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for Wireless Location Systems

Student : Cheng-Tse Chiang Advisor : Kai-Ten Feng

Institute of Communication Engineering
National Chiao Tung University

ABSTRACT

Location estimation and tracking for the mobile stations have
attracted a significant amount of attention in recent years. Moreover,
different types of signal sources are considered available to provide the
measurement inputs for location estimation and tracking. Various
technigues have been studied and combined for location tracking, e.g.
the least square methods for location estimation associated with the
Kalman filters for location tracking. In this thesis, a hybrid unified Kalman
tracking (HUKT) technique is proposed to provide an integrated
algorithm for precise location tracking based on both the time-of-arrival
(TOA) and time-difference-of-arrival (TDOA) measurements. A new
variable is incorporated as an additional state within the Kalman filtering
formulation in order to consider the nonlinear behavior for wireless
location estimation. Comparing with existing schemes, numerical results
illustrate that the proposed HUKT algorithm can achieve enhanced
accuracy for mobile location tracking, especially under the environments
with insufficient number of signal sources in a single signal path.
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Chapter 1

Introduction

Wireless location technologies, which are designed to estimate the position of a mobile
station (MS), have drawn a lot of attention over the past few decades. With the acquisition
of the MS’s location information, different types of location-based services (LBSs) can be
exploited including the emergency 911 (E-911) subscriber safety services [1], the location-based
billing, the navigation systems, and applications for the intelligent transportation systems
(ITSs) [2]. Due to the emergent interests in the LBSs, it is required to provide enhanced
precision in location estimation and tracking of the MS under different types of environments.

A variety of wireless location techniques have been investigated and proposed in standards
[3]. The network-based location estimation schemes are widely employed in the wireless
communication systems. These schemes locate the position of an MS based on the measured
radio signals from either its neighborhood base stations in cellular networks or anchor nodes
in the wireless sensor networks (WSNs) [4,5]. For convenience, these signal sources are
represented as BSs in this thesis. The location estimation algorithms can be categorized into
range-free and range-based techniques. The range-free schemes [6-8| utilized the status of
network connectivity between the MS and BSs for localization, which possesses the benefits of
simplicity and low cost. These schemes are primarily adopted in the WSNs with the features
of limited computation power and less requirement on positioning accuracy. On the other

hand, in order to provide precise location estimation, the range-based schemes are considered



which include received-signal-strength (RSS) [9], angle-of-arrival (AOA) [10], time-of-arrival
(TOA) [11], and time difference-of-arrival (TDOA) [12]. The RSS schemes record the incoming
signal strength from different wireless BSs for converting to the distance measurement, and
the AOA methods are in general implemented at the BSs to observe the signal bearing via the
antenna array. The TOA schemes measure the arrival time of the radio signals coming from
the BSs; while the TDOA algorithms measure the time difference between the radio signals.

One of the important issues for range-based positioning is its inherent nonlinear feature for
location estimation, which results in complex computation and difficulties for analysis. Various
techniques have been proposed to reduce the inaccuracy owing to the nonlinear behaviors of
location estimation. Methods in [13] and [14] adopt Taylor series expansion (TSE) to linearize
the TOA and TDOA measurement equations in order to obtain the approximated position of
the MS. Although the estimation error can be mitigated to a certain limit via sufficient rounds
of iteration, the iterative process may suffer from convergence problem due to improper initial
guess. The two-step least square (LS) method was adopted to solve the location estimation
problem by considering the nonlinear part as one of the linear variables to be estimated [12,15].
It is an approximate realization of the maximum likelihood (ML) estimator and does not
require iterative processes. The two-step LS scheme is advantageous in its computational
efficiency with adequate accuracy for location estimation. Instead of utilizing the circular
line of position (LOP) methods, e.g., the TSE and the two-step LS schemes, the linear LOP
approach is presented as a different interpretation for the cell geometry from the TOA [16]
and TDOA [17] measurements. The linear LOP scheme for the TOA measurements can easily
be acquired by subtracting two measurement equations. As for the TDOA measurements, by
mutually combining a set of range difference measurements from three BSs, a conic can be
uniquely determined and the MS will be obtained to locate at its major axis. This method
transforms the hyperbolic LOP into a straight line, nevertheless, redundant equations increase
exponentially as the number of available BSs grows. Therefore, the approaches proposed
in [18,19] derived another form of linearization for location estimation by multiplying an

orthogonal matrix in order to eliminate the nonlinear vector.



Moreover, Kalman filer [20-22] is extensively utilized to further enhance the precision for
location estimation. It produces estimation of the internal states with dynamic weighting
adjustment between the prediction and the observation input in recursion form. This feature
alleviates the estimation outputs from severe variation and converges to the true value. Several
research have adopted the Kalman filter to track the estimation error, the non-line-of-sight
(NLOS) interference [23], or the mobility information of moving MS [24,25]. Comparing with
the methods for stationary location estimation, the tracking schemes take advantage of the
previous location and movement of the MS which results in smoothed MS trajectory with
better estimation accuracy.

On the other hand, owing to the feasibility of providing synchronization between the cel-
lular BSs, the TDOA measurements has been extensively adopted for location estimation and
tracking in existing telecommunication systems, e.g. the WiMax [26] standard. However,
the “urban canyons” problem has been observed that the number of received GPS or cellular
signals is insufficient for location estimation due to signal blockage in urban environment.
Moreover, the study in [27] suggests the adoption of TOA-based signal sources for dedicated
short-range communications (DSRC) to avoid complex infrastructure required for the TDOA
measurements. In order to provide feasible precision for location estimation, it is required to
combine these two types of signal sources under a variety of environments, e.g., to addition-
ally include the TOA-based sensor anchors or roadside DSRC devices with the TDOA-based
cellular signal sources. Therefore, it will be beneficial to provide a hybrid technique that
can facilitate location estimation and tracking based on these two types of measurement in-
puts. Moreover, the performance of the location estimation schemes vary depending on the
environmental conditions and the operational parameters. The Cramer-Rao lower bound
(CRLB) [28] as a theoretical limitation on estimation variance has been extensively used to
provide a benchmark for comparison between different estimators. Different works [24,29,30]
are dedicated to combine multiple location techniques for enhanced positioning precision with
the theoretical lower bound derived in [29].

As shown in the left plot of Fig. 1.1, the hybrid cascade location tracking (HCLT) scheme
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Figure 1.1: Left plot: the hybrid cascade location tracking (HCLT) scheme; middle plot:
the hybrid Kalman tracking (HKT) scheme; right plot: the proposed hybrid unified Kalman
tracking (HUKT) scheme.

proposed in [24] utilizes the two-step least square (LS) method [11,12] for initial location
estimation of the MS. The Kalman filtering technique is exploited to smooth out the estimation
error by tracking the positions and velocities of the MS. The fusion algorithm is utilized to
combine the tracking results from two different sources to obtain the final location estimation
of the MS. In the middle plot of Fig. 1.1, the hybrid Kalman tracking (HKT) scheme extends
the Kalman tracking (KT) scheme in [25] by separating the linear components from the
originally nonlinear equations for location tracking. The linear aspect is exploited within the
Kalman filtering formulation; while the nonlinear term is served as an external measurement
input to the Kalman filter. However, both the HCLT and HKT algorithms have the drawback
of additional computation cost due to their cascaded infrastructure. This type of structure
can result in information lose which causes larger location tracking errors. Moreover, both
algorithms require sufficient numbers of signal sources from either the TOA or TDOA path
which can not resolve the signal insufficiency problem in urban canyons.

In the thesis, a hybrid unified Kalman tracking (HUKT) algorithm is proposed based on
both the TOA and TDOA signal inputs. As illustrated in the right plot of Fig. 1.1, the
HUKT scheme integrates the two-step LS estimator into the Kalman filtering formulation
for location tracking based on both the TOA and TDOA signal sources from heterogeneous

BSs. The nonlinear parameters within their respective TOA and TDOA based location es-



timators are mathematically combined into a single state variable, which is to be updated
within the Kalman filter. The proposed HUKT scheme is feasible to be adopted under the
environments with heterogeneous signal sources, and is tolerant to insufficient number of BSs
from individual signal path. The determination of hybrid factor that combines the TOA and
TDOA signal sources is investigated based on different criterions. Furthermore, the proposed
HUKT algorithm can be directly simplified into a unified Kalman tracking (UKT) scheme
for location tracking under the situation of only homogeneous signal sources, i.e., either the
TOA or TDOA measurement input is available. Performance evaluation and comparison of
the proposed HUKT and UKT schemes are conducted via simulations. The simulation results
show that the HUKT/UKT algorithm can achieve higher accuracy for location estimation and
tracking.

The remainder of this thesis is organized as follows. The mathematical modeling of sig-
nal sources and existing tracking techniques are summarized in Chapter 2. Chapter 3 and 4
describes the proposed HUKT and the simplified UKT algorithms for TOA and TDOA mea-
surements. Performance evaluation and comparison of the proposed schemes are conducted

in Chapter 5 via simulations. Chapter 6 draws the conclusions.



Chapter 2

System Modeling and Existing

Location Tracking Schemes

2.1 Mathematical Modeling of Signal Inputs

In this section, the mathematical models for both the TOA and TDOA measurements
are presented. The two-dimensional coordinate of the MS is to be obtained in the proposed
HUKT scheme. The TOA measured distance 7; ;, between the MS and the ith BS at the kth

time step can be represented as
Tik=C tik=Crt+nipgt+er =12, N (2.1)

where ¢; ;, denotes the TOA measurement with respect to the ith BS at the kth time step,
and c is the light speed. The measured distance 7; j, is corrupted by both the measurement
noises n; , and the non-line-of-sight (NLOS) error e; ;, under the urban and suburban areas.
The parameter N refers to the total number of TOA measurements. The noiseless distance
Gik is

Gige = [(z — zip)? + (yr — yig) 2> (2.2)



where (z,yi) represents the MS’s true position and (z;,¥; ) is the coordinate of ith BS
at time step k. Based on the above TOA signal model, the TDOA measurement can be
formulated as the subtraction of two TOA measurements, which is conform to the physical
meaning of difference in propagation time. The relative distance fij7k1 can be obtained by
computing the TDOA measurement t}jvk, which is the time difference between the MS with

respect to the ith and the jth BSs from (2.1) as

fij,k = c'tz’j,k 122,,N,]:1

= (G — ) + (i — Rjk) + (Eip — Ej) (2.3)

It is noted that the 1st BS of the TDOA system is in general denoted as the reference BS,
e.g., the serving BS in the cellular system. The TDOA measurements are taken between the
reference BS and the other neighbor BSs. The parameter N is the number of BSs for TDOA

system which comprises N — 1 independent TDOA measurements.

2.2 The Hybrid Cascade Location Tracking (HCLT) Scheme

The left plot of Fig. 1.1 illustrates the architecture of HCLT scheme [24]. The HCLT sys-
tem consists of a LS location estimator (e.g., two-step LS method as previous mentioned) fol-
lowed by a Kalman filtering technique at the next stage. different versions of two-step LS meth-
ods are proposed for distinct occasions such as TOA [11], TDOA [12] and TDOA/AOA [31]
measurement inputs. The concept of two-step LS method is to acquire an intermediate loca-
tion estimate in the first step with the definition of a new variable to represent the nonlinear
term, which is mathematically related to the MS’s position. This assumption effectively trans-
forms the nonlinear equations for location estimation into a set of linear equations, which can
be directly solved by the LS method. The second step of the method primarily considers

the fact that the newly defined variable is related to the MS position, which was originally

'n the thesis, it is considered that the TDOA and the TOA measurements come from two different types of
networks. For notation convenience, the variables with a tilde are denoted for the measurements from TDOA
system, e.g., 7;;,k; while the variables without the tilde (e.g., 7; 1) are utilized for TOA measurements.



assumed to be uncorrelated in the first step. An improved location estimation can be obtained
after the adjustment from the second step.

The estimated position from the output of the two-step LS estimator will be post-processed
by the Kalman filtering technique according to [20]. The Kalman filter smooths out and tracks
the estimation errors by adopting linear prediction from the previous estimation data when
the MS position dynamically changes in the network. The tracking results from the two
disparate paths will be combined by the fusion mechanism based on the Bayesian inference
model [32,33]. The estimated MS’s position, i.e., (Zx, k), can therefore be acquired. The
detail algorithm of the HCLT scheme can be found in [24].

2.3 The Hybrid Kalman Tracking (HKT) Scheme

Since the equations associated with the network-based location estimation are inherently
nonlinear, different mechanisms, e.g., linearization, are considered within the existing algo-
rithms for location tracking. The Kalman tracking (KT) scheme [25] considers the nonlinear
term as an external measurement input to its Kalman filtering formulation. It distinguishes
the linear part from the originally nonlinear equations for location estimation and tracking.
However the KT scheme does not specifically indicate the method for acquiring the value of
the nonlinear term.

For comparison purpose, the KT scheme that was originally proposed based on the TDOA
measurement inputs is reformulated and extended to consider both the TOA and TDOA signal
sources. The middle plot of Fig. 1.1 illustrates the architecture of the hybrid KT (HKT)
scheme. The nonlinear terms can be obtained from the external location estimators, i.e., by
adopting the two-step LS method. With the formulation of the HKT scheme, feasible accuracy
for location tracking (including position, velocity, and acceleration) can be acquired. However,
the accuracy is significantly affected by the precision of the external location estimator. The

detail algorithm of the KT scheme can be found in [25].



Chapter 3

The Proposed Hybrid Unified
Kalman Tracking (HUKT) Scheme

The proposed HUKT scheme will be addressed in this chapter. The formulation of HUKT
algorithm will be explained in section 3.1, and the determination of the hybrid variable § will
be discussed in section 3.2. The variable 8 will be determined from three different approaches
in order to allocate the weighting factors between the TOA and TDOA measurements for the

HUKT scheme.

3.1 Formulation of HUKT Algorithm

The right plot of Fig. 1.1 illustrates the architecture of the proposed HUKT scheme.
Unlike the previous algorithms (e.g., the HCLT and HKT methods), the main design concept
of the HUKT scheme is to provide a unified methodology for location estimation and tracking.
The purpose of HUKT algorithm is to obtain the updated state variables via the Kalman
filtering technique directly from both the TOA and TDOA measurements as the system

inputs. The measurement update and the state update equations of the Kalman filter can be



represented as

Yyr = Mz, +my (3.1)

zr = HZp 1+ up—1+ Py (32)
where & = [k U §)EEk Vg ke Vy ko Qo &yk]T is the state vector that includes the MS’s estimated
position (I, §;,), the estimated velocity (¥, ¥y.x), the estimated acceleration (@, Gy 1), and
the estimated variable B?Qk It is noted that §f€k represents the estimated nonlinear term for
the hybrid-based location estimation. The updating process of R will be addressed later.
The variables mj and p;_; denote the measurement and the processing noises respectively.
With the assumption that rik > CZ% . due to the existence of NLOS errors e;x, the following

inequality can be obtained by rearranging the TOA measurements (2.1) and (2.2) as
iy — Kik > =22 1w = 208k + Ri (3.3)

where K; , = 3:12 k—i—yf i and Ry = xi—i—yi Similarly, the following relation can also be acquired

from the TDOA measurements (2.3) by substituting j = 1 as:

Fan — (Kip — K1) > =2(&p, — E1p)ak — 20k — G160k — 2715 Fitk (3.4)
where 7 ;, indicates the measured distance from the MS to the reference BS via the TDOA
system. In order to design a unified structure for location tracking, the purpose of proposed
HUKT scheme is to obtain an effective method to combine both the TOA and TDOA mea-
surements. More specifically, a new variable §f€k is introduced to combine the nonlinear terms
Ry, in (3.3) and 7, in (3.4). Without loss of generality, the nonlinear term 7 ;, in (3.4) can
be represented as \/ZL‘% + y,% by shifting the entire coordinate (i.e., both TOA and TDOA sys-

tems) such that (Z1 4, 91%) = (0,0). Let the parameter () be defined as a hybrid factor. By

10



multiplying (3.4) with (/71 and adding to (3.3), the following equation can be obtained:

5 Kjx— Ky,
rik” — Kig + B h — ﬁkij’%l . =+ Bf =
J b
Tik— Tk Yik — Yk
= 2(mk + B2 )z — 2(yik + B ")y + R (3.5)
T,k i1,k

where R, = (/27 +yi — Br)? corresponds to the variable that combines the effects from
both the TOA and TDOA measurements. It is included within the state vector &j for state
updating within the Kalman filtering formulation. Therefore, the measurement data y,; and
the matrix M associated with the measurement process (as in (3.1)) can be acquired in (3.6).
It is noted that there are (N + N — 2) linearly independent equations associated with both
y;, and M. There are N hybrid equations formed by all the TOA measurements (i.e., from
1k to 7N ) and the first TDOA measurement 71 ;. The remaining N -2 hybrid equations
are established by using the first TOA measurement (i.e., r1 %) and the remaining TDOA
measurements (i.e., from 7y 5 to 7 Nl,k)' The parameter hybrid factor 8 is utilized to merge
the TOA and TDOA based measurements, which can be determined according to the signal
qualities of the two different paths. The detail of choosing appropriate value for G will be
addressed later in the next section.

Under the assumption of constant acceleration model, the updating process of Z and g

are determined as

X X . 1.
Tp = Tr_1 + va,lAt + iaaz,kflAtQ (3.8)
X N . 1.
Yk = Yk—1 + Uy,k—lAt =+ Qay,k—lAt2 (39)

where At denotes the sampling time interval. In order to provide the updating process for
the new variable Ry, similar to (3.5), the relation between Ry, xx, and y; can be acquired by

summing all N TOA measurements of (3.3) and N — 1 TDOA measurements of (3.4) as

R = Wi +2Xgk -2 + 2Ys 1 - Y (3.10)

11



r16% — K1k + Brforx — /5%%};”“ + G2
Tok? — Ko + Brfa1, — ﬂk% + B2
ra i’ — Kk + Briar ke — 51@% + Br
g’ — Ko + Brfork —ﬁk%_yﬁi
y = - '
F rik? — Kig + Brfarp — 5k% + 32
r1k2 — K1k + Brfarx — Bk% + 62
rie? = Kig + Brfsi e — B stmfl b+ BE
—Kq 1
1, k2 - Kl k + ﬂM:Nl k ﬁkalk + ﬁlz (3.6)
2(m1k+ﬁk%) “2(yup+ G HETEE)
—2(z2,k Jrﬁkiwfmil ) —2(y2.k +Bk7y2:21il )y 1
—2(wan + B EETE) <2y + B EE) 10 0 0 0
M — Q(CCNk-i-ﬁkzzfmilk) _Q(yNk“rﬂkyzfmilk 1 0 0 0 O
—2(x1,% + Br 3,?31;") —2(y1,x + Br yafm‘f’“ 1 0000
—2(x1,% + Bk 4f4lk”) ~2(y1,x + B 94;“411“ 1 0000
—2($1k+ﬁk15f5121k) —2(y1k+ﬂkysrk51yklk 1 0 0 0 0
—2(w1k + B DALY oy 4 B IETEY g 0 0 0
L N1,k N1,k i
1 0 0 At 0 A 0
1 A42
0 1 0 0 At 0 gAr
2(X5<7k — XS,k—l) Q(YSk YSk 1) 1 ZXS,kAt QYSJCAt X&kAt YSJCAt
H= 0 0 0 1 0 At 0 (3.7)
0 0 0 0 1 0 At
0 0 0 0 0 1 0
0 0 0 0 0 0 1
where
N N
1
2 2
Wy :Bk’ + N Z’I“Lk — Zth
i=1 i=1
N N
1 5 N
B D T = B ) K
DTk | =2 j=2
+ Br(N — 1)K1,k]
N N /- s
X _Zi:l Ti k n Br ijz(wj,k — Z1k)
k — —
' N N =
12Zj:2 Tj1.k
N B o (5 — §
i—1 Yi k 2 j=2\Yjk yl,k)
Yk ZZ"]\lfy“’“ + =2 (3.11)

N -
ijz Tj1,k



Following the methodology as in (3.8) and (3.9), the updating process for the estimated

variable ¥}, becomes

R =Rie—1 +2(Xsk — Xsp—1)k—1 +2Ysr — Ysr—1)yr—1
+2- X&k “Ugpk—1" At+2- Y&k “ Uy k—1 At

+ Xgk - Qg g1 AP+ Yo - ay 1 - At? (3.12)

Finally, the state matrix H associated within the state equation in (3.2) for the proposed

HUKT scheme can be obtained in (3.7). The control input u;_; can also be acquired as

T
up1=10 0 (We—Wi_1) 0 0 0 0 (3.13)

To summarize, the proposed HUKT scheme integrates the measurement inputs from het-
erogeneous location estimation systems based on a unified Kalman filtering structure. The
iterative operations of the Kalman filtering technique primarily consist of the processes for
state update (i.e., prediction) and measurement update (i.e., correction). The equations for
state update is represented as

ijl; =Hz, 1 +up_q (3.14)
C, =HC,_H" +Q, (3.15)

The equations for measurement update becomes

K = C; M"(MC, M” + Rroai + Rrpoak) " (3.16)
=2, +Ki(y, — Mi,;) (3.17)
Cr,=C, - K;MC, (3.18)

where K}, represents the Kalman gain and the matrix Cy is denoted as the estimate error co-

variance. The covariance matrices associated with the TOA and TDOA measurement update
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processes are respectively represented as

Rroakr = BLyJp L BT (3.19)
Rrpoay = BLpJy, Ly BT (3.20)
where
1 0 0 -1 1 0 0 0
0 1 0
1 D] -1 1 0 0 0
Inxn - D] v o5
B = - =100 o 1|, B=| WA 1010 0
[Clw- [E] x5
(N=2)xN 10 0 (N=-1)xN 10 0 1 0
10 -0 1000 - 1

are arranged according to the TOA and TDOA measurements pairs as in (3.6). The matrices
Lj = diag{Ci x, C2 - - -, (N} L, = diag{g:17k, 52,19 X, . 5Nk} and the covariances of TOA and

TDOA measurements are respectively represented as

Jne = diag{oik, O3 o - ,0]2\,,,9} (3.21)

Ing = diag{oiy, 655,05 (3.22)

3.2 Determination of Hybrid Factor 3

As shown in (3.5), the hybrid factor ( is utilized to provide the weighting between the
TOA and TDOA measurements in order to merge these two types of inputs for hybrid location
tracking. Therefore, it is essential to develop mechanisms that can dynamically adjust the

hybrid factor in accordance with the variation of estimation qualities in the two signal paths.
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Note that the sign of the weighting value, i.e., the hybrid factor, will not be essential based
on the design of hybrid system in (3.5). With larger absolute value of (3, more weighting is
assigned to the TDOA signal compared to TOA measurement input. In the following three

subsections, different types of design of hybrid factor will be presented.

3.2.1 GDOP-based Hybrid Factor (GHF)

The geometric dilution of precision (GDOP) [34], which is a dimensionless quantity, de-
scribes the geometry influence on location estimation accuracy. For a set of spatially separated
BSs or sensors, the relative position between the MS and the BS set affects the estimation
accuracy for the MS’s position. In general, when the MS locates around the center of the BSs,
the GDOP value is lower than the case that the MS is situated around the edge of estimation
perimeter. Therefore, the GDOP criterion that provides the relative distance information
between the MS and BSs can be utilized to determine the hybrid factor 8 which considers
the weighting between the TOA and TDOA measurements. Consider the MS located at
x, = (Tk,yr) with the TOA range measurements (71,724, - - 7n%) from the N BSs associ-
ated with Gaussian noise, the GDOP value G4, 704 for x; at time step k£ can be obtained

as
Gy m0A = [trace{(Ha I gL HE )~ Y2 (3.23)

where Jg i is acquired as (3.21) and

Tk —T1,k Ye—Y1,k
"1,k T1,k

Tk —T2,k Yk ~Y2,k

Hg . = T T (3.24)

Tpk—TNk Yk—YN,k
L TNk Nk
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On the other hand, consider the TDOA case with range difference measurements (721 1, 731k, * * 7574 1)

the formulation for the GDOP value can be obtained as

R R A
Gay. 7004 = [trace{(HexJ g He ) "' 1Y (3.25)
where
g5 +a; o7 51
~2 ~2 2 ~2
- o oz +o7 - o
Jop = oo ! (3.26)
: L
I 2 &3 &]2% +67 |

)

Hep=f = P n (3.27)

Consequently, the GDOP-based hybrid factor (GHF) 3, which is designed to be the ratio

between the TOA and TDOA estimation systems can be formulated as

G
N T— w04 7 (3.28)
mk,TDOA

Note that the original TDOA equation in (3.4) is divided by 7;; 4 in order to formulate the
hybrid formulation as in (3.5). Therefore, the multiplication of 7 in (3.28) is to scale
back to the original magnitude order of the TDOA measurements in (3.4). For simplicity in
computation, the value of 7y ; is utilized instead of the original 7;; j, value. Furthermore, it is
noted that both G 704 and G, 7poa are non-zero values which result in countable value
of B4 k. The case with zero GDOP value denotes there is no signal variance which is unlikely

to happen in estimation. On the other hand when the MS is located exactly on the same
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coordination of one of the BSs, it will cause singularity and leads the above matrix operation

to undefined behavior. Both situations will not be considered in this thesis.

3.2.2 Minimum Variance-based Hybrid Factor (MVHF)

The main purpose of this scheme is to obtain the hybrid factor to achieve minimum vari-
ance for the hybrid estimation system. From the formulation of HUKT scheme as shown
in (3.5), the hybrid measurement update equation is composed by the TOA measurement
from the ith BS and the TDOA measurement via the jth BS and the serving BS. In or-
der to facilitate the design of MVHF f,,, an intermediate hybrid factor aj is defined
as ax = Bmk/Tj1k. Furthermore, an equivalent set of BSs is defined as (zeq, ;s Yeq, ) =
(wip + Bmk%a Yik + ﬂmk%) = (xip + o(Tjr — Tik), Yik + (Ujr — J1x)) for

1=1,2,..,N + N — 2, the original hybrid measurement update in (3.5) can be rewritten as
rik” 4 (af + ar) g — Kig — ok (Kj — K1 g) = =2(eq, )Tk — 2(Yeqr )0k + R (3.29)

Note that (3.29) possesses similar format as that in (3.3) for TOA measurements and in (3.4)
for TODA measurements. Therefore, it is implicitly suggested by (3.29) that there exists
a set of equivalent BSs (Teq, s Yeq,) for each entry of hybrid measurement equation, where
the equivalent BS is a composition of both TOA and TDOA BSs with the ratio «, i.e.,
(Teqyp> Yeqrs) = (Tig +n(Tjr — T1,k), Yik + k(Yjk — J1,k)). As aresult, the target of MVHF

is to acquire an optimal ay such that the variance of the hybrid system can be minimized as

ap = arg\g}igﬂl@[trace{(HMykJX/[l’kHIA:Lk)_l}]1/2 (3.30)
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where

xlcfmeql’k ykfyeqlﬁk
T1,k T1,k
Tk—Teqg i Yk —Yeqs g
— T2,k T2,k
Harp = , . (3.31)

Tk _-TeqN+N72 b yk—yeql\w](,f? &

L T"N4+N-2k T"TN+N-2k d

and Jysx = Rroar+Rrpoa as computed in (3.19) and (3.20). Note that the minimization
problem in (3.30) can be interpreted as to search for the variance lower bound for the hybrid
tracking system. Therefore, the value of MVHF f3,, ) can be obtained as (3, = ai - 71,
where 7 ;. is utilized instead of 71 ; due to simplicity in computation.

Moreover, the complicate optimization process in (3.30) for obtaining «j will not be fea-
sible for realtime implementation. An alternative method is to perform the numerical search
for each specific network layout. For a pre-determined BS topology that is divided by small
grids in region, the optimal values of a4, for each grid can be acquired in order to construct
the offline table. Based on the inherent tracking information within the Kalman filter, the
predicted a priori knowledge of the MS’s position will be provided to obtain «j based on

table-lookup for realtime implementation.

3.2.3 Kalman Filter-based Hybrid Factor (KHF)

As stated in Subsection 3.2.1, the design concept of GHF is straightforward which de-
termines the hybrid factor based on GDOP values from TOA and TDOA measurements.
However, the characteristics of hybrid structure for location tracking has not been considered
in the design of GHF value. On the other hand, the MVHF designed in Subsection 3.2.2 con-
siders the variances of proposed HUKT system to explore the optimal solution for the hybrid
factor. Nevertheless, approximated solution is obtained due to the complexity of solving op-
timization problem in realtime implementation. In this subsection, the KHF (3;, is designed
based on the dynamic adjustment of Kalman filtering formulation within the proposed HUKT

scheme. It is closely related to the prediction and update features of the Kalman filter-based
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location tracking system.

Since the variable Rj consists of the hybrid factor and is estimated along with other
variables in the state vector, the KHF f; can also be tracked in order to further enhance
the estimation performance under the presence of measurement error. Consider the tracking
process of the proposed HUKT scheme at the (k — 1)th time step, the a posteriori estimation
of the state vector can be acquired as 1 = [Tx—1 Yp_1 Rr_1 Vg k-1 Vyk—1 Qg k-1 &y,k,l]T.
The KHF () at the time step k& can be determined by solving the relationship #,_; =

(\/22_, +y2 | — Brr—1)? at the (k — 1)th time step as

Brrk =122 | +yi | — V/Ri1 (3.32)

Note that minus sign is selected in (3.32) within its multiple solutions for computation sim-
plicity since the sign of 3y is not influential based on the original design of hybrid system in
(3.5). The proposed KHF (¢, can be implemented directly along with the realtime tracking
process of HUKT scheme. In Section 5, the performance of these three types of hybrid factors

will be evaluated and compared via simulation.
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Chapter 4

Simplified TOA-Based and
TDOA-Based UKT Schemes

Considering the environments with only homogeneous type of single inputs, the proposed
HUKT algorithm can be simplified to the unified Kalman tracking (UKT) scheme to sup-
port either the TOA or the TDOA measurements, i.e., the UKT-TOA and the UKT-TDOA
schemes. Note that the HUKT can be adopted under the situations that there are insufficient
number of measurements at one of the heterogeneous signal paths. With homogeneous sig-
nal sources, the MS and network operator that utilize either the UKT-TOA or UKT-TDOA
techniques can have the flexibility to terminate the hybrid estimation mode in order to reduce
computational complexity. In the next two sections, the formulations of both the UKT-TOA
and UKT-TDOA schemes will be described.

4.1 UKT-TOA Scheme

The proposed HUKT algorithm will be reduced to UKT-TOA scheme if only the TOA
measurements are available for location estimation. The format of measurement update and
state update equations are still the same as (3.1) and (3.2) associated with the same TOA
formulation in (3.3). The state vector becomes & = [& Uy Ry Vpk Vyk Opk &y,k]T, where

the nonlinear term Ry = iz + ;Q,% is incorporated as one of the state variables. Therefore,
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1 0 0 At 0 1A 0
0 1 0 0 At 0 $AL?
Z(XT,k — XT’kfl) Q(YTyk - YT’kfl) 1 2XT’kAt QYTykAt XTykAtQ YT’kAt2
H= 0 0 0 1 0 At 0 (4.1)
0 0 0 0 1 0 At
0 0 0 0 0 1 0
i 0 0 0 0 0 0 1]

the measurement data y; and the matrix M of N TOA measurements in the measurement

update process becomes

7“1,1<;2 — Ky —2r1r —2y16 1 0 0 0 O
7“2,k2 — Koy, —2w9p —2y2p 1 0 0 0 O
Y = ' M =
i TN,k:2 — Ky i i —2xzNnE —2yny 1 0 0 0 O |

The covariance matrix Ry, associated with the measurement equation in (3.1) is obtained as

Ry = 4°L; I Ly (4.2)
with L, = diag{Cix, (2%, -.,C{nk} and the covariance matrix of TOA measurements as
Jip = diag{a% s 0’% PR ,012\, ), where Uz‘2,k denotes the combined variance of NLOS and mea-

surement noises. Based on the same assumption of constant acceleration model, the state
update process of 23 and gy are still of the form as (3.8) and (3.9). By summing up and

rearranging all N measurement equations, the following relationship can be obtained as

Rk = WT,]@ + QXVTJC - T+ QYT’k Uk (4.3)
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[ 1 0 0 At 0 1A 0 1
0 1 0 0 At 0 FAL2
Xrpk — Xtpg—1 Yrok —Yrpg—1 1 XrprAt YrppAt SXrppAt? iYrp At
H - 0 0 0 1 0 At 0 (4.7)
0 0 0 0 1 0 At
0 0 0 0 0 1 0
i 0 0 0 0 0 0 I
where
N N
Wrr = Z T@'z,k - Z Kk
i=1 i=1
Ng
Xrp = Z Tik
=1
Ng,
Yre = Z Yik (4.4)
=1

With equations (3.8), (3.9) and (4.3), the update process of the state Ry becomes

Ry =Ry 1 +2(X1k — X 1)dn 1 +2(Yrr — Yre_1)9k1
+2- XT,kﬁx,k—lAt +2- YT,k@y,k—lAt

+ XT7kdm7k,1At2 + YTkaALy,kflAtQ (4.5)

Based on the formulation as stated above, all of the update relationship become available and
the state matrix H associated with the state equation (3.2) can be obtained as (4.1). The

control input ug_; can be written as

w1=|0 0 (Wrp—Wrgq) 0 0 0 0 (4.6)

4.2 UKT-TDOA Scheme

In the case that there exists only the TDOA measurement inputs, the UKT-TDOA scheme

can be utilized to perform location estimation and tracking for the MS. The structure of
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UKT-TDOA scheme is similar to that of the UKT-TOA method as stated in the previous

subsection. The major difference is that the third state variable in the state vector is replaced

by f1 = /(&x — T11)2 + (& — J1.)? instead of Ry, for UKT-TOA scheme, i.e., the state
vector becomes &y, = (A% Y "1k Dok Vyk Gok Gyl -
With the available N TDOA BSs, there will exist N — 1 time difference measurements.

Therefore, from (3.4), the measurement data y;, and the matrix M in (3.1) can be acquired

as
f%l,k—(f(zk—f(l,k) —2To1r  —2Yy2nk  —2721x 0 0 0 O
fgl,k_(K37k_Kl,k) —2T31, —2Yysik —2r3r 0 0 0 O
Y = ' M =
~2 i iy ~ ~ ~
L "Nk = (Ky = Kuig) | | 2251, —2Ugik —2Tn 000 0 0

The covariance matrix Ry, associated with the Kalman filter measurement update can be

acquired as
Rk = C2i1kjk]:k (4.8)

where I:k = diag{@’k, 53’;4, cey Eﬁkk} and jk is the TDOA measurement covariance matrix in
(3.26). Based on the similar methodology as stated in UKT-TOA scheme, the state variable

71,k can be expressed as

Tk =Wrpr+2Xrpg - &k +2Yrp g - Uk (4.9)
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where

N - T ~ ~ ~
i T N S Kk (N = DK

Wrpk = oSN - 0N - N -
doito Tilk > ito Tilk 2> it Tk
N =~
Xrpr = —72152 :le’k (4.10)
Zizkg Til,k
Ny =~
Yrpr = —72152 Zill’k (4.11)
Zi:kQ Til,k

Consequently, the update process of ; j, becomes

71k =1 k-1 + (Xrpk — XD k—1)Th—1
+ Yok — Yrpg—1)Uk—1
+ X7p k0s k1At + Yrp 10y —1 At

1 3 1 .
+ §XTD,kax,k—1At2 = §YTD7kay,k—1At2 (4.12)

Finally, the state matrix H of (3.2) can be obtained as in (4.7) associated with the control

input ug_q as

We1=10 0 (Wppr—Wrpe1) 0 0 0 0 (4.13)
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Chapter 5

Performance Evaluation

The performance of the proposed HUKT, UKT-TOA, and UKT-TDOA schemes are eval-
uated via simulations. Section 5.1 illustrates the noise models that are utilized in the sim-
ulations. The performance comparison of proposed HUKT scheme under ideal and realistic
network scenarios are conducted in Sections 5.2 and 5.3, respectively. Section 5.4 describes
the performance evaluation of UKT-TOA and UKT-TDOA schemes under homogeneous net-

works.

5.1 Noise Models

Different noise models [35] for the TOA measurements are considered in the simulations.
The measurement noise n;  in (2.1) is selected as the zero mean Gaussian distribution with
standard deviation of 60 meters, i.e., n;; ~ N(0,3600). On the other hand, the NLOS noise
eik is modeled by an exponential distribution p, , as

pei’k(v) _ )\% exp(—A%) v>0 (5.1)
0 otherwise

where \; = c- 7, = ¢- 7, p. The parameter 7; is the RMS delay spread between the ith BS

and the MS, and 7, represents the median of 7;. € is a parameter set to be 0.5. The shadow
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fading factor p is a lognormal random variable with zero mean and its standard deviation o,
is set to be 4 dB in the simulation.

For the TDOA measurements, since it is formed by the subtraction of two TOA signals,
the same parameter set with the TOA noise model is utilized. Except in the hybrid scenario,
the Gaussian noise standard deviation and the RMS delay spread are set larger than the TOA
case. The reason for selecting larger delay spread in the cellular network is due to its larger
communication ranges which will result in higher NLOS errors. The constant acceleration

model is assumed for the Kalman filter, and the sampling time interval At =1 sec.

5.2 Performance Comparison of HUKT Scheme under Ideal

Network Scenarios

The effectiveness of the proposed HUKT scheme associated with the three hybrid factors
are evaluated in this section. The simulation scenarios for validating the proposed HUKT
algorithm are to consider the ideal network environments with Gaussian noises and sufficient
signal sources. There are eight BSs deployed as a regular polygon in the network, which
includes four TOA and four TDOA measurements as illustrated in Fig. 5.1. In the total of
300 sec simulation time, it is assumed that the signal from all BSs can always be received
such that the precision for location tracking will not be affected by the different numbers of
available BSs. The source of estimation error is restricted to Gaussian noise for validation
purpose. Zero mean Gaussian distributions each with standard deviation 60 meters N (0, 3600)
and 120 meters N (0, 14400) is chosen for TOA and TDOA measurements, respectively.

Fig. 5.2 shows the performance validation of proposed HUKT scheme by observing the
position errors in each time step associated with their corresponding hybrid factors, i.e., 3,
Bm, and B¢, which are denoted as HUKT-GHF, HUKT-MVHF, and HUKT-KHF schemes.
Note that the average position error is defined as AP = Yy ||&x — ||/N, z is the true
coordinate of MS and N is the number of rounds. The entire 300 sec simulation is repeated for
10 rounds. It can be observed from Fig. 5.2 that the values of GHF (3, vary in a relatively small

range compared to the other two hybrid factors since it is only determined by the geometric
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Figure 5.1: BS layout and tracking route for the proposed HUKT-GHF, HUKT-MVHF, and
HUKT-KHF schemes. (triangles: TDOA BSs; circles: TOA BSs)
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Figure 5.2: The position errors associated with the hybrid factors from the proposed HUKT-
GHF, HUKT-MVHF, and HUKT-KHF schemes.
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Figure 5.3: Performance comparison between the HUKT-GHF, HUKT-MVHF, and HUKT-
KHF, HKT, and HCLT schemes.

relationship between the MS and the associated BSs. The GHF (3, cannot completely react
to the operating status of the proposed HUKT scheme which results in the larger position
error compared to the other two hybrid factors 3, and 3;. It can be seen that the KHF
By can quickly respond to the variations of position error, e.g. larger value 3y is assigned in
order to compensate the larger position error at simulation time around 200 sec. Therefore,
the proposed HUKT-KHF scheme can provide the smallest average position error of the MS
compared to the other two methods.

Fig. 5.3 illustrates the performance comparison of average position errors between the
HCLT, HKT, and HUKT scheme associated with the three determination methods for hybrid
factors By, Bm, and By. Note that the two-step LS method is adopted as the location estimator
for both the HCLT and HKT schemes as shown in Fig. 1.1. It can be seen that the proposed
HUKT algorithms outperform the other two existing schemes, e.g. the HUKT-KHF scheme
results in around 160 m less in position error compared to the HKT scheme under 90% of
average position error. The estimation accuracy for both the HCLT and the HKT methods
rely on the performance of the location estimator. These two-stage schemes induce larger
estimation error comparing with the proposed single-stage algorithm, i.e. the HUKT scheme.
The nonlinear behavior is also predicted and updated within the HUKT formulation, which

results in higher location estimation and tracking accuracy for the MS. Furthermore, similar

28



Number of Bs
ey
1
1
1

. . . . .
0 50 100 150 200 250 300
Tme (sec)

Figure 5.4: The number of available BSs from TOA and TDOA measurements.

to the observation in Fig. 5.2, the HUKT-KHF scheme results in the smallest position error in
comparison with the HUKT-MVHF and HUKT-GHF methods. The main reason is that the
HUKT-KHF algorithm closely follows the Kalman tracking process for adjusting the hybrid

factor By which can effectively reduce the tracking error for the MS.

5.3 Performance Comparison of HUKT Scheme under Realis-

tic Network Scenarios

In this section, the performance comparison between the HUKT, HKT and HCLT schemes
are implemented under the realistic network environments with NLOS noises and insufficient
number of signal sources. The network scenarios for the simulations is explained as follows.
As shown in Fig. 5.7, the BSs deployed in a regular cellular layout are considered to perform
TDOA measurements; while the randomly distributed small range sensors conduct TOA
measurements for MS’s location tracking. The noise model for TDOA measurements are
nik ~ N(0,32400), i.e., 180 meters standard deviation. The RMS delay spread 7, is set to
0.1 for TOA measurements and 0.3 for TDOA measurements. Fig. 5.4 illustrates the total
number of available BSs for TOA and TDOA measurements respectively during the simulation

time of 300 sec. It is noticed that the situation with insufficient signal sources is arranged for
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Figure 5.5: The position errors associated with the hybrid factors from the proposed HUKT-
GHF, HUKT-MVHF, and HUKT-KHF schemes.

the TOA and TDOA BSs, respectively.

Fig. 5.5 shows The position errors along with the corresponding hybrid factors from the
proposed HUKT-GHF, HUKT-MVHF, and HUKT-KHF schemes. It can still be observed that
the proposed HUKT-KHF scheme can outperform the other two methods under the existence
of NLOS noises. Fig. 5.6 illustrates the performance comparison on the average position
errors between the HKT, HCLT and the three proposed HUKT schemes. It can be seen that
the proposed HUKT-KHEF algorithm outperforms all the other schemes, e.g. around 100 m
less in position error compared to HKT and HCLT under 67% of average position error. The
information of tracking nonlinear behavior provided as feedback to enhance the measurement
update within the HUKT formulation, which results in higher location estimation and tracking
accuracy for the MS. Finally, the signal insufficiency problem from individual signal path can
also be alleviated by adopting the proposed HUKT algorithm.

Figs. 5.7 to 5.9 show the trajectory tracking for the MS’s position, velocity, and accelera-
tion. It is noted that the empty circles (as illustrated in Fig. 5.7) represent the locations of the
cellular BSs with TOA measurements; while the empty triangles indicates the sensor BSs with
TDOA measurements. It can be seen that the proposed HUKT-KHF algorithm can provide
better tracking capability comparing with the other two schemes. Both the HCLT and the

HKT schemes severely deviate from their true trajectories as the accelerations altered. Fur-
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Figure 5.6: Performance comparison between the HUKT-GHF, HUKT-MVHF, and HUKT-
KHF, HKT, and HCLT schemes.
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Figure 5.7: Trajectory tracking of the MS using the HCLT, HKT and HUKT-KHF schemes.
(solid lines: true trajectories; dotted lines: estimated trajectories; triangles: TDOA BSs;
circles: TOA BSs)
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Figure 5.8: Velocity tracking of the MS using the HCLT, HKT and HUKT-KHF schemes.
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Figure 5.9: Acceleration tracking of the MS using the HCLT, HKT and HUKT-KHF schemes.
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thermore, at the tail of route, insufficiency of signal sources made both the HCLT and HKT
unable to maintain accurate location tracking for the MS. The proposed HUKT-KHF algo-
rithm can still provide consistent performance (including position, velocity, and acceleration)

under the variations of MS’s mobility.

5.4 Performance Comparison of UKT-TOA and UKT-TDOA

Schemes

In this section, the performance of UKT scheme for pure TOA and TDOA measurement
inputs are evaluated. The BSs are designed to be located in regular cellular layout for both
situation. The noise model for both signals are Gaussian measurement noise with 60 meters
standard deviation, i.e. n;; ~ N(0,3600) and exponential NLOS noise as (5.1) with the RMS
delay spread 7, = 0.3.

It can be seen in Fig. 5.10 and 5.11 that the simplified special cases of TOA-based
and TDOA-based UKT outperform the KT and CLT scheme, which is also consistent to
the hybrid operation version.  Although the resistance ability to insufficient signal sources is
not available due to only sole signal path exists, to additionally track the variation of the
nonlinear variable provides better stability and accuracy. The single-stage architecture that
directly extract observation result from raw measurement inputs mitigates the common error
propagation phenomenon in multiple-stage systems. This unified structure achieves more

precision on location estimation and tracking.
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Figure 5.10: Performance comparison between the location tracking schemes for TOA mea-
surements.
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Figure 5.11: Performance comparison between the location tracking schemes for TDOA mea-
surements.

34



Chapter 6

Conclusion

In this paper, a hybrid unified Kalman tracking (HUKT) technique is proposed for location
estimation and tracking. Based on heterogeneous signal inputs, the HUKT scheme integrates
the location estimation and tracking problems within an unified Kalman filtering formulation.
The range and range difference measurements from different signal paths are combined based
on different designs of hybrid factors. Simulation results show the effectiveness of the HUKT
algorithm. Comparing with other existing wireless location techniques, the proposed HUKT
scheme can both provide higher precision for mobile location tracking and adapt to insufficient

signal sources environments.
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