AENLIAORMFEZZ BT AR ARG R
Group-Based Differential Evolution Algorithm and Its Application to Fuzzy
System Optimization

oy o4 P
BEs el WA

AENEIAEIVFEEZ H R TR R S i %2t
Group-Based Differential Evolution Algorithm and Its
Application to Fuzzy System Optimization

bR I Student : Ming-Feng Han
Ry HheE gL Advisor : Dr. Chin-Teng Lin
EE A L Dr. Jyh-Yeong Chang

A Dissertation
Submitted to Institute of Electrical Control Engineering
College of Electrical Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electrical Control Engineering

Jan. 2013
Hsinchu, Taiwan, Republic of China

pENAARLFEZEZ H T THOP A
BB i

_3“:?
ny
-

Pyt g Ik g g4

A L

A

ARy LEA A RIS & - JRa s AP RN S BN T SR g bR
A E R BN FR R YA A AR E TR sE
R8s En SR Fagit IS o it AERRE RRB
W2 fRE % PHRATA S REER S BE R FRBRIREEY
YEREERBRAORLEIE LI AP EREE A L NS A
- BATOE RS Y K R0 B A SR LSRN 2R R Bl Bl
B TSl o AHERY O AP RREIS Bk RV o Ah TR R Y

R IL AT E LA o B D IMA A PERS BNL ARILFEERY Ak

~|

B2 foR hAiB iR o REHEY Y R REAFEFE P b S

~

\\\Xr

ok kBB & ek R B BEY O EHERATL SRR EHE A
BIHML B BETEFR G NIBIBE 2 o Ao APy

E g M TR R R BN TR L g anit e

Group-Based Differential Evolution
Algorithm and Its Application to Fuzzy
System Optimization

Student : Ming-Feng Han Advisor : Dr. Chin-Teng Lin
Dr. Jyh-Yeong Chang

Institute of Electrical Control Engineering

National Chiao-Tung University

ABSTRACT

This dissertation consists of two major parts. In the first part, we propose a
group-based differential evolution (GDE) algorithm for numerical optimization
problems. The proposed GDE algorithm employs two different mutation operations to
solve the stagnation problem and achieve good performance. Initially, all individuals
in population are grouped into an inferior group-and a superior group based on their
fitness value. The inferior group uses the global mutation model. The superior group
employs the local mutation model. Subsequently, crossover and selection operations
are employed for the next generation. An adaptive strategy is also proposed to
automatically find good parameters in the GDE algorithm. To validate the
performance of the GDE algorithm, 13 numerical benchmark functions are tested. The
simulation results indicate that the approach is effective and efficient. In the second

part, we apply the GDE algorithm to function-link fuzzy system (FLFS) optimization.

For structure learning, an agglomerative clustering algorithm is proposed to find the
optimal number of fuzzy rules. For parameter learning, we use symbiotic learning
method and GDE algorithm. The population is separated as subpopulations. Each
subpopulation performs GDE algorithm to search the optimal parameter. The FLFS
model with GDE learning algorithm (FLFS-GDE) is applied in real world prediction
problems. Results of this dissertation demonstrate the effectiveness of the proposed

methods.

Acknowledgement

Agwme RS > FARR B A ERE - R EES A
%W°E:&iﬁ%%ﬁgﬁ‘iﬁﬁﬁgiﬁiﬁﬁﬁ?’%ﬁg?ﬂ??m

P G F SRS OLIEE A M T A LR [LAY
VP o PR E A Bk R o RS LR ALK KD R
REFRAFRE P EFERZE > LT P FTAIMRAR L D ann> v 4
Boa Al FRh# L1 AFRHRL REAAI DT L2 o

BIF O RF R o - RESATE T P o R HEFE L - AL
BEEEREZ 2 AFLETFL (Pt Bk A e 7 P M UR S i 12
4 B #Bio-Cl Group sha | @ EEr e E F L i g fo B2 L E L s
B s REE A AR AR kel L FT e FE)

FU BRSNS AN A D gy 2 AIEE PSP T eSS
LAER B RN NGRS R (Fr s A L o B SRR A

B R RN L R RAZ ATl A

AR102# 1% 21

Contents

ADSIFACT TN CNINESE ...ttt bbb ie e i
ADSEIACE IN ENGIISN...c.oiiiiiee et re e i
ACKNOWIEBAGEMENT ... ettt b et e et e e steeaesneenneenne s \Y
LO10] 0 (=10 £ TP TP PR U T OPT PR PPPPPPN v
LISE OF TADIES. ...ttt e e vi
LIST OF FIQUIES ..t B s oo 0 ettt ettt et e st et e e ne e st e e teeneesneebeeneenreas Vil
1 INtroducyorgR®adl........... ... e eceeceeceveeal . RRTII ees 1
2 Differential EVOIULION ..o ueuesssssessteseasies ceiesseate st ssessssstis e atba st abe s sk e eseensessesseseesseaneans 7
3 Group-Based Differential EVOIUTION ... o.. i ive it it s 11
3.8mdGDE Alggiitr===8 N . FS. 8. V"% . . 2%l 11

3.2 - A Self-Adaptive Parameter TUNING STrategy......cccoereeveverieiiisiaiisineee e 15

& Y E 0 A] R 17
BB1 TesI TN e ...). ... 18

3.3.2 Low-Dimensional Problemsccccvveiiiiiiiiiii i i 21

3.3.3 High-Dimensional ProBIEmS.cccuiiieienineiiies i 29

3.3.4 Statistical Comparison Using Friedman test............cc.ocoveiiieieniieniiinenn 37

3.3.5 Comparisons with Other Methodsc0.coovovei it 39

4 A GDE Algorithm for Functional-Link Fuzzy Systems Optimization..................cc.cccceee.. 42
4.1 Review of Evolutionary FUZZY SYStEMS...........cociuriiiiine it 42

4.2 Functional-Link FUZZY SYSTEIMS ...t aiiee i 44

4.3 Learning process of Functional-Link Fuzzy Systems..............cccocevvviiinciininnnnnns 47
4.3.1 An Agglomerative Clustering AIgorithm............ccocoviiiiiiin e 48

4.3.2 Evolution Learning PrOCESSES..........cuuuiiiiiirierieiiesie st 55

A4 SIMUIBTION ..ottt ettt nbeene s 61

ST 0] 4 [od 113 o] 4 RSP R SO TP TP PR TRUR 80
RETEIBNICES ...ttt bbbttt bbb bRttt et bbb ne s 83

List of Tables

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:
Table 3.7:

Table 3.8:

Table 4.1:
Table 4.2:
Table 4.3:

Table 4.4:
Table 4.5:

Table 4.6:
Table 4.7:
Table 4.8:
Table 4.9:

Experimental results (Function 1 —Function 8) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for low dimensional problems

(D=30), averaged over 50 iNdePeNdeNt FUNS.........cccveierierereeseenesie e e e sreeeeas 22
Experimental results (Function 9 —Function 11) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for low dimensional problems

(D=30), averaged over 50 INAEPENENT FUNS..ii.....ccveeieiierieeiecie e 23
Experimental results (Function 1—Function 8)of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems

(D=100), averaged over 50 INdePeNdENt FUNS............ccecociiiemneieeneeieseese e seeneas 30
Experimental results (Function 9—Function 13)of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems

(D=100), averaged over 50 INAEPENTENT FUNS.cc.cvirereeieierinene e, 31
The rank table based on experimental results of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for statistical comparison. 38
The result of Friedman test for statistical comparison. ..ot 39

Comparison with the proposed GDE algorithm and other methods (D=30),
including RMEA,CEP, ALEP, BestLevy, NSDE and RTEP.cccccoveveennene 40
Comparison with the proposed GDE algorithm and advanced DE

algorithms (D=30), including jDE, SaDE, ODE, SaCDE, DEGL and JADE 41

Initial parameters Defore training. ... i 61
Performance of the GDE algorithm and the other algorithms for example 1.......... 65
The best performance of the FLFS-GDE model and other papers for

BXAMPIE L.t 66
Performance of the GDE algorithm and the other algorithms for example 2. 69

The best performance of the FLFS-GDE model and other papers for

BXAMPIE 2. . e eara e 70
The performance of the GDE algorithm and other algorithms for example 3......... 76
Comparison of the FLFS-GDE model and other papers for example 3. 76
Performance of the FLFS-GDE model and other algorithms for example 4........... 77
Performance of the FLFS-GDE model and other algorithms for example 5............ 79

vi

List of Figures

Figure 2.1: The flow chart of the DE algorithm. Gen is the generation counter.. 7
Figure 2.2: lllustration of the crossover process for NP=7 parameters..cc.cccoevevviivesieenens 10
Figure 3.1: The flow chart of the proposed GDE algorithm. GEN is the generation
(610100 (] PP PPPPRRTPPRRR 14
Figure 3.2: A concept of the self-adaptive parameter tuning strategy....cccoeeevereriniinnnnnns 16
Figure 3.3: The best learning curve of GDE, DE/rand/bin, DE/best/bin and
DE/target-to-best/bin on 13 test function for low dimensional (D=30)
problems. (a) Function 1: fy; (b) Function 2: fp; (c) Function 3: f3; (d)
Function 4: f4; (e) Function 5: fs; (f) Function 6: fg; () Function 7: f7; (h)
Function 8: fg; (i) Function 9: fg; (j) Function 10: f1o; (k) Function 11: fy;;
() Function 12: fy2; (M) FUNCLION 13: F13. ceovveiereieiiiiie it 28
Figure 3.4: The best learning curve of GDE, DE/rand/bin, DE/best/bin and
DE/target-to-best/bin on 13 test function for high dimensional (D=100)
problems. (a) Function 1: f;; (b) Function 2: f,; (c) Function 3: fs; (d)
Function 4: f4; () Function 5: fs; (f) Function 6: fs; (g) Function 7: f7; (h)
Function 8: fg; (i) Function 9: fg; (j) Function 10: f1o; (k) Function 11: fy;;

(D) Function 12: f12; (M) FUNCLION 132 13 oot et 36
Figure 4.1: The architecture of the functional-link fuzzy system.cciie e, 47
Figure 4.2: The overall 1earning PrOCESS.ccuaiueiieieaieiiesee e ites s enntaseeseesteaseesraesresseareennens 48

Figure 4.3: A flow chart of the proposed agglomerative clustering algorithm for
discovering the optimal number of CIUSEEFS. .co... oo 51
Figure 4.4: The result of proposed agglomerative clustering algorithm with respect to
QIFFRIENT A . oot ettt ens 52
Figure 4.5: The clustering results by the proposed algorithm with 1 =4 (a) the result
of k =1, (b) the result of k =5, (c) the result of k =10, and (d) the result of
G USRS 54
Figure 4.6: Coding FLFS into individual and population.............c.ccccovviiiiiiie i, 56

Vii

Figure 4.7: A completed process of the subpopulation Step..cccccvevevieiieeriice i 57

Figure 4.8: A flow chart of the proposed GDE algorithm for the FLFS optimization.. 59

Figure 4.9: The result of the agglomerative clustering algorithm for example 1. 63

Figure 4.10: Training RMSEs of the DE, jJDE, MODE and GDE algorithms at each
performance evaluation for example 1. ... 64

Figure 4.11: Prediction results of the FLFS-GDE model for example 1. Symbol "+"

represents the desired results and "O" represents the actual results.. 64
Figure 4.12: Prediction errors of the FLFS-GDE model for example 1..cccccoooviiinienns 65
Figure 4.13: The result of the agglomerative clustering algorithm for example 2.. 68
Figure 4.14: Training RMSEs of the DE, JDE, MODE and GDE algorithms at each

performance evaluation for example 2. . i 68

Figure 4.15: Symbol "+" represents the desired results and "O" represents the

prediction results of the FLFS-GDE model for example 2...............cccccoevvevnennee. 69
Figure 4.16: The result of the agglomerative clustering algorithm for example 3.. 72
Figure 4.17: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 3. ... 72
Figure 4.18: The training output of the FLFS-GDE model for example 3. ..o 73
Figure 4.19: The testing output of the FLFS-GDE model for example 3.......cceecoveiiieieens 73
Figure 4.20: The result of the agglomerative clustering algorithm for example 4. 76
Figure 4.21: Prediction output of FPM-DEEMS model for example 4.....ccoevoiiiiiiiiiinnns 76
Figure 4.22: The result of the agglomerative clustering algorithm for example 5. 78

Figure 4.23: Symbol "+" represents desired and "O" represents prediction results of
the FLES-GDE model for example 5. i 79

viii

Chapter 1

Introduction

Evolutionary algorithms (EAs)[1-6] are population based stochastic optimization
methods that are inspired by Darwin’s Theory of Evolution. EAs are able to deal with
difficult objective functions-which are, e.g., discontinuous, non-convex, multi-modal,
non-linear and non-differentiable functions. Since engineering, economic and. scientific
problems include such difficult objectives, EAs have become popular optimization tools
during the last couple of decades.

The optimization process of the EAs usually adopt stochastic search techniques that
work with a set of individuals instead of a single individual, and use some evolution
operators to naturally produce offsprings for the next generation. These algorithms include
genetic algorithm (GA)[7-8], evolutionary programming (EP)[9-10], evolution strategies
(ES)[11], particle swarm optimization (PSO)[12-13] and differential evolution (DE)[14-15]
which are famous, effectual and classical search techniques.

The GA is a powerful optimization tool based on biological evolution mechanism and
natural selection. This algorithm was first proposed and investigated by John Holland in
1973. The main idea of the GA follows the natural selection principle of selecting fittest
individuals for the next generation and explores the relevant search space according to the

evolutionary computing strategies. In the GA, chromosome is represented by a binary

bit-string. Generally, the initial population of GA is generated code “1” or“0” randomly for
each design variable. Offsprings (new population) are produced by Reproduction. The
Reproduction usually involves crossover and mutation. Crossover is the process of
combining genetic building blocks from two or more parent vectors to form one or more new
offspring. Mutation is the process of injecting random noise into offspring vectors to form a
slightly different offspring individual, thereby increasing the genetic diversity of the
population.

Evolution strategies (ES) were developed by Rechenberg and Schwefel[11]. This
algorithm is an effective continuous function optimizer. In evolution process, ESs perform
mutation operator as main operator to produce offspring. After mutating and evaluating all A
children, the (u, A)-ES selects the best p children to become the next generation’s parents.
Alternatively, the (u + A)-ES populates the next generation with the best p vectors from the
combined parent and child populations. The special case (4 + 1) is also referred to as
steady-state ES.

A new population-based evolutionary algorithm, called particle swarm optimization
(PSO), was proposed by Kennedy and Eberhart [12] in 1995. The population in PSO is
referred to as a swarm. The PSO is based on simulations of social behaviors such as fish in a
school, birds in a flock etc. A swarm in PSO consists of a number of particles. Each particle
represents a potential solution of the optimization task. All of the particles iteratively
discover a probable solution. Each particle moves to a new position according to the new
velocity and the previous positions of the particle. The PSO has faster convergence than GA
and ES to over a small number of generations.

In recent years, the DE algorithm is interested by researchers [14-35] among the EAs.
The DE algorithm, proposed by Storn and Price [14-15] in 1998, is an efficient and effective
global optimizer in the continuous search domain. It has been shown to perform better than

the GA, ES and PSO over several numerical benchmarks [14-15, 19, 30, 34]. The DE
2

algorithm employs the difference of two randomly selected individuals as the source of
random variations for the mutation operation. Subsequently, crossover and selection
operations are used for generating offsprings. Many studies have applied the DE algorithm to
difficult optimization problems and achieved better solutions[19, 28, 31]. However, the
stagnation problem has been identified that the DE algorithm occasionally stops proceeding
toward the global optimum [18-19]. The reason for stagnation problem is the limitation of
the mutation operation model. In the DE algorithm, the mutation operation model always
favors the exploration ability (DE/rand strategy) or the exploitation ability (DE/best strategy),
which easily results in the blind search in individual space or the insufficient diversity in
population. In order to deal with this problem, previous studies have proposed ideas to
improve the mutation operation-model. In [28, 31], the rescarchers have proposed a modified
differential evolution (MODE) algorithm for an adaptive neural fuzzy network and locally
recurrent neuro-fuzzy system optimazation. This MODE algorithm provides a convex type
mutation model and cluster-based scheme to increase the diversity of the population. The
concept of the tradeoff between the exploration ability and exploitation ability was proposed
by Das et al.[18]. They designed a novel mutation model, called neighborhood-based
mutation operation, to handle stagnation problem. In their paper, they utilized new mutation
strategy and ring topology of neighborhood to find potential individuals in population.
However, a single evolution model may not be suitable for various problems [21, 24, 27].
Therefore, other researchers which combine with other learning methods have proposed for
solving the stagnation problem. Rahnamayan et al. [27] combined a opposition-based
learning method and the DE algorithm, called opposition-based differential evolution (ODE).
The ODE employs opposition-based optimization to choose the better solutions by
simultaneously checking fitness of the opposite solution in the current population. The ODE
possesses successfully increases diversity of the population. A combination of one-step

k-Means clustering and multi-parent crossover operation in the DE algorithm was proposed
3

by Cai et al. [21]. Their method enhances the performance of the DE algorithm and balances
the exploration ability and the exploitation ability in the evolutionary process. Noman and
Iba [24] proposed an adaptive local search (ALS) algorithm to increase exploitation ability in
the DE algorithm. The ALS algorithm uses a simple hill-climbing algorithm to adaptively
determine the search length and effectively explore the neighborhood of each individual. Ali
and Pant [36] applied a Cauchy mutation to improve the performance of the DE algorithm.
The Cauchy mutation using Cauchy distribution randomly forces solutions to move to some
other position. This method efficiently increases the probability of searching potential
solutions in the DE algorithm. A combination of the fuzzy adaptive PSO algorithm and the
DE algorithm, called FAPSO-DE model, was proposed by Niknam et al. [37]. They utilize
two evolution processes to-balance the exploration ability and exploitation ability for
economic dispatch problems.

Unlike above mentioned studies, this dissertation proposes a new idea to solve the
stagnation problem. This idea employs the inherent properties of the DE algorithm without
depending on other learning algorithms. The idea combines two classical mutation strategies
instead of a single mutation model. The two mutation strategies are composed of the
DE/rand/bin operation and the DE/best/bin operation. The DE/rand/bin has powerful
exploitation ability; and the DE/best/bin has efficient exploration ability. This dissertation
uses the two operations to tradeoff between the exploration ability and the exploitation
ability for solving the stagnation problem.

In this dissertation, a group-based differential evolution (GDE) algorithm is proposed
for numerical optimization problems. The GDE algorithm provides a new process using the
DE/rand/bin model and the DE/best/bin model in mutation operation. Initially, all individuals
in population are grouped into an inferior group and a superior group based on their fitness
value. The inferior group uses the DE/rand/bin mutation model for globally searching

potential solutions and for maintaining the diversity of the population. The superior group
4

employs the DE/best/bin mutation model to efficiently search the neighborhood of the
current best solution. Subsequently, crossover and selection operations are employed for the
next generation. An adaptive strategy is also proposed in this dissertation. This strategy uses
successful information to automatically tend to good parameters (factor F and crossover rate
CR). It is thus helpful to enhance the robustness of the GDE algorithm. In order to validate
the performance of the GDE algorithm, 13 well-known numerical benchmark functions with
low dimensional problems and high dimensional problems are tested. Simulation results
indicate that our approach is efficient. Comparison with other advance evolutionary
algorithms, the proposed GDE algorithm performs better performance.

In addition, we also apply the proposed GDE algorithm to practical problems based on
functional-link fuzzy systems (FLFS) optimization. Initially, the FLFS has no rules. The
fuzzy rules are automatically generated by an agglomerative clustering algorithm. The
agglomerative clustering algorithm (ACA) determines the optimal number of fuzzy rules for
the FLFS. Subsequently, all free parameters are learned by the GDE algorithm for the FLFS
optimization. During evolution process, the scale fact and crossover are adjusted by adaptive
parameter tuning strategy. In the simulation, five prediction problems are tested to validate
the performance of the proposed functional-link fuzzy system with the GDE algorithm
(FLFS-GDE). The proposed FLFS-GDE model shows better prediction performance than
other methods.

The overall objective of this dissertation is to develop a novel evolutionary algorithm
and its related application. Organization and objectives of each chapter in this dissertation
are as follows.

In Chapter 2, we introduce a basic DE algorithm and its evolution process. The DE
algorithm employs the difference of two randomly selected individuals as the source of
random variations for the mutation operation. Subsequently, crossover and selection

operations are used for the next generation.

In Chapter 3, we present a new differential evolution algorithm, called group-based
differential evolution algorithm for global optimization problems. This algorithm employs
two mutation strategies instead of a single mutation model to tradeoff between the
exploration ability and the exploitation ability for solving the stagnation problem.
Furthermore, an adaptive strategy is also proposed to enhance the robustness of the GDE
algorithm by an automatic process for finding good parameters. 13 well-known numerical
benchmark functions are tested for simulations. The result shows significant differences
between the proposed GDE algorithm and other methods.

In Chapter 4, the proposed GDE algorithm is applied to. FLFS optimization for
prediction problems. The learning process consists of rule generation phase and parameter
learning phase. The rule generation phase can determine the optimal number of fuzzy rules
using the agglomerative clustering algorithm. The parameter learning phase combines a
subpopulation symbiotic evolution and a GDE algorithm. Initially, population is separated as
many subpopulations according to the number of fuzzy rules. Each subpopulation performs
the GDE algorithm for parameter learning. We also compare our method and other methods

in simulations. Finally, conclusions and future works are summarized in Chapter 5.

Chapter 2

Differential Evolution

This section introduces a complete DE algorithm. The process of the DE algorithm,
likes other EAs, produces-offsprings for next generation by the mutation operation, the
crossover operation and the selection operation. Figure 2.1 shows a standard flow chart of

the DE algorithm.

Initialize
Population

-]

Performance
Evaluation

i

Mutation
Operation

Gen=Gen+1 l

Crossover
Operation

il

Selection
Operation

Meeting
Termination
riterion 2

NO

YES

Return Optimal
Solution

Figure 2.1 : The flow chart of the DE algorithm. Gen is the generation counter.

Initially, a population of NP D-dimensional parameter vectors which represents the

candidate solutions (individuals) is generated by uniformly random process. All individuals

and search space are constrained by the prescribed minimum X . = (X, i %o min s -) and

’XD,min
MaXiMUM X = (X e Xo - Xomse) PAF@Meter bounds. A simple representation of i-th
individual at the current generation Gen is shown as follows :

Xi,Gen 0 (Xi,LGen ! Xi,2,Gen ! Xi,3,Gen L Xi,D—l,Gen’ Xi,D,Gen) ' (1)

After Initial population production with NP individuals, fitness evaluation process
measures quality of individuals to calculate the performance. The succeeding steps include
the mutation operation, the crossover operation and the selection operation are explained in

the following.

Mutation Operation

Each individual in the current generation is allowed to breed through mating with other
randomly selected individuals from the population. This process randomly selected a parent

pool of three individuals is formed to produce an offspring. Specifically, for each individual

X i=12,..., NP, where gen denotes the current generation, NP is population size, three

i,gen?

random individuals, X X X X and X are selected from the

rl,gen ! r2,gen ? r3,gen !’ r4,gen r5,gen

population such that rl, r2,r3,rdandr5€ {1,2,... ,NP}and i1=#rl=r2=r3=r4=r5.
This way, a parent pool of four individuals is formed to produce an offspring. The following

are different mutation strategies frequently used in the literature:

DE/rand/bin: V.

igen — X + F(sz,gen - Xr3,gen) (2)

rl,gen

DE/best/bin: V.

igen — X + F(sz,gen - Xr3,gen) (3)

ghest,gen

DE/target-to-best/bin: V, ., = X1 s + F (X gpest.gen — Xr1.gen) 4
+F (sz,gen - er,gen)
DE/rand/bin/2: V; .. = X,y gen + F (X2 000 = Xrs.gen) 5)
+ I:(><r4,gen - ><r5,gen)
DE/best/bin/2: V; .. = X jpect gon + F (X260 = Xr3.6en) ©)
+F (Xr4,gen - XrS,gen)
where F is scaling factorse[0,1], X ., IS the best=so-far individual (i.e., X oen

keeps best fitness value up to now in the population). For various problems, the DE
algorithm usually employs different mutation strategy. The DE/rand/bin/ mutation and
DE/rand/bin/2 mutation which have more exploration ability are suitable for multimodal
problems. The “DE/best/bin”, “DE/best/bin/2” “DE/target-to-best”” mutations which consider

the current best information in generation are more suitable for unimodal problems.

Crossover Operation

After the mutation operation, The DE algorithm uses a crossover operation, often

referred to as discrete recombination, in which the mutated individual "V, ., is mated with

X; . and generates the offspring U The elements of an individual U, ., are inherited

i,gen i,gen *

from X __and V.

i,gen i,gen ?

which are determined by a parameter called crossover probability

(CR €0, 1]), as follows:

\/i,d,QEna If rand(d) S CR
Ui,d,gen = X ; (5)
i,d,gen? If rand(d) > CR
where d =1, 2, ..., D denotes the dth element of individual vectors, D is total element of

individual vector, r (d) € [0, 1] is the dth evaluation of a random number generator. Figure

2.2 gives an example of the crossover mechanism for 7-dimensional vectors.

Vi,Gen
D=1 D=1
- 2 20
r(3)<=CR [
3 —>» 3
r(4)<=CR
4 —> 4
5 5
r(6)<=CR
6 —>» 6
7 7
Mutant
vector vector vector

Figure 2.1 : lllustration of the crossover process for NP=7 parameters.

Selection Operation

The DE algorithm applies selection operation to determine whether the individual

survives to the next generation. A knockout competition is played between each individual

X: -and its offspring U and the winner is selected deterministically based on objective

i,gen i,gen

function values and is then promoted to the next generation. The selection operation is

described as

X

i,gen+1 = U

if fitness(X, ...) <fitness(U.)

i,gen? i,gen i,gen

X (6)

otherwise

i,gen?
where fitness(z) is the fitness value of individual z. After the selection operation, the

population obtains better fitness value or remains the same fitness value, but never

deteriorates.
10

Chapter 3

Group-Based Differential Evolution

3.1 AGDE Algorithm

In the DE algorithm, mutation operation which leads a successful evolution performance is a
principal operator. For various-problems, we often employ different mutation strategy in the
DE algorithm. However, choosing suitable mutation strategy which deals with a practical
problem is difficult. Therefore, we propose the GDE algorithm with the exploration ability
and the exploitation ability, which combines two mutation strategies to solve practical
problems. A flow chart of the GDE algorithm is shown in Figure 3.1.

In first step of the GDE algorithm, a population of NP.D-dimensional individuals is
generated by uniformly random process, and evaluated for the fitness value of all individuals.

A sorting process arranges all individuals based on their fitness value as

fitness, < fitness, <... < fitnessy, , < fitness,, for ~minimum objective problems.

According to fitness value, all individuals are partitioned into an inferior group and a
superior group, called the Group A and the Group B. The Group A, including NP/2 worse
individuals, performs global search to increase the diversity of the population and widely
find potential solutions. Other NP/2 individuals for the Group B perform local search to
actively detect better solutions nearby current best solution. A complete mutation operation

is shown for the Group A and the Group B as follows.

11

Group \e}ée? x,ig+an Xal(r_%nZ, (7)
GrOUp\B,'ge%X gbesTFgenXE»(b _r)(gze,n (8)

Where F, and F, are scale factors, X X X and X are random selected

rl,gen’ “Mr2,gen? r3,gen r4,gen

from the population, andi#rl=r2=r3=r4 the X is the best-so-far individual in

gbest,gen

the population.

After mutation operation, The GDE algorithm uses a crossover operation, often referred

to as discrete recombination, in which the mutated individual V; .., is mated with X; . and

i,gen

generates the offspring U Equation 9 presents the crossover operation for the Group A

i,gen *
and the Group B. If the random number rand(d) is smaller than the CR value, the variable of

the mutated individual V,, ., is chosen to the variable of the trial vector U Otherwise,

i,d,gen *

the variable of the target vector X, .., IS selected to the variable of the trial vector U,

en i,d,gen

Viggn If rand(d)<CR
Ui,d,gen > X . (9)
i,d,gen? If rand(d) > CR
where d =1, 2, ..., D denotes the dth element of individual vectors, D is total element of

individual vector, CR € [0, 1],rand(d) € [0, 1] is the dth evaluation of a random number
generator. The mutation and crossover operators are used to diversify the search space in
terms of the optimization problems.

Selection operation is used to determine whether the individual survives to the next

generation. A knockout competition is played between each individual X and its

i,gen

offspring U and the winner is selected deterministically based on objective function

i,gen?

values and is then promoted to the next phase. After the selection operation, the population

gets better or remains the same in fitness value, but never deteriorates.

12

The conventional DE only utilizes DE/best or DE/rand mutation to deal with problems.
The proposed GDE algorithm employed two mutation operations to maintain useful diversity
in the population and increase the search capability. It is worth noting that DE/best/bin and
DE/rand/bin are a special case in the proposed GDE algorithm when population = Group A
and population = Group B. Thereby, the proposed GDE algorithm has more variety than

conventional DE algorithm for various problems. In this dissertation, we set the size of the

Group A= Group B=NP/2 because it obtained the best performance in the present study.

\ 1896

Group B

Gen=Gen+1

A

Initialize
Population
>
A\ 4
Performance
Evaluation
Performance
Sorting
Group.A
v \ 4
Mutation Mutation
Operation Operation
Crossover Crossover
Operation Operation
v v
Selection Selection
Operation Operation
| Combine Offspring |
form Grouop A and B
NO Meeting
Termination

riterion ?

YES

Return Optimal
Solution

Figure 3.1: The flow chart of the proposed GDE algorithm. GEN is the generation counter.

14

3.2 A Self-Adaptive Parameter Tuning Strategy

Parameter control which can directly influence the convergence speed and search capability
Is an important task in the EAs [12, 19]. However, conventional DE algorithm always used
trial-and-error method for choosing suitable parameter requires multiple optimization runs.
Based on this consideration, different adaptive or self-adaptive mechanisms [16, 18, 22, 25,
32] have been recently introduced to. dynamically update the control parameters without a
user’s prior knowledge of the relationship between the parameter setting and the
characteristics of optimization problems. In this section, we propose a generalized
self-adaptive approach to control parameter the F and the CR for the Group A (inferior) and
the Group B (superior). The concept of the proposed parameter tuning strategy is shown in

Figure 3.2. The generalized scheme is designed as follows :

(1) Assume new parameters G, €[G;,,G,.. 1, 1<I<NP. The G, is composed of

min?

Fand CR, for individual x; . We set a initial center G

center

(2) Set g=g-+1 and randomly generate G, by Gaussian distribution (G 0.2) for
every-individual X; .
(3) After evolution process, the G; that is able to make the offspring x ., of x to

successfully enter the next generation. That is, a good parameter value G, will be

marked and recorded in our algorithm. The successful parameter value G, .. (k) and
fitness improvements 5(k), where k=1,2,...N_,

Gicess (K) = [Fogcess e CRuucess, i] (10)

S(k) =(fitness(x, ,.,) — fitness(x,)) (11)

15

(4) Update the parameter center according to

Geper =1—W)-G +wW-G

center center,g+1

where the weight w is determined by

and G is the

center,g+1

ollection

Individual 1 ! Gecess (K), 0(K)
|
! i Updating
Individual 2 : F2 | CRe :
i |
! ' Goerter
l |
[|
l |
l |
I | Gaussian
- - I I
ndividual NP | R | GNP Distribution
! ! Assignment
N — — — — = 4

Figure 3.2 : A concept of the self-adaptive parameter tuning strategy.

16

(12)

(13)

(14)

(15)

3.3 Simulation

In order to verify the performance of proposed algorithm, a set of thirteen classical
benchmark test functions [38-39] is used in this simulation. The analytical form of these
functions is given in section 3.3.1. The GDE algorithm is compared with three classic DE
algorithms, including the DE/rand/bin, the DE/best/bin and the DE/target-to-best/bin
algorithms. In all simulations, we set the parameters of the GDE algorithm to be fixed, initial
Fa= 0.5, initial F, =0.8, initial CR,=0.9 ,initial CRy =0.9. The parameter setting for three
classic DE algorithms is recommended by other papers as follows. For DE/rand/bin model,
the F=0.5 and the CR=0.9 [15, 22, 32] ; For DE/bes/bin model, the F=0.8 and the CR=0.9
[18] ; For DE/target-to-best/bin, the F=0.8 and the CR=0.9[20].

Many papers have used-the-same parameter setting to solve their problems. In this
simulation, we set the population size NP to be 100 and 400 in the case of D = 30, and D =
100, respectively. All results reported in this section are obtained based on 50 independent
runs. In addition, Section 3.3.3 demonstrates significant difference results based on statistical
comparison process. A complete comparison with other evolutionary algorithms, such as
RMEA[45],CEP[30], ALEP[43], BestlLevy[43], NSDE[40], RTEP[44], jDE[33,47],
SaDE[26], ODE[27], SaCDE[16], DEGL[18] and JADE[22,46], is presented in Section

3.3.4.

17

3.3.1 Test Functions

In this section, we introduce thirteen numerical functions for verifying the performance
of proposed GDE algorithm. Based on their properties, the functions can be divided into two
problems as unimodal function problem and multimodal function problem. f,— f, are
continuous unimodal functions. fs is a discontinuous step function, and fs is a noisy quartic
function. f7 is the Rosenbrock function which is multimodal function problem for D > 3 [39].
fg— f13 are multimodal and the number of their local minima increases exponentially with the
problem dimension [40]. In addition, fg is the only bound-constrained function investigated
in this paper. All these functions have an optimal value at zero. Completed functions are
described as follows:

(1) Function 1 : Sphere function
D

f,=>(x)* ° -100<x <100

i=1

(2) Function2 : Schwefel” s problem_a

D D
f,=>x|+] x| ., -10<x<10
i=1 i=1

(3) Function 3 : Schwefel’ s problem b

D i

2
g:Z(xi] , -100<x <100
1

i=1 _j=

(4) Function4 : Schwefel’ s problem_c

f,=max|x| , -100<x <100

18

(5) Function5 : Schwefel’ s problem_d
D

fy=> (% +05)", -100<x <100

i=1

(6) Function6 : Schwefel’ s problem_e

0,1) 1.28<x,<1.28

1896

) nction 9 : Rastrigin® s function

(10) Function 10 : Ackley’ s function

D D
f, = —20exp(—0.2 /%Zxﬁ J—exp(%Zcos(th} 20+e,
i=1 i=1

-32<x <32

19

(11) Function

1 D D

11 : Griewank’ s function

Y- Hcos(Xy41, -600<x <600

hu = 40005 L

(12) Function 12

D-1

f,= %{103in2(7zy1)+

10

+ZD:u(xi,1, J, £
i=1

where

Ji

: Generalized penalized function_1

(¥ =1’ 105in2(7ryi+1)]+(yn—1)2}

k(x, —a)" , if x,>a
u(x,ak,m)=<k(-x —a)", if x, <-a
0 , otherwise

-50 < x. <50

20

3.3.2 Low-Dimensional Problems

In this simulation, the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin
algorithms are applied to low dimensional problems on 13 benchmark test functions. Table
3.1 and Table 3.2 show the detailed performance of the GDE, DE/rand/bin, DE/best/bin and
DE/target-to-best/bin algorithms, including the mean, best and worst performance over 50
independent runs. This table indicates that the GDE algorithm obviously achieves better
performance than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms on 13
benchmark test functions. Especially, the GDE algorithm searches the global optimal
solution at zero on the Function 5 and the Function 11. Focus on three classical DE
algorithms, the DE/target-to-best/bin algorithm often obtains a better performance than the
DE/rand/bin and DE/best/bin-algorithms on 13 benchmark test functions. The DE/rand/bin
obtains obvious difference on the Function 11 and the Function 13 among three classical DE
algorithms.

The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin
algorithms on 13 test function for low dimensional (D=30) problems is shown in Figure 3.3.
This Figure presented that the GDE algorithm possesses speedier convergence than the
DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms on 13 benchmark test
functions. An interesting case is shown in Figure 3(h) and Figure 3(i). The DE/rand/bin,
DE/best/bin and DE/target-to-best/bin algorithms are stopped at locally optimal solutions on
the Function 9 and the Function 10. The GDE algorithm maintains a continued convergence
to find the optimal solutions. It is shown that the proposed GDE algorithm successfully

overcomes the stagnation problem for low dimensional problems.

21

Table 3.1: Experimental results (Function 1—Function 8)of GDE, DE/rand/bin, DE/best/bin
and DE/target-to-best/bin for low dimensional problems (D=30), averaged over 50

independent runs.

Function | Gen. GDE DE/rand/bin DE/best/bin DEltarQEt__to
- best/bin
Mean

(Best, Worst)
1.83E-42 2.53E-13 451E-14 4.84E-16
f1 1500 (9.61E-59, (5.37E-14, (2.30E-15, (7.17E-17,
9.15E-41) 1.16E-12) 1.56E—13) 1.76E-15)
4.02E-30 2.93E-09 7.82E-11 2.11E-11
f2 2000 (3.86E-41, (5.42E-10, (1.75E-11, (3.84E-12,
1.37E-28) 8.45E-09) 3.00E-10) 6.81E-11)
1.13E-25 3.78E-10 3.77E-11 3.18E-14
f3 5000 (9.22E-38, (3.72E-11, (3.43E-13, (1.96E-16,
5.53E-24) 1.93E-09) 7.58E-10) 1.60E—13)
6.67E-11 2.17 E-02 1.93E-09 8.34E-11
f4 5000 (2.43E-14, (4.15E-13, (2.48E-11, (4.04E-14,
2.59E-10) 5.25E-01) 1.95E-08) 6.83E-10)
0.0E+00 2.98E-13 3.97E-14 5.55E-16
f5 1500 (0.0E+00, (6.03E-14, (4.03E-15, (3.87E-17,
0.0E+00) 8.50E-13) 1.82E-13) 5.20E-15)
2.08E-03 1.74E-01 7.12E-03 5.79E-03
f6 3000 (6.02E-04, (3.60E-03, (3.00E-03, (2.16E-03,
9.43E-03) 7.77E-01) 1.23E-02) 1.14E-02)
3.73E-07 1.17E+00 7.97E-01 5.58E-01
f7 3000 (1.27E-19, (1.67E-05, (1.83E-11, (1.04E-13,
1.12E-05) 3.06E+00) 3.98E+00) 3.98E+00)
2.52E+00 6.80E+03 2.94E+03 3.12E+03
f8 1500 (1.18E+02, (4.71E+03, (1.78E+03, (9.49E+02,
8.58E-04) 7.27E+03) 4.88E+03) 6.89E+03)

22

Table 3.2: Experimental

results (Function 9 — Function 13)of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for low dimensional problems (D=30), averaged over

50 independent runs.

Function | Gen. GDE DE/rand/bin DE/best/bin DEltarQEt__to
- best/bin
Mean

(Best, Worst)
5.68E-13 7.62E+01 4.55E+01 1.71E+02
f9 1500 (0.0E+00, (7.88E+00, (2.28E+01, (1.33E+02,
6.86 E-12) 1.67 E+02) 7.36E+01) 2.13E+02)
9.69E-15 1.68E-07 5.59E-08 6.64E-09
f10 | 1500 (7.99E-15, (7.25E-08, (2.08E-08, (2.47E-09,
3.28E-14) 3.31E-07) 2.16E-07) 1.67E-08)
0.0E+00 1.08E-12 8.31E-03 5.86E-03
f11 | 1500 (0.0E+00, (5.87E-14, (6.32E—15, (0.0E+00,
0.0E+00) 1.38E-11) 5.65E-02) 2.21E-02)
1.50E-32 3.81E-14 1.03E-01 2.69E-02
f12 1500 (1.34E-32, (1.66E-15, (8.03E-16, (3.60E-18,
4.06E-32) 2.84E-13) 2.06E+00) 5.19E-01)
1.70E-32 3.17E-13 2.63E-03 1.08E-08
f13 | 1500 (1.57E-32, (2.82E-14, (2.49E-15, (2.86E-17,
6.8E-32) 1.76E-12) 1.09E-02) 5.41E-07)

23

20

10 c c

40| | == DE/rand/bin
10 | === DE/best/bin y
- DE/target-to-best/bin

Log of Fitness Vaule

-60

10

(0] 500 1000 1500
Generation

(a)

@
=
<
>
wn)
wn
<)
-
=
kS
S =— DE/rand/bin
— 10 /| ——— DE/best/bin
- DE/target-to-best/bin
10'60 r r r
(¢] 500 1000 1500 2000
Generation
(b)

10™° - : . ?

10°
@D
=
C>U -10
»n 10
(7]
[«5)
=]
[-20
S 10
i = DE/rand/bin

1073°|| === DE/best/bin

- DE/target-to-best/bin
10740 - r r d
(0] 1000 2000 3000 4000 5000
Generation
(c)

24

Log of Fitness Vaule Log of Fitness Vaule

Log of Fitness Vaule

=
O\

i
o

[y
o

-15

10

10

10

-30

10

-40

10

T

== DE/rand/bin
== DE/best/bin
=== DE/target-to-best/bin ||
- GDE

0} 1000 2000

3000

Generation

(d)

4000 5000

= DE/rand/bin

— DE/best/bin

— DE/target-to-best/bin
— GDE

(0] 500

1000

Generation

(€)

1500

T

=— DE/rand/bin
=— DE/best/bin
== DE/target-to-best/bin ||
— GDE

o} 500 1000 1500

Generati

()

25

2000
on

2500 3000

10

10 c c v s =

@
=] o
g 10 -
(7]
[72]
[«B)
=
[
S 10
2 10 [e DE/rand/bin
- — DE/best/bin
- DE/target-to-best/bin
10'20 r r r r r
(0] 500 1000 1500 2000 2500 3000
Generation
)

10° . -

10" .
D
|
=S
» 10 A
wn
(<B)
=
L o
“5 10 '
§’ =— DE/rand/bin

102H =— DE/best/bin |

= DE/target-to-best/bin “\
10'4 r r
(¢} 500 1000 1500
Generation
(h)
10° - .

Log of Fitness Vaule
|_\
o

=— DE/rand/bin
-10
10" || == DE/best/bin 7
- DE/target-to-best/bin
10™° ‘ ‘
(0] 500 1000 1500

Generation

(i)

26

Log of Fitness Vaule Log of Fitness Vaule

Log of Fitness Vaule

10 T v
— DE/rand/bin
= DE/best/bin
10° | - DE/target-to-best/bin | |
10° |- .
107} -
10™"° : :
(0] 500 1000 1500
Generation
10° -
— DE/rand/bin
= DE/best/bin
10° |- - DE/target-to-best/bin
10° .
10 ,
10-15 L. N
-20
10 r r
(0] 500 1000 1500
Generation
(k)
19 . .
10°
10—10
10-20
= DE/rand/bin
10730 =— DE/best/bin
- DE/target-to-best/bin
10740

500
Generation

(1)

27

1000 1500

=— DE/rand/bin
-30 | | === DE/best/bin
— DE/target-to-best/bin
— GDE

Log of Fitness Vaule

Generation

best/bin and

a) Function

) Function

J. flo; (k)

6: f5;

Function

28

3.3.3 High-Dimensional Problems

In order to verify the capability of algorithm on high dimensional problems, the GDE,
DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms are applied to 13 benchmark
test functions. Table 3.3 and Table 3.4 show the detailed performance of the GDE,
DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms, including the mean, best and
worst performance over 50 independent runs. Obviously, all algorithms are difficult to find
optimal solutions caused by high dimensional problem. In Tables, the GDE algorithm
obtains better performance than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin
algorithms. on 13 benchmark test functions. Notice that the GDE algorithm efficiently
searches a global optimal solution-at zero on the Function 9 and the Function 11. Among
three classical DE algorithms, the DE/target-to-best/bin algorithm obtains obvious difference
on the Function 9 and the Function 11.

The learning curve of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin
algorithms on 13 test function for high dimensional (D=100) problems is shown in Figure
3.4. In this Figure, the GDE algorithm also presents speedier convergent curves than other
algorithms on high dimensional functions. The stagnation situation is also happened when
the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms are performed in Figure
3(b), Figure 3(c), Figure 3(e), Figure 3(g) and Figure 3(i). The GDE algorithm continuously
maintains a convergent curve on the Function 2, Function 3, Function 5, Function 7 and
Function 9. In this paper, the simulation result show that the proposed GDE algorithm
obviously achieves better performance and successfully overcomes the stagnation situation

for low dimensional problems and low dimensional problems.

29

Table 3.3: Experimental results (Function 1 — Function 8) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems (D=100), averaged

over 50 independent runs.

Function | Gen. DE/target - to
GDE DE/rand/bin DE/best/bin
- best/bin
Mean
(Best, Worst)

fl 2000 4.95E-21 3.71E+01 5.25E+00 1.13E+00
(8.68E-28, (2.14E+01, (2.31E+00, (5.33E-01,

9.07E=20) 5.22E+01) 1.11E+01) 2.60E+00)

f2 3000 9.81E-23 2.46E+00 1.41E-01 7.27E-02
(1.60E-28, (1.58E+00, (7.18E-02, (2.87E-02,

3.66E-21) 3.82E+00) 2.29E-01) 1.41E-01)

f3 8000 2.74E-10 2.23E+05 4.91E+04 3.04E+04
(7.24E-12, (1.47E+05, (2.97E+04, (1.39E+04,

4.08E-09) 3.13E+05) 7.34E+04) 4.65E+04)

f4 15000 1.23E-02 9.19E+01 1.08E+01 2.40E+00
(1.00E-02, (5.68E+01, (5.86E+00, (1.19E+00,

1.55E-23) 9.54E+01) 15.9E+00) 4.25E+00)

f5 1500 5.27E-22 3.70E+02 6.93E+01 2.08E+01
(1.31E-23, (2.03E+02, (4.00E+01, (1.32E+01,

5.44E-21) 5.19E+02) 1.06E+02) 3.23E+01)

f6 6000 6.15E-03 2.98E-02 7.27E-02 4.24E-02
(4.40E-03, (2.21E-02, (4.67E-02, (2.66E-02,

8.26E-03) 3.49E-02) 1.10E-01) 610E-02)

7 6000 6.70 E+00 9.11E+01 1.52E+02 1.06E+02
(1.71E-06, (9.05E+01, (8.40E+01, (7.69E+01,

3.72 E+01) 9.23E+01) 2.99E+02) 1.49E+02)

8 1000 2.66E+03 3.14E+04 1.36E+04 2.86E+04
(9.82E+02, (2.94E+04, (1.05E+04, (2.03E+04,

3.79E+03) 3.24E+04) 1.81E+04) 3.17E+04)

30

Table 3.4: Experimental results (Function 9 — Function 13) of GDE, DE/rand/bin,

DE/best/bin and DE/target-to-best/bin for high dimensional problems (D=100), averaged

over 50 independent runs.

Function | Gen. DE/target - to
GDE DE/rand/bin DE/best/bin
- best/bin
Mean
(Best, Worst)
f9 9000 0.0E+00 8.08E+02 1.74E+02 4.20E+02
(0.0E+00, (7.53E+02, (1.26E+02, (7.3E+01,
0.0E+00) 8.47E+02) 2.42E+02) 7.99E+02)
f10 3000 4.41E-13 1.54E-01 2.68E-01 9.45E-03
(3.45E-13, (9.20E-02, (2.08E-02, (5.51E-03,
5.65E-13) 2.09E-01) 1.32E+00) 1.30E-02)
f11 3000 0.0E+00 2.48E-01 1.72E-02 2.32E-03
(0.0E+00, (1.47E-01, (7.14E-03, (5:98E-04,
0.0E+00) 3.71E-01) 3.53E-02) 1.44 E-02)
f12 3000 2.43E-24 2.35E+00 2.81E+00 2.47E-01
(1.80E-28, (3.11E-01, (6.42E-01, (6.86E-04,
2.54E-23) 1.05E+01) 6.66E+00) 1.34E+00)
13 3000 7.65E-25 8.82E+00 7.49E+00 1.91E-01
(3.38E-28, (2.32E+00, (5.72E-01, (4.17E-03,
4.18E-24) 2.47E+01) 3.58E+01) 3.84E+00)

31

Log of Fitness Vaule

-20 ||

10

— DE/rand/bin

=— DE/best/bin

- DE/target-to-best/bin
— GDE

-30

10
o

60

500 1000

Generation

(@)

1500

2000

10

40

10

Log of Fitness Vaule

T T 13

13

— DE/rand/bin
= DE/best/bin

- DE/target-to-best/bin]

10 r r r r r
(e} 500 1000 1500 2000 2500 3000
Generation
(b)

10*° : . .

10°
@
=
£ o
»n 10 - -
(7]
[«5)
=]
[-5
= 10 ~ -
i = DE/rand/bin

10t°} = DE/best/bin i

- DE/target-to-best/bin
10’15 r r r
(0] 2000 4000 6000 8000

Generation

(©)

32

: ~
@ 10" E
= E]
T E]
> L]
% = o
£ 10° ¢
i :]
S []
§’ 4| | == DE/rand/bin 1
10" & e DE/best/bin E
- | === DE/target-to-best/bin
L _GDE -
107 : :
(0] 5000 10000 15000
Generation
(d)
10" ! .
@
>
T
=
w
(70
(<5}
=
=
iS)
T =— DE/rand/bin
-20
— 10 | == DE/best/bin b
- DE/target-to-best/bin
10°° ‘ :
(0] 500 1000 1500
Generation
(e)
10" : . g

Log of Fitness Vaule
|_\
o

— DE/rand/bin
= DE/best/bin
== DE/target-to-best/bin ||
— GDE

O 1000

2000

3000 4000 5000 6000
Generation

()

33

Log of Fitness Vaule Log of Fitness Vaule
'—\
o

Log of Fitness Vaule
|_\
o

— DE/rand/bin

=— DE/best/bin

- DE/target-to-best/bin
— GDE

1000 2000 3000

Generation

(9)

4000 5000 6000

T T I

LI B B AR T |

IIERRT!

— DE/rand/bin

= DE/best/bin

- DE/target-to-best/bin
— GDE

r

o

(h)

200 400 600 800 1000
Generation

T 3

——————

= DE/rand/bin H
= DE/best/bin

- DE/target-to-best/bin
- GDE

2000 4000

Generation

(i)

34

6000 8000

@
=
(o]
=>
(7]
[72]
[«B)
=]
[
ks
=3 = DE/rand/bin
— 10" | = DE/best/bin 1
= DE/target-to-best/bin \
10'15 r r r r r
(0] 500 1000 1500 2000 2500 3000
Generation

= DE/rand/bin

Log of Fitness Vaule

15| | == DE/best/bin

10 = DE/target-to-best/bin]
10’20 r r r r r
(0] 500 1000 1500 2000 2500 3000
Generation
(k)

19 ‘
@ 10°
= ‘\
<
>
A
2 10" ,
=
kS
2 =— DE/rand/bin

-20
— 10 [| == DE/best/bin
— DE/target-to-best/bin
10’30 r r r r r
(0] 500 1000 1500 2000 2500 3000
Generation
U

35

Figure 3.4
DE/targe
Function
Functic

Function

Log of Fitness Vaule
|_\
o

10

10

— DE/rand/bin
— DE/best/bin
— DE/target-to-best/bin
— GDE

36

3.3.4 Statistical Comparison Using Friedman test

In order to understand the significant difference between the GDE and other algorithms
over multiple test functions, this paper performed a statistical procedure based on the
Friedman test [41, 42] with the corresponding post-hoc tests. We set the GDE algorithm as
the control algorithm to compare with other algorithms. The performance of algorithm is
significant difference if the corresponding average ranks differ by at least the critical

difference (CD)

i(i+1
CD ~Gyn 2 (16)

where j is the number of algorithms, T is the number of test functions, and critical values

0,05 =2.569 can be found in[42].

A rank relationship of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin
algorithms is shown in Table 3.5. In this simulation, j=4, T=13 and CD = 0.13. Table 3.6
presents.a complete result of Friedman test. Under the 30 dimensional problems, all
differences were greater than the critical difference, which means the GDE algorithm is
significantly better than the DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms
in this case. Under the 100 dimensional problems, the difference between the GDE algorithm
and the DE/target-to-best/bin algorithm was smaller than the critical difference, which seems
to suggest that the GDE algorithm is likely to be different from the DE/target-to-best/bin
algorithm. However, in statistics theory, the Friedman test could not prove the significant
difference between the GDE algorithm and the DE/target-to-best/bin algorithm. Otherwise,
the proposed GDE algorithm was significantly better than the DE/rand/bin algorithm and the
DE/best/bin algorithm in 100 dimensional problems. In this paper, an additional statistical
test, called Wilcoxon signed-rank test [41], was performed for comparison with the GDE
algorithm and the DE/target-to-best/bin algorithm in 100 dimensional problems. Finally, we

obtain a P-value = 8.53x10™°. This result indicated that the GDE algorithm achieves

37

significantly better performance than DE/target-to-best/bin algorithms in 100 dimensional
problems. The overall result of Friedman test indicates the significant difference between the
proposed GDE algorithm and other methods for 100 dimensional problems and 30

dimensional problems.

Table 3.5: The rank table based on experimental results of GDE, DE/rand/bin, DE/best/bin

and DE/target-to-best/bin for statistical comparison.

D=30 D=100

DE/target— DE/target—
Function GDE DE/rand/bin DE/best/bin to GDE DE/rand/bin = DE/best/bin to
—best/bin —best/bin

f1
f2
3
4
5
f6
7
8
9
f10
11
f12
13

N
N

N = e e T = T T o e o S o I
[T N T I S S S S S L S N > N SN
AR B WOWN W W W W W W W
W W W NNNWNNNNDNDNDN

e = T T O e o o T e T
A W B WO MM B D DM M BB DS
W A WA NN WD ®OWO W W
DN NN W W RN W N NN

Total
Rank
Ave.
Rank

N
(op]
N
RN
w
o
=
w
N
o
B
o
N
O

1 3.54 3.15 2.31 1 3.69 3.07 2.23

38

Table 3.6: The result of Friedman test for statistical comparison.

D=30
Algorithm Difference in Rank Critical Difference(CD)
DE/rand/bin (354—1) = 254
DE/best/bin (3.15—1) = 2.15 1.30
DE/target-to—best/bin (231—-1) = 131

D =100
DE/rand/bin (3.69—1) = 2.69
DE/best/bin (3.07—1) = 2.07 1.30

DE/target-to—best/bin (223—1) = 1.23

D=30& D =100

DE/rand/bin (3.61—-1) = 261

DE/best/bin (3.11-1) = 311 0.91

DE/target-to—best/bin (226—1) = 1.26

3.3.5 Comparisons with Other Methods

A further result of the GDE algorithm which compares with other evolutionary
algorithms is presented in this section. Table 3.7 shows the comparison of the GDE
algorithm and other evolutionary algorithms with 30 dimensional problems. These
algorithms include RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40] and
RTEP[44]. The GDE algorithm obtained the best results on six out of eight functions. Table
3.8 shows the comparison of the GDE algorithm and advanced DE algorithms, including

JDE[33,47], SaDE[26], ODE[27], SaCDE[16], DEGL[18] and JADE[22,46]. On unimodal

39

function problems (Function 1 —Function 6); the GDE algorithm obtained the best results on
four out of six functions. On multimodal function problems (Function 7 —Function 13), the
GDE algorithm obtained the best results on four out of seven functions and has a result near
the best solution on fio. The overall results showed that GDE algorithm is a more effective

algorithm than other competitive algorithms.

Table 3.7: Comparison with the proposed GDE algorithm and other methods (D=30),

including RMEA[45],CEP[30], ALEP[43], BestLevy[43], NSDE[40] and RTEP[44].

GDE | RMEA[45] | CEP[3,44] | ALEP[43] | BestLevy[43] | NSDE[40] | RTEP[44]

Function
Performance

fl 1.83E-42 | 1.10E-17 | 9.10E-04 | 6.32E-04 6.59E-04 7.10E-17 | 7.50E-18

f3 1.13E-25 | 2.21E-15 | 2.10E+02 | 4.18E-02 3.06E+01 7.90E-16 | 2.40E-15

f7 3.73E-07 | 3.10E-04 | 8.60E+01 | 4.34E+01 5.77E+01 5.90E-28 | 1.10E+00

9 5.68E-13 | 1.74E-08 | 4.34E+01 | 5.85E+00 1.30E+01 F 2.50E-14

10 9.69E-15 | 5.08E-06 | 1.50E+00 | 1.90E-02 3.10E-02 1.69E-09 | 2.00E-10

11 0.0E+00 | 6.41E-20 | 8.70E-00 2.4E-02 1.80E-02 5.80E-16 | 2.70E-25

12 150E-32 | 1.72E-08 | 4.80E-01 | 6.00E-06 3.00E-05 5.40E-16 | 3.20E-13

13 1.70E-32 | 9.29E-05 | 8.90E-02 | 9.80E-05 2.60E-04 6.40E-17 | 7.10E-08

40

Table 3.8: Comparison with the proposed GDE algorithm and advanced DE algorithms

(D=30), including jDE[33,47], SaDE[26], ODE[27], SaCDE[16], DEGL[18] and
JADE[22,46].
GDE | jDE[33,47] | SaDE[26] | ODE[27] | SaCDE[16] | DEGL[18] | JADE[22,46]
Function
Performance

f1 1.83E-42 | 1.10E-28 | 4.50E-20 | 5.61E-24 | 3.00E-28 | 8.78E-37 5.50E-28
f2 4.02E-30 | 1.50E-23 | 1.90E-14 | 67.3E-13 | 1.98E-21 | 4.47TE-36 1.03E-26
3 1.13E-25 | 9.00E-02 | 9.00E-20 | 2.95E-08 | 1.96E-24 | 3.90E-25 2.40E-18
4 6.67E-11 | 1.40E-15 | 7.40E-11 | 2.90E-37 | 5.54E-36 | 4.99E-15 -

5 0.0E+00 | 0.00E+00 | 0.00E+00 — - - -

6 2.08E-03 | 3.30E-03 | 4.80E-03 - - - -

f7 3.73E-07 | 3.10E-15 | 6.21E-03 | 2.04E-03 | 1.66E-03 1.98E-21 7.54E-09
8 2.52E+00 - > = = - 2.79E+00
9 5.68E-13 | 1.50E-15 - - - 1.25E-15 -
f10 9.69E-15 | 7.70E-15 | 3.08E-10 | 1.90E-13 | 7.34E-15 | 1.69E-13 2.24E-15
f11 0.0E+00 | 0.00E+00 = 0.00E+00 - 5.80E-36 -
f12 1.50E-32 | 6.60E-30 | 4.48E-20 | 8.14E-25 | 2.12E-30 — -
13 1.70E-32 | 5.00E-29 | 1.70E-19 | 5.99E-21 | 1.37E-28 | 3.00E-28 -

41

Chapter 4

A GDE Algorithm for Functional-Link Fuzzy

Systems Optimization

4.1 Review of Evolutionary Fuzzy Systems

Fuzzy System (FS) has become a popular research topic and successfully applied to
many areas [48-55]. To train the parameters in designing a FS, many papers have employed
Backpropagation (BP) algorithm [48, 51, 54-55]. The BP is a powerful training. technique
that can quickly minimize the error function for NFS. However, the BP algorithm may trap
into the local minimum solution and never find the global solution. In order to overcome this
disadvantage, many researchers have proposed FS design using evolutionary algorithm (EA)
[17, 28, 31, 33, 56-70]

Genetic algorithm (GA) is one of well known evolutionary algorithms. Many
researchers had developed GA to implement fuzzy system and neuro-fuzzy system in order
to automate the determination of parameters and structures [57-66]. Genetic fuzzy system
[60-61] was characterized by using a fuzzy system as an individual in genetic operators. In
[65], Karr applied GA to the design of fuzzy controller membership functions, where each
fuzzy rule was treated as an individual. Ng and Li [62] applied chromosomes in the GA to

optimize sophisticated membership functions for a nonlinear water level control system.

42

Seng et al. [63] proposed a neuro-fuzzy network that is based on the radial basis function
neural network all of whose parameters are simultaneously tuned using GA. Juang [66]
successfully applied GA to TSK-type recurrent neuro-fuzzy system design for control
problem.

Another evolutionary algorithms category for the FS design, called particle swarm
optimization (PSO), appears to be efficient and powerful search capability in search space. It
is an evolutionary computation technique that was developed by Kennedy and Eberhart in
1995 [13]. The underlying motivation for the development of PSO algorithm is the social
behavior of animals, such as bird flocking, fish schooling and swarm theory. PSO has been
successfully applied to many optimization problems, such as NFS design [67-78] for control
problems, with improved performance over GAs. In [78], the researcher proposed an
improved PSO algorithm for a recurrent fuzzy neural network design. The improved PSO
algorithm is adopted to adjust the learning rates to improve the online learning capability of
the recurrent fuzzy neural network. Juang et al.[73] proposed a hierarchical cluster-based
multispecies particle-swarm optimization (HCMSPSO) algorithm for fuzzy-system
optimization. In their paper, the algorithm combined online cluster-based algorithm and
subspecies technique to automatically designs both the structure and the parameters of an FS.

A fast and easy evolutionary algorithm as differential evolution (DE) algorithm,
proposed by Storn and Price [15], is an efficient and effective global optimizer in the
continuous search domain. In [17, 28], the researcher proposed a modified differential
evolution (MODE) for an adaptive neural fuzzy network (ANFN-MODE) design. This
MODE provided a cluster-based mutation scheme to prevent the algorithm from being
trapped in local optima of the search space. In addition, the MODE algorithm has been
applied to locally recurrent neuro-fuzzy system design [31]. An optimization of fuzzy
systems using DE algorithm and neighborhood-based mutation operation was proposed by

Lin et al.[33]. In their paper, they utilized new mutation strategy and adaptive fuzzy c-means
43

method to find potential individuals in population. Han et al.[79] have proposed a new
mutation operation based on local information and adaptive parameter tuning method for
designing a functional-link-based neural fuzzy network. They successfully applied the
proposed model to time series forecasting and achieve a better prediction performance.
Hybrid evolutionary algorithm has been investigated in many studies [76-77, 80-81].
Such a hybrid is often combination of local search in evolutionary algorithm, and referred to
as a memetic algorithm [80-81]. In [76], a hybrid of cultural method and cooperative PSO
(CPSO) was applied for designing a functional-link-based neural fuzzy network (FLNFN).
This method is called FLNFN-CCPSO. In FLNFN-CCPSO, a swarm only optimizes one
parameter of an FLNFN. Another hybrid evolutionary algorithm as combination of GA and
PSO, which is called HGAPSO [77], was proposed. In HGAPSO, new individuals were

created not only by PSO, but also by the crossover and mutation operations of a GA.

4.2 Functional-Link Fuzzy Systems

This section describes the architecture of functional-link fuzzy system. The used system
is a novel neural fuzzy network [53, 70, 79, 28]. This system realizes a nonlinear
combination of input variables in consequent part. Each fuzzy rule corresponds to an output
of functional-link neural network (FLNN). The functional-link fuzzy system realizes a fuzzy
IF-THEN rule in the following form:

Rulej : IFx isA; andx, isA,; and ... x, is A
THEN 'y, =W, +W,;@ +W, 0, +...+ W, (17)
where X;,...,X, are input variables, Y, is system output variable, Aj,...,A; are the

linguistic term of the precondition part with Gaussian membership function, n is the number

of input variables, Wg;,...,W; are the functional-link weights, @;,..., ¢ are the basis

44

trigonometric function of input variables, given by
[x1 sin(z x,) cos(z x,) X, sin(z X,) cos(z x2)] for two-dimensional input variables.; | is the
number of basis function, and Rule; is the jth fuzzy rule.

In order to present the characteristic of the FLFS, we consider an IF-THEN rule with one

input X, as follows:

Rule : IFx isA THEN y=w,+w¢,
= W, + W, X, + W, Sin(zx,) + W, cos(zX,) (18)

According to Eq. (18), the FLFS can be degenerated as a TSK-type fuzzy system and

Singleton-type fuzzy system whenw, =w, =0andw, =w, =w, =0. Based on this idea, the

TSK-type fuzzy system and-Singleton-type fuzzy system are special cases in the proposed
FLFS. Therefore, the FLFS presents a diverse combination of input variables to deal with
difficult problems more effectively.

The proposed functional-link fuzzy system is five-layered network architecture as shown
in Figure 4.1, which is comprised of the input layer, membership function layer, rule layer,
functional-link layer and output layer. The operation functions of the nodes in each layer of
the FLFS system are now described. In the following description, O® denotes the output of
a node in the pth layer.

Layer 1—Input layer: No computation is done in this layer. Each node in this layer, which
corresponds to one input variable, only transmits input values to the next layer directly. That
is

0% =x i=1,2,...,n (19)
where n are the input variables of the functional-link fuzzy system.

Layer 2—Membership function layer: Each node in this layer is a membership function
that corresponds one linguistic label of one of the input variables in Layer 1. In other words,

the membership value which specifies the degree to which an input value belongs to a fuzzy
45

set is calculated in Layer 2

_(Xi _mi')z
O(Z)=,Uij:exl3[JA]ZJ
. (20)

Where j=1,2...,M , M is number of rules in the functional-link fuzzy system,
m; and o are the center and the width of the Gaussian membership function of input

variable, respectively.

Layer 3—Rule layer: This layer receives 1-D membership degrees of the associated rule
from the nodes of a set in layer 2. Here, the product operator described before is adopted to
perform the precondition part of the fuzzy rules. As a result, the output function of each
inference node is

n
0% = R; = Hﬂij
=T 5% (21)

The output of a layer 3 node represents the firing strength of the corresponding fuzzy rule.

Layer 4—Functional-link layer: The input to a node in layer 4 is the output from layer 3,
and the other inputs are calculated from a functional-link neural network that has not used

the functiontanh(-). For such a node,

|
oW = Rj(ZWOj +ij§0k), (22)
k=1

where wg; and wy; are the corresponding link weight of functional-link neural network and

¢, is the functional expansion of input variables. The functional expansion uses a

trigonometric polynomial basis function, given by
[x1 sin(z x,) cos(z x,) X, sin(z x,) cos(z xz)] for two-dimensional input variables.
Therefore, | is the number of basis functions, 1=3xn+1, where n is the number of input
variables. Moreover, the output nodes of functional-link neural network depend on the

number of fuzzy rules of the FLFS.

46

Layer 5—Output layer: Each node in this layer corresponds to one output variable. The
node integrates all of the actions recommended by layer 3 and layer 4, which acts as a

defuzzifier with

M |
sz(ZWOj +ij§0k)
k=1

0® =y=1= (23)

M H

2R
j=1

where M is the number of fuzzy rules, and y is the output of the FLFS.

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

X1 X2

Figure 4.1: The architecture of the functional-link fuzzy system.

47

4.3 Learning process of Functional-Link Fuzzy Systems

This section describes a learning process based GDE optimization for the
functional-link fuzzy system design. Initially, an agglomerative clustering algorithm is to
automatically construct a preliminary functional-link fuzzy system and determine optimal
number of fuzzy rules. Subsequently, the learning process randomly generates a set of
individuals (functional-link fuzzy systems) for the evolution process. All individuals are
learned by GDE algorithm for searching an optimal functional-link fuzzy system. The

overall learning process is shown in Figure 4.2.

| Optimization

________________ e Ty
I/ \I Optimization For
All Free
aga - | ~d .
: Initiation I > Coding Parameters
»|
| v : v
I .
| Agglomerative | Population
| Increasing A Clustering |
| 7 Y Algorithm | ¢
I : Evaluation
|
L¢
: : :
| Clusters is I Sorting
| Optimal ? I ¢
I I
I : Subpopulation
I
Output the No. ' ¢ Gen=Gen+1
I
|

f Clust
|For The No. Of of Clusters) 7'y
| Fuzzy Rules Mutation
— o — . . R, - o - - - — -~ l
Crossover
Selection

Termination
2

YES

Output the result

- _J

Figure 4.2: The Overall learning process.

48

4.3.1 An Agglomerative Clustering Algorithm
The first step is to determine whether a new rule should be extracted the training pattern
and decide the number of fuzzy sets in the universal of discourse of each input variable,

since one cluster in the input space corresponds to one potential fuzzy logic rule, in which

m; and o represent the mean and width of that cluster, respectively. Many studies have

employed clustering technique for rule generation, such as fuzzy C-means, possibilistic
C-means, and on-line clustering methods [28, 53, 68, 73]. However, such clustering
techniques require prior knowledge such as the number of clusters present in a pattern set. To
solve this problem, an agglomerative clustering algorithm is proposed for rule generation.
The proposed agglomerative clustering algorithm (ACA) [82-83] is an extension to the
standard fuzzy C-Means -algorithm by a penalty term to the objective function. This

algorithm can find the best number of clusters for various problems. Now, we consider a set
of samples X, :{><1,x2,...,xn}, 1=12,..,N. To cluster X into M clusters by minimizing

the following objective function:

M N M N
Obj(U,C) =23 u; [lc, =X 4> >, logu, (24)
j=1i=1 j=1 i=1
subject to
M
Dbl Lkt PR N (25)

=1

where u; €[0,1]is the membership degree of X, in the jth clusterC; =(c;,c;,,....C;,)

U is the matrix of u.

i, 4 is a penalty parameter and || is the Euclidean norm as the

dissimilarity measure. A
Equation (24) and (25) present a class of constrained nonlinear optimization problems.

For solving optimization problem, we use Lagrangian multiplier technique and gradient

49

method to obtain update law

N

Zuij Xij

C, =2 i=12,..,Mand1=12,..,n (26)

jl N

D.U;

i=1

e, [
A
U = j=12..,M andi=12,..,N (27)

To obtain the optimal centers, the u; andc;are continuously updated by equation (26)

exp

and (27). Until the objective function is unchanged, the process of agglomerative clustering
algorithm is terminated. The completed flow chart is shown in Figure 4.3.

In the agglomerative clustering algorithm, A is an important parameter for the
minimization process. When A Is large, the minimization process tries to assign each
object to more clusters to make the second term more negative. In order to achieve the
largest object entropy, the cluster centers move to the same location. On the contrary,
agglomerative clustering algorithm is degenerated as standard fuzzy C-Means algorithm
when A4 is small.

We design an automatic process to discover the best number of clusters. The overall
process is shown in Figure 4.3. In the automatic process, there is two input parameters, the
number of initial cluster centers M., and the penalty value 4., . In general, the M.,

should be larger than the possible number of clusters in the given data set, the A,

initai

, should be

and 4

set a small value. Initially, the agglomerative clustering algorithm with M initail 19

initail
performed for our problems. An exactly clustering result M (t) is obtained in the output.
We consider that the values A(t) of increase from A(t)=A(t—1)+4sa and perform

agglomerative clustering algorithm for every t. The whole procedure is stopped when M (t)

is equal to 1.
50

Initiation: / Randomly select initial clusters
Set M(0) =My / C(O):{(:l'CZ""’CM(t—l)}
M0) =2 T And calculete U(0) by using
/ Eq.(27)
/
\ // L*
/ compute a cost value
t=1 / JCOL.UO)
/
> / Y
| A / k=1
t=t+1 Perform ACA based on M(t-1) v
clusters and penalty factor / (t-1) Update C(K) by using Eq. (26)
A and U(k) by using Eq. (27)
Y \ ¢
_ \ [loet] | computea cost value
M) =A-D+4 Obtain number of clusters M(t) \\ \ JCKLU(K)
) \
\
\
NO \\ NO
M(‘[) =1? \\
\
\ YES
YES \
\ Output the
\ result of the
\ ACA
QOutput the suitable \
clustering result

Figure 4.3: A flow chart of the proposed agglomerative clustering algorithm for discovering
the optimal number of clusters.

51

In order to demonstrate the proposed method, we consider a data set of 1,000 points in a
two-dimensional (2D) space as shown in Figure 4.5(a). We perform the automatic process to
cluster this data set and discover the optimal number of clusters. Initially, A4 is a small
value, we can see that the number of clusters generated by the algorithm was equal to the
number of initial cluster centers. As increased, the number of generated clusters reduced
because some initial cluster centers moved to the same locations. In Figure 4.4, the result of
clusters = 3 is usually found for this problem. This indicates that the A setting is right in
finding the true clusters by the algorithm. Finally, when A increased to a certain value, the
number of generated clusters became one. Figures 4.5(a)-(d) show the movements of the
cluster centers in the iterations k=1, 5, 10 and 21 whenA=1. We can see that the initial

cluster centers moved to three locations (1,1), (1,5) and (5,5).

10\ T T T T T

©

number of clusters

0 2 4 6 8 10 12

Figure 4.4: The result of proposed agglomerative clustering algorithm with respect to

different 1 .

52

53

(d)

Figure 4.5: The clustering results by the proposed algorithm with A

4 (a) the result of k

=21.

10, and (d) the result of k

(c) the result of k =

=5

1, (b) the result of k

54

4.3.2 Evolution Learning Processes
For the effective parameter learning, evolutionary algorithm is usually used. In this paper,
we propose the GDE algorithm to tune all free parameters. The proposed GDE algorithm
consists of eight major steps : the coding step, population step, evaluation step, sorting step,
subpopulation step, mutation step, crossover step, and selection step. The whole learning
process is described as follows :
(1) Coding step : The foremost step in the GDE algorithm is the coding of the FLFS
system into an individual. Figure 4.6 shows an example of the coding of parameters of the

FLFS system into an individual, where NP Is population size, M is number of rules, and n is

total of input variable. In this study, an individual consists of the mean mj; and width o;; of

a Gaussian membership function, and W, weight of the consequent part, where i and]

represent the ith input variable and the jth rule, respectively.

(2) Population Step: Before the proposed GDE algorithm is performed, the individuals
that will constitute an initial population must be created. A niching operation [57, 68] is to
create good Initial population in the input space. The initial population is created according
to the range of the mean and variance of the membership function, which were computed by
the agglomerative clustering algorithm in section 4.3.1. The following formulations show the
generation of the initial population.

FLFS, =[rule |rulej |...| ruley]
=[m, +Ami, o +Acd W |...

Im;; +Am{l, o + Ac W ... (28)

My +AMY o3y + Ay, Wy |
where mIJ and 0'; are results of structure learning for the mean and width of the Gaussian

membership function of the jth rule of the ith input variable, Ami‘} and Aoq‘}are small

55

random deviations that are uniformly generated from the interval [-0.1, 0.1], w,; are

randomly and uniformly generated from an interval whose range is identical to the FLFS
system output y range.

(3) Evaluation Step : In this study, we adopt a fitness function to evaluate the
performance of each individual. The fitness function used in this paper is the root
mean-squared error (RMSE) between the desired and actual outputs. The fitness function is

defined as follows:

fitness = (29)

where 'y, represents the model output of the kth pattern, Yy, represents the desired output

of the kth pattern, and n the-number of the training pattern.

Population

1 1

FLFS 1 Rule; Rule Rule’ Rule;,
FLFS 2 Rule? Rule’ Rule? Rule?,
FLFS NP Rule}” Rule"” Ruley’

- ~
-~ - =~ ~
-~ ~
-~ - =~ ~

-~ - ~

mif oy | o | ma | o (W WS W

Figure 4.6: Coding FLFSs into individuals.

56

4) Sorting Step: A sorting process arranges all FLFSs based on their fitness value as

fitness(FLFS,) < fitness(FLFS,) < fitness(FLFS,) <... < fitness(FLFS,;,) < fitness(FLFS,;)

for minimum objective problems. After sorting process, the FLFS, is the best system in
population for current generation. According to fitness values, all FLFSs are partitioned into
an inferior group and a superior group. The two groups perform different evolution
strategies.

(5) Subpopulation Step: To enhance performance, we used symbiotic learning method
in the proposed algorithm. The basic idea of symbiotic learning method is that an FLFS is
combined by fuzzy rules, which are randomly selected from a subpopulation. Every
subpopulation is composed..of. related fuzzy rules, called subindividuals. Every
subpopulation performed evolution process to product new subindividuals. This method can
increase._more possibility to search potential solutions. A completed process of the

subpopulation step is shown in Figure 4.7.

Superior Group Inferior Group
Population Population
Rule; Rule}, Rule; Rule),
Rule}™?| .. Rule;7” Rule]”?| .. Rule,;”
Subpopulation 1 Subpopulation Subpopulation 1 Subpopulation
Rule; Rule!, Rule; Rule},
Rule)™? Rule)/ Rule,”* Rule,;

Figure 4.7: A completed process of the subpopulation step.

57

(6) Mutation Step : Each Sub-individual in the current generation is allowed to breed

through mating with other randomly selected sub-individuals from the subpopulation.

Specifically, for each subindividual Z; ., i=12,..,NP, where g denotes the current

generation, NP is subpopulation size, Four other random subindividuals, Z Z

ri,gen? r2,gen?

Z and Z are selected from the subpopulation such that rl, r2, r3,and r4 € { 1,

r3,gen ! r4,gen

2,...,NP }and i#rl=r2=r3+r4. This way, a parent pool of four subindividuals is

formed to produce an offspring. Two mutation operations are applied to generate a mutated

subindividual .v; ; according to the following equation:
Group i,l;';eﬁz,ig_d:n Zal(r—;enz, (30)

Group\B,i;e%Z gbes—H:genZ 3(b _Z g4 .n (31)

where F, and F, are scaling factors€[0,1], Z Is the best-so-far sub-individual (i.e.,

gbest,gen

Z keeps best fitness value up to now in the subpopulation). Figure 4.8 presents the

gbest,gen

mutation process of the proposed GDE algorithm.

58

Population

Elite Group FLFS1
FLFS2
0 Inferior Group
FLFSnp
v
Rule, Rule,, Rule,, , Rulely(NF,,z)+1 RuIeZY(NM)+1 Rule,, e
Rule, , Rule, , Ruley, , Rule, (/2.2 Rule, (\p/2).2 Ruley, (erz)2
RUIel,NPIZ RUIeZ,NP/Z RI"IIeM ,NP/2 RuIel,NP RUIeZ,NP RI"lleM NP
Mutation l l l Mutation l l l
DE/best DE/best DE/best DE/rand DE/rand DE/rand
v A\ 4 A4 y A A
Crossover Crossover Crossover Crossover Crossover Crossover
, v : v ‘]
Selection Selection Selection Selection Selection Selection

Combination of FLFS

New population
FLFS1
FLFS2

Combination of FLFS

FLFSnp

Figure 4.8: A flow chart of the proposed GDE algorithm for FLFSs optimization.

59

(7) Crossover Step : After mutation operation, the proposed GDE algorithm uses a

crossover operation, often referred to as discrete recombination, in which the mutated

subindividual V. is mated with Z. _and generates the offspring U The elements of

i,gen i,gen i,gen "

an subindividual U. are inherited from Z. and V.

i,gen i,gen i,gen !

which are determined by a

parameter called crossover probability (CR € [0, 1]), as follows:

Vyigens If Tand(d) <CR
Ud,i,gen = Z H (32)
aigens 1T 1and(d) > CR
whered =1, 2,. .., D denotes the dth element of individual vectors, D is total element of

subindividual vector, rand(d) € [0, 1] is the dth evaluation of a random number generator.

(8) Selection Step :The GDE algorithm applies selection operation to determine

whether the subindividual survives to the next generation. First, the current composed

FLFSqgen embeds the current subindividual Z; ;- into the FLFSg gen-1 and the trial composed

FLFSqgen €mbeds the trial subindividual U into the FLFS ggen-1. Second, a knockout

i,gen+l

competition is played between. the current composed FLFSqqn and the trial composed
FLFSqgen- Then, the corresponding subindividual of the winner is selected deterministically

based on objective function values.

60

4.4 Simulation

This section discusses five simulations that are considered to evaluate the FLFS model
with the GDE algorithm. The five simulations include chaotic time series prediction, Mackey
Glass time series prediction, oil price time series prediction, star brightness time series
prediction and auto-MPG6 data prediction. Table 4.1 presents the initial parameters prior to
training used in each of the five simulations.

For comparison, the evolutionary algorithms, such as DE, jDE and MODE are applied to
the same problems for the FLFS optimisation. We used the same population size and number
of generations in each of these evolutionary algorithms. The agglomerative clustering
algorithm is also used for rule generation.

In the following simulations; the-major computation time is evaluating the performance of
the FLES. All evolutionary algorithms are compared using the same population size and
number of generations in a single run. Thus, the overall computation time is almost the same

for different evolutionary algorithms.

Table 4.1: Initial parameters before training.

Parameter Value

Population Size 50

CR, 0.9

CRy 0.9

Fa 0.5

Fo 0.8

I\/Iini'[ail 15
ﬂinitail 001
Generation 1000

Coding Type Real Number

61

Example 1: Prediction of chaotic time series

In this example, an FLFS model with a GDE learning method (FLFS-GDE) is used to
predict a chaotic signal. The classical time series prediction problem is a one-step-ahead
prediction, which has been described in [48]. The following equation describes the logistic
function.

x(k+12) = ax(k)@=x(k)) . (33)

The behavior of the time series generated by this equation depends critically on
parameter a. If a<l, then the system has a single fixed point at the origin, and from a
random initial value between [0, 1] the time series collapses to a constant value. For a>3,
the system generates a periodic-attractor. At a>3.6, the system becomes chaotic. In this
example, a Is set to 3.8. The first 60 pairs (from x(1) to x(60)), with initial value
X(1) =0.001, are the training data set, while the remaining 100 pairs (from x(1) to x(100)),
with initial value x(1) = 0.9, are the testing data set used to validate the proposed method.

In this example, DE, JDE and MODE are applied to the same problem to show the
effectiveness and efficiency of the FLFS model with the GDE learning method. In the DE
and jDE, the scale factor F = 0.5, the crossover rate CR=0.9 and the mutation strategy=
DE/rand/bin. In the MODE, the scale factor is linearly increased from 0 to 1, the crossover
rate CR=0.9 and the mutation strategy= DE/target-to-best/bin. A total of 50 runs are
performed for statistical analysis.

After rule generation, the agglomerative clustering algorithm find the optimal number
of fuzzy rules = 2 for example 1, as shown in Figure 4.9. The FLFS is learned by DE, jDE,
MODE and GDE algorithms. The performance of the FLFS model with DE, jDE, MODE
and GDE is shown in Table 4.2, including average and standard deviation (STD) over 50

runs. Figure 4.10 shows the learning curves of the DE, jDE, MODE and GDE algorithms for

62

example 1. The learning curves of the DE and jDE algorithms present stagnation situations
during evolution process. The MODE and GDE algorithms continually keep convergence
results. It is clear from these data that the proposed GDE algorithm shows better learning
curves than the other methods. The proposed GDE obtains the best performance RMSE=
0.00025. Figure 4.11 plots the results predicted using the proposed GDE algorithm. Figure
4.12 presents the prediction errors of the proposed GDE algorithm.

In addition, we also compare with the performance of the FLFS-GDE model and other
papers. Table 4.3 shows that the testing RMSE of FLNFN-PSO [13, 76], FLNFN-CPSO [84,
76] and FLNEN-CCPSO [76] models from other journal papers. These comparative papers
use three fuzzy rules for their system. In Table 4.3, our method FLFS-GDE model achieves a
better performance than FLNFN-PSO [13, 76], FLNFN-CPSO [84, 76] and FLNFN-CCPSO

[76] models.

NMumber of Rules

2 -
1 I 1 I \
o 0.05 010 015 0.z

A

Figure 4.9: The result of the agglomerative clustering algorithm for example 1.

63

Log (RMSE)

[[[[[[[[[it
7 — D E
1 | =——DE
- 7 | === MODE
L - — G D E
10-2 -
10° - -
L —]
] [[[[[[[[[1
0 100 200 300 400 500 600 700 800 900 1000
Generation

Figure 4.10: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each
performance evaluation for example 1.

—<—Actual Output

T T T T T = —Desired Output
¢ To o & 9o * Yo o @ o
P g e & & e
© & &
b & Y@ v & 7
0' 1 L r r r r r r r r r
0 10 20 30 40 50 60 70 80 90 100

Figure 4.11: Prediction results of the FLFS-GDE model for example 1. Symbol "+"
represents the desired results and "O" represents the actual results.

64

0.01¢ T T T T T T T T T

0.008

]
1

0.006

]
1

0.004

]
1

0.002

]
1

Error

-0.002

]
1

-0.004

]
1

-0.006

]
1

-0.008

]
1

'O. 01 L r r r r r r r r r
0 10 20 30 40 50 60 70 80 90 100
Samples

Figure 4.12: Prediction errors of the FLFS-GDE madel for example 1.

Table 4.2. Performance of the GDE algorithm and the other algorithms for example 1.

DE JDE MODE GDE
No. of Rules 2
(Parameters) (12)
Training
0.0071 0.0041 0.0028 0.0012
RMSE
+0.0018 +0.002 +0.005 +0.001
(Mean = STD)
Testing RMSE 0.0074 0.0044 0.0023 0.0015
(Mean £ STD) +0.002 +0.002 +0.006 +0.002

65

Table 4.3. The best performance of the FLFS-GDE model and other papers for example 1.

Method Rules(Parameters) Testing RMSE
FLNFN-PSO[13,76] 3(18) 0.0055
FLNFN-CPSO[84,76] 3(18) 0.0039
FLNFN-CCPSO[76] 3(18) 0.0027
FLFS-GDE 2(12) 0.00025

Example 2: Predictionof Mackey—Glass time series

The time-series prediction problem used in this example is the chaotic Mackey—Glass time
series, which is generated from the following differential equation:

dx(t) 4 0.2x(t—7) —0.1x(1)
dt 1+ x°(t—7) . (34)

where © > 17. As in previous studies [76], the parameter © = 30, and x(0) = 1.2 in this
simulation. Four past values are used to predict x(t), and the input—output pattern format is
given by [X(t=24),x(t ~18), x(t~12), x(t —6) | x(1)] |

A total of 1000 patterns are generated from t = 124 to 1123, where the first 500 patterns
[form x(1)to x(500)] are used to train, and the last 500 patterns [form x(501)to x(1000)]
are used to test. A total of 50 runs are performed for statistical analysis. The agglomerative
clustering algorithm find the optimal number of fuzzy rules = 3 for Mackey—Glass time
series data. The result of agglomerative clustering algorithm is shown in Figure 4.13. Figure
4.14 shows the learning curves of the DE, jDE, MODE and GDE algorithms for example 2.
The learning curve of the PSO and DE algorithms present a rapid convergence result over

the first 150 generations that became trapped at local minimum solutions at training average

66

RMSE = 0.066 and 0.069, respectively. The result of the MODE algorithm Kkeep
convergence after 500 generations, and this result is better than those of the DE and jDE
algorithms. The performance of the GDE algorithm obtained a training average
RMSE=0.019, which is better than the other algorithms for example 2. Table 4.4 shows that
the average performance of the GDE algorithm compared with those of DE, jDE and MODE
over 50 runs. The results show that the GDE algorithm for FLFS optimisation offers a
smaller testing RMSE than the other methods. Table 4.5 shows that the best testing RMSE of
FLFS-GDE, FLNFN-CCPSO[76], RBF-AFS[86], HyFIS[87], NEFPROX[88], D-FNN[89],
GA-FLC [65], SEFC [85], Back-propagation NN, Six-order polynomial,
Cascaded-correlation, Auto regressive model and Linear predictive from other journal papers.
The proposed FLFS-GDE model achieves a better performance than other evolutionary
algorithms. Figure 4.15 shows the prediction results of the FLFS-GDE model for the desired

output and the actual output.

67

14

12

10

Number of Rules

r

- GDE
— MODE

= IDE

r [r [[r [r

0

100

Figure 4.14

200 300 400 500 600 700 800 900 1000
Generation

: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each
performance evaluation for example 2.

68

x(t)

Figure 4.15: Symbol "+" represents the desired results and "O™ represents the prediction

500

Time Step

results of the FLFS-GDE model for example 2.

69

Table 4.4. Performance of the GDE algorithm and the other algorithms for example 2.
DE JDE MODE GDE
No. of Rules 3
(Parameters) (63)
Training
0.066 0.069 0.048 0.019
RMSE
+0.018 +0.021 +0.015 +0.008
(Mean £ STD)
Testing RMSE 0.075 0.072 0.050 0.023
(Mean £ STD) | +0.022 +0.020 +0.022 +0.014

Table 4.5. The best performance of the FLFS-GDE model and other papers for example 2.

Method Rules Testing RMSE
(Parameters)
FLFS-GDE 3(63) 0.0075
FLNFN-CCPSO[76] 3(63) 0.0082
RBF-AFS[86] 13(130) 0.0131
HyYFIS[87] 16(104) 0.0101
NEFPROX[88] -(105) 0.053
D-FNN[89] 5(100) 0.008
GA-FLC [65] - 0.26
SEFC [85] - 0.032
Back-propagation NN - 0.02
Six-order polynomial - 0.04
Cascaded-correlation - 0.06
Auto regressive -
0.19
model
Linear predictive - 0.55

70

Example 3: Prediction of Auto-MPG6 data

This is a real-world problem that concerns the prediction of automobile city-cycle fuel
consumption, in miles per gallon (MPG). There are five inputs and one output in the
prediction model. The real dataset contains 398 examples and can be downloaded from
KEEL (http://www.keel.es/)[90]. Evaluation of this model used the five-fold cross-validation
datasets in KEEL. The inputs are scaled to the range [0, 1]. For each cross-validation dataset,
a learning algorithm is repeated for ten runs. For rule generation, we obtain the best number
of fuzzy rules = 4.2 by the agglomerative clustering algorithm. The result of agglomerative
clustering algorithm is shown.in Figure 4.16. Figure 4.17 shows the learning curves of the
DE, JDE, MODE and GDE-algorithms for example 3. Table 4.6 shows the performances of
the DE, jDE, MODE and GDE algorithms using the same number of rules for the FLFS
optimisation. In this table, the result of the GDE algorithm is better than that of the DE, jDE
and MODE algorithms for example 1, 2 and 3. We also compare the performance of our
method with other papers, and the comparison results are tabulated in Table 4.7. According
to these results, the proposed FLFS-GDE model outperforms FS-HGAPSO [77],
MOGUL-TSK][92], FS-CPSO[84] and FS-HPSO-TVACI[91]. Figure 4.18 shows the training
output of the FLFS-GDE maodel for the desired output (blue line) and the actual output (red

line). Figure 4.19 shows the testing result of the FLFS-GDE model.

71

2

Number of Rules

0.6

=—DE
- iDE
= MODE
- GDE
o B
210' s
€ hY
(@)
o
-l
10" S
[[[[[[[[[
0 100 200 300 400 500 600 700 800 900 1000
Generation
Figure 4.17: Training RMSEs of the DE, jDE, MODE and GDE algorithms at each

performance evaluation for example 3.

72

== Actual Training Y
== Desired Training Y

5 [[[[[[
0 50 100 150 200 250 300

Samples
Figure 4.18: The training output of the FLFS-GDE model for example 3.

== Desired Testing Y
= Actual Testing Y i

10 r r r r r r r
10 20 30 40 50 60 70

Samples
Figure 4.19: The testing output of the FLFS-GDE model for example 3.

73

Table 4.6: The performance of the GDE algorithm and other algorithms for example 3.

DE jDE MODE GDE
No. of Rules 4
(Parameters) (104)
Training
3.35 3.27 2.51 2.36
RMSE
+0.56 +0.56 +0.22 +0.15
(Mean + STD)
Testing RMSE 3.66 3.61 2.89 2.58
(Mean £ STD) +0.68 +0.72 +0.34 +0.21

Table 4.7: Comparison of the FLFS-GDE model and other papers for example 3.

Method Testing RMSE
FLFS-GDE 2.58
FS-HGAPSO [77] 2.97
MOGUL-TSK[92] 5.16
FS-CPSO[84] 2.66

FS-HPSO-TVAC[91] 2.72

74

Example 4: Prediction of oil price time series

A practical prediction problem of oil price time series is considered in this paper. This
dataset recorded the average annual price of oil time series from 1870 to 1997. The oil price
time series dataset can be downloaded from http://www-personal.buse
-co.monash.edu.au/~hyndman/TSDL/. 128 samples are used, each with two inputs and one
output, i.e. Yy, = f(Y.., Y, ,). The first 64 samples are used for training and the last 64
samples are used for testing. For fair comparison, we perform the same normalized process
[5] to scale all samples within the range [-1, 1]. In this simulation, the FLFS-GDE model is
repeated for 50 runs and we-obtain two fuzzy rules after rule generation. The result of
agglomerative clustering algorithm is shown in Figure 4.20. The best prediction performance
of FLFS-GDE model is about MSE=0.0132. Figure 4.21 shows the prediction result of
FLFS-GDE model for desired output (blue line) and actual output (red line) for example 4.
Tables 4.8 shows the performances of TSK-NFIS[93], Autoregressive model[93], Nonlinear
autoregressive model[93], Neural network[93], NFS-PSO-RLSE[94], CNFS-PSO-RLSE[95],
CNFS-HMSPSO-RLSE[96], FLFS-DE and FLFS-GDE for prediction problems. The
proposed FLFS-GDE model which achieves a significant performance is superior to other

algorithm for example 4.

75

55~ !

4.5~ !

35 !

Number of Rules

1
0.01 0.03 0.05 0.07 0.09 0.11

Figure 4.20: The result of the agglomerative clustering algorithm for example 4.

iL7 T T 5 5 T T
:
,L | == Actual Output [i
== Desired Output 1]

0.4 r r r r I r
0 10 20 30 40 50 60 70

Testing Samples (Time Series)

Figure 4.21: Prediction output of FLFS-GDE model for example 4.

76

Table 4.8: Performance of the FLFS-GDE model and other algorithms for example 4.

Rules Training Testing
Method
(Parameters) MSE MSE
TSK-NFIS[93] - 0.00431 0.0237
Autoregressive -
0.00545 0.0244
model[93]
Nonlinear -
Autoregressive 0.00499 0.0327
model[93]
Neural -
0.00469 0.0254
network[93]
NFS-PSO-RL 4(28)
0.00198 0.0259
SE[94]
CNFS-PSO-R 4(36)
0.00203 0.0163
LSE[95]
CNFS-HMSP 4(36)
0.00221 0.0134
SO-RLSE[96]
FLFS-DE 2(22) 0.00215 0.0244
FLFS-GDE 2(22) 0.00258 0.0132

Example 5 : Prediction of star brightness time series

In this example, an FLFS-GDE model is used to predict the star brightness time series.
This real data measures the brightness of a star in 600 successive midnights. The dataset is
obtained from http://www-personal.buseco.monash.edu.au/~hyndman/
TSDL/. 600 samples are used, each with three inputs and one output, i.e.
Yo =T (Y1 Yo Vis) - The first 300 samples are used for training the FLFS-GDE model and
the remaining 300 samples are used for testing phase.

In this simulation, we perform the same normalized process [5] to scale all samples within
the range [-1, 1]. The FLFS-GDE model and the FLFS-DE model are repeated for 50 runs
and the standard deviation of performance error is a small value. After agglomerative
clustering algorithm, three fuzzy rules are generated for predicting star brightness time series.

77

The result of agglomerative clustering algorithm is shown in Figure 4.22. Figure 4.23 plots
the prediction outputs of FLFS-GDE model for predicting star brightness time series. Table
4.9 shows the performances of the proposed FLFS-GDE model and other journal papers. The
proposed FLFS-GDE model obtains the best performance MSE=0.000249 which is better
than TSK-NFIS[93], Autoregressive model[93], Nonlinear autoregressive model[93], Neural
network[93], NFS-PSO-RLSE[94], NFS-ARIMA[97], CNFS-PSO-RLSE[95] and

CNFS-HMSPSO-RLSE[96].

Number of Rules

Figure 4.22: The result of the agglomerative clustering algorithm for example 5.

78

0.6 T T

0.4

X
8%

eor o ©0@C

B3

0.8 r r r I r
0 50 100 150 200 250 300

Testing Samples (Time Series)

Figure 4.23: Symbol "+" represents desired and "O" represents prediction results of the
FLFS-GDE model for example 5.

Table 4.9: Performance of the FLFS-GDE model and other algorithms for example 5.

Rules Training Testing
Method
(Parameters) MSE MSE
TSK-NFIS[93] - 0.000313 0.000331
Autoregressive -
0.000304 0.000322
model[93]
Nonlinear =
Autoregressive 0.000320 0.000312
model[93]
Neural -
0.000301 0.000311
network[93]
NFS-PSO-RLSE[9 8(84)
4] 0.000199 0.000324
CNFS-PSO-RLSE 8(108)
0.000198 0.000280
[95]
CNFS-HMSPSO- 8(108)
0.000198 0.000272
RLSE[96]
NFS-ARIMA[97] 8(84) 0.000209 0.000264
FLFS-DE 3(48) 0.000255 0.000282
FLFS-GDE 3(48) 0.000246 0.000249

79

Chapter 5

Conclusions

This dissertation proposes a group-based differential evolution algorithm (GDE) for
global optimization problems.. The GDE algorithm combines two classical mutation
strategies instead of a single-mutation model for solving the stagnation problem. An adaptive
strategy. is also proposed in this dissertation. This strategy uses successful information to
automatically tune factor F and crossover rate CR. The advantages of the proposed GDE
algorithm are summarized below.

(1) The proposed GDE algorithm employs the inherent properties of the DE algorithm
to solve the stagnation problem. The GDE algorithm combines the two mutation
operations to tradeoff between the exploration ability and the exploitation ability.

(2) An adaptive strategy automatically tunes parameters without the user’s prior
knowledge. This strategy collects successful factor F and crossover rate CR to
generate potential parameters for the next generation.

(3) Thirteen well-known numerical benchmark functions are tested to validate the
performance of the proposed GDE algorithm. The GDE algorithm shows
significantly better performance than other EAs in statistical tests.

Furthermore, we also propose a learning algorithm for function-link fuzzy system

(FLFS) optimization. The proposed learning algorithm includes agglomerative clustering

80

algorithm and evolution process. The agglomerative clustering algorithm constructs the

optimal structure. The evolution process comprises multi-subpopulation that uses each

individual represents a single fuzzy rule and each individual in each subpopulation evolves

separately using a GDE algorithm. The advantages of the FLFS model with GDE algorithm

(FLFS-GDE) are summarized as follows:

1)

@)

3)

(4)

)

The consequent of the FLFS model is a nonlinear combination of input variables.
This study uses the functional-link neural network to the consequent part of the
fuzzy rules. The local properties of the consequent part in the FLNFN model
enable a nonlinear combination of input variables to be approximated more
effectively.

An automatic process based on agglomerative clustering algorithm can construct
the optimal number of fuzzy rules for the structure of the FLFS model. In this
algorithm, we just easily assign two parameter values instead of the trial and error
process.

The evolution process adopts a subpopulation symbiotic method which uses the
rule-based subpopulation to evolve separately.

The evolution process adopts a GDE algorithm to effectively search potential
individuals.

As demonstrated in section 4.4, the proposed FLFS-GDE model is a more adaptive

and effective predictor than the other models.

Two advanced topics on the proposed model should be addressed in future research.

First, the proposed GDE algorithm will tend to apply large-scale problems or overly complex

problems. In this dissertation, the proposed GDE algorithm is limited to some small-scale

problems (less than 100 dimensions). The scalability performance of the GDE algorithm is

unclear. Second, the crossover operation in the GDE algorithm is also an important evolution

operation which influences the performance of the proposed algorithm. We may modify the

81

crossover operation to improve the performance. For example, Islam et al. [46] presented a
novel crossover operation for the DE algorithm. The novel crossover operation incorporates
a greedy parent selection strategy with the conventional binomial crossover scheme of the
DE algorithm. In the crossover operation, a binomial crossover is performed between the
current donor vector and any other individual from p top-ranked individuals for the new

offspring. The crossover operation is exploitative in nature and promotes the inclusion of

genetic information fro divid current generation into the

offspring.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C. C. Carlos A, "Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art,” Computer Methods in
Applied Mechanics and Engineering, vol. 191, pp. 1245-1287, 2002.

P. Fei, T. Ke, C. Guoliang, and Y. Xin, "Population-based algorithm portfolios for
numerical optimization,” IEEE Trans. Evolutionary Computation, vol. 14, pp.
782-800, 2010.

D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. New York: IEEE Press, 1995.

M. J. Gacto, R. Alcalaand F. Herrera, "A multi-objective evolutionary algorithm for
an effective tuning of fuzzy logic controllers in heating, ventilating and air
conditioning systems," Applied Intelligence, vol. 36, No. 2, pp. 330-347, 2012.

K. 8 Shin, Y.-S. Jeong and M. K. Jeong, “A two-leveled
symbiotic evolutionary algorithm for clustering problems," Applied Intelligence, vol.
36, No. 4, pp. 788-799, 2012.

D. Ayvaz,H. R. TopcuogluandF. Gurgen,” Performance evaluation
of evolutionary heuristics in dynamic environments,” Applied Intelligence, vol. 37,
No. 1, pp. 130-144, 2012.

E. E. Korkmaz, “Multi-objective Genetic Algorithms for grouping problems,”
Applied Intelligence, vol. 33, No. 2, pp. 179-192, 2010.

M. Mitchell, An Introduction to Genetic Algorithms (Complex Adaptive Systems).
Cambridge, MA: MIT Press, 1998.

L. J. Fogel, Intelligence Through Simulated Evolution: Forty Years of Evolutionary
Programming. New York: Wiley, 1999.

X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Trans.
Evolutionary Computation, vol. 3, pp. 82 - 102, 1999.

H. G. Beyer and H. P. Schwefel, “Evolution strategies: A comprehensive
introduction,” Natural Computing, vol. 1, no. 1, pp. 3-52, 2002.

J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco,CA:
Morgan Kaufmann Publishers, 2001.

J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. IEEE Int. Neural
Netw, 1995.

K. Price, R. Storn and J. Lampinen, DifferentialEvolution: A Practical Approach to
GlobalOptimization. Berlin: Springer-Verlag,2005.

R. Storn and K. Price, "Differential evolution—A simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global Optimization,, vol.

83

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

11, pp. 341-359, 1997.

Z. Cai, W. Gong, C. X. Ling and H. Zhang, "A clustering-based differential evolution
for global optimization,” Applied Soft Computing, vol. 11, pp. 1363-1379, 2011.
C.-H. Chen, C.-J. Lin and C.-T. Lin, "Nonlinear system control using adaptive neural
fuzzy networks based on a modified differential evolution,” IEEE Trans. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, , vol. 39, pp. 459-473,
2009.

S. Das, A. Abraham, U. K. Chakraborty and A. Konar, "Differential evolution using a
neighborhood-based mutation operator,” IEEE Trans. Evolutionary Computation, vol.
13, pp. 526-553, 2009.

S. Das and P. N. Suganthan, "Differential evolution: a survey of the state-of-the-art,"”
IEEE Trans. Evolutionary Computation, vol. 15, pp. 4-31, 2011.

H. R. Cheshmehgaz, M. |. Desaand A. Wibowo, “Effective local evolutionary
searches distributed on an island model solving bi-objective optimization problems,"”
Applied Intelligence, 2012. (In Press)

R. Vafashoar, M. R. Meybodi and A. H. Momeni Azandaryani, "CLA-DE: a hybrid
model based on cellular learning automata for numerical optimization,” Applied
Intelligence, vol. 36, No. 3. pp. 735-748, 2012.

Z. Jinggiao and A. C. Sanderson, "JADE: adaptive differential evolution with
optional external archive,” IEEE Trans. Evolutionary Computation, vol. 13, pp.
945-958, 2009.

E. Mezura-Montes, M. E. Miranda-Varela and R. del Carmen Gmez-Ramn,
"Differential evolution in constrained numerical optimization: An empirical study,"”
Information Sciences, vol. 180, pp. 4223-4262, 2010.

N. Noman and H. Iba, "Accelerating differential evolution using an adaptive local
search," IEEE Trans. Evolutionary Computation, vol. 12, pp. 107-125, 2008.

A. K. Qin, V. L. Huang and P. N. Suganthan, "Differential Evolution Algorithm With
Strategy Adaptation for Global Numerical Optimization," IEEE Trans.Evolutionary
Computation, , vol. 13, pp. 398-417, 2009.

A. K. Qin and P. N. Suganthan, "Self-adaptive differential evolution algorithm for
numerical optimization,” Congress on IEEE Evolutionary Computation, pp.
1785-1791 \Vol. 2, 2005.

S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, "Opposition-based differential
evolution," IEEE Trans. Evolutionary Computation, vol. 12, pp. 64-79, 2008.

M.-T. Su, C.-H. Chen, C.-J. Lin and C.-T. Lin, "A rule-based symbiotic modified
differential evolution for self-organizing neuro-fuzzy systems,” Applied Soft
Computing, vol. 11, pp. 4847-4858, 2011.

G. Wenyin, C. Zhihua, C. X. Ling and L. Hui, "Enhanced differential evolution with

84

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

adaptive strategies for numerical optimization,” IEEE Trans. Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 41, pp. 397-413, 2011.

J. Vesterstrom and R. Thomsen, "A comparative study of differential evolution,
particle swarm optimization, and evolutionary algorithms on numerical benchmark
problems,” Congress on Evolutionary Computation, 2004, pp. 1980-1987 \ol.2,
2004.

C.-T. Lin, M.-F. Han, Y.-Y. Lin, J.-Y. Chang and L.-W. Ko, "Differential Evolution
based Optimization of Locally Recurrent Neuro-Fuzzy System for Dynamic System
Identification,” presented at the The 17th National Conference on Fuzzy Theory and
its Applications, 2010.

J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, "Self-Adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems," IEEE Trans. Evolutionary Computation, vol. 10, pp. 646-657, 2006.

C.-T. L., M.-F H., Y.-Y. L., S.-H. L. and J.-Y. C., "Neuro-fuzzy system design using
differential evolution with local information,” in Fuzzy Systems (FUZZ), 2011 IEEE
International Conference on, 2011, pp. 1003-1006.

T. Josef, "Adaptation in differential evolution: A numerical comparison,” Applied Soft
Computing, vol. 9, pp. 1149-1155, 2009.

L. Junhong and L. Jouni, "A fuzzy adaptive differential evolution algorithm,” in
TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering, pp. 606-611 vol.1, 2002.

M. Ali and M. Pant, "Improving the performance of differential evolution algorithm
using Cauchy mutation”, Soft Computing, vol. 15, pp. 991-1007, 2011.

T. Niknam, HD. Mojarrad, and M. Nayeripour, “A"New Hybrid Fuzzy Adaptive
Particle Swarm Optimization for Non-Convex Economic Dispatch,” International
Journal of Innovative Computing Information and Control, vol. 7, pp. 189-202, JAN.
2011.

Y.-W. Shang and Y.-H. Qiu, "A note on the extended rosenbrock function,"
Evolutionary Computation, vol. 14, pp. 119-126, 2006.

X. Yao, Y. Liu, K.-H. Liang and G. Lin, "Fast evolutionary algorithms," presented at
the Advances Evol. Computing: Theory Applicat., New York, 2003.

Z. Yang, J. He and X. Yao, "Making a difference to differential evolution,” in
Advances Metaheuristics Hard Optimization, pp. 397-414, 2007.

J. Dem’sar, "Statistical comparisons of classifiers over multiple data sets," Journal of
Machine Learning Research, pp. 1-30, 2006.

S. Garc'ia and F. Herrera, "An extension on statistical comparisons of classifiers over
multiple data sets for all pairwise comparisons,” Journal of Machine Learning
Research pp. 2677-2694, 2008.

85

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Z2hNKm6CD77e5bE8e7G&field=AU&value=Mojarrad,%20HD

[43] C. Lee and X. Yao, "Evolutionary programming using mutations based on the Lévy
probability distribution,” IEEE Trans. Evolutionary Computation, vol. 8, pp. 1-13,
2004.

[44] M. S. Alam, M. M. Islam, F. Xin Yao and K. Murase, "Recurring two-stage
evolutionary programming: a novel approach for numeric optimization,” IEEE
Trans.n Systems, Man, And Cybernetics,Part B: Cybernetics, vol. 41, pp. 1352-1365,
2011.

[45] M. M. Islam, M. S. Alam and K. Murase, “A new recurring multistage evolutionary
algorithm for solving problems efficiently,” Lecture Notes in Computer Science, vol.
4881, pp. 97-106, 2007.

[46] Sk. M. Islam, S. Das, S. Ghosh, S. Roy and P.N.Suganthan, " An adaptive differential
evolution algorithm with novel mutation and crossover strategies for global
numerical optimization,” IEEE Trans. Systems, Man, and Cybernetics, Part B:
Cybernetics, , vol. 42, No. 2, pp. 482-500,2012.

[47] A. Ghosh, S. Das, A. Chowdhury and R. Giri, " An improved differential evolution
algorithm with fitness-based adaptation of the control parameters,” Information
Sciences, vol. 181, No. 18, pp. 3749-3765, 2011.

[48] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent System. Englewood Cliffs, NJ: Prentice-Hall, 1996

[49] Y. H. Chien, W. Y. Wang, Y. G. Leu and T.T. Lee, “Robust adaptive controller design for
a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling
approach,” IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics, vol. 41,
no. 2, pp. 542-552, Apr. 2011.

[50] R. Prakash and R. Anita, “Modeling and simulation ‘of fuzzy logic controller-based
model reference adaptive controller”, International Journal of Innovative Computing
Information and Control, vol. 8, no.4, pp. 2533-2550, Apr. 2012.

[51] C.-J. Linand C.-C. Peng,“ Self-Adaptive quantum radial basis function network for
classification applications , International Journal of Innovative Computing,
Information and Control, vol. 7, no. 8, Aug. 2011.

[52] T. Chen and Y.-C. Lin, “A collaborative fuzzy-neural approach for internal due date
assignment in a wafer fabrication plant,” International Journal of Innovative
Computing, Information and Control, vol. 7, no. 9, pp. 5193-5210, Sep. 2011.

[53] C.-H. Chen, C.-J. Lin and C.-T. Lin, “A functional-link-based neurofuzzy network for
nonlinear system control,” IEEE Trans. Fuzzy System, vol. 16, no. 5, pp. 1362-1378,
Oct. 2008.

[54] C. F. Juang, R. B. Huang and Y. Y. Lin, “A recurrent self-evolving interval type-2
fuzzy neural network for dynamic system processing,” IEEE Trans. Fuzzy System,
vol.17, no.5, pp.1092-1105, Oct. 2009.

86

[55] M.-F. Han, C.-T. Lin and J.-Y. Chang, “A compensatory neurofuzzy system with online
constructing and parameter learning,” Proc. of 2010 IEEE International Conference on
Systems, Man, and Cybernetics., pp. 552-556, Oct. 2010.

[56] C.-F. Juang and P.-H. Chang, “Designing fuzzy rule-based systems using continuous ant
colony optimization,” IEEE Trans. Fuzzy System, vol.18, no.1, pp.138-149, Feb. 2010.

[57] C.-F. Juang, “Combination of on-line clustering and Q-value based GA for
reinforcement fuzzy system design,” IEEE Trans. Fuzzy System, vol. 13, no. 3, pp.
289-302, Jun. 2005.

[58] F. Hoffmann, D. Schauten and S. Holemann, “Incremental evolutionary design of TSK
fuzzy controllers,” IEEE Trans. Fuzzy System, vol. 15, no. 4, pp. 563-577, Aug. 2007.

[59] E. Sanchez, T. Shibata and L. A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems:
Soft Computing Perspectives. Singapore: World Scientific, 1997.

[60] O. Cordoon, F. Herrera, F. Hoffmann and L. Magdalena, Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, Advances in Fuzzy
Systems—Applications and Theory., Singapore: World Scientific, 2001.

[61] M. Russo, “Genetic fuzzy learning,” IEEE Trans. Evolutionary Computation, vol. 4, no.
3, pp. 259-273, Sep. 2000.

[62] K. C. Ng and T. Li, “Design of sophisticated fuzzy logic controllers using genetic
algorithms,” in Proc. 3rd IEEE Int. Conf. Fuzzy Systems, pp. 1708-1711, 1994.

[63] T. L. Seng, M. B. Khalid and R. Yusof, “Tuning of a neuro-fuzzy controller by genetic
algorithm,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29,
pp. 226-236, Apr. 1999.

[64] C.-H. Chou, “Genetic algorithm-based optimal fuzzy controller design in the linguistic
space,” IEEE Trans. Fuzzy System, vol. 14, no. 3, pp. 372-385, Jun. 2006.

[65] C. Karr, “Design of an adaptive fuzzy logic controller using a genetic algorithm,”
Proceeding of 4th International Conference on Genetic Algorithms, pp. 450-457, 1991.

[66] C.-F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by
neural network and genetic algorithms,” IEEE Trans. Fuzzy System, vol. 10, no. 2, pp.
155-170, Apr. 2002.

[67] K. D. Sharma, A. Chatterjee and A. Rakshit, “A hybrid approach for design of stable
adaptive fuzzy controllers employing Lyapunov theory and particle swarm
optimization,” IEEE Trans. Fuzzy System, vol. 17, no. 2, pp. 329-342, Apr. 2009.

[68] C.-F. Juang, C. M. Hsiao and C. H. Hsu,”Hierarchical cluster-based multispecies
particle-swarm optimization for fuzzy-system optimization,” IEEE Trans. Fuzzy System,
vol. 18, no. 1, pp. 14-26, Feb. 2010.

[69] H. Lu, E. Pi, Q. Peng, L. Wang and C. Zhang, “A particle swarm optimization-aided
fuzzy cloud classifier applied for plant numerical taxonomy based on attribute
similarity,” Expert Systems with Applications, vol. 36, no. 5, pp. 9388-9397, Jul.

87

2009.

[70] C.-J. Lin, C. C. Weng, C. Y. Lee and C. L. Lee, 2009, “Using an efficient hybrid of
cooperative particle swarm optimization and cultural algorithm for neural fuzzy
network design,” 2009 International Conference on Machine Learning and Cybernetics,
pp. 3076-3082, July, 20009.

[71] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design,” IEEE Trans. Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 34, no. 2, pp. 997-1006, Apr. 2004.

[72] K. D. Sharma, A. Chatterjee and A. Rakshit, “A hybrid approach for design of stable
adaptive fuzzy controllers employing Lyapunov theory and particle swarm
optimization,” IEEE Trans. Fuzzy System, vol. 17, no. 2, pp. 329-342, Apr. 2009.

[73] C.-J. Linand C.-L. Lee ,” A self-organizing neural network using hierarchical particle
swarm optimization,” International Joint Conference on Neural Networks (IJCNN
2011), 2011.

[74] J.-Y. Chang, M.-F. Han and C.-T. Lin, “Optimization of Fuzzy Systems Using
Group-Based Evolutionary Algorithm,” Lecture Notes. in. Computer Science, \Vol.
7665, pp 291-298, 2012.

[75] M.-F. Han, C.-T. Lin, J.-Y. Chang and D.-L. Li, “Group-Based Differential Evolution
for Numerical Optimization Problems,” International Journal of Innovative Computing,
Information and Control. Vol. 9, No. 3, pp. 1357-1372, Mar. 2013.

[76] C.-J. Lin, C.-H. Chen and C.-T. Lin, “A hybrid of cooperative particle swarm
optimization and cultural algorithm for neural fuzzy network and its prediction
applications,” |IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 39, no. 1, pp. 55-68, Jan. 2009.

[77] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design,” IEEE Trans. Systems, Man and Cybernetics, Part B:
Cybernetics, vol. 34, no. 2, pp. 997-1006, Apr. 2004.

[78] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “A recurrent FL-based fuzzy neural
network controller with improved particle swarm optimization for linear synchronous
motor drive,” IEEE Trans. Magnetics, vol. 45, no. 8, pp.3151-3165, 2009.

[79] M.-F. Han, C.-T. Lin and J.-Y. Chang, “Efficient differential evolution algorithm based
optimization of fuzzy prediction model for time series forecasting,” International
Journal of Intelligent Information and Database Systems. (Accepted)

[80] N. Krasnogor and J. Smith, “A memetic algorithm with self-adaptive local search: TSP
as a case study,” in Proc. Genetic and Evolutionary Computation Conf., Las Vegas, NV,
pp. 987-994, July 2000.

[81] H. Ishibuchi, T. Yoshida and T. Murata, “Balance between genetic algorithm and local
search in memetic algorithms for multiobjective permutation flowshop scheduling,”

88

IEEE Trans. Evolutionary Computation, vol. 7, pp.204-223, Apr. 2003.

[82] M. J. Li, M. K. Ng, Y.-M. Cheung and Jo. Z. Huang, “Agglomerative fuzzy k-means
clustering algorithm with selection of number of clusters,” IEEE Trans. Knowledge and
Data Engineering, vol. 20, No. 11, pp.1519-1534, Nov. 2008.

[83] S. Miyamoto and M. Mukaidono, “Fuzzy c-means as a regularization and maximum
entropy approach,” Proc. Seventh Int’l Fuzzy Systems Assoc. World Congress
(IFSA °97), vol. 2, pp. 86-92, 1997.

[84] F. Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm
optimization,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp. 225-239, Jun.
2004.

[85] C. F. Juang, J. Y. Lin and C. T. Lin, “Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design,” IEEE Trans. Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 30, no. 2, pp. 290-302, Apr. 2000.

[86] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy systems and
their_applications to system identification,” Fuzzy Sets System, vol. 83, pp. 325-339,
1996.

[87] J. Kim and N. K. Kasaboyv, “HyFIS: Adaptive neuro-fuzzy inference systems and their
application to nonlinear dynamic systems,” Neural Network, vol. 12, pp. 1301-1319,
1999.

[88] D. Nauk and R. Kruse, “Neuro-fuzzy systems for function approximation,” Fuzzy Sets
Syst., vol. 101, no. 2, pp. 261-271, 1999.

[89] S. Wu and M. J. Er, “Dynamic fuzzy neural networks—A novel approach to function
approximation,” |EEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol.
30, no. 2, pp. 358-364, Apr. 2000.

[90] J. Alcal’a-Fdez, L. S“anchez, S. Garc'ia, M. J. del Jesus, S. Ventura, J. M. Garrell, J.
Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fern“andez and F. Herrera, “KEEL: A
software tool to assess evolutionary algorithms to data mining problems,” Soft
Computing, vol. 13, no. 3, pp. 307-318, 20009.

[91] A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients,” IEEE Trans.
Evolutionary Computation, vol. 8, no. 3, pp. 240-255, Jun. 2004.

[92] R. Alcala, J. Alcal"a-Fdez, J. Casillas, O. Cord"on and F. Herrera, “Local identification
of prototypes for genetic learning of accurate TSK fuzzy rule-based systems,”
International Journal of Intelligent Systems, vol. 22, pp. 909-941, 2007.

[93] D. Graves and W. Pedrycz,“ Fuzzy prediction architecture using recurrent
neural networks”, Neurocomputing, no. 72, pp. 1668— 1679, 2009.

[94] C. Liand T.-W. Chiang, “Function approximation with complex neuro-fuzzy system
using complex fuzzy sets - a new approach,” New Generation Computing, vol. 29, no. 3,

89

pp. 261-276, Jul. 2011.

[95] C. Liand T.-W. Chiang, “Complex fuzzy computing to time series prediction - a
multi-swarm PSO learning approach,” Lecture Notes in Artificial Intelligence, vol. 6592,
pp.242-251, Apr. 2011.

[96] C. Liand T.-W. Chiang, “ Complex fuzzy model with PSO-RLSE hybrid learning
approach to function approximation”, International Journal of Intelligent
Information and Database Systems, vol. 5, no. 4, pp. 409 - 430, July 2011.

[97] C.Liand J.-W.Hu, “A new ARIMA-based neuro-fuzzy approach and swarm
intelligence for time series forecasting,” Engineering Applications of Artificial

Intelligence. vol. 25, no. 2, 295-308 0

