

國 立 交 通 大 學

電控工程研究所

博 士 論 文

分組式差分進化演算法及其應用於模糊系統最佳化設計
Group-Based Differential Evolution Algorithm and Its Application to Fuzzy

System Optimization

 研 究 生：韓明峰

 指導教授：林進燈 張志永

中 華 民 國 一百零二 年 一 月

分組式差分進化演算法及其應用於模糊系統最佳化設計

Group-Based Differential Evolution Algorithm and Its

Application to Fuzzy System Optimization

研 究 生：韓明峰 Student：Ming-Feng Han

指導教授：林進燈 博士 Advisor：Dr. Chin-Teng Lin

 張志永 博士 Dr. Jyh-Yeong Chang

國 立 交 通 大 學

電 控 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Electrical Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Control Engineering

Jan. 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年一月

i

分組式差分進化演算法及其應用於模糊系

統最佳化設計

研究生：韓明峰 指導教授：林進燈 博士

 張志永 博士

國立交通大學電控工程研究所 博士班

摘 要

本篇論文主要分為兩個部分，第一部分，我們提出分組式差分進化演算法解

決函數最佳化問題。該進化演算法使用兩種不同類型的突變運算，可解決傳統演

算法常遇到的停滯問題，進而達到良好的演化搜尋能力。在演化程序中，依照個

體之適應值，所有個體被區分為優等組與劣等組。優等組進行區域性的突變運算，

劣等組進行全域性的突變運算。再藉由交配和選擇運算以產生新的子代。我們也

提出一個新的適應學習策略為了避免人為設定參數問題，該策略能自動的找到最

佳設定參數。在模擬中，我們測試 13 個函數最佳化問題。本論文所提出的演算

法皆呈現良好的搜尋效能。第二部分，我們將分組式差分進化演算法應用在函數

聯結之模糊系統最佳化設計上。在架構學習中，使用凝聚分群演算法自動地給予

模糊系統最適合的模糊規則數。在參數學習中，群體將被拆善成數個子群體且每

個子群體各自進化，最後可獲得最佳化的函數聯結之模糊系統。我們將與其他方

法比較，以證實所提出的網路架構及其相關演算法之有效性。

ii

Group-Based Differential Evolution

Algorithm and Its Application to Fuzzy

System Optimization

Student：Ming-Feng Han Advisor：Dr. Chin-Teng Lin

 Dr. Jyh-Yeong Chang

Institute of Electrical Control Engineering

National Chiao-Tung University

ABSTRACT

This dissertation consists of two major parts. In the first part, we propose a

group-based differential evolution (GDE) algorithm for numerical optimization

problems. The proposed GDE algorithm employs two different mutation operations to

solve the stagnation problem and achieve good performance. Initially, all individuals

in population are grouped into an inferior group and a superior group based on their

fitness value. The inferior group uses the global mutation model. The superior group

employs the local mutation model. Subsequently, crossover and selection operations

are employed for the next generation. An adaptive strategy is also proposed to

automatically find good parameters in the GDE algorithm. To validate the

performance of the GDE algorithm, 13 numerical benchmark functions are tested. The

simulation results indicate that the approach is effective and efficient. In the second

part, we apply the GDE algorithm to function-link fuzzy system (FLFS) optimization.

iii

For structure learning, an agglomerative clustering algorithm is proposed to find the

optimal number of fuzzy rules. For parameter learning, we use symbiotic learning

method and GDE algorithm. The population is separated as subpopulations. Each

subpopulation performs GDE algorithm to search the optimal parameter. The FLFS

model with GDE learning algorithm (FLFS-GDE) is applied in real world prediction

problems. Results of this dissertation demonstrate the effectiveness of the proposed

methods.

iv

Acknowledgement

 本篇論文能夠順利完成，首先要感謝兩位指導教授 - 林進燈老師與張志永

老師。在二位教授豐富的學識、殷勤的教導及嚴謹的督促下，使我學習到許多的

寶貴知識及在面對事情中應有的處理態度、方法，並且在研究與投稿論文的過程

中，二位教授有許多深入的見解及看法且對於斟酌字句、思慮周延，更是我該學

習的目標。師恩好蕩，指導提攜，銘感於心。同時也要感謝陶金旺教授、林正堅

教授、蘇木春教授、楊谷洋教授等，在電機資訊工程領域各執牛耳的論文口試委

員，能於百忙之中蒞臨指導，給予最寶貴的意見，使得本論文內容上更加完善。

 在艱辛的求學路上，謝謝這一路伴隨的學長和學弟們。感謝仕宇學長、東霖

學長、肇廷學長及君玲學姐，因為你們的提點，讓我在研究上體悟更深成的道理，

也感謝 Bio-CI Group 的成員：洋印與時慧，因為你們的存在，讓博士四年半的生

活更加多采多姿，也祝福你們在未來的博士班口試順利。

 特別要感謝我的父親、母親、大姐、二姐、三姐，在這段日子中不斷的給予

支持及鼓勵，讓我能夠專心於研究的工作並完成博士學位。最後誠摯地以本論文

研究成果獻給我的師長、父母、家人及所有的朋友們。

韓 明 峰

民國 102年 1月 21日

v

Contents

Abstract in Chinese ... i

Abstract in English ... ii

Acknowledgement .. iv

Contents ..v

List of Tables ... vi

List of Figures .. vii

1 Introduction ...1

2 Differential Evolution ...7

3 Group-Based Differential Evolution ... 11

3.1 A GDE Algorithm .. 11

3.2 A Self-Adaptive Parameter Tuning Strategy..15

3.3 Simulation ..17

3.3.1 Test Functions ...18

3.3.2 Low-Dimensional Problems ...21

3.3.3 High-Dimensional Problems ...29

3.3.4 Statistical Comparison Using Friedman test ...37

3.3.5 Comparisons with Other Methods ..39

4 A GDE Algorithm for Functional-Link Fuzzy Systems Optimization42

4.1 Review of Evolutionary Fuzzy Systems ..42

4.2 Functional-Link Fuzzy Systems ..44

4.3 Learning process of Functional-Link Fuzzy Systems ..47

4.3.1 An Agglomerative Clustering Algorithm..48

4.3.2 Evolution Learning Processes ...55

4.4 Simulation ..61

5 Conclusions ...80

References ...83

vi

List of Tables

Table 3.1: Experimental results (Function 1－Function 8) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for low dimensional problems

(D=30), averaged over 50 independent runs. ..22

Table 3.2: Experimental results (Function 9－Function 11) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for low dimensional problems

(D=30), averaged over 50 independent runs. ..23

Table 3.3: Experimental results (Function 1－Function 8)of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems

(D=100), averaged over 50 independent runs. ..30

Table 3.4: Experimental results (Function 9－Function 13)of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems

(D=100), averaged over 50 independent runs. ..31

Table 3.5: The rank table based on experimental results of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for statistical comparison.38

Table 3.6: The result of Friedman test for statistical comparison. ..39

Table 3.7: Comparison with the proposed GDE algorithm and other methods (D=30),

including RMEA,CEP, ALEP, BestLevy, NSDE and RTEP.40

Table 3.8: Comparison with the proposed GDE algorithm and advanced DE

algorithms (D=30), including jDE, SaDE, ODE, SaCDE, DEGL and JADE41

Table 4.1: Initial parameters before training. ..61

Table 4.2: Performance of the GDE algorithm and the other algorithms for example 1.65

Table 4.3: The best performance of the FLFS-GDE model and other papers for

example 1 ..66

Table 4.4: Performance of the GDE algorithm and the other algorithms for example 2.69

Table 4.5: The best performance of the FLFS-GDE model and other papers for

example 2. ...70

Table 4.6: The performance of the GDE algorithm and other algorithms for example 376

Table 4.7: Comparison of the FLFS-GDE model and other papers for example 3.76

Table 4.8: Performance of the FLFS-GDE model and other algorithms for example 477

Table 4.9: Performance of the FLFS-GDE model and other algorithms for example 5.79

vii

List of Figures

Figure 2.1: The flow chart of the DE algorithm. Gen is the generation counter..7

Figure 2.2: Illustration of the crossover process for NP=7 parameters..10

Figure 3.1: The flow chart of the proposed GDE algorithm. GEN is the generation

counter... ..14

Figure 3.2: A concept of the self-adaptive parameter tuning strategy....16

Figure 3.3: The best learning curve of GDE, DE/rand/bin, DE/best/bin and

DE/target-to-best/bin on 13 test function for low dimensional (D=30)

problems. (a) Function 1: f1; (b) Function 2: f2; (c) Function 3: f3; (d)

Function 4: f4; (e) Function 5: f5; (f) Function 6: f6; (g) Function 7: f7; (h)

Function 8: f8; (i) Function 9: f9; (j) Function 10: f10; (k) Function 11: f11;

(l) Function 12: f12; (m) Function 13: f13. ...28

Figure 3.4: The best learning curve of GDE, DE/rand/bin, DE/best/bin and

DE/target-to-best/bin on 13 test function for high dimensional (D=100)

problems. (a) Function 1: f1; (b) Function 2: f2; (c) Function 3: f3; (d)

Function 4: f4; (e) Function 5: f5; (f) Function 6: f6; (g) Function 7: f7; (h)

Function 8: f8; (i) Function 9: f9; (j) Function 10: f10; (k) Function 11: f11;

(l) Function 12: f12; (m) Function 13: f13; ...36

Figure 4.1: The architecture of the functional-link fuzzy system. ..47

Figure 4.2: The overall learning process. ..48

Figure 4.3: A flow chart of the proposed agglomerative clustering algorithm for

discovering the optimal number of clusters. ...51

Figure 4.4: The result of proposed agglomerative clustering algorithm with respect to

different . ..52

Figure 4.5: The clustering results by the proposed algorithm with 4  (a) the result

of k =1, (b) the result of k =5, (c) the result of k =10, and (d) the result of

k =21. ..54

Figure 4.6: Coding FLFS into individual and population. ..56

viii

Figure 4.7: A completed process of the subpopulation step.. ...57

Figure 4.8: A flow chart of the proposed GDE algorithm for the FLFS optimization..59

Figure 4.9: The result of the agglomerative clustering algorithm for example 1.63

Figure 4.10: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 1. ..64

Figure 4.11: Prediction results of the FLFS-GDE model for example 1. Symbol "+"

represents the desired results and "O" represents the actual results..64

Figure 4.12: Prediction errors of the FLFS-GDE model for example 1..65

Figure 4.13: The result of the agglomerative clustering algorithm for example 2..68

Figure 4.14: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 2.. ...68

Figure 4.15: Symbol "+" represents the desired results and "O" represents the

prediction results of the FLFS-GDE model for example 2..69

Figure 4.16: The result of the agglomerative clustering algorithm for example 3..72

Figure 4.17: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 3. ..72

Figure 4.18: The training output of the FLFS-GDE model for example 3.73

Figure 4.19: The testing output of the FLFS-GDE model for example 3..73

Figure 4.20: The result of the agglomerative clustering algorithm for example 4.76

Figure 4.21: Prediction output of FPM-DEEMS model for example 4..76

Figure 4.22: The result of the agglomerative clustering algorithm for example 5..78

Figure 4.23: Symbol "+" represents desired and "O" represents prediction results of

the FLFS-GDE model for example 5.. ..79

1

Chapter 1

Introduction

Evolutionary algorithms (EAs)[1-6] are population based stochastic optimization

methods that are inspired by Darwin’s Theory of Evolution. EAs are able to deal with

difficult objective functions which are, e.g., discontinuous, non-convex, multi-modal,

non-linear and non-differentiable functions. Since engineering, economic and scientific

problems include such difficult objectives, EAs have become popular optimization tools

during the last couple of decades.

The optimization process of the EAs usually adopt stochastic search techniques that

work with a set of individuals instead of a single individual, and use some evolution

operators to naturally produce offsprings for the next generation. These algorithms include

genetic algorithm (GA)[7-8], evolutionary programming (EP)[9-10], evolution strategies

(ES)[11], particle swarm optimization (PSO)[12-13] and differential evolution (DE)[14-15]

which are famous, effectual and classical search techniques.

The GA is a powerful optimization tool based on biological evolution mechanism and

natural selection. This algorithm was first proposed and investigated by John Holland in

1973. The main idea of the GA follows the natural selection principle of selecting fittest

individuals for the next generation and explores the relevant search space according to the

evolutionary computing strategies. In the GA, chromosome is represented by a binary

2

bit-string. Generally, the initial population of GA is generated code “1” or“0” randomly for

each design variable. Offsprings (new population) are produced by Reproduction. The

Reproduction usually involves crossover and mutation. Crossover is the process of

combining genetic building blocks from two or more parent vectors to form one or more new

offspring. Mutation is the process of injecting random noise into offspring vectors to form a

slightly different offspring individual, thereby increasing the genetic diversity of the

population.

Evolution strategies (ES) were developed by Rechenberg and Schwefel[11]. This

algorithm is an effective continuous function optimizer. In evolution process, ESs perform

mutation operator as main operator to produce offspring. After mutating and evaluating all λ

children, the (µ, λ)-ES selects the best µ children to become the next generation’s parents.

Alternatively, the (µ + λ)-ES populates the next generation with the best µ vectors from the

combined parent and child populations. The special case (µ + 1) is also referred to as

steady-state ES.

A new population-based evolutionary algorithm, called particle swarm optimization

(PSO), was proposed by Kennedy and Eberhart [12] in 1995. The population in PSO is

referred to as a swarm. The PSO is based on simulations of social behaviors such as fish in a

school, birds in a flock etc. A swarm in PSO consists of a number of particles. Each particle

represents a potential solution of the optimization task. All of the particles iteratively

discover a probable solution. Each particle moves to a new position according to the new

velocity and the previous positions of the particle. The PSO has faster convergence than GA

and ES to over a small number of generations.

In recent years, the DE algorithm is interested by researchers [14-35] among the EAs.

The DE algorithm, proposed by Storn and Price [14-15] in 1998, is an efficient and effective

global optimizer in the continuous search domain. It has been shown to perform better than

the GA, ES and PSO over several numerical benchmarks [14-15, 19, 30, 34]. The DE

3

algorithm employs the difference of two randomly selected individuals as the source of

random variations for the mutation operation. Subsequently, crossover and selection

operations are used for generating offsprings. Many studies have applied the DE algorithm to

difficult optimization problems and achieved better solutions[19, 28, 31]. However, the

stagnation problem has been identified that the DE algorithm occasionally stops proceeding

toward the global optimum [18-19]. The reason for stagnation problem is the limitation of

the mutation operation model. In the DE algorithm, the mutation operation model always

favors the exploration ability (DE/rand strategy) or the exploitation ability (DE/best strategy),

which easily results in the blind search in individual space or the insufficient diversity in

population. In order to deal with this problem, previous studies have proposed ideas to

improve the mutation operation model. In [28, 31], the researchers have proposed a modified

differential evolution (MODE) algorithm for an adaptive neural fuzzy network and locally

recurrent neuro-fuzzy system optimazation. This MODE algorithm provides a convex type

mutation model and cluster-based scheme to increase the diversity of the population. The

concept of the tradeoff between the exploration ability and exploitation ability was proposed

by Das et al.[18]. They designed a novel mutation model, called neighborhood-based

mutation operation, to handle stagnation problem. In their paper, they utilized new mutation

strategy and ring topology of neighborhood to find potential individuals in population.

However, a single evolution model may not be suitable for various problems [21, 24, 27].

Therefore, other researchers which combine with other learning methods have proposed for

solving the stagnation problem. Rahnamayan et al. [27] combined a opposition-based

learning method and the DE algorithm, called opposition-based differential evolution (ODE).

The ODE employs opposition-based optimization to choose the better solutions by

simultaneously checking fitness of the opposite solution in the current population. The ODE

possesses successfully increases diversity of the population. A combination of one-step

k-Means clustering and multi-parent crossover operation in the DE algorithm was proposed

4

by Cai et al. [21]. Their method enhances the performance of the DE algorithm and balances

the exploration ability and the exploitation ability in the evolutionary process. Noman and

Iba [24] proposed an adaptive local search (ALS) algorithm to increase exploitation ability in

the DE algorithm. The ALS algorithm uses a simple hill-climbing algorithm to adaptively

determine the search length and effectively explore the neighborhood of each individual. Ali

and Pant [36] applied a Cauchy mutation to improve the performance of the DE algorithm.

The Cauchy mutation using Cauchy distribution randomly forces solutions to move to some

other position. This method efficiently increases the probability of searching potential

solutions in the DE algorithm. A combination of the fuzzy adaptive PSO algorithm and the

DE algorithm, called FAPSO-DE model, was proposed by Niknam et al. [37]. They utilize

two evolution processes to balance the exploration ability and exploitation ability for

economic dispatch problems.

 Unlike above mentioned studies, this dissertation proposes a new idea to solve the

stagnation problem. This idea employs the inherent properties of the DE algorithm without

depending on other learning algorithms. The idea combines two classical mutation strategies

instead of a single mutation model. The two mutation strategies are composed of the

DE/rand/bin operation and the DE/best/bin operation. The DE/rand/bin has powerful

exploitation ability; and the DE/best/bin has efficient exploration ability. This dissertation

uses the two operations to tradeoff between the exploration ability and the exploitation

ability for solving the stagnation problem.

In this dissertation, a group-based differential evolution (GDE) algorithm is proposed

for numerical optimization problems. The GDE algorithm provides a new process using the

DE/rand/bin model and the DE/best/bin model in mutation operation. Initially, all individuals

in population are grouped into an inferior group and a superior group based on their fitness

value. The inferior group uses the DE/rand/bin mutation model for globally searching

potential solutions and for maintaining the diversity of the population. The superior group

5

employs the DE/best/bin mutation model to efficiently search the neighborhood of the

current best solution. Subsequently, crossover and selection operations are employed for the

next generation. An adaptive strategy is also proposed in this dissertation. This strategy uses

successful information to automatically tend to good parameters (factor F and crossover rate

CR). It is thus helpful to enhance the robustness of the GDE algorithm. In order to validate

the performance of the GDE algorithm, 13 well-known numerical benchmark functions with

low dimensional problems and high dimensional problems are tested. Simulation results

indicate that our approach is efficient. Comparison with other advance evolutionary

algorithms, the proposed GDE algorithm performs better performance.

In addition, we also apply the proposed GDE algorithm to practical problems based on

functional-link fuzzy systems (FLFS) optimization. Initially, the FLFS has no rules. The

fuzzy rules are automatically generated by an agglomerative clustering algorithm. The

agglomerative clustering algorithm (ACA) determines the optimal number of fuzzy rules for

the FLFS. Subsequently, all free parameters are learned by the GDE algorithm for the FLFS

optimization. During evolution process, the scale fact and crossover are adjusted by adaptive

parameter tuning strategy. In the simulation, five prediction problems are tested to validate

the performance of the proposed functional-link fuzzy system with the GDE algorithm

(FLFS-GDE). The proposed FLFS-GDE model shows better prediction performance than

other methods.

 The overall objective of this dissertation is to develop a novel evolutionary algorithm

and its related application. Organization and objectives of each chapter in this dissertation

are as follows.

In Chapter 2, we introduce a basic DE algorithm and its evolution process. The DE

algorithm employs the difference of two randomly selected individuals as the source of

random variations for the mutation operation. Subsequently, crossover and selection

operations are used for the next generation.

6

In Chapter 3, we present a new differential evolution algorithm, called group-based

differential evolution algorithm for global optimization problems. This algorithm employs

two mutation strategies instead of a single mutation model to tradeoff between the

exploration ability and the exploitation ability for solving the stagnation problem.

Furthermore, an adaptive strategy is also proposed to enhance the robustness of the GDE

algorithm by an automatic process for finding good parameters. 13 well-known numerical

benchmark functions are tested for simulations. The result shows significant differences

between the proposed GDE algorithm and other methods.

In Chapter 4, the proposed GDE algorithm is applied to FLFS optimization for

prediction problems. The learning process consists of rule generation phase and parameter

learning phase. The rule generation phase can determine the optimal number of fuzzy rules

using the agglomerative clustering algorithm. The parameter learning phase combines a

subpopulation symbiotic evolution and a GDE algorithm. Initially, population is separated as

many subpopulations according to the number of fuzzy rules. Each subpopulation performs

the GDE algorithm for parameter learning. We also compare our method and other methods

in simulations. Finally, conclusions and future works are summarized in Chapter 5.

7

Chapter 2

Differential Evolution

This section introduces a complete DE algorithm. The process of the DE algorithm,

likes other EAs, produces offsprings for next generation by the mutation operation, the

crossover operation and the selection operation. Figure 2.1 shows a standard flow chart of

the DE algorithm.

Initialize
Population

Performance
Evaluation

Mutation
Operation

Crossover
Operation

Selection
Operation

Meeting
Termination
Criterion ?

Return Optimal
Solution

Gen=Gen+1

NO

YES

Figure 2.1 : The flow chart of the DE algorithm. Gen is the generation counter.

8

 Initially, a population of NP D-dimensional parameter vectors which represents the

candidate solutions (individuals) is generated by uniformly random process. All individuals

and search space are constrained by the prescribed minimum
min 1,min 2,min ,min(, ,...,)Dx x xX and

maximum
max 1,max 2,max ,max(, ,...,)Dx x xX

parameter bounds. A simple representation of i-th

individual at the current generation Gen is shown as follows：

, ,1, ,2, ,3, , 1, , ,(, , ,..., ,)i Gen i Gen i Gen i Gen i D Gen i D Genx x x x xX . (1)

After Initial population production with NP individuals, fitness evaluation process

measures quality of individuals to calculate the performance. The succeeding steps include

the mutation operation, the crossover operation and the selection operation are explained in

the following.

Mutation Operation

Each individual in the current generation is allowed to breed through mating with other

randomly selected individuals from the population. This process randomly selected a parent

pool of three individuals is formed to produce an offspring. Specifically, for each individual

, , 1,2,...,i gen i NPX , where gen denotes the current generation, NP is population size, three

random individuals,
1,r genX ,

2,r genX ,
3,r genX ,

4,r genX and
5,r genX are selected from the

population such that r1, r2, r3, r4 and r5 ∈ { 1, 2, . . . , NP } and 1 2 3 4 5i r r r r r     .

This way, a parent pool of four individuals is formed to produce an offspring. The following

are different mutation strategies frequently used in the literature:

, 1, 2, 3,DE/rand/bin: ()i gen r gen r gen r genF  V X X X (2)

, , 2, 3,DE/best/bin: ()i gen gbest gen r gen r genF  V X X X (3)

9

, 1, , 1,

2, 3,

DE/target-to-best/bin: ()

 ()

i gen r gen gbest gen r gen

r gen r gen

F

F

  

 

V X X X

X X
 (4)

, 1, 2, 3,

4, 5,

DE/rand/bin/2: ()

 ()

i gen r gen r gen r gen

r gen r gen

F

F

  

 

V X X X

X X
 (5)

, , 2, 3,

4, 5,

DE/best/bin/2: ()

 ()

i gen gbest gen r gen r gen

r gen r gen

F

F

  

 

V X X X

X X
 (6)

where F is scaling factors [0,1] ,
,gbest genX is the best-so-far individual (i.e.,

,gbest genX

keeps best fitness value up to now in the population). For various problems, the DE

algorithm usually employs different mutation strategy. The DE/rand/bin/ mutation and

DE/rand/bin/2 mutation which have more exploration ability are suitable for multimodal

problems. The “DE/best/bin”, “DE/best/bin/2” “DE/target-to-best” mutations which consider

the current best information in generation are more suitable for unimodal problems.

Crossover Operation

After the mutation operation, The DE algorithm uses a crossover operation, often

referred to as discrete recombination, in which the mutated individual
,i genV is mated with

,i genX and generates the offspring
,i genU . The elements of an individual

,i genU are inherited

from
,i genX and

,i genV , which are determined by a parameter called crossover probability

(CR ∈ [0, 1]), as follows:

, ,

, ,

, ,

, if rand() CR

, if rand() > CR

i d gen

i d gen

i d gen

d

d


 


V
U

X
 (5)

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is total element of

10

individual vector, r (d) ∈ [0, 1] is the dth evaluation of a random number generator. Figure

2.2 gives an example of the crossover mechanism for 7-dimensional vectors.

D=1

 2

 3

 4

 5

 6

 7

Xi,Gen Vi,Gen U,Gen

D=1

 2

 3

 4

 5

 6

 7

D=1

 2

 3

 4

 5

 6

 7

Target

vector

Mutant

vector

Trial

vector

r(3)<=CR

r(4)<=CR

r(6)<=CR

Figure 2.1 : Illustration of the crossover process for NP=7 parameters.

Selection Operation

The DE algorithm applies selection operation to determine whether the individual

survives to the next generation. A knockout competition is played between each individual

,i genX and its offspring
,i genU , and the winner is selected deterministically based on objective

function values and is then promoted to the next generation. The selection operation is

described as

, , ,

, 1

,

, if fitness() < fitness()

, otherwise

i gen i gen i gen

i gen

i gen




 


X X U
X

U

(6)

where fitness()z is the fitness value of individual z. After the selection operation, the

population obtains better fitness value or remains the same fitness value, but never

deteriorates.

11

Chapter 3

Group-Based Differential Evolution

3.1 A GDE Algorithm

In the DE algorithm, mutation operation which leads a successful evolution performance is a

principal operator. For various problems, we often employ different mutation strategy in the

DE algorithm. However, choosing suitable mutation strategy which deals with a practical

problem is difficult. Therefore, we propose the GDE algorithm with the exploration ability

and the exploitation ability, which combines two mutation strategies to solve practical

problems. A flow chart of the GDE algorithm is shown in Figure 3.1.

 In first step of the GDE algorithm, a population of NP D-dimensional individuals is

generated by uniformly random process, and evaluated for the fitness value of all individuals.

A sorting process arranges all individuals based on their fitness value as

1 2 1... NP NPfitness fitness fitness fitness   
 for minimum objective problems.

According to fitness value, all individuals are partitioned into an inferior group and a

superior group, called the Group A and the Group B. The Group A, including NP/2 worse

individuals, performs global search to increase the diversity of the population and widely

find potential solutions. Other NP/2 individuals for the Group B perform local search to

actively detect better solutions nearby current best solution. A complete mutation operation

is shown for the Group A and the Group B as follows.

12

, , 1 , 2 ,G r o u p A : ()i g e n i g e n a r g e n r g e nF  V X X X

(7)

, , 3 , 4 ,G r o u p B : ()i g e n g b e s t g e n b r g e n r g e nF  V X X X

(8)

Where Fa and Fb are scale factors,
1,r genX ,

2,r genX ,
 3,r genX and

4,r genX are random selected

from the population, and 1 2 3 4i r r r r    ,the
,gbest genX is the best-so-far individual in

the population.

After mutation operation, The GDE algorithm uses a crossover operation, often referred

to as discrete recombination, in which the mutated individual
,i genV is mated with

,i genX and

generates the offspring
,i genU . Equation 9 presents the crossover operation for the Group A

and the Group B. If the random number rand(d) is smaller than the CR value, the variable of

the mutated individual
, ,i d genV is chosen to the variable of the trial vector

, ,i d genU . Otherwise,

the variable of the target vector
, ,i d genX is selected to the variable of the trial vector

, ,i d genU
.

, ,

, ,

, ,

, if rand() CR

, if rand() > CR

i d gen

i d gen

i d gen

d

d


 


V
U

X
 (9)

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is total element of

individual vector, CR ∈ [0, 1],rand(d) ∈ [0, 1] is the dth evaluation of a random number

generator. The mutation and crossover operators are used to diversify the search space in

terms of the optimization problems.

Selection operation is used to determine whether the individual survives to the next

generation. A knockout competition is played between each individual
,i genX and its

offspring
,i genU , and the winner is selected deterministically based on objective function

values and is then promoted to the next phase. After the selection operation, the population

gets better or remains the same in fitness value, but never deteriorates.

13

The conventional DE only utilizes DE/best or DE/rand mutation to deal with problems.

The proposed GDE algorithm employed two mutation operations to maintain useful diversity

in the population and increase the search capability. It is worth noting that DE/best/bin and

DE/rand/bin are a special case in the proposed GDE algorithm when population = Group A

and population = Group B. Thereby, the proposed GDE algorithm has more variety than

conventional DE algorithm for various problems. In this dissertation, we set the size of the

Group A= Group B=NP/2 because it obtained the best performance in the present study.

14

Initialize
Population

Performance
Evaluation

Meeting
Termination
Criterion ?

Return Optimal
Solution

Gen=Gen+1

NO

YES

Performance
Sorting

Mutation
Operation

Crossover
Operation

Selection
Operation

Mutation
Operation

Crossover
Operation

Selection
Operation

Combine Offspring
form Grouop A and B

Group A Group B

Figure 3.1: The flow chart of the proposed GDE algorithm. GEN is the generation counter.

15

3.2 A Self-Adaptive Parameter Tuning Strategy

Parameter control which can directly influence the convergence speed and search capability

is an important task in the EAs [12, 19]. However, conventional DE algorithm always used

trial-and-error method for choosing suitable parameter requires multiple optimization runs.

Based on this consideration, different adaptive or self-adaptive mechanisms [16, 18, 22, 25,

32] have been recently introduced to dynamically update the control parameters without a

user’s prior knowledge of the relationship between the parameter setting and the

characteristics of optimization problems. In this section, we propose a generalized

self-adaptive approach to control parameter the F and the CR for the Group A (inferior) and

the Group B (superior). The concept of the proposed parameter tuning strategy is shown in

Figure 3.2. The generalized scheme is designed as follows：

(1) Assume new parameters min max[,] , 1 .iG G G i NP   The iG is composed of

 and i iF CR for individual ix . We set a initial center centerG

(2) Set 1g g  and randomly generate iG by Gaussian distribution (centerG , 0.2) for

every individual ix .

(3) After evolution process, the iG that is able to make the offspring , 1i gx  of
ix to

successfully enter the next generation. That is, a good parameter value iG will be

marked and recorded in our algorithm. The successful parameter value success ()G k and

fitness improvements
1(), where =1,2,..., gk k N 

sucess sucess, sucess, () [,]k kG k F CR (10)

 
2

, 1() () ()k g kk fitness x fitness x  

 (11)

16

(4) Update the parameter center according to

, 1(1)center center center gG w G w G      (12)

where the weight w is determined by

1

1

g

g g

N
w

N N








 (13)

and
, 1center gG 

 is the weighted mean of values in sucessG :

, 1 sucess

1

1

()
()

()

g

g

N

center g N
k

k

k
G G k

k











 


 (14)

(5) If
1g gN N  , then update the

1gN 
 as follows

1 0.9g gN N  (15)

(6) Go to Step 2 for the next generation until a stopping criterion is satisfied.

Individual 1

Individual 2

.

.

.

Individual NP

F1 CR1

F2 CR2

FNP CRNP

.

.

.

.

.

.

G1

G2

GNP

success (), ()G k k

centerG

Gaussian

Distribution

Collection

Updating

Assignment

Figure 3.2 : A concept of the self-adaptive parameter tuning strategy.

17

3.3 Simulation

In order to verify the performance of proposed algorithm, a set of thirteen classical

benchmark test functions [38-39] is used in this simulation. The analytical form of these

functions is given in section 3.3.1. The GDE algorithm is compared with three classic DE

algorithms, including the DE/rand/bin, the DE/best/bin and the DE/target-to-best/bin

algorithms. In all simulations, we set the parameters of the GDE algorithm to be fixed, initial

Fa= 0.5, initial Fb =0.8, initial CRa=0.9 ,initial CRb =0.9. The parameter setting for three

classic DE algorithms is recommended by other papers as follows. For DE/rand/bin model,

the F=0.5 and the CR=0.9 [15, 22, 32]；For DE/bes/bin model, the F=0.8 and the CR=0.9

[18]；For DE/target-to-best/bin, the F=0.8 and the CR=0.9[20].

 Many papers have used the same parameter setting to solve their problems. In this

simulation, we set the population size NP to be 100 and 400 in the case of D = 30, and D =

100, respectively. All results reported in this section are obtained based on 50 independent

runs. In addition, Section 3.3.3 demonstrates significant difference results based on statistical

comparison process. A complete comparison with other evolutionary algorithms, such as

RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40], RTEP[44], jDE[33,47],

SaDE[26], ODE[27], SaCDE[16], DEGL[18] and JADE[22,46], is presented in Section

3.3.4.

18

3.3.1 Test Functions

 In this section, we introduce thirteen numerical functions for verifying the performance

of proposed GDE algorithm. Based on their properties, the functions can be divided into two

problems as unimodal function problem and multimodal function problem. f1– f4 are

continuous unimodal functions. f5 is a discontinuous step function, and f6 is a noisy quartic

function. f7 is the Rosenbrock function which is multimodal function problem for D > 3 [39].

f8– f13 are multimodal and the number of their local minima increases exponentially with the

problem dimension [40]. In addition, f8 is the only bound-constrained function investigated

in this paper. All these functions have an optimal value at zero. Completed functions are

described as follows:

(1) Function 1 ：Sphere function

2

1

1

() -100 100
D

i i

i

f x x


   　， 　

(2) Function 2 ：Schwefel’s problem_a

2

1 1

-10 10
DD

i i i

i i

f x x x
 

     　 ,

(3) Function 3 ：Schwefel’s problem_b

2

3

1 1

-100 100
D i

i i

i j

f x x
 

 
   

 
  　 ,

(4) Function 4 ：Schwefel’s problem_c

4 max -100 100i i
i

f x x  　 ,

19

(5) Function 5 ：Schwefel’s problem_d

 
2

5

1

0.5 -100 100
D

i i

i

f x x


    ,

(6) Function 6 ：Schwefel’s problem_e

 4

6

1

0,1 -1.28 1.28
D

i i

i

f ix rand x


    ,

(7) Function 7 ：Rosenbrock’s function

2 2

7 1

1

100() (1) -30 30
D

i i i i

i

f x x x x



        ,

(8) Function 8 ：Schwefel’s function

8

1

sin 418.98288727243369 -500 500
D

i i i

i

f x x D x


      ,

(9) Function 9 ：Rastrigin’s function

 9

1

10cos(2) 10 -5.12 5.12
D

i i i

i

f x x x


     ,

(10) Function 10 ：Ackley’s function

2

10

1 1

1 1
20exp 0.2 exp cos(2) 20

-32 32

D D

i i

i i

i

f x x e
D D

x


 

   
            

 

  ,

20

(11) Function 11 ：Griewank’s function

2

11

1 1

1
cos() 1 -600 600

4000

DD
i

i i

i i

x
f x x

i 

      ,

(12) Function 12 ：Generalized penalized function_1

1
2 2 2 2

12 1 1

1

1

10sin () (1) 1 10sin () (1)

 (,10,100,4)

where

1
1 (1),

4

() , if

 (, , ,) () , if

0 , otherwise

D

i i D

i

D

i

i

i i

m

i i

m

i i i

f y y y y
D

u x

y x

k x a x a

u x a k m k x a x a


 









 
        

 



  

  

    





-50 50ix






 

(13) Function 13 ：Generalized penalized function_2

1
2 2 2 2 2

13 1 1

1

1

1
sin (3) (1) 1 sin (3) (1) 1 sin (2)

10

 (,10,100,4)

where

() , if

 (, , ,) () , if

0 , otherwise

D

i i D D

i

D

i

i

m

i i

m

i i i

f x x x x x

u x

k x a x a

u x a k m k x a x a

  








 
             

 



 

    





-50 50ix







 

21

3.3.2 Low-Dimensional Problems

In this simulation, the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin

algorithms are applied to low dimensional problems on 13 benchmark test functions. Table

3.1 and Table 3.2 show the detailed performance of the GDE, DE/rand/bin, DE/best/bin and

DE/target-to-best/bin algorithms, including the mean, best and worst performance over 50

independent runs. This table indicates that the GDE algorithm obviously achieves better

performance than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms on 13

benchmark test functions. Especially, the GDE algorithm searches the global optimal

solution at zero on the Function 5 and the Function 11. Focus on three classical DE

algorithms, the DE/target-to-best/bin algorithm often obtains a better performance than the

DE/rand/bin and DE/best/bin algorithms on 13 benchmark test functions. The DE/rand/bin

obtains obvious difference on the Function 11 and the Function 13 among three classical DE

algorithms.

 The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin

algorithms on 13 test function for low dimensional (D=30) problems is shown in Figure 3.3.

This Figure presented that the GDE algorithm possesses speedier convergence than the

DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms on 13 benchmark test

functions. An interesting case is shown in Figure 3(h) and Figure 3(i). The DE/rand/bin,

DE/best/bin and DE/target-to-best/bin algorithms are stopped at locally optimal solutions on

the Function 9 and the Function 10. The GDE algorithm maintains a continued convergence

to find the optimal solutions. It is shown that the proposed GDE algorithm successfully

overcomes the stagnation problem for low dimensional problems.

22

Table 3.1: Experimental results (Function 1－Function 8)of GDE, DE/rand/bin, DE/best/bin

and DE/target-to-best/bin for low dimensional problems (D=30), averaged over 50

independent runs.

Function Gen.
GDE DE/rand/bin DE/best/bin

DE/target–to

–best/bin

Mean

(Best, Worst)

f1 1500

1.83E–42

(9.61E–59,

9.15E–41)

2.53E–13

(5.37E–14,

1.16E–12)

4.51E–14

(2.30E–15,

1.56E–13)

4.84E–16

(7.17E–17,

1.76E–15)

f2 2000

4.02E–30

(3.86E–41,

1.37E–28)

2.93E–09

(5.42E–10,

8.45E–09)

7.82E–11

(1.75E–11,

3.00E–10)

2.11E–11

(3.84E–12,

6.81E–11)

f3 5000

1.13E–25

(9.22E–38,

5.53E–24)

3.78E–10

(3.72E–11,

1.93E–09)

3.77E–11

(3.43E–13,

7.58E–10)

3.18E–14

(1.96E–16,

1.60E–13)

f4 5000

6.67E–11

(2.43E–14,

2.59E–10)

2.17 E–02

(4.15E–13,

5.25E–01)

1.93E–09

(2.48E–11,

1.95E–08)

8.34E–11

(4.04E–14,

6.83E–10)

f5 1500

0.0E+00

(0.0E+00,

0.0E+00)

2.98E–13

(6.03E–14,

8.50E–13)

3.97E–14

(4.03E–15,

1.82E–13)

5.55E–16

(3.87E–17,

5.20E–15)

f6 3000

2.08E–03

(6.02E–04,

9.43E–03)

1.74E–01

(3.60E–03,

7.77E–01)

7.12E–03

(3.00E–03,

1.23E–02)

5.79E–03

(2.16E–03,

1.14E–02)

f7 3000

3.73E–07

(1.27E–19,

1.12E–05)

1.17E+00

(1.67E–05,

3.06E+00)

7.97E–01

(1.83E–11,

3.98E+00)

5.58E–01

(1.04E–13,

3.98E+00)

f8 1500

2.52E+00

(1.18E+02,

8.58E–04)

6.80E+03

(4.71E+03,

7.27E+03)

2.94E+03

(1.78E+03,

4.88E+03)

3.12E+03

(9.49E+02,

6.89E+03)

23

Table 3.2: Experimental results (Function 9 － Function 13)of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for low dimensional problems (D=30), averaged over

50 independent runs.

Function Gen.
GDE DE/rand/bin DE/best/bin

DE/target–to

–best/bin

Mean

(Best, Worst)

f9 1500

5.68E–13

(0.0E+00,

6.86 E–12)

7.62E+01

(7.88E+00,

1.67 E+02)

4.55E+01

(2.28E+01,

7.36E+01)

1.71E+02

(1.33E+02,

2.13E+02)

f10 1500

9.69E–15

(7.99E–15,

3.28E–14)

1.68E–07

(7.25E–08,

3.31E–07)

5.59E–08

(2.08E–08,

2.16E–07)

6.64E–09

(2.47E–09,

1.67E–08)

f11 1500

0.0E+00

(0.0E+00,

0.0E+00)

1.08E–12

(5.87E–14,

1.38E–11)

8.31E–03

(6.32E–15,

5.65E–02)

5.86E–03

(0.0E+00,

2.21E–02)

f12 1500

1.50E–32

(1.34E–32,

4.06E–32)

3.81E–14

(1.66E–15,

2.84E–13)

1.03E–01

(8.03E–16,

2.06E+00)

2.69E–02

(3.60E–18,

5.19E–01)

f13 1500

1.70E–32

(1.57E–32,

6.8E–32)

3.17E–13

(2.82E–14,

1.76E–12)

2.63E–03

(2.49E–15,

1.09E–02)

1.08E–08

(2.86E–17,

5.41E–07)

24

(a)

(b)

(c)

0 500 1000 1500
10

-60

10
-40

10
-20

10
0

10
20

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500 2000
10

-60

10
-40

10
-20

10
0

10
20

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 1000 2000 3000 4000 5000
10

-40

10
-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

25

(d)

(e)

(f)

0 1000 2000 3000 4000 5000
10

-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500
10

-40

10
-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500 2000 2500 3000
10

-4

10
-2

10
0

10
2

10
4

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

26

(g)

(h)

(i)

0 500 1000 1500 2000 2500 3000
10

-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500
10

-4

10
-2

10
0

10
2

10
4

10
6

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500
10

-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

27

(j)

(k)

(l)

0 500 1000 1500
10

-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500
10

-40

10
-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

28

(m)

Figure 3.3. The best learning curve of GDE, DE/rand/bin, DE/best/bin and

DE/target-to-best/bin on 13 test function for low dimensional (D=30) problems. (a) Function

1: f1; (b) Function 2: f2; (c) Function 3: f3; (d) Function 4: f4; (e) Function 5: f5; (f) Function

6: f6; (g) Function 7: f7; (h) Function 8: f8; (i) Function 9: f9; (j) Function 10: f10; (k)

Function 11: f11; (l) Function 12: f12; (m) Function 13: f13.

0 500 1000 1500
10

-40

10
-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

29

3.3.3 High-Dimensional Problems

In order to verify the capability of algorithm on high dimensional problems, the GDE,

DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms are applied to 13 benchmark

test functions. Table 3.3 and Table 3.4 show the detailed performance of the GDE,

DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms, including the mean, best and

worst performance over 50 independent runs. Obviously, all algorithms are difficult to find

optimal solutions caused by high dimensional problem. In Tables, the GDE algorithm

obtains better performance than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin

algorithms on 13 benchmark test functions. Notice that the GDE algorithm efficiently

searches a global optimal solution at zero on the Function 9 and the Function 11. Among

three classical DE algorithms, the DE/target-to-best/bin algorithm obtains obvious difference

on the Function 9 and the Function 11.

The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin

algorithms on 13 test function for high dimensional (D=100) problems is shown in Figure

3.4. In this Figure, the GDE algorithm also presents speedier convergent curves than other

algorithms on high dimensional functions. The stagnation situation is also happened when

the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms are performed in Figure

3(b), Figure 3(c), Figure 3(e), Figure 3(g) and Figure 3(i). The GDE algorithm continuously

maintains a convergent curve on the Function 2, Function 3, Function 5, Function 7 and

Function 9. In this paper, the simulation result show that the proposed GDE algorithm

obviously achieves better performance and successfully overcomes the stagnation situation

for low dimensional problems and low dimensional problems.

30

Table 3.3: Experimental results (Function 1 － Function 8) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems (D=100), averaged

over 50 independent runs.

Function Gen.
GDE DE/rand/bin DE/best/bin

DE/target–to

–best/bin

Mean

(Best, Worst)

f1 2000 4.95E–21

(8.68E–28,

9.07E–20)

3.71E+01

(2.14E+01,

5.22E+01)

5.25E+00

(2.31E+00,

1.11E+01)

1.13E+00

(5.33E–01,

2.60E+00)

f2 3000 9.81E–23

(1.60E–28,

3.66E–21)

2.46E+00

(1.58E+00,

3.82E+00)

1.41E–01

(7.18E–02,

2.29E–01)

7.27E–02

(2.87E–02,

1.41E–01)

f3 8000 2.74E–10

(7.24E–12,

4.08E–09)

2.23E+05

(1.47E+05,

3.13E+05)

4.91E+04

(2.97E+04,

7.34E+04)

3.04E+04

(1.39E+04,

4.65E+04)

f4 15000 1.23E–02

(1.00E–02,

1.55E–23)

9.19E+01

(5.68E+01,

9.54E+01)

1.08E+01

(5.86E+00,

15.9E+00)

2.40E+00

(1.19E+00,

4.25E+00)

f5 1500 5.27E–22

(1.31E–23,

5.44E–21)

3.70E+02

(2.03E+02,

5.19E+02)

6.93E+01

(4.00E+01,

1.06E+02)

2.08E+01

(1.32E+01,

3.23E+01)

f6 6000 6.15E–03

(4.40E–03,

8.26E–03)

2.98E–02

(2.21E–02,

3.49E–02)

7.27E–02

(4.67E–02,

1.10E–01)

4.24E–02

(2.66E–02,

610E–02)

f7 6000 6.70 E+00

(1.71E–06,

3.72 E+01)

9.11E+01

(9.05E+01,

9.23E+01)

1.52E+02

(8.40E+01,

2.99E+02)

1.06E+02

(7.69E+01,

1.49E+02)

f8 1000 2.66E+03

(9.82E+02,

3.79E+03)

3.14E+04

(2.94E+04,

3.24E+04)

1.36E+04

(1.05E+04,

1.81E+04)

2.86E+04

(2.03E+04,

3.17E+04)

31

Table 3.4: Experimental results (Function 9 － Function 13) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems (D=100), averaged

over 50 independent runs.

Function Gen.
GDE DE/rand/bin DE/best/bin

DE/target–to

–best/bin

Mean

(Best, Worst)

f9 9000 0.0E+00

(0.0E+00,

0.0E+00)

8.08E+02

(7.53E+02,

8.47E+02)

1.74E+02

(1.26E+02,

2.42E+02)

4.20E+02

(7.3E+01,

7.99E+02)

f10 3000 4.41E–13

(3.45E–13,

5.65E–13)

1.54E–01

(9.20E–02,

2.09E–01)

2.68E–01

(2.08E–02,

1.32E+00)

9.45E–03

(5.51E–03,

1.30E–02)

f11 3000 0.0E+00

(0.0E+00,

0.0E+00)

2.48E–01

(1.47E–01,

3.71E–01)

1.72E–02

(7.14E–03,

3.53E–02)

2.32E–03

(5.98E–04,

1.44 E–02)

f12 3000 2.43E–24

(1.80E–28,

2.54E–23)

2.35E+00

(3.11E–01,

1.05E+01)

2.81E+00

(6.42E–01,

6.66E+00)

2.47E–01

(6.86E–04,

1.34E+00)

f13 3000 7.65E–25

(3.38E–28,

4.18E–24)

8.82E+00

(2.32E+00,

2.47E+01)

7.49E+00

(5.72E–01,

3.58E+01)

1.91E–01

(4.17E–03,

3.84E+00)

32

(a)

(b)

(c)

0 500 1000 1500 2000
10

-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500 2000 2500 3000
10

-40

10
-20

10
0

10
20

10
40

10
60

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 2000 4000 6000 8000
10

-15

10
-10

10
-5

10
0

10
5

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

33

(d)

(e)

(f)

0 5000 10000 15000
10

-2

10
-1

10
0

10
1

10
2

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500
10

-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 1000 2000 3000 4000 5000 6000
10

-4

10
-2

10
0

10
2

10
4

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

34

(g)

(h)

(i)

0 1000 2000 3000 4000 5000 6000
10

-10

10
-5

10
0

10
5

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 200 400 600 800 1000
10

2

10
3

10
4

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 2000 4000 6000 8000
10

-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

35

(j)

(k)

(l)

0 500 1000 1500 2000 2500 3000
10

-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500 2000 2500 3000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

0 500 1000 1500 2000 2500 3000
10

-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

36

(m)

Figure 3.4 : The best learning curve of GDE, DE/rand/bin, DE/best/bin and

DE/target-to-best/bin on 13 test function for high dimensional (D=100) problems. (a)

Function 1: f1; (b) Function 2: f2; (c) Function 3: f3; (d) Function 4: f4; (e) Function 5: f5; (f)

Function 6: f6; (g) Function 7: f7; (h) Function 8: f8; (i) Function 9: f9; (j) Function 10: f10; (k)

Function 11: f11; (l) Function 12: f12; (m) Function 13: f13;

0 500 1000 1500 2000 2500 3000
10

-30

10
-20

10
-10

10
0

10
10

Generation

Lo
g

of
 F

itn
es

s
V

au
le

DE/rand/bin

DE/best/bin

DE/target-to-best/bin

GDE

37

3.3.4 Statistical Comparison Using Friedman test

In order to understand the significant difference between the GDE and other algorithms

over multiple test functions, this paper performed a statistical procedure based on the

Friedman test [41, 42] with the corresponding post-hoc tests. We set the GDE algorithm as

the control algorithm to compare with other algorithms. The performance of algorithm is

significant difference if the corresponding average ranks differ by at least the critical

difference (CD)

0.05

(1)

6

j j
CD q

T


 , (16)

where j is the number of algorithms, T is the number of test functions, and critical values

0.05q =2.569 can be found in [42].

A rank relationship of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin

algorithms is shown in Table 3.5. In this simulation, j=4, T=13 and CD = 0.13. Table 3.6

presents a complete result of Friedman test. Under the 30 dimensional problems, all

differences were greater than the critical difference, which means the GDE algorithm is

significantly better than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms

in this case. Under the 100 dimensional problems, the difference between the GDE algorithm

and the DE/target-to-best/bin algorithm was smaller than the critical difference, which seems

to suggest that the GDE algorithm is likely to be different from the DE/target-to-best/bin

algorithm. However, in statistics theory, the Friedman test could not prove the significant

difference between the GDE algorithm and the DE/target-to-best/bin algorithm. Otherwise,

the proposed GDE algorithm was significantly better than the DE/rand/bin algorithm and the

DE/best/bin algorithm in 100 dimensional problems. In this paper, an additional statistical

test, called Wilcoxon signed-rank test [41], was performed for comparison with the GDE

algorithm and the DE/target-to-best/bin algorithm in 100 dimensional problems. Finally, we

obtain a P-value = 8.53×10
-19

. This result indicated that the GDE algorithm achieves

38

significantly better performance than DE/target-to-best/bin algorithms in 100 dimensional

problems. The overall result of Friedman test indicates the significant difference between the

proposed GDE algorithm and other methods for 100 dimensional problems and 30

dimensional problems.

Table 3.5: The rank table based on experimental results of GDE, DE/rand/bin, DE/best/bin

and DE/target-to-best/bin for statistical comparison.

D=30 D=100

Function GDE DE/rand/bin DE/best/bin

DE/target–

to

–best/bin

GDE DE/rand/bin DE/best/bin

DE/target–

to

–best/bin

f1 1 4 3 2 1 4 3 2

f2 1 4 3 2 1 4 3 2

f3 1 4 3 2 1 4 3 2

f4 1 4 3 2 1 4 3 2

f5 1 4 3 2 1 4 3 2

f6 1 4 3 2 1 2 4 3

f7 1 4 3 2 1 4 3 2

f8 1 4 2 3 1 4 2 3

f9 1 4 3 2 1 4 2 3

f10 1 4 3 2 1 3 4 2

f11 1 2 4 3 1 4 3 2

f12 1 2 4 3 1 3 4 2

f13 1 2 4 3 1 4 3 2

Total

Rank
13 46 41 30 13 48 40 29

Ave.

Rank
1 3.54 3.15 2.31 1 3.69 3.07 2.23

39

Table 3.6: The result of Friedman test for statistical comparison.

D = 30

Algorithm Difference in Rank Critical Difference(CD)

DE/rand/bin (3.54－1) ＝ 2.54

1.30 DE/best/bin (3.15－1) ＝ 2.15

DE/target–to–best/bin (2.31－1) ＝ 1.31

D = 100

DE/rand/bin (3.69－1) ＝ 2.69

1.30 DE/best/bin (3.07－1) ＝ 2.07

DE/target–to–best/bin (2.23－1) ＝ 1.23

D = 30 & D = 100

DE/rand/bin (3.61－1) ＝ 2.61

0.91 DE/best/bin (3.11－1) ＝ 3.11

DE/target–to–best/bin (2.26－1) ＝ 1.26

3.3.5 Comparisons with Other Methods

A further result of the GDE algorithm which compares with other evolutionary

algorithms is presented in this section. Table 3.7 shows the comparison of the GDE

algorithm and other evolutionary algorithms with 30 dimensional problems. These

algorithms include RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40] and

RTEP[44]. The GDE algorithm obtained the best results on six out of eight functions. Table

3.8 shows the comparison of the GDE algorithm and advanced DE algorithms, including

jDE[33,47], SaDE[26], ODE[27], SaCDE[16], DEGL[18] and JADE[22,46]. On unimodal

40

function problems (Function 1 –Function 6); the GDE algorithm obtained the best results on

four out of six functions. On multimodal function problems (Function 7 –Function 13), the

GDE algorithm obtained the best results on four out of seven functions and has a result near

the best solution on f10. The overall results showed that GDE algorithm is a more effective

algorithm than other competitive algorithms.

Table 3.7: Comparison with the proposed GDE algorithm and other methods (D=30),

including RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40] and RTEP[44].

Function

GDE RMEA[45] CEP[3,44] ALEP[43] BestLevy[43] NSDE[40] RTEP[44]

Performance

f1 1.83E–42 1.10E–17 9.10E–04 6.32E–04 6.59E–04 7.10E–17 7.50E–18

f3 1.13E–25 2.21E–15 2.10E+02 4.18E–02 3.06E+01 7.90E–16 2.40E–15

f7 3.73E–07 3.10E–04 8.60E+01 4.34E+01 5.77E+01 5.90E–28 1.10E+00

f9 5.68E–13 1.74E–08 4.34E+01 5.85E+00 1.30E+01 – 2.50E–14

f10 9.69E–15 5.08E–06 1.50E+00 1.90E–02 3.10E–02 1.69E–09 2.00E–10

f11 0.0E+00 6.41E–20 8.70E-00 2.4E–02 1.80E–02 5.80E–16 2.70E–25

f12 1.50E–32 1.72E–08 4.80E–01 6.00E–06 3.00E–05 5.40E–16 3.20E–13

f13 1.70E–32 9.29E–05 8.90E–02 9.80E–05 2.60E–04 6.40E–17 7.10E–08

41

Table 3.8: Comparison with the proposed GDE algorithm and advanced DE algorithms

(D=30), including jDE[33,47], SaDE[26], ODE[27], SaCDE[16], DEGL[18] and

JADE[22,46].

Function

GDE jDE[33,47] SaDE[26] ODE[27] SaCDE[16] DEGL[18] JADE[22,46]

Performance

f1 1.83E–42 1.10E–28 4.50E–20 5.61E–24 3.00E–28 8.78E–37 5.50E–28

f2 4.02E–30 1.50E–23 1.90E–14 67.3E–13 1.98E–21 4.47E–36 1.03E–26

f3 1.13E–25 9.00E–02 9.00E–20 2.95E–08 1.96E–24 3.90E–25 2.40E–18

f4 6.67E–11 1.40E–15 7.40E–11 2.90E–37 5.54E–36 4.99E–15 –

f5 0.0E+00 0.00E+00 0.00E+00 – – – –

f6 2.08E–03 3.30E–03 4.80E–03 – – – –

f7 3.73E–07 3.10E–15 6.21E–03 2.04E–03 1.66E–03 1.98E–21 7.54E–09

f8 2.52E+00 – – – – – 2.79E+00

f9 5.68E–13 1.50E–15 – – – 1.25E–15 –

f10 9.69E–15 7.70E–15 3.08E–10 1.90E–13 7.34E–15 1.69E–13 2.24E–15

f11 0.0E+00 0.00E+00 – 0.00E+00 – 5.80E–36 –

f12 1.50E–32 6.60E–30 4.48E–20 8.14E–25 2.12E–30 – –

f13 1.70E–32 5.00E–29 1.70E–19 5.99E–21 1.37E–28 3.00E–28 –

42

Chapter 4

A GDE Algorithm for Functional-Link Fuzzy

Systems Optimization

4.1 Review of Evolutionary Fuzzy Systems

Fuzzy System (FS) has become a popular research topic and successfully applied to

many areas [48-55]. To train the parameters in designing a FS, many papers have employed

Backpropagation (BP) algorithm [48, 51, 54-55]. The BP is a powerful training technique

that can quickly minimize the error function for NFS. However, the BP algorithm may trap

into the local minimum solution and never find the global solution. In order to overcome this

disadvantage, many researchers have proposed FS design using evolutionary algorithm (EA)

[17, 28, 31, 33, 56-70].

Genetic algorithm (GA) is one of well known evolutionary algorithms. Many

researchers had developed GA to implement fuzzy system and neuro-fuzzy system in order

to automate the determination of parameters and structures [57-66]. Genetic fuzzy system

[60-61] was characterized by using a fuzzy system as an individual in genetic operators. In

[65], Karr applied GA to the design of fuzzy controller membership functions, where each

fuzzy rule was treated as an individual. Ng and Li [62] applied chromosomes in the GA to

optimize sophisticated membership functions for a nonlinear water level control system.

43

Seng et al. [63] proposed a neuro-fuzzy network that is based on the radial basis function

neural network all of whose parameters are simultaneously tuned using GA. Juang [66]

successfully applied GA to TSK-type recurrent neuro-fuzzy system design for control

problem.

Another evolutionary algorithms category for the FS design, called particle swarm

optimization (PSO), appears to be efficient and powerful search capability in search space. It

is an evolutionary computation technique that was developed by Kennedy and Eberhart in

1995 [13]. The underlying motivation for the development of PSO algorithm is the social

behavior of animals, such as bird flocking, fish schooling and swarm theory. PSO has been

successfully applied to many optimization problems, such as NFS design [67-78] for control

problems, with improved performance over GAs. In [78], the researcher proposed an

improved PSO algorithm for a recurrent fuzzy neural network design. The improved PSO

algorithm is adopted to adjust the learning rates to improve the online learning capability of

the recurrent fuzzy neural network. Juang et al.[73] proposed a hierarchical cluster-based

multispecies particle-swarm optimization (HCMSPSO) algorithm for fuzzy-system

optimization. In their paper, the algorithm combined online cluster-based algorithm and

subspecies technique to automatically designs both the structure and the parameters of an FS.

A fast and easy evolutionary algorithm as differential evolution (DE) algorithm,

proposed by Storn and Price [15], is an efficient and effective global optimizer in the

continuous search domain. In [17, 28], the researcher proposed a modified differential

evolution (MODE) for an adaptive neural fuzzy network (ANFN-MODE) design. This

MODE provided a cluster-based mutation scheme to prevent the algorithm from being

trapped in local optima of the search space. In addition, the MODE algorithm has been

applied to locally recurrent neuro-fuzzy system design [31]. An optimization of fuzzy

systems using DE algorithm and neighborhood-based mutation operation was proposed by

Lin et al.[33]. In their paper, they utilized new mutation strategy and adaptive fuzzy c-means

44

method to find potential individuals in population. Han et al.[79] have proposed a new

mutation operation based on local information and adaptive parameter tuning method for

designing a functional-link-based neural fuzzy network. They successfully applied the

proposed model to time series forecasting and achieve a better prediction performance.

Hybrid evolutionary algorithm has been investigated in many studies [76-77, 80-81].

Such a hybrid is often combination of local search in evolutionary algorithm, and referred to

as a memetic algorithm [80-81]. In [76], a hybrid of cultural method and cooperative PSO

(CPSO) was applied for designing a functional-link-based neural fuzzy network (FLNFN).

This method is called FLNFN–CCPSO. In FLNFN–CCPSO, a swarm only optimizes one

parameter of an FLNFN. Another hybrid evolutionary algorithm as combination of GA and

PSO, which is called HGAPSO [77], was proposed. In HGAPSO, new individuals were

created not only by PSO, but also by the crossover and mutation operations of a GA.

4.2 Functional-Link Fuzzy Systems

This section describes the architecture of functional-link fuzzy system. The used system

is a novel neural fuzzy network [53, 70, 79, 28]. This system realizes a nonlinear

combination of input variables in consequent part. Each fuzzy rule corresponds to an output

of functional-link neural network (FLNN). The functional-link fuzzy system realizes a fuzzy

IF-THEN rule in the following form:

1 1 2 2

0 1 1 2 2

 : IF is and is and ... is

 THEN ...

j j n nj

j j j j lj l

Rule j x A x A x A

y w w w w       (17)

where 1,..., nx x are input variables, jy is system output variable, 1 ,..., j njA A are the

linguistic term of the precondition part with Gaussian membership function, n is the number

of input variables, 0 ,...,j ljw w are the functional-link weights, 1,..., l  are the basis

45

trigonometric function of input variables, given by

 ) () () () (222111 xcosxsinxxcosxsinx  for two-dimensional input variables.; l is the

number of basis function, and Rulej is the jth fuzzy rule.

In order to present the characteristic of the FLFS, we consider an IF-THEN rule with one

input 1 x as follows:

1 1 0 1 1

0 1 1 2 1 3 1

 : IF is THEN

 sin() cos()

Rule x A y w w

w w x w x w x



 

 

    (18)

According to Eq. (18), the FLFS can be degenerated as a TSK-type fuzzy system and

Singleton-type fuzzy system when 2 3 0w w  and 1 2 3 0w w w   . Based on this idea, the

TSK-type fuzzy system and Singleton-type fuzzy system are special cases in the proposed

FLFS. Therefore, the FLFS presents a diverse combination of input variables to deal with

difficult problems more effectively.

The proposed functional-link fuzzy system is five-layered network architecture as shown

in Figure 4.1, which is comprised of the input layer, membership function layer, rule layer,

functional-link layer and output layer. The operation functions of the nodes in each layer of

the FLFS system are now described. In the following description,

()pO denotes the output of

a node in the thp layer.

Layer 1—Input layer: No computation is done in this layer. Each node in this layer, which

corresponds to one input variable, only transmits input values to the next layer directly. That

is

(1) =1,2,...,iO x i n (19)

where n are the input variables of the functional-link fuzzy system.

Layer 2—Membership function layer: Each node in this layer is a membership function

that corresponds one linguistic label of one of the input variables in Layer 1. In other words,

the membership value which specifies the degree to which an input value belongs to a fuzzy

46

set is calculated in Layer 2

2
(2)

2

()
exp

ij

i ij
ij

x m
O 



  
   

  . (20)

Where 1,2...,j M , M is number of rules in the functional-link fuzzy system,

 and ijijm  are the center and the width of the Gaussian membership function of input

variable, respectively.

Layer 3—Rule layer: This layer receives 1-D membership degrees of the associated rule

from the nodes of a set in layer 2. Here, the product operator described before is adopted to

perform the precondition part of the fuzzy rules. As a result, the output function of each

inference node is

(3)

1

n

j ij

i

O R 


 
. (21)

The output of a layer 3 node represents the firing strength of the corresponding fuzzy rule.

Layer 4—Functional-link layer: The input to a node in layer 4 is the output from layer 3,

and the other inputs are calculated from a functional-link neural network that has not used

the function  tanh . For such a node,

(4)

0

1

()
l

j j kj k

k

O R w w 


  , (22)

where w0j and wkj are the corresponding link weight of functional-link neural network and

k is the functional expansion of input variables. The functional expansion uses a

trigonometric polynomial basis function, given by

 ) () () () (222111 xcosxsinxxcosxsinx  for two-dimensional input variables.

Therefore, l is the number of basis functions, 3 1l n   , where n is the number of input

variables. Moreover, the output nodes of functional-link neural network depend on the

number of fuzzy rules of the FLFS.

47

Layer 5—Output layer: Each node in this layer corresponds to one output variable. The

node integrates all of the actions recommended by layer 3 and layer 4, which acts as a

defuzzifier with

0

1 1(5)

1

()
M l

j j kj k

j k

M

j

j

R w w

O y

R


 





 

 


, (23)

where M is the number of fuzzy rules, and y is the output of the FLFS.

x1 x2

Functional Expansion

x1 x2

y

w11 w21

wl1

. . .

.

. . .

. . .

Layer 1

1ŷ 2ŷ 3ŷ

1 2 l

 

  



Layer 2

Layer 3

Layer 4

Layer 5

Figure 4.1: The architecture of the functional-link fuzzy system.

48

4.3 Learning process of Functional-Link Fuzzy Systems

This section describes a learning process based GDE optimization for the

functional-link fuzzy system design. Initially, an agglomerative clustering algorithm is to

automatically construct a preliminary functional-link fuzzy system and determine optimal

number of fuzzy rules. Subsequently, the learning process randomly generates a set of

individuals (functional-link fuzzy systems) for the evolution process. All individuals are

learned by GDE algorithm for searching an optimal functional-link fuzzy system. The

overall learning process is shown in Figure 4.2.

Initiation

Agglomerative

Clustering

Algorithm

Increasing λ

The No. of

Clusters is

Optimal ?

Output the No.

of Clusters

NO

YES

Coding

Population

Evaluation

Sorting

Subpopulation

Mutation

Crossover

Selection

Termination

 ?

Gen=Gen+1

Output the result

NO

YES

Optimization

For The No. Of

Fuzzy Rules

Optimization For

All Free

Parameters

Figure 4.2: The Overall learning process.

49

4.3.1 An Agglomerative Clustering Algorithm

The first step is to determine whether a new rule should be extracted the training pattern

and decide the number of fuzzy sets in the universal of discourse of each input variable,

since one cluster in the input space corresponds to one potential fuzzy logic rule, in which

ijm and ij represent the mean and width of that cluster, respectively. Many studies have

employed clustering technique for rule generation, such as fuzzy C-means, possibilistic

C-means, and on-line clustering methods [28, 53, 68, 73]. However, such clustering

techniques require prior knowledge such as the number of clusters present in a pattern set. To

solve this problem, an agglomerative clustering algorithm is proposed for rule generation.

The proposed agglomerative clustering algorithm (ACA) [82-83] is an extension to the

standard fuzzy C-Means algorithm by a penalty term to the objective function. This

algorithm can find the best number of clusters for various problems. Now, we consider a set

of samples  1 2, ,..., , 1,2,...,i nX x x x i N  . To cluster X into M clusters by minimizing

the following objective function:

2

1 1 1 1

(U,C) C X log
M N M N

ij j i ij ij

j i j i

Obj u u u
   

    (24)

subject to

1

1, 1,2,...,
M

ij

j

u i N


  , (25)

where [0,1]iju  is the membership degree of Xi in the jth cluster
1 2C (c ,c ,...,c)j j j jn ,

U is the matrix of
iju ,  is a penalty parameter and  is the Euclidean norm as the

dissimilarity measure. λ

Equation (24) and (25) present a class of constrained nonlinear optimization problems.

For solving optimization problem, we use Lagrangian multiplier technique and gradient

50

method to obtain update law

1

1

, 1, 2,..., and 1,2,...,

N

ij il

i
jl N

ij

i

u x

c j M l n

u





  



 (26)

2

2

1

C X
exp

, 1,2,..., and 1,2,...,
C X

exp

j i

ij
M

l i

l

u j M i N





  
 
 
   
  
 
 
 



 (27)

To obtain the optimal centers, the
iju and

ijc are continuously updated by equation (26)

and (27). Until the objective function is unchanged, the process of agglomerative clustering

algorithm is terminated. The completed flow chart is shown in Figure 4.3.

In the agglomerative clustering algorithm,  is an important parameter for the

minimization process. When  is large, the minimization process tries to assign each

object to more clusters to make the second term more negative. In order to achieve the

largest object entropy, the cluster centers move to the same location. On the contrary,

agglomerative clustering algorithm is degenerated as standard fuzzy C-Means algorithm

when  is small.

We design an automatic process to discover the best number of clusters. The overall

process is shown in Figure 4.3. In the automatic process, there is two input parameters, the

number of initial cluster centers initailM and the penalty value initail . In general, the initailM

should be larger than the possible number of clusters in the given data set, the initail should be

set a small value. Initially, the agglomerative clustering algorithm with initailM and initail is

performed for our problems. An exactly clustering result ()M t is obtained in the output.

We consider that the values ()t of increase from () (1) initialt t     and perform

agglomerative clustering algorithm for every t. The whole procedure is stopped when ()M t

is equal to 1.

51

t = 1

Perform ACA based on M(t-1)

clusters and penalty factor λ(t-1)

M(t) = 1 ?

Obtain number of clusters M(t)

Output the suitable

clustering result

t = t + 1

() (1) initialt t    

Initiation:

 Set
(0) initial 

(0) initialM M

YES

NO

Update C(k) by using Eq. (26)

and U(k) by using Eq. (27)

Randomly select initial clusters

And calculate U(0) by using

Eq. (27)

 1 2 (1)(0) , ,..., M tC c c c 

k = 1

J(C(k-1),U(k-1))

=

J(C(k),U(k))

?

Output the

result of the

ACA

compute a cost value

J(C(0),U(0))

compute a cost value

J(C(k),U(k))

NO

YES

k=k+1

Figure 4.3: A flow chart of the proposed agglomerative clustering algorithm for discovering

the optimal number of clusters.

52

In order to demonstrate the proposed method, we consider a data set of 1,000 points in a

two-dimensional (2D) space as shown in Figure 4.5(a). We perform the automatic process to

cluster this data set and discover the optimal number of clusters. Initially,  is a small

value, we can see that the number of clusters generated by the algorithm was equal to the

number of initial cluster centers. As increased, the number of generated clusters reduced

because some initial cluster centers moved to the same locations. In Figure 4.4, the result of

clusters = 3 is usually found for this problem. This indicates that the  setting is right in

finding the true clusters by the algorithm. Finally, when  increased to a certain value, the

number of generated clusters became one. Figures 4.5(a)-(d) show the movements of the

cluster centers in the iterations k=1, 5, 10 and 21 when =1. We can see that the initial

cluster centers moved to three locations (1,1), (1,5) and (5,5).

Figure 4.4: The result of proposed agglomerative clustering algorithm with respect to

different .

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

λ

n
u

m
b

e
r

o
f
c
lu

s
te

rs

53

(a)

(b)

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

54

(c)

(d)

Figure 4.5: The clustering results by the proposed algorithm with 4  (a) the result of k

=1, (b) the result of k =5, (c) the result of k =10, and (d) the result of k =21.

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7

55

4.3.2 Evolution Learning Processes

For the effective parameter learning, evolutionary algorithm is usually used. In this paper,

we propose the GDE algorithm to tune all free parameters. The proposed GDE algorithm

consists of eight major steps：the coding step, population step, evaluation step, sorting step,

subpopulation step, mutation step, crossover step, and selection step. The whole learning

process is described as follows：

(1) Coding step：The foremost step in the GDE algorithm is the coding of the FLFS

system into an individual. Figure 4.6 shows an example of the coding of parameters of the

FLFS system into an individual, where NP is population size, M is number of rules, and n is

total of input variable. In this study, an individual consists of the mean ijm and width ij of

a Gaussian membership function, and kjw weight of the consequent part, where i and j

represent the ith input variable and the jth rule, respectively.

(2) Population Step：Before the proposed GDE algorithm is performed, the individuals

that will constitute an initial population must be created. A niching operation [57, 68] is to

create good initial population in the input space. The initial population is created according

to the range of the mean and variance of the membership function, which were computed by

the agglomerative clustering algorithm in section 4.3.1. The following formulations show the

generation of the initial population.

1 2

* *

1 1 1 1 1

* *

* *

 [| | ... |]

 [, , | ...

 | , , | ...

 | , ,]

q q q

q M

q q q

i i i i k

q q q

ij ij ij ij kj

q q q

iM iM iM iM kM

FLFS rule rule rule

m m w

m m w

m m w

 

 

 



    

   

   

 (28)

where
*

ijm and
*

ij are results of structure learning for the mean and width of the Gaussian

membership function of the jth rule of the ith input variable,
q

ijm and
q

ij are small

56

random deviations that are uniformly generated from the interval [−0.1, 0.1],
 kjw are

randomly and uniformly generated from an interval whose range is identical to the FLFS

system output y range.

(3) Evaluation Step：In this study, we adopt a fitness function to evaluate the

performance of each individual. The fitness function used in this paper is the root

mean-squared error (RMSE) between the desired and actual outputs. The fitness function is

defined as follows:

 
2

1

n

k k

k

y y

fitness
n








 (29)

where ky represents the model output of the kth pattern, ky represents the desired output

of the kth pattern, and n the number of the training pattern.

Population

... ...

...1

1Rule 1

2Rule ...1Rule j

...2

1Rule 2

2Rule ...2Rule j

.

.

.

... ...

1mNP

j 1

NP

j mNP

nj

NP

nj
1

NP

jW 2

NP

jW NP

ljW

1RuleNP
RuleNP

j RuleNP

M

 FLFS 1

 FLFS 2

.

.

.

 FLFS NP

2RuleM

1RuleM

Figure 4.6: Coding FLFSs into individuals.

57

(4) Sorting Step: A sorting process arranges all FLFSs based on their fitness value as

1 2 3 NP-1 NP(FLFS) (FLFS) (FLFS) ... (FLFS) (FLFS)fitness fitness fitness fitness fitness    

 for minimum objective problems. After sorting process, the 1FLFS is the best system in

population for current generation. According to fitness values, all FLFSs are partitioned into

an inferior group and a superior group. The two groups perform different evolution

strategies.

(5) Subpopulation Step: To enhance performance, we used symbiotic learning method

in the proposed algorithm. The basic idea of symbiotic learning method is that an FLFS is

combined by fuzzy rules, which are randomly selected from a subpopulation. Every

subpopulation is composed of related fuzzy rules, called subindividuals. Every

subpopulation performed evolution process to product new subindividuals. This method can

increase more possibility to search potential solutions. A completed process of the

subpopulation step is shown in Figure 4.7.

Figure 4.7: A completed process of the subpopulation step.

58

(6) Mutation Step：Each Sub-individual in the current generation is allowed to breed

through mating with other randomly selected sub-individuals from the subpopulation.

Specifically, for each subindividual , , 1,2,...,i gen i NPZ , where g denotes the current

generation, NP is subpopulation size, Four other random subindividuals, 1,r genZ , 2,r genZ ,

3,r genZ ,

and 4,r genZ are selected from the subpopulation such that r1, r2, r3,and r4 ∈ { 1,

2, . . . , NP }and 1 2 3 4i r r r r    . This way, a parent pool of four subindividuals is

formed to produce an offspring. Two mutation operations are applied to generate a mutated

subindividual ,i gv according to the following equation:

, , 1 , 2 ,G r o u p A : ()i g e n i g e n a r g e n r g e nF  V Z Z Z

(30)

, , 3 , 4 ,G r o u p B : ()i g e n g b e s t g e n b r g e n r g e nF  V Z Z Z

(31)

where and a bF F are scaling factors [0,1] , ,gbest genZ is the best-so-far sub-individual (i.e.,

,gbest genZ keeps best fitness value up to now in the subpopulation). Figure 4.8 presents the

mutation process of the proposed GDE algorithm.

59

FLFS1

FLFS2

.

.

.

FLFSNP

Population

.

.

.
.
.
.

.

.

. ...

...

...

...

1,1Rule
2,1Rule ,1RuleM

1,2Rule

1, /2Rule NP

1,2Rule ,2RuleM

2, /2Rule NP , /2RuleM NP

.

.

.
.
.
.

.

.

. ...

...

...

...

1,(/2) 1Rule NP  2,(/2) 1Rule NP  ,(/2) 1RuleM NP 

1,(/2) 2Rule NP 

1,Rule NP

1,(/2) 2Rule NP  ,(/2) 2RuleM NP 

2,Rule NP ,RuleM NP

......

FLFS1

FLFS2

.

.

.

FLFSNP

New population

DE/best DE/best DE/best DE/rand DE/rand DE/rand

Crossover Crossover Crossover Crossover Crossover Crossover

Selection Selection Selection Selection Selection Selection

Combination of FLFS Combination of FLFS

...

...

...

...

...

...

Mutation Mutation

Elite Group

Inferior Group

Figure 4.8: A flow chart of the proposed GDE algorithm for FLFSs optimization.

60

(7) Crossover Step：After mutation operation, the proposed GDE algorithm uses a

crossover operation, often referred to as discrete recombination, in which the mutated

subindividual ,i genV is mated with ,i genZ and generates the offspring ,i genU . The elements of

an subindividual ,i genU are inherited from ,i genZ and ,i genV , which are determined by a

parameter called crossover probability (CR ∈ [0, 1]), as follows:

, ,

, ,

, ,

, if rand() CR

, if rand() > CR

d i gen

d i gen

d i gen

d

d


 


V
U

Z
 (32)

where d = 1, 2, . . . , D denotes the dth element of individual vectors, D is total element of

subindividual vector, rand(d) ∈ [0, 1] is the dth evaluation of a random number generator.

(8) Selection Step：The GDE algorithm applies selection operation to determine

whether the subindividual survives to the next generation. First, the current composed

FLFSq,gen embeds the current subindividual giZ , into the FLFSq,gen-1 and the trial composed

FLFSq,gen embeds the trial subindividual 1, geniU into the FLFS q,gen-1. Second, a knockout

competition is played between the current composed FLFSq,gen and the trial composed

FLFSq,gen. Then, the corresponding subindividual of the winner is selected deterministically

based on objective function values.

61

4.4 Simulation

This section discusses five simulations that are considered to evaluate the FLFS model

with the GDE algorithm. The five simulations include chaotic time series prediction, Mackey

Glass time series prediction, oil price time series prediction, star brightness time series

prediction and auto-MPG6 data prediction. Table 4.1 presents the initial parameters prior to

training used in each of the five simulations.

For comparison, the evolutionary algorithms, such as DE, jDE and MODE are applied to

the same problems for the FLFS optimisation. We used the same population size and number

of generations in each of these evolutionary algorithms. The agglomerative clustering

algorithm is also used for rule generation.

In the following simulations, the major computation time is evaluating the performance of

the FLFS. All evolutionary algorithms are compared using the same population size and

number of generations in a single run. Thus, the overall computation time is almost the same

for different evolutionary algorithms.

Table 4.1: Initial parameters before training.

Parameter Value

Population Size 50

CRa 0.9

CRb 0.9

Fa 0.5

Fb 0.8

initailM 15

initail 0.01

Generation 1000

Coding Type Real Number

62

Example 1: Prediction of chaotic time series

In this example, an FLFS model with a GDE learning method (FLFS-GDE) is used to

predict a chaotic signal. The classical time series prediction problem is a one-step-ahead

prediction, which has been described in [48]. The following equation describes the logistic

function.

))(1)(()1(kxkaxkx  . (33)

The behavior of the time series generated by this equation depends critically on

parameter a . If a <1, then the system has a single fixed point at the origin, and from a

random initial value between [0, 1] the time series collapses to a constant value. For a >3,

the system generates a periodic attractor. At 6.3a , the system becomes chaotic. In this

example, a is set to 3.8. The first 60 pairs (from x(1) to x(60)), with initial value

001.0)1(x , are the training data set, while the remaining 100 pairs (from x(1) to x(100)),

with initial value 9.0)1(x , are the testing data set used to validate the proposed method.

In this example, DE, jDE and MODE are applied to the same problem to show the

effectiveness and efficiency of the FLFS model with the GDE learning method. In the DE

and jDE, the scale factor F = 0.5, the crossover rate CR=0.9 and the mutation strategy=

DE/rand/bin. In the MODE, the scale factor is linearly increased from 0 to 1, the crossover

rate CR=0.9 and the mutation strategy= DE/target-to-best/bin. A total of 50 runs are

performed for statistical analysis.

After rule generation, the agglomerative clustering algorithm find the optimal number

of fuzzy rules = 2 for example 1, as shown in Figure 4.9. The FLFS is learned by DE, jDE,

MODE and GDE algorithms. The performance of the FLFS model with DE, jDE, MODE

and GDE is shown in Table 4.2, including average and standard deviation (STD) over 50

runs. Figure 4.10 shows the learning curves of the DE, jDE, MODE and GDE algorithms for

63

example 1. The learning curves of the DE and jDE algorithms present stagnation situations

during evolution process. The MODE and GDE algorithms continually keep convergence

results. It is clear from these data that the proposed GDE algorithm shows better learning

curves than the other methods. The proposed GDE obtains the best performance RMSE=

0.00025. Figure 4.11 plots the results predicted using the proposed GDE algorithm. Figure

4.12 presents the prediction errors of the proposed GDE algorithm.

In addition, we also compare with the performance of the FLFS-GDE model and other

papers. Table 4.3 shows that the testing RMSE of FLNFN-PSO [13, 76], FLNFN-CPSO [84,

76] and FLNFN-CCPSO [76] models from other journal papers. These comparative papers

use three fuzzy rules for their system. In Table 4.3, our method FLFS-GDE model achieves a

better performance than FLNFN-PSO [13, 76], FLNFN-CPSO [84, 76] and FLNFN-CCPSO

[76] models.

Figure 4.9: The result of the agglomerative clustering algorithm for example 1.

64

Figure 4.10: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 1.

Figure 4.11: Prediction results of the FLFS-GDE model for example 1. Symbol "+"

represents the desired results and "O" represents the actual results.

0 100 200 300 400 500 600 700 800 900 1000

10
-3

10
-2

Generation

L
o

g
 (

 R
M

S
E

)

DE

jDE

MODE

GDE

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Actual Output

Desired Output

65

Figure 4.12: Prediction errors of the FLFS-GDE model for example 1.

Table 4.2. Performance of the GDE algorithm and the other algorithms for example 1.

 DE jDE MODE GDE

No. of Rules

(Parameters)

2

(12)

Training

RMSE

(Mean ± STD)

0.0071

±0.0018

0.0041

±0.002

0.0028

±0.005

0.0012

±0.001

Testing RMSE

(Mean ± STD)

0.0074

±0.002

0.0044

±0.002

0.0023

±0.006

0.0015

±0.002

0 10 20 30 40 50 60 70 80 90 100
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Samples

E
rr

o
r

66

Table 4.3. The best performance of the FLFS-GDE model and other papers for example 1.

Method Rules(Parameters) Testing RMSE

FLNFN-PSO[13,76] 3(18) 0.0055

FLNFN-CPSO[84,76] 3(18) 0.0039

FLNFN-CCPSO[76] 3(18) 0.0027

FLFS-GDE 2(12) 0.00025

Example 2: Prediction of Mackey–Glass time series

The time-series prediction problem used in this example is the chaotic Mackey–Glass time

series, which is generated from the following differential equation:

10

() 0.2 ()
0.1 ()

1 ()

dx t x t
x t

dt x t






 

  (34)

where τ > 17. As in previous studies [76], the parameter τ = 30, and x(0) = 1.2 in this

simulation. Four past values are used to predict x(t), and the input–output pattern format is

given by [(24), (18), (12), (6) | ()]x t x t x t x t x t    .

A total of 1000 patterns are generated from t = 124 to 1123, where the first 500 patterns

[form (1)x to (500)x] are used to train, and the last 500 patterns [form (501)x to (1000)x]

are used to test. A total of 50 runs are performed for statistical analysis. The agglomerative

clustering algorithm find the optimal number of fuzzy rules = 3 for Mackey–Glass time

series data. The result of agglomerative clustering algorithm is shown in Figure 4.13. Figure

4.14 shows the learning curves of the DE, jDE, MODE and GDE algorithms for example 2.

The learning curve of the PSO and DE algorithms present a rapid convergence result over

the first 150 generations that became trapped at local minimum solutions at training average

67

RMSE = 0.066 and 0.069, respectively. The result of the MODE algorithm keep

convergence after 500 generations, and this result is better than those of the DE and jDE

algorithms. The performance of the GDE algorithm obtained a training average

RMSE=0.019, which is better than the other algorithms for example 2. Table 4.4 shows that

the average performance of the GDE algorithm compared with those of DE, jDE and MODE

over 50 runs. The results show that the GDE algorithm for FLFS optimisation offers a

smaller testing RMSE than the other methods. Table 4.5 shows that the best testing RMSE of

FLFS-GDE, FLNFN-CCPSO[76], RBF-AFS[86], HyFIS[87], NEFPROX[88], D-FNN[89],

GA-FLC [65], SEFC [85], Back-propagation NN, Six-order polynomial,

Cascaded-correlation, Auto regressive model and Linear predictive from other journal papers.

The proposed FLFS-GDE model achieves a better performance than other evolutionary

algorithms. Figure 4.15 shows the prediction results of the FLFS-GDE model for the desired

output and the actual output.

68

Figure 4.13:The result of the agglomerative clustering algorithm for example 2.

Figure 4.14: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 2.

 0.02 0.06 0.10 0.14 0.18 0.20

2

4

6

8

10

12

14

λ

N
u

m
b

e
r

o
f
R

u
le

s

0 100 200 300 400 500 600 700 800 900 1000

10
-2

10
-1

Generation

L
o

g
 (

 R
M

S
E

)

GDE

MODE

DE

jDE

69

Figure 4.15: Symbol "+" represents the desired results and "O" represents the prediction

results of the FLFS-GDE model for example 2.

Table 4.4. Performance of the GDE algorithm and the other algorithms for example 2.

 DE jDE MODE GDE

No. of Rules

(Parameters)

3

(63)

Training

RMSE

(Mean ± STD)

0.066

±0.018

0.069

±0.021

0.048

±0.015

0.019

±0.008

Testing RMSE

(Mean ± STD)

0.075

±0.022

0.072

±0.020

0.050

±0.022

0.023

±0.014

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.6

0.8

1

1.2

1.4

Time Step

x
(

t
)

70

Table 4.5. The best performance of the FLFS-GDE model and other papers for example 2.

Method
Rules

(Parameters)
Testing RMSE

FLFS-GDE 3 (63) 0.0075

FLNFN-CCPSO[76] 3(63) 0.0082

RBF-AFS[86] 13(130) 0.0131

HyFIS[87] 16(104) 0.0101

NEFPROX[88] -(105) 0.053

D-FNN[89] 5(100) 0.008

GA-FLC [65] - 0.26

SEFC [85] - 0.032

Back-propagation NN - 0.02

Six-order polynomial - 0.04

Cascaded-correlation - 0.06

Auto regressive

model

-
0.19

Linear predictive - 0.55

71

Example 3: Prediction of Auto-MPG6 data

This is a real-world problem that concerns the prediction of automobile city-cycle fuel

consumption, in miles per gallon (MPG). There are five inputs and one output in the

prediction model. The real dataset contains 398 examples and can be downloaded from

KEEL(http://www.keel.es/)[90]. Evaluation of this model used the five-fold cross-validation

datasets in KEEL. The inputs are scaled to the range [0, 1]. For each cross-validation dataset,

a learning algorithm is repeated for ten runs. For rule generation, we obtain the best number

of fuzzy rules = 4.2 by the agglomerative clustering algorithm. The result of agglomerative

clustering algorithm is shown in Figure 4.16. Figure 4.17 shows the learning curves of the

DE, jDE, MODE and GDE algorithms for example 3. Table 4.6 shows the performances of

the DE, jDE, MODE and GDE algorithms using the same number of rules for the FLFS

optimisation. In this table, the result of the GDE algorithm is better than that of the DE, jDE

and MODE algorithms for example 1, 2 and 3. We also compare the performance of our

method with other papers, and the comparison results are tabulated in Table 4.7. According

to these results, the proposed FLFS-GDE model outperforms FS-HGAPSO [77],

MOGUL-TSK[92], FS-CPSO[84] and FS-HPSO-TVAC[91]. Figure 4.18 shows the training

output of the FLFS-GDE model for the desired output (blue line) and the actual output (red

line). Figure 4.19 shows the testing result of the FLFS-GDE model.

72

Figure 4.16: The result of the agglomerative clustering algorithm for example 3.

Figure 4.17: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 3.

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

λ

N
u

m
b

e
r

o
f
R

u
le

s

0 100 200 300 400 500 600 700 800 900 1000

10
0.4

10
0.5

10
0.6

Generation

L
o

g
 (

R
M

S
E

)

DE

jDE

MODE

GDE

73

Figure 4.18: The training output of the FLFS-GDE model for example 3.

Figure 4.19: The testing output of the FLFS-GDE model for example 3.

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

50

55

Samples

O
u

tp
u

t

Actual Training Y

Desired Training Y

10 20 30 40 50 60 70
10

15

20

25

30

35

40

45

Samples

O
u

tp
u

t

Desired Testing Y

Actual Testing Y

74

Table 4.6: The performance of the GDE algorithm and other algorithms for example 3.

 DE jDE MODE GDE

No. of Rules

(Parameters)

4

(104)

Training

RMSE

(Mean ± STD)

3.35

±0.56

3.27

±0.56

2.51

±0.22

2.36

±0.15

Testing RMSE

(Mean ± STD)

3.66

±0.68

3.61

±0.72

2.89

±0.34

2.58

±0.21

Table 4.7: Comparison of the FLFS-GDE model and other papers for example 3.

Method Testing RMSE

FLFS-GDE 2.58

FS-HGAPSO [77] 2.97

MOGUL-TSK[92] 5.16

FS-CPSO[84] 2.66

FS-HPSO-TVAC[91] 2.72

75

Example 4: Prediction of oil price time series

A practical prediction problem of oil price time series is considered in this paper. This

dataset recorded the average annual price of oil time series from 1870 to 1997. The oil price

time series dataset can be downloaded from http://www-personal.buse

-co.monash.edu.au/~hyndman/TSDL/. 128 samples are used, each with two inputs and one

output, i.e. 1 2(,)t t ty f y y  . The first 64 samples are used for training and the last 64

samples are used for testing. For fair comparison, we perform the same normalized process

[5] to scale all samples within the range [-1, 1]. In this simulation, the FLFS-GDE model is

repeated for 50 runs and we obtain two fuzzy rules after rule generation. The result of

agglomerative clustering algorithm is shown in Figure 4.20. The best prediction performance

of FLFS-GDE model is about MSE=0.0132. Figure 4.21 shows the prediction result of

FLFS-GDE model for desired output (blue line) and actual output (red line) for example 4.

Tables 4.8 shows the performances of TSK-NFIS[93], Autoregressive model[93], Nonlinear

autoregressive model[93], Neural network[93], NFS-PSO-RLSE[94], CNFS-PSO-RLSE[95],

CNFS-HMSPSO-RLSE[96], FLFS-DE and FLFS-GDE for prediction problems. The

proposed FLFS-GDE model which achieves a significant performance is superior to other

algorithm for example 4.

76

Figure 4.20: The result of the agglomerative clustering algorithm for example 4.

Figure 4.21: Prediction output of FLFS-GDE model for example 4.

0.01 0.03 0.05 0.07 0.09 0.11
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

λ

N
u

m
b

e
r

o
f
R

u
le

s

0 10 20 30 40 50 60 70
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Testing Samples (Time Series)

Actual Output

Desired Output

77

Table 4.8: Performance of the FLFS-GDE model and other algorithms for example 4.

Method
Rules

(Parameters)

Training

MSE

Testing

MSE

TSK-NFIS[93] - 0.00431 0.0237

Autoregressive

model[93]

-
0.00545 0.0244

Nonlinear

Autoregressive

model[93]

-

0.00499 0.0327

Neural

network[93]

-
0.00469 0.0254

NFS-PSO-RL

SE[94]

4(28)
0.00198 0.0259

CNFS-PSO-R

LSE[95]

4(36)
0.00203 0.0163

CNFS-HMSP

SO-RLSE[96]

4(36)
0.00221 0.0134

FLFS-DE 2(22) 0.00215 0.0244

FLFS-GDE 2(22) 0.00258 0.0132

Example 5 : Prediction of star brightness time series

In this example, an FLFS-GDE model is used to predict the star brightness time series.

This real data measures the brightness of a star in 600 successive midnights. The dataset is

obtained from http://www-personal.buseco.monash.edu.au/~hyndman/

TSDL/. 600 samples are used, each with three inputs and one output, i.e.

1 2 3(, ,)t t t ty f y y y   . The first 300 samples are used for training the FLFS-GDE model and

the remaining 300 samples are used for testing phase.

In this simulation, we perform the same normalized process [5] to scale all samples within

the range [-1, 1]. The FLFS-GDE model and the FLFS-DE model are repeated for 50 runs

and the standard deviation of performance error is a small value. After agglomerative

clustering algorithm, three fuzzy rules are generated for predicting star brightness time series.

78

The result of agglomerative clustering algorithm is shown in Figure 4.22. Figure 4.23 plots

the prediction outputs of FLFS-GDE model for predicting star brightness time series. Table

4.9 shows the performances of the proposed FLFS-GDE model and other journal papers. The

proposed FLFS-GDE model obtains the best performance MSE=0.000249 which is better

than TSK-NFIS[93], Autoregressive model[93], Nonlinear autoregressive model[93], Neural

network[93], NFS-PSO-RLSE[94], NFS-ARIMA[97], CNFS-PSO-RLSE[95] and

CNFS-HMSPSO-RLSE[96].

Figure 4.22: The result of the agglomerative clustering algorithm for example 5.

0 2 4 6 8 10 12 14 16 18
1

2

3

4

5

6

7

8

9

λ

N
u

m
b

e
r

o
f
R

u
le

s

79

Figure 4.23: Symbol "+" represents desired and "O" represents prediction results of the

FLFS-GDE model for example 5.

Table 4.9: Performance of the FLFS-GDE model and other algorithms for example 5.

Method
Rules

(Parameters)

Training

MSE

Testing

MSE

TSK-NFIS[93] - 0.000313 0.000331

Autoregressive

model[93]

-
0.000304 0.000322

Nonlinear

Autoregressive

model[93]

-

0.000320 0.000312

Neural

network[93]

-
0.000301 0.000311

NFS-PSO-RLSE[9

4]

8(84)
0.000199 0.000324

CNFS-PSO-RLSE

[95]

8(108)
0.000198 0.000280

CNFS-HMSPSO-

RLSE[96]

8(108)
0.000198 0.000272

NFS-ARIMA[97] 8(84) 0.000209 0.000264

FLFS-DE 3(48) 0.000255 0.000282

FLFS-GDE 3(48) 0.000246 0.000249

0 50 100 150 200 250 300
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Testing Samples (Time Series)

80

Chapter 5

Conclusions

This dissertation proposes a group-based differential evolution algorithm (GDE) for

global optimization problems. The GDE algorithm combines two classical mutation

strategies instead of a single mutation model for solving the stagnation problem. An adaptive

strategy is also proposed in this dissertation. This strategy uses successful information to

automatically tune factor F and crossover rate CR. The advantages of the proposed GDE

algorithm are summarized below.

(1) The proposed GDE algorithm employs the inherent properties of the DE algorithm

to solve the stagnation problem. The GDE algorithm combines the two mutation

operations to tradeoff between the exploration ability and the exploitation ability.

(2) An adaptive strategy automatically tunes parameters without the user’s prior

knowledge. This strategy collects successful factor F and crossover rate CR to

generate potential parameters for the next generation.

(3) Thirteen well-known numerical benchmark functions are tested to validate the

performance of the proposed GDE algorithm. The GDE algorithm shows

significantly better performance than other EAs in statistical tests.

Furthermore, we also propose a learning algorithm for function-link fuzzy system

(FLFS) optimization. The proposed learning algorithm includes agglomerative clustering

81

algorithm and evolution process. The agglomerative clustering algorithm constructs the

optimal structure. The evolution process comprises multi-subpopulation that uses each

individual represents a single fuzzy rule and each individual in each subpopulation evolves

separately using a GDE algorithm. The advantages of the FLFS model with GDE algorithm

(FLFS-GDE) are summarized as follows:

(1) The consequent of the FLFS model is a nonlinear combination of input variables.

This study uses the functional-link neural network to the consequent part of the

fuzzy rules. The local properties of the consequent part in the FLNFN model

enable a nonlinear combination of input variables to be approximated more

effectively.

(2) An automatic process based on agglomerative clustering algorithm can construct

the optimal number of fuzzy rules for the structure of the FLFS model. In this

algorithm, we just easily assign two parameter values instead of the trial and error

process.

(3) The evolution process adopts a subpopulation symbiotic method which uses the

rule-based subpopulation to evolve separately.

(4) The evolution process adopts a GDE algorithm to effectively search potential

individuals.

(5) As demonstrated in section 4.4, the proposed FLFS-GDE model is a more adaptive

and effective predictor than the other models.

Two advanced topics on the proposed model should be addressed in future research.

First, the proposed GDE algorithm will tend to apply large-scale problems or overly complex

problems. In this dissertation, the proposed GDE algorithm is limited to some small-scale

problems (less than 100 dimensions). The scalability performance of the GDE algorithm is

unclear. Second, the crossover operation in the GDE algorithm is also an important evolution

operation which influences the performance of the proposed algorithm. We may modify the

82

crossover operation to improve the performance. For example, Islam et al. [46] presented a

novel crossover operation for the DE algorithm. The novel crossover operation incorporates

a greedy parent selection strategy with the conventional binomial crossover scheme of the

DE algorithm. In the crossover operation, a binomial crossover is performed between the

current donor vector and any other individual from p top-ranked individuals for the new

offspring. The crossover operation is exploitative in nature and promotes the inclusion of

genetic information from the elite class of individuals of current generation into the

offspring.

83

References

[1] C. C. Carlos A, "Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: a survey of the state of the art," Computer Methods in

Applied Mechanics and Engineering, vol. 191, pp. 1245-1287, 2002.

[2] P. Fei, T. Ke, C. Guoliang, and Y. Xin, "Population-based algorithm portfolios for

numerical optimization," IEEE Trans. Evolutionary Computation, vol. 14, pp.

782-800, 2010.

[3] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. New York: IEEE Press, 1995.

[4] M. J. Gacto, R. Alcalá and F. Herrera, "A multi-objective evolutionary algorithm for

an effective tuning of fuzzy logic controllers in heating, ventilating and air

conditioning systems," Applied Intelligence, vol. 36, No. 2, pp. 330-347, 2012.

[5] K. S. Shin, Y.-S. Jeong and M. K. Jeong, “A two-leveled

symbiotic evolutionary algorithm for clustering problems," Applied Intelligence, vol.

36, No. 4, pp. 788-799, 2012.

[6] D. Ayvaz, H. R. Topcuoglu and F. Gurgen," Performance evaluation

of evolutionary heuristics in dynamic environments," Applied Intelligence, vol. 37,

No. 1, pp. 130-144, 2012.

[7] E. E. Korkmaz, “Multi-objective Genetic Algorithms for grouping problems,"

Applied Intelligence, vol. 33, No. 2, pp. 179-192, 2010.

[8] M. Mitchell, An Introduction to Genetic Algorithms (Complex Adaptive Systems).

Cambridge, MA: MIT Press, 1998.

[9] L. J. Fogel, Intelligence Through Simulated Evolution: Forty Years of Evolutionary

Programming. New York: Wiley, 1999.

[10] X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Trans.

Evolutionary Computation, vol. 3, pp. 82 - 102, 1999.

[11] H. G. Beyer and H. P. Schwefel, “Evolution strategies: A comprehensive

introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[12] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco,CA:

Morgan Kaufmann Publishers, 2001.

[13] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. IEEE Int. Neural

Netw, 1995.

[14] K. Price, R. Storn and J. Lampinen, DifferentialEvolution: A Practical Approach to

GlobalOptimization. Berlin: Springer-Verlag,2005.

[15] R. Storn and K. Price, "Differential evolution—A simple and efficient heuristic for

global optimization over continuous spaces," Journal of Global Optimization,, vol.

84

11, pp. 341-359, 1997.

[16] Z. Cai, W. Gong, C. X. Ling and H. Zhang, "A clustering-based differential evolution

for global optimization," Applied Soft Computing, vol. 11, pp. 1363-1379, 2011.

[17] C.-H. Chen, C.-J. Lin and C.-T. Lin, "Nonlinear system control using adaptive neural

fuzzy networks based on a modified differential evolution," IEEE Trans. Systems,

Man, and Cybernetics, Part C: Applications and Reviews, , vol. 39, pp. 459-473,

2009.

[18] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, "Differential evolution using a

neighborhood-based mutation operator," IEEE Trans. Evolutionary Computation, vol.

13, pp. 526-553, 2009.

[19] S. Das and P. N. Suganthan, "Differential evolution: a survey of the state-of-the-art,"

IEEE Trans. Evolutionary Computation, vol. 15, pp. 4-31, 2011.

[20] H. R. Cheshmehgaz, M. I. Desa and A. Wibowo, “Effective local evolutionary

searches distributed on an island model solving bi-objective optimization problems,"

Applied Intelligence, 2012. (In Press)

[21] R. Vafashoar, M. R. Meybodi and A. H. Momeni Azandaryani, "CLA-DE: a hybrid

model based on cellular learning automata for numerical optimization," Applied

Intelligence, vol. 36, No. 3. pp. 735-748, 2012.

[22] Z. Jingqiao and A. C. Sanderson, "JADE: adaptive differential evolution with

optional external archive," IEEE Trans. Evolutionary Computation, vol. 13, pp.

945-958, 2009.

[23] E. Mezura-Montes, M. E. Miranda-Varela and R. del Carmen Gmez-Ramn,

"Differential evolution in constrained numerical optimization: An empirical study,"

Information Sciences, vol. 180, pp. 4223-4262, 2010.

[24] N. Noman and H. Iba, "Accelerating differential evolution using an adaptive local

search," IEEE Trans. Evolutionary Computation, vol. 12, pp. 107-125, 2008.

[25] A. K. Qin, V. L. Huang and P. N. Suganthan, "Differential Evolution Algorithm With

Strategy Adaptation for Global Numerical Optimization," IEEE Trans.Evolutionary

Computation, , vol. 13, pp. 398-417, 2009.

[26] A. K. Qin and P. N. Suganthan, "Self-adaptive differential evolution algorithm for

numerical optimization," Congress on IEEE Evolutionary Computation, pp.

1785-1791 Vol. 2, 2005.

[27] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, "Opposition-based differential

evolution," IEEE Trans. Evolutionary Computation, vol. 12, pp. 64-79, 2008.

[28] M.-T. Su, C.-H. Chen, C.-J. Lin and C.-T. Lin, "A rule-based symbiotic modified

differential evolution for self-organizing neuro-fuzzy systems," Applied Soft

Computing, vol. 11, pp. 4847-4858, 2011.

[29] G. Wenyin, C. Zhihua, C. X. Ling and L. Hui, "Enhanced differential evolution with

85

adaptive strategies for numerical optimization," IEEE Trans. Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 41, pp. 397-413, 2011.

[30] J. Vesterstrom and R. Thomsen, "A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical benchmark

problems," Congress on Evolutionary Computation, 2004, pp. 1980-1987 Vol.2,

2004.

[31] C.-T. Lin, M.-F. Han, Y.-Y. Lin, J.-Y. Chang and L.-W. Ko, "Differential Evolution

based Optimization of Locally Recurrent Neuro-Fuzzy System for Dynamic System

Identification," presented at the The 17th National Conference on Fuzzy Theory and

its Applications, 2010.

[32] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, "Self-Adapting control

parameters in differential evolution: a comparative study on numerical benchmark

problems," IEEE Trans. Evolutionary Computation, vol. 10, pp. 646-657, 2006.

[33] C.-T. L., M.-F. H., Y.-Y. L., S.-H. L. and J.-Y. C., "Neuro-fuzzy system design using

differential evolution with local information," in Fuzzy Systems (FUZZ), 2011 IEEE

International Conference on, 2011, pp. 1003-1006.

[34] T. Josef, "Adaptation in differential evolution: A numerical comparison," Applied Soft

Computing, vol. 9, pp. 1149-1155, 2009.

[35] L. Junhong and L. Jouni, "A fuzzy adaptive differential evolution algorithm," in

TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers,

Communications, Control and Power Engineering, pp. 606-611 vol.1, 2002.

[36] M. Ali and M. Pant, "Improving the performance of differential evolution algorithm

using Cauchy mutation", Soft Computing, vol. 15, pp. 991-1007, 2011.

[37] T. Niknam, HD. Mojarrad, and M. Nayeripour, “A New Hybrid Fuzzy Adaptive

Particle Swarm Optimization for Non-Convex Economic Dispatch," International

Journal of Innovative Computing Information and Control, vol. 7, pp. 189-202, JAN.

2011.

[38] Y.-W. Shang and Y.-H. Qiu, "A note on the extended rosenbrock function,"

Evolutionary Computation, vol. 14, pp. 119–126, 2006.

[39] X. Yao, Y. Liu, K.-H. Liang and G. Lin, "Fast evolutionary algorithms," presented at

the Advances Evol. Computing: Theory Applicat., New York, 2003.

[40] Z. Yang, J. He and X. Yao, "Making a difference to differential evolution," in

Advances Metaheuristics Hard Optimization, pp. 397–414, 2007.

[41] J. Demˇsar, "Statistical comparisons of classifiers over multiple data sets," Journal of

Machine Learning Research, pp. 1-30, 2006.

[42] S. Garc´ıa and F. Herrera, "An extension on statistical comparisons of classifiers over

multiple data sets for all pairwise comparisons," Journal of Machine Learning

Research pp. 2677-2694, 2008.

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Z2hNKm6CD77e5bE8e7G&field=AU&value=Mojarrad,%20HD

86

[43] C. Lee and X. Yao, "Evolutionary programming using mutations based on the Lévy

probability distribution," IEEE Trans. Evolutionary Computation, vol. 8, pp. 1–13,

2004.

[44] M. S. Alam, M. M. Islam, F. Xin Yao and K. Murase, "Recurring two-stage

evolutionary programming: a novel approach for numeric optimization," IEEE

Trans.n Systems, Man, And Cybernetics,Part B: Cybernetics, vol. 41, pp. 1352-1365,

2011.

[45] M. M. Islam, M. S. Alam and K. Murase, “A new recurring multistage evolutionary

algorithm for solving problems efficiently,” Lecture Notes in Computer Science, vol.

4881, pp. 97–106, 2007.

[46] Sk. M. Islam, S. Das, S. Ghosh, S. Roy and P.N.Suganthan, " An adaptive differential

evolution algorithm with novel mutation and crossover strategies for global

numerical optimization," IEEE Trans. Systems, Man, and Cybernetics, Part B:

Cybernetics, , vol. 42, No. 2, pp. 482-500,2012.

[47] A. Ghosh, S. Das, A. Chowdhury and R. Giri, " An improved differential evolution

algorithm with fitness-based adaptation of the control parameters," Information

Sciences, vol. 181, No. 18, pp. 3749–3765, 2011.

[48] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent System. Englewood Cliffs, NJ: Prentice-Hall, 1996

[49] Y. H. Chien, W. Y. Wang, Y. G. Leu and T.T. Lee, “Robust adaptive controller design for

a class of uncertain nonlinear systems using online T–S fuzzy-neural modeling

approach,” IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics, vol. 41,

no. 2, pp. 542–552, Apr. 2011.

[50] R. Prakash and R. Anita, “Modeling and simulation of fuzzy logic controller-based

model reference adaptive controller”, International Journal of Innovative Computing

Information and Control, vol. 8, no.4, pp. 2533-2550, Apr. 2012.

[51] C.-J. Lin and C.-C. Peng,“ Self-Adaptive quantum radial basis function network for

classification applications ”, International Journal of Innovative Computing,

Information and Control, vol. 7, no. 8, Aug. 2011.

[52] T. Chen and Y.-C. Lin, “A collaborative fuzzy-neural approach for internal due date

assignment in a wafer fabrication plant,” International Journal of Innovative

Computing, Information and Control, vol. 7, no. 9, pp. 5193–5210, Sep. 2011.

[53] C.-H. Chen, C.-J. Lin and C.-T. Lin, “A functional-link-based neurofuzzy network for

nonlinear system control,” IEEE Trans. Fuzzy System, vol. 16, no. 5, pp. 1362–1378,

Oct. 2008.

[54] C. F. Juang, R. B. Huang and Y. Y. Lin, “A recurrent self-evolving interval type-2

fuzzy neural network for dynamic system processing,” IEEE Trans. Fuzzy System,

vol.17, no.5, pp.1092-1105, Oct. 2009.

87

[55] M.-F. Han, C.-T. Lin and J.-Y. Chang, “A compensatory neurofuzzy system with online

constructing and parameter learning,” Proc. of 2010 IEEE International Conference on

Systems, Man, and Cybernetics., pp. 552–556, Oct. 2010.

[56] C.-F. Juang and P.-H. Chang, “Designing fuzzy rule-based systems using continuous ant

colony optimization,” IEEE Trans. Fuzzy System, vol.18, no.1, pp.138-149, Feb. 2010.

[57] C.-F. Juang, “Combination of on-line clustering and Q-value based GA for

reinforcement fuzzy system design,” IEEE Trans. Fuzzy System, vol. 13, no. 3, pp.

289–302, Jun. 2005.

[58] F. Hoffmann, D. Schauten and S. Holemann, “Incremental evolutionary design of TSK

fuzzy controllers,” IEEE Trans. Fuzzy System, vol. 15, no. 4, pp. 563–577, Aug. 2007.

[59] E. Sanchez, T. Shibata and L. A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems:

Soft Computing Perspectives. Singapore: World Scientific, 1997.

[60] O. Cordoon, F. Herrera, F. Hoffmann and L. Magdalena, Genetic Fuzzy Systems:

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, Advances in Fuzzy

Systems—Applications and Theory., Singapore: World Scientific, 2001.

[61] M. Russo, “Genetic fuzzy learning,” IEEE Trans. Evolutionary Computation, vol. 4, no.

3, pp. 259–273, Sep. 2000.

[62] K. C. Ng and T. Li, “Design of sophisticated fuzzy logic controllers using genetic

algorithms,” in Proc. 3rd IEEE Int. Conf. Fuzzy Systems, pp. 1708-1711, 1994.

[63] T. L. Seng, M. B. Khalid and R. Yusof, “Tuning of a neuro-fuzzy controller by genetic

algorithm,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29,

pp. 226-236, Apr. 1999.

[64] C.-H. Chou, “Genetic algorithm-based optimal fuzzy controller design in the linguistic

space,” IEEE Trans. Fuzzy System, vol. 14, no. 3, pp. 372–385, Jun. 2006.

[65] C. Karr, “Design of an adaptive fuzzy logic controller using a genetic algorithm,”

Proceeding of 4th International Conference on Genetic Algorithms, pp. 450-457, 1991.

[66] C.-F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by

neural network and genetic algorithms,” IEEE Trans. Fuzzy System, vol. 10, no. 2, pp.

155–170, Apr. 2002.

[67] K. D. Sharma, A. Chatterjee and A. Rakshit, “A hybrid approach for design of stable

adaptive fuzzy controllers employing Lyapunov theory and particle swarm

optimization,” IEEE Trans. Fuzzy System, vol. 17, no. 2, pp. 329–342, Apr. 2009.

[68] C.-F. Juang, C. M. Hsiao and C. H. Hsu,”Hierarchical cluster-based multispecies

particle-swarm optimization for fuzzy-system optimization,” IEEE Trans. Fuzzy System,

vol. 18, no. 1, pp. 14–26, Feb. 2010.

[69] H. Lu, E. Pi, Q. Peng, L. Wang and C. Zhang, “A particle swarm optimization-aided

fuzzy cloud classifier applied for plant numerical taxonomy based on attribute

similarity,” Expert Systems with Applications, vol. 36, no. 5, pp. 9388–9397, Jul.

88

2009.

[70] C.-J. Lin, C. C. Weng, C. Y. Lee and C. L. Lee, 2009, “Using an efficient hybrid of

cooperative particle swarm optimization and cultural algorithm for neural fuzzy

network design,” 2009 International Conference on Machine Learning and Cybernetics,

pp. 3076-3082, July, 2009.

[71] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for

recurrent network design,” IEEE Trans. Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[72] K. D. Sharma, A. Chatterjee and A. Rakshit, “A hybrid approach for design of stable

adaptive fuzzy controllers employing Lyapunov theory and particle swarm

optimization,” IEEE Trans. Fuzzy System, vol. 17, no. 2, pp. 329–342, Apr. 2009.

[73] C.-J. Lin and C.-L. Lee ,” A self-organizing neural network using hierarchical particle

swarm optimization,” International Joint Conference on Neural Networks (IJCNN

2011), 2011.

[74] J.-Y. Chang, M.-F. Han and C.-T. Lin, “Optimization of Fuzzy Systems Using

Group-Based Evolutionary Algorithm,” Lecture Notes in Computer Science, Vol.

7665, pp 291-298, 2012.

[75] M.-F. Han, C.-T. Lin, J.-Y. Chang and D.-L. Li, “Group-Based Differential Evolution

for Numerical Optimization Problems,” International Journal of Innovative Computing,

Information and Control. Vol. 9, No. 3, pp. 1357-1372, Mar. 2013.

[76] C.-J. Lin, C.-H. Chen and C.-T. Lin, “A hybrid of cooperative particle swarm

optimization and cultural algorithm for neural fuzzy network and its prediction

applications,” IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 39, no. 1, pp. 55–68, Jan. 2009.

[77] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for

recurrent network design,” IEEE Trans. Systems, Man and Cybernetics, Part B:

Cybernetics, vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[78] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “A recurrent FL-based fuzzy neural

network controller with improved particle swarm optimization for linear synchronous

motor drive,” IEEE Trans. Magnetics, vol. 45, no. 8, pp.3151-3165, 2009.

[79] M.-F. Han, C.-T. Lin and J.-Y. Chang, “Efficient differential evolution algorithm based

optimization of fuzzy prediction model for time series forecasting,” International

Journal of Intelligent Information and Database Systems. (Accepted)

[80] N. Krasnogor and J. Smith, “A memetic algorithm with self-adaptive local search: TSP

as a case study,” in Proc. Genetic and Evolutionary Computation Conf., Las Vegas, NV,

pp. 987–994, July 2000.

[81] H. Ishibuchi, T. Yoshida and T. Murata, “Balance between genetic algorithm and local

search in memetic algorithms for multiobjective permutation flowshop scheduling,”

89

IEEE Trans. Evolutionary Computation, vol. 7, pp.204–223, Apr. 2003.

[82] M. J. Li, M. K. Ng, Y.-M. Cheung and Jo. Z. Huang, “Agglomerative fuzzy k-means

clustering algorithm with selection of number of clusters,” IEEE Trans. Knowledge and

Data Engineering, vol. 20, No. 11, pp.1519–1534, Nov. 2008.

[83] S. Miyamoto and M. Mukaidono, “Fuzzy c-means as a regularization and maximum

entropy approach,” Proc. Seventh Int’l Fuzzy Systems Assoc. World Congress

(IFSA ’97), vol. 2, pp. 86-92, 1997.

[84] F. Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm

optimization,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp. 225-239, Jun.

2004.

[85] C. F. Juang, J. Y. Lin and C. T. Lin, “Genetic reinforcement learning through symbiotic

evolution for fuzzy controller design,” IEEE Trans. Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 30, no. 2, pp. 290-302, Apr. 2000.

[86] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy systems and

their applications to system identification,” Fuzzy Sets System, vol. 83, pp. 325–339,

1996.

[87] J. Kim and N. K. Kasabov, “HyFIS: Adaptive neuro-fuzzy inference systems and their

application to nonlinear dynamic systems,” Neural Network, vol. 12, pp. 1301–1319,

1999.

[88] D. Nauk and R. Kruse, “Neuro-fuzzy systems for function approximation,” Fuzzy Sets

Syst., vol. 101, no. 2, pp. 261–271, 1999.

[89] S. Wu and M. J. Er, “Dynamic fuzzy neural networks—A novel approach to function

approximation,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol.

30, no. 2, pp. 358–364, Apr. 2000.

[90] J. Alcal á-Fdez, L. S´anchez, S. Garc´ıa, M. J. del Jesus, S. Ventura, J. M. Garrell, J.

Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fern ández and F. Herrera, “KEEL: A

software tool to assess evolutionary algorithms to data mining problems,” Soft

Computing, vol. 13, no. 3, pp. 307–318, 2009.

[91] A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-organizing hierarchical

particle swarm optimizer with time-varying acceleration coefficients,” IEEE Trans.

Evolutionary Computation, vol. 8, no. 3, pp. 240–255, Jun. 2004.

[92] R. Alcal á, J. Alcal á-Fdez, J. Casillas, O. Cord ón and F. Herrera, “Local identification

of prototypes for genetic learning of accurate TSK fuzzy rule-based systems,”

International Journal of Intelligent Systems, vol. 22, pp. 909–941, 2007.

[93] D. Graves and W. Pedrycz,“ Fuzzy prediction architecture using recurrent

neural networks”, Neurocomputing, no. 72, pp. 1668– 1679, 2009.

[94] C. Li and T.-W. Chiang, “Function approximation with complex neuro-fuzzy system

using complex fuzzy sets - a new approach,” New Generation Computing, vol. 29, no. 3,

90

pp. 261-276, Jul. 2011.

[95] C. Li and T.-W. Chiang, “Complex fuzzy computing to time series prediction - a

multi-swarm PSO learning approach,” Lecture Notes in Artificial Intelligence, vol. 6592,

pp.242-251, Apr. 2011.

[96] C. Li and T.-W. Chiang, “ Complex fuzzy model with PSO-RLSE hybrid learning

approach to function approximation”, International Journal of Intelligent

Information and Database Systems, vol. 5, no. 4, pp. 409 - 430, July 2011.

[97] C. Li and J.-W.Hu, “A new ARIMA-based neuro-fuzzy approach and swarm

intelligence for time series forecasting,” Engineering Applications of Artificial

Intelligence. vol. 25, no. 2, pp. 295-308, March 2012.

