
國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

具平行化處理之

JPEG2000 方塊編解碼晶片設計

Design of the efficient Pass-Parallel

Context Formation Codec for JPEG2000

研究生 : 陳沛君

指導教授 : 吳炳飛 博士

中 華 民 國 九 十 三 年 七 月

具平行化處理之 JPEG2000 方塊編解碼晶片設計

Design of the efficient Pass-Parallel Context

Formation Codec for JPEG2000

研 究 生：陳沛君 Student：Pei-Chun Chen

指導教授：吳炳飛 Advisor：Bing-Fei Wu

國 立 交 通 大 學

電機與控制工程學系

碩士論文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electrical and Control Engineering

July 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年七月

具平行化處理之

JPEG2000 方塊編解碼晶片設計

學生：陳沛君 指導教授：吳炳飛教授

國立交通大學 電機與控制工程研究所 碩士班

摘 要

JPEG2000 是一種新的靜態影像壓縮規格，它擁有比 JPEG 更好的壓縮率，

並也提供了更多的特色，但是相對的，JPEG2000 也比 JPEG 需要更多的 memory

以及運算量，其中又以 EBCOT 為最，因此我們針對 EBCOT 裡的 context formation

提出了一些加快運算以及減少 memory 的方法。Sample-Skipping method 可以直

接對需要編碼的 sample 執行動作，略過不需被編碼的 sample，而 Pass-Parallel

method 可以使三個 coding pass 在同一層 bit-plane 上平行處理，column-based

architecture 則可同時判斷同一行的四個 sample 中是否需要被編碼，這三種方法

可以有效的加速 JPEG2000 的編解碼速度，大約可以將編解碼所需的時間減少至

36%。我們的設計經過 CMOS 0.25 製程合成後，晶片面積大小為 1775 µ m ×

1695µ m.，工作頻率最快可以到達 133 MHz，在 100 MHz 下，處理一張 2304 ×

1728 的灰階影像時，編碼時間為 0.323 秒，解碼則需 0.512 秒。

 ii

Design of the efficient Pass-Parallel

Context Formation Codec for JPEG2000

Student: Pei-Chun Chen Adviser: Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

JPEG2000 is a new still image compression standard. It has better compression

performance than the JPEG standard and also provides new features not available in

JPEG. However, the high performance and new features require more complex

computations and hardware cost than traditional JPEG. Moreover, most of the

computation time is in EBCOT. Therefore, an efficient JPEG2000 codec design is

proposed to ease in the overhead. We focus on context formation module of EBCOT

Tier-1 in JPEG2000. Two speedup methods, Sample-Skipping and Pass-Parallel, are

adopted in our design. The Sample-Skipping method is to skip no-operation samples

in each column and then codes the need-to-be-coded samples directly. The

Pass-Parallel method is to process three coding passes of the same bit-plane in parallel

to improve the system performance. A column-based architecture using these

combined speedup methods is then proposed to check four samples in a column

concurrently. The prototype chip of the proposed technique is synthesized in CMOS

0.25 µ m 1P5M technology. The area of this chip is 1775 µ m× 1695 µ m. The

clock frequency can reach 133 MHz. With clock frequency, 100 MHz, it needs 0.323

second to encode and 0.512 second to decode an image with 2304 × 1728 image size.

 iii

ACKNOWLEDGEMENTS

研究所兩年的生涯也隨著本篇論文完成畫下了句點，於此同時，要感謝許

多人的幫忙，使我能夠順利完成研究所的學業。

首先要感謝的是我的指導教授 吳炳飛老師。 吳炳飛老師是交大十分傑出

的一位教授，感謝他提供我一個理想的工作環境以及正確的引導。在老師的照顧

與耐心指導下，讓我學習到解決問題的方法與求學時應有的態度，使我獲益良多。

另外要感謝實驗室重甫學長、志旭學長的細心教導，開闊了我的視野，使

我增進了不少專業知識。也感謝實驗室所有的夥伴、學弟妹以及稚芳、阿吉、瓊

文、雅貞、小牙籤、廢書、老麥、建仁等好友的鼓勵與包容。

最後要感謝媽媽以及所有家人的支持，讓我能夠專心於學業上的研究，有

他們的支持，使得求學之途得以如此順利、踏實。

僅以本論文

 獻給家人及所有關愛我的人

 iv

CONTENTS

ABSTRACT(Chinese)...i

ABSTRACT(English) ..ii

ACKNOWLEDGEMENTS .. iii

CONTENTS...iv

LIST OF TABLES...vi

LIST OF FIGURES ...vii

CHAPTER 1. INTRODUCTION..1

1.1. JPEG2000 OVERVIEW ...2
1.2. JPEG2000 PERFORMANCE...3
1.3. THESIS ORGANIZATION ..6

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS7

2.1. CONTEXT FORMATION MODULE OF EBCOT TIER-1.......................................7
2.1.1. Five coding states ..9
2.1.2. Four coding primitives...10
2.1.3. Three coding passes ...14

2.2. ANALYSIS OF CONTEXT FORMATION ..18
2.2.1. Execution time..18
2.2.2. Memory requirement ..19

CHAPTER 3. PROPOSED SPEEDUP METHOD..20

3.1. SAMPLE-SKIPPING..20
3.1.1. NBC in Sample-Skipping..22

3.2. PASS-PARALLEL ...23
3.2.1. Pass-Parallel in Encoding ...24
3.2.2. Pass-Parallel in Decoding...26
3.2.3. Advantages of Pass-Parallel..27

3.3. EXECUTION TIME WITH PASS-PARALLEL..27

 v

CHAPTER 4. ARCHITECTURE DESIGN...29

4.1. COLUMN-BASED OPERATION ...31
4.2. PASS CODING MODULE ..33

4.2.1. Sample-Skipping architecture ..34
4.2.2. Pass 2 coding module architecture ..37
4.2.3. Pass 1 coding module architecture ..38
4.2.4. Pass 3 coding module architecture ..38

4.3. SMW AND CMW ARCHITECTURE..41
4.4. PIPELINE ..43

CHAPTER 5. EXPERIMENT RESULTS..49

5.1. DESIGN FLOW ..49
5.2. DESIGN VERIFICATION ...51
5.3. EXPERIMENT ..52

CHAPTER 6. CONCLUSION ..55

REFERENCE...57

 vi

LIST OF TABLES

Table 1-1 Lossless compression ratios..4

Table 1-2 PSNR, in dB, corresponding to average RMSE, of 200 runs, of the

decoded “café” image when transmitted over a noisy channel with

various bit error rates (ber) and compression bitrates, for JPEG baseline

and JPEG2000...5

Table 1-3 Functionality matrix. A “+” indicates that it is supported, the more “+” the

more efficiently or better it is supported. A “-“indicates that it is not

supported...6

Table 2-1 Context table for zero coding.. 11

Table 2-2 Sign contribution truth table for sign coding ..12

Table 2-3 Context table for sign coding..12

Table 2-4 Context table for magnitude refinement coding13

Table 2-5 Contexts and decisions of the second and the third cases in Pass 3 (x:

don’t care) ...17

Table 2-6 Number of encoded samples that belong to a given coding pass19

Table 3-1 Number of checked clock cycles in Sample-Skipping (SS) and

Pass-Parallel (PP)..28

Table 4-1 NBC flag converts to NBC index ...35

Table 5-1 List of Pad used in this chip..53

Table 5-2 Specifications of this chip...53

Table 5-3 Performance of our design..54

 vii

LIST OF FIGURES

Figure 1-1 Block diagram of JPEG2000 encoder ...2

Figure 1-2 Entire encoding process of JPEG2000..3

Figure 1-3 Direction of Context (CX) and Decision (D) in encoder and decoder......3

Figure 1-4 PSNR corresponding to average RMSE, of all test images, for each

algorithm when performing lossy decoding at 0.25, 0.5, 1 and 2 bpp of

the same progressive bitstream. ..5

Figure 2-1 There are three sample with 9 bits, the first one is sign bits and others are

magnitude bits. And the representation of negative is 1’s complement....7

Figure 2-2 Scanning hierarchy of a code-block is bit-plane, stripe, column, sample.8

Figure 2-3 Scan order of a bit-plane in every pass ...8

Figure 2-4 A sample is called significant after the first ‘1’ bit is met.........................9

Figure 2-5 Neighbors states used to form the context ..10

Figure 2-6 the coding order of three coding passes ..14

Figure 2-7 Flow chart of sample checking to determine which pass a sample

belongs to ..15

Figure 2-8 There are 35 NBC samples of Pass 1 coding and 5 NBC samples of Pass

2 and 24 NBC samples of Pass 3 in a bit-plane of a 8x8 code-block18

Figure 3-1 The number of clock cycles required while coding a column. Notice the

first column, it only spend one cycle to coding a column with no NBC

samples. The spent clock cycles in all kinds of columns are less than

four clock cycles. ..21

 viii

Figure 3-2 Flow chart of Sample-Skipping ..21

Figure 3-3 A 6×3 context window for coding a column of samples X1, X2, X3, X4. 22

Figure 3-4 Significance state of samples in a context window before coding X1, X2,

X3, X4 ..23

Figure 3-5 Context windows of three coding passes in the Pass-Parallel encoding

architecture..24

Figure 3-6 All the neighbors will be coded by Pass 1 if the center sample belongs to

Pass 2. And some neighbors with magnitude bit ‘1’ will become

significant in Pass 1, the others with magnitude bit ‘0’ will maintain

insignificant...25

Figure 3-7 Context windows of three coding passes in the Pass-Parallel decoding

architecture..26

Figure 4-1 Block diagram of context formation ...29

Figure 4-2 Column-based registers (5 x 5) ...31

Figure 4-3 Column-based registers (4 x 5) ...31

Figure 4-4 Flow chart of column-based registers while time N, time N+1, and time

N+2 ...32

Figure 4-5 Block diagram of Pass 1 coding module...33

Figure 4-6 Block diagram of Pass 2 coding module...34

Figure 4-7 Block diagram of Pass 3 coding module...34

Figure 4-8 Flow chart of Sample-Skipping architecture (include of finding out the

current NBC sample by index I) ...36

Figure 4-9 Flow chart of the Pass 2 coding module (MRC).....................................37

Figure 4-10 Flow chart of Pass 3 coding (RLC)...39

Figure 4-11 Flow chart of Pass 1 coding (ZC+SC) ..40

 ix

Figure 4-12 Flow chart of writing new significance states into memory41

Figure 4-13 Flow chart of writing coefficients into memory. It is similar to the flow

chart of writing significance states into memory. But the data must be

loaded from memory before writing. ..42

Figure 4-14 Relation of five blocks and six registers in encoding43

Figure 4-15 Relation of six blocks and six registers in decoding44

Figure 4-16 Index of every sample for a 8 x 7 code-block.......................................44

Figure 4-17 Pipeline architecture of encoding and decoding in normal case45

Figure 4-18 If the context window is out of code-block, it considers the samples that

don’t exist in fact as insignificant. ..46

Figure 4-19 Pipeline architecture of encoding and decoding in special case47

Figure 4-20 Index of every sample for a 8 x 5 code-block.......................................48

Figure 5-1 Flow chart of cell-based design...50

Figure 5-2 Verification flow in encoding..51

Figure 5-3 Verification flow in decoding..52

Figure 5-4 Layout view of the CF codec design...54

Figure 6-1 Context-decision timing in decoding ..56

CHAPTER 1. INTRODUCTION

 1

CHAPTER 1.
INTRODUCTION

JPEG2000 is a recent still image compression standard developed by ISO/IEC

JTC1/SC29/WG1. It was drafted at the end of 2000 as an international standard.

JPEG2000 not only has the better compression performance than JPEG standard does,

but also provides more features than the traditional JPEG.

It provides error resilience, superior low bit rate compression, region-of-interest

coding (ROI), lossy and lossless compression, progression transmission by pixel

accuracy and resolution, random code-stream access and processing, etc.

JPEG2000 can apply to many applications, such as internet, color facsimile,

printing, scanning, digital photography, remote sensing, mobile, medical imagery,

digital libraries, and E-commerce.

However, the memory requirement and computation complexity of JPEG2000

is much higher than that of JPEG. In Addition, over half of the computation time is

occurred in Embedded Block Coding with Optimized Truncation (EBCOT). Thus,

EBCOT becomes the critical part of JPEG2000 system.

To solve this problem, two speedup methods are adopted. The Sample-Skipping

method can skip no-operation samples in a column, and the Pass-Parallel method can

process three coding passes of the same bit-plane in parallel. By using two methods,

the process time can be reduced to about 36% of previous work. Under CMOS 0.25

technology, the area of this chip is 1775 µm × 1695 µm, and the clock frequency can

CHAPTER 1. INTRODUCTION

 2

reach 100 MHz. It can encode 2304 × 1728 image within 0.323 seconds, and decode it

within 0.512 second.

1.1. JPEG2000 Overview

The block diagram of JPEG2000 encoder is depicted in Figure 1-1. Discrete

Wavelet Transform (DWT) and EBCOT are the two main modules of JPEG2000.

EBCOT coding algorithm is proposed by David Taubman [1]. It is a two-tiered coder,

where Tier-1 is a context-based adaptive arithmetic coder, and Tier-2 is the

rate-distortion optimization and bitstream layer formation.

JPEG 2000

QuantizationDWT

EBCOT

Tier-1

Tier-2
CF AE

Figure 1-1 Block diagram of JPEG2000 encoder

In encoder, the discrete wavelet transform (DWT) is applied for the input image

data. The generated coefficients may be performed by quantization process are then

coded by context formation module (CF) and adaptive binary arithmetic coder (AC).

Finally, the output code-stream can be executed by post-compression rate-distortion

optimization algorithm (Tier-2) to reach more effective compression.

During encoding, an image is divided into several rectangular structures called

tiles. Either lossless 5/3 filters of DWT or lossy 9/7 filters can be applied to a tile to

decompose it into several subbands. If lossy compression is chosen, the wavelet

coefficients are scalar quantized. After the DWT and quantization processes, each

wavelet subband is then divided into code-blocks.

Each code-block is coded by context formation module. CF generates context

labels and decisions to arithmetic coder. After all code-blocks are encoded

independently, Tier-2 collects all bitstream with their rate-distortion information, and

CHAPTER 1. INTRODUCTION

 3

then picks important bits to form the final bitstream according to rate-distortion

optimization criteria.

tile tile

tiletile
subband subband

subband
Code-
block

Code-
block

Code-
block

Code-
block

Code-block Context,
decision

Compressed
data Bit stream

Image Tile Subband

DWT Quantization

CF AC Tier-2

Figure 1-2 Entire encoding process of JPEG2000

Decoder can be seen as the inverse of the encoder and it can be achieved by

performing the encoding steps in the reverse order except CF and AC. In decoder, not

both contexts and decisions are generated from AC. Instead, contexts are still

generated from CF like in encoder.

CF
Encoder

CF
Decoder

AC
Encoder

AC
Decoder

CX

CX

D

D

Tier1 Encoder

Tier1 Decoder

Figure 1-3 Direction of Context (CX) and Decision (D) in encoder and decoder

1.2. JPEG2000 Performance

The section presents the outperformance of JPEG2000 in terms of the high

CHAPTER 1. INTRODUCTION

 4

compression ratio and various functionalities. The comparison results in this section

are resulted from previous works [10]. The compared standards include reversible

JPEG2000 (JPEG2000R), non-reversible JPEG2000 (JPEG2000NR), near-lossless

JPEG (JPEG-LS), lossless JPEG (L-JPEG), progressive JPEG (P-JPEG), MPEG-4

VTC (VTC), and Portable Network Graphics (PNG).

Lossless compression

 JPEG2000R JPEG-LS L-JPEG PNG

bike 1.77 1.84 1.61 1.66

café 1.49 1.57 1.36 1.44

cmpnd1 3.77 6.44 3.23 6.02

chart 2.60 2.82 2.00 2.41

aerial2 1.47 1.51 1.43 1.48

target 3.76 3.66 2.59 8.70

us 2.63 3.04 2.41 2.94

average 2.50 2.98 2.09 3.52

Table 1-1 Lossless compression ratios

It can be seen that in almost all cases the best performance is obtained by

JPEG-LS (except the “target” image). JPEG2000 provides, in most cases, competitive

compression ratios with the added benefit of scalability. This shows that as far as

lossless compression is concerned, JPEG2000 seems to perform reasonably well in

terms of its ability to efficiently deal with various types of images.

Progressive compression

Figure 1-4 depicts the average rate-distortion behavior obtained by applying

progressive compression schemes. The compared standards include JPEG2000R,

JPEG2000NR, VTC, and P-JPEG. As shown in Figure 1-4, progressive lossy

JPEG2000 outperforms all other schemes The progressive lossless JPEG2000 does

not perform as well, mainly due to the use of reversible wavelet filters.

CHAPTER 1. INTRODUCTION

 5

Figure 1-4 PSNR corresponding to average RMSE, of all test images, for each algorithm

when performing lossy decoding at 0.25, 0.5, 1 and 2 bpp of the same progressive bitstream.

Error resilience

bpp ber: 0 ber: 1e-6 ber: 1e-5 ber: 1e-4

JPEG2000 23.06 23.00 21.62 16.59
0.25

JPEG 21.94 21.79 20.77 16.43

JPEG2000 26.71 26.42 23.96 17.09
0.5

JPEG 25.40 25.12 22.95 15.73

JPEG2000 31.90 25.12 22.95 15.73
1.0

JPEG 30.34 29.24 23.65 14.80

JPEG2000 39.91 36.38 27.23 17.33
2.0

JPEG 37.22 30.68 20.78 12.09

Table 1-2 PSNR, in dB, corresponding to average RMSE, of 200 runs, of the decoded “café”

image when transmitted over a noisy channel with various bit error rates (ber) and

compression bitrates, for JPEG baseline and JPEG2000.

Table 1-2 compares the error resilience of JPEG2000, with the non-reversible

filter, and JPEG baseline. Under the different transmission error results, the

reconstructed image quality of JPEG2000 is higher than JPEG.

CHAPTER 1. INTRODUCTION

 6

Functionality

 JPEG2000 JPEG-LS JPEG MPEG-4 VTC PNG

lossless compression

performance
+++ ++++ + - +++

lossy compression

performance
+++++ + +++ ++++ -

progressive

bitstreams
+++++ - ++ +++ +

ROI ++ - - + -

arbitrary shaped

objects
- - - ++ -

random access ++ - - - -

low complexity ++ +++++ +++++ + +++

error resilience +++ ++ ++ +++ +

non-iterative rate

control
+++ - - + -

genericity +++ +++ ++ ++ +++

Table 1-3 Functionality matrix. A “+” indicates that it is supported, the more “+” the more

efficiently or better it is supported. A “-“indicates that it is not supported.

Table 1-3 summarizes the results of the computation of different algorithms.

The table shows that JPEG2000 offers the richest set of features within an integrated

algorithmic approach.

1.3. Thesis Organization

In this thesis, we focus on the analysis of the EBCOT Tier-1 CF algorithm, and

propose an efficient block-coding engine for this critical module.

The thesis is composed of six chapters. It is organized as follows. The next

chapter reviews and analyses the CF algorithm of EBCOT. Chapter 3 proposes two

speed-up methods, Sample-Skipping and Pass-Parallel. The architecture based on

these speed-up ideas is discussed in chapter 4. Experimental results are given in

chapter 5. And chapter 6 makes a brief conclusion about this thesis.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 7

CHAPTER 2.
OVERVIEW OF EBCOT TIER-1 CF
AND ANALYSIS

2.1. Context Formation module of EBCOT
Tier-1

After the DWT and quantization, each sub-band is partitioned into code-block

(a rectangular grouping of coefficients typically 64×64 or 32×32 in dimension). All

quantized wavelet coefficients of each code-block are expressed in sign-magnitude

representation (in 1’s complement) and divided into one sign bit-plane and several

magnitude bit-planes.

-31

108

1 0 0 1 1 0 1 1 1-55

Sign bit

0 0 1 1 0 1 1 0 0

1 0 0 0 1 1 1 1 1

Magnitude bit

Figure 2-1 There are three sample with 9 bits, the first one is sign bits and others are

magnitude bits. And the representation of negative is 1’s complement.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 8

A code-block is composed of many bit-planes. A bit-plane is composed of

many stripes. A stripe is composed of many columns. And a column is composed of

four samples (in other words, every four rows form a stripe).

Bit-planes
in a code-block

Stripes
in a bit-plane

Columns
in a stripe

Samples
in a column

Figure 2-2 Scanning hierarchy of a code-block is bit-plane, stripe, column, sample

Each coding pass of a code-block is scanned in a particular order. The scan

order of each code-block is bit-plane by bit-plane, from MSB (the most significant

bit-plane with at least a non-zero element) to LSB (the least significant bit-plane),

rather than sample by sample. In every bit-plane, the scanning order is stripe by stripe

from top to bottom. And in every stripe, the scanning order is column by column from

left to right, sample by sample from top to bottom in every column.

Stripe 1

Stripe 2

Code-block Width

Stripe 3

Figure 2-3 Scan order of a bit-plane in every pass

EBCOT block coder is a context-base adaptive arithmetic coder. Each sample

in each bit-plane is coded by its context and sends to the arithmetic coder along with a

decision. The context of each sample is decided by five coding states, four coding

primitives, and three coding passes.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 9

2.1.1. Five coding states

There are five states for block coding in context formation module. They are

magnitude state, sign state, significance state, refinement state, and coded state.

Magnitude state

The magnitude bit of every sample in the current coding bit-plane is recorded

in the magnitude states. The magnitude state is different in every bit-plane for a

sample. It comes from the coefficients generated from DWT in encoding. In

decoder, the magnitude state is reconstructed depending on the decision

generated from arithmetic decoder.

Sign state

The sign bit of every sample is recorded in the sign states. A zero bit indicates

a positive numbers and a one bit indicates a negative numbers. The sign state

of every sample is the same across all bit-planes. It also comes from the

coefficients generated from DWT in encoder and also reconstructed depending

on the decision generated from arithmetic decoder, just like magnitude state.

Significance state

A sample is called significant after the first ‘1’ bit is met while coding from

MSB to LSB, and is called insignificant before the first ‘1’ bit appears, as

illustrated in Figure 2-4. The significance state records if a sample is

significant in the current bit-plane. It is set to one when the magnitude bit of

the sample is the first ‘1’. The significance state may be changed by Pass 1 and

Pass 3 coding.

Fisrt '1' bit

insignificant

significant

1 0 0 1 1 0 1 1 1-55

Sign bit

Magnitude bit

Magnitude bit

Figure 2-4 A sample is called significant after the first ‘1’ bit is met.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 10

Refinement state

The refinement state indicates whether or not a sample has already been coded

in magnitude refinement pass in previous bit-plane. In the beginning of coding

in each code-block, refinement bits are all set to zero. And refinement bit is set

to one after a sample is coded by magnitude refinement coding at first time.

The refinement states may be changed only in Pass 2 coding.

Coded state

The coded state indicates whether or not a sample has already been coded in a

previous coding pass of the same bit-plane. When a sample is coded in

significance propagation pass or magnitude refinement pass, the coded state bit

is set to one. After the cleanup pass, the coded state bits are all reset to zero.

Note that, all the significance state bits and sign state bits are hold across all

bit-planes, but the coded state bits are reset at the end of each bit-plane (in the end of

Pass 3 coding). The magnitude state bits and sign state bits are coefficients from DWT

in encoding, but in decoding they are reconstructed by the decisions generated from

arithmetic decoder.

2.1.2. Four coding primitives

The context label of each sample is generated according to the status of its

neighbors using four coding primitives: zero coding (ZC), sign coding (SC),

magnitude refinement coding (MRC), and run-length coding (RLC). The eight

neighbor samples of current sample X are separate into three groups : vertical (V0、

V1) , horizontal (H0、H1), and diagonal (D0、D1、D2、D3), as shown in Figure 2-5. The

four coding operation for generating contexts are introduced below.

D0 V0 D1

H0 X H1

D2 V1 D3

Figure 2-5 Neighbors states used to form the context

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 11

Zero Coding (ZC)

The sample that is insignificant and prepares to become significant will be

coded by zero coding. It is used in significant propagation pass and clean up

pass. Eight neighbor samples are classified into 9 groups, corresponding to 9

contexts, as shown in Table 2-1. ΣH represents the sum of significant

horizontal neighbors, ΣV represents the sum of significant vertical neighbors,

and ΣD represents the sum of diagonal neighbor samples. The decision of ZC

is the magnitude bit of the current sample in the bit-plane.

LL and LH sub-band

(vertical high-pass)

HL sub-band

(horizontal high-pass)

HH sub-band

(diagonally high-pass)

Context

label

ΣHi ΣVi ΣDi ΣHi ΣVi ΣDi Σ(Hi+ Vi) ΣDi

2 x x x 2 x x ≥ 3 8

1 ≥1 x ≥1 1 x ≥1 2 7

1 0 ≥1 0 1 ≥1 0 2 6

1 0 0 0 1 0 ≥2 1 5

0 2 x 2 0 x 1 1 4

0 1 x 1 0 x 0 1 3

0 0 ≥2 0 0 ≥2 ≥2 0 2

0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0

Table 2-1 Context table for zero coding

Sign Coding (SC)

In sign coding, only vertical and horizontal neighbor samples will be used.

Computation of the context label can be viewed as a two-step process.

For the first step, the significance state and sign state of the vertical and

horizontal neighbors are used to form the vertical and horizontal contribution,

as shown in Table 2-2.

For the second step, a context label and an XOR bit are formed from vertical

and horizontal contributions, as shown in Table 2-3. It reduces the nine

permutations of the vertical and horizontal contributions into five context

labels. The decision bit that will be sent to arithmetic coder in encoding is then

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 12

produced by exclusive-or the XOR bit and the sign bit.

D = sign bit ⊗ XOR bit

In decoding, the sign bit could be reconstructed by exclusive-or XOR bit and

the decision bit generated from arithmetic decoder.

Sign bit = D ⊗ XOR bit

Significant,

positive

Significant,

negative
Insignificant

Sign contribution

V0 (or H0)

Significant, positive 1 0 1

Significant, negative 0 -1 -1

Insignificant

V1

(or H1)
1 -1 0

Table 2-2 Sign contribution truth table for sign coding

Horizontal contribution Vertical contribution Context label XOR bit

1 1 13 0

1 0 12 0

1 -1 11 0

0 1 10 0

0 0 9 0

0 -1 10 1

-1 1 11 1

-1 0 12 1

-1 -1 13 1

Table 2-3 Context table for sign coding

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 13

Magnitude Refinement Coding (MRC)

The sample that has been significant in previous bit-planes will be coded by

magnitude refinement coding. And it is used in magnitude refinement pass only.

The context label is dependent on whether or not this sample has ever been

coded in MRC and the summation of the significance state of neighbors. Table

2-4 shows the three contexts for magnitude refinement coding. The decision bit

is the magnitude bit of the current sample in the bit-plane.

ΣHi + ΣVi + ΣDi First refinement for this coefficient Context label

X False 16

≥1 True 15

0 true 14

Table 2-4 Context table for magnitude refinement coding

Run-Length Coding (RLC)

In run-length coding, four contiguous samples in a column are coded used one

context, rather than one context for each sample in other coding. RLC is used

when the four contiguous samples in a column are all insignificant and their

neighbors are all insignificant too. If there are fewer than four rows remaining

in a code-block, then no run-length coding is used. In RLC, if none of bits of

the four samples become significant, context 17 with data 0 is used. In other

word, if all magnitude bits of the four contiguous samples in a column are zero,

context label 17 with decision bit 0 is used sending to arithmetic coder. On the

other hand, if any bit of the four samples does become significant (at least one

magnitude bit of the four samples is one), context 17 with decision data 1 is

used. And the first significant sample is sent using uniform coding, followed

by the sign coding of the first significant sample. The rest samples of this

column are coded using zero coding (same samples also need sign coding).

The reason will be described later in cleanup pass.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 14

2.1.3. Three coding passes

There are three coding passes in each bit-plane, and they are significance

propagation pass (Pass 1), magnitude refinement pass (Pass 2), and cleanup pass (Pass

3).

The coding order of three coding passes is that Pass 1 is the first, Pass 2 is the

next, and Pass 3 is the last coding pass in the every bit-plane except in MSB. In MSB,

only Pass 3 is used (this will be explained later in this section). Figure 2-6 shows the

coding order of three coding passes in a code-block.

Start

Pass 3 coding

Current bit-plane = LSB ?

End

Yes

Current bit-plane =
Current bit-plane - 1

Pass 1 coding

Pass 2 coding

No

Start in MSB

Figure 2-6 the coding order of three coding passes

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 15

Each sample in a bit-plane is coded in only one of the three coding passes and

skipped in the other two passes. The method to determine which coding pass the

current sample belongs to is illustrated in Figure 2-7.

Check sample start

Current sample is
significant ?

Neighbors of current
sample are all
insignificant ?

Current sample
belongs to Pass 1

Current sample
belongs to Pass 3

Current sample
belongs to Pass 2

No

Yes

Yes

No

Figure 2-7 Flow chart of sample checking to determine which pass a sample belongs to

Significance propagation pass

Significance propagation pass (Pass 1) only includes the samples that are

insignificant but have at least one immediate neighbor (V0、V1、H0、H1、D0、

D1、D2、D3) that is significant. Clearly, these samples are most likely to become

significant. A sample belongs to Pass 1 is coded using zero coding. If the

sample does become significant (the magnitude bit of the sample is the first ‘1’

from MSB to LSB), it also uses sign coding followed zero coding, and sets the

significance bit immediately.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 16

Hence, in decoding, the ZC decision received from arithmetic decoder is the

magnitude bit of the sample in current bit-plane. If the ZC decision bit received

from arithmetic decoder is ‘1’ that means the sample does become significant

in this bit-plane. And it also needs to be coded using SC. By exclusive-or SC

decision generated from arithmetic decoder and XOR bit, it could get the sign

bit of the sample.

Magnitude refinement pass

Magnitude refinement pass (Pass 2) includes samples that are already

significant in previous bit-plane and don’t belong to significance propagation

pass in the same bit-plane. The sample belongs to Pass 2 will be coded by

magnitude refinement coding only.

In decoding, the decision generated from arithmetic decoder is the magnitude

bit of the current sample in this bit-plane.

Cleanup pass

Cleanup pass (Pass 3) includes samples that don’t belong to Pass 1 and Pass 2.

There are three cases in Pass 3: 1) If there is any sample in this column that

does not belong to Pass 3 or not meet the RLC rule. In this case, only the ZC

(or ZC and SC) is used in the samples that have not been coded in previous

coding passes. 2) Suppose magnitude bits of the four contiguous samples are

X1, X2, X3, and X4. If all the four contiguous samples in Pass 3 are

need-to-be-coded samples and meet RLC rule, and X1, X2, X3, and X4 are all

zero, then only RLC is used. 3) If all the four contiguous samples in Pass 3 are

need-to-be-coded samples and meet RLC rule, but not all of X1, X2, X3, and X4

is zero. In this case, RLC, Uniform coding, and SC (or SC and ZC) are all

used.

Table 2-5 shows the second and the third cases in Pass 3. Condition 1 is

exactly the second case. Table 2-5 condition 2~5 belong to the third case, and

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 17

the uniform coding is also used in these condition. In uniform coding, it sends

two context-decision pairs to arithmetic coder. Suppose the two decisions are

D1 and D2. The values of D1 and C2 point out which is the first magnitude bit

with the valur‘1’ from X1 to X4. If X1 is ‘1’, just like in Table 2-5 condition 2,

then (D1, D2) is set to (0, 0). And the four samples with the four magnitude

bits, from X1 to X4, need to be coded by ZC (except X1, it only needs to be

coded by SC). On the other hand, if both X1 and X2 are ‘0’ and X3 is the first

‘1’, just like in Table 2-5 condition 4, then (D1, D2) is set to (1, 1). And the

two samples with magnitude bit, X3 and X4, need to be coded by ZC (X3 only

needs to be coded by SC).

Condition
Value of

X1, X2, X3, X4

RLC context

and decision

Uniform context

and decision

(D1, D2)

Which sample

needs to be

coded by

ZC+SC?

1 0, 0, 0, 0 (17, 0) non non non

2 1, x, x, x (17, 1) (18, 0) (18, 0) X1, X2, X3, X4

3 0, 1, x, x (17, 1) (18, 0) (18, 1) X2, X3, X4

4 0, 0, 1, x (17, 1) (18, 1) (18, 0) X3, X4

5 0, 0, 0, 1 (17, 1) (18, 1) (18, 1) X4

Table 2-5 Contexts and decisions of the second and the third cases in Pass 3 (x: don’t care)

In Pass 3 decoding, if all the four contiguous samples in this column belong to

Pass 3 and meet the RLC rule, the unique RLC context is given to the

arithmetic decoder. If the RLC decision returned from arithmetic decoder is ‘0’,

it means the four magnitude bits are all zeros and remain insignificant.

Otherwise, if the RLC decision is ‘1’, it means there is at least one of the four

magnitude bits with value ‘1’. And then two uniform decisions (D1 and D2)

received from arithmetic decoder denote which magnitude bit from top of the

column down is the first ‘1’ magnitude bit.

Note that in Pass 3 decoding, if the uniform decisions (D1, D2) received from

arithmetic decoder are (0, 0), it could conjecture that magnitude bit X1 is ‘1’.

Therefore, the zero coding of first ‘1’ sample can be omitted in encoding.

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 18

The samples in the first nonzero bit-plane are all insignificant. From the

descriptions above, neighbors of all samples are insignificant, so they don’t belong to

significance propagation pass. And by reason of all samples are insignificant, the

magnitude refinement pass is not used in this bit-plane, too. Only cleanup pass is used

in the first nonzero bit-plane.

2.2. Analysis of Context Formation

2.2.1. Execution time

As discussed in section 2.1.3, each sample in a bit-plane is checked three times,

one for each pass, although each sample will be coded in only one of the three coding

passes, and skipped in the other two passes. Since not all samples belong to the same

pass in general case, the checking time results in a “bubble cycle”. That is, in

sample-based serial checking architecture, checking four samples in a column costs

four clock cycles no matter how many NBC (need-to-be-coded) samples in it. It

wastes many clock cycles on processing sample location.

In Figure 2-8, if each sample location requires a single clock cycle per coding

pass for checking whether or not the sample is NBC sample, it wasted 29 (64-35)

clock cycles in Pass 1 and 59 (64-5) clock cycles in Pass 2 and 40 (64-24) clock

cycles in Pass 3.

1 Need to be coded sample by pass 1

2

3

Need to be coded sample by pass 2

Need to be coded sample by pass 3

3

3

1

1

1

3

3

3

3

3

1

2

1

3

3

3

3

3

1

1

1

1

1

3

3

1

1

1

1

2

1

3

3

1

2

1

1

1

1

3

1

1

1

1

3

1

1

1

2

1

3

3

3

1

2

1

1

1

3

3

3

1

1

1
Figure 2-8 There are 35 NBC samples of Pass 1 coding and 5 NBC samples of Pass 2 and

24 NBC samples of Pass 3 in a bit-plane of a 8x8 code-block

Table 2-6 shows the analysis results obtained from four 256×256, gray level

test images: “Lena”, “Flower”, “Toys”, and “Pepper”. For Lena image, there are

CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS

 19

50178 of 447488 samples encoded belong to Pass 1. It means that there are 397310

(447488-50178) clock cycles wasted for checking which sample is NBC in Pass 1,

and 164976 (447488-282512) clock cycles wasted for checking in Pass 2, and 332690

(447488-114798) clock cycles for checking in Pass 3. In other words, it wastes at least

894976 (397310 + 164976 + 332690) clock cycles in coding “Lena” image.

Obviously, there are a large number of clock cycles may be wasted if we use

straightforward method.

Number of encoded samples
Image

Pass 1 Pass 2 Pass 3 Total

Lena 50178 282512 114798 447488

Flower 42077 324624 90006 456704

Toys 18574 367655 72523 458752

Pepper 49706 303921 115365 468992

Average 40133 319678 98173 457984

Table 2-6 Number of encoded samples that belong to a given coding pass

2.2.2. Memory requirement

As described in section 2.1.1, it needs five states to form the contexts. If a

code-block size is 32×32, 1024 samples, the internal memory needed are 3K (1024 ×

3) bits (Only significance state, refinement state, and coded state need to be saved).

And as described in section 2.2.1, the context information is still required in

each pass even if no samples are coded in this pass. Suppose there are eight bit-planes

in a code-block needed to be coded, every data in the coefficients memory will be

accessed 24 (8 bit-plane × 3 coding passes) times. And the memory will total be

accessed 24576 (24 × 1024 samples) times. This situation also increases the number

of unnecessary memory access.

CHAPTER 3. PROPOSED SPEEDUP METHOD

 20

CHAPTER 3.
PROPOSED SPEEDUP METHOD

In this chapter, we will introduce two proposed speedup methods. The first one

is Sample-Skipping. The Sample-Skipping method can check four contiguous samples

in a column simultaneously, and avoid wasting time on non-NBC samples. The

second one is Pass-Parallel. The Pass-Parallel architecture merges three coding passes

of bit-plane into a single coding pass to improve the system performance.

3.1. Sample-Skipping

The key idea of the Sample-Skipping method is to skip no-operation samples in

a single column, and directly code NBC samples. By column-based, samples in a

column can be parallel checked to see whether or not they are NBC samples. It can be

applied to all three coding passes. If there are n NBC samples in a column (0<n≤ 4) ,

only n clock cycles will spent on coding this column, and 4-n clock cycles will be

saved. If none of NBC samples is in this column, it only spends one clock cycle on

checking. Since most columns have less than four NBC samples, the method can

improve cycle time greatly. It is more coefficient than the straightforward method.

Figure 3-1 shows the number of clock cycles spent on coding a column while

Sample-Skipping is used. And Figure 3-2 shows the flow chart of Sample-Skipping.

CHAPTER 3. PROPOSED SPEEDUP METHOD

 21

1 1 1 2 1 2 2 3

NBC non - NBC

1 2 2 3 2 3 3 4

Clock cycles required while coding the column
Figure 3-1 The number of clock cycles required while coding a column. Notice the first

column, it only spend one cycle to coding a column with no NBC samples. The spent clock

cycles in all kinds of columns are less than four clock cycles.

Start

Yes

End Coding

No

There is any
NBC sample in
this column ?

Code NBC sample

Next clock
cycle

No

Yes

Has every
NBC sample
been coded ?

Figure 3-2 Flow chart of Sample-Skipping

CHAPTER 3. PROPOSED SPEEDUP METHOD

 22

In Sample-Skipping, data are supplied to one column at a time. We use a 6 × 3

context window instead of a 3x3 context window (just like Figure 2-5). The 6 × 3

window is illustrated in Figure 3-3, and X1, X2, X3, and X4 are the four current

samples. A0, B0, C0, A1, C1, A2, X2, C2 mean the eight immediate neighbors of X1.

And A1, X1, C1, A2, C2, A3, X3, C3 mean the eight immediate neighbors of X2. So are

X3 and X4.

A1

A2

A3

A4

X1

X2

X3

X4

C1

C2

C3

C4

A0 B0 C0

A5 B5 C5

A B C

Stripe n

Stripe n-1

Stripe n+1

Figure 3-3 A 6×3 context window for coding a column of samples X1, X2, X3, X4.

3.1.1. NBC in Sample-Skipping

In Sample-Skipping method, how to find out the NBC samples before coding a

column is important. Because the values of magnitude bits can be known before

encoding, and which sample will become significant in this bit-plane can be predicted.

For this reason, in encoding, it could determine which sample is the NBC sample per

coding pass before coding. But in decoding, it is difficult to predict NBC samples of

Pass 1 and Pass 3 before coding.

The condition is illustrated in Figure 3-4. Before coding, it could predict that X1

and X3 are NBC samples for Pass 1 decoding, and X2 is non-NBC for the moment.

But during decoding X1, if the ZC decision generated from arithmetic decoder is ‘1’,

then sample X1 will become significant and X2 will be a NBC sample. Hence, the

numbers of NBC samples will change following Pass1 decoding processing. It could

not predict all NBC samples before coding.

CHAPTER 3. PROPOSED SPEEDUP METHOD

 23

X1

X2

X3

X4

A B C

Stripe n

Stripe n-1

Stripe n+1

significant

insignificant

Figure 3-4 Significance state of samples in a context window before coding X1, X2, X3, X4

The condition in Pass 3 decoding is separated into two parts, RLC and

non-RLC. In non-RLC, it is the same as the condition in Pass 1. In RLC, as described

in section 2.1.3, it must rely on decision generated from arithmetic decoder to

determine whether or not all magnitude bits are zero. And it also needs the uniform

decisions to determine which sample becomes significant in uniform coding. So, in

Pass 3 decoding, it is the same as Pass 1 decoding, the numbers of NBC samples will

change following decoding processing.

3.2. Pass-Parallel

The Pass-Parallel method is to process three coding passes of the same bit-plane

in parallel. There are some issues occurring due to the architecture. First, since the

three coding passes work concurrently, the samples belong to Pass 3 may become

significant earlier than Pass 1 and Pass 2 and this situation will mistake the following

coding for samples which belong to Pass 1 and Pass 2. Second, if the sample that

currently coded belongs to Pass 2 or Pass 3, the significance of samples that have not

been visited in the context window shall be predicted.

CHAPTER 3. PROPOSED SPEEDUP METHOD

 24

3.2.1. Pass-Parallel in Encoding

To solve these issues in encoding, the coding operations for Pass 3 are delayed

by two stripe columns to avoid the effect between Pass 3 and the other two passes.

Subsequently, to eliminate the dependence of coding operation on the next stripe the

“vertical causal” mode is also adopted. In vertical causal mode, the samples in the

next stripe are considered to be insignificant. Compared with context window in

Figure 3-1, the significance states of A5, B5, and C5 are considered to zero when

coding X4.

Figure 3-5 shows the position of context windows per coding pass in

Pass-Parallel encoding architecture. Note that the context window of each coding pass

is 5×3 for vertical causal mode and the context window of Pass 3 lags that of Pass 1

and Pass 2 by two columns.

S
tripe

Pass 1
Pass 2
Pass 3

Pass 1
context
window

Pass 2
context
window

Pass 3
context
window

Figure 3-5 Context windows of three coding passes in the Pass-Parallel encoding

architecture

To salve the second issue, we take two states, significance state 0 (σ0) and

significance state 1 (σ1), instead of significance state, refinement state and coded state.

If a sample becomes significant after Pass 1 coding, the σ0 is set to ‘1’. If a sample

becomes significant after Pass 3 coding, the σ1 is set to ‘1’. Besides, both σ0 and σ1

are set to ‘1’ immediately after the Pass 2 is used in this current sample.

From the definition, if a sample has been coded in Pass 2, then σ0 and σ1 are

both set to ‘1’. In other words, if one of σ0 and σ1 is ‘0’, it means that the sample has

not been coded by Pass 2. Hence, the refinement state can be replaced by

CHAPTER 3. PROPOSED SPEEDUP METHOD

 25

γ = σ0⊕ σ1 where ‘⊕ ’ is the XOR operator (1)

Obviously, the current significance state σ can be calculated during the coding

process. For samples belong to Pass 1, the significance states of the visited samples

are equal to σ0. Since samples that have not been visited may become significant by

Pass 3 in last bit-plane, the significance states of the samples that have not been

visited are expressed by

σ =σ0∨ σ1 where ‘∨ ’ is the OR operator (2)

For samples belong to Pass 2, the significance states of the visited samples are

equal to σ0. Since the current significant sample must be coded in Pass 2, and the

neighbors of current sample must be coded in Pass 1, the neighbor sample of current

sample will become significant in Pass 1 coding if its magnitude bit is ‘1’. This

condition is illustrated in Figure 3-6. And the significance states of the samples that

have not been visited are expressed by

σ = σ0 ∨ σ1 ∨ νp where νp is the magnitude bit (3)

1

0

1

0

X

0

1

1

0

significant sample
the sample will be coded in Pass 2

1 insignificant sample with magnitude bit ｀1＇
the sample will become significant in Pass 1

0
insignificant sample with magnitude bit ｀0＇
the sample will maintain insignificant in Pass 1

Figure 3-6 All the neighbors will be coded by Pass 1 if the center sample belongs to Pass 2.

And some neighbors with magnitude bit ‘1’ will become significant in Pass 1, the others with

magnitude bit ‘0’ will maintain insignificant.

For samples belong to Pass 3, the significance states of all neighbors are

determined by Equation (2).

σ =σ0∨ σ1 where ‘∨ ’ is the OR operator (2)

CHAPTER 3. PROPOSED SPEEDUP METHOD

 26

3.2.2. Pass-Parallel in Decoding

The most difference between encoding and decoding in Pass-Parallel is Pass 2

coding. In decoding, the magnitude bit νp is generated from arithmetic decoder;

therefore, it is hard to predict the significance states of the samples that have not been

visited by Equation (3). To solve this problem, the coding operation for Pass 2 is

delayed by two stripe columns, the same as Pass 3.
Stripe

Pass 1
Pass 2
Pass 3

Pass 1
context
window

Pass 2
context
window

Pass 3
context
window

Figure 3-7 Context windows of three coding passes in the Pass-Parallel decoding

architecture

And some equations for predicting significant states must be changed. For the

samples belong to Pass 1, since the significant state σ0 of samples that have become

significant in last bit-plane by Pass 3 remains to be ‘0’ after Pass 1 coding, the

significance states of all neighbors are determined by Equation (2).

σ =σ0∨ σ1 where ‘∨ ’ is the OR operator (2)

For samples belong to Pass 2, the significance states of the visited samples are

equal to σ0 the same as encoding. Because Pass 2 delays two columns, the neighbor

samples that have not been visited in Pass 2 have been visited by Pass 1. So the

significance states of the samples that have not been visited are determined by

Equation (2).

For samples belong to Pass 3, the significance states of all neighbors are

determined by Equation (2), the same as encoding.

CHAPTER 3. PROPOSED SPEEDUP METHOD

 27

3.2.3. Advantages of Pass-Parallel

In conclusion, the main advantages of using Pass-Parallel processing are:

1) Fast computation: No clock cycles are wasted on non-NBC samples. (Unless

all of the four samples in a column are non-NBC samples. But in this case, it only

spends one clock cycles on coding).

2) Less memory access: Since the three coding passed of a bit-plane are merged

into a single pass, every data of memory is accessed one time for a bit-plane. And

about 67% of memory accesses are saved.

3) Reduce memory requirement: We don’t need to identify whether or not each

sample has been coded in a previous coding pass of the same bit-plane. The five states

(magnitude, sign, significant, refinement, and coded states) are replaced by four states

(magnitude, sign, significant 0, and significant 1). Therefore, the 1K (32 × 32) coded

memory is saved.

3.3. Execution Time with Pass-Parallel

Table 3-1 shows the number of checked clock cycles in Sample-Skipping,

Sample-Skipping + Pass-Parallel and the straightforward method. The four test

images are the same as Table 2-6. Column “SS (P1)” represents the number of clock

cycles required if the Sample-Skipping method is used in Pass 1, and so are SS (P2)

and SS (P3). The last column represents the number of cycle time with

straightforward method.

CHAPTER 3. PROPOSED SPEEDUP METHOD

 28

Number of checked clock cycles
Image

 SS(P1) SS (P2) SS(P3) SS(Total) SS + PP Straightforward

Lena 125260 301893 131053 558206 432185 1211392

Flower 121712 335971 114880 572563 443815 1239040

Toys 107717 371320 103057 582094 454921 1245184

Pepper 130682 323847 136892 591421 455503 1275904

Average 121343 333258 121470 576071 446606 1242880

Table 3-1 Number of checked clock cycles in Sample-Skipping (SS) and Pass-Parallel (PP)

For “Lena” image, the total number of clock cycles in Sample-Skipping method

is reduced to 46% compared with straightforward method. If using both

Sample-Skipping and Pass-Parallel method, the processing cycle time is reduced to

36%. Obviously, it could improve the system performance if Sample-Skipping and

Pass-Parallel are applied.

CHAPTER 4. ARCHITECTURE DESIGN

 29

CHAPTER 4.
ARCHITECTURE DESIGN

In this chapter, we introduce the overall block diagram of Context Formation

module first. The four register primitive elements (sign, magnitude, significance 0,

and significance 1) are described in section 4.1. The description of context

formulation module and Sample-Skipping method are discussed in section 4.2. The

details of Pass-Parallel controller are in section 4.3. Section 4.4 shows the pipeline

architecture.

RG

SMW

C
ontroller RA2SD

Pass 2 coding
module (P2M)

Pass 1 coding
module (P1M)

Pass 3 coding
module (P3M)

CMW

Figure 4-1 Block diagram of context formation

Figure 4-1 illustrates the block diagram of context formation (CF). It divides CF

into eight blocks. The eight blocks belong to five groups as shown below:

CHAPTER 4. ARCHITECTURE DESIGN

 30

Pass Coding Module

This group contains P1M (Pass 1 coding module), P2M (Pass 2 coding

module), and P3M (Pass 3 coding module). The three pass coding modules

produce context labels by using four register primitive elements, and produce

(or receive in decoding) decisions. The Pass 1 coding module contains ZC, SC,

and SS primitives. The Pass 2 coding module contains MRC and SS primitives.

And the Pass 3 coding module contains ZC, SC, RLC, and SS primitives.

Memory

This group contains RA2SD block. RA2SD is a memory of 1024 × 2 bits. The

significance state 0 and significance state 1 are saved in RA2SD.

Memory read

This group contains RG (Register Data Generator). The function of RG is to

fill in register primitives with values loaded from two memories (four states).

Memory write

This group contains SMW (Significance Memory Write Module) and CMW

(Coefficient Memory Write Module). The SMW block updates the value of

significance state after three coding passes in each bit-plane. The CMW block

only works in decoding process, it writes the value of sign bit to coefficients

memory if the sample is decoded by sign coding in current bit-plane, and also

writes the magnitude bits of every bit-plane to coefficients memory.

Controller

Controller is the core of the design. It manages the overall coding data flow,

and generates write and read address for all memories and register primitive

elements. It also controls the pipeline architecture.

CHAPTER 4. ARCHITECTURE DESIGN

 31

4.1. Column-Based Operation

In the proposed architecture, column-based operation is adopted instead of

sample-based operation. The basic idea of column-based operation is to check four

vertical samples of a column simultaneously. It is just like 5×3 context window in

Figure 3-5 or Figure 3-7. In order to fit the Pass-Parallel architecture, it integrates

context window of three coding passes into a 5×5 registers for each significance states

and sign states.

S
tripe

Pass 1
Pass 2
Pass 3

Pass 1
context
window

Pass 2
context
window

Pass 3
context
window

Column based registers that
contains context windows of

three coding passes

Figure 4-2 Column-based registers (5 x 5)

In magnitude states, it needs only four magnitude bits of four samples in current

column. It doesn’t need the neighbors for magnitude state in last stripe, so the

column-based registers size is 4×5.

S
tripe

Pass 1
Pass 2
Pass 3

Pass 1
context
window

Pass 2
context
window

Pass 3
context
window

Column based registers that
contains context windows of

three coding passes

Figure 4-3 Column-based registers (4 x 5)

Take sign state registers in encoding for example. Suppose the coding order of

column number is 0, 1, ..., n-2, n-1, n, n+1, n+2, and so on. By using Pass-Parallel

method described in section 3.2, the coding operations for Pass 3 are delayed by two

CHAPTER 4. ARCHITECTURE DESIGN

 32

columns. At time N, Column n-2 is coded in Pass 3 and column n is coded in Pass 1

and Pass 2, as shown in Figure 4-4 upper.

After finishing coding column n-2 by Pass 3 and column n by Pass 1 and Pass

2 , the data registers will shift left, B to A, C to B, D to C, E to D, and new data

loaded from memory is stored in the right column F. At time N+1, the column n-1 is

coded in Pass 3, and column n+1 is coded in Pass 1 and Pass 2, as depicted in Figure

4-4 medium.

n n+1n-1n-2n-3

A B C D E

n+2

n n+1n-1n-2 n+2

A B C D E

n+3

n n+1n-1 n+3n+2

A B C D E

n+4

Time N

Time N+1

Time N+2

F

F

F

Figure 4-4 Flow chart of column-based registers while time N, time N+1, and time N+2

CHAPTER 4. ARCHITECTURE DESIGN

 33

At time N+2, the data registers shifted to left again, and column n is coded in

Pass 3, column n+2 is coded in Pass 1 and Pass 2. The result is depicted in Figure 4-4

lower.

Note the register F in Figure 4-4. Because reading memory data needs many

clock cycles, in fact, it is a ping-pong register named F1 and F2 to reduce processing

cycle time.

As described, there are two advantages of column-based operations: 1) samples

in a column can be checked simultaneously, and then Sample-Skipping method can be

applied. 2) Memory access frequency of these state variables can be reduced.

4.2. Pass Coding Module

The main work of pass coding module is to produce context label for arithmetic

coder. In encoding, it also sends decision to arithmetic encoder, but in decoding, it

receives decision from arithmetic decoder to reconstruct the coefficients memory for

DWT. Pass coding module also includes Sample-Skipping architecture in it.

Figure 4-5 shows the block diagram of Pass 1 coding module. The Sign

Register PE, Magnitude Register PE, Significance 0 Register PE, and Significance 1

Register PE are described in section 4.1. It includes Sample-Skipping, Zero coding,

and Sign coding in the Pass 1 coding module.

Sign
Memory

Magnitude
Memory

Significance 0
Memory

Significance 1
Memory

Sign Register PE
(5 x 5 bit shift register)

Magnitude Register PE
(4 x 5 bit shift register)

Significance 0 Register PE
(5 x 5 bit shift register)

Significance 1 Register PE
(5 x 5 bit shift register)

Pass 1 Coding

SS
Context
Decision

SC

ZC

Figure 4-5 Block diagram of Pass 1 coding module

CHAPTER 4. ARCHITECTURE DESIGN

 34

Figure 4-6 shows the block diagram of Pass 2 coding module. There are

Magnitude Register PE, Significance 0 Register PE, and Significance 1 Register PE in

the Pass 2 coding module (it does not include Sign Register PE), and also

Sample-Skipping and Magnitude Refinement Coding in it. Figure 4-7 shows the block

diagram of Pass 3 coding module. The difference between Pass 1 coding module and

Pass 3 coding module is that there is a RLC block in Pass 3 coding module.

Magnitude
Memory

Significance 0
Memory

Significance 1
Memory

Magnitude Register PE
(4 x 5 bit shift register)

Significance 0 Register PE
(5 x 5 bit shift register)

Significance 1 Register PE
(5 x 5 bit shift register)

Pass 2 Coding

SS
Context
DecisionMRC

Figure 4-6 Block diagram of Pass 2 coding module

Sign
Memory

Magnitude
Memory

Significance 0
Memory

Significance 1
Memory

Sign Register PE
(5 x 5 bit shift register)

Magnitude Register PE
(4 x 5 bit shift register)

Significance 0 Register PE
(5 x 5 bit shift register)

Significance 1 Register PE
(5 x 5 bit shift register)

Pass 3 Coding

SS
Context
Decision

SC

ZC

RLC

Figure 4-7 Block diagram of Pass 3 coding module

4.2.1. Sample-Skipping architecture

The key idea of the Sample-Skipping method is to skip no-operation samples,

and directly code NBC samples, as we described in section 3.1. In the begging of

Sample-Skipping process, a NBC flag to NBC index converter is applied.

The NBC flag is a four bits register, and it indicates which samples in the

current coding column are NBC samples. If a bit of NBC flag is 1, it means the

CHAPTER 4. ARCHITECTURE DESIGN

 35

corresponding sample is NBC; otherwise, the corresponding sample is non-NBC. The

corresponding sample of the 0th bit of NBC flag is X0. And the corresponding

samples of the 1st, 2nd, 3rd bits of NBC flag are X1, X2, and X3.

The NBC index is an array of four integers range from 0 to 3. It is used to

record the coding order of NBC samples. If X0 and X2 are NBC samples, the coding

order of this column is that X0 is the first and X2 is the second, and the third and the

last could be any number range from 0 to 3 because it only needs to code the first two

NBC samples. So, according to NBC index, N0 (the 0th integer) is the first NBC

sample in coding order. N1 (the 1st integer), N2 (the 2nd integer), and N3 (the 3rd

integer) are the second, third, and the last NBC in coding order.

Table 4-1 shows the NBC index converted from NBC flag. Take the 7th row for

example, the value of NBC flag is 0101, and it means there are two NBC samples (X0

and X2) in this column. Obviously, the first NBC sample is X0 and the second NBC

sample is X2. And the corresponding NBC index is (x, x, 2, 0).

NBC flag (X3, X2, X1, X0) NBC index (N3, N2, N1, N0)

0000 x, x, x, x

0001 x, x, x, 0

0010 x, x, x, 1

0011 x, x, 1, 0

0100 x, x, x, 2

0101 x, x, 2, 0

0110 x, x, 2, 1

0111 x, 2, 1, 0

1000 x, x, x, 3

1001 x, x, 3, 0

1010 x, x, 3, 1

1011 x, 3, 1, 0

1100 x, x, 3, 2

1101 x, 3, 2, 0

1110 x, 3, 2, 1

1111 3, 2, 1, 0

Table 4-1 NBC flag converts to NBC index

CHAPTER 4. ARCHITECTURE DESIGN

 36

Figure 4-8 shows the flow chart of Sample-Skipping method. The current NBC

sample is N0 if ‘I’ equals to 0. And the current NBC sample is N1, N2, or N3 if ‘I’ is 1,

2, or 3. In the begging of the flow, set ‘I’ to be zero, and check if there is any NBC

sample in this column. If none, finish coding in this column. Otherwise, it means that

there is at least one NBC sample, and the first NBC sample (N0) is coded immediately.

After generating context label of the NBC sample, increase ‘I’ by one, and check

whether or not the number of NBC samples is equal to ‘I’. It means total NBC

samples have been coded already if ‘I’ is equal to the number of NBC samples. So, if

number of NBC samples equals to ‘I’, finishing coding in this column; otherwise,

coding the next NBC sample (N1) at next clock cycle and follows the flow until all

NBC samples have been coded.

Start

I = 0

Yes

End Coding

No

Number of
NBC = 0 ?

Code the current NBC
sample

Next clock
cycle

Yes

No

I = I + 1

I = Number
of NBC ?

Find out the current NBC
sample by index I

Figure 4-8 Flow chart of Sample-Skipping architecture (include of finding out the current NBC

sample by index I)

CHAPTER 4. ARCHITECTURE DESIGN

 37

Only in Pass 2 decoding, the NBC samples could be checked before starting

coding. The NBC samples of Pass 1 and Pass 3 decoding may be changed according

to the decision from arithmetic coder. Therefore, the MRC (or the Pass 2 coding) is

the simplest coding of four coding primitives. Let’s introduce the Pass 2 coding

module first.

4.2.2. Pass 2 coding module architecture

Figure 4-9 shows the flow chart of Pass 2 coding module, it’s similar to the

flow chart of Sample-Skipping.

Pass 2 Codec
Start

Number of
NBC = 0 ?

Generates context label of
current NBC sample

I = Number
of NBC ?

Pass 2 Codec
End

Yes

No

Yes

No
Receive

decision from
AC?

No

Yes

I = 0

Generate decision of
current NBC sample

I = I + 1

Encoding

Decoding

MRC

Figure 4-9 Flow chart of the Pass 2 coding module (MRC)

CHAPTER 4. ARCHITECTURE DESIGN

 38

While there is at least one NBC sample in this column, the Pass 2 coding

module will generate context label, and then there are two directions. The green one is

for encoding. It is the same as Sample-Skipping flow chart while following the green

direction. The purple one is for decoding. Following the purple one, it does not

provide decision to arithmetic decoder. On the contrary, it waits for the decision

generated from arithmetic decoder. Until receiving the decision from arithmetic

decoder, it goes on with the flow chart.

4.2.3. Pass 1 coding module architecture

Figure 4-11 shows the flow chart of the Pass 1 coding module, and it is also the

flow chart of zero coding and sign coding. Note that the previous section of Figure

4-11 is similar to the flow chart of the Pass 2 coding module. But after generating

decision in encoding or receiving decision from arithmetic decoder in decoding, it has

to check whether or not the sample needs to be coded in sign coding by the value of

decision (i.e. ‘1’ means that needs be coded by SC, and ‘0’ means that does not need

be coded by SC).

If the SC is needed, it must generate the context label of SC, and receive the

decision of SC from arithmetic decoder. The rest flow path of Pass1 coding is similar

to Sample-Skipping flow chart.

4.2.4. Pass 3 coding module architecture

The coding primitives of Pass 3 coding are SC, ZC, and RLC. Since the SC and

ZC in Pass 3 coding and Pass 1 coding are the same, in this section, we focus on the

flow of RLC (and the uniform coding). The path of flow chart, as depicted in Figure

4-10, also has two directions which green one for encoding and purple one for

decoding.

Following green paths (encoding paths), Pass 3 coding module generates

run-length context label (17) and decision. If none of the magnitude bits in the column

is 1, the four samples do not need to be coded by uniform coding, and Pass 3 coding

in this column is finished. Otherwise, it means the four samples needs to be coded

using uniform coding. After sending two uniform context labels (18) to arithmetic

CHAPTER 4. ARCHITECTURE DESIGN

 39

encoder, RLC and uniform coding in this column are finished. And the rest of NBC

samples will be coded by ZC and SC.

Following purple paths (decoding paths), it generates run-length context label

(17). If the RLC decision received from arithmetic decoder is zero, it means that none

of the four magnitude bits in this column is 1, and finishes Pass 3 coding in this

column. If the RLC decision received from arithmetic decoder is one, then not all four

magnitude bits are zero, and this column needs to be coded using uniform coding.

According to the two uniform decisions generated from arithmetic decoder, it could

determine how many samples needed to be coded by ZC and SC.

Pass 3 RLC
Codec Start

Generates context 17

Encoding

Generates decision

Need uniform
contexts ?

Generates context 18

Generates context 18

Generates D1 decision

Generates D2 decision

Yes

Encoding

Encoding

Receive
decision from

AC?

Decoding

Yes

No

Receive
decision from

AC?

Decoding

Yes

No

Receive
decision from

AC?

Decoding

Yes

No

Pass 3 Codec
End

No

ZC and SC

RLC

Figure 4-10 Flow chart of Pass 3 coding (RLC)

CHAPTER 4. ARCHITECTURE DESIGN

 40

Pass 1 Codec
Start

Number of
NBC = 0 ?

Generates ZC context of
current NBC sample

I = Number
of NBC ?

Pass 1 Codec
End

Yes

No

Yes

No

Receive
decision from

AC?

No

Yes

I = 0

Generate ZC decision of
current NBC sample

I = I + 1

Need SC ?

Generates SC context of
current NBC sample

Yes

Generate ZC decision of
current NBC sample

Receive
decision from

AC?

No

Yes

Encoding

Decoding

Encoding

Decoding

No

ZC + SC

Figure 4-11 Flow chart of Pass 1 coding (ZC+SC)

CHAPTER 4. ARCHITECTURE DESIGN

 41

4.3. SMW and CMW Architecture

After a column is processed by three coding passes, the memories must be

updated if there are any changes in the significance states, or coefficient states. The

SMW (Significance Memory Write Module) is used for updating the value of

significance states. The CMW (Coefficient Memory Write Module) is used for

updating the value of magnitude and sign states, and CMW only works in decoding.

Significance Memory Write Module (SMW)

Figure 4-12 shows the flow chart of SMW. It is similar to the flow chart of

Sample-Skipping depicted in Figure 4-8. The only difference between them is that

SMW changes “Code the current NBC sample” to “Write data to memory”. The index

NBCH is used to record if the sample is a need-to-be-changed-value sample, just like

NBC.

Start

Next clock
cycle

I = 0

Number of
NBCH = 0 ?

Write data to memory

I = I +1

I = number of
NBCH ?

End Coding

No

Yes

No

Yes

Figure 4-12 Flow chart of writing new significance states into memory

CHAPTER 4. ARCHITECTURE DESIGN

 42

The significance memory (RA2SD) is composed of significance state 0 and

significance state1, and it is a 1024 × 2 bits memory. The 0th bit represents the

significance state 0, and the 1st bit represents the significance state 1. The data

prepared for writing into significance memory RA2SD is combined from significance

0 register and significance 1 register.

Coefficient Memory Write Module (CMW)

Start

Next clock cycle

I = 0

Number of
NBCH = 0 ?

read data from memory

I = I +1

I = number of
NBCH ?

End Coding

No

Yes

No

Yes
write data to memory

Next clock cycle

Combine data with magnitude
and sign register

Figure 4-13 Flow chart of writing coefficients into memory. It is similar to the flow chart of

writing significance states into memory. But the data must be loaded from memory before

writing.

CHAPTER 4. ARCHITECTURE DESIGN

 43

CMW works only in decoding process. It is a little different between SMW and

CMW. After three passes coding, we could get a magnitude bit of a sample in current

bit-plane and maybe the sign bit if the sample is coded in SC at the bit-plane. The

coefficient memory is a 1024 × 9 bits memory, 1 bit for sign bit and 8 bits for

magnitude bits. In the magnitude register, it only could record one magnitude bit for a

sample. So, it could not get coefficient data by combining the two register. In CMW,

before writing data to memory, it needs to read data from memory. And then store the

magnitude bit and sign bit into the current position of data. According to this concept,

the CMW costs more clock cycles than SMW.

4.4. Pipeline

Recall the column-based registers, in the encoding, the register B is coded using

Pass 3 coding, and register D is coded using Pass 1 and Pass 2 coding, as described in

section 4.1. The sample which has been coded by three coding passes will shift to

register A, and SMW will update significance memory by the data of four samples in

register A. The register F is stored of data loaded from memory by RG. Figure 4-14

shows the relation of five blocks (P1M, P2M, P3M, RG, and SMW) and six registers

in encoding.

n n+1n-1n-2n-3

A B C D E

n+2

Time N

F

RGP2MP3MSMW
P1M

Figure 4-14 Relation of five blocks and six registers in encoding

In decoding, Pass 2 coding module delays two columns to register B. And

CHAPTER 4. ARCHITECTURE DESIGN

 44

register A is coded also by CMW. Figure 4-15 shows the relation of six blocks (P1M,

P2M, P3M, RG, SMW, and CMW) and six registers.

n n+1n-1n-2n-3

A B C D E

n+2

Time N

F

RG
P2M
P3MSMW P1M

CMW

Figure 4-15 Relation of six blocks and six registers in decoding

From Figure 4-14 and Figure 4-15, we know that if every module finishes its

work in the corresponding register, the data of registers will shift left. According to

this concept, pipeline architecture is easy to implement.

Figure 4-17 is the flow chart of pipeline architecture. The code-block size is 8

× 7, 7 columns and 8 rows. We define the index of every sample as follows.

97

65

33

1

98

66

34

2

99

67

35

3

100

68

36

4

101

69

37

5

102

70

38

6

96

64

32

0

225

193

161

129

226

194

162

130

227

195

163

131

228

196

164

132

229

197

165

133

230

198

166

134

224

192

160

128

Figure 4-16 Index of every sample for a 8 x 7 code-block

CHAPTER 4. ARCHITECTURE DESIGN

 45

And we name column by the index of first sample in that column. For example,

the light yellow ellipse named 0 represents the column composed of sample 0, sample

32, sample 64, and sample 96. The pink ellipse named 1 represents the column

composed of sample 1, sample 33, sample 65, and sample 97.

SMW

RG

P3M
P1M

&
P2M

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

128

Time 0

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

2 3

4

1

3

4

128

128

129

129

Time 8

4

129

Time 9

128

Time 10

Time 11

129 130

131

131 132

128

130

130

Time 12

5

5

5

5

5

5

5

6

6

6

6

6

6

6

128

128129

129 130

131

132

133

P1M
CMW

&
SMW

P2M
&

P3M

RG

Decoding

Encoding

A B DC E F1 F2

Figure 4-17 Pipeline architecture of encoding and decoding in normal case

Take encoding for example. At the beginning (Time 0 and Time 1), RG loads

data of column 0 and column 1 from memory and stores into register F1 and F2. At

Time 2, the data of registers is shift to left. The data of column 0 and column 1 is

stored into register D and register E. P1M and P2M have to encode register D

(column 0), and RG keeps on loading data from memory and storing into register F1

CHAPTER 4. ARCHITECTURE DESIGN

 46

or F2 at Time 2. After P1M and P2M finish encoding register D and RG has loaded

data of column 2, the work at Time 2 is finished.

At Time 3, the data of registers is shift to left again. The data of column 0 is

stored into register C, and the data of column 1, 2 is stored into register D, E. After

P1M and P2M finish coding column 1 in register D and RG stores data of column 3

into register, the work at Time 3 is finished.

At Time 4, the data of column 0 is shift left to register B, and the data of

column 1, 2, 3 is shift to register C, D, E. P3M begins working at the time, and it has

to code column 0. After P1M and P2M finish coding column 2, and P3M finishes

coding column 0, and RG stores data of column 4 into register, the work at Time 4 is

finished.

At Time 5, SMW begins working and coding column 0 in register A.

It goes on like this until Time 8. After the work at Time 7 is finished, all data of

registers is shift to left except register F2. Note that column 6 is the last column in the

first stripe. Since there is no column in right, the right neighbors of column 6 are

considered to be insignificant. In other words, if the neighbors fall outside the

code-block, they are considered to be insignificant.

0 1 2 3 4 5 6

context
window

to be considered as
insignificant

Figure 4-18 If the context window is out of code-block, it considers the samples that don’t

exist in fact as insignificant.

CHAPTER 4. ARCHITECTURE DESIGN

 47

And it is the same as column 128. Since column 128 is the first column in the

second stripe, the left neighbors of column 128 are also considered to be insignificant.

For this reason, the data of column 128 must lag the data of column 6 by one column.

Hence, the data of register F2 (column 128) does not need to shift left into register

after the work at Time 7 is finished, but register A,B,C,D,E must shift left. Then, the

pipeline is going on with concepts described above until finishing coding a bit-plane.

If the width of a code-block is less than 7, the time for RG loading data of

column 128 must be noticed. Figure 4-19 shows the pipeline for an 8 × 6 code-block.

At Time 4, although register F2 is empty, RG could not load the data of column 128,

and it must wait until Time 6 for loading memory.

SMW

RG

P3M
P1M

&
P2M

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

128

Time 0

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

2 3

4

1

3

4

128

128

129

129

Time 8

4

129

Time 9

128Time 10 129 130 131

128

130

130

131

132

P1M
CMW

&
SMW

P2M
&

P3M

RG

Decoding

Encoding

A B DC E F1 F2

Figure 4-19 Pipeline architecture of encoding and decoding in special case

CHAPTER 4. ARCHITECTURE DESIGN

 48

Since it needs nine neighbors of the current sample in context window, when

loading data of column 128, it also needs to load the data of sample 96. And notice

that at Time 4, the column 0 is coding by P3M. If RG loads data of sample 96 from

memory, the data has not been updated yet (the significance states of the sample may

be changed after three coding passes), and RG will load the error data of sample 96. It

is the same at Time 5. In order to get the right data of sample 96, RG must load data

after SMW updates memory. Hence, it must wait until SMW finishes work in column

0. And if RG wants to load data of column 129, it also must wait until SMW finishes

work in column 1. The relation of position of every column is illustrated in Figure

4-20.

97

65

33

1

98

66

34

2

99

67

35

3

100

68

36

4

96

64

32

0

225

193

161

129

226

194

162

130

227

195

163

131

228

196

164

132

224

192

160

128

Figure 4-20 Index of every sample for a 8 x 5 code-block

CHAPTER 5. EXPERIMENT RESULTS

 49

CHAPTER 5.
EXPERIMENT RESULTS

The design flow, testing consideration, and experiment results are described in

this section.

5.1. Design Flow

We design JPEG2000 EBCOT following the document, ISO/IEC FCD 15444-1:

2000, which is the specification of JPEG2000. The overall cell-based design flow is

shown in Figure 5-1.

C model simulation

We use C language to build verification model for simulating and verifying the

algorithm. The result generated by our C model is compared with the data of JASPER

software to verify the correctness. Software simulation not only verifies the

correctness of the proposed algorithm, but also provides the debug information for the

hardware design.

RTL code design and simulation

After the architecture is determined from c model, we proceed to RTL (Register

Transfer Level) design using VHDL language. After the programming, the RTL codes,

together with testbench, are simulated through the ModelSim simulator. Detail debug

information from C model can speed up the RTL code design process.

CHAPTER 5. EXPERIMENT RESULTS

 50

Start

C Model Simulation

RTL code design

RTL simulation

synthesis

Gate level simulation

Scan Chain Insertion
and ATPG

Figure 5-1 Flow chart of cell-based design

Synthesis, Scan Insertion, ATPG, and Gate-level simulation

We adopt Synopsys Design Compiler for the logic synthesis and also

ModelSim is used for the gate-level simulation. The key idea of scan chain is to

connect all the register in the core in a line or several lines. In general mode, the

registers work as usual. While in test mode, registers are multiplexed into a line and

test patterns will be shifted in this chain until all the registers are filled with the

patterns. In the following cycles, the system shifts out all the bits of the registers to

check the combinational logic gates. For our design, the fault coverage is up to

99.24%.

Under 0.25 µ m 1P5M process, our design can process at 133 MHz.

CHAPTER 5. EXPERIMENT RESULTS

 51

5.2. Design Verification

Verification on C model

We use JasPer Software [11] to verify our design. The Jasper software is

official reference software to provide a free software-based reference implementation

of the codec specified in the JPEG2000 Part-1 standard. We collect the input data of

Tier-1 context formation module in Jasper as the input data in our design, and

compare output data of Jasper and ours to verify the correctness of our design.

Verification on RTL code

We use ModelSim 5.5e to verify our architecture described in VHDL code. The

test data of coefficients and test data of context-decision pairs are produced earlier by

C model. Therefore, we get consist results, which prove that the results and RTL level

design in encoding are correct.

Our design

Test data
(coefficients)

Test data
(CX,D)

CX,D =

Figure 5-2 Verification flow in encoding

In decoding, since there is no arithmetic decoder to receive contexts and

generate decisions for out design, we use the context data and decision data produced

by C model to replace the arithmetic decoder. The verification flow in decoding is

depicted in Figure 5-3. Initially and usually, our design produces context to compare

with the test data of contexts. If they are equal, that means the context generated from

our design is correct, and test data of decisions will send to our design. Oppositely, if

they are not equal, that means the context generated from our design is wrong and no

test data of decision will be sent to our design. The advantage of the flow is that when

an error occurs, the design stays at the state that generates the wrong context. In

debugging, it is easier to find out which step is incorrect of certain sample in certain

bit-plane than coding of a code-block finished. After decoding work is finished, the

results will be compared with the test data of coefficients to prove that the results and

CHAPTER 5. EXPERIMENT RESULTS

 52

RTL level design in decoding are correct.

Our design

Test data
(CX)

Test data
(D)

CX = equal

Test data
(coefficients)

=

Not equal idle
Final course

Usual course

Figure 5-3 Verification flow in decoding

Verification on Gate-level

After we use Synopsys Design Analyzer tool to synthesis the VHDL code to

gate level, we use Modelsim 5.5e to verify the gate level netlist. The method for

verify gate level netlist is the same as verification on RTL code.

Verification on FPGA

We use the ARM Integrator as our prototyping platform. The CF module and

other design for JPEG2000 encoder are realized in Altera FPGA of ARM Integrator.

The input source comes from PC camera, and the output data could be decoded by

Jasper software.

5.3. Experiment

The result after placement and route is shown in Figure 5-4. The memory which

size is 1024 × 2 bits in the upper left side is used to save two significant state

variables. There are totally 120 pads used in this chip, including the data input, data

output, internal power and external power. The number of pad used in this chip is

listed in Table 5-1. Table 5-2 shows the specification of this design in detail. Logic

CHAPTER 5. EXPERIMENT RESULTS

 53

gate count is about 19K, and the area is 1775µ m× 1695µ m. The maximum clock

frequency is 133 MHz. With the clock frequency, 100 Mhz, it can encode 3.98 million

pixels image within 0.323 second, corresponding to 2304 × 1728 image size, or 320 ×

240 RGB image with 50 frames per second. Suppose arithmetic decoder could

generate decisions immediately, the throughput in decoding is 6.33 million pixels per

second, corresponding to 2304 × 1728 image with 0.512 second.

Pad Type Pad Count

Input Pad 46

Output Pad 53

Clock Buffer Pad 1

Internal Power Pad 8

External Power Pad 12

Table 5-1 List of Pad used in this chip

Technology 0.25 CMOS 1P5M

Chip Size 1775µ m x 1695µ m

Gate Count 19057 + 2Kb memory

Clock Frequency 100 MHz

Supply Voltage 2.5 V

Power Consumption 115.9849 mW

Table 5-2 Specifications of this chip

Table 5-3 shows the performance of our design. Due to the different technology

and mode, we focus on the throughput only. And since our AC encoder can receive

one context-decision pair per second, the encoding throughput in CF is similar as

Tier-1. From Table 5-3, our design performs better than others in encoding throughput

and supplies the decoding mode with throughput 6.33 million pixels per second.

CHAPTER 5. EXPERIMENT RESULTS

 54

 Ours NCTU [7] NTU NTU NTHU

Technology 0.25 um 0.35 um 0.35 um 0.35 um 0.35 um

Area (mm2) 1.775x1.695 3.345x3.138 3.67x3.67 2.381x2.295

Frequency 100 (133) 142.8 50 100 (133) 50

Mode
CF

codec

Tier-1

encoder

Tier-1

encoder

CF

encoder

Tier-1

 encoder

throughput

(encoding)
12.32 M/s 11.72 M/s 9.2 M/s 12.10 M/s 11.22 M/s

throughput

(decoding)
6.33 M/s not supply not supply not supply not supply

Table 5-3 Performance of our design

Figure 5-4 Layout view of the CF codec design

CHAPTER 6. CONCLUSION

 55

CHAPTER 6.
CONCLUSION

In this thesis, we focus on the research and chip design of the context formation

module of EBCOT Tier-1 in JPEG2000. The EBCOT Tier-1 coder has high

computational complexity, so we propose efficient codec architecture for it. Speedup

methods and pipeline technique are adopted in our design. By using this architecture,

the process time can be reduced to about 36% of previous work.

In context formation, column-based architecture is used to check four samples

in a column concurrently. And two speedup methods, Sample-Skipping and

Pass-Parallel, are used. Sample-Skipping can skip no-operation samples in a single

column, and directly encode the NBC samples. We will not spend any clock cycle on

samples that do not belong to the current coding pass. Pass-Parallel can process three

coding passes of the same bit-plane in parallel, and make a 20% reduction in memory

requirement. The Sample-Skipping method can reduce the processing time by more

than 46% compared to straightforward method. And if both two methods are adopted,

the processing cycle time is reduced to 36%.

The design is described with VHDL code and synthesized by Synopsys Design

Analyzer. The technology used is CMOS 0.25 technology. The area of this chip is

1775 µm × 1695 µm. The clock frequency can reach 133 MHz. With the clock

frequency, 100 MHz, it can encode 3.98 million pixels image with 0.323 second,

corresponding to 2304 × 1728 image size. Suppose arithmetic decoder could generate

decisions immediately, it can decode 2304 × 1728 image within 0.512 second.

CHAPTER 6. CONCLUSION

 56

The future work focuses on distortion estimation in encoding and

Sample-Skipping in decoding

Distortion Estimation

A complete context formation module should include the Distortion Estimation,

which is the core the rate distortion. In our design, it is difficult to compute the

distortion of Pass 1 and Pass 2, so it is restricted to distortion of Pass 3 now. In this

situation, the truncation points must fall in the end of bit-plane. Hence, the lossy

compression of JPEG2000 performs poorly than truncation points could fall in the end

of every pass.

Sample-Skipping in decoding

Figure 6-1 illustrates the key point of disadvantage for Sample-Skipping in our

design. In rising edge of 5th clock cycle, CF receives the decision from AC, but it can

not send the next context label immediately. So, in the future, we hope it can generate

context immediately after receiving decision from AC.

clock

CF module generate context

AC generate desicion

1 2 3 4 5 6 7 8

CF module generate context
future

Figure 6-1 Context-decision timing in decoding

REFERENCE

 57

REFERENCE

[1] D. Taubman, “High performance scalable image compression with EBCOT,”
Image Processing, IEEE Transactions on , Volume: 9 Issue: 7 , July 2000,
Page(s): 1158 -1170

[2] K. Andra, C. Chakrabarti, T. Acharya, “A high performance JPEG2000
architecture,” Circuits and Systems, 2002. ISCAS 2002. IEEE International
Symposium on , Volume: 1 , 26-29 May 2002, Page(s): I-765 -I-768 vol.1.

[3] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, F. Ono,
“Embedded block coding in JPEG2000,” Image Processing, 2000. Proceedings.
2000 International Conference on , Volume: 2 , 2000, Page(s): 33 -36 vol.2.

[4] Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen, Liang-Gee Chen, “Analysis
and architecture design of EBCOT for JPEG-2000,” Circuits and Systems, 2001.
ISCAS 2001. The 2001 IEEE International Symposium on , Volume: 2 , 2001,
Page(s): 765 -768 vol. 2

[5] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, Liang-Gee Chen, “Analysis
and architecture design of block-coding engine for EBCOT in JPEG 2000,”
Circuits and Systems for Video Technology, IEEE Transactions on , Volume: 13 ,
Issue: 3 , March 2003, Pages:219 – 230.

[6] Jen-Shiun Chiang, Yu-Sen Lin, Chang-Yo Hsieh, “Efficient Pass-Parallel
architecture for EBCOT in JPEG2000,” Circuits and Systems, 2002. ISCAS
2002. IEEE International Symposium on , Volume: 1 , 2002, Page(s): 773 -776.

REFERENCE

 58

[7] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee, Chein-Wei Jen, “High-speed
memory-saving architecture for the embedded block coding in JPEG2000,”
Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on ,
Volume: 5 , 2002, Page(s): 133 -136.

[8] Yijun Li, Ramy E. Aly, Magdy A. Bayoumi, Samia A. Mashali, “Parallel
high-speed architecture for ercot in JPEG2000,” Acoustics, Speech, and Signal
Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International
Conference on , Volume: 2 , April 6-10, 2003, Page(s): 481 -484.

[9] ISO/IEC JTC1/ SC29 WG 1 N1684, “JPEG2000 Part I Final Committee Draft
Version 1.0.”

[10] ISO/IEC JTC1/ SC 29/ WG1 N1815, “An analytical study of JPEG2000
functionalities.”

[11] JasPer Software” http://www.ece.uvic.ca/~mdadams/jasper/

