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中文摘要 

 
    相較於傳統的單輸入單輸出(SISO)系統，使用多傳送與接收天線的

多輸入多輸出 (MIMO)的無線通訊系統可大幅的增加系統容量

(capacity)，因此在過去十年被廣泛的研究，相關技術並已應用於實際系

統成為國際無線通訊標準規格不可或缺的一部份。大多數對於MIMO訊

號偵測的研究，都假設接收端有百分之百正確的通道資訊(CSI)，但實際

上，這是不可能的。通道資訊需透過某種估計演法得到，誤差在所難免，

而基於此不正確CSI所偵測的數據之可靠性也必須打折扣。事實上許多

研究都顯示接受器的效能將有顯著的降低。因此，如何在設計MIMO接

收器時將通道估計誤差一併考慮以盡量減少因上述CSI不匹配的因素造

成的效能損失是一項相當迫切的課題，也是本文的主要研究動機。我們

首先探討通道估計誤差對兩種MIMO信號偵測法­即粒子群趨動交叉熵

偵測法及QRD-M偵測法­的性能之影響。 

    粒子群趨動交叉熵法（Particle-Swarm-Driven Cross-Entropy）偵測法是

在給定接收向量後，試圖尋找傳送信號位置的事後機率分布。這個機率

分布是藉由在接收向量附近取樣並且反覆的更新使得機率分佈擁有最

小交叉熵（相較於現有的機率分佈）。為了改善效能，粒子群趨動的概

念則被引入來提供一組新的機率分布。另一方面，QRD-M則是一個以樹

狀結構為基礎的低複雜度偵測法。在少許效能損失下，利用樹狀結構搜

尋並且減少每一層的存活路徑。 

    由於最小歐式距離偵測法在有通道估計誤差的情形下對於前述兩

個偵測器並不適用，我們提出考量通道估計誤差效應的新型最佳偵測結

構，提出了新的解碼度量(decoding metric)。模擬結果顯示新法雖然增加

了些許計算複雜度但卻有顯著的效能提昇。我們也發現將同樣的度量應

用在有時空編碼的MIMO系統亦可得到類似的改善。 
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MIMO Signal Detection in the presence of Channel

Estimation Errors

Student : Yu-Ting Lin Advisor : Yu T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

The multiple-input multiple output (MIMO) technology promises significant capac-

ity increase over conventional single-input single-output systems. Most investigations on

MIMO signal detection, however, assume perfect channel state information (CSI), which

is difficult, if not impossible, to realize in practice. Earlier studies have shown that that

the performance of MIMO detection schemes will suffer from severe degradation in the

presence of channel estimation errors.

In this thesis, the effects of imperfect CSI on two MIMO signal detectors, namely,

the Particle-Swarm-Driven Cross-Entropy (PSD-CE) based detector and the QRD-M

detector, are studied, and new detector structures that take into account the CSI error

are proposed.

The PSD-CE detector tries to estimate and refine the ‘a posteriori probability dis-

tribution’ of the transmitted signal location given the received vector. The distribution

is estimated by sampling over the neighborhood of the received vector and is iteratively

updated to the one which has the minimum cross entropy with respect to the current

distribution. It is further modified by applying the concept of Particle Swarm Optimiza-

tion to render a mixture of probability distribution. QRD-M , on the other hand, is an

efficient tree-search based detector. It prunes the search tree to reduce the number of

surviving paths with minimum performance loss.
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Since the minimum Euclidean distance criterion is no longer suitable for both de-

tectors in the presence of channel estimation errors, the proposed MIMO detectors take

into account the imperfect CSI effect by averaging the estimation errors to obtain a

new decoding metric. Numerical examples are given to demonstrate the performance

improvement which is attained with insignificant complexity increase.
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Chapter 1

Introduction

Multiple-input and multiple-output (MIMO) technologies have gained enormous

popularity in the recent years because the significant communication capacity enhance-

ment they promised to deliver [1], [3]. A MIMO system uses multiple antennas at both

the transmit and the receive ends. In a rich-scattering MIMO channel that can be

characterized by a channel matrix with independent and identically distributed (i.i.d.)

Rayleigh entries, the associated capacity can increase linearly with the minimum of the

number of transmit and receive antennas [2].

However, such a capacity increase can only be realized if the channel matrix is per-

fectly known. The more practical concern of detecting MIMO signals has been answered

by many alternatives, e.g. the Zero Forcing (ZF) [4] detector and V-BLAST [6] detector.

Like the capacity issue, these detection schemes perform well only if the channel state

information (CSI), i.e., the channel matrix, is perfectly known at the receiver [7]. In

practical situations, the knowledge of the channel is never perfect and is attained by

some channel estimation scheme at the receiver. The most popular and practical way

to obtain the CSI at the receiver (CSIR), is to insert known sequences of symbols, often

referred to as pilot signals, within the transmit data stream to aid channel estimation

[8], [9]. Information symbols are then detected as though the estimated channel matrix

is perfect. Due to the finite number of pilot symbols and various sources of noise and

interference, the receiver can only obtain imperfect estimates of the channel. As a result,
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such a mismatched detector is a sub-optimal approach and its performance is severely

degraded in the presence of channel estimation errors as shown in [8] and [10].

The optimum detection method in MIMO systems is the Maximum Likelihood (ML)

detector which often calls for exhaustive search over the entire set of possible transmitted

symbol vectors. Apparently, the major drawback of ML detector is its high complexity

that increases exponentially with the number of transmit antennas and modulation size

of the constellation. On the other hand, when perfect CSI is not available, the minimum

Euclidean distance criterion is no longer an ML one. To find an ML detection metric,

many investigations [20], [22], assume that the channel (matrix) is uncorrelated with

the channel estimation error (matrix). This is not appropriate if we recall that both the

least-squares (LS) and minimum mean square error (MMSE) channel estimators follows

the orthogonal principle which says that the estimation error should be orthogonal to

the estimator in some sense. Based on this observation we adopt a different model and

derive a new detection metric based on the latter assumption.

In our work, we consider two MIMO detection schemes: the Particle-Swarm-Driven

Cross-Entropy (PSD-CE) [11] method and the M -algorithm combined with QR de-

composition (QRD-M) [12], [13]. Both schemes have comparatively low complexities

compared with the ML detector.

The PSD-CE is a Monte Carlo based stochastic approach that attempts to find

the transmitted symbol. It is an iterative method that tries to approach the ‘optimal

probability distribution’ of the transmitted signal. It generates samples over the entire

neighborhood of the received vector with uniform distribution. Then the probability

distribution of the samples is updated with the ‘better’ samples. After some iterations,

the probability distribution should close in on the optimal distribution in the Cross-

Entropy (CE) sense [14]. To improve the performance further, the concept of Particle

Swarm Optimization (PSO) [16], [17] is added.

In order to accelerate the convergence speed of this stochastic approach, we make
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some changes to the original PSD-CE method. Going over the steps of PSD-CE, we

realize that initializing the probability distribution with uniform distribution means be-

ginning the search without any information. Instead of starting the search in such an

inefficient manner, we could try to use some information that can be easily obtained by

some other simple methods, Zero Forcing for example. By changing the initial distribu-

tion so that it contains some useful information, the modified PSD-CE method becomes

more efficient, bearing better performance than the conventional PSD-CE with lower

computational complexity.

Unlike the PSD-CE method, QRD-M is a deterministic detection algorithm. Dif-

ferent from the QR detection [21], QRD-M is a tree search algorithm [13], [21]. The

concept of QRD-M is to apply the tree search to detect symbols in a sequential man-

ner. Instead of making a decision for the symbols at each detection level as in the QR

detection method, QRD-M retains M reliable paths. Decision is made only after all the

layers have been processed. It can achieve near-ML performance with relatively low but

fixed complexity. There is a trade-off between the complexity and performance on the

selection of M . With a large M , better performance is achieved at the cost of higher

complexity. Usually, M is set to be the size of the modulation constellation.

The new optimization criterion mentioned earlier is used in place of the original

criterion ‖y −Hx‖2 in the PSD-CE method. However, it cannot be directly applied to

the QRD-M algorithm because it can no longer be decomposed into the sum of separate

branch metrics, as will be shown in Chapter 5. We figured out a way such that the new

criterion becomes the lower bound and can be used in the QRD-M method to achieve

better performance in the presence of channel estimation errors.

By employing some simple space-time block codes (STBC) [18], [19], the effects of

the gain in the modified ML criterion is apparent. G. Taricco et al. [20] examines

space-time decoding with imperfect channel estimations, but their analysis is based on

the assumption that the channel estimation error is orthogonal to the channel.
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The rest of this thesis is organized as follows: in Chapter 2 we describe the system

model used and the main assumptions concerning channel estimation. In Chapter 3 we

review some existing MIMO detection schemes that are of interest to our study. Chapter

4 gives a detailed description of the PSD-CE algorithm, as well as the modifications

made to improve its performance. We then propose improved detectors in the presence

of channel estimation errors in Chapter 5. Space-Time codes are introduced in Chapter

6. Simulation results are given in Chapter 7 and finally, Chapter 8 gives the conclusion.

The following notations are used throughout the thesis: upper case bold symbols

denote matrices and lower case bold symbols denote vectors. IN is a N × N identity

matrix. The superscripts (·)T , (·)H and (·)† represent the transpose, Hermitian transpose

and the pseudo-inverse, respectively. E{·} denotes the statistical expectation, tr(·) is

the trace of a square matrix.

4



Chapter 2

System Model

2.1 MIMO Systems with Perfect Channel Estima-

tion

We consider a MIMO system [1] with NT transmit antennas and NR receive anten-

nas. As shown in Fig. 2.1, data is demultiplexed into NT data substreams, then the

substreams are mapped onto sequences of M -QAM symbols where the signal constella-

tion is denoted by AM . These symbol sequences are transmitted over the NT antennas

simultaneously.

TR N,Nh

,1Nh R

TN1,
h

1,1h

Demux 

Data to  

substreams 

Modulation

1X

TN
X

1y

RN
y

Transmitter Receiver

Detector 

Estimated

 data 

Input

data
1n

RNn

Figure 2.1: A MIMO system model.
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If T consecutive signal vectors are transmitted, the transmitted signal can be rep-

resented as an NT × T matrix X, where X , [x1, . . .xT ] and xt is the signal vector

transmitted at the tth time slot. The signal vector transmitted at the tth time slot xt

can be represented as

xt = [x1,t, . . . , xNT ,t]
T ∈ ANT

M (2.1)

Similarly, assuming perfect timing receiver and quasi-static channel , the correspond-

ing NR × T received signal matrix, Y, can be expressed as

Y = HX + Z (2.2)

where

Y = [y1, . . . ,yT ] (2.3)

Z = [z1, . . . , zT ] (2.4)

and

yt = [y1,t, . . . , yNR,t]
T ∈ CNR (2.5)

zt = [z1,t, . . . , zNR,t]
T ∈ CNR (2.6)

H =




h1,1 h1,2 · · · h1,NT

h2,1 h2,2 · · · h2,NT

...
...

. . .
...

hNR,1 hNR,2 · · · hNR,NT


 ∈ C

NR×NT (2.7)

Here, C denotes the complex-valued domain. H describes the overall NR ×NT channel

matrix, the (j, i)th element of H, hj,i, is the channel response between the ith transmit

antenna and the jth receive antenna. In this thesis, the elements of H are independently

and identically distributed (i.i.d.) zero-mean complex Gaussian random variables with

unit variance. Z is the NR×T additive white Gaussian noise (AWGN) matrix observed

at receiver. Each element of Z has zero mean and variance σ2
z , while the average transmit

power of each antenna is normalized to one. Hence, we have

Es , 1

NT T
E [ ‖X ‖2 ] =

1

NT T
E [ tr {XXH} ] = 1 (2.8)
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and

E{ Zt Z
H
t } = σ2

z INR
. (2.9)

where tr denotes the trace operation, IN is an identity matrix of size N × N and t =

1, · · · , T .

2.2 Pilot-Based Channel Estimation

The channel information is estimated at receiver and it is often assumed to be perfectly

estimated in a lot of literature. However, due to the time-varying channels and quan-

tization errors, only an estimate of the channel matrix that is corrupted by estimation

errors is available at the receiver side and the assumption about perfect estimate is not

rational in a practical system.

For pilot-based channel estimation scheme, a pilot matrix, XP , is sent and the receiver

observes

YP = HXP + ZP (2.10)

where ZP is the noise matrix affecting the transmission of the pilot symbols. XP is a

known NT × P matrix at receiver with average pilot symbol energy

Ep , 1

NT P
‖XP ‖2 =

1

NT P
tr {XP XH

P } (2.11)

Since the number of the elements of H is NRNT , at least NRNT independent mea-

surements are needed to estimate the NR×NT channel matrix. To satisfy this condition,

NR measurements are observed in each time slot and we require P to be larger than or

equal to NT . Furthermore, in order to yield independent measurements, XP must have

rank NT .

Several channel estimation methods have been proposed [25]. The property of chan-

nel estimation error depends on the adopted channel estimation method. A channel

estimation method, called Least Square (LS) method, is a common technique used to

estimate the channel H and is considered in this thesis.
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The LS estimate of H can be found by

Ĥ = YP XH
P

(
XPXH

P

)−1
(2.12)

Moreover, it can be expressed in terms of H as

H = Ĥ + E (2.13)

where E is the channel error matrix. Due to the orthogonal property of LS method, E

and Ĥ are uncorrelated. In addition, because the elements of Ĥ and H are complex

Gaussian random variable, the elements of E are also. Hence, Ĥ and E are independent.

From (2.10), (2.12) and (2.13), we can show that

H = YP XH
P

(
XPXH

P

)−1
+ E

= (HXP + Z) XH
P

(
XPXH

P

)−1
+ E

E = −ZP XH
P

(
XPXH

P

)−1
(2.14)

From (2.14), we also have

Ei = −(ZP )i X
H
P (XPXH

P )−1 (2.15)

(·)i denoting the ith row of the matrix (·). We use orthogonal pilot matrices which can

be generated from a perfect root-of-unity sequence (PRUS) [26], then the covariance

matrix of Ei is

E [EH
i Ei ] = σ2

z(XPXH
P )−1 (2.16)

Since the pilot matrices are orthogonal, with (2.11), the covariance matrix becomes

E [EH
i Ei ] = σ2

e I, σ2
e =

σ2
z

(PEP )
(2.17)

Considering one time slot, we rewrite (2.10) with (2.13) as:

Yt = HXt + Zt

= (Ĥ + E) Xt + Zt

= Ĥ Xt + E Xt + Zt

= Ĥ Xt + Z′t

(2.18)
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When the channel estimate Ĥ is used in place of the perfect channel matrix H, the

corresponding noise term becomes Z′t. It consists of the additive noise component Zt as

well as the influence caused by the channel estimation error EXt. Thus, the power of

Z′t becomes [22]
σ2

Z′t
= 1

M
tr{E{Z′tZ′Ht }}

= 1
M

tr{E{(Zt + EXt)(Zt + EXt)
H}}

= 1
M

tr{E{EEH}+ σ2
Z}

(2.19)

where we assume that Et is uncorrelated with Zt. From (2.19), we can see that the chan-

nel estimation error causes the overall noise power to increase, resulting in performance

degradation.
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Chapter 3

A Review of MIMO Detectors

In this chapter, we give a brief overview of the detectors that are of interest to our

investigation, assuming, for the time being, that the channel is perfectly known at the

receiver.

3.1 Maximum Likelihood Detector

The Maximum Likelihood (ML) detector performs a search over the entire set of

possible candidates and chooses the one that minimizes

X̂ML = arg min
X
||Y −HX||2. (3.1)

The ML search is often exhaustive whence very time-consuming, especially for systems

with a large number of transmit antennas or a high-order modulation. Even though the

ML detector has the best performance among all MIMO detectors, its complexity makes

it infeasible in practice.

3.2 Zero-Forcing (ZF) Detector

Linear detector is a class of simple approaches to recover the transmitted signal

matrix, X, from the received interference-corrupted signal matrix, Y, by using an NT ×
NR weight matrix P to linearly combine (filter) the elements of Y. The zero-forcing

10



(ZF) detector belongs to this class. By multiplying the received signal matrix Y with

the Moore-Penrose pseudo-inverse [5] of the channel matrix H, it attempts to null out

the influence introduced by the channel. Thus, the ZF linear filtering (weight) matrix is

PZF = H† = (HHH)−1HH . (3.2)

Each element of the output matrix, PZFY, is quantized to the nearest symbol in the

constellation, AM , to obtain an estimate of the transmitted signal vector X̂, i.e.

X̂ZF = Q{H†Y } = Q{X + (HH H)−1 HH n }. (3.3)

where Q denotes the quantization operator.

The main advantage of a ZF detector is its low implementation complexity. How-

ever while the detector nulls out the spatial interference, it fails to take the noise into

consideration and causes the power of the noise to boost up significantly, resulting in

performance degradation. Only in the case of an orthonormal channel matrix, is the

performance of the ZF detector identical to that of the optimum ML detector. Oth-

erwise, ZF generally leads to noise enhancement, thus does not provide satisfactory

performance.

3.3 The QRD-M Detector

The tree search based QRD-M algorithm attracts special attention as it achieves near-

ML performance, while requiring substantially low complexity in comparison with the

ML detector. The QRD-M algorithm selects only M candidate nodes with the smallest

accumulated metrics at each level of the search tree, hence reduces the search complexity.

The first step of the QRD-M algorithm is to perform QR-decomposition on the

channel matrix H, in doing so we obtain

H = QR̂ (3.4)
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where Q is an NR ×NR unitary matrix, and

R̂ =

[
R

0(NR−NT )×NT

]
(3.5)

R is an NT × NT upper triangular matrix and 0(NR−NT )×NT
is a zero matrix of size

(NR −NT )×NT . Note that QHQ = I. Ignoring the Gaussian noise for a moment and

pre-multiplying the equation y = Hx, where x = [x1, . . . , xNT
] is the transmit signal

vector, by QH , we obtain

ỹ = Rx + z̃ (3.6)

where ỹ is the first NT rows of QHy and z̃ is the first NT rows of QHz.

Based on (3.6), we can span a tree-like structure with depth NT , as shown in Fig.

(3.1). The process starts from the last element of x, i.e., xi, i = NT , because from

equation (3.6) we have yNT
= rNT ,NT

xNT
+ nNT

, where ri,i is the (i, i)th element of R,

suggesting that it has no interference from the other antennas. The algorithm calculates

the metric for all possible values of xNT
from the constellation set of size C using [13]

| ỹNT−i+1 −RNT−i+1 x̂i |2 (3.7)

where ỹi is the ith element of ỹ, Ri is the ith row of R and x̂i = [x̂i+1, x̂i+2, . . . , x̂NT
]

is the vector of estimated symbols of the specific survivor path. Only M branches with

the smallest metrics are retained and the rest of the list is discharged. This procedure

is applied to the nodes of the next level, and is repeated until a tree depth of NT is

reached, i = 1.

The general detection process is described in Table 3.1 [13].

Table 3.1: The QRD-M detection algorithm.
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3
rd

 stage

2
nd

 stage 

1
st
 stage 

Figure 3.1: Tree structure of QRD-M (M = 4), NT = 3, NR = 3, with 4-QAM modula-
tion.

Step 1 : Perform QR-decomposition on the channel matrix H.

Step 2 : Premultiply the received vector y with QH.

Step 3 : For every retained node, extend all branches to C nodes.

Step 4 : Calculate the branch metrics using equation (3.7).

Step 5 : Retain only M branches with the smallest metrics and
delete the rest of the list.

Step 6 : Go to next level and return to Step 3.
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Chapter 4

Particle-Swarm-Driven
Cross-Entropy MIMO Detector

4.1 The Cross-Entropy Method

In this section, we give a detailed description of the concepts used in the Particle-

Swarm-Driven Cross-Entropy (PSD-CE) method. We consider a single time slot only;

the extension to T time slots is straightforward. The PSD-CE method is a Monte Carlo

based stochastic approach to solve

arg min
x∈ANT

M

‖ y −Hx‖2. (4.1)

As the name suggests, this method combines the ideas of both Particle Swarm Opti-

mization (PSO) and the Cross-Entropy (CE) method. Let us first begin with the latter

approach.

Assuming perfect channel knowledge at the receive end, we define the score function

S(x) = ‖ y −Hx‖2. (4.2)

In this situation, the optimal importance distribution g∗(x) should be a peak at x̂ML,

i.e. g∗(x) = δ(x− x̂ML). Since we do not know g∗(x), we want to find the parameter

v of f(x;v) such that the cross-entropy between g∗(x) and f(x;v) is minimum. The
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cross-entropy, a convenient measure of distance between two distributions, e.g. g(x) and

f(x), is defined as [14]

D(g, f) = Eg ln
g(X)

f(X)
=

∫
g(x) ln g(x)dx−

∫
g(x) ln f(x)dx (4.3)

Thus, our goal becomes

arg max
v

[∫
g∗(x) ln f(x;v)dx

]
, (4.4)

where {f( · ;v)} is a family of importance distributions on ANT
M . To solve the above

problem, we first use another distribution g′(x;w) to replace g∗(x), where

g∗(x;w) =
f(x;w) I{S(x) ≤ γ}

c
(4.5)

S(x) = ‖y −Hx‖2, I{ ·} is an indicator function and c is a constant for normalization.

Notice that if f(x̂;w) 6= 0 and γ = S(x̂), g′(x;w) = g∗(x). Let γ be the smallest

value such that, under the distribution f(x;w), Pw({S(x) ≤ γ}) ≥ ρ, where ρ is a

predetermined parameter.

To find the smallest γ such that Pw({S(x) ≤ γ}) ≥ ρ can be done using the Monte

Carlo method. First draw U random samples, x1, . . . ,xU , from f(x;u) and evaluate

their scores by S(x) respectively. Let γ be the dρUeth smallest score among all scores,

then

Pw({S(x) ≤ γ}) ≈ 1

U

U∑
i=1

I{S(xi) ≤ γ} =
dρUe

U
≥ ρ (4.6)

Substitute g′(x;w) into (4.4), we obtain

arg max
v

[∫
f(x;w)I{S(x) ≤ γ}

c
ln f(x;v)dx

]
(4.7)

By using the U random samples drawn from f(x;w) to estimate (4.7),

arg max
v

1

U

U∑
i=1

I{S(xi) ≤ γ} ln f(xi;v) (4.8)

we can obtain v̂ by solving

1

U

U∑
i=1

I{S(xi) ≤ γ} ∂

∂v
ln f(xi;v) = 0 (4.9)
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Since the initial guess f(x;w) may not be a well-approximated g∗(x), we use f(x; v̂) to

approximate g∗(x) again. The above process is repeated to estimate another v̂′ and γ′.

In fact, we will iteratively estimate the parameter v(k), γ(k) and approximate the g∗(x)

by f(x;v(k)), where k is the iteration index. It is shown in [15] that the CE method

converges, and if γ(k) converges to γ∗ = S(x̂) in the fixed number of iterations, we can

get an exact solution.

4.2 Particle Swarm Optimization

In [11], it was shown that the performance of a CE-based MIMO detection algorithm

exhibits an error floor in the high SNR region. Obviously, to remove the error floor

and improve the detector performance with small sample size, other elements need to

be included.

Particle Swarm Optimization (PSO) is an optimization technique inspired by birds-

flocking. A swarm algorithm consists of a number of possible ‘particles’ (or samples)

that move through the feasible solution space to explore the optimal solution. Every

particle keeps a record of the position of its best performance, called the individual best

position. The position of the best performance among all particles is the global best

position. The PSO concept consists of changing the velocity of each particle towards its

individual best position and the global best position, in every iteration. This concept

is added into the previously mentioned algorithm. In every iteration, the best sample

is recorded (relates to the individual best position), as well as the best sample over all

the iterations (the global best position), and their influences are added when updating

the new distribution. The evolutional concept acts as a driving force, pulling out the

samples that have sunk into the undesirable local minima and pushing them towards

the global minimum.

The complete algorithm is listed below:
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Step 1 : Initialize the distribution f (k)(xi) with uniform distribution
for i = 1, · · · , NT , respectively. Set k = 0.

Step 2 : Generate U samples xk
i,u from f (k)(xi) for u = 1, · · · , U and

construct the set {xk
u}U

u=1 where xk
u = [xk

1,u, · · · , xk
i,u, · · · , xk

NT ,u]
T .

Step 3 : Calculate the set of scores {S(xk
u)}U

u=1 according to
S(xk

u) = ||y −Hxk
u||2.

Step 4 : Find a γ(k) satisfying γ(k) = arg min
γ

P (S(x) ≤ γ) ≥ ρ for x ∈ {xk
u}U

u=1.

Then an elite set can be defined as {x|S(x) ≤ γ(k),x ∈ {xk
u}U

u=1}.
Step 5 : Calculate the distribution of samples in the elite set:

f (k)
s (xi = a) =

∑U
u=1 I{S(xk

u) ≤ γ(k)}I{xk
i,u = a}∑U

u=1 I{S(xk
u) ≤ γ(k)} , (4.10)

where a ∈ AM for i = 1, · · · , NT .

Step 6 : Update the sample vector with the overall best score (from
the 1st iteration to the kth iteration),xk

g(1), and the

best sample vector in the current iteration, xk
p(1).

Step 7 : Update the distribution according to

f (k+1)(xi = a) = α1f
(k)
s (xi = a) + α2f

(k)
g(1)(xi = a) + α3f

(k)
p(1)(xi = a)

+
(
1−∑3

i=1 αi

)
f (k)(xi = a)

(4.11)

where α is the weighting factor and 0 ≤ α < 1.

Step 8 : Stop at iteration k = K if the pre-defined stopping criterion is met;
otherwise, let k = k + 1 and go back to Step 2.

In (4.11), the weighting factors αi are smoothing factors that take the value between

0 and 1. The best values are found empirically, so that the PSD-CE method achieves a

balance between exploration and exploitation. fg(1) and fp(1) are distributions given in

[11], based on xg(1) and xp(1), respectively.

4.3 Improving the PSD-CE Detector

Even with inclusion of a PSO element, the convergence speed of the PSD-CE method

is still not fast enough. Thus, we propose a way to improve PSD-CE. In step 1 of the
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algorithm above, the initial distribution, f (0)(xi), is set to be uniformly distributed. This

is the main reason of the slow convergence since the algorithm will need more iterations

and samples to roam the entire solution space and converge at the best solution. A good

initial distribution is crucial if a better performance or faster convergence is required.

Perform the Zero Forcing (ZF) method to find an initial solution, x̂ZF . The reason

we choose ZF is its low complexity. Although the ZF solution is usually not a very ‘good’

one, it still contains some information that can greatly improve the performance of the

PSD-CE method.

The next problem is how to use the information drawn from x̂ZF . The x̂ZF gives a

rough idea about the whereabouts of the x̂ML so it would be a good decision to emphasize

the search more in that area. Given the jth element of x̂ZF , x̂ZF,j, where j = 1, . . . , NT ,

the new initial distribution is designed as

f
(0)
j (xi) =

Di∑M
k=1 Dk

(4.12)

where

xi ∈ AM , i = 1, . . . , M (4.13)

and

Di =
1

‖x̂ZF,j − xi‖2
. (4.14)

Since the summation of Di for i = 1, . . . ,M does not add up to 1, the denominator of

(4.12) normalizes the probability distribution.

From (4.12), the probability of each entry xi in the constellation is given as the

reciprocal of the distance between x̂ZF,j and xi. In other words, the entries nearer to

x̂ZF,j are set to have larger probabilities, while those further have smaller probabilities.

Simulation results show that with this new initial distribution, the performance of the

PSD-CE method has been greatly improved.

The additional computational complexity required to set the new initial distribution

to all the elements of the constellation is (M − 1)NT additions and 17MNT multiplica-
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tions ( here we assume that the complexity of division is equal to that of 8 mulplications),

where M is the constellation size. The computational complexity needed to compute

the Euclidean distance of a sample is NR(NT + 1) − 1 additions and (NT + 1)NR mul-

tiplications. Taking a 4 × 4 MIMO system with 16-QAM for example, the new initial

distribution requires 64 additions and 1088 multiplications, while calculating the Eu-

clidean distance of one sample requires 19 additions and 20 multiplications. Changing

the initial distribution is equivalent to adding about 55 samples only! Hence, this small

additional complexity results in a great improvement in the performance, as can be seen

in the simulation results in Chapter 7.
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Chapter 5

Signal Detection With CSI
Uncertainty

5.1 Effects of Channel Estimation Error

In the previous sections, the channel state information is assumed to be perfectly known

at the receiver. However, in practical situations, pilot symbols are often employed to

estimate the channel. Due to the finite number of pilots and noise, channel estimation

errors are prone to exist. Hence, minimization of the Euclidean distance criterion is no

longer optimum. Consideration of the errors of channel estimation has to be included

in the optimal criterion. In most of the studies up until today, systems with channel

estimation errors are modeled as

Ĥ = H + E (5.1)

where E is the channel estimation error. However, according to the least squares method

[25], the estimated channel should be orthogonal to the estimate errors. Hence, according

to least squares, the channel should be modeled as

H = Ĥ + E (5.2)

Under this assumption, we will derive the optimal criterion for the system in the presence

of channel estimation errors.
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Theorem 5.1.1. [27] Denote z1 and z2 circularly symmetric complex Gaussian random

vectors with zero means and full-rand covariance matrices Σij , E[ziz
†
j]. Then, condi-

tionally on z2, z1 is circularly symmetric complex Gaussian with mean Σ12Σ
−1
22 z2 and

covariance matrix Σ11 −Σ12Σ
−1
22 Σ21.

We want to compute p(Y|Ĥ,X), and we know that

p(Y|Ĥ,X) =

NR∏
i=1

p(Yi|X, Ĥi). (5.3)

Let z1 = Y†
i = X†H†

i +Z†i = X†(Ĥi +Ei)
† +Z†i and z2 = Ĥ†

i , then apply Theorem 5.1.1

to get

Σ11 = X†X + σ2
zIT (5.4)

Σ12 = X† (INT
− σ2

eINT

)
(5.5)

Σ22 = INT
− σ2

eINT
(5.6)

Therefore, p(Y†
i |X, Ĥ†

i) is circularly symmetric complex Gaussian distributed with

mean = X†Ĥ†
i (5.7)

and

covariance matrix = σ2
zIT + σ2

eX
†X (5.8)

Finally, be multiplying p(Yi|X, Ĥi) from i = 1, . . . , NR as in (5.3), we obtain

p (Y|X, Ĥ) =

exp

{
tr

{
−

(
Y − ĤX

) [
σ2

z IT + σ2
eX

HX
]−1

(
Y − ĤX

)H
}}

det {π [σ2
zIT + σ2

eX
HX]}NR

(5.9)

Take the logarithm of (5.9) and drop the constant terms to achieve

X̂ML = arg minX NR ln
{
det

{
σ2

zIT + σ2
eX

HX
}}

+

tr

{(
Y − ĤX

) [
σ2

zIT + σ2
eX

HX
]−1

(
Y − ĤX

)H
}

(5.10)

Note that with perfect CSI, PEP /σ2
z →∞, σ2

e → 0, we will get the original metric, i.e.

‖Y − ĤX‖2.
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5.2 QRD-M detection with imperfect CSI

Consider the case of one time slot only (generalization to T time slots is straightforward),

equation (5.10) will simplify to

x̂ML = arg min
x∈ANT

M

[
NR ln

(
σ2

z + σ2
e‖x‖2

)
+

‖y − Ĥx‖2

(σ2
n + σ2

e‖x‖2)

]
. (5.11)

In the QRD-M algorithm, we start the detection from the last layer, i.e., i = NT .

This is viable because R is an upper-triangular matrix hence the last element of the

vector ỹ can be expressed as

ỹNT
= rNT ,NT

xNT
+ ñNT

(5.12)

where ri,j is the (i, j)th element of R. ỹNT
does not contain interference from other

antennas, so no information of the elements from the upper layers are needed. When

detecting upper layers, only the elements of the previously extended paths are used.

However, in (5.11), the term ‖x‖2 in both the logarithm and denominator of the

fraction causes a problem when we want to apply QRD-M under imperfect channel

state information. This is because information of the elements of all the other layers

will be needed at every detection layer.

In this thesis, we provide a way to solve this problem. Observe that the QR-

decomposition can be performed on Ĥ, i.e., Ĥ = Q̂R̂. Keeping in mind that Q̂ is a

unitary matrix and R̂ is an upper-triangular matrix, the term ‖y − Ĥx‖2 can still be

expanded into a tree structure.

‖y − Ĥx‖2 = ‖y − Q̂R̂x‖2

= ‖Q̂Hy − R̂x‖2 (5.13)

As the exact metric for a node cannot be obtained, we modify the optimization criterion

in (5.11) by using a lower bound of the exact one.

Denote the metric to be minimized by Ξ(x), i.e.

Ξ(x) = NR ln(σ2
n + σ2

E‖x‖2) +
‖y − Ĥx‖2

(σ2
n + σ2

E‖x‖2)
. (5.14)
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Suppose now we are at the ith detection layer, and x̂i = [x̂i, x̂i+1, . . . , x̂NT
]T , i =

1, . . . , NT , are the estimated symbols in the current and previous layers of the path

in consideration. The lower bound for the metric in equation (5.14) in the ith detection

layer is given as

LB(Ξ(x̂i)) = N ln(σ2
n + σ2

E(‖x̂i‖2 + (i− 1)Amin)) +
‖y − µ(x̂i)‖2

(σ2
n + σ2

E(‖x̂i‖2 + (i− 1)Amax))

(5.15)

where Amin and Amax are the smallest power and the largest power of the symbol vectors

among the constellation alphabets, taking 16-QAM for example, Amin = 2 and Amax =

18. µ(x̂i) is the multiplication of the corresponding R̂ and x̂i. Think of equation (5.15)

as equation (5.14) under the best conditions in every detection layer.

The new QRD-M based detector begins from the first detection layer, i = NT . The

metrics for all possible values of x̂i are calculated with equation (5.15). Only M nodes

with the smallest metrics are kept, and the rest of the list is discarded. The same steps

are applied to the nodes of the next layer, and is done iteratively until i = 1. Finally,

the path with the smallest metric is the estimated signal vector.
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Chapter 6

Space Time Code

6.1 Background

In wireless communication systems with multiple antennas, we use space time codes

(STC) to improve the transmission reliability, obtaining both diversity and coding gains.

STC is based on joint encoding across space and time domains. STCs transmit redundant

copies of the data stream to the receiver through multiple transmit antennas (transmit

diversity). The transmitted signals will traverse different environments with scattering,

reflection, and so on, resulting in different copies of the data at the receiver end. Some

of the copies are better than others, meaning that they are less faded and thus provide

more reliable information. In fact, the receiver combines all copies of the received signal

in an optimal way to extract as much information from each of them as possible.

6.2 Alamouti Space-Time Block Code

In this section, we introduce the Alamouti space-time block code [19]. It is a simple

orthogonal space-time block code with a maximum-likelihood decoding algorithm detec-

tor. It is shown in [19] that with 2 transmit antennas, the scheme provides a diversity

order of 2NR.

Consider a system with NT = NR = 2 employing the transmit-diversity scheme of
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Alamouti. The Alamouti codeword is given by

C =

[
s1 −s∗2
s2 s∗1

]
(6.1)

In the case of BPSK, s1, s2 ∈ {−1, 1}. This scheme requires two signaling periods to

convey a pair of symbols s1 and s2. During the first time slot, the symbols s1 and s2 are

simultaneously transmitted from the first and second transmit antennas, respectively;

then, in the next time slot, −s∗2 and s∗1 are transmitted from the respective transmit

antennas.

The received signal matrix will be
[

y1,1 y1,2

y2,1 y2,2

]
=

[
h1,1 h1,2

h2,1 h2,2

] [
s1 −s∗2
s2 s∗1

]
+ Z (6.2)

where

y1,1 = h1,1s1 + h1,2s2 + z1,1

y1,2 = h1,2s
∗
1 − h1,1s

∗
2 + z1,2

y2,1 = h2,1s1 + h2,2s2 + z2,1

y2,2 = h2,2s
∗
1 − h2,1s

∗
2 + z2,2

For operation convenience, we rewrite (6.2) as



y1,1

y∗1,2

y2,1

y∗2,2


 =




h1,1 h1,2

h∗1,2 −h∗1,1

h2,1 h2,2

h∗2,2 −h∗2,1




[
s1

s2

]
+ Z′ (6.3)

where it can be written with the more common notation

Yequi = HequiXequi + Z′ (6.4)

Under the circumstances that the channel H is perfectly known at the receiver, the

maximum likelihood (ML) detector can be derived to be



h1,1 h1,2

h∗1,2 −h∗1,1

h2,1 h2,2

h∗2,2 −h∗2,1




† 


y1,1

y∗1,2

y2,1

y∗2,2


 =

[
hs 0
0 hs

] [
s1

s2

]
+




h1,1 h1,2

h∗1,2 −h∗1,1

h2,1 h2,2

h∗2,2 −h∗2,1




†

Z′ (6.5)
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where hs = |h1,1|2 + |h1,2|2 + |h2,1|2 + |h2,2|2. Note that this is also a zero-forcing (ZF)

detector, hence one of the many advantages of Alamouti coding is its easy decoding.

It is interesting that when employing Alamouti codes with any constant envelope

modulation, such as phase shift keying (PSK), the mismatched detector is exactly (6.5).

The mismatched detector is expressed as

arg min
X

∥∥∥Yequi − ĤequiXequi

∥∥∥
2

= arg min
X

(
Yequi − ĤequiXequi

)∗ (
Yequi − ĤequiXequi

)
(6.6)

= arg min
X

Y∗
equiYequi +

(
XequiĤequi

)∗
ĤequiXequi − 2Re

[
Y∗

equi (HequiXequi)
]

Since Y∗
equiYequi is a constant term, when trying to find the argument that minimizes a

function, it can be omitted. The second term of the equation can be calculated as

(
XequiĤequi

)∗
ĤequiXequi = X∗

equiĤ
∗
equiĤequiXequi

= hsX∗
equiXequi (6.7)

= c I

where c is a constant, therefore, the second term in (6.6) can also be ignored. That

leaves us with the last term in the equation. Denote XZF the solution found using the

ZF method, i.e. XZF = H∗
equiYequi.

arg min
X
−2Re

[
Y∗

equi (HequiXequi)
]

= arg max
X

Re
[(

H∗
equiYequi

)∗
Xequi

]

= arg max
X

Re [X∗
ZFXequi] (6.8)

Take QPSK symbols for example,

Re
[
x∗ZF, ixequi, i

]
= Re[x∗ZF, i]Re[xequi, i] + Im[x∗ZF, i]Im[xequi, i], i = 1, . . . , NT (6.9)

In order to find the solution, the multiplication of the real parts has to be positive. The
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same is for the multiplication of the imaginary parts. We get the following equations:

If Re[xZF, i] = Re[x∗ZF, i] > 0, Re[xequi, i] = 1 (6.10)

If Re[xZF, i] = Re[x∗ZF, i] < 0, Re[xequi, i] = −1 (6.11)

If Im[xZF, i] = −Im[x∗ZF, i] > 0, Im[xequi, i] = 1 (6.12)

If Im[xZF, i] = −Im[x∗ZF, i] < 0, Im[xequi, i] = −1 (6.13)

The above equations are exactly the ZF solutions! Thus, it is proved that when us-

ing the Alamouti code with QPSK (and can be generalized to any constant envelope

modulations), the mismatched detector is equivalent to the ML detector.

However, when the modulation does not have a constant envelope, such as 16−QAM ,

the mismatched detector of (6.5) is no longer optimal. In such cases, the ML decoding

criterion is still given by (5.10).

6.3 Hamming based Space-Time Block Code

Richard Hamming proposed an error-correcting code that could correct a 1-bit error and

detect 2-bit errors. This code, a binary linear error-correcting code, is named Hamming

code [24] after its inventor. Let n be the length of the codeword, and k be the length of

data bit, then it is apparent that n− k redundant bits are used for error checking. This

is often referred to as the (n, k) code.

Denote the k × n matrix G the generator matrix of a linear (n, k) code and let H

denote the (n−k)×n parity check matrix. G and H for linear block codes must satisfy

HGH = 0. (6.14)

For Hamming code, to encode a k-bit data u, the corresponding n-bit codeword x can

be obtained by

x = uG (6.15)

In this thesis, we consider the Hamming based space-time block code. The rationality

behind choosing the Hamming based space-time block code is mentioned in [20].
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The generating Hamming based space-time block code composed of two steps. First,

the Hamming codeword is generated. Then, the codeword is multiplexed into two

streams. The performance of Hamming based space-time block code depends on the

multiplexing scheme and the optimal multiplexing scheme can be found through simu-

lations.

Specifically, we consider a (8,4) binary Hamming based space-time block code. The

generator matrix of (8,4) binary Hamming code is

G =




1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 0


 (6.16)

After encoding the data into a 8-bit codeword, x = [x1, . . . , x8], we multiplex the 8

bits into two streams. A possible multiplexing scheme is to fill in the first row and then

the second row. Hence, the generated codeword is

X =

[
x1 x2 x3 x4

x5 x6 x7 x8

]
(6.17)

However, we can also fill in the column first and the generated codeword is

X =

[
x1 x3 x5 x7

x2 x4 x6 x8

]
(6.18)

The performance of these two multiplexing schemes and related comparison will be

provided in Chapter ??.
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Chapter 7

Simulation Results

This chapter is divided into two parts: In the first part, we present computer-

simulated performance some conventional MIMO detectors as well as the PSDCE and the

modified PSDCE detectors for a system with NT = 4 transmit antennas, NR = 4 receive

antennas and perfect CSI. In the second part, simulation results for the performance

of detectors with modified ML criterion based on the nonzero channel estimation error

are presented. We consider spatial multiplexing, Alamouti-coded and Hamming-coded

MIMO systems.

7.1 Performance Comparison with Perfect CSI

In Fig. 7.1, the BER performance comparison of some known detectors, such as ZF,

V-BLAST, PSD-CE and modified PSD-CE, is shown. In this simulation, we generated

60 samples in every iteration for only 3 iterations, for both the PSD-CE detector and

the modified PSD-CE detector using 4-QAM. We can see that the performance of the

conventional PSD-CE is better than that of ZF and V-BLAST. It is also shown that

the performance is further improved by the modified PSD-CE detector. Comparison

between the BER performance of the conventional PSD-CE and the modified PSD-CE

with 16-QAM is shown in Fig. 7.2. The solid lines are performances of the cases that run

5 iterations, and in every iteration 500 samples are generated. The proposed algorithm

outperforms the conventional method by more than 5dB at BER= 10−2. The dotted line
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shows the performance of the modified PSD-CE with only 3 iterations, also generating

500 samples in each iteration. We can see that the performance of the modified PSD-CE

even outperforms the conventional PSD-CE with a larger sample size! Therefore, it is

obvious that the modified PSD-CE improves the performance, as well as decreases the

complexity of the original PSD-CE method.
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Figure 7.1: Comparison of the BER performance of the modified PSD-CE detector (3
iterations and 60 samples/iteration) and other known detectors in a MIMO system with
NT = NR = 4 using 4-QAM.
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Figure 7.2: Comparison of the BER performance of the conventional PSD-CE detector
and the modified PSD-CE in a MIMO system with NT = NR = 4 using 16-QAM.
solid line : 5 iterations and 500 samples/iteration; dashed line : 3iterations and 500
samples/iteration.

7.2 Performance in the Presence of CSI Error

In this part of the simulations, we examine the influence of a system in the absence of

perfect CSI at the receiver. Consider a MIMO system with NT = NR = 4 and 16-QAM

modulation. Figure 7.3 shows the frame error rate (FER) versus SNR in dB for different

values of (S/N)P , PEP /σ2
z with the mismatched metric, (2.19).
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Figure 7.3: Effect of channel estimation errors on the system performance.

7.2.1 Spatial multiplexing system

In this section, we consider the performance of spatial multiplexing (SM) system which

uses two transmit antennas to transmit two independent data streams. For a 2 × 2

MIMO system, instead of a NR × 1 vector, let X be a NT × T matrix. Figures 7.4

and 7.5show the performances of T = 2 and 4 using the modified ML detector (5.10),

respectively. The rate-2 code here implies that there is no actual ‘coding’, as it does not

provide error correcting or detecting functions.
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Figure 7.4: Effect of channel estimation errors on a 2 × 2 MIMO with T = 2 using
BPSK.
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Figure 7.5: Effect of channel estimation errors on a 2 × 2 MIMO with T = 4 using
BPSK.
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Figure 7.6: The use of PSDCE detector under channel estimation errors in a 2×2 MIMO
with T = 2 using BPSK.
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Figure 7.7: The use of PSDCE detector under channel estimation errors in a 2×2 MIMO
with T = 4 using BPSK.
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7.2.2 Alamouti space-time coded system

In this section, Alamouti code is employed in a 2× 2 MIMO system using 16-QAM, i.e.

T = 2. Recall that the ML performance of the system using constant envelope constella-

tion is equal to that of the mismatched detector. Figure 7.8 shows comparison between

the performances of the previously described system and the mismatched system. The

gain is small but certain.
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Figure 7.8: Employing Alamouti code in a 2 × 2 systme with estimation errors with
T = 4 using 16-QAM.

7.2.3 Hamming coded system

Here, we consider a space-time block code obtained by mapping a (8, 4) binary Hamming

code to 2×4 BPSK codewords. The 8-bit Hamming codeword c = [c1, . . . , c8] is mapped

to the BPSK symbols like so

x =

[
x1 x2 x3 x4

x5 x6 x7 x8

]
(7.1)

where xi = (−1)ci . In the first time slot, x1 and x5 are transmitted, then x2 and x6 are

transmitted in the second time slot and so on. The results obtained is shown in figure
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7.9.
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Figure 7.9: Employing Alamouti code in a 2 × 2 systme with estimation errors with
T = 4 using 16-QAM.

36



Chapter 8

Conclusion

In this thesis, we investigate the optimum criterion of MIMO signal detection in the

presence of channel estimation errors. Most existing studies on this subject assumed

that the true channel matrix is independent of the associated error matrix. However, for

least square or minimum mean square error channel estimators, the orthogonal principle

implies that the channel estimator should be uncorrelated with the estimation error.

Therefore, it is more appropriate to use such an assumption accordingly.

Although the optimal (ML)@detector can be derived, its high complexity makes it

infeasible in practice. To overcomes this difficulty, we consider two sub-optimal detector

structures that take imperfect CSI into account. The first suboptimal detector, referred

to as Particle-Swarm-Driven Cross-Entropy (PSD-CE) detector, is a stochastic search

based detection scheme. Its performance depends on the setting of the initial distribution

and uniform distribution is often used for lack of a priori information. We propose a

method to obtain the initial distribution which then leads to performance and complexity

improvements. The other suboptimal detector is the modified QRD-M detector.

Since our design criterion is no longer equivalent to the minimum Euclidean distance

criterion, the original QRD-M method cannot be used directly. We propose a low-

complexity QRD-M detection method, using a new decoding metric which is derived

from our assumption on the uncorrelatedness between the estimated channel matrix

and the estimation error matrix. Finally, we extend our study to space-time block
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coded MIMO systems and examine their performance using the new decoding metric.

In all cases under investigation, we show by computer simulated numerical exam-

ples that the proposed decoding metric does offer performance improvement over that

achieved by using conventional metric that does not consider the imperfect CSI effect.
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