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摘   要 

JPEG2000 是一種新的靜態影像壓縮規格，它擁有比 JPEG 更好的壓縮率，

並也提供了更多的特色，但是相對的，JPEG2000 也比 JPEG 需要更多的 memory

以及運算量，其中又以 EBCOT 為最，因此我們針對 EBCOT 裡的 context formation

提出了一些加快運算以及減少 memory 的方法。Sample-Skipping method 可以直

接對需要編碼的 sample 執行動作，略過不需被編碼的 sample，而 Pass-Parallel 

method 可以使三個 coding pass 在同一層 bit-plane 上平行處理，column-based 

architecture 則可同時判斷同一行的四個 sample 中是否需要被編碼，這三種方法

可以有效的加速 JPEG2000 的編解碼速度，大約可以將編解碼所需的時間減少至

36%。我們的設計經過 CMOS 0.25 製程合成後，晶片面積大小為 1775 µ m × 

1695µ m.，工作頻率最快可以到達 133 MHz，在 100 MHz 下，處理一張 2304 × 

1728 的灰階影像時，編碼時間為 0.323 秒，解碼則需 0.512 秒。 
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ABSTRACT 

JPEG2000 is a new still image compression standard. It has better compression 

performance than the JPEG standard and also provides new features not available in 

JPEG. However, the high performance and new features require more complex 

computations and hardware cost than traditional JPEG. Moreover, most of the 

computation time is in EBCOT. Therefore, an efficient JPEG2000 codec design is 

proposed to ease in the overhead. We focus on context formation module of EBCOT 

Tier-1 in JPEG2000. Two speedup methods, Sample-Skipping and Pass-Parallel, are 

adopted in our design. The Sample-Skipping method is to skip no-operation samples 

in each column and then codes the need-to-be-coded samples directly. The 

Pass-Parallel method is to process three coding passes of the same bit-plane in parallel 

to improve the system performance. A column-based architecture using these 

combined speedup methods is then proposed to check four samples in a column 

concurrently. The prototype chip of the proposed technique is synthesized in CMOS 

0.25 µ m 1P5M technology. The area of this chip is 1775 µ m× 1695 µ m. The 

clock frequency can reach 133 MHz. With clock frequency, 100 MHz, it needs 0.323 

second to encode and 0.512 second to decode an image with 2304 × 1728 image size. 
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CHAPTER 1.           
INTRODUCTION 

JPEG2000 is a recent still image compression standard developed by ISO/IEC 

JTC1/SC29/WG1. It was drafted at the end of 2000 as an international standard. 

JPEG2000 not only has the better compression performance than JPEG standard does, 

but also provides more features than the traditional JPEG. 

It provides error resilience, superior low bit rate compression, region-of-interest 

coding (ROI), lossy and lossless compression, progression transmission by pixel 

accuracy and resolution, random code-stream access and processing, etc. 

JPEG2000 can apply to many applications, such as internet, color facsimile, 

printing, scanning, digital photography, remote sensing, mobile, medical imagery, 

digital libraries, and E-commerce. 

However, the memory requirement and computation complexity of JPEG2000 

is much higher than that of JPEG. In Addition, over half of the computation time is 

occurred in Embedded Block Coding with Optimized Truncation (EBCOT). Thus, 

EBCOT becomes the critical part of JPEG2000 system. 

To solve this problem, two speedup methods are adopted. The Sample-Skipping 

method can skip no-operation samples in a column, and the Pass-Parallel method can 

process three coding passes of the same bit-plane in parallel. By using two methods, 

the process time can be reduced to about 36% of previous work. Under CMOS 0.25 

technology, the area of this chip is 1775 µm × 1695 µm, and the clock frequency can 
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reach 100 MHz. It can encode 2304 × 1728 image within 0.323 seconds, and decode it 

within 0.512 second. 

1.1. JPEG2000 Overview 

The block diagram of JPEG2000 encoder is depicted in Figure 1-1. Discrete 

Wavelet Transform (DWT) and EBCOT are the two main modules of JPEG2000. 

EBCOT coding algorithm is proposed by David Taubman [1]. It is a two-tiered coder, 

where Tier-1 is a context-based adaptive arithmetic coder, and Tier-2 is the 

rate-distortion optimization and bitstream layer formation. 

JPEG 2000

QuantizationDWT

EBCOT

Tier-1

Tier-2
CF AE

 

Figure 1-1  Block diagram of JPEG2000 encoder 

In encoder, the discrete wavelet transform (DWT) is applied for the input image 

data. The generated coefficients may be performed by quantization process are then 

coded by context formation module (CF) and adaptive binary arithmetic coder (AC). 

Finally, the output code-stream can be executed by post-compression rate-distortion 

optimization algorithm (Tier-2) to reach more effective compression. 

During encoding, an image is divided into several rectangular structures called 

tiles. Either lossless 5/3 filters of DWT or lossy 9/7 filters can be applied to a tile to 

decompose it into several subbands. If lossy compression is chosen, the wavelet 

coefficients are scalar quantized. After the DWT and quantization processes, each 

wavelet subband is then divided into code-blocks. 

Each code-block is coded by context formation module. CF generates context 

labels and decisions to arithmetic coder. After all code-blocks are encoded 

independently, Tier-2 collects all bitstream with their rate-distortion information, and 
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then picks important bits to form the final bitstream according to rate-distortion 

optimization criteria. 

tile tile

tiletile
subband subband

subband
Code-
block

Code-
block

Code-
block

Code-
block

Code-block Context, 
decision

Compressed 
data Bit stream

Image Tile Subband

DWT Quantization

CF AC Tier-2  

Figure 1-2  Entire encoding process of JPEG2000 

Decoder can be seen as the inverse of the encoder and it can be achieved by 

performing the encoding steps in the reverse order except CF and AC. In decoder, not 

both contexts and decisions are generated from AC. Instead, contexts are still 

generated from CF like in encoder. 

CF
Encoder

CF
Decoder

AC
Encoder

AC
Decoder

CX

CX

D

D

Tier1 Encoder

Tier1 Decoder

 

Figure 1-3  Direction of Context (CX) and Decision (D) in encoder and decoder 

1.2. JPEG2000 Performance 

The section presents the outperformance of JPEG2000 in terms of the high 



CHAPTER 1. INTRODUCTION 

 4

compression ratio and various functionalities. The comparison results in this section 

are resulted from previous works [10]. The compared standards include reversible 

JPEG2000 (JPEG2000R), non-reversible JPEG2000 (JPEG2000NR), near-lossless 

JPEG (JPEG-LS), lossless JPEG (L-JPEG), progressive JPEG (P-JPEG), MPEG-4 

VTC (VTC), and Portable Network Graphics (PNG). 

Lossless compression 

 JPEG2000R JPEG-LS L-JPEG PNG 

bike 1.77 1.84 1.61 1.66 

café 1.49 1.57 1.36 1.44 

cmpnd1 3.77 6.44 3.23 6.02 

chart 2.60 2.82 2.00 2.41 

aerial2 1.47 1.51 1.43 1.48 

target 3.76 3.66 2.59 8.70 

us 2.63 3.04 2.41 2.94 

average 2.50 2.98 2.09 3.52 

Table 1-1  Lossless compression ratios 

It can be seen that in almost all cases the best performance is obtained by 

JPEG-LS (except the “target” image). JPEG2000 provides, in most cases, competitive 

compression ratios with the added benefit of scalability. This shows that as far as 

lossless compression is concerned, JPEG2000 seems to perform reasonably well in 

terms of its ability to efficiently deal with various types of images. 

Progressive compression 

Figure 1-4 depicts the average rate-distortion behavior obtained by applying 

progressive compression schemes. The compared standards include JPEG2000R, 

JPEG2000NR, VTC, and P-JPEG. As shown in Figure 1-4, progressive lossy 

JPEG2000 outperforms all other schemes The progressive lossless JPEG2000 does 

not perform as well, mainly due to the use of reversible wavelet filters. 
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Figure 1-4  PSNR corresponding to average RMSE, of all test images, for each algorithm 

when performing lossy decoding at 0.25, 0.5, 1 and 2 bpp of the same progressive bitstream. 

Error resilience 

bpp  ber: 0 ber: 1e-6 ber: 1e-5 ber: 1e-4 

JPEG2000 23.06 23.00 21.62 16.59 
0.25 

JPEG 21.94 21.79 20.77 16.43 

JPEG2000 26.71 26.42 23.96 17.09 
0.5 

JPEG 25.40 25.12 22.95 15.73 

JPEG2000 31.90 25.12 22.95 15.73 
1.0 

JPEG 30.34 29.24 23.65 14.80 

JPEG2000 39.91 36.38 27.23 17.33 
2.0 

JPEG 37.22 30.68 20.78 12.09 

Table 1-2  PSNR, in dB, corresponding to average RMSE, of 200 runs, of the decoded “café” 

image when transmitted over a noisy channel with various bit error rates (ber) and 

compression bitrates, for JPEG baseline and JPEG2000. 

Table 1-2 compares the error resilience of JPEG2000, with the non-reversible 

filter, and JPEG baseline. Under the different transmission error results, the 

reconstructed image quality of JPEG2000 is higher than JPEG. 
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Functionality 

 JPEG2000 JPEG-LS JPEG MPEG-4 VTC PNG 

lossless compression 

performance 
+++ ++++ + - +++ 

lossy compression 

performance 
+++++ + +++ ++++ - 

progressive 

bitstreams 
+++++ - ++ +++ + 

ROI ++ - - + - 

arbitrary shaped 

objects 
- - - ++ - 

random access ++ - - - - 

low complexity ++ +++++ +++++ + +++ 

error resilience +++ ++ ++ +++ + 

non-iterative rate 

control 
+++ - - + - 

genericity +++ +++ ++ ++ +++ 

Table 1-3  Functionality matrix. A “+” indicates that it is supported, the more “+” the more 

efficiently or better it is supported. A “-“indicates that it is not supported. 

Table 1-3 summarizes the results of the computation of different algorithms. 

The table shows that JPEG2000 offers the richest set of features within an integrated 

algorithmic approach. 

1.3. Thesis Organization 

In this thesis, we focus on the analysis of the EBCOT Tier-1 CF algorithm, and 

propose an efficient block-coding engine for this critical module. 

The thesis is composed of six chapters. It is organized as follows. The next 

chapter reviews and analyses the CF algorithm of EBCOT. Chapter 3 proposes two 

speed-up methods, Sample-Skipping and Pass-Parallel. The architecture based on 

these speed-up ideas is discussed in chapter 4. Experimental results are given in 

chapter 5. And chapter 6 makes a brief conclusion about this thesis. 
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CHAPTER 2.               
OVERVIEW OF EBCOT TIER-1 CF 
AND ANALYSIS 

2.1. Context Formation module of EBCOT 
Tier-1 

After the DWT and quantization, each sub-band is partitioned into code-block 

(a rectangular grouping of coefficients typically 64×64 or 32×32 in dimension). All 

quantized wavelet coefficients of each code-block are expressed in sign-magnitude 

representation (in 1’s complement) and divided into one sign bit-plane and several 

magnitude bit-planes. 

-31

108

1 0 0 1 1 0 1 1 1-55

Sign bit

0 0 1 1 0 1 1 0 0

1 0 0 0 1 1 1 1 1

Magnitude bit

 
Figure 2-1  There are three sample with 9 bits, the first one is sign bits and others are 

magnitude bits. And the representation of negative is 1’s complement. 
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A code-block is composed of many bit-planes. A bit-plane is composed of 

many stripes. A stripe is composed of many columns. And a column is composed of 

four samples (in other words, every four rows form a stripe). 

Bit-planes
in a code-block

Stripes
in a bit-plane

Columns
in a stripe

Samples
in a column 

Figure 2-2  Scanning hierarchy of a code-block is bit-plane, stripe, column, sample 

Each coding pass of a code-block is scanned in a particular order. The scan 

order of each code-block is bit-plane by bit-plane, from MSB (the most significant 

bit-plane with at least a non-zero element) to LSB (the least significant bit-plane), 

rather than sample by sample. In every bit-plane, the scanning order is stripe by stripe 

from top to bottom. And in every stripe, the scanning order is column by column from 

left to right, sample by sample from top to bottom in every column. 

Stripe 1

Stripe 2

Code-block Width

Stripe 3
 

Figure 2-3  Scan order of a bit-plane in every pass 

EBCOT block coder is a context-base adaptive arithmetic coder. Each sample 

in each bit-plane is coded by its context and sends to the arithmetic coder along with a 

decision. The context of each sample is decided by five coding states, four coding 

primitives, and three coding passes. 

 



CHAPTER 2. OVERVIEW OF EBCOT TIER-1 CF AND ANALYSIS 

 9

2.1.1. Five coding states 

There are five states for block coding in context formation module. They are 

magnitude state, sign state, significance state, refinement state, and coded state. 

Magnitude state 

The magnitude bit of every sample in the current coding bit-plane is recorded 

in the magnitude states. The magnitude state is different in every bit-plane for a 

sample. It comes from the coefficients generated from DWT in encoding. In 

decoder, the magnitude state is reconstructed depending on the decision 

generated from arithmetic decoder. 

Sign state 

The sign bit of every sample is recorded in the sign states. A zero bit indicates 

a positive numbers and a one bit indicates a negative numbers. The sign state 

of every sample is the same across all bit-planes. It also comes from the 

coefficients generated from DWT in encoder and also reconstructed depending 

on the decision generated from arithmetic decoder, just like magnitude state. 

Significance state 

A sample is called significant after the first ‘1’ bit is met while coding from 

MSB to LSB, and is called insignificant before the first ‘1’ bit appears, as 

illustrated in Figure 2-4. The significance state records if a sample is 

significant in the current bit-plane. It is set to one when the magnitude bit of 

the sample is the first ‘1’. The significance state may be changed by Pass 1 and 

Pass 3 coding. 

Fisrt '1' bit

insignificant

significant

1 0 0 1 1 0 1 1 1-55

Sign bit

Magnitude bit

Magnitude bit

 
Figure 2-4  A sample is called significant after the first ‘1’ bit is met. 
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Refinement state 

The refinement state indicates whether or not a sample has already been coded 

in magnitude refinement pass in previous bit-plane. In the beginning of coding 

in each code-block, refinement bits are all set to zero. And refinement bit is set 

to one after a sample is coded by magnitude refinement coding at first time. 

The refinement states may be changed only in Pass 2 coding. 

Coded state 

The coded state indicates whether or not a sample has already been coded in a 

previous coding pass of the same bit-plane. When a sample is coded in 

significance propagation pass or magnitude refinement pass, the coded state bit 

is set to one. After the cleanup pass, the coded state bits are all reset to zero. 

Note that, all the significance state bits and sign state bits are hold across all 

bit-planes, but the coded state bits are reset at the end of each bit-plane (in the end of 

Pass 3 coding). The magnitude state bits and sign state bits are coefficients from DWT 

in encoding, but in decoding they are reconstructed by the decisions generated from 

arithmetic decoder. 

2.1.2. Four coding primitives 

The context label of each sample is generated according to the status of its 

neighbors using four coding primitives: zero coding (ZC), sign coding (SC), 

magnitude refinement coding (MRC), and run-length coding (RLC). The eight 

neighbor samples of current sample X are separate into three groups : vertical (V0、

V1) , horizontal (H0、H1), and diagonal (D0、D1、D2、D3), as shown in Figure 2-5. The 

four coding operation for generating contexts are introduced below. 

D0 V0 D1

H0 X H1

D2 V1 D3
 

Figure 2-5  Neighbors states used to form the context 
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Zero Coding (ZC) 

The sample that is insignificant and prepares to become significant will be 

coded by zero coding. It is used in significant propagation pass and clean up 

pass. Eight neighbor samples are classified into 9 groups, corresponding to 9 

contexts, as shown in Table 2-1. ΣH represents the sum of significant 

horizontal neighbors, ΣV represents the sum of significant vertical neighbors, 

and ΣD represents the sum of diagonal neighbor samples. The decision of ZC 

is the magnitude bit of the current sample in the bit-plane. 

LL and LH sub-band 

(vertical high-pass) 

HL sub-band 

(horizontal high-pass)

HH sub-band 

(diagonally high-pass) 

Context 

label 

ΣHi ΣVi ΣDi ΣHi ΣVi ΣDi Σ(Hi+ Vi) ΣDi  

2 x x x 2 x x ≥ 3 8 

1 ≥1 x ≥1 1 x ≥1 2 7 

1 0 ≥1 0 1 ≥1 0 2 6 

1 0 0 0 1 0 ≥2 1 5 

0 2 x 2 0 x 1 1 4 

0 1 x 1 0 x 0 1 3 

0 0 ≥2 0 0 ≥2 ≥2 0 2 

0 0 1 0 0 1 1 0 1 

0 0 0 0 0 0 0 0 0 

Table 2-1  Context table for zero coding 

Sign Coding (SC) 

In sign coding, only vertical and horizontal neighbor samples will be used. 

Computation of the context label can be viewed as a two-step process. 

For the first step, the significance state and sign state of the vertical and 

horizontal neighbors are used to form the vertical and horizontal contribution, 

as shown in Table 2-2. 

For the second step, a context label and an XOR bit are formed from vertical 

and horizontal contributions, as shown in Table 2-3. It reduces the nine 

permutations of the vertical and horizontal contributions into five context 

labels. The decision bit that will be sent to arithmetic coder in encoding is then 
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produced by exclusive-or the XOR bit and the sign bit. 

D = sign bit ⊗  XOR bit 

In decoding, the sign bit could be reconstructed by exclusive-or XOR bit and 

the decision bit generated from arithmetic decoder. 

Sign bit = D ⊗  XOR bit 

Significant, 

positive 

Significant, 

negative 
Insignificant

Sign contribution 

V0 (or H0) 

Significant, positive 1 0 1 

Significant, negative 0 -1 -1 

Insignificant 

V1 

(or H1) 
1 -1 0 

Table 2-2  Sign contribution truth table for sign coding 

Horizontal contribution Vertical contribution Context label XOR bit

1 1 13 0 

1 0 12 0 

1 -1 11 0 

0 1 10 0 

0 0 9 0 

0 -1 10 1 

-1 1 11 1 

-1 0 12 1 

-1 -1 13 1 

Table 2-3  Context table for sign coding 
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Magnitude Refinement Coding (MRC) 

The sample that has been significant in previous bit-planes will be coded by 

magnitude refinement coding. And it is used in magnitude refinement pass only. 

The context label is dependent on whether or not this sample has ever been 

coded in MRC and the summation of the significance state of neighbors. Table 

2-4 shows the three contexts for magnitude refinement coding. The decision bit 

is the magnitude bit of the current sample in the bit-plane. 

ΣHi + ΣVi + ΣDi First refinement for this coefficient Context label 

X False 16 

≥1 True 15 

0 true 14 

Table 2-4  Context table for magnitude refinement coding 

 

Run-Length Coding (RLC) 

In run-length coding, four contiguous samples in a column are coded used one 

context, rather than one context for each sample in other coding. RLC is used 

when the four contiguous samples in a column are all insignificant and their 

neighbors are all insignificant too. If there are fewer than four rows remaining 

in a code-block, then no run-length coding is used. In RLC, if none of bits of 

the four samples become significant, context 17 with data 0 is used. In other 

word, if all magnitude bits of the four contiguous samples in a column are zero, 

context label 17 with decision bit 0 is used sending to arithmetic coder. On the 

other hand, if any bit of the four samples does become significant (at least one 

magnitude bit of the four samples is one), context 17 with decision data 1 is 

used. And the first significant sample is sent using uniform coding, followed 

by the sign coding of the first significant sample. The rest samples of this 

column are coded using zero coding (same samples also need sign coding). 

The reason will be described later in cleanup pass. 
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2.1.3. Three coding passes 

There are three coding passes in each bit-plane, and they are significance 

propagation pass (Pass 1), magnitude refinement pass (Pass 2), and cleanup pass (Pass 

3). 

The coding order of three coding passes is that Pass 1 is the first, Pass 2 is the 

next, and Pass 3 is the last coding pass in the every bit-plane except in MSB. In MSB, 

only Pass 3 is used (this will be explained later in this section). Figure 2-6 shows the 

coding order of three coding passes in a code-block. 

Start

Pass 3 coding

Current bit-plane = LSB ?

End

Yes

Current bit-plane = 
Current bit-plane - 1

Pass 1 coding

Pass 2 coding

No

Start in MSB

 
Figure 2-6  the coding order of three coding passes 
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Each sample in a bit-plane is coded in only one of the three coding passes and 

skipped in the other two passes. The method to determine which coding pass the 

current sample belongs to is illustrated in Figure 2-7. 

Check sample start

Current sample is 
significant ?

Neighbors of current 
sample are all 
insignificant ?

Current sample 
belongs to Pass 1

Current sample 
belongs to Pass 3

Current sample 
belongs to Pass 2

No

Yes

Yes

No

 
Figure 2-7  Flow chart of sample checking to determine which pass a sample belongs to 

 

Significance propagation pass 

Significance propagation pass (Pass 1) only includes the samples that are 

insignificant but have at least one immediate neighbor (V0、V1、H0、H1、D0、

D1、D2、D3) that is significant. Clearly, these samples are most likely to become 

significant. A sample belongs to Pass 1 is coded using zero coding. If the 

sample does become significant (the magnitude bit of the sample is the first ‘1’ 

from MSB to LSB), it also uses sign coding followed zero coding, and sets the 

significance bit immediately.  
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Hence, in decoding, the ZC decision received from arithmetic decoder is the 

magnitude bit of the sample in current bit-plane. If the ZC decision bit received 

from arithmetic decoder is ‘1’ that means the sample does become significant 

in this bit-plane. And it also needs to be coded using SC. By exclusive-or SC 

decision generated from arithmetic decoder and XOR bit, it could get the sign 

bit of the sample. 

 

Magnitude refinement pass 

Magnitude refinement pass (Pass 2) includes samples that are already 

significant in previous bit-plane and don’t belong to significance propagation 

pass in the same bit-plane. The sample belongs to Pass 2 will be coded by 

magnitude refinement coding only. 

In decoding, the decision generated from arithmetic decoder is the magnitude 

bit of the current sample in this bit-plane. 

 

Cleanup pass 

Cleanup pass (Pass 3) includes samples that don’t belong to Pass 1 and Pass 2. 

There are three cases in Pass 3: 1) If there is any sample in this column that 

does not belong to Pass 3 or not meet the RLC rule. In this case, only the ZC 

(or ZC and SC) is used in the samples that have not been coded in previous 

coding passes. 2) Suppose magnitude bits of the four contiguous samples are 

X1, X2, X3, and X4. If all the four contiguous samples in Pass 3 are 

need-to-be-coded samples and meet RLC rule, and X1, X2, X3, and X4 are all 

zero, then only RLC is used. 3) If all the four contiguous samples in Pass 3 are 

need-to-be-coded samples and meet RLC rule, but not all of X1, X2, X3, and X4 

is zero. In this case, RLC, Uniform coding, and SC (or SC and ZC) are all 

used. 

Table 2-5 shows the second and the third cases in Pass 3. Condition 1 is 

exactly the second case. Table 2-5 condition 2~5 belong to the third case, and 
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the uniform coding is also used in these condition. In uniform coding, it sends 

two context-decision pairs to arithmetic coder. Suppose the two decisions are 

D1 and D2. The values of D1 and C2 point out which is the first magnitude bit 

with the valur‘1’ from X1 to X4. If X1 is ‘1’, just like in Table 2-5 condition 2, 

then (D1, D2) is set to (0, 0). And the four samples with the four magnitude 

bits, from X1 to X4, need to be coded by ZC (except X1, it only needs to be 

coded by SC). On the other hand, if both X1 and X2 are ‘0’ and X3 is the first 

‘1’, just like in Table 2-5 condition 4, then (D1, D2) is set to (1, 1). And the 

two samples with magnitude bit, X3 and X4, need to be coded by ZC (X3 only 

needs to be coded by SC). 

Condition 
Value of  

X1, X2, X3, X4 

RLC context 

and decision 

Uniform context 

and decision  

(D1, D2) 

Which sample 

needs to be 

coded by 

ZC+SC? 

1 0, 0, 0, 0 ( 17, 0) non non non 

2 1, x, x, x ( 17, 1) (18, 0) (18, 0) X1, X2, X3, X4  

3 0, 1, x, x ( 17, 1) (18, 0) (18, 1) X2, X3, X4 

4 0, 0, 1, x ( 17, 1) (18, 1) (18, 0) X3, X4 

5 0, 0, 0, 1 ( 17, 1) (18, 1) (18, 1) X4 

Table 2-5  Contexts and decisions of the second and the third cases in Pass 3 (x: don’t care) 

In Pass 3 decoding, if all the four contiguous samples in this column belong to 

Pass 3 and meet the RLC rule, the unique RLC context is given to the 

arithmetic decoder. If the RLC decision returned from arithmetic decoder is ‘0’, 

it means the four magnitude bits are all zeros and remain insignificant. 

Otherwise, if the RLC decision is ‘1’, it means there is at least one of the four 

magnitude bits with value ‘1’. And then two uniform decisions (D1 and D2) 

received from arithmetic decoder denote which magnitude bit from top of the 

column down is the first ‘1’ magnitude bit. 

Note that in Pass 3 decoding, if the uniform decisions (D1, D2) received from 

arithmetic decoder are (0, 0), it could conjecture that magnitude bit X1 is ‘1’. 

Therefore, the zero coding of first ‘1’ sample can be omitted in encoding. 
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The samples in the first nonzero bit-plane are all insignificant. From the 

descriptions above, neighbors of all samples are insignificant, so they don’t belong to 

significance propagation pass. And by reason of all samples are insignificant, the 

magnitude refinement pass is not used in this bit-plane, too. Only cleanup pass is used 

in the first nonzero bit-plane. 

2.2. Analysis of Context Formation 

2.2.1. Execution time 

As discussed in section 2.1.3, each sample in a bit-plane is checked three times, 

one for each pass, although each sample will be coded in only one of the three coding 

passes, and skipped in the other two passes. Since not all samples belong to the same 

pass in general case, the checking time results in a “bubble cycle”. That is, in 

sample-based serial checking architecture, checking four samples in a column costs 

four clock cycles no matter how many NBC (need-to-be-coded) samples in it. It 

wastes many clock cycles on processing sample location.  

In Figure 2-8, if each sample location requires a single clock cycle per coding 

pass for checking whether or not the sample is NBC sample, it wasted 29 (64-35) 

clock cycles in Pass 1 and 59 (64-5) clock cycles in Pass 2 and 40 (64-24) clock 

cycles in Pass 3. 

1 Need to be coded sample by pass 1

2

3

Need to be coded sample by pass 2

Need to be coded sample by pass 3

3

3

1

1

1

3

3

3

3

3

1

2

1

3

3

3

3

3

1

1

1

1

1

3

3

1

1

1

1

2

1

3

3

1

2

1

1

1

1

3

1

1

1

1

3

1

1

1

2

1

3

3

3

1

2

1

1

1

3

3

3

1

1

1  
Figure 2-8  There are 35 NBC samples of Pass 1 coding and 5 NBC samples of Pass 2 and 

24 NBC samples of Pass 3 in a bit-plane of a 8x8 code-block 

Table 2-6 shows the analysis results obtained from four 256×256, gray level 

test images: “Lena”, “Flower”, “Toys”, and “Pepper”. For Lena image, there are 
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50178 of 447488 samples encoded belong to Pass 1. It means that there are 397310 

(447488-50178) clock cycles wasted for checking which sample is NBC in Pass 1, 

and 164976 (447488-282512) clock cycles wasted for checking in Pass 2, and 332690 

(447488-114798) clock cycles for checking in Pass 3. In other words, it wastes at least 

894976 (397310 + 164976 + 332690) clock cycles in coding “Lena” image. 

Obviously, there are a large number of clock cycles may be wasted if we use 

straightforward method. 

Number of encoded samples 
Image 

Pass 1 Pass 2 Pass 3 Total 

Lena 50178 282512 114798 447488 

Flower 42077 324624 90006 456704 

Toys 18574 367655 72523 458752 

Pepper 49706 303921 115365 468992 

Average 40133 319678 98173 457984 

Table 2-6  Number of encoded samples that belong to a given coding pass 

2.2.2. Memory requirement 

As described in section 2.1.1, it needs five states to form the contexts. If a 

code-block size is 32×32, 1024 samples, the internal memory needed are 3K (1024 × 

3) bits (Only significance state, refinement state, and coded state need to be saved).  

And as described in section 2.2.1, the context information is still required in 

each pass even if no samples are coded in this pass. Suppose there are eight bit-planes 

in a code-block needed to be coded, every data in the coefficients memory will be 

accessed 24 (8 bit-plane × 3 coding passes) times. And the memory will total be 

accessed 24576 (24 × 1024 samples) times. This situation also increases the number 

of unnecessary memory access. 
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CHAPTER 3.           
PROPOSED SPEEDUP METHOD 

In this chapter, we will introduce two proposed speedup methods. The first one 

is Sample-Skipping. The Sample-Skipping method can check four contiguous samples 

in a column simultaneously, and avoid wasting time on non-NBC samples. The 

second one is Pass-Parallel. The Pass-Parallel architecture merges three coding passes 

of bit-plane into a single coding pass to improve the system performance. 

3.1. Sample-Skipping 

The key idea of the Sample-Skipping method is to skip no-operation samples in 

a single column, and directly code NBC samples. By column-based, samples in a 

column can be parallel checked to see whether or not they are NBC samples. It can be 

applied to all three coding passes. If there are n NBC samples in a column (0<n≤ 4) , 

only n clock cycles will spent on coding this column, and 4-n clock cycles will be 

saved. If none of NBC samples is in this column, it only spends one clock cycle on 

checking. Since most columns have less than four NBC samples, the method can 

improve cycle time greatly. It is more coefficient than the straightforward method. 

Figure 3-1 shows the number of clock cycles spent on coding a column while 

Sample-Skipping is used. And Figure 3-2 shows the flow chart of Sample-Skipping. 
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1 1 1 2 1 2 2 3

NBC non - NBC

1 2 2 3 2 3 3 4

Clock cycles required while coding the column  
Figure 3-1  The number of clock cycles required while coding a column. Notice the first 

column, it only spend one cycle to coding a column with no NBC samples. The spent clock 

cycles in all kinds of columns are less than four clock cycles. 

 

Start

Yes

End Coding

No

There is any 
NBC sample in 
this column ?

Code NBC sample

Next clock 
cycle

No

Yes

Has every 
NBC sample 
been coded ?

 
Figure 3-2  Flow chart of Sample-Skipping 
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In Sample-Skipping, data are supplied to one column at a time. We use a 6 × 3 

context window instead of a 3x3 context window (just like Figure 2-5). The 6 × 3 

window is illustrated in Figure 3-3, and X1, X2, X3, and X4 are the four current 

samples. A0, B0, C0, A1, C1, A2, X2, C2 mean the eight immediate neighbors of X1. 

And A1, X1, C1, A2, C2, A3, X3, C3 mean the eight immediate neighbors of X2. So are 

X3 and X4. 

A1

A2

A3

A4

X1

X2

X3

X4

C1

C2

C3

C4

A0 B0 C0

A5 B5 C5

A B C

Stripe n

Stripe n-1

Stripe n+1
 

Figure 3-3  A 6×3 context window for coding a column of samples X1, X2, X3, X4. 

3.1.1. NBC in Sample-Skipping 

In Sample-Skipping method, how to find out the NBC samples before coding a 

column is important. Because the values of magnitude bits can be known before 

encoding, and which sample will become significant in this bit-plane can be predicted. 

For this reason, in encoding, it could determine which sample is the NBC sample per 

coding pass before coding. But in decoding, it is difficult to predict NBC samples of 

Pass 1 and Pass 3 before coding.  

The condition is illustrated in Figure 3-4. Before coding, it could predict that X1 

and X3 are NBC samples for Pass 1 decoding, and X2 is non-NBC for the moment. 

But during decoding X1, if the ZC decision generated from arithmetic decoder is ‘1’, 

then sample X1 will become significant and X2 will be a NBC sample. Hence, the 

numbers of NBC samples will change following Pass1 decoding processing. It could 

not predict all NBC samples before coding. 
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X1

X2

X3

X4

A B C

Stripe n

Stripe n-1

Stripe n+1

significant

insignificant

 
Figure 3-4  Significance state of samples in a context window before coding X1, X2, X3, X4 

The condition in Pass 3 decoding is separated into two parts, RLC and 

non-RLC. In non-RLC, it is the same as the condition in Pass 1. In RLC, as described 

in section 2.1.3, it must rely on decision generated from arithmetic decoder to 

determine whether or not all magnitude bits are zero. And it also needs the uniform 

decisions to determine which sample becomes significant in uniform coding. So, in 

Pass 3 decoding, it is the same as Pass 1 decoding, the numbers of NBC samples will 

change following decoding processing. 

3.2. Pass-Parallel 

The Pass-Parallel method is to process three coding passes of the same bit-plane 

in parallel. There are some issues occurring due to the architecture. First, since the 

three coding passes work concurrently, the samples belong to Pass 3 may become 

significant earlier than Pass 1 and Pass 2 and this situation will mistake the following 

coding for samples which belong to Pass 1 and Pass 2. Second, if the sample that 

currently coded belongs to Pass 2 or Pass 3, the significance of samples that have not 

been visited in the context window shall be predicted. 
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3.2.1. Pass-Parallel in Encoding 

To solve these issues in encoding, the coding operations for Pass 3 are delayed 

by two stripe columns to avoid the effect between Pass 3 and the other two passes. 

Subsequently, to eliminate the dependence of coding operation on the next stripe the 

“vertical causal” mode is also adopted. In vertical causal mode, the samples in the 

next stripe are considered to be insignificant. Compared with context window in 

Figure 3-1, the significance states of A5, B5, and C5 are considered to zero when 

coding X4. 

Figure 3-5 shows the position of context windows per coding pass in 

Pass-Parallel encoding architecture. Note that the context window of each coding pass 

is 5×3 for vertical causal mode and the context window of Pass 3 lags that of Pass 1 

and Pass 2 by two columns. 

S
tripe

Pass 1
Pass 2
Pass 3

Pass 1 
context 
window

Pass 2 
context 
window

Pass 3 
context 
window  

Figure 3-5  Context windows of three coding passes in the Pass-Parallel encoding 

architecture 

To salve the second issue, we take two states, significance state 0 (σ0) and 

significance state 1 (σ1), instead of significance state, refinement state and coded state. 

If a sample becomes significant after Pass 1 coding, the σ0 is set to ‘1’. If a sample 

becomes significant after Pass 3 coding, the σ1 is set to ‘1’. Besides, both σ0 and σ1 

are set to ‘1’ immediately after the Pass 2 is used in this current sample.  

From the definition, if a sample has been coded in Pass 2, then σ0 and σ1 are 

both set to ‘1’. In other words, if one of σ0 and σ1 is ‘0’, it means that the sample has 

not been coded by Pass 2. Hence, the refinement state can be replaced by 
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γ = σ0⊕ σ1 where ‘⊕ ’ is the XOR operator (1) 

Obviously, the current significance state σ can be calculated during the coding 

process. For samples belong to Pass 1, the significance states of the visited samples 

are equal to σ0. Since samples that have not been visited may become significant by 

Pass 3 in last bit-plane, the significance states of the samples that have not been 

visited are expressed by 

σ =σ0∨ σ1 where ‘∨ ’ is the OR operator (2) 

For samples belong to Pass 2, the significance states of the visited samples are 

equal to σ0. Since the current significant sample must be coded in Pass 2, and the 

neighbors of current sample must be coded in Pass 1, the neighbor sample of current 

sample will become significant in Pass 1 coding if its magnitude bit is ‘1’. This 

condition is illustrated in Figure 3-6. And the significance states of the samples that 

have not been visited are expressed by 

σ = σ0 ∨  σ1 ∨  νp where νp is the magnitude bit (3) 

 

1

0

1

0

X

0

1

1

0

significant sample
the sample will be coded in Pass 2

1 insignificant sample with magnitude bit ｀1＇
the sample will become significant in Pass 1

0
insignificant sample with magnitude bit ｀0＇
the sample will maintain insignificant in Pass 1

 

Figure 3-6 All the neighbors will be coded by Pass 1 if the center sample belongs to Pass 2. 

And some neighbors with magnitude bit ‘1’ will become significant in Pass 1, the others with 

magnitude bit ‘0’ will maintain insignificant. 

 

For samples belong to Pass 3, the significance states of all neighbors are 

determined by Equation (2). 

σ =σ0∨ σ1 where ‘∨ ’ is the OR operator (2) 
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3.2.2. Pass-Parallel in Decoding 

The most difference between encoding and decoding in Pass-Parallel is Pass 2 

coding. In decoding, the magnitude bit νp is generated from arithmetic decoder; 

therefore, it is hard to predict the significance states of the samples that have not been 

visited by Equation (3). To solve this problem, the coding operation for Pass 2 is 

delayed by two stripe columns, the same as Pass 3. 
Stripe

Pass 1
Pass 2
Pass 3

Pass 1 
context 
window

Pass 2 
context 
window

Pass 3 
context 
window  

Figure 3-7  Context windows of three coding passes in the Pass-Parallel decoding 

architecture 

And some equations for predicting significant states must be changed. For the 

samples belong to Pass 1, since the significant state σ0 of samples that have become 

significant in last bit-plane by Pass 3 remains to be ‘0’ after Pass 1 coding, the 

significance states of all neighbors are determined by Equation (2). 

σ =σ0∨ σ1 where ‘∨ ’ is the OR operator (2) 

For samples belong to Pass 2, the significance states of the visited samples are 

equal to σ0 the same as encoding. Because Pass 2 delays two columns, the neighbor 

samples that have not been visited in Pass 2 have been visited by Pass 1. So the 

significance states of the samples that have not been visited are determined by 

Equation (2). 

For samples belong to Pass 3, the significance states of all neighbors are 

determined by Equation (2), the same as encoding. 
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3.2.3. Advantages of Pass-Parallel 

In conclusion, the main advantages of using Pass-Parallel processing are: 

1) Fast computation: No clock cycles are wasted on non-NBC samples. (Unless 

all of the four samples in a column are non-NBC samples. But in this case, it only 

spends one clock cycles on coding). 

2) Less memory access: Since the three coding passed of a bit-plane are merged 

into a single pass, every data of memory is accessed one time for a bit-plane. And 

about 67% of memory accesses are saved. 

3) Reduce memory requirement: We don’t need to identify whether or not each 

sample has been coded in a previous coding pass of the same bit-plane. The five states 

(magnitude, sign, significant, refinement, and coded states) are replaced by four states 

(magnitude, sign, significant 0, and significant 1). Therefore, the 1K (32 × 32) coded 

memory is saved. 

 

3.3. Execution Time with Pass-Parallel 

Table 3-1 shows the number of checked clock cycles in Sample-Skipping, 

Sample-Skipping + Pass-Parallel and the straightforward method. The four test 

images are the same as Table 2-6. Column “SS (P1)” represents the number of clock 

cycles required if the Sample-Skipping method is used in Pass 1, and so are SS (P2) 

and SS (P3). The last column represents the number of cycle time with 

straightforward method. 
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Number of checked clock cycles 
Image 

 SS(P1)  SS (P2)  SS(P3) SS(Total) SS + PP Straightforward

Lena 125260 301893 131053 558206 432185 1211392 

Flower 121712 335971 114880 572563 443815 1239040 

Toys 107717 371320 103057 582094 454921 1245184 

Pepper 130682 323847 136892 591421 455503 1275904 

Average 121343 333258 121470 576071 446606 1242880 

Table 3-1  Number of checked clock cycles in Sample-Skipping (SS) and Pass-Parallel (PP) 

For “Lena” image, the total number of clock cycles in Sample-Skipping method 

is reduced to 46% compared with straightforward method. If using both 

Sample-Skipping and Pass-Parallel method, the processing cycle time is reduced to 

36%. Obviously, it could improve the system performance if Sample-Skipping and 

Pass-Parallel are applied. 
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CHAPTER 4.      
ARCHITECTURE DESIGN 

In this chapter, we introduce the overall block diagram of Context Formation 

module first. The four register primitive elements (sign, magnitude, significance 0, 

and significance 1) are described in section 4.1. The description of context 

formulation module and Sample-Skipping method are discussed in section 4.2. The 

details of Pass-Parallel controller are in section 4.3. Section 4.4 shows the pipeline 

architecture. 

RG

SMW

C
ontroller RA2SD

Pass 2 coding 
module (P2M)

Pass 1 coding 
module (P1M)

Pass 3 coding 
module (P3M)

CMW

 
Figure 4-1  Block diagram of context formation 

Figure 4-1 illustrates the block diagram of context formation (CF). It divides CF 

into eight blocks. The eight blocks belong to five groups as shown below: 
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Pass Coding Module 

This group contains P1M (Pass 1 coding module), P2M (Pass 2 coding 

module), and P3M (Pass 3 coding module). The three pass coding modules 

produce context labels by using four register primitive elements, and produce 

(or receive in decoding) decisions. The Pass 1 coding module contains ZC, SC, 

and SS primitives. The Pass 2 coding module contains MRC and SS primitives. 

And the Pass 3 coding module contains ZC, SC, RLC, and SS primitives. 

Memory 

This group contains RA2SD block. RA2SD is a memory of 1024 × 2 bits. The 

significance state 0 and significance state 1 are saved in RA2SD. 

Memory read 

This group contains RG (Register Data Generator). The function of RG is to 

fill in register primitives with values loaded from two memories (four states). 

Memory write 

This group contains SMW (Significance Memory Write Module) and CMW 

(Coefficient Memory Write Module). The SMW block updates the value of 

significance state after three coding passes in each bit-plane. The CMW block 

only works in decoding process, it writes the value of sign bit to coefficients 

memory if the sample is decoded by sign coding in current bit-plane, and also 

writes the magnitude bits of every bit-plane to coefficients memory. 

Controller 

Controller is the core of the design. It manages the overall coding data flow, 

and generates write and read address for all memories and register primitive 

elements. It also controls the pipeline architecture. 
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4.1. Column-Based Operation 

In the proposed architecture, column-based operation is adopted instead of 

sample-based operation. The basic idea of column-based operation is to check four 

vertical samples of a column simultaneously. It is just like 5×3 context window in 

Figure 3-5 or Figure 3-7. In order to fit the Pass-Parallel architecture, it integrates 

context window of three coding passes into a 5×5 registers for each significance states 

and sign states. 

S
tripe

Pass 1
Pass 2
Pass 3

Pass 1 
context 
window

Pass 2 
context 
window

Pass 3 
context 
window

Column based registers that 
contains context windows of 

three coding passes

 

Figure 4-2  Column-based registers (5 x 5) 

In magnitude states, it needs only four magnitude bits of four samples in current 

column. It doesn’t need the neighbors for magnitude state in last stripe, so the 

column-based registers size is 4×5. 
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Figure 4-3  Column-based registers (4 x 5) 

Take sign state registers in encoding for example. Suppose the coding order of 

column number is 0, 1, ..., n-2, n-1, n, n+1, n+2, and so on. By using Pass-Parallel 

method described in section 3.2, the coding operations for Pass 3 are delayed by two 
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columns. At time N, Column n-2 is coded in Pass 3 and column n is coded in Pass 1 

and Pass 2, as shown in Figure 4-4 upper. 

After finishing coding column n-2 by Pass 3 and column n by Pass 1 and Pass 

2 , the data registers will shift left, B to A, C to B, D to C, E to D, and new data 

loaded from memory is stored in the right column F. At time N+1, the column n-1 is 

coded in Pass 3, and column n+1 is coded in Pass 1 and Pass 2, as depicted in Figure 

4-4 medium. 

n n+1n-1n-2n-3

A B C D E

n+2

n n+1n-1n-2 n+2

A B C D E

n+3

n n+1n-1 n+3n+2

A B C D E

n+4

Time N

Time N+1

Time N+2

F

F

F  

Figure 4-4  Flow chart of column-based registers while time N, time N+1, and time N+2 
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At time N+2, the data registers shifted to left again, and column n is coded in 

Pass 3, column n+2 is coded in Pass 1 and Pass 2. The result is depicted in Figure 4-4 

lower. 

Note the register F in Figure 4-4. Because reading memory data needs many 

clock cycles, in fact, it is a ping-pong register named F1 and F2 to reduce processing 

cycle time. 

As described, there are two advantages of column-based operations: 1) samples 

in a column can be checked simultaneously, and then Sample-Skipping method can be 

applied. 2) Memory access frequency of these state variables can be reduced. 

4.2. Pass Coding Module 

The main work of pass coding module is to produce context label for arithmetic 

coder. In encoding, it also sends decision to arithmetic encoder, but in decoding, it 

receives decision from arithmetic decoder to reconstruct the coefficients memory for 

DWT. Pass coding module also includes Sample-Skipping architecture in it. 

Figure 4-5 shows the block diagram of Pass 1 coding module. The Sign 

Register PE, Magnitude Register PE, Significance 0 Register PE, and Significance 1 

Register PE are described in section 4.1. It includes Sample-Skipping, Zero coding, 

and Sign coding in the Pass 1 coding module. 
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SS
Context
Decision
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Figure 4-5  Block diagram of Pass 1 coding module 
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Figure 4-6 shows the block diagram of Pass 2 coding module. There are 

Magnitude Register PE, Significance 0 Register PE, and Significance 1 Register PE in 

the Pass 2 coding module (it does not include Sign Register PE), and also 

Sample-Skipping and Magnitude Refinement Coding in it. Figure 4-7 shows the block 

diagram of Pass 3 coding module. The difference between Pass 1 coding module and 

Pass 3 coding module is that there is a RLC block in Pass 3 coding module. 
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Figure 4-6  Block diagram of Pass 2 coding module 
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Figure 4-7  Block diagram of Pass 3 coding module 

4.2.1. Sample-Skipping architecture 

The key idea of the Sample-Skipping method is to skip no-operation samples, 

and directly code NBC samples, as we described in section 3.1. In the begging of 

Sample-Skipping process, a NBC flag to NBC index converter is applied. 

The NBC flag is a four bits register, and it indicates which samples in the 

current coding column are NBC samples. If a bit of NBC flag is 1, it means the 
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corresponding sample is NBC; otherwise, the corresponding sample is non-NBC. The 

corresponding sample of the 0th bit of NBC flag is X0. And the corresponding 

samples of the 1st, 2nd, 3rd bits of NBC flag are X1, X2, and X3. 

The NBC index is an array of four integers range from 0 to 3. It is used to 

record the coding order of NBC samples. If X0 and X2 are NBC samples, the coding 

order of this column is that X0 is the first and X2 is the second, and the third and the 

last could be any number range from 0 to 3 because it only needs to code the first two 

NBC samples. So, according to NBC index, N0 (the 0th integer) is the first NBC 

sample in coding order. N1 (the 1st integer), N2 (the 2nd integer), and N3 (the 3rd 

integer) are the second, third, and the last NBC in coding order. 

Table 4-1 shows the NBC index converted from NBC flag. Take the 7th row for 

example, the value of NBC flag is 0101, and it means there are two NBC samples (X0 

and X2) in this column. Obviously, the first NBC sample is X0 and the second NBC 

sample is X2. And the corresponding NBC index is (x, x, 2, 0).  

NBC flag (X3, X2, X1, X0) NBC index (N3, N2, N1, N0) 

0000 x, x, x, x 

0001 x, x, x, 0 

0010 x, x, x, 1 

0011 x, x, 1, 0 

0100 x, x, x, 2 

0101 x, x, 2, 0 

0110 x, x, 2, 1 

0111 x, 2, 1, 0 

1000 x, x, x, 3 

1001 x, x, 3, 0 

1010 x, x, 3, 1 

1011 x, 3, 1, 0 

1100 x, x, 3, 2 

1101 x, 3, 2, 0 

1110 x, 3, 2, 1 

1111 3, 2, 1, 0 

Table 4-1  NBC flag converts to NBC index 
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Figure 4-8 shows the flow chart of Sample-Skipping method. The current NBC 

sample is N0 if ‘I’ equals to 0. And the current NBC sample is N1, N2, or N3 if ‘I’ is 1, 

2, or 3. In the begging of the flow, set ‘I’ to be zero, and check if there is any NBC 

sample in this column. If none, finish coding in this column. Otherwise, it means that 

there is at least one NBC sample, and the first NBC sample (N0) is coded immediately. 

After generating context label of the NBC sample, increase ‘I’ by one, and check 

whether or not the number of NBC samples is equal to ‘I’. It means total NBC 

samples have been coded already if ‘I’ is equal to the number of NBC samples. So, if 

number of NBC samples equals to ‘I’, finishing coding in this column; otherwise, 

coding the next NBC sample (N1) at next clock cycle and follows the flow until all 

NBC samples have been coded. 

Start

I = 0

Yes

End Coding

No

Number of 
NBC = 0 ?

Code the current NBC 
sample

Next clock 
cycle

Yes

No

I = I + 1

I = Number 
of NBC ?

Find out the current NBC 
sample by index I

 

Figure 4-8  Flow chart of Sample-Skipping architecture (include of finding out the current NBC 

sample by index I) 
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Only in Pass 2 decoding, the NBC samples could be checked before starting 

coding. The NBC samples of Pass 1 and Pass 3 decoding may be changed according 

to the decision from arithmetic coder. Therefore, the MRC (or the Pass 2 coding) is 

the simplest coding of four coding primitives. Let’s introduce the Pass 2 coding 

module first. 

4.2.2. Pass 2 coding module architecture 

Figure 4-9 shows the flow chart of Pass 2 coding module, it’s similar to the 

flow chart of Sample-Skipping.  

Pass 2 Codec 
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of NBC ?

Pass 2 Codec 
End

Yes

No
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No
Receive 
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AC?

No
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I = 0

Generate decision of 
current NBC sample

I = I + 1

Encoding

Decoding

MRC

 

Figure 4-9  Flow chart of the Pass 2 coding module (MRC) 
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While there is at least one NBC sample in this column, the Pass 2 coding 

module will generate context label, and then there are two directions. The green one is 

for encoding. It is the same as Sample-Skipping flow chart while following the green 

direction. The purple one is for decoding. Following the purple one, it does not 

provide decision to arithmetic decoder. On the contrary, it waits for the decision 

generated from arithmetic decoder. Until receiving the decision from arithmetic 

decoder, it goes on with the flow chart. 

4.2.3. Pass 1 coding module architecture 

Figure 4-11 shows the flow chart of the Pass 1 coding module, and it is also the 

flow chart of zero coding and sign coding. Note that the previous section of Figure 

4-11 is similar to the flow chart of the Pass 2 coding module. But after generating 

decision in encoding or receiving decision from arithmetic decoder in decoding, it has 

to check whether or not the sample needs to be coded in sign coding by the value of 

decision (i.e. ‘1’ means that needs be coded by SC, and ‘0’ means that does not need 

be coded by SC). 

If the SC is needed, it must generate the context label of SC, and receive the 

decision of SC from arithmetic decoder. The rest flow path of Pass1 coding is similar 

to Sample-Skipping flow chart. 

4.2.4. Pass 3 coding module architecture 

The coding primitives of Pass 3 coding are SC, ZC, and RLC. Since the SC and 

ZC in Pass 3 coding and Pass 1 coding are the same, in this section, we focus on the 

flow of RLC (and the uniform coding). The path of flow chart, as depicted in Figure 

4-10, also has two directions which green one for encoding and purple one for 

decoding. 

Following green paths (encoding paths), Pass 3 coding module generates 

run-length context label (17) and decision. If none of the magnitude bits in the column 

is 1, the four samples do not need to be coded by uniform coding, and Pass 3 coding 

in this column is finished. Otherwise, it means the four samples needs to be coded 

using uniform coding. After sending two uniform context labels (18) to arithmetic 
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encoder, RLC and uniform coding in this column are finished. And the rest of NBC 

samples will be coded by ZC and SC. 

Following purple paths (decoding paths), it generates run-length context label 

(17). If the RLC decision received from arithmetic decoder is zero, it means that none 

of the four magnitude bits in this column is 1, and finishes Pass 3 coding in this 

column. If the RLC decision received from arithmetic decoder is one, then not all four 

magnitude bits are zero, and this column needs to be coded using uniform coding. 

According to the two uniform decisions generated from arithmetic decoder, it could 

determine how many samples needed to be coded by ZC and SC. 
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Figure 4-10  Flow chart of Pass 3 coding (RLC) 
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Figure 4-11  Flow chart of Pass 1 coding (ZC+SC) 
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4.3. SMW and CMW Architecture 

After a column is processed by three coding passes, the memories must be 

updated if there are any changes in the significance states, or coefficient states. The 

SMW (Significance Memory Write Module) is used for updating the value of 

significance states. The CMW (Coefficient Memory Write Module) is used for 

updating the value of magnitude and sign states, and CMW only works in decoding. 

Significance Memory Write Module (SMW) 

Figure 4-12 shows the flow chart of SMW. It is similar to the flow chart of 

Sample-Skipping depicted in Figure 4-8. The only difference between them is that 

SMW changes “Code the current NBC sample” to “Write data to memory”. The index 

NBCH is used to record if the sample is a need-to-be-changed-value sample, just like 

NBC. 
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Number of 
NBCH = 0 ?
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I = I +1
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End Coding

No

Yes

No
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Figure 4-12  Flow chart of writing new significance states into memory 
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The significance memory (RA2SD) is composed of significance state 0 and 

significance state1, and it is a 1024 × 2 bits memory. The 0th bit represents the 

significance state 0, and the 1st bit represents the significance state 1. The data 

prepared for writing into significance memory RA2SD is combined from significance 

0 register and significance 1 register. 

Coefficient Memory Write Module (CMW) 

Start

Next clock cycle
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Number of 
NBCH = 0 ?
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End Coding
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Yes

No

Yes
write  data to memory

Next clock cycle

Combine data with magnitude 
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Figure 4-13  Flow chart of writing coefficients into memory. It is similar to the flow chart of 

writing significance states into memory. But the data must be loaded from memory before 

writing. 
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CMW works only in decoding process. It is a little different between SMW and 

CMW. After three passes coding, we could get a magnitude bit of a sample in current 

bit-plane and maybe the sign bit if the sample is coded in SC at the bit-plane. The 

coefficient memory is a 1024 × 9 bits memory, 1 bit for sign bit and 8 bits for 

magnitude bits. In the magnitude register, it only could record one magnitude bit for a 

sample. So, it could not get coefficient data by combining the two register. In CMW, 

before writing data to memory, it needs to read data from memory. And then store the 

magnitude bit and sign bit into the current position of data. According to this concept, 

the CMW costs more clock cycles than SMW. 

4.4. Pipeline 

Recall the column-based registers, in the encoding, the register B is coded using 

Pass 3 coding, and register D is coded using Pass 1 and Pass 2 coding, as described in 

section 4.1. The sample which has been coded by three coding passes will shift to 

register A, and SMW will update significance memory by the data of four samples in 

register A. The register F is stored of data loaded from memory by RG. Figure 4-14 

shows the relation of five blocks (P1M, P2M, P3M, RG, and SMW) and six registers 

in encoding. 

n n+1n-1n-2n-3

A B C D E

n+2

Time N

F

RGP2MP3MSMW
P1M

 
Figure 4-14  Relation of five blocks and six registers in encoding 

In decoding, Pass 2 coding module delays two columns to register B. And 
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register A is coded also by CMW. Figure 4-15 shows the relation of six blocks (P1M, 

P2M, P3M, RG, SMW, and CMW) and six registers. 
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Figure 4-15  Relation of six blocks and six registers in decoding 

From Figure 4-14 and Figure 4-15, we know that if every module finishes its 

work in the corresponding register, the data of registers will shift left. According to 

this concept, pipeline architecture is easy to implement.  

Figure 4-17 is the flow chart of pipeline architecture. The code-block size is 8 

× 7, 7 columns and 8 rows. We define the index of every sample as follows. 
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Figure 4-16  Index of every sample for a 8 x 7 code-block 
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And we name column by the index of first sample in that column. For example, 

the light yellow ellipse named 0 represents the column composed of sample 0, sample 

32, sample 64, and sample 96. The pink ellipse named 1 represents the column 

composed of sample 1, sample 33, sample 65, and sample 97. 
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Figure 4-17  Pipeline architecture of encoding and decoding in normal case 

Take encoding for example. At the beginning (Time 0 and Time 1), RG loads 

data of column 0 and column 1 from memory and stores into register F1 and F2. At 

Time 2, the data of registers is shift to left. The data of column 0 and column 1 is 

stored into register D and register E. P1M and P2M have to encode register D 

(column 0), and RG keeps on loading data from memory and storing into register F1 
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or F2 at Time 2. After P1M and P2M finish encoding register D and RG has loaded 

data of column 2, the work at Time 2 is finished. 

At Time 3, the data of registers is shift to left again. The data of column 0 is 

stored into register C, and the data of column 1, 2 is stored into register D, E. After 

P1M and P2M finish coding column 1 in register D and RG stores data of column 3 

into register, the work at Time 3 is finished. 

At Time 4, the data of column 0 is shift left to register B, and the data of 

column 1, 2, 3 is shift to register C, D, E. P3M begins working at the time, and it has 

to code column 0. After P1M and P2M finish coding column 2, and P3M finishes 

coding column 0, and RG stores data of column 4 into register, the work at Time 4 is 

finished. 

At Time 5, SMW begins working and coding column 0 in register A. 

It goes on like this until Time 8. After the work at Time 7 is finished, all data of 

registers is shift to left except register F2. Note that column 6 is the last column in the 

first stripe. Since there is no column in right, the right neighbors of column 6 are 

considered to be insignificant. In other words, if the neighbors fall outside the 

code-block, they are considered to be insignificant. 

0 1 2 3 4 5 6

context 
window

to be considered as 
insignificant

 

Figure 4-18  If the context window is out of code-block, it considers the samples that don’t 

exist in fact as insignificant. 



CHAPTER 4. ARCHITECTURE DESIGN 

 47

And it is the same as column 128. Since column 128 is the first column in the 

second stripe, the left neighbors of column 128 are also considered to be insignificant. 

For this reason, the data of column 128 must lag the data of column 6 by one column. 

Hence, the data of register F2 (column 128) does not need to shift left into register 

after the work at Time 7 is finished, but register A,B,C,D,E must shift left. Then, the 

pipeline is going on with concepts described above until finishing coding a bit-plane. 

 

If the width of a code-block is less than 7, the time for RG loading data of 

column 128 must be noticed. Figure 4-19 shows the pipeline for an 8 × 6 code-block. 

At Time 4, although register F2 is empty, RG could not load the data of column 128, 

and it must wait until Time 6 for loading memory. 
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Figure 4-19  Pipeline architecture of encoding and decoding in special case 
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Since it needs nine neighbors of the current sample in context window, when 

loading data of column 128, it also needs to load the data of sample 96. And notice 

that at Time 4, the column 0 is coding by P3M. If RG loads data of sample 96 from 

memory, the data has not been updated yet (the significance states of the sample may 

be changed after three coding passes), and RG will load the error data of sample 96. It 

is the same at Time 5. In order to get the right data of sample 96, RG must load data 

after SMW updates memory. Hence, it must wait until SMW finishes work in column 

0. And if RG wants to load data of column 129, it also must wait until SMW finishes 

work in column 1. The relation of position of every column is illustrated in Figure 

4-20. 
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Figure 4-20  Index of every sample for a 8 x 5 code-block 
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CHAPTER 5.           
EXPERIMENT RESULTS 

The design flow, testing consideration, and experiment results are described in 

this section. 

5.1. Design Flow 

We design JPEG2000 EBCOT following the document, ISO/IEC FCD 15444-1: 

2000, which is the specification of JPEG2000. The overall cell-based design flow is 

shown in Figure 5-1. 

C model simulation 

We use C language to build verification model for simulating and verifying the 

algorithm. The result generated by our C model is compared with the data of JASPER 

software to verify the correctness. Software simulation not only verifies the 

correctness of the proposed algorithm, but also provides the debug information for the 

hardware design. 

RTL code design and simulation 

After the architecture is determined from c model, we proceed to RTL (Register 

Transfer Level) design using VHDL language. After the programming, the RTL codes, 

together with testbench, are simulated through the ModelSim simulator. Detail debug 

information from C model can speed up the RTL code design process. 
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Figure 5-1  Flow chart of cell-based design 

Synthesis, Scan Insertion, ATPG, and Gate-level simulation 

We adopt Synopsys Design Compiler for the logic synthesis and also 

ModelSim is used for the gate-level simulation. The key idea of scan chain is to 

connect all the register in the core in a line or several lines. In general mode, the 

registers work as usual. While in test mode, registers are multiplexed into a line and 

test patterns will be shifted in this chain until all the registers are filled with the 

patterns. In the following cycles, the system shifts out all the bits of the registers to 

check the combinational logic gates. For our design, the fault coverage is up to 

99.24%.  

Under 0.25 µ m 1P5M process, our design can process at 133 MHz. 
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5.2. Design Verification 

Verification on C model 

We use JasPer Software [11] to verify our design. The Jasper software is 

official reference software to provide a free software-based reference implementation 

of the codec specified in the JPEG2000 Part-1 standard. We collect the input data of 

Tier-1 context formation module in Jasper as the input data in our design, and 

compare output data of Jasper and ours to verify the correctness of our design. 

Verification on RTL code 

We use ModelSim 5.5e to verify our architecture described in VHDL code. The 

test data of coefficients and test data of context-decision pairs are produced earlier by 

C model. Therefore, we get consist results, which prove that the results and RTL level 

design in encoding are correct.  

Our design

Test data
(coefficients)

Test data
(CX,D)

CX,D =

 
Figure 5-2  Verification flow in encoding 

In decoding, since there is no arithmetic decoder to receive contexts and 

generate decisions for out design, we use the context data and decision data produced 

by C model to replace the arithmetic decoder. The verification flow in decoding is 

depicted in Figure 5-3. Initially and usually, our design produces context to compare 

with the test data of contexts. If they are equal, that means the context generated from 

our design is correct, and test data of decisions will send to our design. Oppositely, if 

they are not equal, that means the context generated from our design is wrong and no 

test data of decision will be sent to our design. The advantage of the flow is that when 

an error occurs, the design stays at the state that generates the wrong context. In 

debugging, it is easier to find out which step is incorrect of certain sample in certain 

bit-plane than coding of a code-block finished. After decoding work is finished, the 

results will be compared with the test data of coefficients to prove that the results and 
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RTL level design in decoding are correct. 

Our design

Test data
(CX)
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(D)
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Test data
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=

Not equal idle
Final course

Usual course

 

Figure 5-3  Verification flow in decoding 

Verification on Gate-level 

After we use Synopsys Design Analyzer tool to synthesis the VHDL code to 

gate level, we use Modelsim 5.5e to verify the gate level netlist. The method for 

verify gate level netlist is the same as verification on RTL code. 

Verification on FPGA 

We use the ARM Integrator as our prototyping platform. The CF module and 

other design for JPEG2000 encoder are realized in Altera FPGA of ARM Integrator. 

The input source comes from PC camera, and the output data could be decoded by 

Jasper software. 

5.3. Experiment 

The result after placement and route is shown in Figure 5-4. The memory which 

size is 1024 × 2 bits in the upper left side is used to save two significant state 

variables. There are totally 120 pads used in this chip, including the data input, data 

output, internal power and external power. The number of pad used in this chip is 

listed in Table 5-1. Table 5-2 shows the specification of this design in detail. Logic 
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gate count is about 19K, and the area is 1775µ m× 1695µ m. The maximum clock 

frequency is 133 MHz. With the clock frequency, 100 Mhz, it can encode 3.98 million 

pixels image within 0.323 second, corresponding to 2304 × 1728 image size, or 320 × 

240 RGB image with 50 frames per second. Suppose arithmetic decoder could 

generate decisions immediately, the throughput in decoding is 6.33 million pixels per 

second, corresponding to 2304 × 1728 image with 0.512 second. 

Pad Type Pad Count 

Input Pad 46 

Output Pad 53 

Clock Buffer Pad 1 

Internal Power Pad 8 

External Power Pad 12 

Table 5-1  List of Pad used in this chip 

Technology 0.25 CMOS 1P5M 

Chip Size 1775µ m x 1695µ m 

Gate Count 19057 + 2Kb memory 

Clock Frequency 100 MHz 

Supply Voltage 2.5 V 

Power Consumption 115.9849 mW 

Table 5-2  Specifications of this chip 

Table 5-3 shows the performance of our design. Due to the different technology 

and mode, we focus on the throughput only. And since our AC encoder can receive 

one context-decision pair per second, the encoding throughput in CF is similar as 

Tier-1. From Table 5-3, our design performs better than others in encoding throughput 

and supplies the decoding mode with throughput 6.33 million pixels per second. 
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 Ours NCTU [7] NTU NTU NTHU 

Technology 0.25 um 0.35 um 0.35 um 0.35 um 0.35 um 

Area (mm2) 1.775x1.695 3.345x3.138 3.67x3.67 2.381x2.295  

Frequency 100 (133) 142.8 50 100 (133) 50 

Mode 
CF  

codec 

Tier-1  

encoder 

Tier-1 

encoder 

CF  

encoder 

Tier-1 

 encoder

throughput 

(encoding) 
12.32 M/s 11.72 M/s 9.2 M/s 12.10 M/s 11.22 M/s

throughput 

(decoding) 
6.33 M/s not supply not supply not supply not supply

Table 5-3  Performance of our design  

 

Figure 5-4  Layout view of the CF codec design 
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CHAPTER 6.         
CONCLUSION 

In this thesis, we focus on the research and chip design of the context formation 

module of EBCOT Tier-1 in JPEG2000. The EBCOT Tier-1 coder has high 

computational complexity, so we propose efficient codec architecture for it. Speedup 

methods and pipeline technique are adopted in our design. By using this architecture, 

the process time can be reduced to about 36% of previous work. 

In context formation, column-based architecture is used to check four samples 

in a column concurrently. And two speedup methods, Sample-Skipping and 

Pass-Parallel, are used. Sample-Skipping can skip no-operation samples in a single 

column, and directly encode the NBC samples. We will not spend any clock cycle on 

samples that do not belong to the current coding pass. Pass-Parallel can process three 

coding passes of the same bit-plane in parallel, and make a 20% reduction in memory 

requirement. The Sample-Skipping method can reduce the processing time by more 

than 46% compared to straightforward method. And if both two methods are adopted, 

the processing cycle time is reduced to 36%. 

The design is described with VHDL code and synthesized by Synopsys Design 

Analyzer. The technology used is CMOS 0.25 technology. The area of this chip is 

1775 µm × 1695 µm. The clock frequency can reach 133 MHz. With the clock 

frequency, 100 MHz, it can encode 3.98 million pixels image with 0.323 second, 

corresponding to 2304 × 1728 image size. Suppose arithmetic decoder could generate 

decisions immediately, it can decode 2304 × 1728 image within 0.512 second. 
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The future work focuses on distortion estimation in encoding and 

Sample-Skipping in decoding 

Distortion Estimation 

A complete context formation module should include the Distortion Estimation, 

which is the core the rate distortion. In our design, it is difficult to compute the 

distortion of Pass 1 and Pass 2, so it is restricted to distortion of Pass 3 now. In this 

situation, the truncation points must fall in the end of bit-plane. Hence, the lossy 

compression of JPEG2000 performs poorly than truncation points could fall in the end 

of every pass. 

Sample-Skipping in decoding 

Figure 6-1 illustrates the key point of disadvantage for Sample-Skipping in our 

design. In rising edge of 5th clock cycle, CF receives the decision from AC, but it can 

not send the next context label immediately. So, in the future, we hope it can generate 

context immediately after receiving decision from AC. 

clock

CF module generate context

AC generate desicion

1 2 3 4 5 6 7 8

CF module generate context
future  

Figure 6-1  Context-decision timing in decoding 
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