . The interval in Eq. (3.11) now may be written as

M —q
0000 = 28 =0 601 0-5) 17). 1] (3.12)
k=1
where
Vi (0 =X ALu D)+ 70T 0 (313)
and
v (=2 (A v =)+ 7)- £ ©. (3.14)

Note that for the first epoch of the online learning, i.e., for t=1, Eqg. (3.11) will only use
(1-%)-F'(t) because the initial past temporal firing strength is set to 0. For subsequent
epochs, since the nodes in the layer 4 store past firing strengths, Eq. (3.11) can be computed
without any problem.

Layer 5 (Consequent layer): Each node in this layer is called a consequent node and

functions as a linear model with exogenous inputs and lagged values. The output of a

consequent node is a linear combination of current input states

x(t) = (u(t), y, (®) = (u, (), u, ®, Y, Yon,) and their lagged values

39

(u;(t=2), -, u;(t=N;),y, (t=1),---,y, (t-0;)). In Fig. 3.4, a consequent node is zoomed to

elaborate its functioning. The output)7; (t+), i=1...,M; g=1..,n,, of the i™ rule node

connecting to the g™ output variable is computed as follows:

j=1 k=0

TR 3 SCRTCONS 3) S TRVA Y 3.19)

where Uy(t)=1 and N, =0, N, and O; are the numbers of lagged control input

u;(t) and system -output y,(t), respectively, and é;kqs are interval valued coefficient
denoted by
iy =[Cjq qu’Cqu+Squ] (3.16)

where cqu and Sjkq are the center and spread of an interval type-1 set respectively. For an

i
jkq

interval type-1 set, the membership value of every point over the interval [C i

S}kq] is-unity. Note that, in order to compute Eg. (3.15) some past values of U and y are
needed and these values are stored at appropriate nodes in this layer. In other words, nodes in

this layer have some local memory. The inclusion of lagged values of u(t) and vy (t) in

the linear consequent part instead of the antecedent part simplifies the computation process of

the network for modeling of dynamic systems, especially when interval type-2 fuzzy sets are
used. The output)7; (t+1) is an interval type-1 set, denoted by [Vliq : Virq] , where indices |

and r denote left and right limits, respectively. According to Egs. (3.15) and (3.16), the

node output is

n, N;j _
[qu ' yrq 4 Z; jka qu’ qu+sljkq]'uj(t_k)
n 0 | | | (3.17)
+ Z[C('jmu)kq = S(eniqr Clinka + Sin kel Yo (E—K)
j=1 k=0

40

That is,

Yia = ZZCqu i(t- k)+ZZC(J+n)qum(t k) - ZZSquIU(t k)= ZZS<,+n>kq|yp,(t k)|

=0 k=0 i=1 k=0 i=0 k=0 =1 k=0
(3.18)
and
Yiq = > i jqU; (E— k)+ZZC(,+n yiq Y i (= k)+ZZS,kq lu; (t—- k)|+ZZS(,+n i | e (E=K)|
i k0 7o 0 ko i koo
(3.19)

Layer 6 (Output layer): Each node in this layer corresponds to one output variable. For

defuzzification operation, the @™ output layer node computes the network output variable Ye
using type-reduction. The type-reduced set is an interval set [y, ;] The outputs y;. and
Y;, canbe computed using the Karnik-Mendel (KM) iterative procedure [45]. Using the KM

procedure, we shall rewrite the expressions for y;, and Yy, of [y, y;,]in suitable forms so

that we can derive the learning rules easily. In KM procedure, the consequent values are

re-ordered in ascending order. Let ,, and Y, be the original consequent values and ¥,, and

Y., be the corresponding rule ordered (in ascending order) consequent values. Then the
relationship between §,,, ' ¥,,, V,,and Y, s

qu =Q, qu and yrq =Q ¥y (3.20)

here Q, and Q, are M xM appropriate permutation matrices to reorder the values. Let

vy =70, 0.7, (1) and Zq:(gz(t),t/_/z(t)...t/_/zﬂ (t))" . According to [59], the

output yy, can be computed as follows:

41

L — ~i M ~ _ ~ ~
" Zi:l(Qll//q)i qu +zi:L+1(Qll/_/q)i qu — W;QrElTElQlqu +'/_/;Q;I—E;—E2Qlqu

I I M T 7 (3.21)
> Q)+ Q) P/ Q¥, +b/Qu,

where L and R denote the left and right crossover-over points, respectively. The
end-points L and R are defined in [45]. The other vectors and matrices involved in Eq. (3.21)

are defined as

P =@L-1,0,0) e®R™, b =(0,..,0,1..17 eR" (3.22)
L M-L
E, =(e,8,,....6,,0,..,00eR"™ and E, =(0,..,,0,£,, &510er &y) € RV OM (3.23)

where e e R™* and g e%R"™" are unit vectors, whose all but i'" element is zero and the i"
element is one. In Eq. (3:21), (Q,w,) produces a vector in M dimension where the
components of (Q,w,) are permuted version of components in. w, . Also (Q),
represents the i"™ component of (Qw,) - Thus, equation (3.24) computes a convex
combination of yiq;i =1,..., M values. The weights of the convex combination are computed

from the components of (Q,), which are nothing but the temporal firing strength in Eg.
(3.12).

Similarly, the output Y, can be computed as follows:

2 QW) T+ X QW) Yoo Yo QESEQ Yy +¥, QIEIEQ Y1

Q) Y. Q) P Q. +b/Q¥, o2
where
P, =(M,o,...0)T eR®", b =(0,..,01..,1)" eR" (3.25)
4 M-R
E.=(e.€,,...64,0,...,00 e R*™ E, =(0,..,0,6,,&,,....&,_5) e R" M (3.26)

and where e, e R®* and & R are unit vectors (all but i” element are zero and the i"

element is 1). All of unit vectors are defined in [59]. Such an expression is helpful in deriving
42

the proposed parameter learning algorithm discussed in Chapter 3.3.2. Finally, the

defuzzification operation defuzzifies the interval set [y;,, y;,] by computing the average of

Y, and y;, . Hence, the defuzzified output for network output variable y; is

! !
r_ qu + yrq

Yq > (3.27)

3.3 MRIT2NFES Learning

Initially, there'is no rule in an MRIT2NFS. All of the recurrent type-2 fuzzy rules evolve
from simultaneous structure and parameter learning. The following sections introduce the

structure and parameter learning.algorithm explicitly.

3.3.1 Structure learning

The on-line rule is generated according to the structure learning algorithm. A previous
study [62] utilized the rule firing strength as a criterion for type-1 fuzzy rule generation. This
idea is extended to type-2 fuzzy rule generation using an MRIT2NFS. The spatial firing
strength F' in Eq. (3.9) is used to decide whether a new rule should be generated. The

type-2 rule firing strength is an interval. The center of the spatial firing interval,

f. :%(Ti +f), is used as a criterion for rule generation. The first incoming data point X is

used to generate the first fuzzy rule, and the uncertain mean and width of the type-2 fuzzy

membership functions associated with this rule are set as :

[mﬁl’ m}z] :[Xj —-0.1,x; +0.1] and o=07,.,
J:]_ n +n (328)

where oy, IS a predefined value (we use oy, =0.3 in this paper) that determines the width

of the memberships associated with a new rule. Subsequently, for each of new incoming data

x(t) we find

43

| =arg max f/(t), (3.29)

1<i<M (t)
where M (t) is the number of existing rules at time t. If f'(t)<f, (f, is a pre-specified

threshold), then a new fuzzy rule is generated. The idea is that if the present data point does
not match well with any of the existing rules, then a new rule is generated. Here also we use
the same procedure to assign the uncertain mean as done for the very first rule; i.e., for the

new rule, the means of the corresponding type-2 fuzzy sets are defined as
[m O, mBOH] =[x, (0) =04, %, () +0.1] 5 =1, wu, nytno. (3.30)

The width of the each fuzzy set associated with a new rule is defined as follows:

ny+n, |

T 2. (331)

In Eq. (3.29), | is the index of the best matching rule, and m}l and m}z are the means of

the membership function of the j" antecedent clause of the I™ Rule. Egs. (3.28) and (3.30)
indicate that for the mean, the width of the uncertain region is 0.2. If the uncertainty
associated with the mean is made too small, then the type-2 fuzzy sets become similar to
type-1 fuzzy sets. On the other hand, if the width of the uncertain region is too large, then the
uncertain mean covers most of input domain. Eq. (3.31) indicates that the initial width is
equal to the Euclidean distance between current input data x and the center of best matching
rule for this data point times an overlapping parameter £ . In this study pis set to 0.5, so
that the width of new type-2 fuzzy set is half of the Euclidean distance from the center of the

best matching rule, and an adequate overlap between adjacent rules is realized.

3.3.2 Parameter Learning

Along with the learning of the structure, the parameters are also learnt. All free

parameters of the MRIT2NFS are adjusted with each incoming training data regardless of

44

whether a rule is generated or not. For clarity, let us just consider the g™ output of the network.

The parameter learning process updates the network parameters minimizing the error function

E= %[y(’4 t+1) -y, (t+DT%, (3.32)
where y;(t+1) and y,(t+1) represent the MRIT2NFS output and the desired output,
respectively. The parameters in the consequent part are learned based on the rule-ordered
Kalman filter algorithm [29] as described next. To compute .y, and y'rq in the KM iterative

procedure, the required precondition is that §, and ¥, are rearranged in an ascending

order. As the consequent values ¥, and ¥, change, their rule-ordering may also change.

The Eq. (3.20) indicated the arranged consequent values with respect to the original rule order.

According to the mapping Egs. (3.21) and (3.24) are expressed by ¥, and ¥, as follows

[29]:
g 7.QETE,Q +yQ'E;E
Yia =% Yia: % o s 19 V—IEQ' £/ _ gywa (3.33)
P QY, +b Qy,
- "Q'E.E + ET
y;q: l'quI’ql ¢rq:'/_,qu : 3Q '//qQ 4Q SJ{MX:L (334)

p.Qy,+b/Quw,

Thus, the output y, in Eq. (3.27) can be re-expressed as

rq

r_ 1 ' i _! 1 5 e o - qu
yq - 2 (qu + yrq) 2 (ﬁq qu +¢q yrq) [¢q ﬂq]|:y }
Vi |
' (3.35)
= [¢Iq ¢Iq rq " ¢r':1/|] 1

Vi |

where ¢ =0.5¢," and ¢ =0.54,". According to Egs. (3.18) and (3.19), Eq. (3.35) can be

45

further expressed as follows [29],

e o | _
yq = [¢qT ﬁqT] |: qu :| = [¢Iq ¢Iq ¢rq o ¢rg]
rq
- _— -
chjkq J(t k) +ZZC(J+H yka Y pi (t=k)- Zzsjkq |u (t-k) |_ZZS(11+nu)kq | Yi (t=k)|
j=0 k=0 j=0 k=0 j=1 k=0
n, NJ Oj n, NJ Oj
Z jkq (t k) +ZZC('\;|+n Ykg ypj (t k) zz jkg |U (t k) |_Zz ('\T+n Ykg | yp] (t k)l
j=0 k=0 j=1 k=0 j=0 k=0 j=1 k=0
n, NJ Ny OJ n, NJ Ny OJ
Z kquj(t kHZZC?Hn)qum(t k) + Skq |uj(t_k)|+zzs(lj+nu)kq |ypj(t_k)|
j=0 k=0 i=1 k=0 j=0 k=0 =1 k=0
n, NJ Ny OJ ny NJ Ny oJ
C?ﬁquj(t_k)+zzc(’\?+m)qum(t_k)+ ZSJ Iu (t— k)|+zzs('\;l+n)kq |pr('[k)l
| j=0 k=0 j=1 k=0 j=0 k=0 j=1 k=0

(3.36)

In Eg. (3.36) c! ikg-and slkq are the coefficients of the linear equations involved in the
consequents. During the on-line structure learning, the dimension of ¥, and ¥, increases
with time, and the positions of ¢,, and s;, change accordingly within the same vector.
For keeping the position of ¢, and s,, unaltered in.the vector, the rule-ordered Kalman

filtering algorithm rearranges elements in rule order in Eq. (3.36). Let V. denote the vector

all consequent parameters, i.€.,

& _rAl 1 M M M M T
VTSK - [COOq te C(n0+nu)Nan SOOq ¥ - S(no+nu)Nnoq """ C00q N 'C(n0+nu)Nan SOOq te S(n0+nu)Nan]

(3.37)
where the consequent parameters are placed according to the rule order. Eq. (3.36) can now be

re-expressed as

yq :[§3c1uo ¢7Clypno(t_ono) _¢Tsl|u0| _¢Tsl|ypno(t_ono)| """
¢70Mu0 &:M ypno(t_ono)_gsM |U0|... _gsM |ypno(t_on0)|]VTSK (3.38)
__'SKTVTSK

46

where 4 =@)+¢) and @) =¢) -4, j=1...,M . The consequent parameter vector
V.o s updated by executing the following rule-ordered Kalman filtering algorithm [29]

Vrge (t+1) = Vg () +S(t+ D) (t+1)(Y° (t+1) — " (t+1) Vg (1)
S(t +]_) = 1 [S(t) _ S(t)¢r,5|<_(t ";1)¢r,SKT (t +_1)S(t)] (3.39)
K K+dg (t+1)S(Dd

where 0<x <1 is a forgetting factor. (Just to keep parity with a previous study [29], we have

used x=0.99995; however, our experience suggests that one can use x=1.0 without much

effect, as expected, on the overall performance.) The dimension of V.4 and .., and the

matrix S increases when a new. rule is generated. When a new rule evolves, MRIT2NFS

augments S(t) as follows

n

2(M +1)(Z';10(N : +1)+z’j‘il(oj +1))x2(M +1)(Z?‘:0(N i +1)+Zji1(oj +1))

S(t) = block diag[S(t) C-1]e %R (3.40)

where_C is a large positive constant (we use C=10) and the size of the identity matrix | is
Z(Z?Zomj +1)+zfj?°:l(oj +1))x2(2?“:0(Nj +1)+Zj°:l(oj +1)) (3.41)
Note that S(0) is 1x1 matrix. We used S(0)=[10]. The antecedent parameters of MRIT2NFS

are tuned by the gradient descent algorithm. For convenience of notations for the gradient

descent learning rules, according to [59], Eqg. (3.21) can be re-written as

—1 T

Yig = s AR (3.42)

where
a, =Q/E[EQY, eR", b, =Q/E;E,QY, eR" (3.43)
Cq =Q/p, eR™, d,=Q/b eR™ . (3.44)

Similarly, Eq. (3.24) can be re-written as

T —T

,_ Walq WD,

e P (3.45)
V_/q qu—H//q rq

47

where
= Q:E;—ESerrq € SRMXl’ brq = QIEIE4errq € SRMXl (346)
er = Q:—pr € SRMXl’ drq = Q-rrbr € mMXl (347)

Using gradient descent algorithm, we have
oE

ATt +1) = A0 (t) - 3.48
where 7 is a learning constant (77 =0.075 in this paper) and
OE OE 0y, Ny Oy Ny, 1, oY 6y,a, Vi 6*yr
R A D=5 0 YIG S * 30 Pl q) q] (2.49)
Oy ayq 8qu Oy 8yrq Oy Oy 6‘r’_/i Oy
Where
ayiqq _ _?_Iqi — yllqilqi ’ aY;q & brql y;qdrql (350)
v w,C +'/_’qd|q 81//, 1,//q Cq t¥, d
aYI'qq A _k_)l!qi > yllq(;:lqi ’ aY;qq _ a_'rrqi s y;ig—:rqi (351)
algi Wq Clq +'/_/q dlq al/_/i '/_,q er +'//q drq
o f 9 d f! 3.52
—L = -1 '(t), === t—1)— f'(t 5
Y we(t=1)— () o0 y(t=—f'(t) (3.52)

Details of the learning equations for parameters, including m; ", m; .,and o, of the

antecedents can be found in [59].

Pruning of less-Important Rules: Our system involves many recurrent weights.
Depending on the nature of the underlying system that we are trying to model, all of these
recurrent feedbacks may not be important. In fact, if the magnitude of a recurrent weight is
very low, then that weight will not have much effect on the system output and hence such
weights / feedbacks can be dropped. This is what we do. If the absolute value of a recurrent

weight is less than a pre-defined threshold ¢, we delete that connection. Once we delete some

48

recurrent weights (feedback connections), we must adapt the system in its new environment
and hence, we retrain the network a few epochs (here we use only five epochs). The
MRIT2NFS that use this type of recurrent weight elimination approach is called
MRIT2NFS- ¢. It can be kept similar performance and effectively reduces less-useful

recurrent weights.

3.4 Simulation Results

This section describes application of MRIT2NFS on five problems. These examples
include identification of two single-input-single-output (SISO) dynamic systems (Examples
1-2), one multi-input-multi-output (MIMO) dynamic system (Example 3), prediction of
chaotic time series (Example4),-and identification of nonlinear system plant (Example 5). For
all but Example 5, we normalize the data sets in [-1, 1]. Example 5 is not a dynamical system,
and it is comparatively easy to learn. So we did not normalize the data, but we have used the
same membership definition as in Eqg. (3.28). We shall see later that even in this case the
performance of the system is very satisfactory indicating the robustness of our system. The
performance of MRIT2NFS is compared with that of recurrent and feedback type-1 and

type-2 FNNs.

3.4.1 Example 1 (SISO Dynamic System Identification).

This example uses MRIT2NFS to identify an SISO linear time-varying system, which
was introduced in [7]. The dynamic system with lagged inputs is guided by the following

difference equation:
Yo (t+1) = F(y, (1), y, (t=1), y,(t=2),u(),u(t-1)) (3.53)
where

5) — X1X2X3X5(X3 _1)X4

2 2
1+ X5 + X5

(X, Xy, Xgy Xy X (3.54)

49

The system has a single input (i.e., n,=1) and a single output (i.e., n,=1). The current
variables u(t) and y, (t) are fed as inputs to the MRIT2NFS input layer. The current output
of the plant depends on two previous outputs and one previous input. Therefore, the
consequent part parameters of MRIT2NFS are set as N; = 2 and O;=1. The training procedure

minimizes the square error between the output of the system 'y (t+1) and the target output

y,(t+1) . To train the MRIT2NFS, we follow the same computational protocols as in [7], i.e.,

we use only ten epochs and there are 900 time steps in each epoch. In each epoch, the first
350 inputs are random values uniformly distributed over [-2, 2] and the remaining 550

training inputs are generated from a sinusoid defined by 1.05sin(zt/45). This type of training

is analogous to an online training process, where the total number of online training time steps
is 9000. The structure learning threshold f, influences the number of fuzzy rules to be
generated. After training, two recurrent fuzzy rules are generated when f, is set to 0.02.

Table 3.1 shows the root-mean-squared error (RMSE) on the training data. To validate the

identified system, as adopted in [9] and we use the following input:

sin(ﬂ), t <250
25
1.0, 250 < t<500
u(t) ={-1.0, 500 < t<750 (3.55)

. 7t N
0.3sin(—) + 0.1sin(—
(25) (32)

+0.6sin(f—c§), 750 < t<1000

Fig. 3.6 compares the actual output with the output produced by MRIT2NFS for the test input
generated using Eqg. (3.55), while Fig. 3.7 shows the test error between the desired output and
actual output produced by MRIT2NFS. Fig. 3.6 and Fig. 3.7 together reveal a very good
match suggesting that MRIT2NFS architecture along with our system identification scheme

does a very good job of identifying the dynamical system with feedback.
50

Output

|
|
|
|
|
|
|
|
i
t
|
|
|
|
|
|
|
[

b
I |

. | e |
0 100 200 300 40 500 600 700
Time Step

Fig. 3.6. Qutputs of the dynamic plant (dashed-dotted line) and MRIT2NFES (dotted line) in
Example 1.

K [[[[[[[[[
0 100 20 0 0 50 600 70 80 %0 1000

time step

Fig. 3.7. Test errors between the MRIT2NFS and actual plant outputs.

Table 3.1 compares the performance of MRIT2NFS with that of seven different
approaches including TSK-type feed-forward type-1 and type-2 FNNSs, a recurrent NN, and
type-1 recurrent FNNs. The comparison is done in terms of number of rules, number of free
parameters, training RMSE, and test RMSE. As in MRIT2NFS, all these networks use the
same information including number of input variables, training data, test data, and training
epochs. In order to make a fair comparison, the total number of parameters of the
feed-forward type-1 FNN is kept similar to that of feed-forward interval type-2 FNN. The

51

number of parameters in an interval type-2 FNN is larger than that in a feed-forward type-1
FNN because of extra free parameters in type-2 fuzzy sets and rule consequent part.
Consequently, the number of rules used in a feed-forward type-1 FNN is larger than that in a

feed-forward interval type-2 FNN, as shown in Table 3.1.

TABLE 3.1. PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS
FOR SISO PLANT IDENTIFICATION IN EXAMPLE 1.

Models Number of Number of Training Test
Rules Parameters RMSE RMSE
Feedforward 7 42 0.0178 0.0528
Type-1 FNN
WRFNN [11] 5 55 0.064 0.098
TRFN-S [7] 5 60 0.021 0.041
RSEFNN [14] 4 32 0.02 0.0397
Feedforward 4 48 0.032 0.052
Type-2 FNN
RSEIT2FNN 2 38 0.0048 0.049
-UM [29]
RIFNN [69] 4 36 0.023 0.0465
MRIT2NFS 2 40 0.0008 0.0078

The compared feed-forward type-2 FNN is an interval type-2 FNN with uncertain means,
where all network parameters are learned by gradient descent algorithm. Our result reveals the
advantage of using recurrent structure in the MRIT2NFS, which achieves smaller test RMSE
than that by the feed-forward type-2 FNN. All of the compared recurrent type-2 FNNs use the
same fuzzy sets in the antecedent part, i.e., interval type-2 fuzzy sets with uncertain means.
The performance of MRIT2NFS is also compared with other interval type-2 FNNs with
recurrent structure, including a recurrent self-evolving interval type-2 fuzzy neural network
with uncertain means (RSEIT2FNN-UM) [29] and a recurrent interval-valued fuzzy neural

network (RIFNN) [69]. In these cases also, MRIT2NFS vyields a better test accuracies.
52

However, RIFNN and RSEIT2FNN-UM use a marginally lower number of free parameters.
Our results demonstrate that MRIT2NFS can effectively capture information about the system
using mutual feedbacks and outperforms the RSEIT2FNN, which only uses local feedbacks.
The recurrent type-1 FNNs considered include, the wavelet-based RFNN (WRFNN) [11],
TSK-type recurrent fuzzy network with supervised learning (TRFN-S) [7], and recurrent
self-evolving fuzzy neural network with local feedback (RSEFNN-LF) [14]. Table 3.1
indicates that the test error of the TREN and the RIFNN are very close for the noise-free
environment, but for noisy environment the TRFN-S is found to perform better. We have also
compared the performance between TREN and RSEIT2FNN. The recurrent structure with
only local feedbacks in RSEIT2ENN may not be adequate for this example because the rules
lack the information from other rules. For this reason, the performance of the TREN is found

to be better than that of the RSEIT2FNN (Table 3.1).

TABLE 3.2 INFLUENCE OF f, and & ON THE PERFORMANCE OF MRIT2NFS

WITH B=05

Models ¢ Number of Rules Number of Training Test
N Parameters | RMSE RMSE
MRIT2NFS 0.02 2 40 0.0008 0.0078
0.15 3 63 0.0007 0.0075
0.25 4 88 0.0009 0.0060

MRIT2NFS- ¢ ¢ Number &€ Number of Training Test
s of Rules Parameters RMSE RMSE
0.02 2 0.4 40 0.0008 0.0071
0.6 40 0.00077 0.0076
0.8 38 0.0009 0.0088
0.15 3 0.4 63 0.0005 0.00772
0.6 61 0.00068 0.00768
0.8 58 0.00075 0.0078
0.25 4 0.4 87 0.0006 0.0055
0.6 86 0.001 0.0040
0.8 83 0.0007 0.0066

53

Like any other Type-2 method, the proposed type-2 methods demand more computation
but it can yield more quality outputs. Moreover, although each learning step is
computationally more expensive compared to that of its Type-1 counterpart, our network,
using the same number of iterations, yields a better solution (faster convergence) than the

Type-1 systems.

There are a few parameters, f,,, 8,and &, that are involved in the learning of MRIT2NFS.

We now investigate the influence of these parameters on the performance of MRIT2NFS. In

addition we shall also consider the robustness of the system against noise in the inputs. The

threshold parameter, f, , decides the number of rules in the MRIT2NFS while the parameter

& in MRIT2NFS— is used-to-decide the feedback connections in layer 4 that could be
removed. Table 3.2 shows the MRIT2NFS performance for different values of f, and ¢
when £ =0.5.

As expected, larger values of f, result in larger numbers of rules and larger ¢ reduces

the number of tunable parameters in the system. Table 3.2 suggests that different choices of

f, and ¢although change the number of rules marginally, the training and test errors

practically do not change. Thus at least for this data set, our system is quite robust with
respect to the choice of these two parameters. From a user point of view, the network with the
smallest number of free parameters that can provide the desired level of performance should
be the preferred network. Because with a larger degrees of freedom, the chances of having

more local optima and getting stuck to one of them would usually be higher. Next, we
investigate the effect of B on the performance of MRIT2NFS for a constant value of f,. A

small value of B generates larger numbers of rules because of the smaller width of the initial

type-2 fuzzy sets.

54

Table 3.3 shows the performance of MRIT2NFS for different values of g when

f;, =0.02. From Table 3.3 we observe that the network performance (both training and test

error) is not sensitive to variations in B when f,=0.02, although the number of rules

decreases as f increases. It is interesting to note that as £ increases from 0.2 to 0.7, the
number of rules decreases from 5 to 2 without affecting the performance of the system. In fact,
with 2 rules, both the training and test performances are slightly improved over the case with
5 rules. However, for-a given problem, if the goal is to find the optimal parameters, we can

use a two-level cross validation mechanism.

TABLE 3.3 INFLUENCE OF g ON THE PERFORMANCE OF MRIT2NFS WITH

f, =0.02
B 0.2 0.3 0.5 0.6 0.7
Number of Rules | 5 4 2 2 2
Training RMSE | 0.0016 | 0.0009 | 0.0008 | 0.00076 | 0.00078
Test RMSE 0.0098 | 0.0091 | 0.0078 | 0.008 0.0087

Next we assess how robust the network is with respect to measurement noise in the plant

output. Since the plant output Yy, is fed back as an input to the network, a noise in the

measurement of the plant output Y, is likely to have an effect on the performance of the

system. The experiment also uses the control input sequence in Eg. (3.55). We consider three
levels of Gaussian noise with standard deviations (STDs): 0.1, 0.3, and 0.5. We use 30
simulations for the statistical analysis. Table 3.4 shows the performance of MRIT2NFS for the
three different noisy environments. For the purpose of comparison, we also use the same
noisy environment to assess the noise tolerance of the other networks, including feed-forward

type-1 and type-2 FNN, TRFN [7], RSEIT2FNN [29], and RIFNN [69]. The results in Table
55

3.4 indicate that the feed-forward type-2 FNN can deal with noise much better than the
feed-forward type-1 FNN. The consequent part of the TRFN is a function of current input
in the RSEIT2FNN and the MRIT2NFS is of

variables. The consequent part

Takagi-Sugeno-Kang (TSK)-type that consists of system output y, and its previous values.

As a result of this, the rate of increase in the RMSE with increase in c for MRIT2NFS may be
marginally higher than that for other networks which do not use feedback of system outputs.
Finally, The MRIT2NFS achieves better performance than the other compared FNNs for

noise-free and noisy cases.

TABLE 3.4 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND
RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 1

Models Feedforward. | TRFN-S | Feedforward | RSEIT2FNN | RIENN | MRIT2NFS
Type-1 [7] Type-2 -UM[29] [69]
FNN FNN
Number of Rules 7 5 4 2 4 2
Number of 42 60 48 38 36 40
Parameters
STD=0.1 0.121 0.062 0.056 0.168 0.057 0.021
Test
RMSE STD=0.3 0.312 0.133 0.242 0.522 0.192 0.05
STD=0.5 0.458 0.162 0.361 0.783 0.315 0.098
3.4.2 Example 2 (SISO Dynamic System ldentification)
We now consider the following dynamic system with fonger input delays:
y, (t+1) =0.72y,(t)+0.025y, (t —1u, (t —1) +0.01u,*(t —2) +0.2u, (t - 3) (3.56)

This plant is the same as the one used in [7]. This system has a single input (n,=1) and a
single output (n,=1). Thus, the current values of u(t) and y (t) are fed as inputs to the

MRIT2NFS input layer. The current output of the plant depends on one previous output and

three previous inputs. Therefore, for MRIT2NFS N; =3 and O;=1. The training data and time

56

steps are the same as those used in Example 1. In MRIT2NFS training, the structure learning
threshold is set to 0.02. After 90 epochs of training, two rules are generated. To test the
identified system, the test signal used in Example 1 is also adopted here. Fig. 3.8 shows the
outputs of the plant and those of the MRIT2NFS for these test inputs. Fig. 3.9 shows the test
error between the outputs of MRIT2NFS and of the plant. Table 3.5 shows the structure, and
training and test RMSEs of MRIT2NFS. The performance of MRIT2NFS- ¢ (¢ =0.6is used in
this paper) with the same network size is also shown in Table 3.6. Like Example 1, Table 3.6

shows that MRIT2NFS and MRIT2NFS- ¢ have similar performance.

i } : Ly | i
sl MY L i i

| | | | | | | | |
08
0 100 200 300 400 500 600 700 800 900 1000

Time Step

Fig. 3.8. Outputs of the dynamic plant (dashed-dotted line) and MRIT2NFS (dotted line) in
Example 2.

Fig. 3.9. Test errors between the MRIT2NFS and actual plant outputs.
57

The performance of MRIT2NFS is compared with that of feed-forward type-1 and typ-2
FNNs and recurrent type-1 FNNs. These models also use the same number of training epochs
and training and test data as used for the MRIT2NFS. Table 3.5 also depicts the number of
rules and parameters, and the training and test RMSEs of these compared networks. These

results show that the MRIT2NFS achieves better performance than that of other networks. In

Table 3.6 we investigate the effect of different choices f, and & on the performance of

MRIT2NFS when g=0.5.

TABLE 3.5 PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR
SISO PLANT-IDENTIFICATION IN EXAMPLE 2.

Models Number of Number of Training Test
Rules Parameters RMSE RMSE
Feedforward 7 49 0.007 0.032
Type-1 FNN
WRFNN [11] S 55 0.0574 0.083
TRFN-S [7] 5 60 0.0076 0.0286
RSEFNN [14] 4 30 0.0156 0.0279
Feedforward 4 48 0.0155 0.038
Type-2 FNN
RSEIT2FNN 2 45 0.0034 0.006
-UM [29]
RIFNN [69] 4 36 0.0125 0.0288
MRIT2NFS 2 44 0.0013 0.0028

As done for Example 1, here also using the same computational protocols we study the
robustness of MRIT2NFS in noisy environments. Table 3.7 summarizes the results for the
MRIT2NFS with different noise levels (Gaussian noise with STD of 0.1, 0.3, and 0.5, and
with 30 Monte Carlo realizations for each case). As revealed by Table 3.7, for noisy
environments, the MRIT2NFS achieves smaller RMSE than the other compared FNNs except

the RIFNN. Note that, for noise-free data for the same problem, Table 3.5 reveals that
58

MRIT2NFS performs better than RIFNN, but with noisy data RIFNN performs better. A

possible reason for this may be that the consequent part in the RIFNN is a constant

interval-valued set and is not a function of the system output, y,, that are noisy. But for

MRIT2NFS the rule consequents are functions of current output y,, which are noisy.

Therefore, the impact of noise on RIFNN is much weaker than that on MRIT2NFS. These
results show that MRIT2NFS and MRIT2NFS- & have similar performance. Table 3.5 reveals
that the test error for the MRIT2NFES is smaller than that of the feed-forward type-1 and

type-2 FNNs and recurrent type-1and type-2 FNNs.

TABLE 3.6 INFLUENCE OF f, and ¢ ON THE PERFORMANCE OF AN MRIT2NFS

WITH pB=0.5

Models ¢ Number of Rules Number of Training Test
b Parameters RMSE RMSE
MRIT2NFS 0.02 2 44 0.0013 0.0028
0.15 3 69 0.0005 0.00274
0.25 4 96 0.0008 0.0032

MRIT2NFS- ¢ i Rules & Number of Training Test
Parameters RMSE RMSE
0.02 2 0.4 44 0.00173 0.0025
0.6 42 0.0011 0.0031
0.8 42 0.0014 0.0032
0.15 3 0.4 69 0.00051 0.00287
0.6 69 0.00052 0.00366
0.8 64 0.00059 0.0041
0.25 4 0.4 96 0.0007 0.0042
0.6 94 0.0065 0.0048
0.8 87 0.0009 0.0051

59

TABLE 3.7 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND
RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 2

Models Feedforward | TRFN-S | Feedforward | RIFNN | RSEIT2FNN | MRIT2NFS
Type-1 Type-2 -UM
FNN FNN

Number of Rules 7 5 4 4 2 2
Number of 49 60 48 36 42 44
Parameters

STD=0.1 0.145 0.097 0.087 - 0.072 0.056
R-Il;jlsstE STD=0.3 0.309 0.276 0.246 0.15 0.217 0.202

STD=0.5 0.501 0.453 0.416 0.23 0.358 0.327

3.4.3 Example 3 (Chaotic Series prediction)

In this example, which is introduced in [71], we use MRIT2NFS to predict the chaotic

behavior of a dynamic system with one delay and two sensitive parameters that are generated

by the following equation:

y,(t+)=-P-y *()+Q-y, (t-1)+1.0

(3.57)

Eq. (3.57), with P=1.4 and Q=0.3, produces a chaotic attractor. The system has no control

input (i.e., n,=0)and a single output (i.e., n,=1) so that only output variable y,(t) is fed
as input to the MRIT2NFS. It'is a second order system with one delay, therefore, O,=1. The
training procedure uses the plant output y, (t+1) as the desired output Y, (t+1). Starting

from the initial state [y, (1), y,(0)]= [0.4, 0.4], two thousand patterns are generated of which

the first 1000 patterns are used for training and the remaining 1000 patterns are used for

testing. Here also the structure learning threshold f, is set to 0.2 and number of rules

generated is 5 after 90 epochs of training.
60

T
O ideal output
* MRIT2NFS

05

y(t-1)
o

05

Fig. 3.10 Results of the phase plot for the chaotic system (O) and MRIT2NFS (X).

Fig. 3.10 displays the phase-plot of the actual and MRIT2NFS predicted results for the
test patterns. Table 3.8 includes the network size, and training and test RMSES of MRIT2NFS.
The performance of MRIT2NFS- & s also depicted in Table 3.8. Like the other two examples,
the performance of MRIT2NFS and MRIT2NFS-¢ are quite similar. The performance of
MRIT2NFES is also compared with that of feed-forward type-1 and type-2 FNNs, and
recurrent type-1 FNNs, including WRFNN [11], TREN-S [7], and RSEFNN [14]. From Table
3.8 we find that MRIT2NFS-¢ exhibits the best performance using almost the minimum
number free parameters, while MRIT2NFS achieves the next best performance although it
uses a few more free parameters.

In this case, we study the noise tolerance of our system with three levels of Gaussian
noise with standard deviations of 0.3, 0.5, and 0.7. Based on 30 Monte Carlo realizations, in
Table 3.9, we summarize the test RMSEs of the feed-forward type-1 and type-2 FNNSs,
recurrent type-1 FNNs, and MRIT2NFS. Table 3.8 shows that the test error of the MRIT2NFS
is much smaller than that of the RIFNN for noise-free data. However, Table 3.9 depicts that

the test error of the MRIT2NFS for noisy environment is very close to that of the RIFNN. The

61

possible reason for this is the same as explained in Example 2.These results also reveal that

the test error of MRIT2NFS is smaller than those of the compared networks for all of the three

noise levels.

TABLE 3.8 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND
RECURRENT MODELS IN EXAMPLE 3

Models Number of Number of Training Test
Rules Parameters RMSE RMSE
Feedforward 15 60 0.234 0.240
Type-1 FNN
WRFNN [11] 7 70 0.191 0.188
TRFN-S [7] 6 66 0.0296 0.0245
RSEFNN [14] 7 35 0.032 0.021
Feedforward 8 56 0.201 0.200
Type-2 FNN
RSEIT2FNN 6 60 0.0043 0.0047
-UM [29]
RIFNN [69] 9 54 0.073 0.051
MRIT2NFS 5 of 0.0028 0.0023
-£(0.6)
MRIT2NFS 5 70 0.0041 0.0037

TABLE 3.9 PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND
RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 3

Models Feedforward | TRFN-S | Feedforward | RIENN | RSEIT2FNN | MRIT2NFS
Type-1 Type-2 -UM
FNN FNN

Number of Rules 15 5 4 9 6 5
Number of 60 60 48 54 60 70
Parameters

STD=0.3 0.621 0.604 0.617 0.575 0.528 0.513
R-Il;j;tE STD=0.5 1.114 0.955 0.917 0.725 0.803 0.814

STD=0.7 1.706 1.256 1.180 1.040 1.020 1.032

3.4.4 Example 4 (MIMO Dynamic System Identification)

62

In this example, we consider the plant described by the following equation

(t

You(t) = 0.5-[%+u1(t—1)] (3.58)
p2

Yo (t+1) = 0.5-[%+u2(t—1)] (3.59)

This MIMO dynamic system was also studied in [7]. This plant has two inputs (n,=2) and

two outputs (N, =2). So four current input-output values U, (t), u,(t), y,(t), and y,(t)

are fed to the input layer of the network. The present output of the plant depends on control

inputs with one time-step delay and current plant states. Therefore, the lag numbers n,, N,,

o, and o, in MRIT2NFS. are.set.to 1, 1,0, and 0, respectively. The desired outputs for

MRIT2NES training are y (t+1) and y_,(t+1). The MRIT2NFES is trained in an online

manner from time step t=1 to t=11000. The two control inputs u,(t) and u,(t) are

independent and identically distributed (i.i.d) uniform random sequences over [-1.4, 1.4] for

t =1 to t=4000. For the remaining 7000 times steps sinusoid signals generated by

sin(zt/45) are used for both u,(t) and u,(t). The learning coefficient 7 and the

threshold f, are set to 0.075 and 0.05, respectively. Based on a compromise between

network size and performance, the threshold value 0.05 is used, as discussed in Example 1.
For this data set, the training results in three rules. Table 3.10 shows the structure and RMSE
of MRIT2NFS. To evaluate the effectiveness of the identified network, we use the following

two control input sequences:

sin(rzt/25), 1001<t <1250

1.0 1250 <t <1500
u(t)=u,(t)=<1"" 3.60
(=00 ~1.0, 1500 <t <1750 (3.60)

0.3sin(xzt/ 25) +0.1sin(t /32) +0.6sin(zt/10), 1750 <t < 2000
Fig. 3.10 shows a very good match between the actual output and the network output. Table

63

3.10 shows the test RMSEs of Y, and Y,,. We also compare the performance of

MRIT2NFS with that of memory NN (MNN) [70], feed-forward type-1 and type-2 FNNSs, and
recurrent type-1 FNNs. The MNN is a kind of recurrent NN and has been applied to the same
problem in [7]. For the recurrent FNNs, we use the same training data, test data, and the
number of training epochs as those for MRIT2NFS, except in the case of the MNN, where a
total number of 77000 time steps are used in [70]. Table 3.10 shows that the performance of
MRIT2NFS is better than that of feed-forward and recurrent networks.

In this case also we investigate the noise tolerance of MRIT2NFS with the same three
levels of noise that are used in the previous example. Table 3.11 summarizes the results for
feed-forward type-1 and type-2 FNNs, TREN [7], RSEIT2FENN [29], and MRIT2NFS over 30
Monte Carlo realizations. In-this-case too we find that under noisy environments, the test

RMSEs of MRIT2NFS is better than those of the compared networks.

I I I I I
L L ! s A
i P i I fi I i -
o | TN
pl\'l!"\(‘l’ﬁ 5 i "‘ﬂ"“'"'u
2 ol i i . . ’l‘ [| i H\\[‘“H‘ :
i | P | . i H H,(|”
! P i Pl | — -~ ideal output 4o i \F y i b
PP R L [MRIT2NFS IRIRY n TR
T | A
: L i Y
i b) VooV " | !
4 | | | | [1 1 | |
0 100 200 300 400 500 600 700 300 900 1000
Time Step
08 T T \ | |
- B - . N —— -- |
: I { . _
Pe Al il I i i | Eoo i |
st | 0 I i | M I Iy
ATl [i i P | i H Iy I
I S T B i g oy i il
= | i i [o iy
A R R A | deal auiput |I'1‘H”"‘i!if'“"lf‘.;ii"‘r\
=] [b | = - = ideal outpu iy N
0= ! \ [T BRI flpbye iy
3 Ve f' N MRIT2NFS %i,,"fujﬁ"‘ Hl\’“%,f‘]
02) | T S i ot
Uf u\’! vl ‘\J \ / ! J V U | b Vo
4= : T ; —
0 ! ! | | ! ! ! | |
0 100 200 30 400 500 600 700 300 900 1000
Time Step

Fig. 3.11. Output of the MIMO system (dashed-dotted curve) and MRIT2NFS (dotted curve)
in Example 4. (a) Output yp;. (b) Output yp»
64

TABLE 3.10 PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS
FOR MIMO PLANT IDENTIFICATION IN EXAMPLE 4.

Models Number of Number of Training Test RMSE | Test RMSE
Rules Parameters RMSE Yo Yoo
Feedforward 7 126 0.0422 0.0373 0.0480
Type-1 FNN
MNN [70] - 131 — 0.0186 0.0327
RFNN [10] 13 182 0.0687 0.0824 0.0801
WRFENN 7 182 0.0449 0.0472 0.0502
[11]
TRFN-S [7] 7 189 0.0382 0.0396 0.0383
Feedforward 4 128 0.0496 0.0411 0.0423
Type-2 FNN
RSEIT2ENN 3 126 0.0036 0.0081 0.0113
[29]
MRIT2NFS 3 132 0.0039 0.0066 0.0116

TABLE 3.11 PERFORMANCE OF MRIT2ZNFS AND OTHER MODELS WITH
DIFFERENT NOISE LEVELS IN EXAMPLE 4.

Models Feedforward | Feedforward | TRFEN-S | RSEIT2FNN | MRIT2NFS
Type-1 FNN | Type-2 FNN

Number of 7 4 7 3 3

Rules

Number of 126 128 189 126 132

Parameters

Test STD=0.3 0.256 0.189 0.188 0.16 0.165

RMSE STD=0.5 0.417 0.307 0.316 0.316 0.258

V. STD=0.7 0.578 0.420 0.427 0.427 0.354
P

Test STD=0.3 0.197 0.145 0.143 0.090 0.078

RMSE STD=0.5 0.322 0.233 0.226 0.155 0.122

v, STD=0.7 0.443 0.323 0.298 0.227 0.193
p

65

3.45 Example 5 (HANG nonlinear system)

This example uses an MRIT2NFS- ¢ to deal with the nonlinear characteristics of a plant.
This is a very well studied system but it is not recurrent in nature. The HANG [72] system is
defined by the equation:

y=0+x"+x"°)?, 1<%, X, <5. (3.61)
To obtain the training data as done in [72], we have generated 50 random pairs of
(x,%,),1<x,x%, <5, and computed the corresponding outputs using Eq. (3.61). This system
has only two current control inputs x,(t) and x,(t) (n,=2) and no external output (n, =0).
Therefore, only two input states x; and X, are fed as input to the MRIT2NFS. The current

output of the plant depends on-current control inputs with no time delay. Thus, in this case we

set N, =0 and O, =0 in the MRIT2NFS consequent part. Fig. 3.12 shows a pictorial

representation of HANG. The threshold f,, is set to be 0.02, and the number of rules is 3

after 100 epochs of training. Table 3.12 shows the number of rules, parameters, and test
RMSE of the MRIT2NFS. For. comparison, Table 3.12 also shows the test RMSEs of
feed-forward type-1 and type-2 FNNSs, and TREN using the same I-O data. The result shows
that the test error of the MRIT2NFS- ¢ is marginally better than feed-forward type-2 FNN.
Since this is not a dynamic system, the recurrent architecture is not likely to yield any

additional benefits.

Fig. 3.12. A pictorial representation of HANG.

66

TABLE 3.12 PERFORMANCE OF MRIT2NFS-&¢ AND OTHER MODELS FOR

MODELING OF NONLINEAR SYSTEM IN EXAMPLE 5.

Models Feedforward TRFN-S Feed-forward MRIT2NFS

Type-1 FNN [7] Type-2 FNN -£(0.8)

Iteration 100 100 100 100

Number of 5 3 3 3

Rules

Number of 35 36 40

Parameters

Test 0126 0.206

RMSE \

67

Chapter 4

Conclusions

This dissertation proposes the combination of a novel recurrent structure and type-1 and
type-2 NFSs, namely an interactively recurrent self-evolving fuzzy neural network (IRSFNN)
and a mutually recurrent interval type-2 neural fuzzy system (MRIT2NFS), respectively, to
identify time-varying systems (Systems with temporal behavior). Identification of such
systems is difficult because the plant output depends on the present state as well as on
previous states and past outputs. Both IRSFNN and MRIT2NFS approaches are quite
effective in modeling dynamic systems because of their on-line learning manner and recurrent
structure. For the two proposed-madels, their learning methods are based on simultaneous
structure and parameter learning. The online structure learning algorithm enables the network
to efficiently identify the required structure of the network and does not need to set any initial
structure in advance. The proposed recurrent structure not only effectively stores local
(internal) “information but also collects critical information from global transaction.
Additionally, we next introduce the rest of IRSFNN’s merit. The IRSFNN employs the
functional-link NN (FLNN) for the consequent part of its fuzzy rule. In the simulations, the
functional-link-based IRSENN outperformed the TSK-type IRSENN. The learning algorithm
of the variable-dimensional Kalman filter helps improve network accuracy by tuning the
consequent part parameters, and accounts for the change in the network size during learning.

Next, we introduce the MRIT2NFS structure and its merits. Unlike the IRSFNN, the
MRIT2NFS uses type-2 fuzzy sets in the premise clause of fuzzy rules, which is able to
effectively address rule uncertainties associated with information and data in the knowledge
base. For the structure learning of MRIT2NFS, we have used type-2 fuzzy set theoretic
concepts to evolve the structure of the network in an online manner. We use the rule-ordered

Kalman filter algorithm to tune the consequent parameters to yield a very effective learning.

68

We have also proposed a strategy to eliminate redundant recurrent weights. This is quite
effective particularly when we have more rules. We have tested our system on several
dynamic systems and one algebraic (non-recurrent) system and compared the performance
with several existing state-of-the-art systems. We have compared the performance of our
system with both Type-1 and Type-2 state-of-the-art FNNs. Among the two Type-1 FNNs, one
is of feed-forward type and other is a recurrent network with linear consequents. Our results
have demonstrated the consistently superior performance of MRIT2NFS over both the Type-1
(recurrent and feed-forward) systems as well as recurrent Type-2 systems. We have
demonstrated the superior performance both in terms of modeling capability as well as noise
handling capability. Our system.is found to be quite robust with respect to noisy data. In order
to make a fair comparison, we have tried to keep the number of free parameters in all systems
comparable.

In the future, we would like to reduce the consequent parameters because too many
parameters may result in computational intensive when number of rules and input variables
are larger. The FLNN consists of trigonometric functions to replace conventional TSK-type in
the consequent part of the IRSFNN. Therefore, the choice of useful features is an important
issue. In this investigation for the consequent part of MRIT2NFS, we have assumed
knowledge about the system order and number of delayed inputs. In absence of this
information, one can use sufficiently large number of delayed inputs and past outputs in the
consequents and then find the useful ones using a concept similar to the feature attenuating
gates as done in [44]. However, use of such a concept may not ensure that all useful delayed
inputs and outputs are consecutive in time. The other alternative could be to use a validation
scheme to find the best combination of number of lagged inputs and outputs to be used in the
consequents. Second, our proposed models enable to widely use in a variety of applications,

that is, prediction and estimation of bio-engineering, and visual and speech recognizing.

69

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Y. Gao and M. J. Er, “NARMAX time series model prediction: feedforward and
recurrent fuzzy neural network approaches,” Fuzzy Sets and Syst., vol. 150, no. 2,
pp.331-350, Mar. 2005.

C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy inference network,”
IEEE Trans. Neural Networks, vol. 10, no. 4, pp. 828-845, Jul. 1999.

G. C. Mouzouris and J. M. Mendel, “Dynamic nonsingleton fuzzy logic systems for
nonlinear modeling,” IEEE Trans. Fuzzy Syst., vol. 5, no. 2,pp. 199-208, May 1997.

Y. C. Wang, C. J. Chien, and C. C. Teng, “Direct adaptive iterative learning control of
nonlinear systems using.an.output-recurrent fuzzy neural network,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern.;vol.-34, no. 5, 21442154, Jun. 2004.

D. G. Stavrakoudis and J. B. Theocharis, “A recurrent fuzzy neural network for adaptive
speech prediction,” in Proc. IEEE Internat. Conf. on Syst., Man, Cybern., Montreal, QC,
Canada, Oct. 2007, pp. 2056-2061.

J. B. Theocharis, “A high-order recurrent neuro-fuzzy system with internal dynamics:
application to the adaptive noise cancellation,” Fuzzy Sets and Syst., vol.157, no. 4, pp.
471-500, Feb. 2006.

C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by
neural network and genetic algorithm,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp.
155-170, Apr. 2002.

C. F. Juang and J. S. Chen, “Water bath temperature control by a recurrent fuzzy
controller and its FPGA implementation,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp.
941-949, Jun. 2006.

J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for nonlinear process

modeling,” IEEE Trans. Neural Networks, vol. 10, no. 2, pp. 313-326, Mar. 1999.

70

[10] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent
fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 349-366, Aug. 2000.

[11] C. J. Lin and C. C. Chin, Prediction and identification using wavelet-based recurrent
fuzzy neural networks, IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 5, pp.
21442154, Oct. 2004.

[12] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic
system identification,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 32, no.2, pp.
176-190, Apr. 2002.

[13] J. S. Wang and Y. P. Chen, “A Hammerstein Recurrent Neurofuzzy Network with an
Online Minimal Realization Learning Algorithm,” IEEE Trans. Fuzzy Syst. vo.16, no. 6,
pp.1597-1612, Dec. 2008.

[14] C. F. Juang, Y. Y. Lin, and C. C. Tu, “A recurrent self-evolving fuzzy neural network
with local feedbacks and its application to dynamic system processing,” Fuzzy Sets and
Systems, vol. 161, pp. 2552-2568, Oct. 2010.

[15] J. Hu and J. Wang, “Global Stability of Complex-valued Recurrent Neural Networks
with Time-Delays,” IEEE Trans. Neural Networks Learning Syst., vol. 23, no. 6, pp.
853-865, Jun. 2012.

[16] F. Ornelas-Tellez, E. N. Sanchez, and A. G. Loukianov, “Discrete -Time Neural Inverse
Optimal Control for Nonlinear via Passivation,” IEEE Trans. Neural Networks. Learning
Syst., vol. 23, no. 8, pp. 1327-1339, Aug. 2012.

[17] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,”
IEEE Trans Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov. —Dec. 1992.

[18] C. J. Linand C. T. Lin, “An ART-based fuzzy adaptive learning control network,” IEEE

Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, Nov. 1997.

71

[19] W. S. Lin, C. H. Tsai, and J. S. Liu, “Robust neuro-fuzzy control of multivariable
systems by tuning consequent membership functions,” Fuzzy Sets and Syst., vol. 124, no.
2, pp. 181-195, Dec. 2001.

[20] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. on
Syst., Man, and Cybern., vol. 23, pp. 665-685, Jun. 1993.

[21] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network
and its applications,” IEEE Trans. Fuzzy Syst., vol. 6, no.1, pp. 12-31, Feb. 1998.

[22] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, MA: Addison—-Wesley,
1989.

[23] J. C. Patra, R. N. Pal,.and B. N. Chatterji, and G. Panda, “Identification of nonlinear
dynamic systems using functional link artificial neural networks,” IEEE Trans Syst.,
Man, Cybern., vol. 29, pp. 254-262, Apr. 1999.

[24] M. Alci, “Fuzzy Rule-base Driven Orthogonal Approximation,” Neural Comp. Appl., vol.
17, nos. 5-6, pp. 501-507, 2008.

[25] M. Alci, “Fuzzy Systems on Orthogonal Bases,” Dynamics of Continuous Discrete and
Impulsive Systems-Series A Mathematical Analysis, vol. 14, 2007, pp. 671-676.

[26] M. Alci and S. Beyhan, “Trigonometric Functions Based Neural Networks for System
Identification,” in Proc. 5th IFAC Intl., May 2007, pp. 141-144.

[27] S. Beyhan and M. Aleci, “An orthogonal ARX network for Identification and Control of
Nonlinear Systems,” in Proc. XXII Int. Symp. Inf., Commun. Autom. Technolo., Oct.
2009, pp. 1-5.

[28] J. Y. Chang, Y. Y. Lin, M. F. Han, and C. T. Lin, “A functional-link based Interval
Type-2 Compensatory Fuzzy Neural Network for Nonlinear System modeling,” in Proc.
IEEE Int. Conf. Fuzzy Syst., Jun. 2011, pp. 939-943.

[29] C. F. Juang, R. B. Huang, and Y. Y. Lin, “A recurrent self-evolving interval type-2 fuzzy

neural network for dynamic system processing,” IEEE Trans. Fuzzy Syst., vol. 17, no. 5,
72

pp. 1092-1105, Oct. 2009.

[30] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a wiener-type cascade
model,” IEEE Trans. Contr. Syst., vol. 17, no. 5, pp. 29-36, Oct. 1997.

[31] H. Tamura, K. Tanno, H. Tanaka, C. Vairappan, and Z. Tang, “Recurrent type ANFIS
using local search technique for time series prediction,” in Proc. IEEE Asia Pacific Conf.
Circuits Syst., Dec. 2008, pp. 380-383.

[32] C. J. Lin, C. H. Chen, and C. T. Lin, “Efficient self-evolving evolutionary learning for
neuro-fuzzy inference systems,” IEEE Trans. Fuzzy Syst., vol.16, no. 6, pp. 14761490,
Dec. 2008.

[33] S. Paul, S. Kumar, “Subsethood-product fuzzy neural inference system (SuPFuNIS),”
IEEE Trans. Neural Networks; vol. 13, no. 3, pp. 578-599, May 2002.

[34] C. F Juang, C. H. Hsu, and I|. F. Chung, “Automatic construction of
feedforward/recurrent fuzzy systems by clustering-aided simplex particle swarm
optimization,” Fuzzy Sets and Syst., vol. 158, no. 18, pp. 1979-1996, Sep. 2007.

[35] C. J. Lin, C. H. Chen, and C. T. Lin, “A hybrid of cooperative particle swarm
optimization and cultural algorithm for neural fuzzy networks and its prediction
applications,” IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 39, no. 1, pp. 55-68,
Jan. 20009.

[36] Y. Chen, B. Yang, and J. Dong, “Time-series prediction using a local linear wavelet
neural network,” Neurocomput., vol. 69, nos. 46, pp. 449-465, Jan. 2006.

[37] S. Yilmaz and Y. Oysal, “Fuzzy wavelet neural network models for prediction and
identification of dynamic system,” IEEE Trans. Neural Networks, vol. 21, no.10, pp.
1599-1609, Oct. 2010.

[38] J. Kim and N. Kasabov, “HyFIS: Adaptive neuro-fuzzy inference systems and their
application to nonlinear dynamical systems,” Neural Netw., vol. 12, no. 9, pp.

1301-1319, Nov. 1999.
73

[39] E. Y. Cheu, H. C. Quek, and S. K. Ng, “TNFIS: Tree-based neural fuzzy inference
system,” in Proc. IEEE Int. Joint Conf. Neural Netw., Jun. 2008, pp. 398-405.

[40] N. K. Kasabov, J. Kim, M. J. Watts, and A. R. Gray, “FuNN/2—Afuzzy neural network
architecture for adaptive learning and knowledgeacquisition,” Inform. Sci., vol. 101, nos.
3-4, pp. 155-175, Oct. 1997.

[41] M. Alci and M. H. Asyali, “Nonlinear system identification via Laguerre network based
fuzzy system,” Fuzzy Sets and Syst., vol. 160, no. 24, Dec. 2009.

[42] G. E. P. Box, Time Series Analysis, Forecasting and Control, San Francisco, CA:
Holden Day, 1970.

[43] J. B. Theocharis and G. Vachtsevanos, “Recursive learning algorithms for training fuzzy
recurrent models,” Int. J.-Intell. Syst., vol. 11, no. 12, pp. 1059-1098, 1996.

[44] C. F. Juang and C. D. Hsieh, “A Locally recurrent fuzzy neural network with support
vector regression for dynamic-system modeling,” IEEE Trans. Fuzzy Syst., vol.18, no. 2,
pp. 261273, Apr. 2010.

[45] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Trans.
Fuzzy Syst., vol.7, no. 6,pp. 643-658, Dec. 1999.

[46] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction and New
Directions, Prentice Hall, Upper Saddle River, NJ, 2001.

[47] J. M. Mendel and R.I. John, “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy Syst.,
vol. 10, no.2, pp.117-127, Apr. 2002.

[48] J. M. Mendel, “Type-2 fuzzy sets and systems: An overview”, IEEE Computational
Intelligence Magazine, vol. 2, no. 1, pp 20-29, 2007.

[49] R. John and S.Coupland, “Type-2 fuzzy logic: A historical view,” IEEE Computational
Intelligence Magazine, vol. 2, no.1, pp57-62, 2007.

[50] J. Zeng, L. Xie, and Z. Q. Liu, “Type-2 fuzzy Gaussian mixture models,” Pattern

Recognition, vol. 41,no. 12, pp 3636-3643, Dec. 2008.
74

[51] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying channels using
type-2 fuzzy adaptive filters,” IEEE Trans. Fuzzy Syst., vol. 8, no. 551-563, Oct. 2000.

[52] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,”
IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535-550, Oct. 2000.

[53] H. Hagras, “Comments on dynamical optimal training for interval type-2 fuzzy neural
network (T2FNN),” IEEE Trans. Syst., Man, Cybern. B, vol. 36, no. 5, pp. 1206-12009,
Oct. 2006.

[54] J. Zeng and Z. Q. Liu, “Type-2 fuzzy hidden Markov. models and their application to
speech recognition,” IEEE Trans. Fuzzy Syst., vol. 14, no. 3, pp. 454-467, Jun. 2006.

[55] C. H. Wang and F.C. H Rhee.” Uncertain fuzzy clustering: interval type-2 fuzzy
approach to C-means,” |[EEE Trans. Fuzzy Syst., vol. 15, no. 1, pp. 107-120, Feb. 2007.

[56] G. M. Mendez and O. Castillo, “Interval type-2 TSK fuzzy logic systems using hybrid
learning algorithm, ”in Proc. IEEE Int. Conf. Fuzzy Syst., pp. 230-235, May 22-25,
2005.

[57] C. H. Lee, Y. C. Lin, and W. Y. Lai, “Systems identification using type-2 fuzzy neural
network (Type-2 FNN) systems,” in Proc. IEEE Int. Symp. Computational Intelligence
in Robotics and Automation, vol. 3, pp. 1264-1269, Jul. 16-20, 2003.

[58] C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical optimal training for interval type-2
fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 3, pp.
1462-1477, Jun. 2004.

[59] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic system,” IEEE
Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84-98, Feb. 2004.

[60] Y. C. Lin and C. H. Lee, “System Identification and Adaptive Filter Using a Novel
Fuzzy Neuro system,” Int. Journal of Computational Cognition, vol. 5, no. 1, pp. 15-26,

2007.

75

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477

[61] W. S. Chan, C. Y. Lee, C. W. Chang, and Y. H. Chang, “Interval type-2 fuzzy neural
network for ball and beam systems,” IEEE conf. Syst. Sci. Eng., pp. 315-320, Jul. 1-3,
2010.

[62] C. F. Juang and Y. W. Tsao, A self-evolving interval type-2 fuzzy neural network with
online structure and parameter learning,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp.
1411-1424, Dec. 2008.

[63] C. D. Li, J. Q. Yi, and D. B. Zhao, “Interval type-2 fuzzy neural network controller
(IT2FNNC) and its application to a coupled-tank liquid-level control system, “in Proc.
Int. Conf. Innovative Comput. Inf. Contr., pp. 508, Jun. 18-20, 2008.

[64] F. J. Lin and P. H. Chou, “Adaptive control of two-axis motion control system using
interval type-2 fuzzy neural network,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp.
178-193, Jan. 20009.

[65] C. F. Juang, R. B. Huang, and W. Y. Cheng, “An Interval Type-2 Fuzzy Neural Network
with Support Vector Regression for Noisy Regression Problems,” IEEE Trans. Fuzzy
Syst., vol. 18, no. 4, pp. 686-699, Aug. 2010.

[66] R. H. Abiyev and O. Kaynak, “Type-2 Fuzzy Neural Structure for Identification and
control of time-varying plants,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp.
4147-4159, Dec. 2010.

[67] C. H. Lee, H. H. Chang, C. T. Kuo, J. C. Chien, and T. W. Hu, “A Novel Recurrent
Interval Type-2 Fuzzy Neural Network for Nonlinear Channel Equalization,” in Proc. Int.
Muticonf. Engineers and computer scientists, vol. 1, March 18-20, 2009.

[68] Y. Y. Lin, J. Y. Chang, and C.T. Lin,” An Internal/Interconnection Recurrent Type-2
Fuzzy Neural Network (IRT2FNN) for Dynamic System Identification,” in Proc. IEEE

Int. Conf. Syst., Man, Cybern., pp. 733-737, Oct 10-13, 2010.

76

[69] C. F. Juang, Y. Y. Lin, and R. B. Huang, ”Dynamic system modeling using a recurrent
interval-valued fuzzy neural network and its hardware implementation,” Fuzzy Sets Syst.,
vol. 179, pp. 83-99, May 2011.

[70] P. S. Sastry, G. Ssntharam, and K. P. Unnikrishnan, “Memory neural networks for
identification and control of dynamic systems,” IEEE Trans. Neural Networks, vol. 5, pp.
306-319, Mar. 1994.

[71] G. Chen, Y. Chen, and H. Ogmen, “ldentifying chaotic system via a wiener-type cascade
model,” IEEE Trans. Contr. Syst., pp. 29-36, Oct. 1997.

[72] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to gualitative modeling,”
IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, Feb. 1993.

[73] A. Laha, N. R. Pal -and J.-Das, “Land cover classification using fuzzy rules and
aggregation of contextual information through evidence theory,” IEEE Trans. Geosci.
Remote Sensing, vol. 24, no. 6, pp.1633-1641, 2006.

[74] N. R. Pal and S. Saha, “Simultaneous Structure Identification and Fuzzy Rule Generation
for Takagi—Sugeno Models,” IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 6, pp.
1626-1638, Dec. 2008.

[75] C. S. Lee, M. H. Wang, and H. Hagras, “A Type-2 Fuzzy Ontology and. Its Application
to Personal Diabetic-Diet Recommendation,” IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp.
374-395, Apr. 2010.

[76] D. Hidalgo, O. Castillo, and P. Melin, “Type-1 and Type-2 fuzzy inference systems as
integration methods in modular neural networks for multimodal biometry and its
optimization with genetic algorithms,” Inform. Sci., vol. 179, pp. 2121-2145, 2009.

[77] X. Chen, Y. Li, R. Harrison, and Y. Q. Zhang, “Type-2 fuzzy logic-based classifier
fusion for support vector machines,” Applied Soft Computing, vol. 8, pp.1222-1231,

2008.

77

[78] X. Liu and J. M. Mendel, “Connect Karnik—Mendel Algorithms to Root-Finding for
Computing the Centroid of an Interval Type-2 Fuzzy Set,” IEEE Trans. Fuzzy Syst., vol.
19, no. 4, pp. 652-565, Aug. 2011.

[79] D. Wu, J. M. Mendel, and S. Coupland, “Enhanced Interval Approach for Encoding
Words Into Interval Type-2 Fuzzy Sets and Its Convergence Analysis,” IEEE Trans.
Fuzzy Syst., vol. 20, no. 3, pp. 499-513, June. 2012.

[80] D. Wu and J. M. Mendel, “Linguistic Summarization Using IF-THEN Rules and
Interval Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 136-151, Feb.
2011.

[81] O. Linda and M. Manic, “General Type-2 Fuzzy C-Means Algorithm for Uncertain
Fuzzy Clustering,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 883-897, Oct. 2012.

[82] D. Wu and J. M. Mendel, “On the Continuity of Type-1 and Interval Type-2 Fuzzy
Logic Systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 179-192, Feb 2011.

[83] C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, “An Enhanced Type-Reduction Algorithm for
Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 227-240, Apr. 2011.

[84] D. Zhat and J. M. Mendel, “Enhanced Centroid-Flow Algorithm for Computing the
Centroid of General Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp.
939-956, Oct. 2012.

[85] D. Zhai and J. M. Mendel, “Comment on “Toward General Type-2 Fuzzy Logic Systems
Based on zSlices,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 996-997, Oct. 2012.

[86] D. Zhai and J. M. Mendel, “Computing the Centroid of a General Type-2 Fuzzy Set by
Means of the Centroid-Flow Algorithm,” IEEE Trans. Fuzzy Syst., vol. 19, no.3, pp.
401422, June. 2011

[87] O. Linda and M. Manic, “Monotone Centroid Flow Algorithm for Type Reduction of
General Type-2 Fuzzy Sets,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 805-819, Oct.

2012.
78

[88] R. Hosseini, S. D. Qanadli, S. Barman, M. Mazinani, T. Ellis, and J. Dehmeshki, “An
Automatic Approach for Learning and Tuning Gaussian Interval Type-2 Fuzzy
Membership Functions Applied to Lung CAD Classification System,” IEEE Trans.
Fuzzy Syst., vol. 20, no. 2, pp. 224-234, Apr. 2012,

[89] M. Nie and W. W. Tan, “Analytical Structure and Characteristics of Symmetric
Karnik—Mendel Type-Reduced IntervalType-2 Fuzzy Pl and PD Controllers,” IEEE
Trans. Fuzzy Syst., vol. 20, no. 3, pp. 416-430, 2012.

[90] D. Wu, “On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy
Logic Controllers,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 832-848, Oct. 2012.

[91] S. Barkat, A. Tlemcani, and H. Nouri, ‘“Noninteracting Adaptive Control of PMSM
Using Interval Type-2 Fuzzy Logic Systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 5, pp.
925-936, Oct. 2011.

[92] R. A. Aliev, W. Pedrycz, B. G. Guirimov, R. R. Aliev, U. llhan, M. Babagil, and S.
Mammadli, “Type-2 fuzzy neural networks with fuzzy clustering and differential

evolution optimization,” Inf. Sci., vol. 181, pp. 1591-1608, 2011.

79

Vita

1BE A S EHTHR

¥ % 1 RF e (Yang-Yin Lin)

o XK97E6H P
o ARI02E4? > WEZIAAEFTHELH1 48 EL5T ke

v

80

L

Publication List

Fiep &

¥ 2 ¢ #RiEer(Yang-Yin Lin)

[

[1]

[2]

[3]

[4]

[5]

[6]

TE AR TR

Yang-Yin Lin, Jyh-Yeong Chang, and Chin-Teng Lin, “Identification and Prediction of
Dynamic Systems Using an Interactively Recurrent Self-evolving Fuzzy Neural Network
(IRSFNN),” IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 2, pp. 310-321, Feb.
2013.

Yang-Yin Lin, Jyh-Yeong Chang, and Chin-Teng Lin, “A TSK-type-based Self-Evolving
Compensatory Interval Type-2 Fuzzy Neural Network (TSCIT2FNN) and Its
Applications,” accepted to-appear in IEEE Trans. on Ind. Electron., 2013.

Yang-Yin Lin, Jyh-Yeong-Chang, Nikhil R. Pal and Chin-Teng Lin, “A Mutually
Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) with Self-evolving
Structure and Parameters,” IEEE Trans. Fuzzy Syst., vol. 21, no. 6, 2013.

Chia-Feng Juang, Yang-Yin_Lin, Ren-Bo Huang, “Dynamic system modeling using a
recurrent interval-valued fuzzy neural network and its hardware implementation,” Fuzzy
Sets and Syst., vol. 179, no.1, pp. 83-99, 2011.

Chia-Feng Juang, Yang-Yin Lin, Chiu-Chuan Tu: A recurrent self-evolving fuzzy neural
network with local feedbacks and its application to dynamic system processing. Fuzzy
Sets and Syst., vol. 161, no. 19, pp. 2552-2568, 2010.

Chia-Feng Juang, Ren-Bo Huang, Yang-Yin Lin, “A Recurrent Self-Evolving Interval
Type-2 Fuzzy Neural Network for Dynamic System Processing,” IEEE Trans. on Fuzzy
Syst., vol.17, no. 5, pp. 1092-1105, 20009.

it g

[1]

[2]

[3]

Jyh-Yeong Chang, Yang-Yin Lin, Ming-Feng Han and Chin-Teng Lin, “A
Functional-Link based Interval Type-2 Compensatory Fuzzy Neural Network for

Nonlinear System Modeling,” 2011 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2011), Taipei, Taiwan, pp. 939-943 ,Jun. 27-30, 2011.

Chin-Teng Lin, Ming-Feng Han, Yang-Yin Lin, Shih-Hui Liao and Jyh-Yeong Chang,
“Neuro-Fuzzy System Design Using Differential Evolution with Local Information,”
2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei,
Taiwan, pp. 1003-1006, Jun. 27-30, 2011.

Jyh-Yeong Chang, Yang-Yin Lin, Chin-Teng Lin, Chia-Feng Juang and Li-Wei Ko, “A

81

http://www.informatik.uni-trier.de/~ley/pers/hd/j/Juang:Chia=Feng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Huang:Ren=Bo.html
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss179.html#JuangLH11
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss179.html#JuangLH11
http://www.informatik.uni-trier.de/~ley/pers/hd/j/Juang:Chia=Feng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tu:Chiu=Chuan.html
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss161.html#JuangLT10
http://www.informatik.uni-trier.de/~ley/db/journals/fss/fss161.html#JuangLT10
http://www.informatik.uni-trier.de/~ley/pers/hd/j/Juang:Chia=Feng.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Huang:Ren=Bo.html

[4]

[5]

Function-Link based Type-2 Fuzzy Neural Network for identification and modeling of
time-varying plants,” The 17th National Conference on Fuzzy Theory and its
Applications, Hualien, Taiwan, Nov. 3—4, 2010.

Chin-Teng Lin, Ming-Feng Han, Yang-Yin Lin, Jyh-Yeong Chang and Li-Wei Ko,
“Differential Evolution based Optimization of Locally Recurrent Neuro-Fuzzy System
for Dynamic System Identification,” The 17th National Conference on Fuzzy Theory and
its Applications, Hualien, Taiwan, pp. 702-707, Nov. 3-4, 2010.

Yang-Yin Lin, Jyh-Yeong Chang and Chin-Teng Lin, “An Internal/Interconnection
Recurrent Type-2 Fuzzy Neural Network (IRT2FNN) for dynamic system
identification,” IEEE International Conference on Systems, Man and Cybernetics, pp.
733-737, 2010.

82

