ZTE I T2
JPEG2000 % Budbfd s & & K 3+
Design of the efficient Pass-Parallel

Context Formation Cedec for JPEG2000

Fii o it

Ry 2wl HL

11
Il
\H-_I
g/
ol
+
I

M)

P

B2 T3 i g2 20 JPEG2000 B faas & 7Rt
Design of the efficient Pass-Parallel Context

Formation Codec for JPEG2000

LR A | BT Student : Pei-Chun Chen
Ry 2w Advisor : Bing-Fei Wu
Bz 2 < F
TEd L ER
AL 2
A Thesis

Submitted to Department of Electrical. and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Electrical and Control Engineering
July 2004

Hsinchu, Taiwan, Republic of China

PEARAY L

—
T
=
D)
DO
o
o
o
q“’
¥
§§:
=y
4ry
gm
~E
P
il
=

T2 Jo W FIE T QRS

DEEERE IS S E IR 2 R

£ &

JPEG2000 £l— fé%@ﬁ”?@%?@@ﬁﬁ{ﬁiﬂﬁ vt | I JPEG R VSRR -
R S 0 [REREY) JPEG2000 2= IPEG TR (9 memory
PR sEETED 1< I] EBCOT Hhds IS5 % EBCOT HIfiY context formation

AL = R GEETT) 0 D memory 9T - Sample-Skipping method i I J i
=1 ?T%T{?yl?ﬂﬁﬂi sample o EH (" > (I3 T %T@?ﬂﬁ%ﬂﬂ sample - |fi Pass-Parallel
method F'I'J{fli= & coding pass Tt fﬁj— ¢ bit-plane 7T =5l » column-based
architecture EUF{‘ [ﬁjﬁﬁ ?[J%’Hﬁk 5 AU sample HU{L_F\[%T@JFMF[T&@E) iﬁ} FE
'l E 3SROpER JPEG2000 Elfiirﬂgjﬁﬁﬁﬁ@ ’ *ﬁg‘ﬁﬂl‘l}lﬁﬁﬂﬁjﬁﬁﬁﬁ’?ﬁﬁmﬁﬁ BN e
36% ° =% ff‘ﬂf{@?ﬁiﬁfﬁ%@ CMOS 0.25 %LI?EF—\[E%& ’ Fﬁ#ﬁﬁ PRSP R 1775 pm %
1695 prm. » =[S P 23 133 MHz > 7 100 MHz > HiZEl- 9% 2304 x
1728 ElfJ’TJeBETEJ&/['%’JE\ﬂj ’ i’?ﬁﬁ%ﬁ?jf&ﬂ £, 0.323 7 » Eﬁﬁ%ﬁﬂﬁ 0.512 %} -

Design of the efficient Pass-Parallel
Context Formation Codec for JPEG2000

Student: Pei-Chun Chen Adviser: Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

JPEG2000 is a new still image compression standard. It has better compression
performance than the JPEG standardsand-alse-provides new features not available in
JPEG. However, the high performance and new features require more complex
computations and hardware cost than traditional JPEG. Moreover, most of the
computation time is in EBCOT. Therefore, an efficient JPEG2000 codec design is
proposed to ease in the overhead. We focus on context formation module of EBCOT
Tier-1 in JPEG2000. Two speedup methods, Sample-Skipping and Pass-Parallel, are
adopted in our design. The Sample-Skipping method is to skip no-operation samples
in each column and then codes the need-to-be-coded samples directly. The
Pass-Parallel method is to process three coding passes of the same bit-plane in parallel
to improve the system performance. A column-based architecture using these
combined speedup methods is then proposed to check four samples in a column
concurrently. The prototype chip of the proposed technique is synthesized in CMOS
0.25 um 1P5M technology. The area of this chip is 1775 gmx 1695 pm. The

clock frequency can reach 133 MHz. With clock frequency, 100 MHz, it needs 0.323

second to encode and 0.512 second to decode an image with 2304 x 1728 image size.

ACKNOWLEDGEMENTS

Frird gt Bs "CFAGHT R AE T 08 N R &R BT
% A Euﬁ%;”e I £ m;ﬁx] = T ;E A E o

)

FAER AT A Ei TR EFe Tl L L

NS

o g
Hh- iR B R A - BB TR LR TSI o X EF R
gty BT ORAE Y R RN 2 REPERT PR RAEF 5o

THEREMHFTRIEFEL QL Do BR T AR R
ABET A PR EB oL RHTHZTF P E F IR far P E o
MRRCT ANV B IR R EREE R ik = A

o 2

Bois BB RIS 2 iRt AR L R o B L]

Bt 3F > @ RE 2 3 F et ELs B e

[ERRE S

FRBFA B A B S

iii

CONTENTS

ABSTRACT(CRINESE)...cviiuieiiieiieeie sttt ee e e st staesae e teesae e ste et esseenaesneesneenennes i
ABSTRACT(ENGIISN) .ot s i
ACKNOWLEDGEMENTS ...t i
CONTENTS ettt ettt bbb e nne e 0\
LIST OF TABLES. ...ttt vi
LIST OF FIGURES ... vii
CHAPTER 1. INTRODUCTION.....coitiiiiiiiieiteie et 1
1.1. JPEG2000 OVERVIEW ... 5000 e ettt 2
1.2. JPEG2000 PERFORMANCE ... 5t reeetuetie s cethoneeeennreenneeesneeesseeesseesnseesnnseesnne 3
1.3. THESIS ORGANIZATION {55 ettt eaususe sibatennastesamseesnseesnseessuneessseesssseessnseesssseesssees 6
CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS 7
2.1. CONTEXT FORMATION MODULE OF EBCOT TIER-1ocoviiiiiiiiiiieeiicenee, 7
2.1.1. FiVe COUING STALESeeiveeiieieeiee et 9

2.1.2. Four coding PrimitIVES........coiiriireeriinie e 10

2.1.3. THhree COaING PASSEScerverrerrieaieriienieeiesiee e eie e see e see e 14

2.2. ANALYSIS OF CONTEXT FORMATIONuiiiiiieriiieeniieenieeenieeesiiee e s 18
2,21, EXECULION LIME.....iiiiiiiieecie st 18

2.2.2. Memory reqUIrEMENT......ccoiviieeierie et 19
CHAPTER 3. PROPOSED SPEEDUP METHOD.......ccccooiiiiiiieieiecsens 20
3.1. SAMPLE-SKIPPING.....cuutteiitieeiteesiteenireesseeenseeensseesnsseesnsseesseessseessseessses 20
3.1.1. NBC in Sample-SKIPPING......cooiiirrinieiie e 22

3.2. PASS-PARALLELeeiutiiiiiiieeiiie et ettt ettt ettt e e sebee et e senseesneeeens 23
3.2.1. Pass-Parallel in ENCOdingccccovveiiiiiiiiiineseneee e 24

3.2.2. Pass-Parallel in Decoding.........cccooveiirieiienenie e 26

3.2.3. Advantages of Pass-Parallel.............ccccoviniiininiiee, 27

3.3. EXECUTION TIME WITH PASS-PARALLEL........ccvitiiiiiiiniiieniieeeiee et 27

v

CHAPTER 4. ARCHITECTURE DESIGN.......cccooiiiiiiiie 29

4.1. COLUMN-BASED OPERATIONcccouiieriiieeiieeeiteeeireesiteesteeesseeesnneesnnseesnnne 31
4.2. PASS CODING MODULEcccoutiiiiiieiiiieeiteeeiteeeite st sieeesbeeesiteeseiseesnaeeeens 33
4.2.1. Sample-Skipping architeCtureccooeiiiiiii i 34

4.2.2. Pass 2 coding module architeCturec.ccoooveviiinieenenieieennns 37

4.2.3. Pass 1 coding module architeCturec.ccooovevviiiienieiieieenns 38

4.2.4. Pass 3 coding module architeCturec.ccoooveviiieiieneiieneens 38

43. SMW AND CMW ARCHITECTURE........ceeriieeririeeniieeeireeeieeesieeesseeesnseesnnneas 41
4.4. PIPELINE ..ottt ettt ettt ettt e et esaaeeen 43
CHAPTERS5. EXPERIMENT RESULTS......coiiiiie e 49
5.1. DESIGN FLOW ...ttt 49
5.2. DESIGN VERIFICATIONcceitttieiiieenireeeieeeseteesieeesseeesneeesnseessnseessnseessseesns 51
5.3. EXPERIMENTouvvveeiviee et i 52
CHAPTER 6. CONCLUSION ittt et 55
REFERENCE ...t i i iifh e ittt ettt n e e 57

Table 1-1

Table 1-2

Table 1-3

Table 2-1

Table 2-2

Table 2-3

Table 2-4

Table 2-5

Table 2-6

Table 3-1

Table 4-1

Table 5-1

Table 5-2

Table 5-3

LIST OF TABLES

LosSless COMPIESSION TAtIOS.ccureeriurreeiieeeiieesieeeeieeesieeesseeesreeesneeenenes 4
PSNR, in dB, corresponding to average RMSE, of 200 runs, of the
decoded “café” image when transmitted over a noisy channel with
various bit error rates (ber) and compression bitrates, for JPEG baseline
and JPEG2000........cccoiiiiiieieieeieseee ettt 5

Functionality matrix. A “+” indicates that it is supported, the more “+” the

more efficiently or better it is supported. A “-“indicates that it is not

SUPPOTLEC.c........ e Bl N W e 6
Context table for ZeT0 COAMIZ . vmmirrineeecihriereeieeeie et 11
Sign contribution truth table for sign coding...........cccoceeviiriiniiiincnnnn 12
Context table for sign coOdiNg.........cccveeviieriieiieiiicieeeee e 12
Context table for magnitude refinement codingcccceceeveeneevueniennens 13

Contexts and decisions of the second and the third cases in Pass 3 (x:
4 [0 1R Ao 1) [USSR 17
Number of encoded samples that belong to a given coding pass 19

Number of checked clock cycles in Sample-Skipping (SS) and

Pass-Paralle] (PP).......cccuiieiiiiiieeeeeee e e 28
NBC flag converts to NBC indeXcoceeveeieriineniienienienicneeeeeeeeene 35
List of Pad used in this Chip.......cccoeeiiiiiiiiieiiieiccie e 53
Specifications of this Chip......c.cccoeeviiriiiiiiini 53
Performance of our design...........coooveeiieiiieniieiieeie e 54

Vi

Figure 1-1
Figure 1-2
Figure 1-3

Figure 1-4

Figure 2-1

Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

Figure 2-7

Figure 2-8

Figure 3-1

LIST OF FIGURES

Block diagram of JPEG2000 encoder...........ccceeviierieeieenieeieenie e 2
Entire encoding process of JPEG2000...........ccceviriiiniinenniinienenieneenn 3
Direction of Context (CX) and Decision (D) in encoder and decoder-.....3
PSNR corresponding to average RMSE, of all test images, for each
algorithm when performing lossy decoding at 0.25, 0.5, 1 and 2 bpp of
the same Progressive bItStream.oceevueerieriierieeieeee e 5
There are three sample'with 9 bits; the first one is sign bits and others are
magnitude bits. And the representation of negative is 1’s complement....7

Scanning hierarchy: of aicode-block is bit-plane, stripe, column, sample.8

Scan order of a bit-plan€in EVEry.Passcccceveevuereereereeiieneenieeieneens 8
A sample is called significant after the first ‘1’ bit is met...........ccceeueeneee. 9
Neighbors states used to form the contextcccoeceeviieiienieniieneenne. 10
the coding order of three coding Passescccueveveerieeiierieriieenieeveene 14

Flow chart of sample checking to determine which pass a sample
DEIONGS 10 .. uvieiiieiiieiie ettt ettt ettt ettt ettt e st eesbeesneeenbaenare e 15
There are 35 NBC samples of Pass 1 coding and 5 NBC samples of Pass
2 and 24 NBC samples of Pass 3 in a bit-plane of a 8x8 code-block18
The number of clock cycles required while coding a column. Notice the
first column, it only spend one cycle to coding a column with no NBC
samples. The spent clock cycles in all kinds of columns are less than
fOUr CLOCK CYCIES. oot 21

vii

Figure 3-2 Flow chart of Sample-SKippingccccceveviriiniininiiniiiicieneeeeiee 21
Figure 3-3 A 6x3 context window for coding a column of samples X, X, X3, X4 22

Figure 3-4 Significance state of samples in a context window before coding X, X»,

Figure 3-5 Context windows of three coding passes in the Pass-Parallel encoding
ATCRIEECTUTE. ...ttt 24
Figure 3-6 All the neighbors will be coded by Pass 1 if the center sample belongs to
Pass 2. And some neighbors with magnitude bit ‘1’ will become
significant in Pass 1, the others with magnitude bit ‘0’ will maintain
INSIZNITICANT.viiitiiiiieieece et 25

Figure 3-7 Context windows of threercoding passes in the Pass-Parallel decoding

ATCHILECTUTE. ... st oo bt ettt ettt et 26
Figure 4-1 Block diagram of context formationc.....c..ccoceeveevinviiniineniinicnenn 29
Figure 4-2 Column-based registers (57X 5) .. it 31
Figure 4-3 Column-based regiSters (4 X'5) c.eouirieriereriineeeeeeeeeeeeeseee e 31

Figure 4-4 Flow chart of column-based registers while time N, time N+1, and time

N2 ettt ettt et h et e et e et e st e nbeenteententeenaeenean 32
Figure 4-5 Block diagram of Pass 1 coding module............cccccceeviieiieniienienieenen. 33
Figure 4-6 Block diagram of Pass 2 coding module..............cccceriiieniiiiiiniiinieen. 34
Figure 4-7 Block diagram of Pass 3 coding module............cccceeviiiiieniienienieenen. 34

Figure 4-8 Flow chart of Sample-Skipping architecture (include of finding out the

current NBC sample by index I)ccccoeeeeiiiiiiiniiiiieiieieceeeee 36
Figure 4-9 Flow chart of the Pass 2 coding module (MRC).........ccccceiriiiniinennnennn. 37
Figure 4-10 Flow chart of Pass 3 coding (RLC)......c.ccceeviiiiieniiiiiieiecieeeeeeee 39
Figure 4-11 Flow chart of Pass 1 coding (ZC+SC)ooveviriiniiniiiiiiceeieeeceee 40

viii

Figure 4-12

Figure 4-13

Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17

Figure 4-18

Figure 4-19
Figure 4-20
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Figure 6-1

Flow chart of writing new significance states into memory 41
Flow chart of writing coefficients into memory. It is similar to the flow

chart of writing significance states into memory. But the data must be

loaded from memory before Writing.ccccevvevevierieecieenieeieeeie e 42
Relation of five blocks and six registers in encodingcc.cc........ 43
Relation of six blocks and six registers in decoding.............cccccuvennenne. 44
Index of every sample for a 8 x 7 code-block..........cceeveniiiiinninnnenn. 44
Pipeline architecture of encoding and decoding in normal case........... 45

If the context window is out of code-block, it considers the samples that

don’t exist in fact as inSigNIficant.cccceveevieeciienieeiierie e 46
Pipeline architecture of encoding . and decoding in special case............ 47
Index of every samiple forra-8 x 5 code-block.........ccoevvvviiiviienirennnnne. 48

Flow chart of cell-based destigni..........coctueniiniiiiniiieieeece 50

Verification flow in @ncOding. ...l iieii i 51

Verification flow in decoding:.........cccocoeeviiriiniiieniinieieneeeeeeeeee 52

Layout view of the CF codec design..........cceeeveviieniienieenieeieeie e 54

Context-decision timing in decodingccccecevveveeviinieneeneneeneenenn 56

CHAPTER 1.
INTRODUCTION

JPEG2000 is a recent still image compression standard developed by ISO/IEC
JTC1/SC29/WGI1. It was drafted at the end of 2000 as an international standard.
JPEG2000 not only has the better compression performance than JPEG standard does,

but also provides more features than the traditional JPEG.

It provides error resilience, superior low bit rate compression, region-of-interest
coding (ROI), lossy and lossless compression, progression transmission by pixel

accuracy and resolution, random code-stream access and processing, etc.

JPEG2000 can apply to many applications, such as internet, color facsimile,
printing, scanning, digital photography, remote sensing, mobile, medical imagery,

digital libraries, and E-commerce.

However, the memory requirement and computation complexity of JPEG2000
is much higher than that of JPEG. In Addition, over half of the computation time is
occurred in Embedded Block Coding with Optimized Truncation (EBCOT). Thus,
EBCOT becomes the critical part of JPEG2000 system.

To solve this problem, two speedup methods are adopted. The Sample-Skipping
method can skip no-operation samples in a column, and the Pass-Parallel method can
process three coding passes of the same bit-plane in parallel. By using two methods,
the process time can be reduced to about 36% of previous work. Under CMOS 0.25
technology, the area of this chip is 1775 pm x 1695 pm, and the clock frequency can

reach 100 MHz. It can encode 2304 x 1728 image within 0.323 seconds, and decode it
within 0.512 second.

1.1. JPEG2000 Overview

The block diagram of JPEG2000 encoder is depicted in Figure 1-1. Discrete
Wavelet Transform (DWT) and EBCOT are the two main modules of JPEG2000.
EBCOT coding algorithm is proposed by David Taubman [1]. It is a two-tiered coder,
where Tier-1 is a context-based adaptive arithmetic coder, and Tier-2 is the

rate-distortion optimization and bitstream layer formation.

JPEG 2000

EBCOT

—> Tier-1 E—

DWT > Quantization —)
Tier-2

CF AE

Figure 1-1 Block diagram of JPEG2000 encoder

In encoder, the discrete wavelet transform (DWT) is applied for the input image
data. The generated coefficients may be performed by quantization process are then
coded by context formation module (CF) and adaptive binary arithmetic coder (AC).
Finally, the output code-stream can be executed by post-compression rate-distortion

optimization algorithm (Tier-2) to reach more effective compression.

During encoding, an image is divided into several rectangular structures called
tiles. Either lossless 5/3 filters of DWT or lossy 9/7 filters can be applied to a tile to
decompose it into several subbands. If lossy compression is chosen, the wavelet
coefficients are scalar quantized. After the DWT and quantization processes, each

wavelet subband is then divided into code-blocks.

Each code-block is coded by context formation module. CF generates context
labels and decisions to arithmetic coder. After all code-blocks are encoded

independently, Tier-2 collects all bitstream with their rate-distortion information, and

then picks important bits to form the final bitstream according to rate-distortion

optimization criteria.

Image Tile Subband
: : Code- Code-
tile tile subband block block
. . subband subband o Code- Code-
tile tile DWT Quantization block block
Code-block :> dCO”,t‘?Xt, :> Compressed |::> Bit stream
ecision data
CF AC Tier-2

Figure 1-2 Entire encoding process of JPEG2000

Decoder can be seen as the inverse of the encoder and it can be achieved by
performing the encoding steps in thé reverse ordér except CF and AC. In decoder, not

both contexts and decisions are generated from-AC. Instead, contexts are still

generated from CF like in encoder.

Tiert Encoder

CF ——CX—p AC
Encoder —D—p Encoder

Tier1 Decoder

CF ——CX—p> AC
Decoder —D—— Decoder

Figure 1-3 Direction of Context (CX) and Decision (D) in encoder and decoder

1.2. JPEG2000 Performance

The section presents the outperformance of JPEG2000 in terms of the high

(OS]

compression ratio and various functionalities. The comparison results in this section
are resulted from previous works [10]. The compared standards include reversible
JPEG2000 (JPEG2000g), non-reversible JPEG2000 (JPEG2000nr), near-lossless
JPEG (JPEG-LS), lossless JPEG (L-JPEG), progressive JPEG (P-JPEG), MPEG-4
VTC (VTC), and Portable Network Graphics (PNG).

Lossless compression

JPEG2000g JPEG-LS L-JPEG PNG

bike 1.77 1.84 1.61 1.66
café 1.49 1.57 1.36 1.44
cmpnd1 3.77 6.44 3.23 6.02
chart 2.60 2.82 2.00 2.41
aerial2 1.47 1.51 1.43 1.48
target 3.76 3.66 2.59 8.70
us 2.63 3.04 2.41 2.94
average 2.50 2:98 2.09 3.52

Table 151 yLossless compression ratios

It can be seen that in almost-all cases the best performance is obtained by
JPEG-LS (except the “target” imag¢).. JPEG2000 provides, in most cases, competitive
compression ratios with the added benefit of scalability. This shows that as far as
lossless compression is concerned, JPEG2000 seems to perform reasonably well in

terms of its ability to efficiently deal with various types of images.
Progressive compression

Figure 1-4 depicts the average rate-distortion behavior obtained by applying
progressive compression schemes. The compared standards include JPEG2000g,
JPEG2000Ngr, VTC, and P-JPEG. As shown in Figure 1-4, progressive lossy
JPEG2000 outperforms all other schemes The progressive lossless JPEG2000 does

not perform as well, mainly due to the use of reversible wavelet filters.

(dB)

PSNR

45

43

41
39

37

35

33

31

e —
P e
- . s

29

/)J 2l
.' ’ /
‘—%

M/ // —&—J2K R --#&--J2K NR —4--VTC —4— P-JPEG

27

|
~

25
23

bpp

Figure 1-4 PSNR corresponding to average RMSE, of all test images, for each algorithm

when performing lossy decoding at 0.25,°0.5, 1 and 2 bpp of the same progressive bitstream.

Error resilience

bpp ber: 0 ber: 1e-6 ber: 1e-5 ber: 1e-4
0.25 JPEG2000 23.06 23.00 21.62 16.59
JPEG 21.94 21.79 20.77 16.43
JPEG2000 26.71 26.42 23.96 17.09
05 JPEG 25.40 2512 22.95 15.73
JPEG2000 31.90 25.12 22.95 15.73
10 JPEG 30.34 29.24 23.65 14.80
JPEG2000 39.91 36.38 27.23 17.33
20 JPEG 37.22 30.68 20.78 12.09

Table 1-2 PSNR, in dB, corresponding to average RMSE, of 200 runs, of the decoded “café”

image when transmitted over a noisy channel with various bit error rates (ber) and
compression bitrates, for JPEG baseline and JPEG2000.

Table 1-2 compares the error resilience of JPEG2000, with the non-reversible
filter, and JPEG bascline. Under the different transmission error results, the

reconstructed image quality of JPEG2000 is higher than JPEG.

Functionality

JPEG2000 | JPEG-LS | JPEG | MPEG-4 VTC | PNG
lossless compression
+++ ++++ + - +++
performance
lossy compression
+++++ + +++ ++++ -
performance
progressive
_ +++++ - ++ +++ +
bitstreams
ROI ++ - - n ;
arbitrary shaped
- - - ++ -
objects
random access ++ - - - -
low complexity ++ +++++ | At + ++
error resilience +++ ++ ++ +++ +
non-iterative rate
+++ - - + R
control
genericity +-f +++ 4+ ++ 4+

Table 1-3 Functionality matrix.’A “+” indicates that it is:'supported, the more “+” the more

efficiently or better it is supported. A “-“indicates that it is not supported.

Table 1-3 summarizes the results of the computation of different algorithms.

The table shows that JPEG2000 offers the richest set of features within an integrated

algorithmic approach.

1.3. Thesis Organization

In this thesis, we focus on the analysis of the EBCOT Tier-1 CF algorithm, and

propose an efficient block-coding engine for this critical module.

The thesis is composed of six chapters. It is organized as follows. The next

chapter reviews and analyses the CF algorithm of EBCOT. Chapter 3 proposes two

speed-up methods, Sample-Skipping and Pass-Parallel. The architecture based on

these speed-up ideas is discussed in chapter 4. Experimental results are given in

chapter 5. And chapter 6 makes a brief conclusion about this thesis.

6

CHAPTER 2.
OVERVIEW OF EBCOT TIER-1 CF
AND ANALYSIS

2.1. Context Formation.module of EBCOT
Tier-1

After the DWT and quantization, each-sub-band is partitioned into code-block
(a rectangular grouping of coefficients typically 64x64 or 32x32 in dimension). All
quantized wavelet coefficients of each code-block are expressed in sign-magnitude
representation (in 1’s complement) and divided into one sign bit-plane and several

magnitude bit-planes.

-31 1 0 0 0 1 1 1 1 1
Sign bit

108 0 0 1 1 0 1 1 0 0 Magnitude bit

-55 1 0 0 1 1 0 1 1 1

Figure 2-1 There are three sample with 9 bits, the first one is sign bits and others are

magnitude bits. And the representation of negative is 1’s complement.

A code-block is composed of many bit-planes. A bit-plane is composed of
many stripes. A stripe is composed of many columns. And a column is composed of

four samples (in other words, every four rows form a stripe).

=
Bit-planes Stripes Columns Samples
in a code-block in a bit-plane in a stripe in a column

Figure 2-2 Scanning hierarchy of a code-block is bit-plane, stripe, column, sample

Each coding pass of a code-block is scanned in a particular order. The scan
order of each code-block is bit-plane by bit-plane, from MSB (the most significant
bit-plane with at least a non-zero element) to LSB (the least significant bit-plane),
rather than sample by sample. In every bit-plane, the scanning order is stripe by stripe
from top to bottom. And in every stripe, the-scanning order is column by column from

left to right, sample by sample from top to bottom in every column.

Code-block Width

| Stripe 1

| Stripe 2

Stripe 3

b

Figure 2-3 Scan order of a bit-plane in every pass
EBCOT block coder is a context-base adaptive arithmetic coder. Each sample
in each bit-plane is coded by its context and sends to the arithmetic coder along with a
decision. The context of each sample is decided by five coding states, four coding

primitives, and three coding passes.

2.1.1. Five coding states

There are five states for block coding in context formation module. They are

magnitude state, sign state, significance state, refinement state, and coded state.

Magnitude state

The magnitude bit of every sample in the current coding bit-plane is recorded
in the magnitude states. The magnitude state is different in every bit-plane for a
sample. It comes from the coefficients generated from DWT in encoding. In
decoder, the magnitude state is reconstructed depending on the decision

generated from arithmetic decoder.

Sign state

The sign bit of every sample is recorded in the sign states. A zero bit indicates
a positive numbers and a ong bit indicates a negative numbers. The sign state
of every sample is the 'same across all. bit=planes. It also comes from the
coefficients generated from DWT tnencoder and also reconstructed depending

on the decision generated from afithmetic decoder, just like magnitude state.

Significance state

-55

A sample is called significant after the first ‘1’ bit is met while coding from
MSB to LSB, and is called insignificant before the first ‘1’ bit appears, as
illustrated in Figure 2-4. The significance state records if a sample is
significant in the current bit-plane. It is set to one when the magnitude bit of
the sample is the first ‘1°. The significance state may be changed by Pass 1 and
Pass 3 coding.

Sign bit

Magnitude bit
insignificant

Magnitude bit
significant

Fisrt '1' bit
Figure 2-4 A sample is called significant after the first ‘1’ bit is met.

9

Refinement state

The refinement state indicates whether or not a sample has already been coded
in magnitude refinement pass in previous bit-plane. In the beginning of coding
in each code-block, refinement bits are all set to zero. And refinement bit is set
to one after a sample is coded by magnitude refinement coding at first time.

The refinement states may be changed only in Pass 2 coding.
Coded state

The coded state indicates whether or not a sample has already been coded in a
previous coding pass of the same bit-plane. When a sample is coded in
significance propagation pass or magnitude refinement pass, the coded state bit

is set to one. After the cleanup pass, the coded state bits are all reset to zero.

Note that, all the significance state bits and sign state bits are hold across all
bit-planes, but the coded state bits are reset at the end of each bit-plane (in the end of
Pass 3 coding). The magnitude state bits and sign state bits are coefficients from DWT
in encoding, but in decoding they‘are reconstructed by the decisions generated from

arithmetic decoder.

2.1.2. Four coding primitives

The context label of each sample is generated according to the status of its
neighbors using four coding primitives: zero coding (ZC), sign coding (SC),
magnitude refinement coding (MRC), and run-length coding (RLC). The eight
neighbor samples of current sample X are separate into three groups : vertical (Vj ~

V1), horizontal (Hy ~ H,), and diagonal (Do ~ D; ~ D, ~ D3), as shown in Figure 2-5. The

four coding operation for generating contexts are introduced below.

Do | Vo | Dy
Ho | X | H;
D, | Vi | Ds

Figure 2-5 Neighbors states used to form the context

10

Zero Coding (ZC)

The sample that is insignificant and prepares to become significant will be
coded by zero coding. It is used in significant propagation pass and clean up
pass. Eight neighbor samples are classified into 9 groups, corresponding to 9
contexts, as shown in Table 2-1. £H represents the sum of significant
horizontal neighbors, £V represents the sum of significant vertical neighbors,
and XD represents the sum of diagonal neighbor samples. The decision of ZC

is the magnitude bit of the current sample in the bit-plane.

LL and LH sub-band HL sub-band HH sub-band Context
(vertical high-pass) (horizontal high-pass) | (diagonally high-pass) label
ZH; pAV 2D, ZH; pAVE 2D, Z(H+ V) 2D,
2 X 2 X X >3 8
1 >1 X >1 1 >1 2 7
1 0 >1 0 1 29 0 2 6
1 0 0 0 1 0 >2 1 5
0 2 X 2 0 X 1 1 4
0 1 X 1 0 X 0 1 3
0 0 >2 0 0 >2 >2 0 2
0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0

Table 2-1 Context table for zero coding

Sign Coding (SC)

In sign coding, only vertical and horizontal neighbor samples will be used.

Computation of the context label can be viewed as a two-step process.

For the first step, the significance state and sign state of the vertical and
horizontal neighbors are used to form the vertical and horizontal contribution,

as shown in Table 2-2.

For the second step, a context label and an XOR bit are formed from vertical
and horizontal contributions, as shown in Table 2-3. It reduces the nine
permutations of the vertical and horizontal contributions into five context

labels. The decision bit that will be sent to arithmetic coder in encoding is then

11

produced by exclusive-or the XOR bit and the sign bit.

D = sign bit

® XOR bit

In decoding, the sign bit could be reconstructed by exclusive-or XOR bit and

the decision bit generated from arithmetic decoder.

Signbit=D ® XOR bit
Significant, Significant, o
Sign contribution positive negative Insignificant
Vo (or Ho)
Significant, positive 1 0 1
Significant, negative Vi 0 -1 -1
(or Hy)
Insignificant 1 -1 0
Table 2-2 Sign contribution truth table for sign coding
Horizontal contribution Vertical contribution Context label XOR bit
1 1 13 0
1 0 12 0
1 -1 11 0
0 1 10 0
0 0 9 0
0 -1 10 1
-1 1 1 1
-1 0 12 1
-1 -1 13 1

Table 2-3 Context table for sign coding

Magnitude Refinement Coding (MRC)

The sample that has been significant in previous bit-planes will be coded by
magnitude refinement coding. And it is used in magnitude refinement pass only.
The context label is dependent on whether or not this sample has ever been
coded in MRC and the summation of the significance state of neighbors. Table
2-4 shows the three contexts for magnitude refinement coding. The decision bit

is the magnitude bit of the current sample in the bit-plane.

2H;+ 2V, + ZD; First refinement for this coefficient Context label
X False 16
=1 True 15
0 true 14

Table 2-4 Context table,forrmagnitude refinement coding

Run-Length Coding (RLC)

In run-length coding, four contiguous samples in a column are coded used one
context, rather than one context for each sample in other coding. RLC is used
when the four contiguous samples in a column are all insignificant and their
neighbors are all insignificant too. If there are fewer than four rows remaining
in a code-block, then no run-length coding is used. In RLC, if none of bits of
the four samples become significant, context 17 with data 0 is used. In other
word, if all magnitude bits of the four contiguous samples in a column are zero,
context label 17 with decision bit 0 is used sending to arithmetic coder. On the
other hand, if any bit of the four samples does become significant (at least one
magnitude bit of the four samples is one), context 17 with decision data 1 is
used. And the first significant sample is sent using uniform coding, followed
by the sign coding of the first significant sample. The rest samples of this
column are coded using zero coding (same samples also need sign coding).

The reason will be described later in cleanup pass.

2.1.3. Three coding passes

There are three coding passes in each bit-plane, and they are significance
propagation pass (Pass 1), magnitude refinement pass (Pass 2), and cleanup pass (Pass

3).

The coding order of three coding passes is that Pass 1 is the first, Pass 2 is the
next, and Pass 3 is the last coding pass in the every bit-plane except in MSB. In MSB,
only Pass 3 is used (this will be explained later in this section). Figure 2-6 shows the

coding order of three coding passes in a code-block.

e

Start in MSB

-~

Pass 2 coding

Pass 3 coding

Pass 1 coding

Current bit-plane =
Current bit-plane - 1

o]

Current bit-plane = LSB ?

Yes

e

Figure 2-6 the coding order of three coding passes

Each sample in a bit-plane is coded in only one of the three coding passes and
skipped in the other two passes. The method to determine which coding pass the

current sample belongs to is illustrated in Figure 2-7.

< Check sample start >

Current sample is
significant ?

{eighbors of curren
sample are all
insignificant ?

Yes

Current sample Current sample Current sample
belongs to Pass 1 belongs to Pass 3 belongs to Pass 2

Figure 2-7 Flow chart of sample checking.to.determine which pass a sample belongs to

Significance propagation pass

Significance propagation pass (Pass 1) only includes the samples that are

insignificant but have at least one immediate neighbor (Vo ~ Vi~ Ho ~ H; ~ Dy ~
D, ~D;~Ds3) that is significant. Clearly, these samples are most likely to become

significant. A sample belongs to Pass 1 is coded using zero coding. If the
sample does become significant (the magnitude bit of the sample is the first ‘1’
from MSB to LSB), it also uses sign coding followed zero coding, and sets the

significance bit immediately.

Hence, in decoding, the ZC decision received from arithmetic decoder is the
magnitude bit of the sample in current bit-plane. If the ZC decision bit received
from arithmetic decoder is ‘1’ that means the sample does become significant
in this bit-plane. And it also needs to be coded using SC. By exclusive-or SC
decision generated from arithmetic decoder and XOR bit, it could get the sign

bit of the sample.

Magnitude refinement pass

Magnitude refinement pass (Pass 2) includes samples that are already
significant in previous bit-plane and don’t belong to significance propagation
pass in the same bit-plane. The sample belongs to Pass 2 will be coded by

magnitude refinement coding only.

In decoding, the decision generated fromsarithmetic decoder is the magnitude

bit of the current sample i this bit-plane.

Cleanup pass

Cleanup pass (Pass 3) includes samples that don’t belong to Pass 1 and Pass 2.
There are three cases in Pass 3: 1) If there is any sample in this column that
does not belong to Pass 3 or not meet the RLC rule. In this case, only the ZC
(or ZC and SC) is used in the samples that have not been coded in previous
coding passes. 2) Suppose magnitude bits of the four contiguous samples are
X1, Xp, X3, and X4 If all the four contiguous samples in Pass 3 are
need-to-be-coded samples and meet RLC rule, and X, X;, X3, and X4 are all
zero, then only RLC is used. 3) If all the four contiguous samples in Pass 3 are
need-to-be-coded samples and meet RLC rule, but not all of X, X, X3, and X4
is zero. In this case, RLC, Uniform coding, and SC (or SC and ZC) are all

used.

Table 2-5 shows the second and the third cases in Pass 3. Condition 1 is

exactly the second case. Table 2-5 condition 2~5 belong to the third case, and

16

the uniform coding is also used in these condition. In uniform coding, it sends
two context-decision pairs to arithmetic coder. Suppose the two decisions are
D1 and D2. The values of D1 and C2 point out which is the first magnitude bit
with the valur‘l’ from X; to X4. If X is ‘1°, just like in Table 2-5 condition 2,
then (D1, D2) is set to (0, 0). And the four samples with the four magnitude
bits, from X; to X4, need to be coded by ZC (except X, it only needs to be
coded by SC). On the other hand, if both X; and X, are ‘0’ and X3 is the first
‘1’, just like in Table 2-5 condition 4, then (D1, D2) is set to (1, 1). And the
two samples with magnitude bit, X3 and X4, need to be coded by ZC (X3 only

needs to be coded by SC).
Which sample
Uniform context
N Value of RLC context o needs to be
Condition o and decision
X1, X2, X3, X4 | and decision coded by
(D1, D2)
ZC+SC?
1 0,0,0,0 (17, 0) non non non
2 1,X, X, X (17!1) (18! 0) (18! O) X1lx2’ X3, X4
3 0,1,xx (17,1) (18,0) | (18, 1) X2, X3, X4
4 0,0,1,x (17,:1) (18,1) | (18,0) Xa, X4
5 0,0,0,1 (A7;:1) (18,1) | (18,1) X4

Table 2-5 Contexts and decisions of the second and the third cases in Pass 3 (x: don’t care)

In Pass 3 decoding, if all the four contiguous samples in this column belong to
Pass 3 and meet the RLC rule, the unique RLC context is given to the
arithmetic decoder. If the RLC decision returned from arithmetic decoder is “0’,
it means the four magnitude bits are all zeros and remain insignificant.
Otherwise, if the RLC decision is ‘1°, it means there is at least one of the four
magnitude bits with value ‘1°. And then two uniform decisions (D1 and D2)
received from arithmetic decoder denote which magnitude bit from top of the

column down is the first ‘1’ magnitude bit.

Note that in Pass 3 decoding, if the uniform decisions (D1, D2) received from
arithmetic decoder are (0, 0), it could conjecture that magnitude bit X; is “1°.

Therefore, the zero coding of first ‘1’ sample can be omitted in encoding.

The samples in the first nonzero bit-plane are all insignificant. From the
descriptions above, neighbors of all samples are insignificant, so they don’t belong to
significance propagation pass. And by reason of all samples are insignificant, the
magnitude refinement pass is not used in this bit-plane, too. Only cleanup pass is used

in the first nonzero bit-plane.

2.2. Analysis of Context Formation

2.2.1. Execution time

As discussed in section 2.1.3, each sample in a bit-plane is checked three times,
one for each pass, although each sample will be coded in only one of the three coding
passes, and skipped in the other two passes. Since not all samples belong to the same
pass in general case, the checking time results in a “bubble cycle”. That is, in
sample-based serial checking architecture, checking four samples in a column costs
four clock cycles no matter how many NBC (need-to-be-coded) samples in it. It

wastes many clock cycles on processing samplelocation.

In Figure 2-8, if each sample location requires a single clock cycle per coding
pass for checking whether or not the sample is NBC sample, it wasted 29 (64-35)
clock cycles in Pass 1 and 59 (64-5) clock cycles in Pass 2 and 40 (64-24) clock

cycles in Pass 3.

Need to be coded sample by pass 1

Need to be coded sample by pass 2

Need to be coded sample by pass 3

W alalalalalw|lw

3 2
1 1
2 3
1 3
1 3
1 1
1 2
3 1

Alalalw| alalala
AlalalwWwl W W] =~

3
1
1
1
1
2
1
3

W W W =~ W| W
W W W =~ N~ W

Figure 2-8 There are 35 NBC samples of Pass 1 coding and 5 NBC samples of Pass 2 and
24 NBC samples of Pass 3 in a bit-plane of a 8x8 code-block

Table 2-6 shows the analysis results obtained from four 256x256, gray level
test images: “Lena”, “Flower”, “Toys”, and “Pepper”. For Lena image, there are

18

50178 of 447488 samples encoded belong to Pass 1. It means that there are 397310
(447488-50178) clock cycles wasted for checking which sample is NBC in Pass 1,
and 164976 (447488-282512) clock cycles wasted for checking in Pass 2, and 332690
(447488-114798) clock cycles for checking in Pass 3. In other words, it wastes at least
894976 (397310 + 164976 + 332690) clock cycles in coding “Lena” image.
Obviously, there are a large number of clock cycles may be wasted if we use

straightforward method.

Number of encoded samples
Image
Pass 1 Pass 2 Pass 3 Total

Lena 50178 282512 114798 447488
Flower 42077 324624 90006 456704
Toys 18574 367655 72523 458752
Pepper 49706 303921 115365 468992
Average 40133 319678 98173 457984

Table 2-6 Number of encoded samples that belong to a given coding pass

2.2.2. Memory requirement

As described in section 2.1.1, it.needs five states to form the contexts. If a
code-block size is 32x32, 1024 samples, the internal memory needed are 3K (1024 x

3) bits (Only significance state, refinement state, and coded state need to be saved).

And as described in section 2.2.1, the context information is still required in
each pass even if no samples are coded in this pass. Suppose there are eight bit-planes
in a code-block needed to be coded, every data in the coefficients memory will be
accessed 24 (8 bit-plane x 3 coding passes) times. And the memory will total be
accessed 24576 (24 x 1024 samples) times. This situation also increases the number

of unnecessary memory access.

CHAPTER 3.
PROPOSED SPEEDUP METHOD

In this chapter, we will introduce two proposed speedup methods. The first one
is Sample-Skipping. The Sample-Skipping method can check four contiguous samples
in a column simultaneously, and+avoid wasting, time on non-NBC samples. The
second one is Pass-Parallel. The'Pass-Parallel architécture merges three coding passes

of bit-plane into a single codingpass to improve the system performance.

3.1. Sample-Skipping

The key idea of the Sample-Skipping method is to skip no-operation samples in
a single column, and directly code NBC samples. By column-based, samples in a
column can be parallel checked to see whether or not they are NBC samples. It can be
applied to all three coding passes. If there are n NBC samples in a column (0<n<4) ,
only n clock cycles will spent on coding this column, and 4-n clock cycles will be
saved. If none of NBC samples is in this column, it only spends one clock cycle on
checking. Since most columns have less than four NBC samples, the method can

improve cycle time greatly. It is more coefficient than the straightforward method.

Figure 3-1 shows the number of clock cycles spent on coding a column while

Sample-Skipping is used. And Figure 3-2 shows the flow chart of Sample-Skipping.

Q NBC Q non - NBC

0000
. 000
o [0®
L1 0@
00 @
@000
o [@
1 1@
OOO@
@O0®
@ @
@0 ®
OO0®
@000
000
0000

4

1 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Clock cycles required while coding the column
Figure 3-1 The number of clock cycles required while coding a column. Notice the first
column, it only spend one cycle to coding a,column with no NBC samples. The spent clock

cycles in all kinds of columns are lessthan four clock cycles.

here is any
NBC sample in
his column ?

-
-

Yes

'

Code NBC sample

Next clock
cycle

Has every
NBC sample
been coded ?

Yes

End Coding

Figure 3-2 Flow chart of Sample-Skipping

21

In Sample-Skipping, data are supplied to one column at a time. We use a 6 x 3
context window instead of a 3x3 context window (just like Figure 2-5). The 6 x 3
window is illustrated in Figure 3-3, and X, X,, X3, and X4 are the four current
samples. Ay, By, Co, Aj, Ci, Az, X,, C; mean the eight immediate neighbors of X.
And Ay, X, Cy, Ay, Cy, A3, X3, C3 mean the eight immediate neighbors of X,. So are
X3 and Xa.

Stripe n-1

Stripe n

&) 22 2)(2)>
(7)) (2)
0 O0LO Ok

Stripe n+1

Figure 3-3 A 6x3 context window for coding 'a‘column of samples X4, Xy, X3, X4,

3.1.1. NBC in Sample-Skipping

In Sample-Skipping method, how to find out the NBC samples before coding a
column is important. Because the values of magnitude bits can be known before
encoding, and which sample will become significant in this bit-plane can be predicted.
For this reason, in encoding, it could determine which sample is the NBC sample per
coding pass before coding. But in decoding, it is difficult to predict NBC samples of

Pass 1 and Pass 3 before coding.

The condition is illustrated in Figure 3-4. Before coding, it could predict that X
and X3 are NBC samples for Pass 1 decoding, and X; is non-NBC for the moment.
But during decoding X, if the ZC decision generated from arithmetic decoder is ‘1°,
then sample X; will become significant and X, will be a NBC sample. Hence, the
numbers of NBC samples will change following Pass1 decoding processing. It could

not predict all NBC samples before coding.

22

Stripe n-1 Q significant
@ insignificant

Stripe n

Stripe n+1

0e | | oL

@000 -
0000 @ -

Figure 3-4 Significance state of samples in a context window before coding X4, X, X3, X4

The condition in Pass 3 decoding is separated into two parts, RLC and
non-RLC. In non-RLC, it is the same as the condition in Pass 1. In RLC, as described
in section 2.1.3, it must rely on‘decision generated from arithmetic decoder to
determine whether or not all magnitude bits are. zero. And it also needs the uniform
decisions to determine which sample becomes significant in uniform coding. So, in
Pass 3 decoding, it is the same as Pass I"decoding; the numbers of NBC samples will

change following decoding processing:

3.2. Pass-Parallel

The Pass-Parallel method is to process three coding passes of the same bit-plane
in parallel. There are some issues occurring due to the architecture. First, since the
three coding passes work concurrently, the samples belong to Pass 3 may become
significant earlier than Pass 1 and Pass 2 and this situation will mistake the following
coding for samples which belong to Pass 1 and Pass 2. Second, if the sample that
currently coded belongs to Pass 2 or Pass 3, the significance of samples that have not

been visited in the context window shall be predicted.

23

3.2.1. Pass-Parallel in Encoding

To solve these issues in encoding, the coding operations for Pass 3 are delayed
by two stripe columns to avoid the effect between Pass 3 and the other two passes.
Subsequently, to eliminate the dependence of coding operation on the next stripe the
“vertical causal” mode is also adopted. In vertical causal mode, the samples in the
next stripe are considered to be insignificant. Compared with context window in
Figure 3-1, the significance states of As, Bs, and Cs are considered to zero when

coding X4.

Figure 3-5 shows the position of context windows per coding pass in
Pass-Parallel encoding architecture. Note that the context window of each coding pass
i1s 5x3 for vertical causal mode and the context window of Pass 3 lags that of Pass 1

and Pass 2 by two columns.

O OO

OO00
9000
OO0
CE L X)
0,000

Pass 1 Pass 2
context context
window window

Figure 3-5 Context windows of three coding passes in the Pass-Parallel encoding

architecture

To salve the second issue, we take two states, significance state 0 (cp) and
significance state 1 (o)), instead of significance state, refinement state and coded state.
If a sample becomes significant after Pass 1 coding, the oy is set to ‘1°. If a sample
becomes significant after Pass 3 coding, the o) is set to ‘1°. Besides, both 6y and o,

are set to ‘1’ immediately after the Pass 2 is used in this current sample.

From the definition, if a sample has been coded in Pass 2, then 6y and o; are
both set to ‘1°. In other words, if one of 6y and &, is ‘0’, it means that the sample has

not been coded by Pass 2. Hence, the refinement state can be replaced by

24

Y =Go@® O] where ‘@’ is the XOR operator (1)

Obviously, the current significance state ¢ can be calculated during the coding
process. For samples belong to Pass 1, the significance states of the visited samples
are equal to op. Since samples that have not been visited may become significant by
Pass 3 in last bit-plane, the significance states of the samples that have not been

visited are expressed by
0 =GoV O] where ‘v ’is the OR operator (2)

For samples belong to Pass 2, the significance states of the visited samples are
equal to oy. Since the current significant sample must be coded in Pass 2, and the
neighbors of current sample must be coded in Pass 1, the neighbor sample of current
sample will become significant in Pass 1 coding if its magnitude bit is ‘1. This
condition is illustrated in Figure 3-6. And the significance states of the samples that

have not been visited are expressed by

6=00 v O1 v p |[whereyv, isithe magnitude bit 3)

@ @ @ Q significant'sample
the sample will be coded in Pass 2
@ @ @ @ insignificant sample with magnitude bit ‘1’
the sample will become significant in Pass 1
@ @ @ @ insignificant sample with magnitude bit ‘0’
the sample will maintain insignificant in Pass 1

Figure 3-6 All the neighbors will be coded by Pass 1 if the center sample belongs to Pass 2.

And some neighbors with magnitude bit ‘1’ will become significant in Pass 1, the others with

magnitude bit ‘0’ will maintain insignificant.

For samples belong to Pass 3, the significance states of all neighbors are

determined by Equation (2).

0 =0yV 0] where ‘v ’is the OR operator (2)

25

3.2.2. Pass-Parallel in Decoding

The most difference between encoding and decoding in Pass-Parallel is Pass 2
coding. In decoding, the magnitude bit v, is generated from arithmetic decoder;
therefore, it is hard to predict the significance states of the samples that have not been
visited by Equation (3). To solve this problem, the coding operation for Pass 2 is

delayed by two stripe columns, the same as Pass 3.

O 0000

QOO0
OO0O0O
(OO0
D000
OO00

I
|
|
|
I
I
|
|
|
I
I
il

Pass 2 Pass 4
context context
window window

Figure 3-7 Context windows of three.coding passes in the Pass-Parallel decoding

architecture

And some equations for predicting significant states must be changed. For the
samples belong to Pass 1, since the significant state 6 of samples that have become
significant in last bit-plane by Pass 3 remains to be ‘0’ after Pass 1 coding, the

significance states of all neighbors are determined by Equation (2).
G =G(V O] where ‘v ’is the OR operator 2)

For samples belong to Pass 2, the significance states of the visited samples are
equal to oy the same as encoding. Because Pass 2 delays two columns, the neighbor
samples that have not been visited in Pass 2 have been visited by Pass 1. So the
significance states of the samples that have not been visited are determined by

Equation (2).

For samples belong to Pass 3, the significance states of all neighbors are

determined by Equation (2), the same as encoding.

26

3.2.3. Advantages of Pass-Parallel

In conclusion, the main advantages of using Pass-Parallel processing are:

1) Fast computation: No clock cycles are wasted on non-NBC samples. (Unless
all of the four samples in a column are non-NBC samples. But in this case, it only

spends one clock cycles on coding).

2) Less memory access: Since the three coding passed of a bit-plane are merged
into a single pass, every data of memory is accessed one time for a bit-plane. And

about 67% of memory accesses are saved.

3) Reduce memory requirement: We don’t need to identify whether or not each
sample has been coded in a previous coding pass of the same bit-plane. The five states
(magnitude, sign, significant, refinefnent, and coded states) are replaced by four states
(magnitude, sign, significant 0, and significant 1)). Therefore, the 1K (32 x 32) coded

memory is saved.

3.3. Execution Time with Pass-Parallel

Table 3-1 shows the number of checked clock cycles in Sample-Skipping,
Sample-Skipping + Pass-Parallel and the straightforward method. The four test
images are the same as Table 2-6. Column “SS (P1)” represents the number of clock
cycles required if the Sample-Skipping method is used in Pass 1, and so are SS (P2)
and SS (P3). The last column represents the number of cycle time with

straightforward method.

27

Number of checked clock cycles

image SS(P1) | SS(P2) | SS(P3) | SS(Total) | SS + PP | Straightforward
Lena 125260 | 301893 | 131053 | 558206 | 432185 1211392
Flower | 121712 | 335971 114880 | 572563 | 443815 1239040
Toys 107717 | 371320 | 103057 | 582094 | 454921 1245184
Pepper | 130682 | 323847 | 136892 | 591421 | 455503 1275904
Average | 121343 | 333258 | 121470 | 576071 | 446606 1242880

Table 3-1 Number of checked clock cycles in Sample-Skipping (SS) and Pass-Parallel (PP)

For “Lena” image, the total number of clock cycles in Sample-Skipping method

is reduced to 46%

compared with straightforward method.

If using both

Sample-Skipping and Pass-Parallel method, the processing cycle time is reduced to

36%. Obviously, it could improve the system performance if Sample-Skipping and

Pass-Parallel are applied.

28

CHAPTER 4.
ARCHITECTURE DESIGN

In this chapter, we introduce the overall block diagram of Context Formation
module first. The four register primitive elements (sign, magnitude, significance 0,
and significance 1) are described in section+ 4.1. The description of context
formulation module and Samplé-Skipping method are discussed in section 4.2. The

details of Pass-Parallel controller are in section 4.3.; Section 4.4 shows the pipeline

architecture.

Pass 1 coding |/l w SMW
module (P1M) [\ /]

o =) CMW
Pass 2 coding |/l N S_
module (P2M) |\ <

g ' Razsp
Pass 3 coding |/L_ I\
module (P3M) [/| - RG

Figure 4-1 Block diagram of context formation

Figure 4-1 illustrates the block diagram of context formation (CF). It divides CF
into eight blocks. The eight blocks belong to five groups as shown below:

Pass Coding Module

This group contains PIM (Pass 1 coding module), P2M (Pass 2 coding
module), and P3M (Pass 3 coding module). The three pass coding modules
produce context labels by using four register primitive elements, and produce
(or receive in decoding) decisions. The Pass 1 coding module contains ZC, SC,
and SS primitives. The Pass 2 coding module contains MRC and SS primitives.

And the Pass 3 coding module contains ZC, SC, RLC, and SS primitives.
Memory

This group contains RA2SD block. RA2SD is a memory of 1024 x 2 bits. The

significance state 0 and significance state 1 are saved in RA2SD.
Memory read

This group contains RG (Register. Data Generator). The function of RG is to

fill in register primitives with values loaded-from two memories (four states).
Memory write

This group contains SMW- (Significance Memory Write Module) and CMW
(Coefficient Memory Write ‘Module).:: The SMW block updates the value of
significance state after three coding passes in each bit-plane. The CMW block
only works in decoding process, it writes the value of sign bit to coefficients
memory if the sample is decoded by sign coding in current bit-plane, and also

writes the magnitude bits of every bit-plane to coefficients memory.
Controller

Controller is the core of the design. It manages the overall coding data flow,
and generates write and read address for all memories and register primitive

elements. It also controls the pipeline architecture.

30

4.1. Column-Based Operation

In the proposed architecture, column-based operation is adopted instead of
sample-based operation. The basic idea of column-based operation is to check four
vertical samples of a column simultaneously. It is just like 5%3 context window in
Figure 3-5 or Figure 3-7. In order to fit the Pass-Parallel architecture, it integrates
context window of three coding passes into a 5x5 registers for each significance states

and sign states.

ol Biele

——FF Pass 1
——————— Pass 2
Pass 3

OOOT]
LOOO

OO0
OO00
OOO0)

Column based registers that
contains context windows of

Pass 1 Pass 2 th di
context context ree coaing passes
window window

Figure 4-2 ' Column-based;registers (5 x 5)

In magnitude states, it needs only four magnitude bits of four samples in current
column. It doesn’t need the neighbors for magnitude state in last stripe, so the

column-based registers size is 4x5.
OO

OO

OO

OO

o Pass 1
g —-——-———- Pass 2
3 Pass 3

OO0
OO00
OOO0

Column based registers that
contains context windows of

Pass 1 Pass 2 th di
context context ree coaing passes
window window

Figure 4-3 Column-based registers (4 x 5)

Take sign state registers in encoding for example. Suppose the coding order of
column number is 0, 1, ..., n-2, n-1, n, n+1, nt+2, and so on. By using Pass-Parallel

method described in section 3.2, the coding operations for Pass 3 are delayed by two

31

columns. At time N, Column n-2 is coded in Pass 3 and column n is coded in Pass 1

and Pass 2, as shown in Figure 4-4 upper.

After finishing coding column n-2 by Pass 3 and column n by Pass 1 and Pass
2 , the data registers will shift left, B to A, C to B, D to C, E to D, and new data
loaded from memory is stored in the right column F. At time N+1, the column n-1 is
coded in Pass 3, and column n+1 is coded in Pass 1 and Pass 2, as depicted in Figure

4-4 medium.

>
w
=)
N
>
=

9000 ®:
OO0
{0000 0-

S5
i
-
>
F
N

Time N

g, OOO00:
» OO000
f
~ Q0000

)
o -
=}
K
0
+
N
S
+
w

Time N+1

- 900009
> OO K
-000Q ¢
10000 oL
"0000 T
}
~O0000

=}
-
=}
+
N

> 00000

>
+
S

Time N+2

- Q0000 -
JO OO0 Ok
- OO000
HO.0 00 OF
f
99000 @

Figure 4-4 Flow chart of column-based registers while time N, time N+1, and time N+2

At time N+2, the data registers shifted to left again, and column n is coded in
Pass 3, column n+2 is coded in Pass 1 and Pass 2. The result is depicted in Figure 4-4

lower.

Note the register F in Figure 4-4. Because reading memory data needs many
clock cycles, in fact, it is a ping-pong register named F1 and F2 to reduce processing

cycle time.

As described, there are two advantages of column-based operations: 1) samples
in a column can be checked simultaneously, and then Sample-Skipping method can be

applied. 2) Memory access frequency of these state variables can be reduced.

4.2. Pass Coding Module

The main work of pass coding.module is'to produce context label for arithmetic
coder. In encoding, it also sends 'decision to arithmetic encoder, but in decoding, it
receives decision from arithmetic decoder to‘reconstruct the coefficients memory for

DWT. Pass coding module also‘includes Sample-Skipping architecture in it.

Figure 4-5 shows the block diagram of Pass 1 coding module. The Sign
Register PE, Magnitude Register PE, Significance 0 Register PE, and Significance 1
Register PE are described in section 4.1. It includes Sample-Skipping, Zero coding,

and Sign coding in the Pass 1 coding module.

Sign 0 Sign Register PE N
Memory (5 x 5 bit shift register)
Magnitude | Magnitude Register PE N ss
Memory | (4 x 5 bit shift register) Contoxt
ontex
ZC Decision

Significance 0 | Significance 0 Register PE
Memory | (5 x 5 bit shift register)

SC

T
QO
[]
(2]
-_—
0O
o
=2
=]
Q@

Significance 1 | Significance 1 Register PE
Memory | (5 x 5 bit shift register)

Figure 4-5 Block diagram of Pass 1 coding module

33

Figure 4-6 shows the block diagram of Pass 2 coding module. There are
Magnitude Register PE, Significance 0 Register PE, and Significance 1 Register PE in
the Pass 2 coding module (it does not include Sign Register PE), and also
Sample-Skipping and Magnitude Refinement Coding in it. Figure 4-7 shows the block

diagram of Pass 3 coding module. The difference between Pass 1 coding module and

Pass 3 coding module is that there is a RLC block in Pass 3 coding module.

Magnitude Magnitude Register PE .
Memory (4 x 5 bit shift register) Pass 2 Coding
Significance 0 Significance 0 Register PE Context
Memory “| (5 x 5 bit shift register) MRC Decision
Significance 1 Significance 1 Register PE
Memory “| (5 x 5 bit shift register)
e —
Figure 4-6 Block diagram-of-Pass+2 coding module
Sign N Sign Register PE
Memory (5 x 5 bit shift register)
Pass 3 Coding
Magnitude Magnitude Register PE ss
Memory “| (4 x 5 bit shift register)
Context
zC Decision

Memory

Significance 0 |

(5 x 5 bit shift register)

.| Significance 0 Register PE |_

Significance 1 |

SC
RLC

.| Significance 1 Register PE |_

Memory (5 x 5 bit shift register)
Figure 4-7 Block diagram of Pass 3 coding module
4.2.1. Sample-Skipping architecture

The key idea of the Sample-Skipping method is to skip no-operation samples,
and directly code NBC samples, as we described in section 3.1. In the begging of
Sample-Skipping process, a NBC flag to NBC index converter is applied.

The NBC flag is a four bits register, and it indicates which samples in the

current coding column are NBC samples. If a bit of NBC flag is 1, it means the

34

corresponding sample is NBC; otherwise, the corresponding sample is non-NBC. The
corresponding sample of the Oth bit of NBC flag is Xy. And the corresponding
samples of the 1st, 2nd, 3rd bits of NBC flag are X, X, and Xs.

The NBC index is an array of four integers range from 0 to 3. It is used to
record the coding order of NBC samples. If X, and X, are NBC samples, the coding
order of this column is that X, is the first and X, is the second, and the third and the
last could be any number range from 0 to 3 because it only needs to code the first two
NBC samples. So, according to NBC index, Ny (the Oth integer) is the first NBC
sample in coding order. N; (the 1st integer), N, (the 2nd integer), and N3 (the 3rd

integer) are the second, third, and the last NBC in coding order.

Table 4-1 shows the NBC index converted from NBC flag. Take the 7th row for
example, the value of NBC flag is 0101, and it means there are two NBC samples (Xo
and X3) in this column. Obviously, the first NBC sample is X, and the second NBC
sample is X,. And the corresponding NBC index s (X, x, 2, 0).

NBC flag (X3, Xz, X4, Xg) NBC index (N3, N2, N+, No)
0000 X, X, X, X
0001 X, X, X, 0
0010 X, X, X, 1
0011 x,x, 1,0
0100 X, X, X, 2
0101 X, X, 2,0
0110 X, X, 2,1
0111 X,2,1,0
1000 X, X, X, 3
1001 X, X, 3,0
1010 X, X, 3, 1
1011 x,3,1,0
1100 X, X, 3, 2
1101 X,3,2,0
1110 X, 3,21
1111 3,2,1,0

Table 4-1 NBC flag converts to NBC index

35

Figure 4-8 shows the flow chart of Sample-Skipping method. The current NBC
sample is Ny if ‘I’ equals to 0. And the current NBC sample is Ny, N, or N3 if ‘I” is 1,
2, or 3. In the begging of the flow, set ‘I’ to be zero, and check if there is any NBC
sample in this column. If none, finish coding in this column. Otherwise, it means that
there is at least one NBC sample, and the first NBC sample (Ny) is coded immediately.
After generating context label of the NBC sample, increase ‘I’ by one, and check
whether or not the number of NBC samples is equal to ‘I’. It means total NBC
samples have been coded already if ‘I’ is equal to the number of NBC samples. So, if
number of NBC samples equals to ‘I’, finishing coding in this column; otherwise,
coding the next NBC sample (N;) at next clock cycle and follows the flow until all
NBC samples have been coded.

No

Find out the current NBC
sample by index |

'
Code the current NBC No
sample

Next clock
cycle

= Number
of NBC ?

Yes

— { End Coding

Figure 4-8 Flow chart of Sample-Skipping architecture (include of finding out the current NBC

sample by index I)

36

Only in Pass 2 decoding, the NBC samples could be checked before starting
coding. The NBC samples of Pass 1 and Pass 3 decoding may be changed according
to the decision from arithmetic coder. Therefore, the MRC (or the Pass 2 coding) is
the simplest coding of four coding primitives. Let’s introduce the Pass 2 coding

module first.

4.2.2. Pass 2 coding module architecture

Figure 4-9 shows the flow chart of Pass 2 coding module, it’s similar to the

flow chart of Sample-Skipping.

Pass 2 Codec
Start MRC

No

'

Generates context label of Decodin
current NBC sample 9 N
o

\
Encoding

v
Generate decision of
current NBC sample

Receive
decision from
AC?

Pass 2 Codec
End

Figure 4-9 Flow chart of the Pass 2 coding module (MRC)

37

While there is at least one NBC sample in this column, the Pass 2 coding
module will generate context label, and then there are two directions. The green one is
for encoding. It is the same as Sample-Skipping flow chart while following the green
direction. The purple one is for decoding. Following the purple one, it does not
provide decision to arithmetic decoder. On the contrary, it waits for the decision
generated from arithmetic decoder. Until receiving the decision from arithmetic

decoder, it goes on with the flow chart.

4.2.3. Pass 1 coding module architecture

Figure 4-11 shows the flow chart of the Pass 1 coding module, and it is also the
flow chart of zero coding and sign coding. Note that the previous section of Figure
4-11 is similar to the flow chart of the Pass 2 coding module. But after generating
decision in encoding or receiving decision from arithmetic decoder in decoding, it has
to check whether or not the sample.néeds to be coded in sign coding by the value of
decision (i.e. ‘1’ means that needs be ceded by:SC,:and ‘0’ means that does not need

be coded by SC).

If the SC is needed, it must generate the context label of SC, and receive the
decision of SC from arithmetic decoder.. The rest flow path of Passl coding is similar

to Sample-Skipping flow chart.

4.2.4. Pass 3 coding module architecture

The coding primitives of Pass 3 coding are SC, ZC, and RLC. Since the SC and
ZC in Pass 3 coding and Pass 1 coding are the same, in this section, we focus on the
flow of RLC (and the uniform coding). The path of flow chart, as depicted in Figure
4-10, also has two directions which green one for encoding and purple one for

decoding.

Following green paths (encoding paths), Pass 3 coding module generates
run-length context label (17) and decision. If none of the magnitude bits in the column
is 1, the four samples do not need to be coded by uniform coding, and Pass 3 coding
in this column is finished. Otherwise, it means the four samples needs to be coded

using uniform coding. After sending two uniform context labels (18) to arithmetic

38

encoder, RLC and uniform coding in this column are finished. And the rest of NBC

samples will be coded by ZC and SC.

Following purple paths (decoding paths), it generates run-length context label
(17). If the RLC decision received from arithmetic decoder is zero, it means that none
of the four magnitude bits in this column is 1, and finishes Pass 3 coding in this
column. If the RLC decision received from arithmetic decoder is one, then not all four
magnitude bits are zero, and this column needs to be coded using uniform coding.
According to the two uniform decisions generated from arithmetic decoder, it could

determine how many samples needed to be coded by ZC and SC.

Pass 3 RLC
Codec Start RLC

Generates context 17

\
Encoding

v
Generates decision

contexts ?

A 4
Generates context 18

\
Encoding
v

No Generates D1 decision

Y
Generates context 18

\
Encoding
v

Generates D2 decision

Y v
Pass 3 Codec 7C and SC Yes
End

Figure 4-10 Flow chart of Pass 3 coding (RLC)

39

Pass 1 Codec
Start

umber o

NBC=07

ZC +SC

A

No

'

Generates ZC context of

current NBC sample

\
Encoding

v

Generate ZC decision of

current NBC sample

Yes
Y

Generates SC context of
current NBC sample

\
Encoding

v

Generate ZC decision of
current NBC sample

= Number

HYeS

decision from
AC?

Yes

decision from
AC?

of NBC ?

Yes

Pass 1 Codec
End

Figure 4-11 Flow chart of Pass 1 coding (ZC+SC)

40

4.3. SMW and CMW Architecture

After a column is processed by three coding passes, the memories must be
updated if there are any changes in the significance states, or coefficient states. The
SMW (Significance Memory Write Module) is used for updating the value of
significance states. The CMW (Coefficient Memory Write Module) is used for

updating the value of magnitude and sign states, and CMW only works in decoding.
Significance Memory Write Module (SMW)

Figure 4-12 shows the flow chart of SMW. It is similar to the flow chart of
Sample-Skipping depicted in Figure 4-8. The only difference between them is that
SMW changes “Code the current NBC sample” to “Write data to memory”. The index
NBCH is used to record if the sample is a need-to-be-changed-value sample, just like

NBC.

No

y

Yes = +1

Next clock
= number 0 cycle
NBCH ?
Yes

)

4>< End Coding >

Figure 4-12 Flow chart of writing new significance states into memory

41

The significance memory (RA2SD) is composed of significance state 0 and
significance statel, and it is a 1024 x 2 bits memory. The Oth bit represents the
significance state 0, and the 1st bit represents the significance state 1. The data
prepared for writing into significance memory RA2SD is combined from significance

0 register and significance 1 register.

Coefficient Memory Write Module (CMW)

(| stat |)

umber o
BCH=0?

No
¥

read data from memory | =

Next:-clock cycle

)
Combine data with magnitude
and sign register

Y

write data to memory No

Next clock cycle
= number O x y

NBCH ?

Yes
)

» End Coding)

Figure 4-13 Flow chart of writing coefficients into memory. It is similar to the flow chart of

writing significance states into memory. But the data must be loaded from memory before

writing.

42

CMW works only in decoding process. It is a little different between SMW and
CMW. After three passes coding, we could get a magnitude bit of a sample in current
bit-plane and maybe the sign bit if the sample is coded in SC at the bit-plane. The

coefficient memory is a 1024 x 9 bits memory, 1 bit for sign bit and 8 bits for

magnitude bits. In the magnitude register, it only could record one magnitude bit for a
sample. So, it could not get coefficient data by combining the two register. In CMW,
before writing data to memory, it needs to read data from memory. And then store the
magnitude bit and sign bit into the current position of data. According to this concept,

the CMW costs more clock cycles than SMW.

4.4. Pipeline

Recall the column-based registers, in the encoding, the register B is coded using
Pass 3 coding, and register D is coded using Pass.1 and Pass 2 coding, as described in
section 4.1. The sample which -has beeén-coded. by three coding passes will shift to
register A, and SMW will update significance memory by the data of four samples in
register A. The register F is stoted of data-toaded from memory by RG. Figure 4-14
shows the relation of five blocks (P1M, P2M, P3M, RG, and SMW) and six registers

in encoding.

P1M
SMW P3M P2M RG
Lo | |

Time N

Figure 4-14 Relation of five blocks and six registers in encoding

In decoding, Pass 2 coding module delays two columns to register B. And

43

CHAPTER 4. ARCHITECTURE DESIGN

register A is coded also by CMW. Figure 4-15 shows the relation of six blocks (P1M,
P2M, P3M, RG, SMW, and CMW) and six registers.

CMW P2M
SMW P3M P1M RG
b | |
n-3 n-2 n-1 n+1 n+2

Time N

40000 ¢

- 9000 @

> QOO0

- Q000 @-

» OOOOO
f

~ Q0000

Figure 4-15 Relation of six blocks and six registers in decoding

From Figure 4-14 and Flgure 4 ISF, we know that if every module finishes its
work in the corresponding reglster the data of reglsters will shift left. According to

this concept, pipeline archltecture 1S edsym_mplement

Figure 4-17 is the flow chart-ﬂof pipeline aréhitecture. The code-block size is 8

x 7,7 columns and 8 rows. We define the index of every sample as follows.

32 33 34 35 36 37 38

64 65 66 67 68 69 70

96 97 98 99 100 101 102

128 129 130 131 132 133 134

160 161 162 163 164 165 166

192 193 194 195 196 197 198

224 225 | 226 | 227 | 228 229 230

Figure 4-16 Index of every sample for a 8 x 7 code-block

44

And we name column by the index of first sample in that column. For example,
the light yellow ellipse named 0 represents the column composed of sample 0, sample
32, sample 64, and sample 96. The pink ellipse named 1 represents the column

composed of sample 1, sample 33, sample 65, and sample 97.

A B c D E F1 F2

cww | [pom | [] []

svxﬁw PgM /.)

P1M

SMW P3M PgM RG Encoding
Time 0 C o)
Time 1
Time 2 Coopy@ || dzd C3)
Fime 3 CoOlCiD | e | @& O
Time 4 Collan il s v O | o aE»
tmes (00 || GED (\@2 4N :) oD || GED =D
rmes @D || @D [3| (D | aED | @@ (=D
Tmer @ED || D || @D | GED | @ED || @@ (=
Time 8 (s Hi@da)| @ g (129) (128)
Time 9)| @ @& (128 (129) (130)
Time 10 | @ (128) || C129) || (131) (130)
Time 11 6) 128 29D || (130 || (131) 13D
Time 12 (128) || (129) 130 (131) || 188D (132)

Figure 4-17 Pipeline architecture of encoding and decoding in normal case

Take encoding for example. At the beginning (Time 0 and Time 1), RG loads
data of column 0 and column 1 from memory and stores into register F1 and F2. At
Time 2, the data of registers is shift to left. The data of column 0 and column 1 is
stored into register D and register E. PIM and P2M have to encode register D

(column 0), and RG keeps on loading data from memory and storing into register F1

45

or F2 at Time 2. After PIM and P2M finish encoding register D and RG has loaded

data of column 2, the work at Time 2 is finished.

At Time 3, the data of registers is shift to left again. The data of column 0 is
stored into register C, and the data of column 1, 2 is stored into register D, E. After
PIM and P2M finish coding column 1 in register D and RG stores data of column 3

into register, the work at Time 3 is finished.

At Time 4, the data of column 0 is shift left to register B, and the data of
column 1, 2, 3 is shift to register C, D, E. P3M begins working at the time, and it has
to code column 0. After PIM and P2M finish coding column 2, and P3M finishes
coding column 0, and RG stores data of column 4 into register, the work at Time 4 is

finished.
At Time 5, SMW begins working and coding column 0 in register A.

It goes on like this until Time+8: After the'work at Time 7 is finished, all data of
registers is shift to left except register F2.-Note that column 6 is the last column in the
first stripe. Since there is no column in right, the right neighbors of column 6 are
considered to be insignificanty In ‘other-words, if the neighbors fall outside the
code-block, they are considered to'be insignificant:

context
window

to be considered as
insignificant

OO0 OO0
OO0 OO0OG
OO0 OOOE
OO0 OO0OE
OO0 OOOG|

OO0

OO0

OO0
OO0

O
O
O
O
O
O
O

Figure 4-18 If the context window is out of code-block, it considers the samples that don'’t

exist in fact as insignificant.

46

And it is the same as column 128. Since column 128 is the first column in the

second stripe, the left neighbors of column 128 are also considered to be insignificant.

For this reason, the data of column 128 must lag the data of column 6 by one column.

Hence, the data of register F2 (column 128) does not need to shift left into register

after the work at Time 7 is finished, but register A,B,C,D,E must shift left. Then, the

pipeline is going on with concepts described above until finishing coding a bit-plane.

If the width of a code-block is less than 7, the time for RG loading data of

column 128 must be noticed. Figure 4-19 shows the pipeline for an 8 x 6 code-block.

At Time 4, although register F2 is empty, RG could not load the data of column 128,

and it must wait until Time 6 for loading memory.

A B c D E F1 F2

cmw | [pom | [[[[

snﬁw Pglvl . -

P1M

SMw P3M PgM RG Encoding
Time 0 C o)
Time 1
Time 2 CoO| e | @ 3O
Time 3 O o | e | @ O
Time 4 (o@D)| @G
mes (0)| CAD || C2D | 3| D
Time 6 CiHlC2H| CsHa@a 128
Time 7 C2H || (s H @ (128) || (129)
Time 8 C3s H @™ 128 129 130
Time 9 (128) || 129D || (80D || (131)
Time 10 (128) || (129) || (130) 131 132

Figure 4-19 Pipeline architecture of encoding and decoding in special case

47

Since it needs nine neighbors of the current sample in context window, when
loading data of column 128, it also needs to load the data of sample 96. And notice
that at Time 4, the column 0 is coding by P3M. If RG loads data of sample 96 from
memory, the data has not been updated yet (the significance states of the sample may
be changed after three coding passes), and RG will load the error data of sample 96. It
is the same at Time 5. In order to get the right data of sample 96, RG must load data
after SMW updates memory. Hence, it must wait until SMW finishes work in column
0. And if RG wants to load data of column 129, it also must wait until SMW finishes
work in column 1. The relation of position of every column is illustrated in Figure

4-20.

32 33 34 35 36

64 65 66 67 68

96 97 98 99 100

128 129 130 131 132

160 161 162 163 164

192 193 194 195 196

224 | 225 | 226 | 227 | 228

Figure 4-20 Index of every sample for a 8 x 5 code-block

48

CHAPTER 5.
EXPERIMENT RESULTS

The design flow, testing consideration, and experiment results are described in

this section.

5.1. Design Flow

We design JPEG2000 EBCOT following the'document, ISO/IEC FCD 15444-1:
2000, which is the specification of JPEG2000. The overall cell-based design flow is

shown in Figure 5-1.
C model simulation

We use C language to build verification model for simulating and verifying the
algorithm. The result generated by our C model is compared with the data of JASPER
software to verify the correctness. Software simulation not only verifies the
correctness of the proposed algorithm, but also provides the debug information for the

hardware design.
RTL code design and simulation

After the architecture is determined from ¢ model, we proceed to RTL (Register
Transfer Level) design using VHDL language. After the programming, the RTL codes,
together with testbench, are simulated through the ModelSim simulator. Detail debug

information from C model can speed up the RTL code design process.

49

Start

'
C Model Simulation

A J

RTL code design

/

RTL simulation

synthesis

\J
Scan Chain Insertion
and ATPG

A J

Gate level simulation

Figure 5-1 Flow chart of cell-based design

Synthesis, Scan Insertion, ATPG, and Gate-level simulation

We adopt Synopsys Design Compiler for the logic synthesis and also
ModelSim is used for the gate-level simulation. The key idea of scan chain is to
connect all the register in the core in a line or several lines. In general mode, the
registers work as usual. While in test mode, registers are multiplexed into a line and
test patterns will be shifted in this chain until all the registers are filled with the
patterns. In the following cycles, the system shifts out all the bits of the registers to
check the combinational logic gates. For our design, the fault coverage is up to

99.24%.

Under 0.25 g m 1P5M process, our design can process at 133 MHz.

50

5.2. Design Verification

Verification on C model

We use JasPer Software [11] to verify our design. The Jasper software is
official reference software to provide a free software-based reference implementation
of the codec specified in the JPEG2000 Part-1 standard. We collect the input data of
Tier-1 context formation module in Jasper as the input data in our design, and

compare output data of Jasper and ours to verify the correctness of our design.
Verification on RTL code

We use ModelSim 5.5¢e to verify our architecture described in VHDL code. The
test data of coefficients and test data of context-decision pairs are produced earlier by
C model. Therefore, we get consist results, which prove that the results and RTL level

design in encoding are correct.

Test data Test data
(coefficients) (CX,D)

CX,D%&—*

Figure 5-2 Verification flow in encoding

A

Our design

In decoding, since there is no arithmetic decoder to receive contexts and
generate decisions for out design, we use the context data and decision data produced
by C model to replace the arithmetic decoder. The verification flow in decoding is
depicted in Figure 5-3. Initially and usually, our design produces context to compare
with the test data of contexts. If they are equal, that means the context generated from
our design is correct, and test data of decisions will send to our design. Oppositely, if
they are not equal, that means the context generated from our design is wrong and no
test data of decision will be sent to our design. The advantage of the flow is that when
an error occurs, the design stays at the state that generates the wrong context. In
debugging, it is easier to find out which step is incorrect of certain sample in certain
bit-plane than coding of a code-block finished. After decoding work is finished, the

results will be compared with the test data of coefficients to prove that the results and

51

RTL level design in decoding are correct.

Test data Test data
(CX) (D)
[
y
, Usual co&r)%e
Our design equal
Not equal——— idle
Final course ? .
Test data
(coefficients)

Figure 5-3 \Verification flow in decoding

Verification on Gate-level

After we use Synopsys Design Analyzer tool to synthesis the VHDL code to
gate level, we use Modelsim 5.5¢ to verify the gate level netlist. The method for

verify gate level netlist is the same as-verification on' RTL code.
Verification on FPGA

We use the ARM Integrator as our prototyping platform. The CF module and
other design for JPEG2000 encoder are realized in Altera FPGA of ARM Integrator.
The input source comes from PC camera, and the output data could be decoded by

Jasper software.

5.3. Experiment

The result after placement and route is shown in Figure 5-4. The memory which
size is 1024 x 2 bits in the upper left side is used to save two significant state
variables. There are totally 120 pads used in this chip, including the data input, data
output, internal power and external power. The number of pad used in this chip is

listed in Table 5-1. Table 5-2 shows the specification of this design in detail. Logic

52

gate count is about 19K, and the area is 1775 g mx 1695 ¢z m. The maximum clock

frequency is 133 MHz. With the clock frequency, 100 Mhz, it can encode 3.98 million
pixels image within 0.323 second, corresponding to 2304 x 1728 image size, or 320 x
240 RGB image with 50 frames per second. Suppose arithmetic decoder could
generate decisions immediately, the throughput in decoding is 6.33 million pixels per

second, corresponding to 2304 x 1728 image with 0.512 second.

Pad Type Pad Count
Input Pad 46
Output Pad 53
Clock Buffer Pad 1
Internal Power Pad 8
External Power Pad 12

Table 5-1 List of Pad used in this chip

Technology 0:25 CMOS 1P5M
Chip Size 1775 mx 1695 um
Gate Count 19057 + 2Kb memory
Clock Frequency. 100 MHz
Supply Voltage 25V
Power Consumption 115.9849 mW

Table 5-2 Specifications of this chip

Table 5-3 shows the performance of our design. Due to the different technology
and mode, we focus on the throughput only. And since our AC encoder can receive
one context-decision pair per second, the encoding throughput in CF is similar as
Tier-1. From Table 5-3, our design performs better than others in encoding throughput

and supplies the decoding mode with throughput 6.33 million pixels per second.

53

Ours NCTU [7] NTU NTU NTHU
Technology 0.25 um 0.35um 0.35um 0.35um 0.35um
Area (mm?®) | 1.775x1.695 | 3.345x3.138 | 3.67x3.67 | 2.381x2.295
Frequency 100 (133) 142.8 50 100 (133) 50
CF Tier-1 Tier-1 CF Tier-1
Mode
codec encoder encoder encoder encoder
throughput
. 12.32 M/s 11.72 M/s 9.2 M/s 1210 M/s | 11.22 M/s
(encoding)
throughput
. 6.33 M/s not supply | not supply | notsupply | not supply
(decoding)

Table 5-3 Performance of our design

ORI A0G_Ton LA

Figure 5-4 Layout view of the CF codec design

CHAPTER 6.
CONCLUSION

In this thesis, we focus on the research and chip design of the context formation
module of EBCOT Tier-1 in JPEG2000. The EBCOT Tier-1 coder has high
computational complexity, so we ptopose efficient codec architecture for it. Speedup
methods and pipeline technique‘are adopted in our design. By using this architecture,

the process time can be reduced:to about 36% of previous work.

In context formation, column-based architecture is used to check four samples
in a column concurrently. And two! speedup methods, Sample-Skipping and
Pass-Parallel, are used. Sample-Skipping can skip no-operation samples in a single
column, and directly encode the NBC samples. We will not spend any clock cycle on
samples that do not belong to the current coding pass. Pass-Parallel can process three
coding passes of the same bit-plane in parallel, and make a 20% reduction in memory
requirement. The Sample-Skipping method can reduce the processing time by more
than 46% compared to straightforward method. And if both two methods are adopted,

the processing cycle time is reduced to 36%.

The design is described with VHDL code and synthesized by Synopsys Design
Analyzer. The technology used is CMOS 0.25 technology. The area of this chip is
1775 pm % 1695 pm. The clock frequency can reach 133 MHz. With the clock
frequency, 100 MHz, it can encode 3.98 million pixels image with 0.323 second,
corresponding to 2304 x 1728 image size. Suppose arithmetic decoder could generate

decisions immediately, it can decode 2304 x 1728 image within 0.512 second.

55

The future work focuses on distortion estimation in encoding and

Sample-Skipping in decoding
Distortion Estimation

A complete context formation module should include the Distortion Estimation,
which is the core the rate distortion. In our design, it is difficult to compute the
distortion of Pass 1 and Pass 2, so it is restricted to distortion of Pass 3 now. In this
situation, the truncation points must fall in the end of bit-plane. Hence, the lossy
compression of JPEG2000 performs poorly than truncation points could fall in the end

of every pass.
Sample-Skipping in decoding

Figure 6-1 illustrates the key point.of disadvantage for Sample-Skipping in our
design. In rising edge of 5th clock:cycle, CF receives the decision from AC, but it can
not send the next context label immediately:'So; in the future, we hope it can generate

context immediately after receiving decision from AC.

clock
CF module generate context

AC generate desicion

e I B

Figure 6-1 Context-decision timing in decoding

4

56

REFERENCE

[1]

[6]

D. Taubman, “High performance scalable image compression with EBCOT,”
Image Processing, IEEE Transactions on , Volume: 9 Issue: 7, July 2000,
Page(s): 1158 -1170

K. Andra, C. Chakrabarti, T. Acharya, ‘A high performance JPEG2000
architecture,” Circuits and Systems, 2002 ISCAS 2002. IEEE International
Symposium on , Volume: I, 26-29 May 2002, Page(s): I-765 -1-768 vol.1.

D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, F. Ono,
“Embedded block coding in JPEG2000;>Image Processing, 2000. Proceedings.
2000 International Conference on., Volume:?2 , 2000, Page(s): 33 -36 vol.2.

Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen, Liang-Gee Chen, “Analysis

and architecture design of EBCOT for JPEG-2000,” Circuits and Systems, 2001.
ISCAS 2001. The 2001 IEEE International Symposium on , Volume: 2 , 2001,
Page(s): 765 -768 vol. 2

Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, Liang-Gee Chen, “Analysis

and architecture design of block-coding engine for EBCOT in JPEG 2000,”
Circuits and Systems for Video Technology, IEEE Transactions on , Volume: 13,
Issue: 3, March 2003, Pages:219 — 230.

Jen-Shiun Chiang, Yu-Sen Lin, Chang-Yo Hsieh, “Efficient Pass-Parallel
architecture for EBCOT in JPEG2000,” Circuits and Systems, 2002. ISCAS
2002. IEEE International Symposium on , Volume: 1, 2002, Page(s): 773 -776.

57

[7]

[8]

[9]

[10]

[11]

Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee, Chein-Wei Jen, “High-speed
memory-saving architecture for the embedded block coding in JPEG2000,”
Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on ,
Volume: 5 , 2002, Page(s): 133 -136.

Yijun Li, Ramy E. Aly, Magdy A. Bayoumi, Samia A. Mashali, “Parallel
high-speed architecture for ercot in JPEG2000,” Acoustics, Speech, and Signal
Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International
Conference on , Volume: 2 , April 6-10, 2003, Page(s): 481 -484.

ISO/IEC JTC1/ SC29 WG 1 N1684, “JPEG2000 Part I Final Committee Draft
Version 1.0.”

ISO/IEC JTC1/ SC 29/ WGI1 N1815, “An analytical study of JPEG2000

functionalities.”

JasPer Software” http://www.ece.uvic.ca/~mdadams/jasper/

58

