FrNEBRE BRE BTN F
& $ L PR ARAE W B i

Improved Residual-Based Dynamic
Scheduling for Decoding of Low-Density
Parity-Check Convolutional Codes

FG AR g

R IR g4

P 3 R 4 L+ 4 & A~

FrONBRIBBAR AL AN LER
i R ATIRAE T E 2

|mproved Residual-Based Dynamic Scheduling
for Decoding of L ow-Density Parity-Check
Convolutional Codes
bR R G £ Student: Mu-Chen Wu
IR 2L Advisor: Chung-Hsuan Wang

A Thesis
Submitted to Department of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Communication Engineering

August, 2010

Hsinchu, Taiwan, Republic of China

PERRA4 L4 E AN

FrENHBRE IR AR EIEZ LN E EH
A PEAR G W 2

GEEREE HE S RS A

MAGFTHT > B AFFRRAERLDOU BRI B AR BT H
Tanner W42 3 & & & 4 Tk » 9T g5 5 (A 4 o R NP ST 3
o Ark 58T Do h B R ok Tanner Bl & & 5 < k) (AR E
Tanner Bl » 7R B 5 A0 H i A EENM B R H B & 5B DB FEF
FUREG NS I%%'z%ﬁﬂ?“im'“ﬂ?r')i B o S RS -
o B LA e d 3 43_5%%‘““”‘ Tleni B R H Bk A/ afEma 3 o BARE TR
ORI M SRS B LM A RS T R R TN IR e AR
PERAREAF RS2 (EDSiwbi2) ks B4 AN H ik h el
B RS B AEES > g AR T UENFOEAEFES A Th®m Y
Povpg Ligend EDSiHE R L B At 0 R (B EARY DL ATERA {
By oottt BIEELEA IR R BRE KRV a6 A Jrard ﬂfdizfr
PIZEERGBFORA 3 E o APR NS B2 R Aul R oA e
RFRAR L - %ﬂﬁiﬁ%&%% P EWAFTE G A S REREL DR B R %R A
BEAHE G SN RBRELDID RS G AN PR AR B
AR - IR PARE B 2 hi AT e

Improved Residual-Based Dynamic Scheduling for Decoding of Low-Density
Parity-Check Convolutional Codes

Student: Mu-Chen Wu Advisor: Chung-Hsuan Wang
Department of Communication Engineering

National Chiao Tung University

Abstract

Previous studies on low-density parity-check convolutional codes (LDPC-CCs) revealed
that LDPC-CCs with rational parity-check matrices (RPCM) have poor bit-error-rate (BER)
performances due to the existence of lenth-4 cycles in their Tanner graphs. In our recent
work, we found that we can transform the original Tanner graph of an LDPC-CC with an
RPCM into a new Tanner graph with larger girth based on the concept of puncturing such
that the LDPC-CC can have a comparable or-even better BER performance than those of
LDPC-CCs with polynomial parity-check matrices (PPCMs). For the decoding of punc-
tured LDPC codes, sequential schedules are usually used to improve BER performances or
speed up the convergence of the decoding.-We select the well-performed efficient dynamic
scheduling (EDS) among the available sequential schedules to decode those LDPC-CCs with
RPCMs in order to obtain better BER performances. In this thesis, we firstly modify the
residual function of EDS to have a more appropriate updating order. Besides, since several
observations indicate that the decoding based on the original EDS or our improved EDS
may not converge or converge to non-optimal codewords, two refined strategies based on the
perturbation and the bit-flipping are hence proposed to mitigate these problems. Revealed
by the simulations results, not only for RPCMs but also for PPCMs, our proposed algorithm

can provide better BER performances than those of several existent schemes.

IT

=+ ;3,

R B R L LA ke S RS R

®dE L g]

% %

SREFRE LIRS CFE T HEEY AT L
2o T ABRRHT KT R R RSfopR EARE T R
gk L FNRA U E R

S EFAY A A FE ks o H- B AT ST
PR e 2N d Reds B3 Ree

t;\@,i‘.l_iﬁ,\g

SR R AR

¥

Contents

Chinese Abstract 1
English Abstract 11
Acknowledgement 111
Contents v
List of Figures VI
1 Introduction 1
2 Overview of Low-Density Parity-Check Codes 3
2.1 LDPC Codes and Tanner Graphs 3
2.2 Sum-Product Algorithm 5
3 LDPC Convolutional Codes 7
3.1 Definition 7
3.2 Encoding 8
3.3 Decoding 9
3.4 Girth and Rational Parity-Check matrices 10
4 The Proposed Algorithm 13
4.1 Residual-Based Dynamic Scheduling 13
4.2 TImproved Scheme Based on Perturbation 17

1Y

4.3 Improved Scheme Based on Bit-Flipping

5 Simulation Results

6 Conclusion

Bibliography

30

31

List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1

5.2

5.3

The Tanner graph of a rate R =1/2 LDPCcode.
Acycleoflength 6.

A rate R = 1/3 and syndrome former memory m, = 3 LDPC-CC encoder . .
Decoding window of LDPC-CC
Cyclesof length4in H

A subgraph that most check nodes connect to even wrong variable nodes. . .
Block diagram of combination of perturbation algorithm and modified EDS.

A sketch map of codeword space. . . v . =,
A special subgraph of the LDPC-CCin Ex."3.1.

The block diagram of the proposed algorithm.

The BER performances of an R = 0.5 LDPC-CC with a PPCM, where m, =
203. . e
The BER performances of an R = 0.4 LDPC-CC with a PPCM, where m, =
395, e
The BER performances of an R = 0.5 LDPC-CC with an RPCM, where

VI

17
19

21
22

Chapter 1

Introduction

In 1990s, low-density parity-check (LDPC) codes were rediscovered. LDPC codes
were shown that they can achieve near-Shannon-limit performances with iterative message-
passing decoding and sufficiently long block length. In 1999, Jiménez Felstrom and Zigan-
girov proposed low-density parity-check convolutional codes (LDPC-CCs) [1], which can be
considered as convolutional counterparts of LDPC block codes. They showed that LDPC-
CCs have comparable performances to.-thoserof LDPC block codes (LDPC-BCs). Further-
more, an LDPC-CC can be easily encoded in a systematic way only by adders and shift
registers. It can also be encoded with arbitrary length of data bits.

Previous studies of LDPC-CCs revealed that LDPC-CCs with rational parity-check ma-
trices have poor bit-error-rate (BER) performances due to the existence of length-4 cycles in
their Tanner graphs. To acquire a better performance by the sum-product algorithm, in our
recent work, we propose a procedure [6] based on the concept of puncturing for obtaining
an equivalent Tanner graph with larger girth. To further enhance the BER performance
and simultaneously accelerate the speed of convergence, many researchers suggest that the
sequential schedules should be applied for decoding. For sequential schedules, they can
be partitioned into two classes—deterministic scheduling and dynamic scheduling, where the
former decides its updating order before the decoding while the latter continuously regulates
its updating order during the decoding [3][4][5]. In the previous research, dynamic schedul-

ing is shown to have a better performance than that of deterministic scheduling. Among

many sequential schedules, we apply one well-performed dynamic sequential schedule, which
is named efficient dynamic scheduling (EDS) [2], to decode LDPC-CCs.

In this thesis, we first modify the residual function of EDS to have a more appropriate
updating order. The original residual function aims to speed up the convergence of the
decoding while our improved residual function not only aims to speed up the convergence of
the decoding but also consider which variable nodes can help other variable nodes. Moreover,
we find that the decoding based on the original EDS or our improved EDS may not converge
or converge to non-optimal codewords. Two refined strategies based on the perturbation
and the bit-flipping are hence proposed to solve these problems. The former adds small
noise to the received sequence to help the decoding process escape from the decoding trap
while the later searches several codeword candidates around the original decoded codeword
to obtain a better decoded result. Revealed by the simulations results, not only for rational
parity-check matrices but also for polynomial parity-check matrices, our proposed algorithm
can provide a better BER performance than these of several existent schemes.

The rest of this thesis is organized as follows: First of all, in Section 2 and 3, LDPC-BCs
and LDPC-CCs are briefly described.-The proposed algorithm and the simulation results

are given in Section 4 and 5. In the end, the-work is concluded in Section 6.

Chapter 2

Overview of Low-Density
Parity-Check Codes

In this chapter, we first give a review of LDPC codes and Tanner graphs. Then the sum-

product algorithm for the decoding of LDPC codes is also described.

2.1 LDPC Codes and Tanner Graphs

An LDPC code is a linear binary block code whose parity-check matrix H has low density
of ones. If there are J 1’s in every column and-/ 1’s in every row, and the number of 1’s
in common between any two columns is smallerthan 2, it is called a (J, K) regular LDPC
code with the column weight w, = J and the row weight w, = K. However, if the column
weight or the row weight of an LDPC code is not constant, the LDPC code is called an
irregular LDPC code.

An LDPC code is usually described by its Tanner graph. A Tanner graph is a bipartite
graph and can be partitioned into two classes—variable nodes v;’s and check nodes c;’s, which
represent the codeword bits and the check equations, respectively. In a Tanner graph, there
is no edge connecting two nodes from the same class. If and only if the bit is included in the
parity check, there is an edge connecting a variable node and a check node. The neighbors
of one node are the nodes which connect to it. N(v;) and N(c;) denote the neighbors of the

variable node v; and the check node c¢;, respectively.

Figure 2.1: The Tanner graph of a rate R = 1/2 LDPC code.

Figure 2.2: A cycle of length 6.

Example 2.1 Consider a rate R = 1/2 irreqular LDPC' code with

1101000000
00 00041000
H=]10 1006100010
0 0=1 0 00 0-100
000 1T 001011

Its Tanner graph is composed of 10 variable nodes and 5 check nodes, as shown in Fig. 2.1,

where white squares represent check nodes and black circles represent variable nodes. [

In a Tanner graph, if one can start from one node and go back to the same node through [
edges with the condition that no node is passed through more than twice, there is a length-/
cycle. Relatively speaking, in a parity-check matrix H, if one can start from some “1”7 |
sequentially walk vertically to another “1” and walk horizontally to the other “1”, and walk
back to the original “1” through [steps, there is a length-[cycle. A length-6 cycle in the
Tanner graph of Ex. 2.1 is shown in Fig. 2.2. The girth of a Tanner graph is the minimum
length of all cycles. The girth of the LDPC code in Ex. 2.1 is 6.

2.2 Sum-Product Algorithm

The sum-product algorithm (SPA) is an iterative decoding algorithm which is often
used to decode LDPC codes. It can be operated on a Tanner graph that variable nodes
and check nodes exchange extrinsic information iteratively. For SPA, it assumes that the
received messages of every node in a Tanner graph are independent. If a Tanner graph is
cycle-free, SPA is optimal for the decoding of corresponding LDPC code. However, short
cycles in a Tanner graph increase the dependence of the messages and worsen the BER
performance of corresponding LDPC code. SPA is also called flooding because all check
nodes or all variable nodes are processed at the same time.

Assume transmitted bit x; is priori equally likely to be +1 or —1 under binary phase
shift keying (BPSK) scheme, thus the log a posterior probability (log-APP) ratio based on

the channel output y; is

Xvi:log(gyl |y)) = 2y, /0.

P(Iz’ = _1|yi)

In the beginning of the algorithm, we initialize the message passed from variable node v;

to a check node c; as mq(,?LCj = X,,, and the message passed from check node c;to variable

node v; as m&‘jlvi = 0. In the [lth iteration of the algorithm, firstly, each check node ¢;

computes the message

1
(1 _ -1 o (=1)
me/ ., = 2tanh | | tanh (vak—wj)

v EN(cj)\v;
and sends it to its neighbors N(c;). On the other hand, each variable node v; computes the

message
W= Y mlx
cL€N(vi)\¢j

and sends it to its neighbors N (v;). Secondly, we compute the log-APP ratio

Qi = XUi + Z mglj)—miv

c;EN(v;)

and make a hard decision
+1, ’lfQZ >0
—1, otherwise

for each variable node v;. If all parity checks are satisfied, KH?” = 0, or the maximum

number of iterations is reached, then stop; otherwise, continue the algorithm.

Chapter 3
LDPC Convolutional Codes

3.1 Definition

Let
U] = (u07 Uy, ... 7ut)7

e

i Wi P

where u; = (u S ul®) and u? € GF(2), be the information sequence and

Vot (V07 Vi, - 7Vt)7

where v; = (UZ(0) and UZ-(') € GF(2), be the encoded sequence. A time-invariant

LDPC-CC is defined as the set of all sequences vy s satisfying the equation v H[To,oo] =0,

where

HY . HI 0

T _
H[O,oo] - T T
0 H] - HIL

is a semi-infinite transposed parity-check matrix, called syndrome former. For a rate R =
k/n code, the elements of HE-G’OO] are submatrices of dimension (n — k) x n and my is the
syndrome former memory.

The same with a convolutional code, information sequence ujy) and encoded sequence
Vio,0c] Can be represented by polynomial vectors

U(D) = (U\(D),Us(D), ..., Us(D))
V(D) = (Vi(D),Va(D), ..., Va(D)),

7

where U;(D) = u(()i) + ugi)D + .-+ and V;(D) = v(()i) + UY)D + - -+, respectively. The parity

check matrix can also be denoted by
H(D)=Hy+H,D+---+H,, D™,

and V(D) is a codeword if and only if V(D)HT(D) = 0.

3.2 Encoding

We usually require Hy to be full rank in order to take this property to easily encode a

LDPC-CC with only shift registers and adders.

Example 3.1 Consider a LDPC-CC with R = 1/3, which can be specified by

1 D D3

A= s ey

First of all, we decompose it into a superposition of matrices in different degrees of delay

H(D) = Hy+H,D+...+H,,

1 00 0 120 0 00 0 01
+ D+ D? +

0 01 0 00 010 1 00

Then, since V[O:OO]HE{),OO] = 0, we relate encoded bits of time t with past bits by the equation

vH, +v, o H +... +v, H =0,
and obtain the following equations

vt(l) + vﬁ’l + 'Ut(i)g =0
o + v + ol = 0.

By setting v§2) be the information bit u;, we can solve the simultaneous equations and gen-
erate the parity-check bits of time t. The encoder is shown in Fig. 3.1. Only 2 adders and

9 shift registers are needed. U

VOV
u
t ATV VIV [
t &
pany
"

Figure 3.1: A rate R = 1/3 and syndrome former memory m, = 3 LDPC-CC encoder

3.3 Decoding

Viterbi algorithm is rarely used to decode an LDPC-CC, because the syndrome former
memory mg of an LDPC-CC is usually large. However, since H is low-density, SPA is
considered instead. Different from decoding an LDPC block code, it’s hard to process
whole codeword at one time since the codeword:length can go to infinity. As being shown
in the Fig. 3.2, there’s a sliding window which stores the data under process. The Tanner
graph in the Fig. 3.2 is derived from the H(D) in the Ex. 3.1. The window is composed of
I, which equals to the iteration number; processors with size (mgs + 1) time instants. Every
time we receive n channel outputs, we put n variable nodes and n — k check nodes into the
window and pop out the last n variable nodes and n — k check nodes from it. We firstly
activate the front n — k£ check nodes in each processor, and secondly activate the last n
variable nodes in each processor. Once check nodes at time ¢t 447 — 1 are updated, all check
nodes which connect to variable nodes at time ¢ 4 4(/ — 1) have already been updated once.
Thus, all those variable nodes can compute mSchj and complete their first iteration. In the
other hand, when the check nodes at ¢t +4(7 — 1) — 1 are updated, all variable nodes connect
to them have already been updated once. Thus, all those check nodes can compute mgLvZ

However, these processors are operated independently, because one variable node at time

t only connects to check nodes which locate between time t to time t 4+ my, and one check

node at time ¢t + m, only connects to variable nodes which locate between time ¢ to time

decoding results
channel values

A
B activecheck node 0 active variable node didingwindow t+4l L1

Figure 3.2: Decoding window of LDPC-CC

t4+ms. Thus active check nodes in some processor only access variable nodes located in their
processor and vice versa. After those active nodes are updated, we put next n received bits
into the window and pop out the last n bits again. Obviously, each variable node will be
updated I times in the window. The complete flooding algorithm is described in Algorithm
1.

Algorithm 1 Flooding for LDPC-CC
1: Pop in n variable nodes and n — & check nodes.

2: fori=1to I do

3: Activate the front n — k check nodes in processor .
4: Activate the last n variable nodes in processor 1.

5: end for
6
7
8
9

: Pop out the last n variable nodes and n — k£ check nodes in the window.
. if termination criterion is satisfied then
Leave the algorithm.
: else
10: Go back to step 1.
11: end if

3.4 Girth and Rational Parity-Check matrices

One can directly check whether small girth exists or not in an LDPC-CC by H(D). First
of all, we introduce how to find a cycle in H(D). We start from some nonzero term D"

in H(D), walk along the column to another nonzero term D™, walk along the row to the

10

100100 1
0 00OOO 0
100 0 001
0 0O 0 0O0O
000O0O0O0C1
0010000

Figure 3.3: Cycles of length 4 in H

other nonzero term D"2, and repeat these two steps sequentially until a cycle is found.
Define d(n;,n;y1) = ni11 — n; be the displacement of walking from D™ to D"™+'. A path
(Do, D™ ... D™ D™+t Do) forms a cycle of length 2/ if and only if the summation of

all vertical displacements is 0
D, = d(ng,n1) + d(na, ng) + - - + d(ng, no1) = 0.

Example 3.2 Consider
1+D D* D¢
H(D) =
D> D°-D?3
There’s a path (D?, D, D*, D°, D?) forming-a cycle‘of length 4 with D, = (2—1)+(4—5) =0,

as shown in Figure 3.3. O

For LDPC-CC, multinomial terms, excluding binomial terms, in H(D) promise girth
less than or equal to 6. For example, we can easily find that a trinomial term D®+4 D’ 4 D¢,
where a < b < ¢, contains a cycle (D?, D* D¢, D* Db D¢, D) with length 6. Moreover, if
b—a = c—0b, the length of the cycle will be 4. Thus, in the past, only monomial and binomial
terms were discussed. Besides, rational H(D) was also rarely discussed because small girth
follows traditional Tanner graph, which was obtained by multiplying the denominator to
the corresponding row or expanding the rational term into an infinite geometric series.
Nevertheless, we can obtain a new Tanner graph with larger girth by using dummy variable

nodes [6] to replace rational or multinomial terms.

11

Example 3.3 Consider

H(D) — 1 D D3
o=
1+D

If we multiply (1 + D) to the second row of H(D), we can obtain

D 1 D D
D=\ poipt prip 1

Unfortunately, there’s cycle (D3, D?, D3, D* D3) with length 4. If we expand H;D into 1+
D+D?+ D3+, there’s also a cycle (1, D, D* D, 1,) with length 4. Both methods promise

girth equal to 4. Nevertheless, let dummy variable node M (D) = H%%(D) and obtain

1 D D3 0
H' (D)= | Dp* D 0 1
0 0 1 14D

One can easily check there’s no cycle with length:4 in H' . O

Using dummy variable nodes equals using a super code with rate R = k/(n + n') to
replace the original one, where n’ is number of dummy variable nodes. However, to main-
tain the same rate, previous researcher directly punctured the dummy variable nodes. In
order to improve performance, we find which columns being punctured can acquire the best

performance through simulations.

12

Chapter 4

The Proposed Algorithm

4.1 Residual-Based Dynamic Scheduling

For the decoding of LDPC-CCs, the flooding algorithm is usually used. However, there is
one troublesome problem that the hardware complexity of the decoder is proportional to the
number of iterations, which can be few hundreds. Thus, we hope to develop another decod-
ing algorithm. Although the hardware complexity of the decoder is limited, the decoding
algorithm still has a good performance. For LDPC-BCs, scheduling is one common way to
accelerate the speed of convergence and improve the performance, especially for punctured
ones. Since we originally focus on rational-H(D); which is processed by dummy variable
nodes and punctured to maintain the same code rate, scheduling is considered.

Sequential schedules can be partitioned into two classes—deterministic ones and dynamic
ones. Deterministic sequential schedules decide their updating order before the decoding
while dynamic sequential schedules continuously regulate their updating order during the
decoding. However, dynamic sequential schedules have been shown that they have better
BER performances and faster speed of convergence than deterministic sequential schedules.
For dynamic sequential schedules, they can be further partitioned into several classes based
on how to decide their updating orders. A residual-based dynamic sequential schedule
defines a residual function and decides which variable node, check node or edge should be
updated first based on its residual function. Residual belief propagation (RBP) [5], node-
wise residual belief propagation (NWRBP) [5], and efficient dynamic scheduling (EDS) [2]

13

are residual-based dynamic sequential schedules. For RBP, it defines its residual function

jal (m) = |m(l+1) —m®
Cj—v;

Cj—V4 Cj—Y4

based on messages passed from check nodes to variable nodes and iteratively updates the

edge with the largest residual. For NWRBP; it also defines its residual function

(1) _ O

Cj—V4 Cj—;

FO(cj) = max |m
Vi Cj

based on messages passed from check nodes to variable nodes. However, it not only updates
the edge with the largest residual but also other edges which connect to the same check
node. For EDS, it defines its residual function
0] (-1
- G
based on log-APP ratios of variable nodes and iteratively updates the variable node with
the largest residual. In [2], EDS was shown that it-has a better performance than those of
RBP and NWRBP.
For EDS, the residual of variable node w; is-defined by
[
1R+

Every time it picks one variable node with the largest residual and updates the neighboring

F(”(vi)

check nodes of the variable node. Neighbors of those check nodes are also updated. Then it
computes new residuals for updated variable nodes and reset the residual of the selected one
to 0. Now we apply EDS to decode LDPC-CCs. Different from the flooding algorithm, the
window is composed of only one processor with size K x (ms+1) time instants. Here, K does
not promise that every node can be updated K times. For convenience, we partition the
window into K blocks with size (ms + 1) time instants. Every time we receive (ms+ 1) x n
channel outputs, we put (ms+1) xn rather than n variable nodes and (ms+1) x (n—k) check
nodes into the window, and pop out the last (m;+1) xn variable nodes and (ms+1) x (n—k)

check nodes from it. We give those variable node, who were just put in the window, a initial

14

residual FOy, = X, and sort all variable nodes’ residuals. Then we pick the variable node
with the largest residual, update its neighboring check nodes, and also update the neighbors
of those check nodes. Afterwards, We compute the residuals for updated variable nodes and
reset the residual of the selected one to 0. We call these operations hybrid operation PUC
and repeat it IV times. Then, we shift the variable nodes and the check nodes again.

For RBP and NWRBP, their residual were defined by

F(l) (Cj - Ui) - ‘mgj)—»vz - m((:lj)—wb
and
FO(c;) = max |m{_ —m® |
VieN(c;) (e i

, respectively. Both two functions only describe the difference between a message before
and after being updated. However, for EDS, when there are more than one variable nodes
with the same Q! — Q"™"|, it picks the variable node with the smallest reliability. It
believes that updating variable nodes with small reliability first can accelerate the speed
of convergence. Nevertheless, updating unreliable variable nodes first may influence other
reliable variable nodes and even cause-errors. Thus, we modify the residual function
F(l)(vi) _ |Q§l) — Qgi_1)|_
/)
For those variable nodes with the same \le) — Q§171)|, we pick the one with the largest
reliability. Besides, for a variable nodes whose sign is changed, we want to give it a higher
residual. Thus, we further modify the residual function
@7 - @Y
oo/

For variable nodes with the same |Q§l) - le_1)|/|Q§l)/le_1)|, we pick the one whose sign is

F(l) (Uz> =

changed. We call the algorithm with the modified residual function modified EDS, and it
is completely described in Algorithm 2.
In modified EDS, every time we pick one variable node from the window and update

the neighboring check nodes. However, the neighboring check nodes of the variable nodes

15

Algorithm 2 Modified EDS
1: Pop (ms+ 1) x n variable nodes and (ms + 1) x (n — k) check nodes into the window.
2: Pop out the last (mg + 1) x n variable nodes and (ms + 1) x (n — k) check nodes and
shift variable nodes and check nodes in the window to the left.
Set messages passed from these check node to 0.
Let FOy; = X,,.
Sort all variables’ residuals.
for . =1to N do
Pick the variable node with the largest residual, update the neighboring check nodes,
and update the neighbors of those check nodes.
Compute the residuals of updated variable nodes.
9: Set the residual of the selected variable node to 0.
10: Sort all variables’ residuals again.
11: end for
12: Go back to step 1.

*

in the last block may connect to the variable nodes which have already leave the window.
On the other side, the neighboring check nodes of the variable nodes in the first block
probably have not enter the window yet. Thus, we exclude the last and front (ms+ 1) x n
variable node from the selection. Besides;instead of using a huge stack to sort all variable
nodes’ residuals, we use K — 2 stacks-to sort the residuals of variable nodes in each block
and another stack to sort the largest residual in“each stack. One stack corresponds to
one block. Thus, there is no need to clear stacks and sort all residuals again when new
data enters. And that is why we propose popping in (ms + 1) X n instead of n channel
outputs each time. However, once the residual of a variable node is modified, there are
log((ms + 1) x n) 4+ log(K — 2) =~ log((ms + 1) X n) comparisons.

For the flooding algorithm, it costs I processors and I X (ms+1) X (n+ (n—k) x > w,)
storage elements. However, for modified EDS algorithm, it costs one powerful processors,
K x(mg+1)x (n+ (n—k) x > w,) storage elements, K — 2 stacks of size (ms+ 1) X n and
one stack of size K — 2. Additionally, the front needs a buffer of size n to hold new received

values. Nevertheless, the buffer size of the latter should be expand to (ms+ 1) x n.

16

© wrong variablenode @ correct variable node

Figure 4.1: A subgraph that most check nodes connect to even wrong variable nodes.

4.2 Improved Scheme Based on Perturbation

For the decoding based on the original EDS or the modified EDS; we find that it may not
converge or converge to non-optimal codewords:These problems influence the performances
in the waterfall region and the error-floor region. To-mitigate these problems, we propose
two improved schemes based on the perturbatiom and the bit-flipping, respectively and
introduce these two schemes in this section and the next section.

During the decoding, sometimes the sequential schedule may cause that a lot of check
nodes are satisfied but each of them connects to even wrong variable nodes, as been shown
in Fig. 4.1. In Fig. 4.1, unless the wrong variable node which connects to the unsatisfied
check node is corrected, other wrong variable nodes can be corrected. Numerous variable
nodes, which can not converge, in this subgraph result in errors. Rather than to avoid the
occurrence of the problem, we try to identify those questionable variable nodes and let them
converge. We assume that if the transmitted bits of those questionable variable nodes suffer
different set of noise, they may converge and be decoded successfully.

With the modified EDS, every time before popping in new data, we compute average

log-APP of variable nodes in each block in the window to decide the state of convergence.

17

If there are blocks not convergent after being decoded for a while, we suppose that these
blocks will not be decode correctly. Then, we active perturbation algorithm to try to let
variable nodes in these blocks converge. To speak elaborately, we add additional zero-mean
Gaussian noise A; with variance 62 to the received value y; of a questionable variable nodes

v;. Then we reset the log-APPs of variable nodes in these blocks

Qi = Q(yz + AZ’>/5'2 = 2((131 + (nl + Az))/5'2 = 2@1'/5'2,

where 72

= 024462 and n; is channel noise. After that, we execute hybrid operation PUC N,
times and check if these blocks are convergent or not. Here, 62 should be chosen carefully.
It should not be neither too large nor too small. Since ¢; can be viewed as that y; suffered
larger noise, if §2 is too large, decoding result may get worse. However, if 62 is too small,
it may make no difference to the original result. Unfortunately, A;’s may fail. If it does,
we generate another set of perturbation noise A}’s unless successive Ny tries fail. A block
diagram of combination of perturbation algorithm and modified EDS is shown in Fig. 4.2.

Previously, perturbation algorithm (PA)-is usually used to generate more candidate
codewords. Besides, perturbation noise is added to the whole codeword. However, PA in
this thesis is used to help variable nodes escape from the decoding trap, where parts of

the Tanner graph can not converge. In addition, perturbation noise is added only to those

questionable variable nodes.

4.3 Improved Scheme Based on Bit-Flipping

Several observations indicate that the decoding based on the original EDS or our im-
proved EDS may converge to non-optimal codewords, which means that there is another
codeword whose Euclidean distance is smaller than that between the decoded codeword and
the received sequence, as shown in Fig. 4.3. To solve this problem, the idea is that we can
generate several codeword candidates and choose the codeword with the best metric to be
the decoding result, where the metric is the Euclidean distance between the codeword and

the received sequence.

18

Shift data

Execute bperation A’ N times

Check convergenc

N

let fail=0

Perturbation

Execute Operation A" N, times and
check convergence evel times.

ail++, fail<L, "
Termination?
\v/

Figure 4.2: Block diagram of combination of perturbation algorithm and modified EDS.

<]

N

19

O O
O O
o X received segquence

O transmitted

codeword 2
decoded codeword O

R
O codeword
O

O

Figure 4.3: A sketch map of codeword space.

For LDPC-CCs, the difference between a codeword and one of its neighboring codewords
is composed of one or several groups of variable nodes. Each group of variable nodes and all
check nodes which connect to them can form a special subgraph. In this special subgraph,
all check nodes connect to even variable nodes in the subgraph. For convenience, we call
the relationship between variable nodesin.a group pattern I';. For an LDPC-CC, there can
be infinite groups of variable nodes with the same pattern. Thus, I';(¢;) denotes the group
of variable nodes whose variable nodes locate at time instant I' > I";. Through different
patterns, we continuously check whether it is possible to get another codeword with a smaller
Euclidean distance. However, assume that y is decoded into a wrong codeword with a larger
Euclidean distance, and the difference between the decoded codeword and the transmitted
codeword is composed of one group of variable nodes. Those wrong variable nodes in the
group are usually caused by the decoding. Their received values may not be unreliable.
Since to influence a group with many variable nodes is more difficult than a group with
few ones, decoding errors are more likely to be variable nodes in small groups. Thus, only

patterns of small groups are needed for improvement of the performance.

20

Figure 4.4: A special subgraph of the LDPC-CC in Ex. 3.1.

Example 4.1 There’s a group, which is composed of following variable nodes

4) 4) 4) (5) (2)) (2)
Ve "y Usdray Uiiga, Ueigos Vrii06s Vit144r Vidis4s

(2) 4) 4) (5) (1)) (2)
Usr192s Vif194) UViio06r Vitdo12 UVii218y Vitoogs Uiio3ss

(5) (1) 4) (2) (4) (5) 4)
Upro50s Vrgoedr Upr2e8s Urtores Uryarss Vitosas Uiy290s

(5) (2) (1) (2) (1) (5) (2)
Vo065 Vras000 Via31200 YVir3485Vii306) Vii4060 Viia3z2

i an LDPC-CC with R = 0.5 and mg =203,

[1+ D194 D158 D166 D144 0 D65 0 0 i
D97 D49 0 D203 D65 D37 1 0
H(D) — 0 D106 D83 D138 D48 + D132 1 0 0
0 0 1 0 0 0 D? 1
0 0 0 0 0 0 1+D 1

O

Assume that there is a group I';(t) going to leave the window. For I';(¢), we firstly
check its state of convergence and whether all related check nodes are satisfied. Since if
these variable nodes are not convergent or some of related check nodes are not satisfied, the
decoded sequence is not a codeword and there is no need to check whether there is a codeword
with a smaller Euclidean distance. Then, we make hard decisions z(T';(t)) for variable nodes
in [';(¢). In addition, we compute the Euclidean distance Dy (I';(¢)) between z(I';(¢)) and the

corresponding received values y(I';(¢)). Let z(T';(t)) = —z(T;(t)). Afterward we compute

21

l

Shift data
y
Execute PUC N times
False
Check convergence re check nodes satisfied?
False True
let F=0 leti=0
Add perturbation noise Compute D,(i,t) and D.(i,t)
i Tru
True| | Execute PUC o times and check the _ Falsa _ :
state of convergence 1<C? Yo D,(i,t) > Dy(i,t)?
True
False -
True <> Fal Flip z(T;(t))
=L F<p?
F++
False

Figure 4.5: The block diagram-of the proposed algorithm.

the Euclidean distance Dy(T';(t)) between z (I';(t))/and y(I';(t)). If Dy(Ti(t)) > Dy(Ty(t)),
we flip all variable nodes in I';(?).

If the decoded codeword is farther from the received sequence than the correct codeword,
as shown in Fig. 4.3, we may acquire the correct one by bit-flipping. However, if the
decoded codeword is closer to the received sequence than the correct codeword, we can’t
rectify it. What’s even worse, if the decoded codeword is the right one, but it is farther from
the received sequence than others, we’ll make a mistake. However, the probability of the
occurrence of the first case is the highest. Thus, we can further improve the performance

by this method.

22

Chapter 5

Simulation Results

In this chapter, we will show the performances of the proposed algorithm on a BPSK-

modulated AWGN channel for LDPC-CCs with PPCMs and RPCMs.

Example 5.1 Consider a rate R = 0.5 LDPC-CC with a PPCM
1 —|—D194 D158 D166 D144 0 D65
I_I1 (D) — D97 D49 1 D203 D65 D37
0 D106 D83 D138 D48 —I—D132 1

with syndrome former memory m, = 203, U

In Fig. 5.1(a), we show the performances of the flooding algorithm, the original EDS,
our modified EDS, and the proposed algorithm. The number of iterations of the flooding
algorithm is 100. For the original EDS, our modified EDS, and the proposed algorithm, let
N = 20400 so that the amounts of check nodes being updated are the same with those of
the flooding algorithm. Besides, K is 66 for the original EDS and our modified EDS. K is
50 for the proposed algorithm. Let o = 1000000 and 3 = 5. Perturbation approximately
results in an increase of 0.5 times of the computation complexity. As we can see, since the
modified EDS has a more appropriate updating order, it has a better performance than that
of the original EDS. In addition, with the aids of the perturbation and the bit-flipping, the
proposed algorithm can further improve the performance. Comparing to the performance of
the flooding algorithm, the performance of the proposed algorithm is better. In Fig. 5.1(b),

we also show the performance of the flooding algorithm, whose number of iterations is 200.

23

200 is sufficient for the convergence of the flooding algorithm. Revealed by the simulation
results, the performance of the proposed algorithm is also better than that of the flooding

algorithm.

Example 5.2 Consider a rate R = 0.4 LDPC-CC with a PPCM

1 D251 D353 D376 D278
H2<D> — D32 1 D356 D395 D119
D256 D37 1 D359 D312

with syndrome former memory m, = 395. 0

In Fig. 5.2(a), we show the BER performances of an R = 0.4 LDPC-CC with a PPCM.
The number of iterations of the flooding algorithm is 100. For scheduling-based schemes,
let N = 39500 so that the amounts of check nodes being updated are the same with those
of the flooding algorithm. Besides, K is 66 for the original EDS and our modified EDS.
K is 50 for the proposed algorithm. -Let a..= 1000000 and § = 5. Perturbation also
approximately results in an increase of 0.5 times of the computation complexity. As we can
see, the performance of the modified EDS is better than that of the original EDS and the
proposed algorithm further improve the performance. Comparing to the performance of the
flooding algorithm, the performance of the proposed algorithm is better. In Fig. 5.2(b),
the performance of the flooding algorithm, whose number of iterations is 500, is also shown.
500 is sufficient for the convergence of the flooding algorithm. Revealed by the simulation
results, the performance of the proposed algorithm is also better than that of the flooding

algorithm.

Example 5.3 Consider Hi(D) in ezample 1. Now we replace its one polynomial term by

a rational one and obtain

1 —|—D194 D158 D166 D144 0 D65
H;(D) - DY D49 1+D23+D76 203 b5 D37

0 D106 D83 D138 D48+D132 1

24

information BER

information BER

Figure 5.1: The BER performances of an R = 0.5 LDPC-CC with a PPCM, where my = 203.

-4

10

10

107}

-7

10

—©— Flooding Algorithm [=100
—<v— EDS

—=4— Modified EDS
—+8— Proposed Algorithm

0.9

11

12
SNR

(a)

1.3 1.4 15 1.6

10}

-4

10

-5

10

10

T

—©— Flooding Algorithm |=100
—6— Flooding Algorithm =200
—v— EDS

—~A—— Modified EDS

——&— Proposed Algorithm

0.8

25

1.4 1.6 1.8

10 T T T T T T T T
—=©6— Flooding Algorithm 1=100
—<v— EDS
q —%v— Modified EDS
107 ¢ —&— Proposed Algorithm i
x
w10 " E
c
i)
IS
£
S -3 4
T 10
10k 1
10_5 I I I I I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1 11 1.2 1.3
SNR
(a)
100 T T T T T T T T
—©— Flooding Algorithm [=100
—6— Flooding Algorithm 1=500
q —<v— EDS
107 —— Modified EDS i
——&— Proposed Algorithm
x
w10
c
9o
IS
£
] 3L
g 10
10}
10_5 I I I I I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1 11 1.2 1.3
SNR
(b)

Figure 5.2: The BER performances of an R = 0.4 LDPC-CC with a PPCM, where my = 395.

26

By using two variable nodes, M;(D) and My(D), we expand it into a super code. Let

1

M(D) = 155w pr 3D
rewrite the check equation
1
DY"Vi(D) + D*V,(D) + S D76V3(D) + D?*BVy(D) + D%V5(D) + D*Vg(D) = 0

into
D"Vi(D) + D*V,(D) + D**V,(D) + D*V5(D) + D*Vi(D) + M,(D) =0
, and additionally add a new check equation
Va(D) + (14 D* + D™)M;(D) = 0.

Then, we obtain

i 14 D4 pLss plec pids 0 D65 0
. D97 D49 0 D203 D65 D37 1
H,(D) = 106 83 138 48 132
0 D D D D*+ D 1 0
0 0 1 0 0 0 1+D?»4 D™

However, the trinomial term 1+ D* + D™ will results in small girth, thus we let My(D) =
(1+ DM (D) and transform Hy (D) into

[1 + D194 D158 D166 D144 O D65 O O

D97 D49 0 D203 D65 D37 1 0

HIQN(D) — 0 D6 83 plss pas 4 pis2z g 0 0
0 0 1 0 0 0 D20 1

0 0 0 0 0 0 1+D7 1

O

To maintain the same code rate, we puncture variable nodes V3(D) and M;(D). In
Fig. 5.3(a), we show the BER performances of an R = 0.5 LDPC-CC with an RPCM. The

number of iterations of the flooding algorithm is 100. Let N = 34000 such that the amounts

27

—6— Flooding Algorithm 1=100 |
= : —v— EDS

‘ —v— Modified EDS
—+8— Proposed Algorithm

information BER
-
o

10 3
107
10_8 I I I I
0.8 1 1.2 14 1.6 1.8
SNR
(a)
10° . : k
—=©— Flooding Algorithm =100 |1
107t : —6— Flooding Algorithm 1=300]

—v— EDS
—+4— Modified EDS
—+8— Proposed Algorithm

information BER
-
o

10
10°F
107k
10_8 i i i i
0.8 1 1.2 1.4 1.6 1.8
SNR
(b)

Figure 5.3: The BER performances of an R = 0.5 LDPC-CC with an RPCM, where m4 =
203.

28

of check nodes being updated of other algorithms are the same with those of the flooding
algorithm. Besides, K is 66 for the original EDS and our modified EDS. K is 50 for the
proposed algorithm. Let v = 1000000 and # = 5. Perturbation also approximately results
in an increase of 0.5 times of the computation complexity. As we can see, the performance
of the modified EDS is better than that of the original EDS and the proposed algorithm
further improve the performance. Comparing to the performance of the flooding algorithm,
the performance of the proposed algorithm is better. In Fig. 5.3(b), the performance of the
flooding algorithm, whose number of iterations is 300, is also shown. 300 is sufficient for
the convergence of the flooding algorithm. The performance of the proposed algorithm is

also better than that of the flooding algorithm.

29

Chapter 6

Conclusion

In this thesis, we apply EDS to decode LDPC-CCs and modify the residual function
of EDS to improve the BER performances. Besides, we analyze the decoded results of
dynamic scheduling and propose two improved schemes based on the perturbation and the
bit-flipping to further improve the BER performances. By the simulations results, the
proposed algorithm is shown that it can provide a better BER performance comparing
to that of the flooding algorithm for LDPC-CCs with rational parity-check matrices. In

addition, for polynomial parity-check matrices,; the proposed algorithm also performs well.

30

Bibliography

1]

A. Jiménez Felstrom and K. Zigangirov, “Time-varing periodical convolutional codes
with low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, pp. 2181-2191,
Sep. 1999.

Guojun Han and Xingcheng Liu, “An efficient dynamic schedule for layered belief-
propagation decoding of LDPC codes,” IEEE Commun. Lett., vol. 13, pp. 950-952,
Dec. 2009.

Valentin Savin, “Iterative LDPC decoding using neighborhood reliabilities,” in Proc.

IEEFE Int. Symp. Inform. Theory, Nice, France, June 2007, pp. 221-225.

Hua Xiao and Amir H. Banihashemi, “Graph-<based message-passing schedules for de-
coding LDPC codes,” IEEE Trans. on Communications, vol. 52, pp. 2098-2105, Dec.
2004.

Andres 1. Vila Casado, Miguel Griot, and Richard D. Wesel, “Informed dynamic
scheduling for belief-propagation decoding of LDPC codes,” in Proc. IEEE Int. Conf.
Commun., Glasgow, Scotland, June 2007, pp. 932-937.

Chih-Chieh Lai, “A study on LDPC-CC with rational parity-check metrices and related
decoding algorithms,” master thesis, National Chiao Tung University, Hsinchu, Taiwan,

R.0.C., 2009.

Arvind Sridharan, “Design and analysis of LDPC convolutional dodes,” Ph.D. disser-
tation, the University of Notre Dame, Indiana, U.S.A, 2005.

31

[8] J. Hahenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convo-
lutional codes,” IEEE Trans. Inf. Theory, vol. 42, pp. 425-449, Mar. 1996.

32

	cover.pdf
	bookName.pdf
	chineseAbstract.pdf
	EnglishAbstract.pdf
	thanks.pdf
	thesis.pdf

