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摘 要       

近年來為行動終端裝置所提供的定位追蹤和量測技術逐漸引起越來越

多的關注；隨著越來越多的定位系統投入商業運轉，環境中充滿了許多原

理互異的定位量測資訊。已有許多不同的技巧經過研究或進一步合併使

用，例如最小平方法結合卡爾曼濾波器進行定位和追蹤。本篇論文提出一

個基於整合型卡爾曼濾波器的混合式無線追蹤定位演算法(HUKT)，統整

來自到達時間和到達時間差這兩種相異定位系統的量測資訊以提供精準的

定位追蹤服務，而伴隨著定位計算的非線性特性則以一個額外的狀態變量

被整合成卡爾曼濾波器的內部參數之一。與現有的架構比較，模擬分析結

果顯示本篇論文提出的 HUKT 演算法可以更加提高行動定位追蹤的準確

度，並且在量測訊號源不足的情況下依然能有不錯的表現。 
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ABSTRACT 

Location estimation and tracking for the mobile stations have 
attracted a significant amount of attention in recent years. Moreover, 
different types of signal sources are considered available to provide the 
measurement inputs for location estimation and tracking. Various 
techniques have been studied and combined for location tracking, e.g. 
the least square methods for location estimation associated with the 
Kalman filters for location tracking. In this thesis, a hybrid unified Kalman 
tracking (HUKT) technique is proposed to provide an integrated 
algorithm for precise location tracking based on both the time-of-arrival 
(TOA) and time-difference-of-arrival (TDOA) measurements. A new 
variable is incorporated as an additional state within the Kalman filtering 
formulation in order to consider the nonlinear behavior for wireless 
location estimation. Comparing with existing schemes, numerical results 
illustrate that the proposed HUKT algorithm can achieve enhanced 
accuracy for mobile location tracking, especially under the environments 
with insufficient number of signal sources in a single signal path. 
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Chapter 1

Introduction

Wireless location technologies, which are designed to estimate the position of a mobile

station (MS), have drawn a lot of attention over the past few decades. With the acquisition

of the MS’s location information, different types of location-based services (LBSs) can be

exploited including the emergency 911 (E-911) subscriber safety services [1], the location-based

billing, the navigation systems, and applications for the intelligent transportation systems

(ITSs) [2]. Due to the emergent interests in the LBSs, it is required to provide enhanced

precision in location estimation and tracking of the MS under different types of environments.

A variety of wireless location techniques have been investigated and proposed in standards

[3]. The network-based location estimation schemes are widely employed in the wireless

communication systems. These schemes locate the position of an MS based on the measured

radio signals from either its neighborhood base stations in cellular networks or anchor nodes

in the wireless sensor networks (WSNs) [4, 5]. For convenience, these signal sources are

represented as BSs in this thesis. The location estimation algorithms can be categorized into

range-free and range-based techniques. The range-free schemes [6–8] utilized the status of

network connectivity between the MS and BSs for localization, which possesses the benefits of

simplicity and low cost. These schemes are primarily adopted in the WSNs with the features

of limited computation power and less requirement on positioning accuracy. On the other

hand, in order to provide precise location estimation, the range-based schemes are considered

1



which include received-signal-strength (RSS) [9], angle-of-arrival (AOA) [10], time-of-arrival

(TOA) [11], and time difference-of-arrival (TDOA) [12]. The RSS schemes record the incoming

signal strength from different wireless BSs for converting to the distance measurement, and

the AOA methods are in general implemented at the BSs to observe the signal bearing via the

antenna array. The TOA schemes measure the arrival time of the radio signals coming from

the BSs; while the TDOA algorithms measure the time difference between the radio signals.

One of the important issues for range-based positioning is its inherent nonlinear feature for

location estimation, which results in complex computation and difficulties for analysis. Various

techniques have been proposed to reduce the inaccuracy owing to the nonlinear behaviors of

location estimation. Methods in [13] and [14] adopt Taylor series expansion (TSE) to linearize

the TOA and TDOA measurement equations in order to obtain the approximated position of

the MS. Although the estimation error can be mitigated to a certain limit via sufficient rounds

of iteration, the iterative process may suffer from convergence problem due to improper initial

guess. The two-step least square (LS) method was adopted to solve the location estimation

problem by considering the nonlinear part as one of the linear variables to be estimated [12,15].

It is an approximate realization of the maximum likelihood (ML) estimator and does not

require iterative processes. The two-step LS scheme is advantageous in its computational

efficiency with adequate accuracy for location estimation. Instead of utilizing the circular

line of position (LOP) methods, e.g., the TSE and the two-step LS schemes, the linear LOP

approach is presented as a different interpretation for the cell geometry from the TOA [16]

and TDOA [17] measurements. The linear LOP scheme for the TOA measurements can easily

be acquired by subtracting two measurement equations. As for the TDOA measurements, by

mutually combining a set of range difference measurements from three BSs, a conic can be

uniquely determined and the MS will be obtained to locate at its major axis. This method

transforms the hyperbolic LOP into a straight line, nevertheless, redundant equations increase

exponentially as the number of available BSs grows. Therefore, the approaches proposed

in [18, 19] derived another form of linearization for location estimation by multiplying an

orthogonal matrix in order to eliminate the nonlinear vector.
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Moreover, Kalman filer [20–22] is extensively utilized to further enhance the precision for

location estimation. It produces estimation of the internal states with dynamic weighting

adjustment between the prediction and the observation input in recursion form. This feature

alleviates the estimation outputs from severe variation and converges to the true value. Several

research have adopted the Kalman filter to track the estimation error, the non-line-of-sight

(NLOS) interference [23], or the mobility information of moving MS [24,25]. Comparing with

the methods for stationary location estimation, the tracking schemes take advantage of the

previous location and movement of the MS which results in smoothed MS trajectory with

better estimation accuracy.

On the other hand, owing to the feasibility of providing synchronization between the cel-

lular BSs, the TDOA measurements has been extensively adopted for location estimation and

tracking in existing telecommunication systems, e.g. the WiMax [26] standard. However,

the “urban canyons” problem has been observed that the number of received GPS or cellular

signals is insufficient for location estimation due to signal blockage in urban environment.

Moreover, the study in [27] suggests the adoption of TOA-based signal sources for dedicated

short-range communications (DSRC) to avoid complex infrastructure required for the TDOA

measurements. In order to provide feasible precision for location estimation, it is required to

combine these two types of signal sources under a variety of environments, e.g., to addition-

ally include the TOA-based sensor anchors or roadside DSRC devices with the TDOA-based

cellular signal sources. Therefore, it will be beneficial to provide a hybrid technique that

can facilitate location estimation and tracking based on these two types of measurement in-

puts. Moreover, the performance of the location estimation schemes vary depending on the

environmental conditions and the operational parameters. The Cramer-Rao lower bound

(CRLB) [28] as a theoretical limitation on estimation variance has been extensively used to

provide a benchmark for comparison between different estimators. Different works [24,29,30]

are dedicated to combine multiple location techniques for enhanced positioning precision with

the theoretical lower bound derived in [29].

As shown in the left plot of Fig. 1.1, the hybrid cascade location tracking (HCLT) scheme

3
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Figure 1.1: Left plot: the hybrid cascade location tracking (HCLT) scheme; middle plot:
the hybrid Kalman tracking (HKT) scheme; right plot: the proposed hybrid unified Kalman
tracking (HUKT) scheme.

proposed in [24] utilizes the two-step least square (LS) method [11, 12] for initial location

estimation of the MS. The Kalman filtering technique is exploited to smooth out the estimation

error by tracking the positions and velocities of the MS. The fusion algorithm is utilized to

combine the tracking results from two different sources to obtain the final location estimation

of the MS. In the middle plot of Fig. 1.1, the hybrid Kalman tracking (HKT) scheme extends

the Kalman tracking (KT) scheme in [25] by separating the linear components from the

originally nonlinear equations for location tracking. The linear aspect is exploited within the

Kalman filtering formulation; while the nonlinear term is served as an external measurement

input to the Kalman filter. However, both the HCLT and HKT algorithms have the drawback

of additional computation cost due to their cascaded infrastructure. This type of structure

can result in information lose which causes larger location tracking errors. Moreover, both

algorithms require sufficient numbers of signal sources from either the TOA or TDOA path

which can not resolve the signal insufficiency problem in urban canyons.

In the thesis, a hybrid unified Kalman tracking (HUKT) algorithm is proposed based on

both the TOA and TDOA signal inputs. As illustrated in the right plot of Fig. 1.1, the

HUKT scheme integrates the two-step LS estimator into the Kalman filtering formulation

for location tracking based on both the TOA and TDOA signal sources from heterogeneous

BSs. The nonlinear parameters within their respective TOA and TDOA based location es-
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timators are mathematically combined into a single state variable, which is to be updated

within the Kalman filter. The proposed HUKT scheme is feasible to be adopted under the

environments with heterogeneous signal sources, and is tolerant to insufficient number of BSs

from individual signal path. The determination of hybrid factor that combines the TOA and

TDOA signal sources is investigated based on different criterions. Furthermore, the proposed

HUKT algorithm can be directly simplified into a unified Kalman tracking (UKT) scheme

for location tracking under the situation of only homogeneous signal sources, i.e., either the

TOA or TDOA measurement input is available. Performance evaluation and comparison of

the proposed HUKT and UKT schemes are conducted via simulations. The simulation results

show that the HUKT/UKT algorithm can achieve higher accuracy for location estimation and

tracking.

The remainder of this thesis is organized as follows. The mathematical modeling of sig-

nal sources and existing tracking techniques are summarized in Chapter 2. Chapter 3 and 4

describes the proposed HUKT and the simplified UKT algorithms for TOA and TDOA mea-

surements. Performance evaluation and comparison of the proposed schemes are conducted

in Chapter 5 via simulations. Chapter 6 draws the conclusions.
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Chapter 2

System Modeling and Existing

Location Tracking Schemes

2.1 Mathematical Modeling of Signal Inputs

In this section, the mathematical models for both the TOA and TDOA measurements

are presented. The two-dimensional coordinate of the MS is to be obtained in the proposed

HUKT scheme. The TOA measured distance ri,k between the MS and the ith BS at the kth

time step can be represented as

ri,k = c · ti,k = ζi,k + ni,k + ei,k i = 1, 2, ..., N (2.1)

where ti,k denotes the TOA measurement with respect to the ith BS at the kth time step,

and c is the light speed. The measured distance ri,k is corrupted by both the measurement

noises ni,k and the non-line-of-sight (NLOS) error ei,k under the urban and suburban areas.

The parameter N refers to the total number of TOA measurements. The noiseless distance

ζi,k is

ζi,k = [(xk − xi,k)2 + (yk − yi,k)2]1/2 (2.2)
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where (xk, yk) represents the MS’s true position and (xi,k, yi,k) is the coordinate of ith BS

at time step k. Based on the above TOA signal model, the TDOA measurement can be

formulated as the subtraction of two TOA measurements, which is conform to the physical

meaning of difference in propagation time. The relative distance r̃ij,k
1 can be obtained by

computing the TDOA measurement t̃ij,k, which is the time difference between the MS with

respect to the ith and the jth BSs from (2.1) as

r̃ij,k = c · t̃ij,k i = 2, ..., Ñ ; j = 1

= (ζ̃i,k − ζ̃j,k) + (ñi,k − ñj,k) + (ẽi,k − ẽj,k) (2.3)

It is noted that the 1st BS of the TDOA system is in general denoted as the reference BS,

e.g., the serving BS in the cellular system. The TDOA measurements are taken between the

reference BS and the other neighbor BSs. The parameter Ñ is the number of BSs for TDOA

system which comprises Ñ − 1 independent TDOA measurements.

2.2 The Hybrid Cascade Location Tracking (HCLT) Scheme

The left plot of Fig. 1.1 illustrates the architecture of HCLT scheme [24]. The HCLT sys-

tem consists of a LS location estimator (e.g., two-step LS method as previous mentioned) fol-

lowed by a Kalman filtering technique at the next stage. different versions of two-step LS meth-

ods are proposed for distinct occasions such as TOA [11], TDOA [12] and TDOA/AOA [31]

measurement inputs. The concept of two-step LS method is to acquire an intermediate loca-

tion estimate in the first step with the definition of a new variable to represent the nonlinear

term, which is mathematically related to the MS’s position. This assumption effectively trans-

forms the nonlinear equations for location estimation into a set of linear equations, which can

be directly solved by the LS method. The second step of the method primarily considers

the fact that the newly defined variable is related to the MS position, which was originally
1In the thesis, it is considered that the TDOA and the TOA measurements come from two different types of

networks. For notation convenience, the variables with a tilde are denoted for the measurements from TDOA
system, e.g., r̃ij,k; while the variables without the tilde (e.g., ri,k) are utilized for TOA measurements.
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assumed to be uncorrelated in the first step. An improved location estimation can be obtained

after the adjustment from the second step.

The estimated position from the output of the two-step LS estimator will be post-processed

by the Kalman filtering technique according to [20]. The Kalman filter smooths out and tracks

the estimation errors by adopting linear prediction from the previous estimation data when

the MS position dynamically changes in the network. The tracking results from the two

disparate paths will be combined by the fusion mechanism based on the Bayesian inference

model [32, 33]. The estimated MS’s position, i.e., (x̂k, ŷk), can therefore be acquired. The

detail algorithm of the HCLT scheme can be found in [24].

2.3 The Hybrid Kalman Tracking (HKT) Scheme

Since the equations associated with the network-based location estimation are inherently

nonlinear, different mechanisms, e.g., linearization, are considered within the existing algo-

rithms for location tracking. The Kalman tracking (KT) scheme [25] considers the nonlinear

term as an external measurement input to its Kalman filtering formulation. It distinguishes

the linear part from the originally nonlinear equations for location estimation and tracking.

However the KT scheme does not specifically indicate the method for acquiring the value of

the nonlinear term.

For comparison purpose, the KT scheme that was originally proposed based on the TDOA

measurement inputs is reformulated and extended to consider both the TOA and TDOA signal

sources. The middle plot of Fig. 1.1 illustrates the architecture of the hybrid KT (HKT)

scheme. The nonlinear terms can be obtained from the external location estimators, i.e., by

adopting the two-step LS method. With the formulation of the HKT scheme, feasible accuracy

for location tracking (including position, velocity, and acceleration) can be acquired. However,

the accuracy is significantly affected by the precision of the external location estimator. The

detail algorithm of the KT scheme can be found in [25].
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Chapter 3

The Proposed Hybrid Unified

Kalman Tracking (HUKT) Scheme

The proposed HUKT scheme will be addressed in this chapter. The formulation of HUKT

algorithm will be explained in section 3.1, and the determination of the hybrid variable β will

be discussed in section 3.2. The variable β will be determined from three different approaches

in order to allocate the weighting factors between the TOA and TDOA measurements for the

HUKT scheme.

3.1 Formulation of HUKT Algorithm

The right plot of Fig. 1.1 illustrates the architecture of the proposed HUKT scheme.

Unlike the previous algorithms (e.g., the HCLT and HKT methods), the main design concept

of the HUKT scheme is to provide a unified methodology for location estimation and tracking.

The purpose of HUKT algorithm is to obtain the updated state variables via the Kalman

filtering technique directly from both the TOA and TDOA measurements as the system

inputs. The measurement update and the state update equations of the Kalman filter can be
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represented as

yk = Mx̂ k + mk (3.1)

x̂ k = Hx̂ k−1 + uk−1 + pk−1 (3.2)

where x̂ k = [x̂k ŷk <̂k v̂x,k v̂y,k âx,k ây,k]T is the state vector that includes the MS’s estimated

position (x̂k, ŷk), the estimated velocity (v̂x,k, v̂y,k), the estimated acceleration (âx,k, ây,k), and

the estimated variable <̂k. It is noted that <̂k represents the estimated nonlinear term for

the hybrid-based location estimation. The updating process of <̂k will be addressed later.

The variables mk and pk−1 denote the measurement and the processing noises respectively.

With the assumption that r2
i,k ≥ ζ2

i,k due to the existence of NLOS errors ei,k, the following

inequality can be obtained by rearranging the TOA measurements (2.1) and (2.2) as

r2
i,k −Ki,k ≥ −2xi,kxk − 2yi,kyk + Rk (3.3)

where Ki,k = x2
i,k+y2

i,k and Rk = x2
k+y2

k. Similarly, the following relation can also be acquired

from the TDOA measurements (2.3) by substituting j = 1 as:

r̃2
i1,k − (K̃i,k − K̃1,k) ≥ −2(x̃i,k − x̃1,k)xk − 2(ỹi,k − ỹ1,k)yk − 2r̃1,k r̃i1,k (3.4)

where r̃1,k indicates the measured distance from the MS to the reference BS via the TDOA

system. In order to design a unified structure for location tracking, the purpose of proposed

HUKT scheme is to obtain an effective method to combine both the TOA and TDOA mea-

surements. More specifically, a new variable <̂k is introduced to combine the nonlinear terms

Rk in (3.3) and r̃1,k in (3.4). Without loss of generality, the nonlinear term r̃1,k in (3.4) can

be represented as
√

x2
k + y2

k by shifting the entire coordinate (i.e., both TOA and TDOA sys-

tems) such that (x̃1,k, ỹ1,k) = (0, 0). Let the parameter βk be defined as a hybrid factor. By

10



multiplying (3.4) with βk/r̃i1,k and adding to (3.3), the following equation can be obtained:

ri,k
2 −Ki,k + βkr̃j1,k − βk

K̃j,k − K̃1,k

r̃j1,k
+ β2

k =

− 2(xi,k + βk
x̃j,k − x̃1,k

r̃j1,k
)xk − 2(yi,k + βk

ỹj,k − ỹ1,k

r̃j1,k
)yk + <k (3.5)

where <k = (
√

x2
k + y2

k − βk)2 corresponds to the variable that combines the effects from

both the TOA and TDOA measurements. It is included within the state vector x̂ k for state

updating within the Kalman filtering formulation. Therefore, the measurement data yk and

the matrix M associated with the measurement process (as in (3.1)) can be acquired in (3.6).

It is noted that there are (N + Ñ − 2) linearly independent equations associated with both

yk and M. There are N hybrid equations formed by all the TOA measurements (i.e., from

r1,k to rN,k) and the first TDOA measurement r̃21,k. The remaining Ñ − 2 hybrid equations

are established by using the first TOA measurement (i.e., r1,k) and the remaining TDOA

measurements (i.e., from r̃31,k to r̃Ñ1,k). The parameter hybrid factor βk is utilized to merge

the TOA and TDOA based measurements, which can be determined according to the signal

qualities of the two different paths. The detail of choosing appropriate value for βk will be

addressed later in the next section.

Under the assumption of constant acceleration model, the updating process of x̂k and ŷk

are determined as

x̂k = x̂k−1 + v̂x,k−1∆t +
1
2
âx,k−1∆t2 (3.8)

ŷk = ŷk−1 + v̂y,k−1∆t +
1
2
ây,k−1∆t2 (3.9)

where ∆t denotes the sampling time interval. In order to provide the updating process for

the new variable <k, similar to (3.5), the relation between <k, xk, and yk can be acquired by

summing all N TOA measurements of (3.3) and Ñ − 1 TDOA measurements of (3.4) as

<k = Wk + 2XS,k · xk + 2YS,k · yk (3.10)
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yk =




r1,k
2 −K1,k + βk r̃21,k − βk

K̃2,k−K̃1,k

r̃21,k
+ β2

k

r2,k
2 −K2,k + βk r̃21,k − βk

K̃2,k−K̃1,k

r̃21,k
+ β2

k

r3,k
2 −K3,k + βk r̃21,k − βk

K̃2,k−K̃1,k

r̃21,k
+ β2

k

...

rN,k
2 −KN,k + βkr̃21,k − βk

K̃2,k−K̃1,k

r̃21,k
+ β2

k

r1,k
2 −K1,k + βk r̃31,k − βk

K̃3,k−K̃1,k

r̃31,k
+ β2

k

r1,k
2 −K1,k + βk r̃41,k − βk

K̃4,k−K̃1,k

r̃41,k
+ β2

k

r1,k
2 −K1,k + βk r̃51,k − βk

K̃5,k−K̃1,k

r̃51,k
+ β2

k

...

r1,k
2 −K1,k + βkr̃Ñ1,k − βk

K̃
Ñ,k

−K̃1,k

r̃
Ñ1,k

+ β2
k




M =




−2(x1,k + βk
x̃2,k−x̃1,k

r̃21,k
) −2(y1,k + βk

ỹ2,k−ỹ1,k

r̃21,k
) 1 0 0 0 0

−2(x2,k + βk
x̃2,k−x̃1,k

r̃21,k
) −2(y2,k + βk

ỹ2,k−ỹ1,k

r̃21,k
) 1 0 0 0 0

−2(x3,k + βk
x̃2,k−x̃1,k

r̃21,k
) −2(y3,k + βk

ỹ2,k−ỹ1,k

r̃21,k
) 1 0 0 0 0

...

−2(xN,k + βk
x̃2,k−x̃1,k

r̃21,k
) −2(yN,k + βk

ỹ2,k−ỹ1,k

r̃21,k
) 1 0 0 0 0

−2(x1,k + βk
x̃3,k−x̃1,k

r̃31,k
) −2(y1,k + βk

ỹ3,k−ỹ1,k

r̃31,k
) 1 0 0 0 0

−2(x1,k + βk
x̃4,k−x̃1,k

r̃41,k
) −2(y1,k + βk

ỹ4,k−ỹ1,k

r̃41,k
) 1 0 0 0 0

−2(x1,k + βk
x̃5,k−x̃1,k

r̃51,k
) −2(y1,k + βk

ỹ5,k−ỹ1,k

r̃51,k
) 1 0 0 0 0

...

−2(x1,k + βk
x̃

Ñ,k
−x̃1,k

r̃
Ñ1,k

) −2(y1,k + βk
ỹ

Ñ,k
−ỹ1,k

r̃
Ñ1,k

) 1 0 0 0 0




(3.6)

H =




1 0 0 ∆t 0 1
2∆t2 0

0 1 0 0 ∆t 0 1
2∆t2

2(XS,k −XS,k−1) 2(YS,k − YS,k−1) 1 2XS,k∆t 2YS,k∆t XS,k∆t2 YS,k∆t2

0 0 0 1 0 ∆t 0
0 0 0 0 1 0 ∆t
0 0 0 0 0 1 0
0 0 0 0 0 0 1




(3.7)

where

Wk =β2
k +

1
N

(
N∑

i=1

r2
i,k −

N∑

i=1

Ki,k

)

+
1

∑Ñ
j=2 r̃j1,k


βk

Ñ∑

j=2

r̃2
j1,k − βk

Ñ∑

j=2

K̃j,k

+ βk(Ñ − 1)K̃1,k

]

XS,k =
∑N

i=1 xi,k

N
+

βk
∑Ñ

j=2(x̃j,k − x̃1,k)
∑Ñ

j=2 r̃j1,k

YS,k =
∑N

i=1 yi,k

N
+

βk
∑Ñ

j=2(ỹj,k − ỹ1,k)
∑Ñ

j=2 r̃j1,k

(3.11)
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Following the methodology as in (3.8) and (3.9), the updating process for the estimated

variable <̂k becomes

<k =<k−1 + 2(XS,k −XS,k−1)xk−1 + 2(YS,k − YS,k−1)yk−1

+ 2 ·XS,k · vx,k−1 ·∆t + 2 · YS,k · vy,k−1 ·∆t

+ XS,k · ax,k−1 ·∆t2 + YS,k · ay,k−1 ·∆t2 (3.12)

Finally, the state matrix H associated within the state equation in (3.2) for the proposed

HUKT scheme can be obtained in (3.7). The control input uk−1 can also be acquired as

uk−1 =
[

0 0 (Wk −Wk−1) 0 0 0 0

]T

(3.13)

To summarize, the proposed HUKT scheme integrates the measurement inputs from het-

erogeneous location estimation systems based on a unified Kalman filtering structure. The

iterative operations of the Kalman filtering technique primarily consist of the processes for

state update (i.e., prediction) and measurement update (i.e., correction). The equations for

state update is represented as

x̂−k = Hx̂ k−1 + uk−1 (3.14)

C−
k = HCk−1HT + Qk (3.15)

The equations for measurement update becomes

Kk = C−
k MT (MC−

k MT + RTOA,k + RTDOA,k)−1 (3.16)

x̂ k = x̂−k + Kk(yk −Mx̂−k ) (3.17)

Ck = C−
k −KkMC−

k (3.18)

where Kk represents the Kalman gain and the matrix Ck is denoted as the estimate error co-

variance. The covariance matrices associated with the TOA and TDOA measurement update
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processes are respectively represented as

RTOA,k = BLkJh,kLkBT (3.19)

RTDOA,k = B̃L̃kJ̃h,kL̃kB̃T (3.20)

where

B =




[I]N×N

[C](Ñ−2)×N


 =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

1 0 · · · 0
...

1 0 · · · 0




, B̃ =




[D](N−1)×Ñ

[E](Ñ−1)×Ñ


 =




−1 1 0 0 · · · 0
...

−1 1 0 0 · · · 0

−1 0 1 0 · · · 0

−1 0 0 1 · · · 0
...

...
...

...
. . .

...

−1 0 0 0 · · · 1




are arranged according to the TOA and TDOA measurements pairs as in (3.6). The matrices

Lk = diag{ζ1,k, ζ2,k, . . . , ζN,k}, L̃k = diag{ζ̃1,k, ζ̃2,k, . . . , ζ̃N,k} and the covariances of TOA and

TDOA measurements are respectively represented as

Jh,k = diag{σ2
1,k, σ

2
2,k, . . . , σ

2
N,k} (3.21)

J̃h,k = diag{σ̃2
1,k, σ̃

2
2,k, . . . , σ̃

2
N,k} (3.22)

3.2 Determination of Hybrid Factor β

As shown in (3.5), the hybrid factor β is utilized to provide the weighting between the

TOA and TDOA measurements in order to merge these two types of inputs for hybrid location

tracking. Therefore, it is essential to develop mechanisms that can dynamically adjust the

hybrid factor in accordance with the variation of estimation qualities in the two signal paths.
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Note that the sign of the weighting value, i.e., the hybrid factor, will not be essential based

on the design of hybrid system in (3.5). With larger absolute value of βk, more weighting is

assigned to the TDOA signal compared to TOA measurement input. In the following three

subsections, different types of design of hybrid factor will be presented.

3.2.1 GDOP-based Hybrid Factor (GHF)

The geometric dilution of precision (GDOP) [34], which is a dimensionless quantity, de-

scribes the geometry influence on location estimation accuracy. For a set of spatially separated

BSs or sensors, the relative position between the MS and the BS set affects the estimation

accuracy for the MS’s position. In general, when the MS locates around the center of the BSs,

the GDOP value is lower than the case that the MS is situated around the edge of estimation

perimeter. Therefore, the GDOP criterion that provides the relative distance information

between the MS and BSs can be utilized to determine the hybrid factor β which considers

the weighting between the TOA and TDOA measurements. Consider the MS located at

xk = (xk, yk) with the TOA range measurements (r1,k, r2,k, · · · rN,k) from the N BSs associ-

ated with Gaussian noise, the GDOP value Gxk,TOA for xk at time step k can be obtained

as

Gxk,TOA = [trace{(HG,kJ−1
G,kH

T
G,k)

−1}]1/2 (3.23)

where JG,k is acquired as (3.21) and

HG,k =




xk−x1,k

r1,k

yk−y1,k

r1,k

xk−x2,k

r2,k

yk−y2,k

r2,k

...
...

xk−xN,k

rN,k

yk−yN,k

rN,k




(3.24)
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On the other hand, consider the TDOA case with range difference measurements (r̃21,k, r̃31,k, · · · r̃Ñ1,k),

the formulation for the GDOP value can be obtained as

Gxk,TDOA = [trace{(H̃G,kJ̃
−1
G,kH̃

T
G,k)

−1}]1/2 (3.25)

where

J̃G,k =




σ̃2
2 + σ̃2

1 σ̃2
1 · · · σ̃2

1

σ̃2
1 σ̃2

3 + σ̃2
1 · · · σ̃2

1

...
...

. . . σ̃2
1

σ̃2
1 σ̃2

1 σ̃2
1 σ̃2

Ñk
+ σ̃2

1




(3.26)

H̃G,k =




x−x̃2
r̃2

− x−x̃1
r̃1

y−ỹ2

r̃2
− y−ỹ1

r̃1

x−x̃3
r̃3

− x−x̃1
r̃1

y−ỹ3

r̃3
− y−ỹ1

r̃1

...
...

x−x̃Ñ
r̃Ñ

− x−x̃1
r̃1

y−ỹÑ
r̃Ñ

− y−ỹ1

r̃1




(3.27)

Consequently, the GDOP-based hybrid factor (GHF) βg,k which is designed to be the ratio

between the TOA and TDOA estimation systems can be formulated as

βg,k =
Gxk,TOA

Gxk,TDOA
· r̃1,k (3.28)

Note that the original TDOA equation in (3.4) is divided by r̃i1,k in order to formulate the

hybrid formulation as in (3.5). Therefore, the multiplication of r̃1,k in (3.28) is to scale

back to the original magnitude order of the TDOA measurements in (3.4). For simplicity in

computation, the value of r̃1,k is utilized instead of the original r̃i1,k value. Furthermore, it is

noted that both Gxk,TOA and Gxk,TDOA are non-zero values which result in countable value

of βg,k. The case with zero GDOP value denotes there is no signal variance which is unlikely

to happen in estimation. On the other hand when the MS is located exactly on the same
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coordination of one of the BSs, it will cause singularity and leads the above matrix operation

to undefined behavior. Both situations will not be considered in this thesis.

3.2.2 Minimum Variance-based Hybrid Factor (MVHF)

The main purpose of this scheme is to obtain the hybrid factor to achieve minimum vari-

ance for the hybrid estimation system. From the formulation of HUKT scheme as shown

in (3.5), the hybrid measurement update equation is composed by the TOA measurement

from the ith BS and the TDOA measurement via the jth BS and the serving BS. In or-

der to facilitate the design of MVHF βm,k, an intermediate hybrid factor αk is defined

as αk = βm,k/r̃j1,k. Furthermore, an equivalent set of BSs is defined as (xeql,k
, yeql,k

) =

(xi,k + βm,k
x̃j,k−x̃1,k

r̃j1,k
, yi,k + βm,k

ỹj,k−ỹ1,k

r̃j1,k
) = (xi,k + αk(x̃j,k − x̃1,k), yi,k + αk(ỹj,k − ỹ1,k)) for

l = 1, 2, ..., N + Ñ − 2, the original hybrid measurement update in (3.5) can be rewritten as

ri,k
2 + (α2

k + αk)r̃2
j1,k −Ki,k − αk(K̃j,k − K̃1,k) = −2(xeql,k

)xk − 2(yeql,k
)yk + <k (3.29)

Note that (3.29) possesses similar format as that in (3.3) for TOA measurements and in (3.4)

for TODA measurements. Therefore, it is implicitly suggested by (3.29) that there exists

a set of equivalent BSs (xeql,k
, yeql,k

) for each entry of hybrid measurement equation, where

the equivalent BS is a composition of both TOA and TDOA BSs with the ratio αk, i.e.,

(xeql,k
, yeql,k

) = (xi,k +αk(x̃j,k− x̃1,k), yi,k +αk(ỹj,k− ỹ1,k)). As a result, the target of MVHF

is to acquire an optimal αk such that the variance of the hybrid system can be minimized as

αk = arg min
∀α∈R

[trace{(HM,kJ−1
M,kH

T
M,k)

−1}]1/2 (3.30)
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where

HM,k =




xk−xeq1,k

r1,k

yk−yeq1,k

r1,k

xk−xeq2,k

r2,k

yk−yeq2,k

r2,k

...
...

xk−xeq
N+Ñ−2,k

rN+Ñ−2,k

yk−yeq
N+Ñ−2,k

rN+Ñ−2,k




(3.31)

and JM,k = RTOA,k +RTDOA,k as computed in (3.19) and (3.20). Note that the minimization

problem in (3.30) can be interpreted as to search for the variance lower bound for the hybrid

tracking system. Therefore, the value of MVHF βm,k can be obtained as βm,k = αk · r̃1,k,

where r̃1,k is utilized instead of r̃j1,k due to simplicity in computation.

Moreover, the complicate optimization process in (3.30) for obtaining αk will not be fea-

sible for realtime implementation. An alternative method is to perform the numerical search

for each specific network layout. For a pre-determined BS topology that is divided by small

grids in region, the optimal values of αk for each grid can be acquired in order to construct

the offline table. Based on the inherent tracking information within the Kalman filter, the

predicted a priori knowledge of the MS’s position will be provided to obtain αk based on

table-lookup for realtime implementation.

3.2.3 Kalman Filter-based Hybrid Factor (KHF)

As stated in Subsection 3.2.1, the design concept of GHF is straightforward which de-

termines the hybrid factor based on GDOP values from TOA and TDOA measurements.

However, the characteristics of hybrid structure for location tracking has not been considered

in the design of GHF value. On the other hand, the MVHF designed in Subsection 3.2.2 con-

siders the variances of proposed HUKT system to explore the optimal solution for the hybrid

factor. Nevertheless, approximated solution is obtained due to the complexity of solving op-

timization problem in realtime implementation. In this subsection, the KHF βf,k is designed

based on the dynamic adjustment of Kalman filtering formulation within the proposed HUKT

scheme. It is closely related to the prediction and update features of the Kalman filter-based
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location tracking system.

Since the variable <k consists of the hybrid factor and is estimated along with other

variables in the state vector, the KHF βf,k can also be tracked in order to further enhance

the estimation performance under the presence of measurement error. Consider the tracking

process of the proposed HUKT scheme at the (k− 1)th time step, the a posteriori estimation

of the state vector can be acquired as x̂ k−1 = [x̂k−1 ŷk−1 <̂k−1 v̂x,k−1 v̂y,k−1 âx,k−1 ây,k−1]T .

The KHF βf,k at the time step k can be determined by solving the relationship <k−1 =

(
√

x2
k−1 + y2

k−1 − βf,k−1)2 at the (k − 1)th time step as

βf,k =
√

x2
k−1 + y2

k−1 −
√
<k−1 (3.32)

Note that minus sign is selected in (3.32) within its multiple solutions for computation sim-

plicity since the sign of βf,k is not influential based on the original design of hybrid system in

(3.5). The proposed KHF βf,k can be implemented directly along with the realtime tracking

process of HUKT scheme. In Section 5, the performance of these three types of hybrid factors

will be evaluated and compared via simulation.
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Chapter 4

Simplified TOA-Based and

TDOA-Based UKT Schemes

Considering the environments with only homogeneous type of single inputs, the proposed

HUKT algorithm can be simplified to the unified Kalman tracking (UKT) scheme to sup-

port either the TOA or the TDOA measurements, i.e., the UKT-TOA and the UKT-TDOA

schemes. Note that the HUKT can be adopted under the situations that there are insufficient

number of measurements at one of the heterogeneous signal paths. With homogeneous sig-

nal sources, the MS and network operator that utilize either the UKT-TOA or UKT-TDOA

techniques can have the flexibility to terminate the hybrid estimation mode in order to reduce

computational complexity. In the next two sections, the formulations of both the UKT-TOA

and UKT-TDOA schemes will be described.

4.1 UKT-TOA Scheme

The proposed HUKT algorithm will be reduced to UKT-TOA scheme if only the TOA

measurements are available for location estimation. The format of measurement update and

state update equations are still the same as (3.1) and (3.2) associated with the same TOA

formulation in (3.3). The state vector becomes x̂ k = [x̂k ŷk R̂k v̂x,k v̂y,k âx,k ây,k]T , where

the nonlinear term R̂k = x̂2
k + ŷ2

k is incorporated as one of the state variables. Therefore,
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H =




1 0 0 ∆t 0 1
2∆t2 0

0 1 0 0 ∆t 0 1
2∆t2

2(XT,k −XT,k−1) 2(YT,k − YT,k−1) 1 2XT,k∆t 2YT,k∆t XT,k∆t2 YT,k∆t2

0 0 0 1 0 ∆t 0
0 0 0 0 1 0 ∆t
0 0 0 0 0 1 0
0 0 0 0 0 0 1




(4.1)

the measurement data yk and the matrix M of N TOA measurements in the measurement

update process becomes

yk =




r1,k
2 −K1,k

r2,k
2 −K2,k

...

rN,k
2 −KN,k




M =




−2x1,k −2y1,k 1 0 0 0 0

−2x2,k −2y2,k 1 0 0 0 0
...

−2xN,k −2yN,k 1 0 0 0 0




The covariance matrix Rk associated with the measurement equation in (3.1) is obtained as

Rk = 4c2LkJkLk (4.2)

with Lk = diag{ζ1,k, ζ2,k, . . . , ζN,k} and the covariance matrix of TOA measurements as

Jk = diag{σ2
1,k, σ

2
2,k, . . . , σ

2
N,k}, where σ2

i,k denotes the combined variance of NLOS and mea-

surement noises. Based on the same assumption of constant acceleration model, the state

update process of x̂k and ŷk are still of the form as (3.8) and (3.9). By summing up and

rearranging all N measurement equations, the following relationship can be obtained as

R̂k = WT,k + 2XT,k · x̂k + 2YT,k · ŷk (4.3)
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H =




1 0 0 ∆t 0 1
2∆t2 0

0 1 0 0 ∆t 0 1
2∆t2

XTD,k −XTD,k−1 YTD,k − YTD,k−1 1 XTD,k∆t YTD,k∆t 1
2XTD,k∆t2 1

2YTD,k∆t2

0 0 0 1 0 ∆t 0
0 0 0 0 1 0 ∆t
0 0 0 0 0 1 0
0 0 0 0 0 0 1




(4.7)

where

WT,k =
Nk∑

i=1

r2
i,k −

Nk∑

i=1

Ki,k

XT,k =
Nk∑

i=1

xi,k

YT,k =
Nk∑

i=1

yi,k (4.4)

With equations (3.8), (3.9) and (4.3), the update process of the state R̂k becomes

R̂k =R̂k−1 + 2(XT,k −XT,k−1)x̂k−1 + 2(YT,k − YT,k−1)ŷk−1

+ 2 ·XT,kv̂x,k−1∆t + 2 · YT,kv̂y,k−1∆t

+ XT,kâx,k−1∆t2 + YT,kây,k−1∆t2 (4.5)

Based on the formulation as stated above, all of the update relationship become available and

the state matrix H associated with the state equation (3.2) can be obtained as (4.1). The

control input uk−1 can be written as

uk−1 =
[

0 0 (WT,k −WT,k−1) 0 0 0 0

]T

(4.6)

4.2 UKT-TDOA Scheme

In the case that there exists only the TDOA measurement inputs, the UKT-TDOA scheme

can be utilized to perform location estimation and tracking for the MS. The structure of
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UKT-TDOA scheme is similar to that of the UKT-TOA method as stated in the previous

subsection. The major difference is that the third state variable in the state vector is replaced

by r̂1,k =
√

(x̂k − x̃1,k)2 + (x̂k − ỹ1,k)2 instead of R̂k for UKT-TOA scheme, i.e., the state

vector becomes x̂ k = [x̂k ŷk r̂1,k v̂x,k v̂y,k âx,k ây,k]T .

With the available Ñ TDOA BSs, there will exist Ñ − 1 time difference measurements.

Therefore, from (3.4), the measurement data yk and the matrix M in (3.1) can be acquired

as

yk =




r̃2
21,k − (K̃2,k − K̃1,k)

r̃2
31,k − (K̃3,k − K̃1,k)

...

r̃2
Ñ,k

− (K̃Ñ,k − K̃1,k)




M =




−2x̃21,k −2ỹ21,k −2r̃21,k 0 0 0 0

−2x̃31,k −2ỹ31,k −2r̃31,k 0 0 0 0
...

−2x̃Ñ1,k −2ỹÑ1,k −2r̃Ñ1,k 0 0 0 0




The covariance matrix R̃k associated with the Kalman filter measurement update can be

acquired as

R̃k = c2L̃kJ̃kL̃k (4.8)

where L̃k = diag{ζ̃2,k, ζ̃3,k, . . . , ζ̃Ñk,k} and J̃k is the TDOA measurement covariance matrix in

(3.26). Based on the similar methodology as stated in UKT-TOA scheme, the state variable

r̂1,k can be expressed as

r̂1,k = WTD,k + 2XTD,k · x̂k + 2YTD,k · ŷk (4.9)
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where

WTD,k = −
∑Ñk

i=2 r̃2
i1,k

2
∑Ñk

i=2 r̃i1,k

+
∑Ñk

i=2 K̃i,k

2
∑Ñk

i=2 r̃i1,k

− (Ñk − 1)K̃1,k

2
∑Ñk

i=2 r̃i1,k

XTD,k = −
∑Ñk

i=2 x̃i1,k∑Ñk
i=2 r̃i1,k

(4.10)

YTD,k = −
∑Ñk

i=2 ỹi1,k∑Ñk
i=2 r̃i1,k

(4.11)

Consequently, the update process of r̂1,k becomes

r̂1,k =r̂1,k−1 + (XTD,k −XTD,k−1)x̂k−1

+ (YTD,k − YTD,k−1)ŷk−1

+ XTD,kv̂x,k−1∆t + YTD,kv̂y,k−1∆t

+
1
2
XTD,kâx,k−1∆t2 +

1
2
YTD,kây,k−1∆t2 (4.12)

Finally, the state matrix H of (3.2) can be obtained as in (4.7) associated with the control

input uk−1 as

uk−1 =
[

0 0 (WTD,k −WTD,k−1) 0 0 0 0

]T

(4.13)
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Chapter 5

Performance Evaluation

The performance of the proposed HUKT, UKT-TOA, and UKT-TDOA schemes are eval-

uated via simulations. Section 5.1 illustrates the noise models that are utilized in the sim-

ulations. The performance comparison of proposed HUKT scheme under ideal and realistic

network scenarios are conducted in Sections 5.2 and 5.3, respectively. Section 5.4 describes

the performance evaluation of UKT-TOA and UKT-TDOA schemes under homogeneous net-

works.

5.1 Noise Models

Different noise models [35] for the TOA measurements are considered in the simulations.

The measurement noise ni,k in (2.1) is selected as the zero mean Gaussian distribution with

standard deviation of 60 meters, i.e., ni,k ∼ N (0, 3600). On the other hand, the NLOS noise

ei,k is modeled by an exponential distribution pei,k
as

pei,k
(v) =





1
λi

exp(− v
λi

) v > 0

0 otherwise
(5.1)

where λi = c · τi = c · τmζε
i ρ. The parameter τi is the RMS delay spread between the ith BS

and the MS, and τm represents the median of τi. ε is a parameter set to be 0.5. The shadow

25



fading factor ρ is a lognormal random variable with zero mean and its standard deviation σρ

is set to be 4 dB in the simulation.

For the TDOA measurements, since it is formed by the subtraction of two TOA signals,

the same parameter set with the TOA noise model is utilized. Except in the hybrid scenario,

the Gaussian noise standard deviation and the RMS delay spread are set larger than the TOA

case. The reason for selecting larger delay spread in the cellular network is due to its larger

communication ranges which will result in higher NLOS errors. The constant acceleration

model is assumed for the Kalman filter, and the sampling time interval ∆t = 1 sec.

5.2 Performance Comparison of HUKT Scheme under Ideal

Network Scenarios

The effectiveness of the proposed HUKT scheme associated with the three hybrid factors

are evaluated in this section. The simulation scenarios for validating the proposed HUKT

algorithm are to consider the ideal network environments with Gaussian noises and sufficient

signal sources. There are eight BSs deployed as a regular polygon in the network, which

includes four TOA and four TDOA measurements as illustrated in Fig. 5.1. In the total of

300 sec simulation time, it is assumed that the signal from all BSs can always be received

such that the precision for location tracking will not be affected by the different numbers of

available BSs. The source of estimation error is restricted to Gaussian noise for validation

purpose. Zero mean Gaussian distributions each with standard deviation 60 metersN (0, 3600)

and 120 meters N (0, 14400) is chosen for TOA and TDOA measurements, respectively.

Fig. 5.2 shows the performance validation of proposed HUKT scheme by observing the

position errors in each time step associated with their corresponding hybrid factors, i.e., βg,

βm, and βf , which are denoted as HUKT-GHF, HUKT-MVHF, and HUKT-KHF schemes.

Note that the average position error is defined as ∆P =
∑
∀N ||x̂ k − x ||/N , x is the true

coordinate of MS and N is the number of rounds. The entire 300 sec simulation is repeated for

10 rounds. It can be observed from Fig. 5.2 that the values of GHF βg vary in a relatively small

range compared to the other two hybrid factors since it is only determined by the geometric
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Figure 5.1: BS layout and tracking route for the proposed HUKT-GHF, HUKT-MVHF, and
HUKT-KHF schemes. (triangles: TDOA BSs; circles: TOA BSs)
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Figure 5.2: The position errors associated with the hybrid factors from the proposed HUKT-
GHF, HUKT-MVHF, and HUKT-KHF schemes.
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Figure 5.3: Performance comparison between the HUKT-GHF, HUKT-MVHF, and HUKT-
KHF, HKT, and HCLT schemes.

relationship between the MS and the associated BSs. The GHF βg cannot completely react

to the operating status of the proposed HUKT scheme which results in the larger position

error compared to the other two hybrid factors βm and βf . It can be seen that the KHF

βf can quickly respond to the variations of position error, e.g. larger value βf is assigned in

order to compensate the larger position error at simulation time around 200 sec. Therefore,

the proposed HUKT-KHF scheme can provide the smallest average position error of the MS

compared to the other two methods.

Fig. 5.3 illustrates the performance comparison of average position errors between the

HCLT, HKT, and HUKT scheme associated with the three determination methods for hybrid

factors βg, βm, and βf . Note that the two-step LS method is adopted as the location estimator

for both the HCLT and HKT schemes as shown in Fig. 1.1. It can be seen that the proposed

HUKT algorithms outperform the other two existing schemes, e.g. the HUKT-KHF scheme

results in around 160 m less in position error compared to the HKT scheme under 90% of

average position error. The estimation accuracy for both the HCLT and the HKT methods

rely on the performance of the location estimator. These two-stage schemes induce larger

estimation error comparing with the proposed single-stage algorithm, i.e. the HUKT scheme.

The nonlinear behavior is also predicted and updated within the HUKT formulation, which

results in higher location estimation and tracking accuracy for the MS. Furthermore, similar
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Figure 5.4: The number of available BSs from TOA and TDOA measurements.

to the observation in Fig. 5.2, the HUKT-KHF scheme results in the smallest position error in

comparison with the HUKT-MVHF and HUKT-GHF methods. The main reason is that the

HUKT-KHF algorithm closely follows the Kalman tracking process for adjusting the hybrid

factor βf which can effectively reduce the tracking error for the MS.

5.3 Performance Comparison of HUKT Scheme under Realis-

tic Network Scenarios

In this section, the performance comparison between the HUKT, HKT and HCLT schemes

are implemented under the realistic network environments with NLOS noises and insufficient

number of signal sources. The network scenarios for the simulations is explained as follows.

As shown in Fig. 5.7, the BSs deployed in a regular cellular layout are considered to perform

TDOA measurements; while the randomly distributed small range sensors conduct TOA

measurements for MS’s location tracking. The noise model for TDOA measurements are

ni,k ∼ N (0, 32400), i.e., 180 meters standard deviation. The RMS delay spread τm is set to

0.1 for TOA measurements and 0.3 for TDOA measurements. Fig. 5.4 illustrates the total

number of available BSs for TOA and TDOA measurements respectively during the simulation

time of 300 sec. It is noticed that the situation with insufficient signal sources is arranged for
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Figure 5.5: The position errors associated with the hybrid factors from the proposed HUKT-
GHF, HUKT-MVHF, and HUKT-KHF schemes.

the TOA and TDOA BSs, respectively.

Fig. 5.5 shows The position errors along with the corresponding hybrid factors from the

proposed HUKT-GHF, HUKT-MVHF, and HUKT-KHF schemes. It can still be observed that

the proposed HUKT-KHF scheme can outperform the other two methods under the existence

of NLOS noises. Fig. 5.6 illustrates the performance comparison on the average position

errors between the HKT, HCLT and the three proposed HUKT schemes. It can be seen that

the proposed HUKT-KHF algorithm outperforms all the other schemes, e.g. around 100 m

less in position error compared to HKT and HCLT under 67% of average position error. The

information of tracking nonlinear behavior provided as feedback to enhance the measurement

update within the HUKT formulation, which results in higher location estimation and tracking

accuracy for the MS. Finally, the signal insufficiency problem from individual signal path can

also be alleviated by adopting the proposed HUKT algorithm.

Figs. 5.7 to 5.9 show the trajectory tracking for the MS’s position, velocity, and accelera-

tion. It is noted that the empty circles (as illustrated in Fig. 5.7) represent the locations of the

cellular BSs with TOA measurements; while the empty triangles indicates the sensor BSs with

TDOA measurements. It can be seen that the proposed HUKT-KHF algorithm can provide

better tracking capability comparing with the other two schemes. Both the HCLT and the

HKT schemes severely deviate from their true trajectories as the accelerations altered. Fur-
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Figure 5.6: Performance comparison between the HUKT-GHF, HUKT-MVHF, and HUKT-
KHF, HKT, and HCLT schemes.
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Figure 5.7: Trajectory tracking of the MS using the HCLT, HKT and HUKT-KHF schemes.
(solid lines: true trajectories; dotted lines: estimated trajectories; triangles: TDOA BSs;
circles: TOA BSs)
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Figure 5.8: Velocity tracking of the MS using the HCLT, HKT and HUKT-KHF schemes.
(solid lines: true velocities; dotted lines: estimated velocities)
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Figure 5.9: Acceleration tracking of the MS using the HCLT, HKT and HUKT-KHF schemes.
(solid lines: true accelerations; dotted lines: estimated accelerations)
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thermore, at the tail of route, insufficiency of signal sources made both the HCLT and HKT

unable to maintain accurate location tracking for the MS. The proposed HUKT-KHF algo-

rithm can still provide consistent performance (including position, velocity, and acceleration)

under the variations of MS’s mobility.

5.4 Performance Comparison of UKT-TOA and UKT-TDOA

Schemes

In this section, the performance of UKT scheme for pure TOA and TDOA measurement

inputs are evaluated. The BSs are designed to be located in regular cellular layout for both

situation. The noise model for both signals are Gaussian measurement noise with 60 meters

standard deviation, i.e. ni,k ∼ N (0, 3600) and exponential NLOS noise as (5.1) with the RMS

delay spread τm = 0.3.

It can be seen in Fig. 5.10 and 5.11 that the simplified special cases of TOA-based

and TDOA-based UKT outperform the KT and CLT scheme, which is also consistent to

the hybrid operation version. Although the resistance ability to insufficient signal sources is

not available due to only sole signal path exists, to additionally track the variation of the

nonlinear variable provides better stability and accuracy. The single-stage architecture that

directly extract observation result from raw measurement inputs mitigates the common error

propagation phenomenon in multiple-stage systems. This unified structure achieves more

precision on location estimation and tracking.
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Figure 5.10: Performance comparison between the location tracking schemes for TOA mea-
surements.
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Figure 5.11: Performance comparison between the location tracking schemes for TDOA mea-
surements.
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Chapter 6

Conclusion

In this paper, a hybrid unified Kalman tracking (HUKT) technique is proposed for location

estimation and tracking. Based on heterogeneous signal inputs, the HUKT scheme integrates

the location estimation and tracking problems within an unified Kalman filtering formulation.

The range and range difference measurements from different signal paths are combined based

on different designs of hybrid factors. Simulation results show the effectiveness of the HUKT

algorithm. Comparing with other existing wireless location techniques, the proposed HUKT

scheme can both provide higher precision for mobile location tracking and adapt to insufficient

signal sources environments.
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