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分組式差分進化演算法及其應用於模糊系

統最佳化設計 

 

研究生：韓明峰              指導教授：林進燈 博士  

                                        張志永 博士 

 

國立交通大學電控工程研究所    博士班 

 

摘    要 

本篇論文主要分為兩個部分，第一部分，我們提出分組式差分進化演算法解

決函數最佳化問題。該進化演算法使用兩種不同類型的突變運算，可解決傳統演

算法常遇到的停滯問題，進而達到良好的演化搜尋能力。在演化程序中，依照個

體之適應值，所有個體被區分為優等組與劣等組。優等組進行區域性的突變運算，

劣等組進行全域性的突變運算。再藉由交配和選擇運算以產生新的子代。我們也

提出一個新的適應學習策略為了避免人為設定參數問題，該策略能自動的找到最

佳設定參數。在模擬中，我們測試 13 個函數最佳化問題。本論文所提出的演算

法皆呈現良好的搜尋效能。第二部分，我們將分組式差分進化演算法應用在函數

聯結之模糊系統最佳化設計上。在架構學習中，使用凝聚分群演算法自動地給予

模糊系統最適合的模糊規則數。在參數學習中，群體將被拆善成數個子群體且每

個子群體各自進化，最後可獲得最佳化的函數聯結之模糊系統。我們將與其他方

法比較，以證實所提出的網路架構及其相關演算法之有效性。 
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ABSTRACT 

This dissertation consists of two major parts. In the first part, we propose a 

group-based differential evolution (GDE) algorithm for numerical optimization 

problems. The proposed GDE algorithm employs two different mutation operations to 

solve the stagnation problem and achieve good performance. Initially, all individuals 

in population are grouped into an inferior group and a superior group based on their 

fitness value. The inferior group uses the global mutation model. The superior group 

employs the local mutation model. Subsequently, crossover and selection operations 

are employed for the next generation. An adaptive strategy is also proposed to 

automatically find good parameters in the GDE algorithm. To validate the 

performance of the GDE algorithm, 13 numerical benchmark functions are tested. The 

simulation results indicate that the approach is effective and efficient. In the second 

part, we apply the GDE algorithm to function-link fuzzy system (FLFS) optimization. 
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For structure learning, an agglomerative clustering algorithm is proposed to find the 

optimal number of fuzzy rules. For parameter learning, we use symbiotic learning 

method and GDE algorithm. The population is separated as subpopulations. Each 

subpopulation performs GDE algorithm to search the optimal parameter. The FLFS 

model with GDE learning algorithm (FLFS-GDE) is applied in real world prediction 

problems. Results of this dissertation demonstrate the effectiveness of the proposed 

methods. 
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Chapter 1 

 

 

Introduction 

 

Evolutionary algorithms (EAs)[1-6] are population based stochastic optimization 

methods that are inspired by Darwin’s Theory of Evolution.  EAs are able to deal with 

difficult objective functions which are, e.g., discontinuous, non-convex, multi-modal, 

non-linear and non-differentiable functions. Since engineering, economic and scientific 

problems include such difficult objectives, EAs have become popular optimization tools 

during the last couple of decades. 

The optimization process of the EAs usually adopt stochastic search techniques that 

work with a set of individuals instead of a single individual, and use some evolution 

operators to naturally produce offsprings for the next generation. These algorithms include 

genetic algorithm (GA)[7-8], evolutionary programming (EP)[9-10], evolution strategies 

(ES)[11], particle swarm optimization (PSO)[12-13] and differential evolution (DE)[14-15] 

which are famous, effectual and classical search techniques. 

The GA is a powerful optimization tool based on biological evolution mechanism and 

natural selection. This algorithm was first proposed and investigated by John Holland in 

1973. The main idea of the GA follows the natural selection principle of selecting fittest 

individuals for the next generation and explores the relevant search space according to the 

evolutionary computing strategies. In the GA, chromosome is represented by a binary 
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bit-string. Generally, the initial population of GA is generated code “1” or“0” randomly for 

each design variable. Offsprings (new population) are produced by Reproduction. The 

Reproduction usually involves crossover and mutation. Crossover is the process of 

combining genetic building blocks from two or more parent vectors to form one or more new 

offspring. Mutation is the process of injecting random noise into offspring vectors to form a 

slightly different offspring individual, thereby increasing the genetic diversity of the 

population. 

Evolution strategies (ES) were developed by Rechenberg and Schwefel[11]. This 

algorithm is an effective continuous function optimizer. In evolution process, ESs perform 

mutation operator as main operator to produce offspring. After mutating and evaluating all λ 

children, the (µ, λ)-ES selects the best µ children to become the next generation’s parents. 

Alternatively, the (µ + λ)-ES populates the next generation with the best µ vectors from the 

combined parent and child populations. The special case (µ + 1) is also referred to as 

steady-state ES. 

A new population-based evolutionary algorithm, called particle swarm optimization 

(PSO), was proposed by Kennedy and Eberhart [12] in 1995. The population in PSO is 

referred to as a swarm. The PSO is based on simulations of social behaviors such as fish in a 

school, birds in a flock etc. A swarm in PSO consists of a number of particles. Each particle 

represents a potential solution of the optimization task. All of the particles iteratively 

discover a probable solution. Each particle moves to a new position according to the new 

velocity and the previous positions of the particle. The PSO has faster convergence than GA 

and ES to over a small number of generations. 

In recent years, the DE algorithm is interested by researchers [14-35] among the EAs. 

The DE algorithm, proposed by Storn and Price [14-15] in 1998, is an efficient and effective 

global optimizer in the continuous search domain. It has been shown to perform better than 

the GA, ES and PSO over several numerical benchmarks [14-15, 19, 30, 34]. The DE 
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algorithm employs the difference of two randomly selected individuals as the source of 

random variations for the mutation operation. Subsequently, crossover and selection 

operations are used for generating offsprings. Many studies have applied the DE algorithm to 

difficult optimization problems and achieved better solutions[19, 28, 31]. However, the 

stagnation problem has been identified that the DE algorithm occasionally stops proceeding 

toward the global optimum [18-19]. The reason for stagnation problem is the limitation of 

the mutation operation model. In the DE algorithm, the mutation operation model always 

favors the exploration ability (DE/rand strategy) or the exploitation ability (DE/best strategy), 

which easily results in the blind search in individual space or the insufficient diversity in 

population. In order to deal with this problem, previous studies have proposed ideas to 

improve the mutation operation model. In [28, 31], the researchers have proposed a modified 

differential evolution (MODE) algorithm for an adaptive neural fuzzy network and locally 

recurrent neuro-fuzzy system optimazation. This MODE algorithm provides a convex type 

mutation model and cluster-based scheme to increase the diversity of the population. The 

concept of the tradeoff between the exploration ability and exploitation ability was proposed 

by Das et al.[18]. They designed a novel mutation model, called neighborhood-based 

mutation operation, to handle stagnation problem. In their paper, they utilized new mutation 

strategy and ring topology of neighborhood to find potential individuals in population. 

However, a single evolution model may not be suitable for various problems [21, 24, 27]. 

Therefore, other researchers which combine with other learning methods have proposed for 

solving the stagnation problem. Rahnamayan et al. [27] combined a opposition-based 

learning method and the DE algorithm, called opposition-based differential evolution (ODE). 

The ODE employs opposition-based optimization to choose the better solutions by 

simultaneously checking fitness of the opposite solution in the current population. The ODE 

possesses successfully increases diversity of the population. A combination of one-step 

k-Means clustering and multi-parent crossover operation in the DE algorithm was proposed 
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by Cai et al. [21]. Their method enhances the performance of the DE algorithm and balances 

the exploration ability and the exploitation ability in the evolutionary process. Noman and 

Iba [24] proposed an adaptive local search (ALS) algorithm to increase exploitation ability in 

the DE algorithm. The ALS algorithm uses a simple hill-climbing algorithm to adaptively 

determine the search length and effectively explore the neighborhood of each individual. Ali 

and Pant [36] applied a Cauchy mutation to improve the performance of the DE algorithm. 

The Cauchy mutation using Cauchy distribution randomly forces solutions to move to some 

other position. This method efficiently increases the probability of searching potential 

solutions in the DE algorithm. A combination of the fuzzy adaptive PSO algorithm and the 

DE algorithm, called FAPSO-DE model, was proposed by Niknam et al. [37]. They utilize 

two evolution processes to balance the exploration ability and exploitation ability for 

economic dispatch problems.  

    Unlike above mentioned studies, this dissertation proposes a new idea to solve the 

stagnation problem. This idea employs the inherent properties of the DE algorithm without 

depending on other learning algorithms. The idea combines two classical mutation strategies 

instead of a single mutation model. The two mutation strategies are composed of the 

DE/rand/bin operation and the DE/best/bin operation. The DE/rand/bin has powerful 

exploitation ability; and the DE/best/bin has efficient exploration ability. This dissertation 

uses the two operations to tradeoff between the exploration ability and the exploitation 

ability for solving the stagnation problem.     

In this dissertation, a group-based differential evolution (GDE) algorithm is proposed 

for numerical optimization problems. The GDE algorithm provides a new process using the 

DE/rand/bin model and the DE/best/bin model in mutation operation. Initially, all individuals 

in population are grouped into an inferior group and a superior group based on their fitness 

value. The inferior group uses the DE/rand/bin mutation model for globally searching 

potential solutions and for maintaining the diversity of the population. The superior group 
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employs the DE/best/bin mutation model to efficiently search the neighborhood of the 

current best solution. Subsequently, crossover and selection operations are employed for the 

next generation. An adaptive strategy is also proposed in this dissertation. This strategy uses 

successful information to automatically tend to good parameters (factor F and crossover rate 

CR). It is thus helpful to enhance the robustness of the GDE algorithm. In order to validate 

the performance of the GDE algorithm, 13 well-known numerical benchmark functions with 

low dimensional problems and high dimensional problems are tested. Simulation results 

indicate that our approach is efficient. Comparison with other advance evolutionary 

algorithms, the proposed GDE algorithm performs better performance. 

In addition, we also apply the proposed GDE algorithm to practical problems based on 

functional-link fuzzy systems (FLFS) optimization. Initially, the FLFS has no rules. The 

fuzzy rules are automatically generated by an agglomerative clustering algorithm. The 

agglomerative clustering algorithm (ACA) determines the optimal number of fuzzy rules for 

the FLFS. Subsequently, all free parameters are learned by the GDE algorithm for the FLFS 

optimization. During evolution process, the scale fact and crossover are adjusted by adaptive 

parameter tuning strategy. In the simulation, five prediction problems are tested to validate 

the performance of the proposed functional-link fuzzy system with the GDE algorithm 

(FLFS-GDE). The proposed FLFS-GDE model shows better prediction performance than 

other methods. 

    The overall objective of this dissertation is to develop a novel evolutionary algorithm 

and its related application. Organization and objectives of each chapter in this dissertation 

are as follows. 

In Chapter 2, we introduce a basic DE algorithm and its evolution process. The DE 

algorithm employs the difference of two randomly selected individuals as the source of 

random variations for the mutation operation. Subsequently, crossover and selection 

operations are used for the next generation. 
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In Chapter 3, we present a new differential evolution algorithm, called group-based 

differential evolution algorithm for global optimization problems. This algorithm employs 

two mutation strategies instead of a single mutation model to tradeoff between the 

exploration ability and the exploitation ability for solving the stagnation problem. 

Furthermore, an adaptive strategy is also proposed to enhance the robustness of the GDE 

algorithm by an automatic process for finding good parameters. 13 well-known numerical 

benchmark functions are tested for simulations. The result shows significant differences 

between the proposed GDE algorithm and other methods. 

In Chapter 4, the proposed GDE algorithm is applied to FLFS optimization for 

prediction problems. The learning process consists of rule generation phase and parameter 

learning phase. The rule generation phase can determine the optimal number of fuzzy rules 

using the agglomerative clustering algorithm. The parameter learning phase combines a 

subpopulation symbiotic evolution and a GDE algorithm. Initially, population is separated as 

many subpopulations according to the number of fuzzy rules. Each subpopulation performs 

the GDE algorithm for parameter learning. We also compare our method and other methods 

in simulations. Finally, conclusions and future works are summarized in Chapter 5. 
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Chapter 2 

 

 

Differential Evolution  

 

This section introduces a complete DE algorithm. The process of the DE algorithm, 

likes other EAs, produces offsprings for next generation by the mutation operation, the 

crossover operation and the selection operation. Figure 2.1 shows a standard flow chart of 

the DE algorithm. 

Initialize 
Population

Performance 
Evaluation 

Mutation 
Operation

Crossover 
Operation

Selection 
Operation

Meeting 
Termination 
Criterion ?

Return Optimal
Solution

Gen=Gen+1 

NO

YES

 

Figure 2.1 : The flow chart of the DE algorithm. Gen is the generation counter. 
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    Initially, a population of NP D-dimensional parameter vectors which represents the 

candidate solutions (individuals) is generated by uniformly random process. All individuals 

and search space are constrained by the prescribed minimum 
min 1,min 2,min ,min( , ,..., )Dx x xX  and 

maximum 
max 1,max 2,max ,max( , ,..., )Dx x xX

 

parameter bounds. A simple representation of i-th 

individual at the current generation Gen is shown as follows： 

, ,1, ,2, ,3, , 1, , ,( , , ,..., , )i Gen i Gen i Gen i Gen i D Gen i D Genx x x x xX  .                     (1) 

After Initial population production with NP individuals, fitness evaluation process 

measures quality of individuals to calculate the performance. The succeeding steps include 

the mutation operation, the crossover operation and the selection operation are explained in 

the following. 

 

Mutation Operation 

Each individual in the current generation is allowed to breed through mating with other 

randomly selected individuals from the population. This process randomly selected a parent 

pool of three individuals is formed to produce an offspring. Specifically, for each individual

, ,  1,2,...,i gen i NPX , where gen denotes the current generation, NP is population size, three 

random individuals,
1,r genX , 

2,r genX ,
3,r genX , 

4,r genX  and 
5,r genX are selected from the 

population such that r1, r2, r3, r4 and r5 ∈ { 1, 2, . . . , NP } and 1 2 3 4 5i r r r r r     . 

This way, a parent pool of four individuals is formed to produce an offspring. The following 

are different mutation strategies frequently used in the literature: 

, 1, 2, 3,DE/rand/bin:   ( )i gen r gen r gen r genF  V X X X                      (2) 

, , 2, 3,DE/best/bin:   ( )i gen gbest gen r gen r genF  V X X X                      (3) 
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, 1, , 1,

2, 3,

DE/target-to-best/bin:   ( )

                                                            ( )

i gen r gen gbest gen r gen

r gen r gen

F

F

  

 

V X X X

X X
                 (4) 

, 1, 2, 3,

4, 5,

DE/rand/bin/2:   ( )

                                                ( )

i gen r gen r gen r gen

r gen r gen

F

F

  

 

V X X X

X X
                     (5) 

, , 2, 3,

4, 5,

DE/best/bin/2:   ( )

                                                  ( )

i gen gbest gen r gen r gen

r gen r gen

F

F

  

 

V X X X

X X
                     (6) 

 

where F is scaling factors [0,1] , 
,gbest genX  is the best-so-far individual (i.e., 

,gbest genX

keeps best fitness value up to now in the population). For various problems, the DE 

algorithm usually employs different mutation strategy. The DE/rand/bin/ mutation and 

DE/rand/bin/2 mutation which have more exploration ability are suitable for multimodal 

problems. The “DE/best/bin”, “DE/best/bin/2” “DE/target-to-best” mutations which consider 

the current best information in generation are more suitable for unimodal problems. 

 

Crossover Operation 

After the mutation operation, The DE algorithm uses a crossover operation, often 

referred to as discrete recombination, in which the mutated individual 
,i genV  is mated with

,i genX and generates the offspring
,i genU . The elements of an individual

,i genU  are inherited 

from 
,i genX and 

,i genV , which are determined by a parameter called crossover probability 

(CR ∈ [0, 1]), as follows: 

 

, ,

, ,

, ,

,      if  rand( ) CR 

,      if  rand( ) > CR

i d gen

i d gen

i d gen

d

d


 


V
U

X
                             (5) 

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is total element of 
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individual vector, r (d) ∈ [0, 1] is the dth evaluation of a random number generator. Figure 

2.2 gives an example of the crossover mechanism for 7-dimensional vectors. 

D=1

   2

   3

   4

   5

   6

   7

Xi,Gen Vi,Gen U,Gen

D=1

   2

   3

   4

   5

   6

   7

D=1

   2

   3

   4

   5

   6

   7

Target 

vector 

Mutant 

vector

Trial 

vector

r(3)<=CR

r(4)<=CR

r(6)<=CR

 

Figure 2.1 : Illustration of the crossover process for NP=7 parameters. 

 

Selection Operation 

The DE algorithm applies selection operation to determine whether the individual 

survives to the next generation. A knockout competition is played between each individual 

,i genX and its offspring
,i genU , and the winner is selected deterministically based on objective 

function values and is then promoted to the next generation. The selection operation is 

described as 

, , ,

, 1

,

,      if   fitness( ) < fitness( )

,      otherwise

i gen i gen i gen

i gen

i gen




 


X X U
X

U
                    

(6)

 

where fitness( )z is the fitness value of individual z. After the selection operation, the 

population obtains better fitness value or remains the same fitness value, but never 

deteriorates. 
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Chapter 3 

 

 

Group-Based Differential Evolution  

 

3.1  A GDE Algorithm 

In the DE algorithm, mutation operation which leads a successful evolution performance is a 

principal operator. For various problems, we often employ different mutation strategy in the 

DE algorithm. However, choosing suitable mutation strategy which deals with a practical 

problem is difficult. Therefore, we propose the GDE algorithm with the exploration ability 

and the exploitation ability, which combines two mutation strategies to solve practical 

problems. A flow chart of the GDE algorithm is shown in Figure 3.1. 

    In first step of the GDE algorithm, a population of NP D-dimensional individuals is 

generated by uniformly random process, and evaluated for the fitness value of all individuals. 

A sorting process arranges all individuals based on their fitness value as

1 2 1... NP NPfitness fitness fitness fitness   
 for minimum objective problems. 

According to fitness value, all individuals are partitioned into an inferior group and a 

superior group, called the Group A and the Group B. The Group A, including NP/2 worse 

individuals, performs global search to increase the diversity of the population and widely 

find potential solutions. Other NP/2 individuals for the Group B perform local search to 

actively detect better solutions nearby current best solution. A complete mutation operation 

is shown for the Group A and the Group B as follows. 
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, , 1 , 2 ,G r o u p  A :  ( )i g e n i g e n a r g e n r g e nF  V X X X

                    

(7) 

  
, , 3 , 4 ,G r o u p  B :  ( )i g e n g b e s t g e n b r g e n r g e nF  V X X X

                  

(8) 

Where Fa and Fb are scale factors,
1,r genX ,

2,r genX ,
 3,r genX  and 

4,r genX  are random selected 

from the population, and 1 2 3 4i r r r r    ,the 
,gbest genX  is the best-so-far individual in 

the population.  

After mutation operation, The GDE algorithm uses a crossover operation, often referred 

to as discrete recombination, in which the mutated individual 
,i genV  is mated with

,i genX and 

generates the offspring
,i genU . Equation 9 presents the crossover operation for the Group A 

and the Group B. If the random number rand(d) is smaller than the CR value, the variable of 

the mutated individual 
, ,i d genV is chosen to the variable of the trial vector 

, ,i d genU . Otherwise, 

the variable of the target vector 
, ,i d genX  is selected to the variable of the trial vector 

, ,i d genU
.
  

, ,

, ,

, ,

,      if  rand( ) CR 

,      if  rand( ) > CR

i d gen

i d gen

i d gen

d

d


 


V
U

X
                         (9) 

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is total element of 

individual vector, CR ∈ [0, 1],rand(d) ∈ [0, 1] is the dth evaluation of a random number 

generator. The mutation and crossover operators are used to diversify the search space in 

terms of the optimization problems. 

Selection operation is used to determine whether the individual survives to the next 

generation. A knockout competition is played between each individual 
,i genX and its 

offspring
,i genU , and the winner is selected deterministically based on objective function 

values and is then promoted to the next phase. After the selection operation, the population 

gets better or remains the same in fitness value, but never deteriorates. 
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The conventional DE only utilizes DE/best or DE/rand mutation to deal with problems. 

The proposed GDE algorithm employed two mutation operations to maintain useful diversity 

in the population and increase the search capability. It is worth noting that DE/best/bin and 

DE/rand/bin are a special case in the proposed GDE algorithm when population = Group A 

and population = Group B. Thereby, the proposed GDE algorithm has more variety than 

conventional DE algorithm for various problems. In this dissertation, we set the size of the 

Group A= Group B=NP/2 because it obtained the best performance in the present study.  
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Initialize 
Population
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Evaluation 
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Termination 
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Return Optimal
Solution

Gen=Gen+1 

NO

YES

Performance 
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Mutation 
Operation

Crossover 
Operation

Selection 
Operation

Mutation 
Operation

Crossover 
Operation

Selection 
Operation

Combine Offspring 
form Grouop A and B 

Group A Group B

 

Figure 3.1: The flow chart of the proposed GDE algorithm. GEN is the generation counter. 
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3.2  A Self-Adaptive Parameter Tuning Strategy 

Parameter control which can directly influence the convergence speed and search capability 

is an important task in the EAs [12, 19]. However, conventional DE algorithm always used 

trial-and-error method for choosing suitable parameter requires multiple optimization runs. 

Based on this consideration, different adaptive or self-adaptive mechanisms [16, 18, 22, 25, 

32] have been recently introduced to dynamically update the control parameters without a 

user’s prior knowledge of the relationship between the parameter setting and the 

characteristics of optimization problems. In this section, we propose a generalized 

self-adaptive approach to control parameter the F and the CR for the Group A (inferior) and 

the Group B (superior). The concept of the proposed parameter tuning strategy is shown in 

Figure 3.2. The generalized scheme is designed as follows： 

(1) Assume new parameters  min max[ , ] , 1 .iG G G i NP    The iG  is composed of 

 and i iF CR  for individual ix . We set a initial center centerG  

(2) Set 1g g   and randomly generate iG  by Gaussian distribution ( centerG , 0.2 ) for 

every individual ix . 

(3) After evolution process, the iG  that is able to make the offspring , 1i gx   of 
ix  to 

successfully enter the next generation. That is, a good parameter value iG  will be 

marked and recorded in our algorithm. The successful parameter value success ( )G k  and 

fitness improvements
1( ),  where =1,2,..., gk k N 
 

sucess sucess, sucess, ( ) [ , ]k kG k F CR                         (10) 

 
2

, 1( ) ( ) ( )k g kk fitness x fitness x  
                   

 (11) 
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(4) Update the parameter center according to  

, 1(1 )center center center gG w G w G                        (12) 

where the weight w is determined by 

1

1

g

g g

N
w

N N








                              

 (13) 

and 
, 1center gG 

 is the weighted mean of values in sucessG : 

, 1 sucess

1

1

( )
( )

( )

g

g

N

center g N
k

k

k
G G k

k











 


                     (14) 

(5) If 
1g gN N  , then update the

1gN 
 as follows 

1 0.9g gN N                                (15) 

(6) Go to Step 2 for the next generation until a stopping criterion is satisfied. 

 

Individual 1

Individual 2

.

.

.

Individual NP

F1 CR1

F2 CR2

FNP CRNP

.

.

.

.

.

.

G1

G2

GNP

success ( ),  ( )G k k

centerG

Gaussian 

Distribution

Collection

Updating

Assignment
 

Figure 3.2 : A concept of the self-adaptive parameter tuning strategy. 
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3.3  Simulation  

In order to verify the performance of proposed algorithm, a set of thirteen classical 

benchmark test functions [38-39] is used in this simulation. The analytical form of these 

functions is given in section 3.3.1. The GDE algorithm is compared with three classic DE 

algorithms, including the DE/rand/bin, the DE/best/bin and the DE/target-to-best/bin 

algorithms. In all simulations, we set the parameters of the GDE algorithm to be fixed, initial 

Fa= 0.5, initial Fb =0.8, initial CRa=0.9 ,initial CRb =0.9. The parameter setting for three 

classic DE algorithms is recommended by other papers as follows. For DE/rand/bin model, 

the F=0.5 and the CR=0.9 [15, 22, 32]；For DE/bes/bin model, the F=0.8 and the CR=0.9 

[18]；For DE/target-to-best/bin, the F=0.8 and the CR=0.9[20]. 

    Many papers have used the same parameter setting to solve their problems. In this 

simulation, we set the population size NP to be 100 and 400 in the case of D = 30, and D = 

100, respectively. All results reported in this section are obtained based on 50 independent 

runs. In addition, Section 3.3.3 demonstrates significant difference results based on statistical 

comparison process. A complete comparison with other evolutionary algorithms, such as 

RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40], RTEP[44], jDE[33,47], 

SaDE[26], ODE[27], SaCDE[16], DEGL[18] and JADE[22,46], is presented in Section 

3.3.4. 
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3.3.1  Test Functions  

    In this section, we introduce thirteen numerical functions for verifying the performance 

of proposed GDE algorithm. Based on their properties, the functions can be divided into two 

problems as unimodal function problem and multimodal function problem. f1– f4 are 

continuous unimodal functions. f5 is a discontinuous step function, and f6 is a noisy quartic 

function. f7 is the Rosenbrock function which is multimodal function problem for D > 3 [39]. 

f8– f13 are multimodal and the number of their local minima increases exponentially with the 

problem dimension [40]. In addition, f8 is the only bound-constrained function investigated 

in this paper. All these functions have an optimal value at zero. Completed functions are 

described as follows: 

(1) Function 1 ：Sphere function 

2

1

1

( ) -100 100
D

i i

i

f x x


   　，  　
 

 

(2) Function 2 ：Schwefel’s problem_a 

2

1 1

-10 10
DD

i i i

i i

f x x x
 

     　 ,     
 

 

(3) Function 3 ：Schwefel’s problem_b 

2

3

1 1

-100 100
D i

i i

i j

f x x
 

 
   

 
  　 ,     

 

 

(4) Function 4 ：Schwefel’s problem_c 

4 max -100 100i i
i

f x x  　 ,     
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(5) Function 5 ：Schwefel’s problem_d 

 
2

5

1

0.5 -100 100
D

i i

i

f x x


     ,     
 

 

(6) Function 6 ：Schwefel’s problem_e  

 4

6

1

0,1 -1.28 1.28
D

i i

i

f ix rand x


     ,     
 

 

(7) Function 7 ：Rosenbrock’s function  

2 2

7 1

1

100( ) ( 1) -30 30
D

i i i i

i

f x x x x



         ,     
 

 

(8) Function 8 ：Schwefel’s function  

8

1

sin 418.98288727243369 -500 500
D

i i i

i

f x x D x


       ,     
 

 

(9) Function 9 ：Rastrigin’s function  

 9

1

10cos(2 ) 10 -5.12 5.12
D

i i i

i

f x x x


      ,     
 

 

(10) Function 10 ：Ackley’s function  

2

10

1 1

1 1
20exp 0.2 exp cos(2 ) 20

-32 32

D D

i i

i i

i

f x x e
D D

x


 

   
            

 

   ,    
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(11) Function 11 ：Griewank’s function 

2

11

1 1

1
cos( ) 1 -600 600

4000

DD
i

i i

i i

x
f x x

i 

       ,        
 

 

(12) Function 12 ：Generalized penalized function_1 

1
2 2 2 2

12 1 1

1

1

10sin ( ) ( 1) 1 10sin ( ) ( 1)

        ( ,10,100,4)

where

1
1 ( 1),

4

( )   ,   if  

 ( , , , ) ( ) ,   if  

0                ,    otherwise

D

i i D

i

D

i

i

i i

m

i i

m

i i i

f y y y y
D

u x

y x

k x a x a

u x a k m k x a x a


 









 
        

 



  

  

    





-50 50ix






    

 

 

(13) Function 13 ：Generalized penalized function_2 

1
2 2 2 2 2

13 1 1

1

1

1
sin (3 ) ( 1) 1 sin (3 ) ( 1) 1 sin (2 )

10

        ( ,10,100,4)

where

( )   ,   if  

 ( , , , ) ( ) ,   if  

0                ,    otherwise

D

i i D D

i

D

i

i

m

i i

m

i i i

f x x x x x

u x

k x a x a

u x a k m k x a x a

  








 
             

 



 

    





-50 50ix







    
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3.3.2  Low-Dimensional Problems  

In this simulation, the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin 

algorithms are applied to low dimensional problems on 13 benchmark test functions. Table 

3.1 and Table 3.2 show the detailed performance of the GDE, DE/rand/bin, DE/best/bin and 

DE/target-to-best/bin algorithms, including the mean, best and worst performance over 50 

independent runs. This table indicates that the GDE algorithm obviously achieves better 

performance than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms on 13 

benchmark test functions. Especially, the GDE algorithm searches the global optimal 

solution at zero on the Function 5 and the Function 11. Focus on three classical DE 

algorithms, the DE/target-to-best/bin algorithm often obtains a better performance than the 

DE/rand/bin and DE/best/bin algorithms on 13 benchmark test functions. The DE/rand/bin 

obtains obvious difference on the Function 11 and the Function 13 among three classical DE 

algorithms.  

    The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin 

algorithms on 13 test function for low dimensional (D=30) problems is shown in Figure 3.3. 

This Figure presented that the GDE algorithm possesses speedier convergence than the 

DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms on 13 benchmark test 

functions. An interesting case is shown in Figure 3(h) and Figure 3(i). The DE/rand/bin, 

DE/best/bin and DE/target-to-best/bin algorithms are stopped at locally optimal solutions on 

the Function 9 and the Function 10. The GDE algorithm maintains a continued convergence 

to find the optimal solutions. It is shown that the proposed GDE algorithm successfully 

overcomes the stagnation problem for low dimensional problems. 
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Table 3.1: Experimental results (Function 1－Function 8)of GDE, DE/rand/bin, DE/best/bin 

and DE/target-to-best/bin for low dimensional problems (D=30), averaged over 50 

independent runs. 

Function Gen. 
GDE DE/rand/bin DE/best/bin 

DE/target–to 

–best/bin 

Mean 

(Best, Worst) 

f1 1500 

1.83E–42 

(9.61E–59, 

9.15E–41) 

2.53E–13 

(5.37E–14, 

1.16E–12) 

4.51E–14 

(2.30E–15, 

1.56E–13) 

4.84E–16 

(7.17E–17, 

1.76E–15) 

f2 2000 

4.02E–30 

(3.86E–41, 

1.37E–28) 

2.93E–09 

(5.42E–10, 

8.45E–09) 

7.82E–11 

(1.75E–11, 

3.00E–10) 

2.11E–11 

(3.84E–12, 

6.81E–11) 

f3 5000 

1.13E–25 

(9.22E–38, 

5.53E–24) 

3.78E–10 

(3.72E–11, 

1.93E–09) 

3.77E–11 

(3.43E–13, 

7.58E–10) 

3.18E–14 

(1.96E–16, 

1.60E–13) 

f4 5000 

6.67E–11 

(2.43E–14, 

2.59E–10) 

2.17 E–02 

(4.15E–13, 

5.25E–01) 

1.93E–09 

(2.48E–11, 

1.95E–08) 

8.34E–11 

(4.04E–14, 

6.83E–10) 

f5 1500 

0.0E+00 

(0.0E+00, 

0.0E+00) 

2.98E–13 

(6.03E–14, 

8.50E–13) 

3.97E–14 

(4.03E–15, 

1.82E–13) 

5.55E–16 

(3.87E–17, 

5.20E–15) 

f6 3000 

2.08E–03 

(6.02E–04, 

9.43E–03) 

1.74E–01 

(3.60E–03, 

7.77E–01) 

7.12E–03 

(3.00E–03, 

1.23E–02) 

5.79E–03 

(2.16E–03, 

1.14E–02) 

f7 3000 

3.73E–07 

(1.27E–19, 

1.12E–05) 

1.17E+00 

(1.67E–05, 

3.06E+00) 

7.97E–01 

(1.83E–11, 

3.98E+00) 

5.58E–01 

(1.04E–13, 

3.98E+00) 

f8 1500 

2.52E+00  

(1.18E+02, 

8.58E–04) 

6.80E+03 

(4.71E+03, 

7.27E+03) 

2.94E+03  

(1.78E+03, 

4.88E+03) 

3.12E+03  

(9.49E+02, 

6.89E+03) 
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Table 3.2: Experimental results (Function 9 － Function 13)of GDE, DE/rand/bin, 

DE/best/bin and DE/target-to-best/bin for low dimensional problems (D=30), averaged over 

50 independent runs. 

Function Gen. 
GDE DE/rand/bin DE/best/bin 

DE/target–to 

–best/bin 

Mean 

(Best, Worst) 

f9 1500 

5.68E–13 

(0.0E+00,  

6.86 E–12) 

7.62E+01 

(7.88E+00,  

1.67 E+02) 

4.55E+01 

(2.28E+01, 

7.36E+01) 

1.71E+02 

(1.33E+02, 

2.13E+02) 

f10 1500 

9.69E–15 

(7.99E–15, 

3.28E–14) 

1.68E–07 

(7.25E–08, 

3.31E–07) 

5.59E–08 

(2.08E–08, 

2.16E–07) 

6.64E–09 

(2.47E–09, 

1.67E–08) 

f11 1500 

0.0E+00 

(0.0E+00, 

0.0E+00) 

1.08E–12 

(5.87E–14, 

1.38E–11) 

8.31E–03 

(6.32E–15, 

5.65E–02) 

5.86E–03 

(0.0E+00, 

2.21E–02) 

f12 1500 

1.50E–32 

(1.34E–32, 

4.06E–32) 

3.81E–14 

(1.66E–15, 

2.84E–13) 

1.03E–01 

(8.03E–16, 

2.06E+00) 

2.69E–02 

(3.60E–18, 

5.19E–01) 

f13 1500 

1.70E–32 

(1.57E–32, 

6.8E–32) 

3.17E–13 

(2.82E–14, 

1.76E–12) 

2.63E–03 

(2.49E–15, 

1.09E–02) 

1.08E–08 

(2.86E–17, 

5.41E–07) 
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(m) 

Figure 3.3. The best learning curve of GDE, DE/rand/bin, DE/best/bin and 

DE/target-to-best/bin on 13 test function for low dimensional (D=30) problems. (a) Function 

1: f1; (b) Function 2: f2; (c) Function 3: f3; (d) Function 4: f4; (e) Function 5: f5; (f) Function 

6: f6; (g) Function 7: f7; (h) Function 8: f8; (i) Function 9: f9; (j) Function 10: f10; (k) 

Function 11: f11; (l) Function 12: f12; (m) Function 13: f13. 
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3.3.3  High-Dimensional Problems  

In order to verify the capability of algorithm on high dimensional problems, the GDE, 

DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms are applied to 13 benchmark 

test functions. Table 3.3 and Table 3.4 show the detailed performance of the GDE, 

DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms, including the mean, best and 

worst performance over 50 independent runs. Obviously, all algorithms are difficult to find 

optimal solutions caused by high dimensional problem. In Tables, the GDE algorithm 

obtains better performance than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin 

algorithms on 13 benchmark test functions. Notice that the GDE algorithm efficiently 

searches a global optimal solution at zero on the Function 9 and the Function 11. Among 

three classical DE algorithms, the DE/target-to-best/bin algorithm obtains obvious difference 

on the Function 9 and the Function 11. 

The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin 

algorithms on 13 test function for high dimensional (D=100) problems is shown in Figure 

3.4. In this Figure, the GDE algorithm also presents speedier convergent curves than other 

algorithms on high dimensional functions. The stagnation situation is also happened when 

the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms are performed in Figure 

3(b), Figure 3(c), Figure 3(e), Figure 3(g) and Figure 3(i). The GDE algorithm continuously 

maintains a convergent curve on the Function 2, Function 3, Function 5, Function 7 and 

Function 9. In this paper, the simulation result show that the proposed GDE algorithm 

obviously achieves better performance and successfully overcomes the stagnation situation 

for low dimensional problems and low dimensional problems. 
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Table 3.3: Experimental results ( Function 1 － Function 8) of GDE, DE/rand/bin, 

DE/best/bin and DE/target-to-best/bin for high dimensional problems (D=100), averaged 

over 50 independent runs. 

Function Gen. 
GDE DE/rand/bin DE/best/bin 

DE/target–to 

–best/bin 

Mean 

(Best, Worst) 

f1 2000 4.95E–21 

(8.68E–28, 

9.07E–20) 

3.71E+01 

(2.14E+01, 

5.22E+01) 

5.25E+00 

(2.31E+00, 

1.11E+01) 

1.13E+00 

(5.33E–01, 

2.60E+00) 

f2 3000 9.81E–23 

(1.60E–28, 

3.66E–21) 

2.46E+00 

(1.58E+00, 

3.82E+00) 

1.41E–01 

(7.18E–02, 

2.29E–01) 

7.27E–02 

(2.87E–02, 

1.41E–01) 

f3 8000 2.74E–10 

(7.24E–12, 

4.08E–09) 

2.23E+05 

(1.47E+05, 

3.13E+05) 

4.91E+04 

(2.97E+04, 

7.34E+04) 

3.04E+04 

(1.39E+04, 

4.65E+04) 

f4 15000 1.23E–02 

(1.00E–02, 

1.55E–23) 

9.19E+01 

(5.68E+01, 

9.54E+01) 

1.08E+01 

(5.86E+00, 

15.9E+00) 

2.40E+00 

(1.19E+00, 

4.25E+00) 

f5 1500 5.27E–22 

(1.31E–23, 

5.44E–21) 

3.70E+02 

(2.03E+02, 

5.19E+02) 

6.93E+01 

(4.00E+01, 

1.06E+02) 

2.08E+01 

(1.32E+01, 

3.23E+01) 

f6 6000 6.15E–03 

(4.40E–03, 

8.26E–03) 

2.98E–02 

(2.21E–02, 

3.49E–02) 

7.27E–02 

(4.67E–02, 

1.10E–01) 

4.24E–02 

(2.66E–02, 

610E–02) 

f7 6000 6.70 E+00 

(1.71E–06,  

3.72 E+01) 

9.11E+01 

(9.05E+01, 

9.23E+01) 

1.52E+02 

(8.40E+01, 

2.99E+02) 

1.06E+02 

(7.69E+01, 

1.49E+02) 

f8 1000 2.66E+03 

(9.82E+02, 

3.79E+03) 

3.14E+04  

(2.94E+04, 

3.24E+04) 

1.36E+04 

(1.05E+04, 

1.81E+04) 

2.86E+04  

(2.03E+04, 

3.17E+04) 
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Table 3.4: Experimental results ( Function 9 － Function 13) of GDE, DE/rand/bin, 

DE/best/bin and DE/target-to-best/bin for high dimensional problems (D=100), averaged 

over 50 independent runs. 

Function Gen. 
GDE DE/rand/bin DE/best/bin 

DE/target–to 

–best/bin 

Mean 

(Best, Worst) 

f9 9000 0.0E+00 

(0.0E+00, 

0.0E+00) 

8.08E+02 

(7.53E+02, 

8.47E+02) 

1.74E+02 

(1.26E+02, 

2.42E+02) 

4.20E+02 

(7.3E+01, 

7.99E+02) 

f10 3000 4.41E–13 

(3.45E–13, 

5.65E–13) 

1.54E–01 

(9.20E–02, 

2.09E–01) 

2.68E–01 

(2.08E–02, 

1.32E+00) 

9.45E–03 

(5.51E–03, 

1.30E–02) 

f11 3000 0.0E+00 

(0.0E+00, 

0.0E+00) 

2.48E–01 

(1.47E–01, 

3.71E–01) 

1.72E–02 

(7.14E–03, 

3.53E–02) 

2.32E–03 

(5.98E–04,  

1.44 E–02) 

f12 3000 2.43E–24 

(1.80E–28, 

2.54E–23) 

2.35E+00 

(3.11E–01, 

1.05E+01) 

2.81E+00 

(6.42E–01, 

6.66E+00) 

2.47E–01 

(6.86E–04, 

1.34E+00) 

f13 3000 7.65E–25 

(3.38E–28, 

4.18E–24) 

8.82E+00 

(2.32E+00, 

2.47E+01) 

7.49E+00 

(5.72E–01, 

3.58E+01) 

1.91E–01 

(4.17E–03, 

3.84E+00) 
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(d) 
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(m) 

Figure 3.4 : The best learning curve of GDE, DE/rand/bin, DE/best/bin and 

DE/target-to-best/bin on 13 test function for high dimensional (D=100) problems. (a) 

Function 1: f1; (b) Function 2: f2; (c) Function 3: f3; (d) Function 4: f4; (e) Function 5: f5; (f) 

Function 6: f6; (g) Function 7: f7; (h) Function 8: f8; (i) Function 9: f9; (j) Function 10: f10; (k) 

Function 11: f11; (l) Function 12: f12; (m) Function 13: f13; 
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3.3.4  Statistical Comparison Using Friedman test  

In order to understand the significant difference between the GDE and other algorithms 

over multiple test functions, this paper performed a statistical procedure based on the 

Friedman test [41, 42] with the corresponding post-hoc tests. We set the GDE algorithm as 

the control algorithm to compare with other algorithms. The performance of algorithm is 

significant difference if the corresponding average ranks differ by at least the critical 

difference (CD) 

0.05

( 1)

6

j j
CD q

T


 ,                                    (16) 

where j is the number of algorithms, T is the number of test functions, and critical values 

0.05q =2.569 can be found in [42]. 

A rank relationship of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin 

algorithms is shown in Table 3.5. In this simulation, j=4, T=13 and CD = 0.13. Table 3.6 

presents a complete result of Friedman test. Under the 30 dimensional problems, all 

differences were greater than the critical difference, which means the GDE algorithm is 

significantly better than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms 

in this case. Under the 100 dimensional problems, the difference between the GDE algorithm 

and the DE/target-to-best/bin algorithm was smaller than the critical difference, which seems 

to suggest that the GDE algorithm is likely to be different from the DE/target-to-best/bin 

algorithm. However, in statistics theory, the Friedman test could not prove the significant 

difference between the GDE algorithm and the DE/target-to-best/bin algorithm. Otherwise, 

the proposed GDE algorithm was significantly better than the DE/rand/bin algorithm and the 

DE/best/bin algorithm in 100 dimensional problems. In this paper, an additional statistical 

test, called Wilcoxon signed-rank test [41], was performed for comparison with the GDE 

algorithm and the DE/target-to-best/bin algorithm in 100 dimensional problems. Finally, we 

obtain a P-value = 8.53×10
-19

. This result indicated that the GDE algorithm achieves 
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significantly better performance than DE/target-to-best/bin algorithms in 100 dimensional 

problems. The overall result of Friedman test indicates the significant difference between the 

proposed GDE algorithm and other methods for 100 dimensional problems and 30 

dimensional problems. 

 

Table 3.5: The rank table based on experimental results of GDE, DE/rand/bin, DE/best/bin 

and DE/target-to-best/bin for statistical comparison. 

D=30 D=100 

Function GDE DE/rand/bin DE/best/bin 

DE/target– 

to 

–best/bin 

GDE DE/rand/bin DE/best/bin 

DE/target– 

to 

–best/bin 

f1 1 4 3 2 1 4 3 2 

f2 1 4 3 2 1 4 3 2 

f3 1 4 3 2 1 4 3 2 

f4 1 4 3 2 1 4 3 2 

f5 1 4 3 2 1 4 3 2 

f6 1 4 3 2 1 2 4 3 

f7 1 4 3 2 1 4 3 2 

f8 1 4 2 3 1 4 2 3 

f9 1 4 3 2 1 4 2 3 

f10 1 4 3 2 1 3 4 2 

f11 1 2 4 3 1 4 3 2 

f12 1 2 4 3 1 3 4 2 

f13 1 2 4 3 1 4 3 2 

Total 

Rank 
13 46 41 30 13 48 40 29 

Ave. 

Rank 
1 3.54 3.15 2.31 1 3.69 3.07 2.23 
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Table 3.6: The result of Friedman test for statistical comparison. 

D = 30 

Algorithm Difference in Rank Critical Difference(CD) 

DE/rand/bin (3.54－1) ＝ 2.54 

1.30 DE/best/bin (3.15－1) ＝ 2.15 

DE/target–to–best/bin (2.31－1) ＝ 1.31 

D = 100 

DE/rand/bin (3.69－1) ＝ 2.69 

1.30 DE/best/bin (3.07－1) ＝ 2.07 

DE/target–to–best/bin (2.23－1) ＝ 1.23 

D = 30 & D = 100 

DE/rand/bin (3.61－1) ＝ 2.61 

0.91 DE/best/bin (3.11－1) ＝ 3.11 

DE/target–to–best/bin (2.26－1) ＝ 1.26 

 

 

3.3.5  Comparisons with Other Methods 

A further result of the GDE algorithm which compares with other evolutionary 

algorithms is presented in this section. Table 3.7 shows the comparison of the GDE 

algorithm and other evolutionary algorithms with 30 dimensional problems. These 

algorithms include RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40] and 

RTEP[44]. The GDE algorithm obtained the best results on six out of eight functions. Table 

3.8 shows the comparison of the GDE algorithm and advanced DE algorithms, including 

jDE[33,47], SaDE[26], ODE[27], SaCDE[16], DEGL[18] and JADE[22,46]. On unimodal 
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function problems (Function 1 –Function 6); the GDE algorithm obtained the best results on 

four out of six functions. On multimodal function problems (Function 7 –Function 13), the 

GDE algorithm obtained the best results on four out of seven functions and has a result near 

the best solution on f10. The overall results showed that GDE algorithm is a more effective 

algorithm than other competitive algorithms. 

 

 

Table 3.7: Comparison with the proposed GDE algorithm and other methods (D=30), 

including RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40] and RTEP[44]. 

Function 

GDE RMEA[45] CEP[3,44] ALEP[43] BestLevy[43] NSDE[40] RTEP[44] 

Performance 

f1 1.83E–42 1.10E–17 9.10E–04 6.32E–04 6.59E–04 7.10E–17 7.50E–18 

f3 1.13E–25 2.21E–15 2.10E+02 4.18E–02 3.06E+01 7.90E–16 2.40E–15 

f7 3.73E–07 3.10E–04 8.60E+01 4.34E+01 5.77E+01 5.90E–28 1.10E+00 

f9 5.68E–13 1.74E–08 4.34E+01 5.85E+00 1.30E+01 – 2.50E–14 

f10 9.69E–15 5.08E–06 1.50E+00 1.90E–02 3.10E–02 1.69E–09 2.00E–10 

f11 0.0E+00 6.41E–20 8.70E-00 2.4E–02 1.80E–02 5.80E–16 2.70E–25 

f12 1.50E–32 1.72E–08 4.80E–01 6.00E–06 3.00E–05 5.40E–16 3.20E–13 

f13 1.70E–32 9.29E–05 8.90E–02 9.80E–05 2.60E–04 6.40E–17 7.10E–08 
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Table 3.8: Comparison with the proposed GDE algorithm and advanced DE algorithms 

(D=30), including jDE[33,47], SaDE[26], ODE[27], SaCDE[16], DEGL[18] and 

JADE[22,46]. 

Function 

GDE jDE[33,47] SaDE[26] ODE[27] SaCDE[16] DEGL[18] JADE[22,46] 

Performance 

f1 1.83E–42 1.10E–28 4.50E–20  5.61E–24 3.00E–28 8.78E–37 5.50E–28 

f2 4.02E–30 1.50E–23  1.90E–14 67.3E–13 1.98E–21 4.47E–36 1.03E–26 

f3 1.13E–25 9.00E–02 9.00E–20 2.95E–08 1.96E–24 3.90E–25 2.40E–18 

f4 6.67E–11 1.40E–15  7.40E–11 2.90E–37 5.54E–36 4.99E–15 – 

f5 0.0E+00 0.00E+00  0.00E+00 – – – – 

f6 2.08E–03 3.30E–03  4.80E–03  – – – – 

f7 3.73E–07 3.10E–15 6.21E–03 2.04E–03 1.66E–03 1.98E–21 7.54E–09 

f8 2.52E+00  – – – – – 2.79E+00  

f9 5.68E–13 1.50E–15 – – – 1.25E–15 – 

f10 9.69E–15 7.70E–15 3.08E–10 1.90E–13 7.34E–15 1.69E–13 2.24E–15 

f11 0.0E+00 0.00E+00  – 0.00E+00 – 5.80E–36 – 

f12 1.50E–32 6.60E–30 4.48E–20  8.14E–25 2.12E–30 – – 

f13 1.70E–32 5.00E–29 1.70E–19 5.99E–21 1.37E–28 3.00E–28 – 
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Chapter 4 

 

 

A GDE Algorithm for Functional-Link Fuzzy 

Systems Optimization 

 

4.1  Review of Evolutionary Fuzzy Systems 

Fuzzy System (FS) has become a popular research topic and successfully applied to 

many areas [48-55]. To train the parameters in designing a FS, many papers have employed 

Backpropagation (BP) algorithm [48, 51, 54-55]. The BP is a powerful training technique 

that can quickly minimize the error function for NFS. However, the BP algorithm may trap 

into the local minimum solution and never find the global solution. In order to overcome this 

disadvantage, many researchers have proposed FS design using evolutionary algorithm (EA) 

[17, 28, 31, 33, 56-70].  

Genetic algorithm (GA) is one of well known evolutionary algorithms. Many 

researchers had developed GA to implement fuzzy system and neuro-fuzzy system in order 

to automate the determination of parameters and structures [57-66]. Genetic fuzzy system 

[60-61] was characterized by using a fuzzy system as an individual in genetic operators. In 

[65], Karr applied GA to the design of fuzzy controller membership functions, where each 

fuzzy rule was treated as an individual. Ng and Li [62] applied chromosomes in the GA to 

optimize sophisticated membership functions for a nonlinear water level control system. 
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Seng et al. [63] proposed a neuro-fuzzy network that is based on the radial basis function 

neural network all of whose parameters are simultaneously tuned using GA. Juang [66] 

successfully applied GA to TSK-type recurrent neuro-fuzzy system design for control 

problem.  

Another evolutionary algorithms category for the FS design, called particle swarm 

optimization (PSO), appears to be efficient and powerful search capability in search space. It 

is an evolutionary computation technique that was developed by Kennedy and Eberhart in 

1995 [13]. The underlying motivation for the development of PSO algorithm is the social 

behavior of animals, such as bird flocking, fish schooling and swarm theory. PSO has been 

successfully applied to many optimization problems, such as NFS design [67-78] for control 

problems, with improved performance over GAs. In [78], the researcher proposed an 

improved PSO algorithm for a recurrent fuzzy neural network design.  The improved PSO 

algorithm is adopted to adjust the learning rates to improve the online learning capability of 

the recurrent fuzzy neural network. Juang et al.[73] proposed a hierarchical cluster-based 

multispecies particle-swarm optimization (HCMSPSO) algorithm for fuzzy-system 

optimization. In their paper, the algorithm combined online cluster-based algorithm and 

subspecies technique to automatically designs both the structure and the parameters of an FS. 

A fast and easy evolutionary algorithm as differential evolution (DE) algorithm, 

proposed by Storn and Price [15], is an efficient and effective global optimizer in the 

continuous search domain.  In [17, 28], the researcher proposed a modified differential 

evolution (MODE) for an adaptive neural fuzzy network (ANFN-MODE) design. This 

MODE provided a cluster-based mutation scheme to prevent the algorithm from being 

trapped in local optima of the search space. In addition, the MODE algorithm has been 

applied to locally recurrent neuro-fuzzy system design [31]. An optimization of fuzzy 

systems using DE algorithm and neighborhood-based mutation operation was proposed by 

Lin et al.[33]. In their paper, they utilized new mutation strategy and adaptive fuzzy c-means 
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method to find potential individuals in population. Han et al.[79] have proposed a new 

mutation operation based on local information and adaptive parameter tuning method for 

designing a functional-link-based neural fuzzy network. They successfully applied the 

proposed model to time series forecasting and achieve a better prediction performance. 

Hybrid evolutionary algorithm has been investigated in many studies [76-77, 80-81]. 

Such a hybrid is often combination of local search in evolutionary algorithm, and referred to 

as a memetic algorithm [80-81]. In [76], a hybrid of cultural method and cooperative PSO 

(CPSO) was applied for designing a functional-link-based neural fuzzy network (FLNFN). 

This method is called FLNFN–CCPSO. In FLNFN–CCPSO, a swarm only optimizes one 

parameter of an FLNFN. Another hybrid evolutionary algorithm as combination of GA and 

PSO, which is called HGAPSO [77], was proposed. In HGAPSO, new individuals were 

created not only by PSO, but also by the crossover and mutation operations of a GA. 

 

4.2  Functional-Link Fuzzy Systems 

This section describes the architecture of functional-link fuzzy system. The used system 

is a novel neural fuzzy network [53, 70, 79, 28]. This system realizes a nonlinear 

combination of input variables in consequent part. Each fuzzy rule corresponds to an output 

of functional-link neural network (FLNN). The functional-link fuzzy system realizes a fuzzy 

IF-THEN rule in the following form: 

1 1 2 2

0 1 1 2 2

  :  IF  is  and  is  and ...  is 

              THEN   ...

j j n nj

j j j j lj l

Rule j x A x A x A

y w w w w                   (17)
 

where 1,...,  nx x are input variables, jy  is system output variable, 1 ,..., j njA A  are the 

linguistic term of the precondition part with Gaussian membership function, n is the number 

of input variables, 0 ,...,j ljw w are the functional-link weights, 1,..., l  are the basis 
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trigonometric function of input variables, given by 

 ) ( ) (  ) (  ) ( 222111 xcosxsinxxcosxsinx   for two-dimensional input variables.; l is the 

number of basis function, and Rulej is the jth fuzzy rule. 

In order to present the characteristic of the FLFS, we consider an IF-THEN rule with one 

input 1  x as follows: 

1 1 0 1 1

0 1 1 2 1 3 1

  :  IF  is  THEN   

                                              sin( ) cos( )

Rule x A y w w

w w x w x w x



 

 

              (18)
 

According to Eq. (18), the FLFS can be degenerated as a TSK-type fuzzy system and 

Singleton-type fuzzy system when 2 3 0w w  and 1 2 3 0w w w   . Based on this idea, the 

TSK-type fuzzy system and Singleton-type fuzzy system are special cases in the proposed 

FLFS. Therefore, the FLFS presents a diverse combination of input variables to deal with 

difficult problems more effectively. 

The proposed functional-link fuzzy system is five-layered network architecture as shown 

in Figure 4.1, which is comprised of the input layer, membership function layer, rule layer, 

functional-link layer and output layer. The operation functions of the nodes in each layer of 

the FLFS system are now described. In the following description,
 

( )pO denotes the output of 

a node in the thp layer. 

Layer 1—Input layer: No computation is done in this layer. Each node in this layer, which 

corresponds to one input variable, only transmits input values to the next layer directly. That 

is 

(1)           =1,2,...,iO x i n                     (19) 

where n are the input variables of the functional-link fuzzy system. 

Layer 2—Membership function layer: Each node in this layer is a membership function 

that corresponds one linguistic label of one of the input variables in Layer 1. In other words, 

the membership value which specifies the degree to which an input value belongs to a fuzzy 
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set is calculated in Layer 2 

2
(2)

2

( )
exp

ij

i ij
ij

x m
O 



  
   

  .                   (20) 

Where 1,2...,j M , M is number of rules in the functional-link fuzzy system, 

 and ijijm  are the center and the width of the Gaussian membership function of input 

variable, respectively.  

Layer 3—Rule layer: This layer receives 1-D membership degrees of the associated rule 

from the nodes of a set in layer 2. Here, the product operator described before is adopted to 

perform the precondition part of the fuzzy rules. As a result, the output function of each 

inference node is 

(3)

1

n

j ij

i

O R 


 
.                          (21) 

The output of a layer 3 node represents the firing strength of the corresponding fuzzy rule.  

Layer 4—Functional-link layer: The input to a node in layer 4 is the output from layer 3, 

and the other inputs are calculated from a functional-link neural network that has not used 

the function  tanh . For such a node, 

(4)

0

1

( )
l

j j kj k

k

O R w w 


  ,                      (22) 

where w0j and wkj are the corresponding link weight of functional-link neural network and 

k  is the functional expansion of input variables. The functional expansion uses a 

trigonometric polynomial basis function, given by 

 ) ( ) (  ) (  ) ( 222111 xcosxsinxxcosxsinx   for two-dimensional input variables. 

Therefore, l is the number of basis functions, 3 1l n   , where n is the number of input 

variables. Moreover, the output nodes of functional-link neural network depend on the 

number of fuzzy rules of the FLFS. 



 

47 
 

Layer 5—Output layer: Each node in this layer corresponds to one output variable. The 

node integrates all of the actions recommended by layer 3 and layer 4, which acts as a 

defuzzifier with 

0

1 1(5)

1

( )
M l

j j kj k

j k

M

j

j

R w w

O y

R


 





 

 


,                      (23) 

where M is the number of fuzzy rules, and y is the output of the FLFS. 
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1ŷ 2ŷ 3ŷ
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Figure 4.1: The architecture of the functional-link fuzzy system. 
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4.3  Learning process of Functional-Link Fuzzy Systems  

This section describes a learning process based GDE optimization for the 

functional-link fuzzy system design. Initially, an agglomerative clustering algorithm is to 

automatically construct a preliminary functional-link fuzzy system and determine optimal 

number of fuzzy rules. Subsequently, the learning process randomly generates a set of 

individuals (functional-link fuzzy systems) for the evolution process. All individuals are 

learned by GDE algorithm for searching an optimal functional-link fuzzy system. The 

overall learning process is shown in Figure 4.2.  

Initiation

Agglomerative 

Clustering 

Algorithm

Increasing λ 

The No. of 

Clusters is 

Optimal ?

Output the No. 

of Clusters 

NO

YES

Coding 

Population

Evaluation
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Mutation
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Selection

Termination

 ?

Gen=Gen+1 

Output the result 

NO

YES

Optimization 

For The No. Of 

Fuzzy Rules

Optimization For 

All Free 

Parameters 

 

Figure 4.2: The Overall learning process. 
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4.3.1  An Agglomerative Clustering Algorithm  

The first step is to determine whether a new rule should be extracted the training pattern 

and decide the number of fuzzy sets in the universal of discourse of each input variable, 

since one cluster in the input space corresponds to one potential fuzzy logic rule, in which 

ijm  and ij  represent the mean and width of that cluster, respectively. Many studies have 

employed clustering technique for rule generation, such as fuzzy C-means, possibilistic 

C-means, and on-line clustering methods [28, 53, 68, 73]. However, such clustering 

techniques require prior knowledge such as the number of clusters present in a pattern set. To 

solve this problem, an agglomerative clustering algorithm is proposed for rule generation. 

The proposed agglomerative clustering algorithm (ACA) [82-83] is an extension to the 

standard fuzzy C-Means algorithm by a penalty term to the objective function. This 

algorithm can find the best number of clusters for various problems. Now, we consider a set 

of samples  1 2, ,..., ,  1,2,...,i nX x x x i N  . To cluster X  into M clusters by minimizing 

the following objective function: 

2

1 1 1 1

(U,C) C X log
M N M N

ij j i ij ij

j i j i

Obj u u u
   

                 (24) 

subject to  

1

1,   1,2,...,
M

ij

j

u i N


  ,                      (25) 

where [0,1]iju  is the membership degree of Xi  in the jth cluster
1 2C (c ,c ,...,c )j j j jn , 

U is the matrix of 
iju ,   is a penalty parameter and   is the Euclidean norm as the 

dissimilarity measure. λ  

Equation (24) and (25) present a class of constrained nonlinear optimization problems. 

For solving optimization problem, we use Lagrangian multiplier technique and gradient 
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method to obtain update law 

1

1

,        1, 2,...,  and 1,2,...,  

N

ij il

i
jl N

ij

i

u x

c j M l n

u





  



               (26) 

2

2

1

C X
exp

,       1,2,...,  and 1,2,...,
C X

exp

j i

ij
M

l i

l

u j M i N





  
 
 
   
  
 
 
 



        (27) 

To obtain the optimal centers, the 
iju and

ijc are continuously updated by equation (26) 

and (27). Until the objective function is unchanged, the process of agglomerative clustering 

algorithm is terminated. The completed flow chart is shown in Figure 4.3.  

In the agglomerative clustering algorithm,   is an important parameter for the 

minimization process. When   is large, the minimization process tries to assign each 

object to more clusters to make the second term more negative. In order to achieve the 

largest object entropy, the cluster centers move to the same location. On the contrary, 

agglomerative clustering algorithm is degenerated as standard fuzzy C-Means algorithm 

when   is small. 

We design an automatic process to discover the best number of clusters. The overall 

process is shown in Figure 4.3. In the automatic process, there is two input parameters, the 

number of initial cluster centers initailM  and the penalty value initail . In general, the initailM  

should be larger than the possible number of clusters in the given data set, the initail should be 

set a small value. Initially, the agglomerative clustering algorithm with initailM  and initail  is 

performed for our problems. An exactly clustering result ( )M t  is obtained in the output. 

We consider that the values ( )t of increase from ( ) ( 1) initialt t      and perform 

agglomerative clustering algorithm for every t. The whole procedure is stopped when ( )M t

is equal to 1. 
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Figure 4.3: A flow chart of the proposed agglomerative clustering algorithm for discovering 

the optimal number of clusters. 
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In order to demonstrate the proposed method, we consider a data set of 1,000 points in a 

two-dimensional (2D) space as shown in Figure 4.5(a). We perform the automatic process to 

cluster this data set and discover the optimal number of clusters. Initially,   is a small 

value, we can see that the number of clusters generated by the algorithm was equal to the 

number of initial cluster centers. As increased, the number of generated clusters reduced 

because some initial cluster centers moved to the same locations. In Figure 4.4, the result of 

clusters = 3 is usually found for this problem. This indicates that the   setting is right in 

finding the true clusters by the algorithm. Finally, when   increased to a certain value, the 

number of generated clusters became one. Figures 4.5(a)-(d) show the movements of the 

cluster centers in the iterations k=1, 5, 10 and 21 when =1. We can see that the initial 

cluster centers moved to three locations (1,1), (1,5) and (5,5).  

 

Figure 4.4: The result of proposed agglomerative clustering algorithm with respect to 

different . 
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(c) 

 

 

 

(d) 

Figure 4.5: The clustering results by the proposed algorithm with 4   (a) the result of k 

=1, (b) the result of k =5, (c) the result of k =10, and (d) the result of k =21. 
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4.3.2  Evolution Learning Processes 

For the effective parameter learning, evolutionary algorithm is usually used. In this paper, 

we propose the GDE algorithm to tune all free parameters. The proposed GDE algorithm 

consists of eight major steps：the coding step, population step, evaluation step, sorting step, 

subpopulation step, mutation step, crossover step, and selection step. The whole learning 

process is described as follows： 

(1) Coding step：The foremost step in the GDE algorithm is the coding of the FLFS 

system into an individual. Figure 4.6 shows an example of the coding of parameters of the 

FLFS system into an individual, where NP is population size, M is number of rules, and n is 

total of input variable. In this study, an individual consists of the mean ijm  and width ij of 

a Gaussian membership function, and kjw weight of the consequent part, where i and j 

represent the ith input variable and the jth rule, respectively.  

(2) Population Step：Before the proposed GDE algorithm is performed, the individuals 

that will constitute an initial population must be created. A niching operation [57, 68] is to 

create good initial population in the input space. The initial population is created according 

to the range of the mean and variance of the membership function, which were computed by 

the agglomerative clustering algorithm in section 4.3.1. The following formulations show the 

generation of the initial population. 

1 2

* *

1 1 1 1 1

* *

* *

   [ | | ... | ]

             [ , , | ...

                   | , , | ...

                   | , ,  ]

q q q

q M

q q q

i i i i k

q q q

ij ij ij ij kj

q q q

iM iM iM iM kM

FLFS rule rule rule

m m w

m m w

m m w

 

 

 



    

   

   

                   (28) 

where 
*

ijm  and 
*

ij are results of structure learning for the mean and width of the Gaussian 

membership function of the jth rule of the ith input variable, 
q

ijm  and 
q

ij are small 
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random deviations that are uniformly generated from the interval [−0.1, 0.1],
 kjw  are 

randomly and uniformly generated from an interval whose range is identical to the FLFS 

system output y range.  

(3) Evaluation Step：In this study, we adopt a fitness function to evaluate the 

performance of each individual. The fitness function used in this paper is the root 

mean-squared error (RMSE) between the desired and actual outputs. The fitness function is 

defined as follows: 

 
2

1

n

k k

k

y y

fitness
n








                         (29) 

where ky  represents the model output of the kth pattern, ky  represents the desired output 

of the kth pattern, and n the number of the training pattern. 
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Figure 4.6: Coding FLFSs into individuals. 
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(4) Sorting Step: A sorting process arranges all FLFSs based on their fitness value as

1 2 3 NP-1 NP(FLFS ) (FLFS ) (FLFS ) ... (FLFS ) (FLFS )fitness fitness fitness fitness fitness    

 for minimum objective problems. After sorting process, the 1FLFS  is the best system in 

population for current generation. According to fitness values, all FLFSs are partitioned into 

an inferior group and a superior group. The two groups perform different evolution 

strategies. 

(5) Subpopulation Step: To enhance performance, we used symbiotic learning method 

in the proposed algorithm. The basic idea of symbiotic learning method is that an FLFS is 

combined by fuzzy rules, which are randomly selected from a subpopulation. Every 

subpopulation is composed of related fuzzy rules, called subindividuals. Every 

subpopulation performed evolution process to product new subindividuals. This method can 

increase more possibility to search potential solutions. A completed process of the 

subpopulation step is shown in Figure 4.7. 

 

Figure 4.7: A completed process of the subpopulation step. 



 

58 
 

(6) Mutation Step：Each Sub-individual in the current generation is allowed to breed 

through mating with other randomly selected sub-individuals from the subpopulation. 

Specifically, for each subindividual , ,  1,2,...,i gen i NPZ , where g denotes the current 

generation, NP is subpopulation size, Four other random subindividuals, 1,r genZ , 2,r genZ ,

3,r genZ ,

 

and 4,r genZ  are selected from the subpopulation such that r1, r2, r3,and r4 ∈ { 1, 

2, . . . , NP }and 1 2 3 4i r r r r    . This way, a parent pool of four subindividuals is 

formed to produce an offspring. Two mutation operations are applied to generate a mutated 

subindividual ,i gv according to the following equation: 

      
, , 1 , 2 ,G r o u p  A :  ( )i g e n i g e n a r g e n r g e nF  V Z Z Z

                    

(30) 

  
, , 3 , 4 ,G r o u p  B :  ( )i g e n g b e s t g e n b r g e n r g e nF  V Z Z Z

                  

(31)

 

where  and a bF F are scaling factors [0,1] , ,gbest genZ  is the best-so-far sub-individual (i.e., 

,gbest genZ keeps best fitness value up to now in the subpopulation). Figure 4.8 presents the 

mutation process of the proposed GDE algorithm. 
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Figure 4.8:  A flow chart of the proposed GDE algorithm for FLFSs optimization. 
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(7) Crossover Step：After mutation operation, the proposed GDE algorithm uses a 

crossover operation, often referred to as discrete recombination, in which the mutated 

subindividual ,i genV  is mated with ,i genZ and generates the offspring ,i genU . The elements of 

an subindividual ,i genU  are inherited from ,i genZ  and ,i genV , which are determined by a 

parameter called crossover probability (CR ∈ [0, 1]), as follows: 

, ,

, ,

, ,

,  if  rand( ) CR 

,  if  rand( ) > CR

d i gen

d i gen

d i gen

d

d


 


V
U

Z
                     (32) 

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is total element of 

subindividual vector, rand(d) ∈ [0, 1] is the dth evaluation of a random number generator. 

 

(8) Selection Step：The GDE algorithm applies selection operation to determine 

whether the subindividual survives to the next generation. First, the current composed 

FLFSq,gen embeds the current subindividual giZ ,  into the FLFSq,gen-1 and the trial composed 

FLFSq,gen embeds the trial subindividual 1, geniU  into the FLFS q,gen-1. Second, a knockout 

competition is played between the current composed FLFSq,gen and the trial composed 

FLFSq,gen. Then, the corresponding subindividual of the winner is selected deterministically 

based on objective function values.  
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4.4  Simulation 

This section discusses five simulations that are considered to evaluate the FLFS model 

with the GDE algorithm. The five simulations include chaotic time series prediction, Mackey 

Glass time series prediction, oil price time series prediction, star brightness time series 

prediction and auto-MPG6 data prediction. Table 4.1 presents the initial parameters prior to 

training used in each of the five simulations. 

For comparison, the evolutionary algorithms, such as DE, jDE and MODE are applied to 

the same problems for the FLFS optimisation. We used the same population size and number 

of generations in each of these evolutionary algorithms. The agglomerative clustering 

algorithm is also used for rule generation.   

In the following simulations, the major computation time is evaluating the performance of 

the FLFS. All evolutionary algorithms are compared using the same population size and 

number of generations in a single run. Thus, the overall computation time is almost the same 

for different evolutionary algorithms. 

 

Table 4.1: Initial parameters before training. 

Parameter Value 

Population Size 50 

CRa 0.9 

CRb 0.9 

Fa 0.5 

Fb 0.8 

initailM  15 

initail  0.01 

Generation 1000 

Coding Type Real Number 
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Example 1: Prediction of chaotic time series 

In this example, an FLFS model with a GDE learning method (FLFS-GDE) is used to 

predict a chaotic signal. The classical time series prediction problem is a one-step-ahead 

prediction, which has been described in [48]. The following equation describes the logistic 

function. 

))(1)(()1( kxkaxkx  .                      (33) 

The behavior of the time series generated by this equation depends critically on 

parameter a . If a <1, then the system has a single fixed point at the origin, and from a 

random initial value between [0, 1] the time series collapses to a constant value. For a >3, 

the system generates a periodic attractor. At 6.3a , the system becomes chaotic. In this 

example, a  is set to 3.8. The first 60 pairs (from x(1) to x(60)), with initial value

001.0)1( x , are the training data set, while the remaining 100 pairs (from x(1) to x(100)), 

with initial value 9.0)1( x , are the testing data set used to validate the proposed method. 

In this example, DE, jDE and MODE are applied to the same problem to show the 

effectiveness and efficiency of the FLFS model with the GDE learning method. In the DE 

and jDE, the scale factor F = 0.5, the crossover rate CR=0.9 and the mutation strategy= 

DE/rand/bin. In the MODE, the scale factor is linearly increased from 0 to 1, the crossover 

rate CR=0.9 and the mutation strategy= DE/target-to-best/bin. A total of 50 runs are 

performed for statistical analysis. 

After rule generation, the agglomerative clustering algorithm find the optimal number 

of fuzzy rules = 2 for example 1, as shown in Figure 4.9. The FLFS is learned by DE, jDE, 

MODE and GDE algorithms. The performance of the FLFS model with DE, jDE, MODE 

and GDE is shown in Table 4.2, including average and standard deviation (STD) over 50 

runs. Figure 4.10 shows the learning curves of the DE, jDE, MODE and GDE algorithms for 
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example 1. The learning curves of the DE and jDE algorithms present stagnation situations 

during evolution process. The MODE and GDE algorithms continually keep convergence 

results. It is clear from these data that the proposed GDE algorithm shows better learning 

curves than the other methods. The proposed GDE obtains the best performance RMSE= 

0.00025. Figure 4.11 plots the results predicted using the proposed GDE algorithm. Figure 

4.12 presents the prediction errors of the proposed GDE algorithm.  

In addition, we also compare with the performance of the FLFS-GDE model and other 

papers. Table 4.3 shows that the testing RMSE of FLNFN-PSO [13, 76], FLNFN-CPSO [84, 

76] and FLNFN-CCPSO [76] models from other journal papers. These comparative papers 

use three fuzzy rules for their system. In Table 4.3, our method FLFS-GDE model achieves a 

better performance than FLNFN-PSO [13, 76], FLNFN-CPSO [84, 76] and FLNFN-CCPSO 

[76] models. 

 

 

Figure 4.9: The result of the agglomerative clustering algorithm for example 1. 
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Figure 4.10: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each 

performance evaluation for example 1. 

 

 

Figure 4.11: Prediction results of the FLFS-GDE model for example 1. Symbol "+" 

represents the desired results and "O" represents the actual results. 
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Figure 4.12: Prediction errors of the FLFS-GDE model for example 1. 

 

 

 

Table 4.2. Performance of the GDE algorithm and the other algorithms for example 1. 

 DE jDE MODE GDE 

No. of Rules 

(Parameters) 

2 

(12) 

Training 

RMSE 

(Mean ± STD) 

0.0071 

±0.0018 

0.0041 

±0.002 

0.0028 

±0.005 

0.0012 

±0.001 

Testing RMSE 

(Mean ± STD) 

0.0074 

±0.002 

0.0044 

±0.002 

0.0023 

±0.006 

0.0015 

±0.002 
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Table 4.3. The best performance of the FLFS-GDE model and other papers for example 1. 

Method Rules(Parameters) Testing RMSE 

FLNFN-PSO[13,76] 3(18) 0.0055 

FLNFN-CPSO[84,76] 3(18) 0.0039 

FLNFN-CCPSO[76] 3(18) 0.0027 

FLFS-GDE 2(12) 0.00025 

 

 

Example 2: Prediction of Mackey–Glass time series 

The time-series prediction problem used in this example is the chaotic Mackey–Glass time 

series, which is generated from the following differential equation: 

10

( ) 0.2 ( )
0.1 ( )

1 ( )

dx t x t
x t

dt x t






 

             (34) 

where τ > 17. As in previous studies [76], the parameter τ = 30, and x(0) = 1.2 in this 

simulation. Four past values are used to predict x(t), and the input–output pattern format is 

given by [ ( 24), ( 18), ( 12), ( 6) | ( )]x t x t x t x t x t    . 

A total of 1000 patterns are generated from t = 124 to 1123, where the first 500 patterns 

[form (1)x to (500)x ] are used to train, and the last 500 patterns [form (501)x to (1000)x ] 

are used to test. A total of 50 runs are performed for statistical analysis. The agglomerative 

clustering algorithm find the optimal number of fuzzy rules = 3 for Mackey–Glass time 

series data. The result of agglomerative clustering algorithm is shown in Figure 4.13. Figure 

4.14 shows the learning curves of the DE, jDE, MODE and GDE algorithms for example 2. 

The learning curve of the PSO and DE algorithms present a rapid convergence result over 

the first 150 generations that became trapped at local minimum solutions at training average 
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RMSE = 0.066 and 0.069, respectively. The result of the MODE algorithm keep 

convergence after 500 generations, and this result is better than those of the DE and jDE 

algorithms. The performance of the GDE algorithm obtained a training average 

RMSE=0.019, which is better than the other algorithms for example 2. Table 4.4 shows that 

the average performance of the GDE algorithm compared with those of DE, jDE and MODE 

over 50 runs. The results show that the GDE algorithm for FLFS optimisation offers a 

smaller testing RMSE than the other methods. Table 4.5 shows that the best testing RMSE of 

FLFS-GDE, FLNFN-CCPSO[76], RBF-AFS[86], HyFIS[87], NEFPROX[88], D-FNN[89], 

GA-FLC [65], SEFC [85], Back-propagation NN, Six-order polynomial, 

Cascaded-correlation, Auto regressive model and Linear predictive from other journal papers. 

The proposed FLFS-GDE model achieves a better performance than other evolutionary 

algorithms. Figure 4.15 shows the prediction results of the FLFS-GDE model for the desired 

output and the actual output. 
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Figure 4.13:The result of the agglomerative clustering algorithm for example 2. 

 

 

Figure 4.14: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each 

performance evaluation for example 2. 
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Figure 4.15: Symbol "+" represents the desired results and "O" represents the prediction 

results of the FLFS-GDE model for example 2. 

 

 

 

 

Table 4.4. Performance of the GDE algorithm and the other algorithms for example 2. 

 DE jDE MODE GDE 

No. of Rules 

(Parameters) 

3 

(63) 

Training 

RMSE 

(Mean ± STD) 

0.066 

±0.018 

0.069 

±0.021 

0.048 

±0.015 

0.019 

±0.008 

Testing RMSE 

(Mean ± STD) 

0.075 

±0.022 

0.072 

±0.020 

0.050 

±0.022 

0.023 

±0.014 
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Table 4.5. The best performance of the FLFS-GDE model and other papers for example 2. 

Method 
Rules  

(Parameters) 
Testing RMSE 

FLFS-GDE 3 (63) 0.0075 

FLNFN-CCPSO[76] 3(63) 0.0082 

RBF-AFS[86] 13(130) 0.0131 

HyFIS[87] 16(104) 0.0101 

NEFPROX[88] -(105) 0.053 

D-FNN[89] 5(100) 0.008 

GA-FLC [65] - 0.26 

SEFC [85] - 0.032 

Back-propagation NN - 0.02 

Six-order polynomial - 0.04 

Cascaded-correlation - 0.06 

Auto regressive 

model 

- 
0.19 

Linear predictive - 0.55 
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Example 3: Prediction of Auto-MPG6 data 

This is a real-world problem that concerns the prediction of automobile city-cycle fuel 

consumption, in miles per gallon (MPG). There are five inputs and one output in the 

prediction model. The real dataset contains 398 examples and can be downloaded from 

KEEL(http://www.keel.es/)[90]. Evaluation of this model used the five-fold cross-validation 

datasets in KEEL. The inputs are scaled to the range [0, 1]. For each cross-validation dataset, 

a learning algorithm is repeated for ten runs. For rule generation, we obtain the best number 

of fuzzy rules = 4.2 by the agglomerative clustering algorithm. The result of agglomerative 

clustering algorithm is shown in Figure 4.16. Figure 4.17 shows the learning curves of the 

DE, jDE, MODE and GDE algorithms for example 3. Table 4.6 shows the performances of 

the DE, jDE, MODE and GDE algorithms using the same number of rules for the FLFS 

optimisation. In this table, the result of the GDE algorithm is better than that of the DE, jDE 

and MODE algorithms for example 1, 2 and 3. We also compare the performance of our 

method with other papers, and the comparison results are tabulated in Table 4.7. According 

to these results, the proposed FLFS-GDE model outperforms FS-HGAPSO [77], 

MOGUL-TSK[92], FS-CPSO[84] and FS-HPSO-TVAC[91]. Figure 4.18 shows the training 

output of the FLFS-GDE model for the desired output (blue line) and the actual output (red 

line).  Figure 4.19 shows the testing result of the FLFS-GDE model. 
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Figure 4.16: The result of the agglomerative clustering algorithm for example 3. 

 

 

Figure 4.17: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each 

performance evaluation for example 3. 
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Figure 4.18: The training output of the FLFS-GDE model for example 3. 

 

 

 

 

 

Figure 4.19: The testing output of the FLFS-GDE model for example 3. 
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Table 4.6: The performance of the GDE algorithm and other algorithms for example 3. 

 DE jDE MODE GDE 

No. of Rules 

(Parameters) 

4 

(104) 

Training 

RMSE 

(Mean ± STD) 

3.35 

±0.56 

3.27 

±0.56 

2.51 

±0.22 

2.36 

±0.15 

Testing RMSE 

(Mean ± STD) 

3.66 

±0.68 

3.61 

±0.72 

2.89 

±0.34 

2.58 

±0.21 

 

 

 

 

 

 

Table 4.7: Comparison of the FLFS-GDE model and other papers for example 3. 

Method Testing RMSE 

FLFS-GDE 2.58 

FS-HGAPSO [77] 2.97 

MOGUL-TSK[92] 5.16 

FS-CPSO[84] 2.66 

FS-HPSO-TVAC[91] 2.72 
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Example 4: Prediction of oil price time series 

A practical prediction problem of oil price time series is considered in this paper. This 

dataset recorded the average annual price of oil time series from 1870 to 1997. The oil price 

time series dataset can be downloaded from http://www-personal.buse 

-co.monash.edu.au/~hyndman/TSDL/. 128 samples are used, each with two inputs and one 

output, i.e. 1 2( , )t t ty f y y  . The first 64 samples are used for training and the last 64 

samples are used for testing. For fair comparison, we perform the same normalized process 

[5] to scale all samples within the range [-1, 1]. In this simulation, the FLFS-GDE model is 

repeated for 50 runs and we obtain two fuzzy rules after rule generation. The result of 

agglomerative clustering algorithm is shown in Figure 4.20. The best prediction performance 

of FLFS-GDE model is about MSE=0.0132. Figure 4.21 shows the prediction result of 

FLFS-GDE model for desired output (blue line) and actual output (red line) for example 4. 

Tables 4.8 shows the performances of TSK-NFIS[93], Autoregressive model[93], Nonlinear 

autoregressive model[93], Neural network[93], NFS-PSO-RLSE[94], CNFS-PSO-RLSE[95], 

CNFS-HMSPSO-RLSE[96], FLFS-DE and FLFS-GDE for prediction problems. The 

proposed FLFS-GDE model which achieves a significant performance is superior to other 

algorithm for example 4. 
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Figure 4.20: The result of the agglomerative clustering algorithm for example 4. 

 

 

 

Figure 4.21: Prediction output of FLFS-GDE model for example 4. 

 

 

 

 

 

 

0.01 0.03 0.05 0.07 0.09 0.11
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

λ

N
u

m
b

e
r 

o
f 
R

u
le

s

0 10 20 30 40 50 60 70
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Testing Samples ( Time Series)

 

 

Actual Output

Desired Output



 

77 
 

 

Table 4.8: Performance of the FLFS-GDE model and other algorithms for example 4. 

Method 
Rules 

(Parameters) 

Training 

MSE 

Testing  

MSE 

TSK-NFIS[93] - 0.00431 0.0237 

Autoregressive 

model[93] 

- 
0.00545 0.0244 

Nonlinear 

Autoregressive 

model[93] 

- 

0.00499 0.0327 

Neural 

network[93] 

- 
0.00469 0.0254 

NFS-PSO-RL

SE[94] 

4(28) 
0.00198 0.0259 

CNFS-PSO-R

LSE[95] 

4(36) 
0.00203 0.0163 

CNFS-HMSP

SO-RLSE[96] 

4(36) 
0.00221 0.0134 

FLFS-DE 2(22) 0.00215 0.0244 

FLFS-GDE 2(22) 0.00258 0.0132 

 

Example 5 : Prediction of star brightness time series 

In this example, an FLFS-GDE model is used to predict the star brightness time series. 

This real data measures the brightness of a star in 600 successive midnights. The dataset is 

obtained from http://www-personal.buseco.monash.edu.au/~hyndman/ 

TSDL/. 600 samples are used, each with three inputs and one output, i.e. 

1 2 3( , , )t t t ty f y y y   . The first 300 samples are used for training the FLFS-GDE model and 

the remaining 300 samples are used for testing phase.  

In this simulation, we perform the same normalized process [5] to scale all samples within 

the range [-1, 1]. The FLFS-GDE model and the FLFS-DE model are repeated for 50 runs 

and the standard deviation of performance error is a small value. After agglomerative 

clustering algorithm, three fuzzy rules are generated for predicting star brightness time series. 
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The result of agglomerative clustering algorithm is shown in Figure 4.22. Figure 4.23 plots 

the prediction outputs of FLFS-GDE model for predicting star brightness time series. Table 

4.9 shows the performances of the proposed FLFS-GDE model and other journal papers. The 

proposed FLFS-GDE model obtains the best performance MSE=0.000249 which is better 

than TSK-NFIS[93], Autoregressive model[93], Nonlinear autoregressive model[93], Neural 

network[93], NFS-PSO-RLSE[94], NFS-ARIMA[97], CNFS-PSO-RLSE[95] and 

CNFS-HMSPSO-RLSE[96]. 

 

 

Figure 4.22: The result of the agglomerative clustering algorithm for example 5. 
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Figure 4.23: Symbol "+" represents desired and "O" represents prediction results of the 

FLFS-GDE model for example 5. 

 

Table 4.9: Performance of the FLFS-GDE model and other algorithms for example 5. 

Method 
Rules 

(Parameters) 

Training  

MSE 

Testing  

MSE 

TSK-NFIS[93] - 0.000313 0.000331 

Autoregressive 

model[93] 

- 
0.000304 0.000322 

Nonlinear 

Autoregressive 

model[93] 

- 

0.000320 0.000312 

Neural 

network[93] 

- 
0.000301 0.000311 

NFS-PSO-RLSE[9

4] 

8(84) 
0.000199 0.000324 

CNFS-PSO-RLSE

[95] 

8(108) 
0.000198 0.000280 

CNFS-HMSPSO-

RLSE[96] 

8(108) 
0.000198 0.000272 

NFS-ARIMA[97] 8(84) 0.000209 0.000264 

FLFS-DE 3(48) 0.000255 0.000282 

FLFS-GDE 3(48) 0.000246 0.000249 
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Chapter 5 

 

 

Conclusions 

 

This dissertation proposes a group-based differential evolution algorithm (GDE) for 

global optimization problems. The GDE algorithm combines two classical mutation 

strategies instead of a single mutation model for solving the stagnation problem. An adaptive 

strategy is also proposed in this dissertation. This strategy uses successful information to 

automatically tune factor F and crossover rate CR. The advantages of the proposed GDE 

algorithm are summarized below.  

(1) The proposed GDE algorithm employs the inherent properties of the DE algorithm 

to solve the stagnation problem. The GDE algorithm combines the two mutation 

operations to tradeoff between the exploration ability and the exploitation ability. 

(2) An adaptive strategy automatically tunes parameters without the user’s prior 

knowledge. This strategy collects successful factor F and crossover rate CR to 

generate potential parameters for the next generation. 

(3) Thirteen well-known numerical benchmark functions are tested to validate the 

performance of the proposed GDE algorithm. The GDE algorithm shows 

significantly better performance than other EAs in statistical tests. 

Furthermore, we also propose a learning algorithm for function-link fuzzy system 

(FLFS) optimization. The proposed learning algorithm includes agglomerative clustering 
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algorithm and evolution process. The agglomerative clustering algorithm constructs the 

optimal structure. The evolution process comprises multi-subpopulation that uses each 

individual represents a single fuzzy rule and each individual in each subpopulation evolves 

separately using a GDE algorithm. The advantages of the FLFS model with GDE algorithm 

(FLFS-GDE) are summarized as follows: 

(1) The consequent of the FLFS model is a nonlinear combination of input variables. 

This study uses the functional-link neural network to the consequent part of the 

fuzzy rules. The local properties of the consequent part in the FLNFN model 

enable a nonlinear combination of input variables to be approximated more 

effectively. 

(2) An automatic process based on agglomerative clustering algorithm can construct 

the optimal number of fuzzy rules for the structure of the FLFS model. In this 

algorithm, we just easily assign two parameter values instead of the trial and error 

process. 

(3) The evolution process adopts a subpopulation symbiotic method which uses the 

rule-based subpopulation to evolve separately.  

(4) The evolution process adopts a GDE algorithm to effectively search potential 

individuals. 

(5) As demonstrated in section 4.4, the proposed FLFS-GDE model is a more adaptive 

and effective predictor than the other models.  

Two advanced topics on the proposed model should be addressed in future research. 

First, the proposed GDE algorithm will tend to apply large-scale problems or overly complex 

problems. In this dissertation, the proposed GDE algorithm is limited to some small-scale 

problems (less than 100 dimensions). The scalability performance of the GDE algorithm is 

unclear. Second, the crossover operation in the GDE algorithm is also an important evolution 

operation which influences the performance of the proposed algorithm. We may modify the 
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crossover operation to improve the performance. For example, Islam et al. [46] presented a 

novel crossover operation for the DE algorithm. The novel crossover operation incorporates 

a greedy parent selection strategy with the conventional binomial crossover scheme of the 

DE algorithm. In the crossover operation, a binomial crossover is performed between the 

current donor vector and any other individual from p top-ranked individuals for the new 

offspring. The crossover operation is exploitative in nature and promotes the inclusion of 

genetic information from the elite class of individuals of current generation into the 

offspring. 
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