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使用時頻變化調變於 

強健語音情緒辨識 

 

學生：葉藍霙         指導教授：冀泰石 博士 

 

國立交通大學電信工程研究所 

 

中文摘要 

語音情緒的分類是近年來新興的研究題目，目前大多數的研究都著重在乾

淨語音中進行分類。在本論文中，我們利用聽覺感知模型提出一種新的時頻變

化參數 (joint Rate-Scale features, RS features)，藉由此參數來處理有雜

訊情況下的語音情緒辨識的問題。我們將柏林情緒語料庫(Berlin Emotional 

Database)以及愛寶情緒語料庫(FAU AIBO Database)加入不同訊雜比的白雜訊

(white noise)及人聲雜訊(babble noise)，並且以乾淨語料訓練、有雜訊語料

測試的方式評估效能，以模擬真實應用中未能事先預知雜訊程度的狀況。我們

也進一步使用循序前進浮動搜尋(Sequential Forward Floating Selection, 

SFFS)來探討所提出特徵參數的冗餘性，以進一步降低所需參數的維度。實驗於

柏林情緒語料庫結果顯示，與傳統音韻參數結合梅爾倒頻率係數參數相比，尤

其在低訊雜比的情況下，使用時頻變化參數將有更高的辨識率。實驗結果顯示

對於愛寶情緒語料庫，在訊雜比很高的情況下，傳統參數和時頻變化參數皆有

過度訓練的情況，需要進一步降低維度及改進參數。 
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English Abstract 

 Speech emotion recognition is mostly considered in clean speech. In this thesis, 

joint Rate-Scale features (RS features) are extracted from an auditory model and are 

applied to detect the emotion status of noisy speech. The noisy speech is derived 

from the Berlin Emotional Speech database and the FAU AIBO database with added 

white and babble noises under various SNR levels. The clean train/noisy test 

scenario is investigated to simulate conditions with unknown noisy sources. The 

sequential forward floating selection (SFFS) method is adopted to demonstrate the 

redundancy of RS features and further dimensionality reduction is conducted. 

Compared with conventional MFCCs plus prosodic features, RS features show 

higher recognition rates especially in low SNR conditions on Berlin database. 

However, both conventional and RS features are over-trained in low SNR conditions 

on AIBO database. Feature selection or reduction techniques are further required. 
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Chapter 1 

Introduction 

1.1. Motivation 

 Speech emotion recognition has been a popular research topic over the last decade. 

Knowing the emotion status of the speaker is important for human-machine interfaces with 

better interaction experiences. Many modern applications, such as interactive robots, infant 

or elder caring systems and speech-recognition based customer service lines, can use such 

information. However, early studies are often launched on “perfect” conditions, i.e., clean 

speech with acting emotions, which is far from real-world applications. In this work, we 

intend to find a robust feature set from a spectro-temporal auditory perceptual model [1, 2] 

for speech emotion recognition. It is our belief that the new auditory features could be more 

robust in noisy situations. 

 

1.2. Related Works 

 Researchers have been devoted to searching novel features and designing powerful 

classifier to improve the recognition rate. For the emotion recognition, it has been shown 

that statistic features characterized by GMM models outperform instantaneous features used 
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in a HMM based recognizer [3]. Moreover, other works intended to combine temporal 

features with statistic features, such as the one shown in [4]. The best feature sets have been 

discussed over years, and it is well acknowledged that pitch, energy, and duration contribute 

the most to emotion recognition [5, 6]. Spectral information or formants are also discussed 

frequently. Some works, such as in [7], [8], focus on finding the best units of speech 

segmentation to boost emotion recognition rate. Linguistic information combined with 

acoustic and prosodic features is also discussed in [9]. As for the recognizers, studies 

showed the support vector machine (SVM) outperforms and is more robust than K nearest 

neighbor (K-NN) and neutral network (NN) provided statistic features used [10, 11]. 

Recently, more and more studies pay attention to natural emotion or real environments 

with noises [12, 13]. However, these studies often went forward to find thousands of 

features in order to obtain an optimal set of features with the highest recognition rate for any 

particular testing environment. These brute-force methods seem working, but these studies 

only evaluate their performance under the matched condition, where the testing data is 

under the same noise level as the training data. Undoubtedly, degraded performance is 

expected with changes of testing environments. 

 During early days, emotion databases are usually built by either collecting acted 

speech from television dramas or recording speech by actors performing certain emotions. 

One problem is that these databases are often built by different research groups; hence, 

lacking a common ground for fair performance comparisons. Another problem is that these 

databases only contain “acted emotions,” which may be different to the human emotions 

expressed in daily lives. To address the first problem, the Berlin emotion speech corpus [14] 

is used in this thesis since it is widely used by other researchers in recent years. As for the 

second problem, we use the FAU AIBO database [15], which contains speech with natural 

emotions and is adopted as the test database in the INTERSPEECH 2009 emotion 

challenge. 
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1.3. Experimental Framework 

In this thesis, the Berlin emotional speech database and the FAU AIBO database with 

additive noises is utilized to test the robustness of proposed spectro-temporal auditory 

features. A linear-kernel SVM [16] is used as the emotion classifier. Recognition rates of 

our spectro-temporal auditory RS features are evaluated and compared with conventional 

spectral features (MFCCs) plus additional prosodic features under additive white and babble 

noises. Furthermore, the dimensionality reduction of our RS features is conducted and 

corresponding performance is investigated. The flowchart of our proposed method is shown 

in Figure 1-1.  
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Figure 1- 1 Overall flowchart of proposed method. 

 

1.4. Thesis Organization 

 This thesis is organized as follows. In section 2, a brief literature review of the 

two-module spectro-temporal auditory model and support vector machine are given. Two 

emotion speech databases and four sets of features used in this study are then introduced in 

section 3. In section 4, experimental setup and recognition results on two databases are 

demonstrated. We end in section 5 with conclusions and discussions. 
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Chapter 2 

Literature Review 

2.1. Auditory Model 

The auditory features adopted in this study are extracted from stages of a physiological 

based auditory model. For better understanding the ideas and reasons of auditory model, 

some hearing physiology of human perception will be briefly introduced at first. Then, the 

auditory model which consists of an early cochlear (ear) and a central cortical (A1) module 

will be discussed in section 2.1.2 and 2.1.3. 

 

2.1.1. Hearing Physiology 

 The cross-sectional view of the human ear is shown in Figure 2-1. It can be divided 

into three parts: the outer ear, the middle ear, and the inner ear. Sound waves enter the outer 

ear and travel through the ear canal to the tympanic membrane (ear drum). The vibrations of 

the ear drum are transmitted into the inner ear through three ossicles (the malleus, incus and 

stapes) in the middle ear. The stirrup touches a liquid filled sack and the vibrations travel 

into the cochlea, which is shaped like a shell. The cochlea attaches to hundreds of nerve 

fibers, which transmit information along the auditory pathway to the brain. Finally, the brain 
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processes the information from the ear for various tasks. 

  

 

Figure 2- 1 Cross-sectional view of the human ear 

(http://mail.pittsfield.net/teachersites/Whelihan_Kathleen/). 

 

The major functions of the out ear are localization, amplification and protection. The 

shape of the outer ear enables people to collect sound waves and judge the direction of 

sound source easily. The three ossicles transduct the acoustical vibrations into mechanical 

vibrations and compensate part of the loss of energy due to entering the liquid from the air. 

The cochlea in the inner ear plays a significant role in the auditory system. The structure of 

the cochlea is shown in Figure 2-2. The left panel shows the stretched cochlea with the 

basilar membrane (BM), which is about 35 mm in length with its width increasing and 

stiffness decreasing both non-uniformly from base to apex. When a mechanical vibration 

reaches the oval window, a traveling wave is generated and propagates along the basilar 

membrane of the cochlea. Because of the different stiffness along the BM, the traveling 

waves caused by different frequencies will reach maximum response and stop at different 

locations of the BM. The left panel of Figure 2-2 shows the side view and top view of 

cochlea and the right panel shows a schematic plot about maximum responsive frequencies 

along the basilar membrane. The lower the frequency is, the further the traveling wave 
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reaches. A linear relationship was observed between the traveling distance from the cochlear 

base and the log-frequency of input sounds. The range of resonance frequencies is about 

20-20,000 Hz, which is the audible frequency range of human beings. Due to the 

mechanical property of the traveling wave, the maximum response on a specific frequency 

would inhibit its neighboring frequencies on the BM. This might explain the well-known 

“frequency masking” phenomenon of human audition. 

 

Figure 2- 2 Structure of cochlea (left) and responses for different frequencies (right)  

(Hearing Physiology Handout, AAIP). 

 

There are about 3000 inner hair cells distributed along the basilar membrane. When a 

traveling wave generates displacement on the BM, the hair cells will be stimulated and 

remit electrical signals via auditory nerves to the midbrain. There are two different hair cells: 

inner hair cells and outer hair cells. Most of this mechanism of transforming mechanical 

vibrations into electrical signals is done by inner hair cells. Outer hair cells, on the other 

hand, are often active in further amplification or reduction in pertaining to extreme sounds. 

Due to the fact that a relaxation time is needed between consecutive fires of auditory 

neurons, firing rates can not keep up with high frequency vibrations, as demonstrated in 

Figure 2-3. Firing rates of inner hair cells are bounded by 4-5k Hz, while the rates of the 
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midbrain are bounded by about 1k Hz. 

 

Figure 2- 3 The firing rate of auditory nerve correspond to the single tone input (left) and 

the adaptation mechanism of auditory nerve (Hearing Physiology Handout, AAIP). 

 

2.1.2. Cochlear Module 
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1y 2y 4y3y

Hair cell stages

F
re

q
u

en
cy

(H
z)

T im e

Auditory Spectrogram 5y
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Figure 2- 4 Stages of the early cochlear module (adopted from [2]) 

The cochlear module models functions of the peripheral auditory system. As shown in 

Figure 2-4, it first consists of a bank of 128 overlapping asymmetric constant-Q bandpass 

filters (
3

4
dB

Q ≈ ) which mimic the frequency selectivity of the cochlea. These filters 

distribute evenly over 5.3 octaves with 24 filters/octave frequency resolution. The output of 

each filter is fed into a non-linear compression stage and a lateral inhibitory network (LIN), 

and then processed by an envelope extractor. The non-linear compression is to model the 
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saturation of the inner hair cells, and the LIN is to model the frequency masking effect. In 

this study, a simplified linear version of this module without the hair cell stage is used. All 

tested speech signals are normalized in advance to avoid the high-gain compression done by 

hair cells. Outputs of different stages of this module can be written as: 

ω ω
1
( , ) ( ) ( ; )

t
y t s t h t= ∗              (2-1) 

ωω ω
3 1
( , ) ( , )y t y t= ∂              (2-2) 

ω ω
4 3
( , ) max( ( , ), 0)y t y t=             (2-3) 

ω ω µ τ
5 4
( , ) ( , ) ( ; )

t
y t y t t= ∗             (2-4) 

where ω( ; )h t  is the impulse response of the constant-Q cochlear filter with center 

frequency ω ; 
t
∗  depicts the convolution in time; the integration window 

τµ τ /( ; ) ( )tt e u t−
= ⋅  with the time constant τ models the current leakage along the neural 

pathway to the midbrain; and ( )u t is the unit step function. 

The output ω
5
( , )y t is referred to as an auditory spectrogram, which represents neuron 

activities along the time and log-frequency axis. Intuitively, it is similar to the magnitude 

response of a mel-scaled FFT based spectrogram, where our constant-Q criterion 

approximates the mel-scale and our local envelope approximates the magnitude of a FFT 

based spectrogram. 

 

2.1.3. Cortical Module and Rate-Scale Representation 

The second module models the spectro-temporal selectivity of neurons of the auditory 

cortex (A1). Briefly speaking, the auditory spectrogramω
5
( , )y t is further analyzed by A1’s 

neurons which are modeled by two-dimensional filters tuned to different spectro-temporal 
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modulation parameters [2]. The rate (or velocity) parameter in Hz reflects how fast the local 

spectro-temporal envelope varies along the temporal axis. The scale (or density) parameter 

in cycle/octave characterizes how broad the signal’s local spectro-temporal envelope 

distributed along the log-frequency axis. 

In addition to the rate and scale, cortical neurons are also found to be sensitive to the 

direction of the FM sweep. This directionality is characterized in this module by the sign of 

the rate (negative for upward sweeping; positive for downward sweeping). From functional 

point of view, this module models cortical neurons as performing a joint spectro-temporal 

multi-resolution analysis (due to various rate-scale combinations) on the input auditory 

spectrogram. The excitation pattern of cortical neurons to a single t-f point in the 

spectrogram is referred to as the rate-scale representation of that particular t-f point. Each 

rate-scale representation is labeled by neurons’ tuning characteristic of rate, scale, and 

directionality. 

Two averaged rate-scale plots over the frequency axis around 200 and 550 ms are 

given in Figure 2-5. Two aspects are clearly shown in each rate-scale plot: (1) 

spectro-temporal modulations of envelopes and (2) resolved pitch below 512 Hz. Take the 

550 ms frame as an example. The resolved pitch around 230 Hz excites {high rate, fine 

scale} neurons, thus produces the corresponding rate-scale representation. On the other 

hand, envelopes of the almost flat harmonic structure shown at 230, 460 and 1150 Hz excite 

neurons tuned to {low rate (due to the flatness), low scale (2 cycles within 2.32 octave)} 

and produce strong rate-scale responses at regions less than 8 Hz and less than 1 

cycle/octave. Since flat envelopes do not favor any sweeping directions, symmetric 

responses to rate are clearly shown in the {low rate, low scale} region. More detailed 

description and mathematic formulation of this cortical module can be found in [2]. 
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Figure 2- 5 Rate-scale representation produced by the cortical module. 

 

2.2. Support Vector Machine (SVM) 

The SVM, a supervised learning algorithm, is usually used for classification and 

regression. It is very popular in recent years due to its remarkable performance. In this 

thesis, we adopt the support vector machine as our emotion classifier. In this section, we 

will give a brief introduction to SVM. Detailed setups for our experiments will then be 

given in section 4.1.  

2.2.1. Separable problem 

For a supervised learning algorithm, we consider a set of training samples ( )( ) ( ),i iyx  

where 

1

2

m

x

x

x

 
 
 =
 
 
  

(i)x
⋮

 is the m-dimensional feature vector of the i-th training data, i =1, 2, …, 
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n and { }( ) 1, 1iy ∈ −  represents the class label of the i-th training data for a basic two-class 

classification problem. As Figure 2-6 indicates, we want to find a hyperplane that can 

perfectly separate these two classes. The hyperplane can be represented as: 

( )g b= +Tx w x               (2-5) 

then, the data of the two classes satisfies: 

( )

( )

1,  if 1

1,  if 1

i

i

b y

b y

 + ≥ =
⇒ 

+ ≤ = −

T (i)

T (i)

w x

w x
            (2-6) 

1T b+ =w x

1T b+ = −w x

0T b+ =w x

w
2

w

 

Figure 2- 6 The optimal hyperplane for a separable problem using SVM. 

 

There may be a lot of choices for ( ),bw  that are separable; however, the goal of the SVM 

is to find a hyperplane which possesses the largest separation, or margin, between the two 

classes. That is, we want to choose a hyperplane so that the distance from it to the nearest 

data point on each side is maximized. From Figure 2-6, the margin can be represented as 

2

w
. The optimal separating hyperplane can be found by solving the following problem: 

2

( )

1
min

2
s.t. ( ) 1, for all 1...iy b i n+ ≥ =T (i)

w

w x
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 (2-7) 

Equation (2-7) can be solved by constructing Lagrange multipliers 0iα ≥  in the following 

primal form: 

( )2 ( ) ( )
,

1

1
max min 1

2

n
i T i

b p i
i

L y bα α
=

 = − + − ∑w w w x           (2-8) 

To find the saddle point, one has to minimize function (2-8) over w, b and to maximize it 

over the nonnegative Lagrange multipliers 0iα ≥ . At the saddle point, one obtains: 

( ) ( )

1

0
n

i i
p i

i

L yα
=

∇ = ⇒ =∑w w x               (2-9) 

( )

0

0
n

i
p i

i

L y
b

α
=

∂ = =
∂ ∑                    (2-10) 

Substituting (2.9) and (2.10) into (2.8), it can be further modified into the following dual 

form: 

( )( ) ( )

1 , 1

( )

1

1
max  

2

. . 0,  1,...,

     0

n n
i j

D i i j
i i j

i

m
i

i
i

L y y

s t i n

y

α α α α

α

α

= =

=

= − ⋅

≥ =

=

∑ ∑

∑

j(i)x x

              (2-11) 

Invoking the Karush-Kuhn-Tucker dual complementary conditions, problems in (2-11) form 

can further be derived into the following form: 

( )( )( ) ( ) 1 0i T i
i y bα + − =w x                   (2-12) 

Those points satisfy ( )( ) ( ) 1 0i T iy b+ − >w x  (i.e., 0iα = ) are called non-support vectors. 

On the contrary, those points reside on the hyperplane ( )( ) ( ) 1 0i T iy b+ − =w x (i.e., 0iα ≥ ) 

are called support vectors. Thus, the computations in equation (2-9) can be further reduced. 

Finally, iα  are solved by the quadratic programming and parameters w , b are then 

obtained by equation (2-9) and (2-12). Hence, the final classifier ( )g ⋅  is derived and used 

to predict a new test point x  by: 

( ) ( )g sign b= +Tx w x                  (2-13) 
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2.2.2. Binary non-separable problem 

The simplest problem discussed in section 2.2.1 can be extended to a non-separable 

problem (Figure 2-7) by introducing additional slack variables iξ  and cost parameter C. 

We can relax the equation (2-7) into( ) ( ) 1i
iy b ξ+ ≥ −T (i)w x  to tolerate some outliers. The 

parameter C controls the total relaxation valuek
k

ξ∑  in a reasonable small range. The lower 

the value of C is, the smaller the penalty for outliers is and a softer margin exists. 

outlier

 
Figure 2- 7 Non-separable problem. 

 

The primal form of equation (2-7) can be reformulated as follows: 

( )

2

,
1

( ) ( )

1
min

2

s.t. 1

     0, for all i=1 n

m

w b P i
i

i T i
i

i

L w C

y w x b

ξ

ξ

ξ

=

= +

+ ≥ −

≥

∑
�

⋯

            (2-14) 

and the dual form of equation (2-11) can be modified into: 

( )( ) ( ) ( )

1 , 1

( )

1

1
max  

2

. . 0 ,  1,...,

     0

n n
ji j i

D i i j
i i j

i

n
i

i
i

L y y

s t C i n

y

α α α α

α

α

= =

=

= − ⋅

≤ ≤ =

=

∑ ∑

∑

x x

         (2-15) 

Herein, iα , w and b can be solved in a similar way as stated in section 2.2.1. 



 14

2.2.3. Nonlinear problem 

 The formulations of the SVM can also be extended to tackle nonlinear problems. The 

SVM adopts a way to map the original features into a higher dimensional space, and solves 

the problem linearly in the new space (see Figure 2-8). If φ  is our mapping function, the 

new feature vector can be shown as ( )' φ=x x . Then, the dual form of equation (2-11) can be 

reformulated as: 

( )

( ) ( )( )
( )( )

( ) ( ) ( )

1 , 1

( ) ( ) ( )

1 , 1

( ) ( ) ( )

1 , 1

( )

1

1
max  

2

1
              

2

1
              ,

2

. . 0,  1,...,

     0

n n
ji j i

D i i j
i i j

n n
ji j i

i i j
i i j

n n
ji j i

i i j
i i j

i

n
i

i
i

L y y

y y

y y K

s t i n

y

α α α α

α α α φ φ

α α α

α

α

= =

= =

= =

=

= − ⋅

= − ⋅

= −

≥ =

=

∑ ∑

∑ ∑

∑ ∑

∑

x x

x x

x x        (2-11) 

However, the inner product in equation (2-11) would increase the computational load. A key 

property of SVM recognizers is to use the so-called kernel function 

( )( ) ( ) ( ) ( ), ( ) ( )i j i T jK φ φ= ⋅x x x x  to replace the inner product. There is no need to find the 

mapping function φ  explicitly, while any function that satisfy Mercer’s theorem can be used 

as kernel functions here. Table 2-1 lists four basic kernel functions used frequently. 

 
Figure 2- 8 Map nonlinear problem to higher dimensional space. 
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Table 2- 1 basic kernel functions 

linear ( ), T
i j i jK = ⋅x x x x

 

polynomial ( ) ( ), , >0T
i j i jK rγ γ= ⋅ +x x x x

 

Gaussian (RBF) ( ) ( )2
, exp , >0i j i jK γ γ= − −x x x x

 

sigmoid ( ) ( ), tanh T
i j i jK rγ= ⋅ +x x x x

 

 



 16

 

 

Chapter 3 

Database and Feature Extraction 

3.1. Berlin Emotional Speech Database (EMO-DB) 

The popular Berlin Emotional Speech Database [14] is tested in pilot simulations in 

this study. Clean speech samples are uttered by five female and five male actors. Each actor 

speaks ten sentences in German. Each sentence has duration of 2 to 5 seconds. Detail 

contents are listed in Table 3-1. The database contains emotions of anger (126), happiness 

(70), sadness (62), fear (66), disgust (44), boredom (80), and neutral (78). Only those 

utterances scoring higher than 80 emotion recognition rate in a subjective listening test are 

included in the database. Hence, there are 526 sentences in total with seven classes of 

emotions. Original speech samples are recorded with 16 kHz sampling frequency under 

studio condition, and are downsampled to 8 kHz to cover the fundamental frequencies of 

male speakers when analyzed by our 5.3-octave frequency coverage cochlear filterbank in 

our auditory model (see section 2.1). 

White noise and babble noise are obtained from the NOISEX-92 database [17] and 

added to clean speech to simulate various SNR conditions. A simple energy-based VAD is 

first applied to each clean utterance to determine its active regions. Only durations of active 

regions are considered in calculating SNR.
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Table 3- 1 The German content of EMO-DB and its English translation 

 

3.2. FAU AIBO database 

 The FAU AIBO corpus [15] contains recordings from children interacting with 

SONY's pet robot AIBO. The most important characteristic of these recordings is they are 

natural with non-acted emotions. The children were invited to play with the AIBO and 

code German text English translation 

a01 
Der Lappen liegt auf dem 

Eisschrank. 
The tablecloth is lying on the fridge. 

a02 
Das will sie am Mittwoch 

abgeben. 
She will hand it in on Wednesday. 

a04 
Heute abend könnte ich es ihm 

sagen. 
Tonight I could tell him. 

a05 

Das schwarze Stück Papier 

befindet sich da oben neben dem 

Holzstück. 

The black sheet of paper is located up 

there besides the piece of timber. 

a07 
In sieben Stunden wird es soweit 

sein. 
In seven hours it will be. 

b01 
Was sind denn das für Tüten, die 

da unter dem Tisch stehen? 

What about the bags standing there 

under the table? 

b02 
Sie haben es gerade hochgetragen 

und jetzt gehen sie wieder runter. 

They just carried it upstairs and now 

they are going down again. 

b03 

An den Wochenenden bin ich jetzt 

immer nach Hause gefahren und 

habe Agnes besucht. 

Currently at the weekends, I always 

went home and saw Agnes. 

b09 
Ich will das eben wegbringen und 

dann mit Karl was trinken gehen. 

I will just discard this and then go for a 

drink with Karl. 

b10 
Die wird auf dem Platz sein, wo 

wir sie immer hinlegen. 

It will be in the place where we always 

store it. 
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asked to guide it through certain missions, such as moving from point A to point B along a 

particular route. Children believed that the AIBO would have responded to their commands 

directly, whereas it was actually controlled by a human operator to behave excellently or 

disobediently, thereby to provoke emotional reactions. The data was collected from two 

different German schools, Mont and Ohm, from 51 children (of age 10~13; 21 boys and 30 

girls). Speaker independence is assured by using the data from one school for training and 

the data from another school for testing. The original recordings are sampled at 16k Hz. For 

the same reason as stated in section 3.1, speech samples are downsampled to 8k Hz. The 

original recordings with pause length over 1 sec were segmented automatically into “turns”. 

Five labelers (advanced students of linguistics) annotated each turns in word-level as neutral 

(default) or as one of ten other emotion classes. Majority voting (MV) was then used, that is, 

only those words with three or more than three labelers’ agreement were included into the 

corpus. The classes and number of speech samples in each class were: joyful (101), 

surprised (0), emphatic (2,528), helpless (3), touchy (225), angry (84), motherese (1,260), 

bored (11), reprimanding (310), rest (3), neutral (39,169). 

 We follow the INTERSPEECH 2009 emotion challenge [18] criterions which 

differentiate the classification problem into a five-class problem and a two-class problem. 

For the five-class classification problem, emotions are grouped into Anger (angry, touchy, 

and reprimanding), Emphatic, Neutral, Positive (motherese and joyful), and Rest. The 

two-class problem deals with NEGative (subsuming angry, touchy, reprimanding, and 

emphatic) and IDLe (consisting of all nonnegative states) emotions. More details about 

numbers of speech samples are listed in Table 3-2 and Table 3-3. Similar to section 3.1, 

white and babble noises are added to the original clean speech to test the robustness of 

various features. 
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Table 3- 2 Number of instances for the 5-class problem 

# A E N P R sum 

train 881 2093 5590 674 721 9959 

test 611 1508 5377 215 546 8257 

sum 1492 3601 10967 889 1267 18216 

 

Table 3- 3 Number of instances for the 2-class problem 

# NEG IDL sum 

train 3358 6601 9959 

test 2465 5792 8257 

sum 5823 12393 18216 

 

3.3. Rate-Scale (RS) Features 

As mentioned in section 2.1.3, rate-scale plots reveal joint spectro-temporal 

modulations of the speech. The slow modulations, which are related to the speaking rate 

(i.e., the changing rate of the vocal track), are shown in low rate regions. On the other hand, 

the energy of resolved pitch is captured in high rate regions. In this study, we consider rates 

at ⋯1, ,92± Hz to cover the complete temporal structures (speaking rate and pitch) of the 

speech. As for the scale region, we emphasize on the ⋯1, ,32− cycle/octave to cover complete 

frequency structures, from formants (captured by low scales) to harmonics (captured by 

high scales). Therefore, 90 rate-scale features (9 rates, 5 scales and both directions) are 
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extracted per frame. The mean and standard deviation of these 90 RS features are then 

calculated over the entire utterance. Finally, 180 RS features per utterance are preserved for 

emotion recognition. 

 

3.4. MFCC Features 

 The mel-frequency cepstral coefficients (MFCCs) are widely used in the speech 

analysis field. Here, the first 13 MFCCs (including the zero-order coefficient) are extracted 

from 25 ms Hamming-windowed frame every 10 ms with the pre-emphasis coefficient 0.97. 

The mean, standard deviation, skewness, and kurtosis of these 13 MFCCs, their deltas, and 

double-deltas are computed as 156 features per utterance. It is referred to as MFCC156. 

 
Figure 3- 1 block diagram for extracting MFCC 

 

3.5. Prosodic Features 

The 180 RS features mentioned above contain pitch and timbre (i.e., the formant 

structure) information, however, conventional MFCCs only carry timbre information. To 

make a fair comparison, prosodic features (pitch, energy and duration) are extracted and 

combined with MFCC features. 

The fundamental frequency (F0) contour is extracted by STRAIGHT [19]. The 

algorithm estimates the aperiodic power (AP) of each frame. Frames with high AP are 

assumed unvoiced with zero F0. Only low-AP frames are treated as voiced frames and 
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return valid F0 estimate. The energy contour is extracted every 10 ms with a 25 ms window. 

Duration related features are derived from the voiced/unvoiced discrepancy obtained in F0 

estimation.  

Statistics of these prosodic features used in this study are similar to those used by other 

researchers [3, 4]. However, not to form a huge feature set with 1000 ~ 4000 parameters, a 

reasonably small-sized feature set is constructed. As a result, some features are omitted or 

replaced. For example, the mean of the positive and the negative dF0 are calculated 

separately to represent the upward and the downward trend, respectively, instead of the 

mean of all dF0. As for the energy, the minimum value of energy must be close to zero such 

that the min value, relative position of min, and range would not provide crucial information 

and hence are dropped from our feature list. Finally, 30 prosodic features are extracted and 

referred to as the PRO30 feature set. The description of this feature set is given in Table 3-4. 

 

Table 3- 4 30 prosodic features 

F0 

(8 features) 

mean, std, 

max value, relative position of max, 

min value, relative position of min, 

range, number of local max point 

dF0 

(8 features) 

mean of positive, mean of negative, std, 

max value, relative position of max, 

min value, relative position of min, 

ratio of positive 

logE 

(3 features) 

std, 

max value, relative position of max 

dlogE 

(8 features) 

mean of positive, mean of negative, std, 

max value, relative position of max, 

min value, relative position of min, 

ratio of positive 

Duration 

(3 features) 

speaking rate, 

std of voiced duration, mean pause time 
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3.6. INTERSPEECH 2009 Emotion Challenge Acoustic 

Features 

 For the AIBO database, we compare the acoustic features adopted in INTERSPEECH 

2009 emotion challenge with proposed RS features under noisy conditions. This default 

feature set provides baseline results for both HMM and linear kernel SVM recognizers in 

the 2009 challenge and is totally transparent with the accessible open source openSMILE 

feature extraction toolkit [20]. It includes the most common features in pertaining to 

prosody, spectral shape, voice quality, as well as their derivatives. In details, the 16 

low-level descriptors chosen are: zero-crossing-rate (ZCR) from the time signal, root mean 

square (RMS) frame energy, pitch frequency (normalized to 500 Hz), harmonics-to-noise 

ratio (HNR) by autocorrelation function, and mel-frequency cepstral coefficients (MFCC) 

1-12 in full accordance to HTK-based computation. To each of these 16 features, the delta 

coefficients are included as well. Next, as depicted in Table 3-5, the 12 functionals: mean; 

standard deviation; kurtosis; skewness; minimum and maximum value, relative position, 

and range; and two linear regression coefficients with their mean square error (MSE); are 

derived for each low-level and its delta feature on a chunk basis. Thus, the final feature 

contains 16×2×12 = 384 attributes and is referred to as the Inter384 features. In this thesis, 

we conduct experiments in section 4.3 to compare Inter384 features with proposed RS 

features in their robustness. 

Table 3- 5 Features used in INTERSPEECH 2009 emotion challenge 

LLD (16*2) Functionals (12) 

(∆) ZCR mean 

Energy standard deviation 

kurtosis, skewness 

extremes: value, rel. position, range 

linear regression: offset, slope, MSE 

(∆) RMS 

(∆) F0 

(∆) HNR 

(∆) MFCC 1-12  
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Chapter 4 

Simulation Result 

4.1. Experimental Setup 

As mentioned in section 2.2, there are many kinds of kernels available for the SVM to 

map problems onto higher dimensional spaces. Although the radial basis function (RBF) 

kernel is suggested to use the first, different choices of parameters C and γ would affect 

results radically [16]. These parameters need to be fine tuned by the grid search for each 

training condition. Therefore, a simpler linear kernel is adopted in this study only to 

investigate the robustness of features. Before building the SVM, all training and testing 

features are linearly scaled to [0, 1]. To evaluate the robustness of RS features in unknown 

environments, mismatched tests (clean data for training while noisy data for testing) are 

performed under various SNR conditions. 

To address the problem of insufficient speech samples in the Berlin database, the 

10-fold cross-validation procedures are adopted in our test. Speech samples are randomly 

divided into 10 subsets. In each trial, one subset is used for testing while the other nine 

subsets are used for training the SVM recognizer. Final recognition rates are obtained by 

averaging over 10 trials. Features extracted from the Berlin database will further processed 

through the intra-speaker normalization. That is, for each speaker, features from all 
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sentences, including seven emotion classes, are normalized by their mean and standard 

deviation. As for the FAU AIBO database evaluation, the 10-fold method is not utilized due 

to its sufficient data samples. The data of one school, Ohm, is used for training and the data 

of another school, Mont, is used for testing. Therefore, speaker independence is assured for 

the FAU AIBO database evaluation since there is no overlap between training speakers and 

testing speakers. 

Recognition results are reported in form of the total recognition rate (RR), the mean of 

class-wise recognition rate (CL) and the harmonic mean F where 

2 RR CL
F

RR CL

⋅ ⋅=
+

              (4-1) 

These three different measures are assessed for cases with unbalanced number of instances 

among classes. The classes with more instances have more substantial influence on RR than 

ones with fewer instances. Thus, the RR measure has the tendency of over-estimating the 

performance. On the contrary, the CL measure increases the influence of minority classes 

thus under-estimating the performance. Therefore, the F-measure is commonly used to give 

a fair performance estimate when sizes of classes are not balanced [21]. However, since the 

FAU AIBO database is severely unbalanced, the classifier loses its detecting ability against 

those minority classes. To cope with this problem, an under-sampling method is used in 

majority classes. We randomly down-sample other classes to have the same number of 

instances as the smallest class, which is the NEG in the 2-class problem and the P in the 

5-class problem. Final recognition rates are obtained by averaging over 10 trials. In this 

totally balanced condition, the RR and CL measures produce the same results; hence, we 

only list one measure for the FAU AIBO database. 

 

4.2. Results on Berlin Database 
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Table 4- 1 Recognition rates (in %) of RS180 under additive white noises  

RS180 H    A    S    F    N    B    D    CL    RR    F    

clean 42.86 91.35 100.00 52.86 81.96 81.25 45.50 70.83 74.32 72.53 

20dB 42.86 88.14 100.00 52.86 80.71 81.25 48.00 70.55 73.57 72.03 

15dB 44.29 87.31 98.33 51.43 79.29 81.25 47.50 69.91 72.98 71.41 

10dB 44.29 84.87 98.33 52.86 76.61 80.00 54.50 70.21 72.60 71.38 

5dB 50.00 83.21 91.90 53.57 72.86 80.00 61.00 70.36 72.22 71.28 

0dB 45.71 64.17 75.71 50.71 78.04 65.00 57.00 62.33 62.91 62.62 

 

Table 4- 2 Recognition rates (in %) of MFCC156+PRO30 under additive white noises 

MFCC156 

+PRO30 
H A S F N B D CL RR F 

clean 65.71 84.36 98.33 70.95 95.00 90.00 71.00 82.19 83.09 82.64 

20dB 40.00 84.36 91.90 26.67 65.36 91.25 68.50 66.86 69.03 67.93 

15dB 52.86 73.91 78.81 30.95 74.82 85.00 47.00 63.34 65.99 64.64 

10dB 37.14 76.41 77.14 28.57 53.93 83.75 56.50 59.06 61.42 60.22 

5dB 64.29 58.91 79.05 10.48 24.46 86.25 42.50 52.28 53.62 52.94 

0dB 47.14 51.79 64.05 17.86 42.50 92.50 42.50 51.19 52.44 51.81 

 

Table 4- 3 Recognition rates (in %) of RS180 under additive babble noises 

RS180 H A S F N B D CL RR F 

clean 44.29 91.28 100.00 50.95 81.07 90.00 47.00 72.08 75.48 73.74 

20dB 45.71 90.45 100.00 52.62 82.14 87.50 47.00 72.20 75.49 73.81 

15dB 44.29 88.85 100.00 55.48 80.89 85.00 46.50 71.57 74.73 73.12 

10dB 45.71 84.17 100.00 54.29 79.64 78.75 44.00 69.51 72.25 70.85 

5dB 42.86 61.15 100.00 46.43 92.50 61.25 44.50 64.10 64.62 64.36 

0dB 35.71 15.77 100.00 24.29 87.50 52.50 62.00 53.97 49.46 51.62 

 

Table 4- 4 Recognition rates (in %) of MFCC156+PRO30 under additive babble noises 

MFCC156 

+PRO30 
H A S F N B D CL RR F 

clean 61.43 83.40 100.00 75.71 92.14 88.75 69.50 81.56 82.54 82.05 

20dB 40.00 87.31 81.90 59.29 79.11 87.50 59.00 70.59 73.50 72.01 

15dB 45.71 81.79 59.76 46.67 68.57 80.00 66.00 64.07 66.55 65.29 

10dB 45.71 76.09 65.71 33.57 49.64 83.75 57.50 58.85 61.38 60.09 

5dB 77.14 63.91 50.00 18.33 51.25 73.75 50.00 54.91 56.78 55.83 

0dB 68.57 37.50 19.52 13.81 21.43 57.50 40.00 36.90 37.53 37.21 
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Figure 4- 1 F-measure for additive white noise 

 

 

Figure 4- 2  F-measure for additive babble noise 

 

Table 4-1 to 4-4 show detailed performance of using RS180 and MFCC156+PRO30 

features in additive white and babble noises, respectively. The class-wise (from H to D) 

recognition rates are shown in each column. The CL is the mean of class-wise recognition 

rates and the RR is the total recognition rate. The F-measure, which provides a fair 

comparison, is given in the last column in each table and summarized in Figure 4-1 and 4-2. 
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Clearly, the RS180 outperforms the MFCC156+PRO30 in all SNR conditions (20dB~0dB), 

except in the clean condition. The MFCC156+PRO30 features from training samples depict 

magnitude spectra and pitch values with high precision. Such precise representations would 

produce good matches in clean condition, but are also prone to degradations by noises. On 

the other hand, RS features only carry the information of spectro-temporal amplitude 

modulations, which is equivalent to the spectro-temporal envelopes without carriers’ fine 

structure (phase) information. While not providing accurate matches in the clean condition, 

RS features are more resistant to deteriorations from spectro-temporal envelopes of noises. 

Using RS features, Anger and Sadness are the two most recognizable emotions, 

whereas Fear, Disgust and Happiness are more difficult to be classified. With additive 

background noises, Fear emotion is particularly prone to be deteriorated in both feature 

domains of MFCC plus prosodic and RS features. Moreover, recognition rates of the 

emotion of Neutral are severely degraded under noisy conditions when using conventional 

features. Nevertheless, it is very well preserved by the RS features. 

Figure 4-3 shows an example of sentence spoken by the same speaker with Anger and 

Neutral emotions. Panel (a) and (c) are the auditory spectrograms of utterances with Anger 

and Neutral emotions, respectively. Panel (b) and (d) are their corresponding rate-scale plots. 

As seen in these figures, the pitch-related response (high rate, high scale) of Neutral is more 

intense than that of Anger. The reason for this phenomenon is that the speaker’s pitch is 

moving up-and-down more dramatically in Anger emotion than in Neutral emotion. Hence, 

the mean response at each specific pitch-related rate-scale point in Anger emotion is weaker 

than that in Neutral emotion. On the other hand, the low rate region encodes the coarse 

temporal AM structure of the utterance. In Neutral speech, pitch and formant contours are 

usually with smooth declination toward the end of sentence. This declination trend is 

revealed as a notable positive rate (downward) response as mentioned in section 2.1.3. 

However, no declination trend in Anger speech produces comparable response in positive 
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and negative rates. 

For better demonstrating the robustness of our RS features, Figure 4-4 shows the 

response curves of a pitch-related region (rate=256 Hz, scale=4 cycle/octave) and an 

AM-related region (rate=4 Hz, scale=0.25 cycle/octave) along the time axis under clean 

(panel (a) and (b)) and 5 dB noisy conditions (panel (c) and (d)). Both curves are derived 

from the Anger sentence used in Figure 4-3. Figure 4-5 shows the spectrogram and RS plot 

of white noise alone. As observed in Figure 4-5 (b), the white noise activates a high 

rate/high scale response, which is quite different from the response of speech. For speech 

with added white noise, the low rate/low scale regions are less affected (see Figure 4-4 (b) 

and (d) for clean and 5 dB SNR condition) while the pitch-related RS regions are more 

affected. However, comparing Figure 4-4 (a) and (c), distortions are roughly as from a 

dynamic range compression. The original trend along the time axis is not damaged. On the 

contrary, conventional ways of extracting pitch may totally become invalid with low SNR 

noise. The similar trend can also be observed in one Neutral sentence as shown in Figure 

4-6. 

Figure 4-7 and 4-8 show the distributions of the specific pitch-related RS feature 

(rate=256 Hz, scale=4 cycle/octave) under clean and 5dB noisy conditions, respectively. 

The distributions are derived from the same sentences used in Figure 4-4 and 4-6. Response 

for Neutral is greater than that for Anger as we mentioned earlier. The effect by white noise 

does not cause dramatic damage but only a slight shift to the distributions. These figures 

give ideas about the superior performance of our RS features to conventional MFCCs plus 

prosodic features in low SNR conditions. 
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Figure 4- 3 (a), (b) spectrogram and RS plot of a Berlin Anger sentence; (c), (d) 

spectrogram and RS plot of the same sentence with Neutral emotion. 
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Figure 4- 4 One Berlin Anger sentence: (a) and (b) depict a high rate/high scale 

(pitch-related) response and a low rate/low scale (AM-related) response plotted along the 

time axis under clean condition; (c) and (d) depict the responses of the same rate-scale 

combinations as in (a) and (b) under 5dB noisy condition 
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Figure 4- 5 white noise: (a) spectrogram, (b) RS plot 

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

9

(b)(a)

(c)
(d)

 

Figure 4- 6 One Berlin Neutral sentence: (a) and (b) depict a high rate/high scale 

(pitch-related) response and a low rate/low scale (AM-related) response plotted along the 

time axis under clean condition; (c) and (d) depict the responses of the same rate-scale 

combinations as in (a) and (b) under 5dB noisy condition 
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Figure 4- 7 The distribution of a pitch-related feature (rate=256 Hz, scale=4 cycle/octave) 

under clean condition 
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Figure 4- 8 The distribution of a pitch-related feature (rate=256 Hz, scale=4 cycle/octave) 

under 5dB noisy condition 
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Figure 4- 9 Recognition rate (in %) of RS180 by SFFS method 

 

A feature selection method, sequential forward floating selection (SFFS) [22], is used 

to examine contributions within RS180 features. It starts from an empty feature set and 

sequentially includes (or excludes) a feature into the selected set, then evaluates the 
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performance of newly constructed feature set. As shown in Figure 4-9, the performance 

peaks around using 100 features and does not vary a lot from using 60 to 140 features. Tests 

on other SNR conditions have the similar trend. These results simply imply our RS features 

are highly redundant, which is not unexpected due to the highly overlapped 

two-dimensional filters in the cortical module [2]. Therefore, RS180 can be further 

downsampled to RS92 by choosing rate-scale combinations of gray spots in Figure 4-10. 

Note, only downward direction (positive rate) is shown in the figure. 
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Figure 4- 10  Rate-scale selections (gray areas) of RS92 

 

Two subsets of MFCC156 are selected to compare with our reduced RS92 features. 

The first subset (MFCC78) contains the mean and standard deviation of 13 MFCCs, 13 

∆MFCCs and 13 ∆∆MFCCs. The second subset (MFCC52) contains the mean, standard 

deviation, skewness, and kurtosis of 13 MFCCs. Both subsets are then combined with 

PRO30 features to have comparable feature numbers as RS92. Detailed recognition rates 

are shown from Table 4-5 to 4-10, and the overall F-measures are given in Figure 4-11 and 

Figure 4-12. Results show that RS92 has almost the same performance as RS180 in white 

noise while performs slightly worse in high-SNR (20, 15 dB) babble noise. The reason for 

that is white noise has vastly different spectro-temporal modulations from speech, while the 

babble noise has similar modulations to speech. Hence, a higher resolution in the RS 

domain is preferred for babble noise. Nevertheless, RS92 outperforms MFCC78+PRO30 

and MFCC52+PRO30 in almost all SNR conditions, especially in low SNR conditions. 
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Table 4- 5 Recognition rates (in %) of RS92 under additive white noises 

RS92 H A S F N B D CL RR F 

clean 40.00 92.12 98.57 54.76 75.36 81.25 41.00 69.01 72.79 70.85 

20dB 45.71 90.58 97.14 53.10 76.61 82.50 41.00 69.52 73.18 71.30 

15dB 48.57 88.97 97.14 51.67 75.18 82.50 41.00 69.29 72.80 71.00 

10dB 45.71 86.54 95.24 53.57 73.93 80.00 45.50 68.64 71.66 70.12 

5dB 50.00 83.27 90.24 53.81 73.93 80.00 47.50 68.39 71.06 69.70 

0dB 50.00 72.88 76.19 50.71 80.54 60.00 50.50 62.97 64.63 63.79 

 

Table 4- 6 Recognition rates (in %) of MFCC78+PRO30 under additive white noises 

MFCC78 

+PRO30 
H A S F N B D CL RR F 

clean 70.00 88.97 96.67 74.76 91.25 91.25 71.00 83.41 84.81 84.11 

20dB 51.43 78.65 88.81 47.86 70.71 86.25 65.00 69.82 71.27 70.54 

15dB 67.14 68.33 86.90 39.05 74.64 85.00 50.50 67.37 68.83 68.09 

10dB 50.00 58.97 86.90 38.81 56.61 86.25 58.00 62.22 62.36 62.29 

5dB 67.14 50.00 86.90 16.67 28.04 81.25 61.00 55.86 54.94 55.39 

0dB 51.43 39.17 78.81 21.19 46.25 91.25 36.50 52.09 51.93 52.01 

 

Table 4- 7 Recognition rates (in% ) of MFCC52+PRO30 under additive white noises 

MFCC52 

+PRO30 
H A S F N B D CL RR F 

clean 67.14 89.10 92.14 80.48 83.57 86.25 68.00 80.95 82.83 81.88 

20dB 45.71 78.91 85.24 50.00 81.07 90.00 70.00 71.56 72.88 72.21 

15dB 57.14 66.79 91.90 37.38 81.96 90.00 53.50 68.38 69.59 68.98 

10dB 51.43 62.95 98.33 42.14 83.21 80.00 66.50 69.22 68.98 69.10 

5dB 54.29 65.32 90.24 15.00 61.96 72.50 61.00 60.04 60.65 60.35 

0dB 54.29 48.59 87.38 24.29 68.21 82.50 45.00 58.61 58.56 58.58 
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Table 4- 8 Recognition rates (in %) of RS92 under additive babble noises 

RS92 H A S F N B D CL RR F 

clean 35.71 92.82 100.00 52.62 71.96 87.50 37.50 68.30 72.44 70.31 

20dB 34.29 91.22 100.00 55.71 73.21 85.00 40.00 68.49 72.26 70.32 

15dB 31.43 90.45 100.00 58.81 71.96 85.00 42.50 68.59 72.07 70.29 

10dB 37.14 88.14 100.00 55.95 78.21 72.50 46.50 68.35 71.30 69.79 

5dB 31.43 72.12 100.00 46.67 91.25 60.00 37.00 62.64 64.80 63.70 

0dB 24.29 28.46 100.00 22.62 91.25 50.00 50.50 52.45 50.01 51.20 

 

Table 4- 9 Recognition rates (in %) of MFCC78+PRO30 under additive babble noises 

MFCC78 

+PRO30 
H A S F N B D CL RR F 

clean 70.00 85.83 96.90 77.86 88.21 87.50 68.00 82.04 83.11 82.57 

20dB 51.43 78.46 88.57 62.38 82.86 87.50 47.00 71.17 73.57 72.35 

15dB 54.29 74.74 76.43 53.10 84.82 86.25 57.50 69.59 71.29 70.43 

10dB 75.71 49.23 77.38 44.05 59.82 83.75 54.50 63.49 62.73 63.11 

5dB 80.00 39.94 80.48 30.95 45.89 72.50 49.50 57.04 55.54 56.28 

0dB 65.71 29.36 57.86 20.24 29.46 56.25 54.50 44.77 42.58 43.65 

 

Table 4- 10 Recognition rates (in %) of MFCC52+PRO30 under additive white noises 

MFCC52 

+PRO30 
H A S F N B D CL RR F 

clean 70.00 90.51 89.29 79.52 84.46 82.50 73.50 81.40 82.52 81.95 

20dB 42.86 85.71 49.76 69.29 84.64 88.75 68.50 69.93 72.44 71.16 

15dB 52.86 77.82 41.67 58.81 79.29 90.00 79.50 68.56 70.00 69.27 

10dB 61.43 66.73 48.81 51.43 56.25 86.25 80.00 64.41 64.45 64.43 

5dB 77.14 58.97 38.33 36.90 70.36 77.50 64.00 60.46 61.01 60.73 

0dB 67.14 41.35 28.57 24.52 44.29 40.00 54.50 42.91 42.58 42.74 
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Figure 4- 11 F-measure for additive white noise (reduced features) 

 

 

Figure 4- 12  F-measure for additive babble noise (reduced features) 
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4.3. Results on FAU AIBO Database 

Table 4- 11 FAU AIBO database recognition rates (in %) under additive white noise: 

matched condition (noisy train/noisy test) 

2-class clean 15dB 10dB 5dB 0dB 

Inter384 68.74 67.23 66.66 66.33 66.00 

RS180 66.59 66.35 66.58 66.24 65.99 

Inter384+RS180 68.49 66.67 66.90 66.72 66.32 

5-class clean 15dB 10dB 5dB 0dB 

Inter384 38.19 39.37 38.61 37.41 34.99 

RS180 38.65 38.74 38.43 37.66 37.55 

Inter384+RS180 39.40 39.90 39.90 38.12 35.13 

 

Table 4- 12 FAU AIBO database recognition rates (in %) under additive babble noise:  

matched condition (noisy train/noisy test) 

2-class clean 15dB 10dB 5dB 0dB 

Inter384 68.74 67.77 67.45 67.24 66.41 

RS180 66.59 66.17 66.20 66.34 65.50 

Inter384+RS180 68.49 67.89 67.36 66.84 66.32 

5-class clean 15dB 10dB 5dB 0dB 

Inter384 38.19 38.33 37.86 37.28 35.87 

RS180 38.65 38.50 37.64 37.53 36.42 

Inter384+RS180 39.40 38.35 38.73 37.27 36.81 

 

For the FAU AIBO database, table 4-11 and 4-12 show recognition rates under additive 

white and babble noises, respectively. These results are measured in the matched (noisy 

train/noisy test) condition, which is commonly inspected in other speech emotion 

recognition researches [12, 13]. Under such condition, the performance is measured by 

training and testing the classifier with the same SNR noisy speech samples. As seen in Table 

4-11 and 4-12, any tested feature sets produce similar performance in the matched condition 

since characteristics of noises are considered to be well trained into the classifier. However, 

recognizers built for matched conditions are not practical since the SNR is usually varying 

in testing environments. 
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Table 4- 13 FAU AIBO database recognition rates (in %) under additive white noises:  

mismatched condition (clean train/noisy test) 

2-class clean 15dB 10dB 5dB 0dB 

Inter384 68.74 63.78 60.92 59.07 55.00 

RS180 66.59 60.16 52.82 50.37 50.00 

RS20 66.59 66.66 66.35 64.65 61.49 

Inter20 66.65 66.41 67.73 66.91 62.24 

(RS+Inter)20 67.27 67.36 67.54 66.92 66.10 

5-class clean 15dB 10dB 5dB 0dB 

Inter384 38.19 31.14 29.05 23.86 22.13 

RS180 38.65 24.58 20.14 20.00 20.00 

RS20 37.50 37.80 37.53 32.66 31.18 

Inter20 36.58 38.50 38.92 36.47 33.09 

(RS+Inter)20 36.60 38.00 37.15 36.45 32.84 

 

Table 4- 14 FAU AIBO database recognition rates (in %) under additive babble noises:  

mismatched condition (clean train/noisy test) 

2-class clean 15dB 10dB 5dB 0dB 

Inter384 68.74 57.50 53.12 50.92 50.00 

RS180 66.59 51.81 50.06 50.00 50.00 

RS20 66.59 63.65 59.17 52.64 50.39 

Inter20 66.65 67.00 65.96 65.70 63.51 

(RS+Inter)20 67.27 67.32 66.84 65.97 59.05 

5-class clean 15dB 10dB 5dB 0dB 

Inter384 38.19 28.17 25.84 23.45 20.81 

RS180 38.65 21.16 20.07 20.00 20.00 

RS20 37.50 35.92 32.22 26.38 21.15 

Inter20 36.58 34.18 32.42 28.87 25.82 

(RS+Inter)20 36.60 37.00 35.56 29.88 23.63 

 

 Recognition rates under mismatched (clean train/noisy test) condition for the AIBO 

database are shown in Table 4-13 and 4-14. The Inter384 and RS180 feature sets are tested 

first. From the first glance, it seems right to conclude the Inter384 feature set outperforms 

our proposed RS180 feature sets in noisy conditions. However, after taking a deeper 
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inspection, one can see the class-wise recognition rates of RS180 are more skewed with 

lower SNR. Briefly speaking, the classifier predicts all testing data as from a certain class, 

causing the mean class-wise recognition rate approaching 50% in the 2-class problem and 

20% in the 5-class problem. Not surprisingly, the number of support vectors of the SVM is 

almost the same as the number of training samples, which indicates that the SVM classifier 

is over-trained thus performs badly. In order to have a fair comparison, we further test the 

Inter384 feature set on the Berlin database, where our RS180 feature set does not cause the 

over-training of the recognizer, and show its F-measure in Figure 4-13 (extended from 

Figure 4-1). As can be seen, our proposed RS180 feature set still outperforms the Inter384 

feature set in low SNR conditions (10≤  dB) when tested on the Berlin database. 

F-measure for white noise

40%

50%

60%

70%

80%

90%

RS180 72.53% 72.03% 71.41% 71.38% 71.28% 62.62%

MFCC156+PRO30 82.64% 67.93% 64.64% 60.22% 52.94% 51.81%

Inter384 82.11% 74.88% 73.80% 69.99% 65.68% 49.80%

clean 20dB 15dB 10dB 5dB 0dB

 

Figure 4- 13  Performance of Inter384 on Berlin database (extended from Figure 4-1) 

 

While both RS180 and Inter384 more or less over-train the SVM recognizer on the 

AIBO database, neither one of them makes the SVM over-trained on the Berlin database. 

One possible reason for this overtraining problem may be that the FAU AIBO database 

contains natural emotions in much shorter command-like sentences while the Berlin 

database contains acting emotions in longer sentences. Obviously, natural emotions are 
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much more difficult to recognize than acted emotions in our simulations especially with 

short sentences. Therefore, the RS180 calculated from the mean and standard deviation of 

the whole sentence might not carry consistent information among very short sentences, 

which causes an over-trained recognizer and produces poor performance especially in low 

SNR conditions. Figure 4-14 shows the histograms of sentence length of Anger and Neutral 

emotion samples in Berlin database and AIBO database respectively. As we can see, almost 

all sentences in the Berlin database last about two to five seconds (detail content shown in 

Table 3-1). On the other hand, while most sentences in AIBO are short commands lasting 

about zero to three seconds, some extremely long sentences exist. Most of these long 

sentences contain bad clips with long period of silence (Figure 4-15 (c), (d)). Moreover, 

some serious interference caused by microphone collision at the beginning or end of a 

sentence exists in long sentences. This kind of interference is treated as speech by the VAD 

system and included in the database (Figure 4-15 (a) 0 sec ~4 sec, (b) 5 sec ~ 9 sec). All of 

these artificial distortions shown in Figure 4-15 seriously affect the mean and standard 

deviation over the entire sentence, thus causing troubles to our proposed RS features. 

On the other hand, we use the downsampling instead of the upsampling approach to 

balance the database. Such random downsampling, which ignores many speech sentences, 

might aggravate the over-training problem. 

To tackle this problem, SFFS is further used to reduce the dimensionality of feature 

sets. The SFFS is conducted in the condition of using clean samples for training and 10dB 

white noisy samples for testing. The RS20 feature set contains the top 20 features selected 

from RS180 while the Inter20 feature set contains the top 20 features selected from Inter384. 

Additionally, the (RS+Inter)20 feature set holds the top 20 features selected from 564 

features of combining Inter384 with RS180. With these three reduced feature sets, 

substantially improved performance in all SNR conditions is shown in gray areas in Table 

4-13. Meanwhile, using the same reduced feature sets selected from 10 dB white noisy 
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samples, recognition rates under babble noise conditions are also improved as seen in gray 

areas in Table 4-14. These results infer that in real applications where some background 

noises are expected, the brute-force selection on large feature sets for each noise condition 

(as seen in [12, 13]) may not be the right approach because not the same features will be 

selected under different noisy conditions. Instead, selecting a smaller feature set under a 

certain noise condition beforehand may be a less time-consuming way to enhance the 

performance. 

sec sec

 

Figure 4- 14 sentence length of AIBO database 



 43

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sec

P Ohm 210

0 1 2 3 4 5 6 7 8 9
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sec

E Ohm 576

0 5 10 15 20 25
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sec

E Ohm 538

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sec

E Ohm 1527

(a)

(a)

(b)

(d)

 

Figure 4- 15 Examples of bad clips in AIBO database 
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Chapter 5 

Conclusion and Future Works 

5.1. Conclusion 

In the first part of this thesis, experiments on the Berlin database show that features 

from spectro-temporal modulations are more robust to additive white and babble noises than 

conventional MFCCs plus prosodic features in mismatched emotion recognition simulations, 

especially in low SNR ( 10≤  dB) conditions. Simulation results also show our proposed 

RS180 feature set outperforms the Inter384 feature set proposed in the INTERSPEECH 

2009 emotion challenge in low SNR (10≤  dB) conditions.  

For the AIBO database, experiments show that a serious over-fitting recognizer is 

constructed by using our proposed RS180 features and produces unsatisfactory performance 

especially in low SNR conditions. Feature selection method is further adopted to reduce the 

dimensionality in the hope to mitigate the over-fitting problem. Preliminary results by using 

reduced sets of 20 RS features or 20 Inter384 features demonstrate improved recognition 

rates although the best selection of features and the corresponding perceptual meaning of 

each feature are to be explored in the future. 

Overall speaking, the spectro-temporal modulations effectively capture high 

percentage of emotion characteristics embedded in speech as demonstrated in our 
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simulation results. 

5.2. Future Works 

To further improve recognition rates for speech samples from the FAU AIBO database, 

several aspects are to be considered in the future. First, those bad clips should be excluded, 

and an effective VAD should be considered to better extract voice parts. Secondly, the 

balancing method is a major concern. Instead of under-sampling the majority as we have 

done in this study, the SMOTE (Synthetic Minority Over-sampling TEchnique) or other 

combined methods [23, 24] may provide effective ways for balancing data sets without 

causing the over-fitting problem from insufficient data. Moreover, kernel functions, which 

are used by the SVM to map a nonlinear problem to a higher dimensional space, can be 

changed. Some commonly used kernel functions are listed in Table 2-1. Finally, other 

feature selection methods besides the SFFS, which is time-consuming and its convergence 

is not guaranteed, can be adopted for further improvement. 

The current RS180 only contains the first and the second order statistics. Usage of the 

higher-order statistics (as in the Inter384) of the spectro-temporal modulations is expected 

to boost recognition rates for long speech, but may inevitably cause a more serious 

over-fitting problem for short speech. We are most interested in the performance by 

combining over-sampling techniques with higher-order statistics and will pursue it in the 

future. 

 



 46

 

Reference 

[1] T. Chi, Y. Gao, M. C. Guyton, P. Ru, and S. Shamma, "Spectro-temporal modulation 

transfer functions and speech intelligibility," The Journal of the Acoustical Society of 

America, vol. 106, p. 2719, 1999. 

[2] T. Chi, P. Ru, and S.A. Shamma, “Multi-resolution spectro-temporal analysis of 

complex sounds,” J. Acoust. Soc. Am., vol. 118, no. 2, pp. 887-906, 2005. 

[3] B. Schuller, G. Rigoll, and M. Lang, “Hidden Markov Model-Based Speech Emotion 

Recognition,” Proc. ICASSP, 2003, vol. 2, pp. 1-4. 

[4] Dan-Ning Jiang, and Lian-Hong Cai, “Speech Emotion Classification with the 

Combination of Statistic Features and Temporal Features”, ICME, 2004, pp. 

1967-1970. 

[5] V. Ververidis and C. Kotropoulos, “Emotional speech recognition: Resources, features, 

and methods,” Speech Comm., vol. 48, no. 9, pp. 1162–1181, September 2006. 

[6] Z. Zeng, M. Pantic, G. I. Rosiman, and T. S. Huang, “A survey of affect recognition 

methods: Audio, visual, and spontaneous expressions,” IEEE Trans. on Pattern 

Analysis and Machine Intelligence, vol. 31, no. 1, pp. 39–58, 2009. 

[7] B. Schuller, and G. Rigoll, “Timing Levels in Segment-Based Speech Emotion 

Recognition,” Proc. INTERSPEECH 2006, ICSLP, ISCA, pp.1818-1821, Pittsburgh, 

PA, 2006. 

[8] F Ringeval, and M Chetouani, “A vowel based approach for acted emotion 

recognition,” Proc. Interspeech, 2008. 



 47

[9] B. Schuller, G. Rigoll, and M. Lang, “Speech Emotion Recognition Combining 

Acoustic Features and linguistic information in a hybrid support vector machine-belief 

network architecture,” Proc. ICASSP, 2004, Vol. I, pp. 577-580. 

[10] Feng Yu, Eric Chang, Ying-Qing Xu, and Heung-Yeung Shum, “Emotion detection 

from speech to enrich multimedia content,” Proc. IEEE Pacific-Rim Conf. on 

Multimedia 2001, Vol. 1, pp. 550–557. 2001. 

[11] Tsang-Long Pao, Yu-Te Chen, Jun-Heng Yeh, and Pei-Jia Li, “Mandarin emotional 

speech recognition based on SVM and NN,” Proc. of the 18th International 

Conference on Pattern Recognition (ICPR’06), vol. 1, September 2006, p. 1096-0. 

[12] B. Schuller, D. Arsić, F. Wallhoff, and G. Rigoll, “Emotion Recognition in the Noise 

Applying Large Acoustic Feature Sets,” in Proc. Speech Prosody, 2006. 

[13] B. Schuller, D. Seppi, A. Batliner, A. Maier, and S. Steidl, “Towards More Reality in 

the Recognition of Emotional Speech,” Proc. ICASSP, 2007, Vol. IV, pp. 941-944. 

[14] Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter Sendlmeier und Benjamin 

Weiss, “A Database of German Emotional Speech”, Proc. Interspeech, Lissabon, 

Portugal, 2005, pp. 489-492. 

[15] S. Steidl, “Automatic Classification of Emotion-Related User States in Spontaneous 

Children’s Speech,” Logos Verlag, Berlin, 2009. 

[16] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 

2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm  

[17] A. Varga and H.J.M. Steeneken, "Assessment for automatic speech recognition: II. 

NOISEX-92: A database and an experiment to study the  effect  of  additive  noise  

on  speech  recognition  systems,"  Speech Comm., vol.12(3), pp. 247-251, 1993. 

[18] B. Schuller, S. Steidl, and A. Batliner, “The INTERSPEESH 2009 Emotion 

Challenge,” Proc. Interspeech, 2009, pp. 312-315. 



 48

[19] H. Kawahara, Alain de Cheveign´e, H. Banno, T. Takahashi and T. Irino, “Nearly 

Defect-free F0 Trajectory Extraction for Expressive Speech Modifications based on 

STRAIGHT,” Proc. Interspeech, 2005, pp. 537-540. 

[20] F. Eyben, M. Wollmer, B. Schuller (2009): Speech and Music Interpretation by 

Large-Space Extraction, http://sourceforge.net/projects/openSMILE. 

[21] B. Schuller, M. Wöllmer, F. Eyben, and G. Rigoll, "Spectral or Voice Quality? 

Feature Type Relevance for the Discrimination of Emotion Pairs," in The Role of 

Prosody in Affective Speech, Linguistic Insights, Studies in Language and 

Communication, Vol. 97, Slyvie Hancil (ed.), Peter Lang Publishing Group, ISBN 

978-3-03911-696-6, pp. 285-307, 2009. 

[22] P. Pudil, F.J. Ferri, J. Novovicova, and J. Kittler, “Floating search methods for feature 

selection with nonmonotonic criterion functions,” Proc. international Conference on 

Computer Vision & Image Processing, pp. 279-283, 1994. 

[23] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “SMOTE: Synthetic 

Minority Oversampling Technique,” Journal of Artificial Intelligence Research 16, pp. 

321-357, 2002. 

[24] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of 

several methods for balancing machine learning training data,” ACM SIGKDD 

Explorations Newsletter, vol. 6 ,  issue 1, pp. 20 – 29, 2004. 


	cover
	Thesis_Eng_v5.pdf

