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MIMO Signal Detection in the presence of Channel
Estimation Errors

Student : Yu-Ting Lin Advisor : Yu T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

The multiple-input multiple output (MIMO) technology promises significant capac-
ity increase over conventional single-input single-output systems. Most investigations on
MIMO signal detection, however, assume perfect channel state information (CSI), which
is difficult, if not impossible, to realize in practice. Earlier studies have shown that that
the performance of MIMO detection schemes will suffer from severe degradation in the
presence of channel estimation errors.

In this thesis, the effects of imperfect CSI on two MIMO signal detectors, namely,
the Particle-Swarm-Driven Cross-Entropy (PSD-CE) based detector and the QRD-M
detector, are studied, and new detector structures that take into account the CSI error
are proposed.

The PSD-CE detector tries to estimate and refine the ‘a posteriori probability dis-
tribution’ of the transmitted signal location given the received vector. The distribution
is estimated by sampling over the neighborhood of the received vector and is iteratively
updated to the one which has the minimum cross entropy with respect to the current
distribution. It is further modified by applying the concept of Particle Swarm Optimiza-
tion to render a mixture of probability distribution. QRD-M, on the other hand, is an
efficient tree-search based detector. It prunes the search tree to reduce the number of

surviving paths with minimum performance loss.
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Since the minimum Euclidean distance criterion is no longer suitable for both de-
tectors in the presence of channel estimation errors, the proposed MIMO detectors take
into account the imperfect CSI effect by averaging the estimation errors to obtain a
new decoding metric. Numerical examples are given to demonstrate the performance

improvement which is attained with insignificant complexity increase.
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Chapter 1

Introduction

Multiple-input and multiple-output (MIMO) technologies have gained enormous
popularity in the recent years because the significant communication capacity enhance-
ment they promised to deliver [1], [3]. A MIMO system uses multiple antennas at both
the transmit and the receive ends. In a rich-scattering MIMO channel that can be
characterized by a channel matrix with independent and identically distributed (i.i.d.)
Rayleigh entries, the associated capacity can increase linearly with the minimum of the
number of transmit and receive antennas [2].

However, such a capacity increase can only be realized if the channel matrix is per-
fectly known. The more practical concern of detecting MIMO signals has been answered
by many alternatives, e.g. the Zero Forcing (ZF) [4] detector and V-BLAST [6] detector.
Like the capacity issue, these detection schemes perform well only if the channel state
information (CSI), i.e., the channel matrix, is perfectly known at the receiver [7]. In
practical situations, the knowledge of the channel is never perfect and is attained by
some channel estimation scheme at the receiver. The most popular and practical way
to obtain the CSI at the receiver (CSIR), is to insert known sequences of symbols, often
referred to as pilot signals, within the transmit data stream to aid channel estimation
[8], [9]. Information symbols are then detected as though the estimated channel matrix
is perfect. Due to the finite number of pilot symbols and various sources of noise and

interference, the receiver can only obtain imperfect estimates of the channel. As a result,



such a mismatched detector is a sub-optimal approach and its performance is severely
degraded in the presence of channel estimation errors as shown in [8] and [10].

The optimum detection method in MIMO systems is the Maximum Likelihood (ML)
detector which often calls for exhaustive search over the entire set of possible transmitted
symbol vectors. Apparently, the major drawback of ML detector is its high complexity
that increases exponentially with the number of transmit antennas and modulation size
of the constellation. On the other hand, when perfect CSI is not available, the minimum
Euclidean distance criterion is no longer an ML one. To find an ML detection metric,
many investigations [20], [22], assume that the channel (matrix) is uncorrelated with
the channel estimation error (matrix). This is not appropriate if we recall that both the
least-squares (LS) and minimum mean square error (MMSE) channel estimators follows
the orthogonal principle which says that the estimation error should be orthogonal to
the estimator in some sense. Based on this observation we adopt a different model and
derive a new detection metric based on the latter assumption.

In our work, we consider two MIMO detection schemes: the Particle-Swarm-Driven
Cross-Entropy (PSD-CE) [11] method and the AM-algorithm combined with QR de-
composition (QRD-M) [12], [13]. Both schemes have comparatively low complexities
compared with the ML detector.

The PSD-CE is a Monte Carlo based stochastic approach that attempts to find
the transmitted symbol. It is an iterative method that tries to approach the ‘optimal
probability distribution’ of the transmitted signal. It generates samples over the entire
neighborhood of the received vector with uniform distribution. Then the probability
distribution of the samples is updated with the ‘better’ samples. After some iterations,
the probability distribution should close in on the optimal distribution in the Cross-
Entropy (CE) sense [14]. To improve the performance further, the concept of Particle
Swarm Optimization (PSO) [16], [17] is added.

In order to accelerate the convergence speed of this stochastic approach, we make



some changes to the original PSD-CE method. Going over the steps of PSD-CE, we
realize that initializing the probability distribution with uniform distribution means be-
ginning the search without any information. Instead of starting the search in such an
inefficient manner, we could try to use some information that can be easily obtained by
some other simple methods, Zero Forcing for example. By changing the initial distribu-
tion so that it contains some useful information, the modified PSD-CE method becomes
more efficient, bearing better performance than the conventional PSD-CE with lower
computational complexity.

Unlike the PSD-CE method, QRD-M is a deterministic detection algorithm. Dif-
ferent from the QR detection [21], QRD-M is a tree search algorithm [13], [21]. The
concept of QRD-M is to apply the tree search to detect symbols in a sequential man-
ner. Instead of making a decision for the symbols at each detection level as in the QR
detection method, QRD-M retains M reliable paths. Decision is made only after all the
layers have been processed. It can achieve near-ML performance with relatively low but
fixed complexity. There is a trade-off between the complexity and performance on the
selection of M. With a large M, better performance is achieved at the cost of higher
complexity. Usually, M is set to be the size of the modulation constellation.

The new optimization criterion mentioned earlier is used in place of the original
criterion ||y — Hx||? in the PSD-CE method. However, it cannot be directly applied to
the QRD-M algorithm because it can no longer be decomposed into the sum of separate
branch metrics, as will be shown in Chapter 5. We figured out a way such that the new
criterion becomes the lower bound and can be used in the QRD-M method to achieve
better performance in the presence of channel estimation errors.

By employing some simple space-time block codes (STBC) [18], [19], the effects of
the gain in the modified ML criterion is apparent. G. Taricco et al. [20] examines
space-time decoding with imperfect channel estimations, but their analysis is based on

the assumption that the channel estimation error is orthogonal to the channel.



The rest of this thesis is organized as follows: in Chapter 2 we describe the system
model used and the main assumptions concerning channel estimation. In Chapter 3 we
review some existing MIMO detection schemes that are of interest to our study. Chapter
4 gives a detailed description of the PSD-CE algorithm, as well as the modifications
made to improve its performance. We then propose improved detectors in the presence
of channel estimation errors in Chapter 5. Space-Time codes are introduced in Chapter
6. Simulation results are given in Chapter 7 and finally, Chapter 8 gives the conclusion.

The following notations are used throughout the thesis: upper case bold symbols
denote matrices and lower case bold symbols denote vectors. Iy is a N X N identity
matrix. The superscripts (-)7, (-)¥ and (-) represent the transpose, Hermitian transpose
and the pseudo-inverse, respectively. E{-} denotes the statistical expectation, tr(-) is

the trace of a square matrix.



Chapter 2

System Model

2.1 MIMO Systems with Perfect Channel Estima-

tion

We consider a MIMO system [1] with N7 transmit antennas and Ny receive anten-

nas.

As shown in Fig. 2.1, data is demultiplexed into Ny data substreams, then the

substreams are mapped onto sequences of M-QAM symbols where the signal constella-

tion is denoted by Aj;. These symbol sequences are transmitted over the Ny antennas

simultaneously.
Transmitter Receiver
X h
1,1
Input Estimated
q Demux o o h . 4 4
ata . I,N ata
Data to ® | Modulation | ® Te M Detector ———»
[ ] [ ] [ ]
substreams h
x Ng.l
Np
; —’h YNg
7Y
ny,

Figure 2.1: A MIMO system model.



If T' consecutive signal vectors are transmitted, the transmitted signal can be rep-
resented as an Ny x T matrix X, where X = [x1,...x7] and x; is the signal vector
transmitted at the tth time slot. The signal vector transmitted at the ¢th time slot x;

can be represented as

Xy = [T14y. .- ,xNT,t]T € A]]&T (2.1)

Similarly, assuming perfect timing receiver and quasi-static channel , the correspond-

ing Nr x T received signal matrix, Y, can be expressed as

Y =HX+7Z (2.2)
where
Y =[yi, -, ¥7] (2.3)
Z=|z,...,27] (2.4)
and
y: =gl o CR (2.5)
75— hor L e G (2.6)
hii hig - hang
L e o7
hnga hng2 hngng

Here, C denotes the complex-valued domain. H describes the overall N x Ny channel
matrix, the (7,7)th element of H, h;;, is the channel response between the ith transmit
antenna and the jth receive antenna. In this thesis, the elements of H are independently
and identically distributed (i.i.d.) zero-mean complex Gaussian random variables with
unit variance. Z is the Ng x T additive white Gaussian noise (AWGN) matrix observed
at receiver. Each element of Z has zero mean and variance o2, while the average transmit

power of each antenna is normalized to one. Hence, we have

a1 27 1 Hyp_
Essz[HXH ]—mE[W{XX =1 (2.8)
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and

E{Z,Z8} = o?1y,,. (2.9)

where tr denotes the trace operation, Iy is an identity matrix of size N x N and t =

1,---,T.

2.2 Pilot-Based Channel Estimation

The channel information is estimated at receiver and it is often assumed to be perfectly
estimated in a lot of literature. However, due to the time-varying channels and quan-
tization errors, only an estimate of the channel matrix that is corrupted by estimation
errors is available at the receiver side and the assumption about perfect estimate is not
rational in a practical system.

For pilot-based channel estimation scheme, a pilot matrix, X p, is sent and the receiver

observes

Yy =HXp +Zp (2.10)

where Zp is the noise matrix affecting the transmission of the pilot symbols. Xp is a

known Np x P matrix at receiver with average pilot symbol energy

1 I3
E, £ — || Xp|? = tr{ Xp X3 2.11

Since the number of the elements of H is NgNr, at least Ng Ny independent mea-
surements are needed to estimate the Nz x Ny channel matrix. To satisfy this condition,
Ng measurements are observed in each time slot and we require P to be larger than or
equal to Np. Furthermore, in order to yield independent measurements, X p must have
rank Np.

Several channel estimation methods have been proposed [25]. The property of chan-
nel estimation error depends on the adopted channel estimation method. A channel
estimation method, called Least Square (LS) method, is a common technique used to

estimate the channel H and is considered in this thesis.



The LS estimate of H can be found by
H=Y,XI (XpXi)™ (2.12)
Moreover, it can be expressed in terms of H as
H=H+E (2.13)

where E is the channel error matrix. Due to the orthogonal property of LS method, E
and H are uncorrelated. In addition, because the elements of H and H are complex
Gaussian random variable, the elements of E are also. Hence, H and E are independent.

From (2.10), (2.12) and (2.13), we can show that

H = YpXI (XpX8) '+ E
— (HXp+7Z) XZ (XpXE) ' +E

E = {7ZpXE (XpXE)0 (2.14)
From (2.14), we also have
E; = —(Zp); X5 (XpX3)™! (2.15)

(-); denoting the ith row of the matrix (-). We use orthogonal pilot matrices which can
be generated from a perfect root-of-unity sequence (PRUS) [26], then the covariance
matrix of E; is

E[E]E;] = o2(XpXp)™" (2.16)

Since the pilot matrices are orthogonal, with (2.11), the covariance matrix becomes

2
E[EME;] = 0?1, agz(;TZP) (2.17)

Considering one time slot, we rewrite (2.10) with (2.13) as:
Yt - HXt —|— Zt
= H+E)X,+7Z

= HX, +EX, + Z
= ﬂXt+Z/t

(2.18)
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When the channel estimate H is used in place of the perfect channel matrix H, the
corresponding noise term becomes Z;. It consists of the additive noise component Z; as
well as the influence caused by the channel estimation error EX;. Thus, the power of
Z; becomes [22]
oy = atr{B{ZZ"}}

= +tr{E{(Z, + EX,)(Z, + EX;)"}} (2.19)

= Ltr{E{EE"} + 0%}
where we assume that E, is uncorrelated with Z;. From (2.19), we can see that the chan-
nel estimation error causes the overall noise power to increase, resulting in performance

degradation.



Chapter 3
A Review of MIMO Detectors

In this chapter, we give a brief overview of the detectors that are of interest to our
investigation, assuming, for the time being, that the channel is perfectly known at the

receiver.

3.1 Maximum Likelihood Detector

The Maximum Likelihood (ML) detector performs a search over the entire set of

possible candidates and chooses the one that minimizes
XL :argm)énHY—HXHQ. (3.1)

The ML search is often exhaustive whence very time-consuming, especially for systems
with a large number of transmit antennas or a high-order modulation. Even though the
ML detector has the best performance among all MIMO detectors, its complexity makes

it infeasible in practice.

3.2 Zero-Forcing (ZF) Detector

Linear detector is a class of simple approaches to recover the transmitted signal
matrix, X, from the received interference-corrupted signal matrix, Y, by using an Np x

Npg weight matrix P to linearly combine (filter) the elements of Y. The zero-forcing

10



(ZF) detector belongs to this class. By multiplying the received signal matrix Y with
the Moore-Penrose pseudo-inverse [5] of the channel matrix H, it attempts to null out

the influence introduced by the channel. Thus, the ZF linear filtering (weight) matrix is
Pzr=H' = (H'H)'H". (3.2)

Each element of the output matrix, PzrY, is quantized to the nearest symbol in the

constellation, A, to obtain an estimate of the transmitted signal vector X, ie.
X,p=Q{H' Y}=0{X+H'H)'H n}. (3.3)

where O denotes the quantization operator.

The main advantage of a ZF detector is its low implementation complexity. How-
ever while the detector nulls out the spatial interference, it fails to take the noise into
consideration and causes the power of the noise to boost up significantly, resulting in
performance degradation. Only in the case of an orthonormal channel matrix, is the
performance of the ZF detector identical to that of the optimum ML detector. Oth-
erwise, ZF generally leads to noise enhancement, thus does not provide satisfactory

performance.

3.3 The QRD-M Detector

The tree search based QRD-M algorithm attracts special attention as it achieves near-
ML performance, while requiring substantially low complexity in comparison with the
ML detector. The QRD-M algorithm selects only M candidate nodes with the smallest
accumulated metrics at each level of the search tree, hence reduces the search complexity.

The first step of the QRD-M algorithm is to perform QR-decomposition on the

channel matrix H, in doing so we obtain

H=QR (3.4)

11



where Q is an Ng X Ng unitary matrix, and
R:[ R } (3.5
O(Np—Nr)x Ny
R is an Ny x Np upper triangular matrix and O(y,—n,)xn, 18 a zero matrix of size
(Ngr — Nr) x Ny. Note that Q¥ Q = I. Ignoring the Gaussian noise for a moment and
pre-multiplying the equation y = Hx, where x = [z1,...,zy,] is the transmit signal
vector, by Q¥ , we obtain

§=Rx+7 (3.6)

where ¥ is the first Ny rows of Q”y and z is the first Ny rows of Q¥ z.

Based on (3.6), we can span a tree-like structure with depth N, as shown in Fig.
(3.1). The process starts from the last element of x, i.e., x;,i = Np, because from
equation (3.6) we have yn, = ryp nyTnN, + NNy, Where r;; is the (4,7)th element of R,
suggesting that it has no interference from the other antennas. The algorithm calculates

the metric for all possible values of xy, from the constellation set of size C using [13]
| G =Ry % | (3.7)

where g; is the ith element of ¥, R; is the ith row of R and X; = [Z;11, Tiv2, ..., Tng)
is the vector of estimated symbols of the specific survivor path. Only M branches with
the smallest metrics are retained and the rest of the list is discharged. This procedure
is applied to the nodes of the next level, and is repeated until a tree depth of Np is
reached, 1 = 1.

The general detection process is described in Table 3.1 [13].

Table 3.1: The QRD-M detection algorithm.

12



1% stage
Q O O ®
2" stage
OXOXOXO OO0 OQO0O0 OO0O0QO
3" stage

Figure 3.1: Tree structure of QRD-M (M =4), Ny = 3, Ng = 3, with 4-QAM modula-
tion.

Step 1: Perform QR-decomposition on the channel matrix H.
Step 2 : Premultiply the received vector y with Q.

Step 3 : For every retained node, extend all branches to C nodes.
Step 4 : Calculate the branch metrics using equation (3.7).

Step 5: Retain only M branches with the smallest metrics and
delete the rest of the list.

Step 6 : Go to next level and return to Step 3.

13



Chapter 4

Particle-Swarm-Driven
Cross-Entropy MIMO Detector

4.1 The Cross-Entropy Method

In this section, we give a detailed description of the concepts used in the Particle-
Swarm-Driven Cross-Entropy (PSD-CE) method. We consider a single time slot only;
the extension to T' time slots is straightforward. The PSD-CE method is a Monte Carlo
based stochastic approach to solve

arg min ||y — Hx|%. (4.1)

xeANT

As the name suggests, this method combines the ideas of both Particle Swarm Opti-
mization (PSO) and the Cross-Entropy (CE) method. Let us first begin with the latter
approach.

Assuming perfect channel knowledge at the receive end, we define the score function
S(x) = ||y — Hx]|. (4.2)

In this situation, the optimal importance distribution g*(x) should be a peak at Xz,
ie. ¢g"(x) = 0(x —Xpp). Since we do not know ¢*(x), we want to find the parameter

v of f(x;Vv) such that the cross-entropy between ¢*(x) and f(x;v) is minimum. The

14



cross-entropy, a convenient measure of distance between two distributions, e.g. g(x) and

f(x), is defined as [14]

- 9(X)
D(o. 1) = Byl Gt = [ a0 mngxax— [ at01n fix (4.3)

Thus, our goal becomes

arg max [ / (%) In f(x: V)dx} , (4.4)

where {f(-;v)} is a family of importance distributions on A}7. To solve the above

problem, we first use another distribution ¢'(x; w) to replace g*(x), where

g (x: w) = f(xw) I{f(X) <7} (4.5)

S(x) = |ly — Hx||?, I{ -} is an indicator function and c is a constant for normalization.
Notice that if f(x;w) # 0 and v = S(x), ¢'(x;w) = ¢g*(x). Let v be the smallest
value such that, under the distribution f(x;w), Pu({S(x) < v}) > p, where p is a
predetermined parameter.

To find the smallest v such that Py ({S(x) < v}) > p can be done using the Monte
Carlo method. First draw U random samples, Xi,...,Xy, from f(x;u) and evaluate

their scores by S(x) respectively. Let v be the [pU]th smallest score among all scores,

then
Pu({5(x) < 4 Zz{s x) <y =120, (46)
Substitute ¢’(x; w) into (4.4), we obtaln
arg max {/ fosw I{S( )< }ln f(x;v)dx (4.7)

By using the U random samples drawn from f(x;w) to estimate (4.7),

U
arg max % Z I{S(x;) <~}In f(x;;v) (4.8)

we can obtain v by solving
i=1 ' 7 ov v ’

15



Since the initial guess f(x;w) may not be a well-approximated ¢g*(x), we use f(x;¥) to
approximate ¢g*(x) again. The above process is repeated to estimate another v/ and +'.
In fact, we will iteratively estimate the parameter v(*), 4(*) and approximate the g*(x)
by f(x;v®), where k is the iteration index. It is shown in [15] that the CE method
converges, and if yv*) converges to v* = S(X) in the fixed number of iterations, we can

get an exact solution.

4.2 Particle Swarm Optimization

In [11], it was shown that the performance of a CE-based MIMO detection algorithm
exhibits an error floor in the high SNR region. Obviously, to remove the error floor
and improve the detector performance with small sample size, other elements need to
be included.

Particle Swarm Optimization (PSO) is an optimization technique inspired by birds-
flocking. A swarm algorithm consists of a number of possible ‘particles’ (or samples)
that move through the feasible solution space to explore the optimal solution. Every
particle keeps a record of the position of its best performance, called the individual best
position. The position of the best performance among all particles is the global best
position. The PSO concept consists of changing the velocity of each particle towards its
individual best position and the global best position, in every iteration. This concept
is added into the previously mentioned algorithm. In every iteration, the best sample
is recorded (relates to the individual best position), as well as the best sample over all
the iterations (the global best position), and their influences are added when updating
the new distribution. The evolutional concept acts as a driving force, pulling out the
samples that have sunk into the undesirable local minima and pushing them towards
the global minimum.

The complete algorithm is listed below:
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Step 1 :

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

Step 7 :

Step 8 :

Initialize the distribution f*)(z;) with uniform distribution
for i =1,---, Np, respectively. Set k = 0.

Generate U samples z¥, from f*)(z;) for u=1,--- U and
kU ko [k k kT
construct the set {x;},_, where x; = [z, -, 27, -+ , 7§, .

Calculate the set of scores {S(x)}Y_, according to
S(xy) = |ly — Hx%.

Find a 7*) satisfying v*) = argmin P(S(x) < v) > p for x € {x*}V_,.
v
Then an elite set can be defined as {x|5(x) <% x ¢ {xF}V_ ]

Calculate the distribution of samples in the elite set:

Y HS(x) < /Wi{af, = a)

fs(k) T, =a) = , 4.10
= D H{S(xE) <7} )
where a € Ay for i =1,--- , Np.
Update the sample vector with the overall best score (from
the 1st iteration to the kth iteration) ,X];(l), and the
best sample vector in the current iteration, x’;(l).
Update the distribution according to
k k k
e =)= anfPe =) Faafil)@m=0) +asfifw=a) )

+ (1= @) f¥ (@ = a)
where o is the weighting factor and 0 < o < 1.

Stop at iteration k£ = K if the pre-defined stopping criterion is met;
otherwise, let £ =k + 1 and go back to Step 2.

In (4.11), the weighting factors «; are smoothing factors that take the value between

0 and 1.

The best values are found empirically, so that the PSD-CE method achieves a

balance between exploration and exploitation. fy) and f,) are distributions given in

[11], based on x,(1y and X,), respectively.

4.3 Improving the PSD-CE Detector

Even with inclusion of a PSO element, the convergence speed of the PSD-CE method

is still not fast enough. Thus, we propose a way to improve PSD-CE. In step 1 of the

17



algorithm above, the initial distribution, £ (x;), is set to be uniformly distributed. This
is the main reason of the slow convergence since the algorithm will need more iterations
and samples to roam the entire solution space and converge at the best solution. A good
initial distribution is crucial if a better performance or faster convergence is required.

Perform the Zero Forcing (ZF) method to find an initial solution, Xzr. The reason
we choose ZF is its low complexity. Although the ZF solution is usually not a very ‘good’
one, it still contains some information that can greatly improve the performance of the
PSD-CE method.

The next problem is how to use the information drawn from Xzr. The Xz gives a
rough idea about the whereabouts of the X, so it would be a good decision to emphasize
the search more in that area. Given the jth element of Xz, 2275, where j =1,..., Np,

the new initial distribution is designed as

i
j 2 G . (4.12)
. lecwzl Dy,
where
x EAp,i=1,...,. M (4.13)
and
D; = ! (4.14)
Y llEzey - ml* '
Since the summation of D; for i = 1,..., M does not add up to 1, the denominator of

(4.12) normalizes the probability distribution.

From (4.12), the probability of each entry z; in the constellation is given as the
reciprocal of the distance between Zzp; and ;. In other words, the entries nearer to
Zzr; are set to have larger probabilities, while those further have smaller probabilities.
Simulation results show that with this new initial distribution, the performance of the
PSD-CE method has been greatly improved.

The additional computational complexity required to set the new initial distribution

to all the elements of the constellation is (M — 1) Ny additions and 17M Ny multiplica-
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tions ( here we assume that the complexity of division is equal to that of 8 mulplications),
where M is the constellation size. The computational complexity needed to compute
the Euclidean distance of a sample is Ng(Nr + 1) — 1 additions and (Nr + 1) Ng mul-
tiplications. Taking a 4 x 4 MIMO system with 16-QAM for example, the new initial
distribution requires 64 additions and 1088 multiplications, while calculating the Eu-
clidean distance of one sample requires 19 additions and 20 multiplications. Changing
the initial distribution is equivalent to adding about 55 samples only! Hence, this small
additional complexity results in a great improvement in the performance, as can be seen

in the simulation results in Chapter 7.
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Chapter 5

Signal Detection With CSI
Uncertainty

5.1 Effects of Channel Estimation Error

In the previous sections, the channel state information is assumed to be perfectly known
at the receiver. However, in practical situations, pilot symbols are often employed to
estimate the channel. Due to the finite number of pilots and noise, channel estimation
errors are prone to exist. Hence, minimization of the Euclidean distance criterion is no
longer optimum. Consideration of the errors of channel estimation has to be included
in the optimal criterion. In most of the studies up until today, systems with channel

estimation errors are modeled as

H=H+E (5.1)

where E is the channel estimation error. However, according to the least squares method
[25], the estimated channel should be orthogonal to the estimate errors. Hence, according

to least squares, the channel should be modeled as
H=H+E (5.2)

Under this assumption, we will derive the optimal criterion for the system in the presence

of channel estimation errors.
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Theorem 5.1.1. [27] Denote z, and zy circularly symmetric complex Gaussian random

. . . A .
vectors with zero means and full-rand covariance matrices 3;; = E[zzzj] Then, condi-

tionally on zs, 71 1s circularly symmetric complex Gaussian with mean 21222_2122 and

covariance matrix 31, — 21222_21221.

We want to compute p(Y]ICI, X), and we know that

MWHXFﬂiMEMiﬂ- (5.3)

i=1

Let z, = Y] = X'H! + Z! = XI(H, + E;)' + Z] and z, = H, then apply Theorem 5.1.1

to get
¥ = XX +0%0r (5.4)
S = X'(In, — 01y,) (5.5)
3y = Iy, — o1y, (5.6)

Therefore, p(Y|X, HI)) is circularly symmetric complex Gaussian distributed with
mean = X H! (5.7)
and
covariance matrix = oIy + 02XX (5.8)
Finally, be multiplying p(Y;|X, I:Il) fromi=1,..., Ng as in (5.3), we obtain

o - (80 et 4] (-8}

Y| X, H) =
p(Y|X, H) det {7 [0y + o2XHX]}"

(5.9)

Take the logarithm of (5.9) and drop the constant terms to achieve
XML = argming Ngln {det {azIT + O’?XHX}} +
A _ ~ \H
W{(YEAHX>hﬁh4wﬁXHX]I(YEAHX> } (5.10)
Note that with perfect CSI, PEp/0? — oo, 02 — 0, we will get the original metric, i.e.
Y — HX|2.

21



5.2 QRD-M detection with imperfect CSI

Consider the case of one time slot only (generalization to 7" time slots is straightforward),
equation (5.10) will simplify to

. . ly — Hx|]
%Xy = arg min | Ngln (02 + o?||x|]?) + —0———
xeANT (o + eclixIF) (o7 + o2lx]]?)

. (5.11)
In the QRD-M algorithm, we start the detection from the last layer, i.e., ¢ = Nr.
This is viable because R is an upper-triangular matrix hence the last element of the

vector y can be expressed as

YNy = TNp,NpTNp + TNy, (5.12)

where r;; is the (7,j)th element of R. gy, does not contain interference from other
antennas, so no information of the elements from the upper layers are needed. When
detecting upper layers, only the elements of the previously extended paths are used.

However, in (5.11), the term ||x||? in both the logarithm and denominator of the
fraction causes a problem when we want to apply QRD-M under imperfect channel
state information. This is because information of the elements of all the other layers
will be needed at every detection layer.

In this thesis, we provide a way to solve this problem. Observe that the QR-
decomposition can be performed on I:I, e, H= QR Keeping in mind that Q is a
unitary matrix and R is an upper-triangular matrix, the term lly — I:IX||2 can still be

expanded into a tree structure.

—Hx|?2 = e f{ 2
Iy — il =y - QRx* _—
1Q"y — Rx||
As the exact metric for a node cannot be obtained, we modify the optimization criterion
in (5.11) by using a lower bound of the exact one.

Denote the metric to be minimized by Z(x), i.e.

ly — Hx|]

(o5 + oplIx|*)

Z(x) = Ngln(o? + o3 ||x||?) + (5.14)
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Suppose now we are at the ith detection layer, and X; = [Z;, Ziy1,...,Znp)7, @ =

1,..., Ny, are the estimated symbols in the current and previous layers of the path

in consideration. The lower bound for the metric in equation (5.14) in the ¢th detection

layer is given as

ly — p2(%:)|”

(o5 + oB(I%ll* + (0 = 1) Amaa))
(5.15)

LB(Z(%;)) = NIn(o? + o5 (||1%:|* + (i — 1) Apin)) +

where A,,;, and A,,.. are the smallest power and the largest power of the symbol vectors
among the constellation alphabets, taking 16-QAM for example, A,,;, = 2 and A4 =
18. p(%;) is the multiplication of the corresponding R and %;. Think of equation (5.15)
as equation (5.14) under the best conditions in every detection layer.

The new QRD-M based detector begins from the first detection layer, : = Np. The
metrics for all possible values of #; are calculated with equation (5.15). Only M nodes
with the smallest metrics are kept, and the rest of the list is discarded. The same steps
are applied to the nodes of the next layer, and is done iteratively until : = 1. Finally,

the path with the smallest metric is the estimated signal vector.
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Chapter 6

Space Time Code

6.1 Background

In wireless communication systems with multiple antennas, we use space time codes
(STC) to improve the transmission reliability, obtaining both diversity and coding gains.
STC is based on joint encoding across space and time domains. STCs transmit redundant
copies of the data stream to the receiver through multiple transmit antennas (transmit
diversity). The transmitted signals will traverse different environments with scattering,
reflection, and so on, resulting in different copies of the data at the receiver end. Some
of the copies are better than others, meaning that they are less faded and thus provide
more reliable information. In fact, the receiver combines all copies of the received signal

in an optimal way to extract as much information from each of them as possible.

6.2 Alamouti Space-Time Block Code

In this section, we introduce the Alamouti space-time block code [19]. It is a simple
orthogonal space-time block code with a maximume-likelihood decoding algorithm detec-
tor. It is shown in [19] that with 2 transmit antennas, the scheme provides a diversity
order of 2Np.

Consider a system with Ny = Np = 2 employing the transmit-diversity scheme of
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Alamouti. The Alamouti codeword is given by

C= { 18 } (6.1)

Sa 8]
In the case of BPSK, s1,s2 € {—1,1}. This scheme requires two signaling periods to
convey a pair of symbols s; and s,. During the first time slot, the symbols s; and s, are
simultaneously transmitted from the first and second transmit antennas, respectively;
then, in the next time slot, —sj and sj are transmitted from the respective transmit
antennas.

The received signal matrix will be

Y11 Y12 hii hip 51 —S5
' ' = ’ ’ S+ 7Z 6.2
[ Y21 Y22 } [ hai haoo } [ S2 S } ( )
where
yig = hi1si+hiass+ 211
Y12 = hi125] — hi1185 + 210

Ya1 = ho1S1+ hooSs + 224

* *
Yoo = hoas] — ho185+ 229

For operation convenience, we rewrite (6.2) as

Y11 hl,l h1,2
Y12 hi, —hi, S1 !

' = ' ' + Z 6.3
Y21 ha hao [ S2 } ( )
yg,z h§,2 —h3,

where it can be written with the more common notation
quui = HequiXequi + Z' (64)

Under the circumstances that the channel H is perfectly known at the receiver, the

maximum likelihood (ML) detector can be derived to be

hl,l h1,2 f Y11 h1,1 h1,2 f
hi, —hi, Y12 hs 0 S1 hi, —hi, '

’ ’ ’ = + ' ’ Z 6.5
h2,1 h2,2 Y21 0 hs S92 2,1 h2,2 ( )
h§,2 _h§,1 95,2 h3o —hsy
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where hs = |hy1|> + |hi2)® + |ho1]? + |ho2|®. Note that this is also a zero-forcing (ZF)
detector, hence one of the many advantages of Alamouti coding is its easy decoding.

It is interesting that when employing Alamouti codes with any constant envelope
modulation, such as phase shift keying (PSK), the mismatched detector is exactly (6.5).

The mismatched detector is expressed as

N 2
arg Hl)én Hquui - HequiXequi

= arg m)én <quui - I:quuiXequi> (quui - I:quuiXequi) (66)

= arg m)én Y:qm’quui + (Xequiﬂequi) I:quuiXequi - 2Re [Y:qui (HequiXequi)]

Since Y¢,,; Y equi 18 @ constant term, when trying to find the argument that minimizes a

function, it can be omitted. The second term of the equation can be calculated as

A~ * A A~ A~
* *
<Xequi Hequi) HequiXequi = X H 'HequiXequi

equiTequi

- hSX* Xequi (67>

equi

= ¢l

where ¢ is a constant, therefore, the second term in (6.6) can also be ignored. That

leaves us with the last term in the equation. Denote X the solution found using the

ZF method, i.e. Xzp = H; ;Y cqui-

equi

arg m}}n —2Re [Y:qui (HequiXequi)] = argmax Re [(H:quiquUi) Xeqm}
= argmax Re [ X7, p X equil (6.8)
Take QPSK symbols for example,
Re [x*ZFjixeun] = Re[:v}FJ]Re[xequi,i] +Im(zyp | Im[zeguie], i=1,...,Npr  (6.9)

In order to find the solution, the multiplication of the real parts has to be positive. The
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same is for the multiplication of the imaginary parts. We get the following equations:

If Re[rzpil = Re[rhp,;] >0, Re[reguii =1 (6.10)
If Re[rzpil = Rel[rhp,;] <0, Re[Tequi,i] = —1 (6.11)
If Im[zzp;] = —Imf[ayp,;] >0, Im[zeguq] =1 (6.12)
If Imzzp) = —Imzy,,] <0, Imfzegu:] = —1 (6.13)

The above equations are exactly the ZF solutions! Thus, it is proved that when us-
ing the Alamouti code with QPSK (and can be generalized to any constant envelope
modulations), the mismatched detector is equivalent to the ML detector.

However, when the modulation does not have a constant envelope, such as 16—QAM,
the mismatched detector of (6.5) is no longer optimal. In such cases, the ML decoding

criterion is still given by (5.10).

6.3 Hamming based Space-Time Block Code

Richard Hamming proposed an error-correcting code that could correct a 1-bit error and
detect 2-bit errors. This code, a binary linear error-correcting code, is named Hamming
code [24] after its inventor. Let n be the length of the codeword, and k be the length of
data bit, then it is apparent that n — k redundant bits are used for error checking. This
is often referred to as the (n, k) code.

Denote the k x n matrix G the generator matrix of a linear (n, k) code and let H

denote the (n — k) x n parity check matrix. G and H for linear block codes must satisfy
HG" = 0. (6.14)

For Hamming code, to encode a k-bit data u, the corresponding n-bit codeword x can
be obtained by

x =uG (6.15)

In this thesis, we consider the Hamming based space-time block code. The rationality

behind choosing the Hamming based space-time block code is mentioned in [20].
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The generating Hamming based space-time block code composed of two steps. First,
the Hamming codeword is generated. Then, the codeword is multiplexed into two
streams. The performance of Hamming based space-time block code depends on the
multiplexing scheme and the optimal multiplexing scheme can be found through simu-
lations.

Specifically, we consider a (8,4) binary Hamming based space-time block code. The

generator matrix of (8,4) binary Hamming code is

11100001
1 001 1001
G= 01010101 (6.16)
11010010
After encoding the data into a 8-bit codeword, x = [x1, ..., 2], we multiplex the 8

bits into two streams. A possible multiplexing scheme is to fill in the first row and then

the second row. Hence, the generated codeword is

X = {xl o “} (6.17)

Ts Xg X7 I8

However, we can also fill in the column first and the generated codeword is

X'= {“’1 = il xﬂ (6.18)

o T4 Tg I8

The performance of these two multiplexing schemes and related comparison will be

provided in Chapter ?7.
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Chapter 7

Simulation Results

This chapter is divided into two parts: In the first part, we present computer-
simulated performance some conventional MIMO detectors as well as the PSDCE and the
modified PSDCE detectors for a system with N; = 4 transmit antennas, N = 4 receive
antennas and perfect CSI. In the second part, simulation results for the performance
of detectors with modified ML criterion based on the nonzero channel estimation error
are presented. We consider spatial multiplexing, Alamouti-coded and Hamming-coded

MIMO systems.

7.1 Performance Comparison with Perfect CSI

In Fig. 7.1, the BER performance comparison of some known detectors, such as ZF,
V-BLAST, PSD-CE and modified PSD-CE, is shown. In this simulation, we generated
60 samples in every iteration for only 3 iterations, for both the PSD-CE detector and
the modified PSD-CE detector using 4-QAM. We can see that the performance of the
conventional PSD-CE is better than that of ZF and V-BLAST. It is also shown that
the performance is further improved by the modified PSD-CE detector. Comparison
between the BER performance of the conventional PSD-CE and the modified PSD-CE
with 16-QAM is shown in Fig. 7.2. The solid lines are performances of the cases that run
5 iterations, and in every iteration 500 samples are generated. The proposed algorithm

outperforms the conventional method by more than 5dB at BER= 1072. The dotted line
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shows the performance of the modified PSD-CE with only 3 iterations, also generating
500 samples in each iteration. We can see that the performance of the modified PSD-CE
even outperforms the conventional PSD-CE with a larger sample size! Therefore, it is
obvious that the modified PSD-CE improves the performance, as well as decreases the

complexity of the original PSD-CE method.

4x4 MIMO system, 4QAM
10 T T T

—o— ML
-+ —ZF
] —*— VBLAST
T —o— mod PSD-CE
§ — 8 — conventional PSDCE
107k

10-4 I I I I
0 5 10 15 20 25

SNR(dB)

Figure 7.1: Comparison of the BER performance of the modified PSD-CE detector (3
iterations and 60 samples/iteration) and other known detectors in a MIMO system with
N7 = Ng = 4 using 4-QAM.
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4x4 MIMO system, 16QAM
10 T T
—G— ML detection
conventional PSD-CE
—*— modified PSD-CE
— © — modified PSD-CE with less samples

BER

SNR (dB)

Figure 7.2: Comparison of the BER performance of the conventional PSD-CE detector
and the modified PSD-CE in a MIMO system with Ny = Ng = 4 using 16-QAM.
solid line : 5 iterations and 500 samples/iteration; dashed line : 3iterations and 500
samples/iteration.

7.2 Performance in the Presence of CSI Error

In this part of the simulations, we examine the influence of a system in the absence of
perfect CSI at the receiver. Consider a MIMO system with Np = Ng = 4 and 16-QAM
modulation. Figure 7.3 shows the frame error rate (FER) versus SN R in dB for different

values of (S/N)p = PEp/c? with the mismatched metric, (2.19).
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. 4 x 4 MIMO system with different channel estimatino errors — 16—QAM
10 T T T T

SER
=
o

—o— (S/N)P =5dB
—a— (S/N), = 10dB
—— (S/N)P =15dB
—v— (SIN),, = 20dB
— (S/N)P =25dB
—+*— perfect C§I

0 5 10 15 20 25

SNRdB

10°

Figure 7.3: Effect of channel estimation errors on the system performance.

7.2.1 Spatial multiplexing system

In this section, we consider the performance of spatial multiplexing (SM) system which
uses two transmit antennas to transmit two independent data streams. For a 2 x 2
MIMO system, instead of a Nr x 1 vector, let X be a Ny x T matrix. Figures 7.4
and 7.5show the performances of 7" = 2 and 4 using the modified ML detector (5.10),
respectively. The rate-2 code here implies that there is no actual ‘coding’, as it does not

provide error correcting or detecting functions.
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2 x 2 MIMO, no ext. code 2x 2 - BPSK

[ [ —e— modified (S/N), = 5dB Bl /
—g— modified (S/N),, =1 0dB
[| —&— modified (S/N)P =15dB
__ || —— modified (S/N),, = 208
10 "] —%— modified (SIN), = 25dB
[| - —O— - mismatched (S/N)P =5dB
r| - —@— - mismatched (S/N)P =10dB
|| —0— mismatched (S/N)P =15dB
. —y— - mismatched (S/N)P =20dB
. —%— - mismatched (S/N)P =25dB
—h— p?ﬁect CslI

FER

1072 T T I
0 2 4 6 8 10 12 14 16 18

SNRdB

Figure 7.4: Effect of channel estimation errors on a 2 x 2 MIMO with T" = 2 using
BPSK.

2 x 2 MIMO, no ext. coding 2 x 4 - BPSK

|| —e— modified (S/N),, = 5dB i
= modified (S/N),, = 10dB Tl .
[ —o— modified (S/N)P =15dB
t| —s— modified (S/N),, = 20dB
F| —#— modified (S/N),, = 25dB
_3|| - —©— - mismatched (S/N)P =5dB
f| - —o— - mismatched (SIN)P =10dB
[| - —¢— - mismatched (SIN),, = 15dB
. —y— - mismatched (S/N)P =20dB
L| - —%— . mismatched (S/N)P =25dB
—%— perfect CSI
I I

10"

FER

-4

10

T 1
0 2 4 6 8 10 12 14 16 18 20

SNRG“3

Figure 7.5: Effect of channel estimation errors on a 2 x 2 MIMO with T = 4 using
BPSK.
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2 x 2 MIMO with PSD-CE, no ext. coding 2 x 2 - BPSK

-mismatched (S/N)P:5dB
. —g- - mismatched (S/N)leodB
. —o— - mismatched (S/N)P=15dB
. —y— - mismatched (S/N)P=20dB
—o— modified (S/N) =5dB
—e— modified (S/N),=10dB
—¢— modified (S/N)_=15dB
—s— modified (S/N),=20dB
—k— Perfect C§I

FER

T I | I I I |
0 2 4 6 8 10 12 14 16 18 20

SNRdB

Figure 7.6: The use of PSDCE detector under channel estimation errors in a 2 x 2 MIMO
with T" = 2 using BPSK.

2 x 2 MIMO with PSDCE, no ext. coding 2 x 4 - BPSK

107 £

- mismatched (S/N)P =5dB
. —o— - mismatched (S/N)P =10dB
. —¢— - mismatched (S/N)P =15dB
10} . ~y- - mismatched (S/N),, = 20dB
[| —e— modified (S/N), = 5dB
[| —a— modified (SIN),, = 10dB
[| —6— modified (S/N), = 15dB
[| —s— modified (S/N), = 20dB
—%*— perfect CSI
-3
10 .
0 5 10 15

SNRdB

FER

Figure 7.7: The use of PSDCE detector under channel estimation errors in a 2 x 2 MIMO
with T' = 4 using BPSK.
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7.2.2 Alamouti space-time coded system

In this section, Alamouti code is employed in a 2 x 2 MIMO system using 16-QAM, i.e.
T = 2. Recall that the ML performance of the system using constant envelope constella-
tion is equal to that of the mismatched detector. Figure 7.8 shows comparison between
the performances of the previously described system and the mismatched system. The
gain is small but certain.

2 x 2 MIMO, Alamouti Code 2 x 2 — 16—-QAM
10 T T T T T T T

1
-

|| —#— modified (SIN), = 5B
10 "] —e— modified (S/N),, = 10dB S ]
[| —&— modified (S/N),, = 15dB Y : N
- —o— modified (S/N), = 20dB 4 Ex
[| —7— modified (S/N),, = 25dB Rl
[ - —%— - mismatched (S/N),, = 5dB h N
H - —©— . mismatched (S/N)P =10dB
. —@— - mismatched (S/N)P =15dB
[| - —¢— - mismatched (S/N)P = 20dB
- =7~ - mismatched (S/N)P =25dB

—%— perfect CSlI A\ &
I I T 1 1 1 1 ol 1

0 2 4 6 8 10 12 14 16 18 20

SNRdB

FER

-2

10

Figure 7.8: Employing Alamouti code in a 2 x 2 systme with estimation errors with
T = 4 using 16-QAM.

7.2.3 Hamming coded system

Here, we consider a space-time block code obtained by mapping a (8, 4) binary Hamming
code to 2 x4 BPSK codewords. The 8-bit Hamming codeword ¢ = [¢y, . . ., ¢s] is mapped
to the BPSK symbols like so

. {:cl 22 g m] )

Is5 Te Ly I8
where z; = (—1)%. In the first time slot, x; and x5 are transmitted, then xy and z4 are

transmitted in the second time slot and so on. The results obtained is shown in figure
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7.9.

2 x 2 MIMO , ext. Hamming code 2 x 4 — BPSK

107k

WER

. mismatched (S/N)P =5dB
10—3 U -o-- mismatched (S/N)P =10dB
f| - —¢— - mismatched (S/N)P =15dB
—y— - mismatched (S/N)P =20dB
[| - —%— . mismatched (S/N)P =25dB
_a| | —e— modified (S/N),, = 5dB
10 5 5 modified (SIN),, = 1008
F| —o— modified (SIN),, = 15d8B
[| —s— modified (S/N), = 20dB
—*— modified (S/N), = 258

e

SNRdB

Figure 7.9: Employing Alamouti code in a 2 X 2 systme with estimation errors with
T = 4 using 16-QAM.
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Chapter 8

Conclusion

In this thesis, we investigate the optimum criterion of MIMO signal detection in the
presence of channel estimation errors. Most existing studies on this subject assumed
that the true channel matrix is independent of the associated error matrix. However, for
least square or minimum mean square error channel estimators, the orthogonal principle
implies that the channel estimator should be uncorrelated with the estimation error.
Therefore, it is more appropriate to use such an assumption accordingly.

Although the optimal (ML)Qdetector can be derived, its high complexity makes it
infeasible in practice. To overcomes this difficulty, we consider two sub-optimal detector
structures that take imperfect CSI into account. The first suboptimal detector, referred
to as Particle-Swarm-Driven Cross-Entropy (PSD-CE) detector, is a stochastic search
based detection scheme. Its performance depends on the setting of the initial distribution
and uniform distribution is often used for lack of a priori information. We propose a
method to obtain the initial distribution which then leads to performance and complexity
improvements. The other suboptimal detector is the modified QRD-M detector.

Since our design criterion is no longer equivalent to the minimum Euclidean distance
criterion, the original QRD-M method cannot be used directly. We propose a low-
complexity QRD-M detection method, using a new decoding metric which is derived
from our assumption on the uncorrelatedness between the estimated channel matrix

and the estimation error matrix. Finally, we extend our study to space-time block
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coded MIMO systems and examine their performance using the new decoding metric.
In all cases under investigation, we show by computer simulated numerical exam-
ples that the proposed decoding metric does offer performance improvement over that

achieved by using conventional metric that does not consider the imperfect CSI effect.
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