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合作式放大傳遞多輸入多輸出中繼系統 
之強健性Tomlinson-Harashima來源端與線性中繼端前置編碼設計 
 

 
研究生：張閔堯                             指導教授：吳文榕 博士 

 

 

 

國立交通大學 

電信工程研究所碩士論文 

摘要 

 

在現存的合作式放大傳遞多輸入多輸出中繼系統傳收機的設計，通常假設此系統可

得到完美的通道狀態資訊(perfect CSI)。但在實際系統應用上，可能無法獲得完美的通道

狀態資訊。基於非完美通道狀態資訊的考量下，強健性的傳收機設計在實際應用上是需

要被考慮的。在本論文中，我們提出一種強健性的傳收機設計，此傳收機中的來源端使

用 Tomlinson-Harashima 前置編碼 (THP)、線性中繼端前置編碼與最小均方錯誤

(minimum mean-squared error)接收機。當兩個前置編碼的組合及非完美通道狀態資訊被

考慮進來時，傳收機的設計變得相當困難。為了克服這個設計上的困難，我們提出一種

前置編碼結構與設計方法，使得原本的傳收機設計可轉換為凹曲線最佳化問題，由此導

出解析解。我們在 TH 前置編碼後串接一個單位前置編碼。這個額外的前置編碼的功能

不僅可以簡化最佳化的問題而且可改善整個系統的效能表現。由於最佳化的問題是由多

個前置編碼組成，我們使用最初分解(primal decomposition)將原本的最佳化問題分解成

次要問題(subproblem)與主要問題(master problem)。依序解決次要問題與主要問題，原

本由兩個前置編碼構成的問題，可簡化成設計單一中繼端前置編碼的問題。但是要解決

主要問題仍然相當困難，因此我們對這個主要問題提出一個最低界線，並經由一些操作

將此問題轉換成凹曲線最佳化的形式。透過 Karush-Kuhn-Tucker(KKT)條件可以推導出

解析解。模擬的結果顯示在完美/非完美的通道狀態資訊環境下，所提出的強健性傳收機

設計在效能上的表現比現存的線性傳收機設計好。 
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Abstract 

 

The existing transceiver design in amplify-and-forward (AF) multiple-input 

multiple-output (MIMO) relay systems often assume the perfect channel state information 

(CSI) is available. In practice, the perfect CSI is not attainable and the robust design with 

considering imperfect CSI is applied. In this paper, we propose a robust transceiver design for 

the system with Tomlinson-Harashima (TH) precoder, a linear relay precoder and a 

minimum-mean-square (MMSE) receiver. Since two precoders and the imperfect CSI are 

involved, the robust design problem is difficult. To overcome the difficulty, we additionally 

cascade a unitary precoder after the TH precoder. The unitary precoder can not only simply 

the optimization problem but improve the performance of the system. With the precoders, we 

use the primal decomposition to divide the original optimization problem into a subproblem 

and a master problem. The subproblem can be solved and the two-precoder problem can be 

reduced to the problem composed of single relay precoder. However, the master problem is 

still difficult to solve. We then proposed a lower bound for the cost function and transfer the 

master problem to a convex optimization problem. A closed-form solution can then be 

obtained by Karush-Kuhn-Tucker (KKT) conditions. Simulations show the that the proposed 

transceiver design have better performance than existing linear transceiver with either 

perfect/imperfect CSI. 
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Chapter 1 

Introduction 
 

 

In recent years, many works have been devoted to the study of cooperative 

communication due to its great potential to improve coverage, capacity and reliability of 

wireless link [1]-[3]. Due to shadowing, multipath fading, path losses observed in wireless 

channels, the link between a signal source and a destination may not be always reliable. In 

cooperative communication systems, relays are placed at some strong shadowing 

environments such that signals can be transmitted to the destination by a direct link and relay 

links. With the additional relay links, it provides the enhancement of diversity gain or 

capacity gain [1]-[18]. There are some relay strategies such as amplified-and-forward (AF), 

decode-and-forward (DF), and compress-and-forward(CF) [1],[2]. In AF, the relays receive 

signal from the source and retransmit it to the destination with signal amplification only. In 

DF, the relays decode the received signal, re-encode information bits, and then transmission 

the resultant signal to the destination. CF, being a compromise between AF and DF, estimates 

information bits, compress their information, and then transmit the modulated signal to the 

destination. In this thesis, we only consider the AF-based system since the AF strategy 

requires less implement complexity and smaller processing delay. Research in this subject has 

attracted a lot of attention. 

MIMO systems have been widely studied in the literature since it can enhance spatial 

diversity or multiplexing gain in the rich scattering environments. It is known that a precoder 

can be used in a MIMO system to further enhance the performance. Linear or non-linear 

precoder designs in the point-to-point MIMO system have been extensively studied [7]-[9]. In 

cooperative systems, multiple antennas can be equipped at the source, the relays, and the 

destination, resulting MIMO relay systems. Similar to conventional MIMO systems, the 

precoding operation can be conducted in a MIMO relay system [12]-[19]. In this thesis, we 

only consider the transceiver design in AF MIMO systems. 

For the AF MIMO relay system, the capacity bound of the systems have been derived in 

[12]. Apart from the capacity, the link quality is another criterion has been studied. In [15], a 

dual-hop single relay precoder in an AF MIMO system was designed for a minimum 

mean-square error (MMSE) receiver without considering direct link (source to destination). It 
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has been shown in [15] that the joint design has a better performance than separate design 

scheme. In [16], a joint transceiver design for the multi-relay case has been discussed. In [18], 

a transceiver design has been proposed for a three-node AF MIMO system using MMSE 

criterion. This scheme takes both the direct and relay links into consideration, and uses a 

linear precoder at the source and another linear precoder at the relay. Recently, the joint 

source and relay precoders design for multiple transmission streams were studied in [17]-[20], 

where the source and relay precoders are jointly designed with the direct and relay links via 

MMSE [17], QR successive-interference-cancellation (SIC) [19], and MMSE-SIC [20], 

respectively. 

As well known, the nonlinear transceivers are superior to linear transceivers. To obtain 

better performance for the precoded system, we then focus on a nonlinear source precoder 

design in this thesis. There exist several nonlinear MIMO transceivers, e.g. the system with a 

Tomlinson-Harashima precoder (THP), and that with a decision-feed-back equalizer (DFE). 

As well known, the DFE at the destination estimate and cancel the interferences and it may 

cause error propagation in low SNR environments. We consider a precoded AF MIMO relay 

system in which the nonlinear THP is used at the source, a linear precoder at the relay and a 

MMSE receiver at the destination [22]. The THP can pre-cancel the known interference at the 

source and will not induce error propagation. It is widely used in point-to-point or multiuser 

MIMO systems [21]. In the first part of the thesis, we consider a transceiver design in AF 

MIMO relay system. The design uses the MMSE criterion and take both the direct and relay 

links into consideration. Since the THP is involved, the cost function becomes a highly 

nonlinear and complicated function of the source precoder and relay precoder. The 

optimization problem becomes very difficult. To solve the problem, we first cascade a unitary 

precoder with the THP. The specially designed unitary precoder not can only simplify the 

optimization problem but also improve the MMSE performance. Then, we use the primary 

decomposition method, decomposing the problem into a master problem and a subproblem. 

With our formulation, the subproblem problem, designing the unitary precoder and feed-back 

matrix in the THP, can be degenerated to the system in [24], and the solution is readily 

obtained. In the master problem, the cost function becomes a function of the relay precoder 

only. With some precoder structure, we can translate the optimization problem from 

matrix-valued into a scalar-valued optimization problem, and use Karush-Kuhn-Tucker (KKT) 

conditions to obtain a closed-form solution for the source and relay precoders. 

Most transceiver design in AF MIMO system assume that it knows perfect channel state 

information (CSI) of each link at each node [14]-[20]. In practice, the perfect CSI is not 
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attainable due to channel estimation or quantization errors. For conventional MIMO systems, 

some works study the sensitivity of the MIMO precoder with respect to channel uncertainties 

[29], [30]. In [31]-[35], a robust design for the THP precoded point-to-point MIMO system 

has been studied. In [36], the design is extended to an AF MIMO relay system. In the design, 

the direct link is not taken into consideration.  

In the second part of this thesis, we study a robust AF MIMO transceiver design with the 

THP. The optimization problem is similar to that of perfect CSI. The only difference is to 

consider the estimation errors as extra noise sources. Still, we use the primal decomposition 

method to decompose the optimization problem into subproblem and master problem. To ease 

the optimization, we then propose a method that can translate the master problem to a 

standard scalar-valued concave optimization. The key idea is to apply some approximations 

for the cost function such that the optimization in the master problem can be solved. We then 

propose a relay precoding structure in the optimization. Though the structure is suboptimal 

method, however, it can translate the master optimization problem to a standard scalar-valued 

concave optimization problem. Finally, similar to the perfect CSI case, we can obtained the 

close-form solution of the relay and source precoder by using KKT conditions. 

The organization of the thesis is described as follows. In Chapter 2, we describe the 

proposed THP precoded AF MIMO relay system. In Chapter 3, we take the channel 

estimation error into consideration and propose a robust transceiver design. In Chapter 4, we 

present the simulation results and related discussions. Finally, we draw conclusions in 

Chapter 5. 
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Chapter 2  

Joint MMSE Transceiver Desgin with 

Tomlinson-Harashima Source and Linear Relay Precoders 
 

 

In this chapter, we consider the MMSE transceiver design with a nonlinear 

Tomlinson-Harashima precoder (THP) at the source, a linear precoder at the relay in AF 

MIMO relay systems. Here, we assume that perfect CSIs of all channels are known at the 

destination. In Section 2.1, we first give the system model, while in Section 2.2 we formulate 

the design problem under the MMSE criterion. It is found that the MSE is a complicated 

function of the source and relay precoders, and the optimization problem is non-convex. Thus, 

the problem is difficult to solve. In Section 2.3, we propose a method translating the 

two-precoder design problem into a single-relay problem. By using this method, the 

optimization problem can be formulated as a convex optimization problem, and the 

close-form solution can then be obtained. 

 

2.1 System model 

We consider a typical three-node AF MIMO relay system with a THP. The block 

diagram of the system is shown in Figure 2.1. The system includes a THP precoder cascaded 

with a unitary precoder SF  at the source, a linear precoder RF  at the relay, and a MMSE 

receiver G  at the destination. Here, we define the number of antenna at the source, the relay 

and the destination as N, R and M, respectively. The MIMO channels are assumed to be flat 

fading. In this cooperative system, we use a half-duplex relay protocol, which means it require 

a two-phase transmission for a data packet. Let’s start with the THP. The THP conducts a 

interference pre-cancelling operation characterized by a backward, strict low-triangular matrix 

B  and a modulo operation ( )MODm i . Let the input signal vector be 1N×∈s ℂ ; each element 

of [ ]= ⋯1, ,
T

Ns ss  is a symbol mapped to a square m-QAM constellation where. Each QAM 

symbol is drawn from the set { }{ }, 1, ,I Q I QA s js s s m= + ∈ ± ±… . The feed-back operation 

conducted in THP may increase the transmit power, and it can be avoided by a modulo 
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operation [21]. The modulo operation applied over both the real and image parts of the input x 

is expressed as:  

+ = − ⋅   
MOD ( ) 2

2
m

x m
x x m

m
 (2.1) 

With B  and the modulo operation, the elements of x  can be expressed as:  

−

=
= − +∑

1

1

( , )
k

k k l k
l

k lx s B x e  (2.2) 

where kx  is the kth element of vector x, 1N×∈x ℂ , ( , )k lB  is the (k,l) element of matrix B, 

and = ⋯1[ , , ]TNe e e  denotes the errors caused by the modulo operation. Then, (2.2) can be 

rewritten with the following matrix form as:  

−= 1x C v  (2.3) 

where = + NC B I  is a lower triangular matrix and = +v s e  [21].  

The transmission in the cooperative system has two-phase [1]. In the first phase, the THP 

precoded signal x is passed through the cascaded unitary precoder SF , and subsequently send 

to the relay and the destination simultaneously. As we will show, an appropriate design of the 

additional unitary precoder will improve the performance of the MIMO relay system. 

In the second phase, the received signal at the relay is multiplied by the relay precoder 

RF  and the resultant signal is then transmitted to the destination. Therefore, the signal 

received at the destination after the two consecutive phases can be expressed as a vector form 

as [17]-[20], [22]: 

==

   
= +   +     ����������������

,1

,2

::

:
DSD

D S
RD R R DRD R SR

wH

nH
y F x

H F n nH F H
 (2.4) 

where H and w denote the equivalent channel matrix and the equivalent noise vector, 

respectively. In (2.4), ×∈ℂ 1Nx  is the THP precoded signal vector (2.3); ×∈ℂ2 1M
Dy  is the 

received signal vector at the destination; ×∈ℂR N
SRH , ×∈ℂM N

SDH  and ×∈ℂM R
RDH  

are the channel matrices of the source-to-relay, the source-to-destination, and  the 

relay-to-destination channels, respectively. Note that these channel matrices are all assumed 

to be flat fading channel; ×∈ℂ 1
,1

M
Dn , ×∈ℂ 1R

Rn , and ×∈ℂ 1
,2

M
Dn  are the received 

noise vectors at the destination, at the relay in the first-phase, and at the destination in the 

second-phase. Here, we assume that N M≤  such that sufficient degree of freedom for 

signal transmission can be assured. 
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 Note that if v can be estimated at the destination, s can be reconstructed by the modulo 

operation. We define the mean-square-error of the estimation as: 

{ }= − 2
DJ E Gy v . (2.5) 

By minimizing the MSE, we can derive the optimum G. The signal elements of s is 

assumed to be independent each other and the variance is 2
sσ . It has been shown in [21] that 

each element of x is approximately i.i.d and distributed in the 

region { }{ }, 1, ,I Q I QA s js s s m= + ∈ ± ±…  uniformly. The approximation error becomes 

small as the number of signal levels is large. Thus, it is valid only when m is sufficiently large. 

With the approximation, we have σ  = 
2H
s NE xx I , σ  = 

2H H
sE vv CC . The modulo 

operation in the THP may cause a transmit power penalty, called precoding loss. According 

[21], precoding loss for a two-dimentional m-ary square constellations can be calculated as: 

2

2

2 1

k

p

k

E x m

mE s
γ

 
 = =

− 
 

 (2.6) 

where kx , ks  indicates the k-th element of signal vector x ,s , respectively. We show the 

precoding loss for various m in Table 2.1. As we can see, the precoding loss is negligible and 

vanishes completely as m goes to infinity. It is recommended that at least 16m ≥  should be 

used.  

 

  
Table 2.1: Precoding loss 2pγ  (in dB) of Tomlinson-Harashima Precoding [21]. 

 
Taking the derivative the MSE with respect to G and setting the result to zero, we can 

obtain the optimum G as [24]: 

( ) ( ){ }Tr

     0

H

D DH H

H H
D D D

J
E

E E

∂ ∂  = − −
 ∂ ∂

   = ⋅ − =   

Gy v Gy v
G G

G y y vy
 (2.7) 

Then, the optimum G, denoted by Gopt, is given by 

( )σ σ
−

= +
12 2H H H H

opt s S s S S wG CF H HF F H R  (2.8) 
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where  =  
H

w ER ww  is the covariance matrix of the equivalent noise. Note that the 

equivalent noise is colored. Denote the variance of the noise at the relay as σ 2
,n r , and that at 

the destination as σ 2
,n d . Substituting (2.8) into (2.5), we obtain the minimum MSE. To 

simplify the expression of the MSE, we consider the following leamma: 

Lemma 2.1: Matrix inversion lemma [42] 

( ) ( )1 1H H H− −
+ = − +A AA I A I A A I  (2.9) 

where A,I  denote matrices with appropriate size. Using the lemma, we can rewrite the error 

matrix in (2.5) as 

( )
( )
σ

σ

−− −

−−

= +

= + ɶ ɶ

12 1

12

H H H
s N S w S

H H H
s N S S

E C I F H R HF C

C I F H HF C

 (2.10) 

and (2.5) becomes 

{ }=
min

TrJ E  (2.11) 

where 

( )
σ

σ σ

−

−

−

=

 
 
 + 

ɶ

＝

1/2

1
,

1/22 2
, ,

w

n d SD

H H
n r RD R R RD n d M RD R SR

H R H

H

H F F H I H F H

 (2.12) 

is defined as the equivalent channel matrix after noise whitening. Note that the MSE is 

contributed by both the relay link and direct links. If we ignore the direct link, the MSE will 

be reduced to that in [24]. From (2.10) and (2.11), we see that the achievable minimum MSE 

is a complicated function of C , SF  and RF . In the next section, we formulate the precoders 

design problem using the signal model derived in this section.  

 

2.2 Problem formulation 

 For the MIMO relay system, two precoders are involved. Using (2.5), (2.8)-(2.12), we 

can formulate the precoders design problem as: 
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( )
( )

σ

α

−−

 
  + 
 
  

ɶ ɶ
�������������

12

, ,

:= , ,

1 2

min Tr

s.t.

= , ,

S R

S R

H H H
s N S S

S S
C C

C F F

E C F F

C I F H HF C

F U

 

(2.13) 

where  

( )
σ

σ σ

−

−

= +

+

ɶ ɶ 2
,

1
2 2
, ,

H H

n d SD SD

H H H H H
n rSR R RD RD R R RD n d M RD R SR

H H H H

H F H H F F H I H F H
 (2.14) 

and 
1

C , 
2

C  denote the power constraints at the source and the relay, respectively: 

{ } { }
( ){ }

σ

σ σ

  = ≤ 

+ ≤

2
1 ,

2 2
,2 ,

: Tr Tr ,

: Tr .

H H H
sS S S S S T

H H H
n r sR R SR S S SR R RT

C E P

C P

F xx F F F

F I H F F H F
 (2.15) 

Here we let S Sα=F U  in which α  is a scalar and SU  is a unitary matrix. In next 

section, we show that the unitary structure can facilitate the derivation of the optimization 

problem and improve the performance of the MIMO rely system. From (2.13), it is apparent 

that both the cost function and the constraints are complicated function of SF  and RF . Yet, 

the problem is non-convex. Solving such a problem is a very difficult problem, if not 

impossible. In the next section, we propose a method to overcome the problems. 

 

2.3 Joint source and relay precoders design 

Since a direct solution for optimum SF  and RF  in (2.13) is difficult, we use the primal 

decomposition method [42] such that the problem can be translated into a subproblem and a 

master problem and SF  and RF can be solved separately. In the subproblem, the relay 

precoder is assumed to be known and the source precoder is solved as a function of the relay 

precoder. Then, in the master problem, the relay precoder is solved. The problem now can be 

re-formulated as 
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{ } { }

( )

{ }
( ){ }

σ
α

σ

σ α σ

−−

=

= +

≤

+ ≤

ɶ ɶ

, ,

12

2
1 ,

2 2 2
,2 ,

min Tr minminTr ( , )

. .

,

=  ,  

: Tr ,

: Tr .

S R R S
S R

H H H
s N S S

S S

H
s S S S T

H H
n r sR R SR SR R RT

s t

C P

C P

C,F F F C F
E E C,F F

E C I F H HF C

F U

F F

F I H H F

 (2.16) 

In the subproblem, as mentioned, the optimum C  and SF  are derived as a function of  

RF  by assuming RF  is given. Then the joint precoder design problem is reduced to the 

determination of RF which is the master problem. 

The unitary precoder SF  is included for two reasons: (i) It can simply the solutoin of the 

relay precoder. (ii) By a proper design of SU , the minimum MSE can have an amenable form, 

leading to a tractable optimization problem. Since α=S SF U , the subproblem becomes the 

optimization of α , SU  and C , given as 

( ) ( ) ( )

( )

α
α

α

σ α
−−

′

= + ɶ ɶ

,

1 2

12 2

min Tr ( , , )

s.t.  

, ,

R S R
S R

S

H H H
s N S S

C C

C F U F

E C U F

U

E C I U H HU C

 (2.17) 

where 2 2
1 ,: S S TC N Pα σ′ ≤  is obtained from 1C  by setting SF  to be unitary. If we fix SU  

and C  in (2.17) , we can find that the trace of MSE matrix is a decreasing function ofα . So 

under the transmission power constraint, we can have the optimum α  as α
σ

= ,
2

S T
opt

s

P

N
 to 

minimize the MSE. We substitute optα  into constraint 2C  in (2.17) and find that 2C  is not 

a function of the source precoder. So, we can just consider it in the master problem. Thus the 

subproblem becomes: 

( ) ( )
σ

σ

−
−

  
 + 
   

ɶ ɶ
1

,2
2

,
min Tr

R S R

S T H H H H
s N S S

s

P

NC F U F
C I U H HU C  (2.18) 

With a known relay precoder, the problem (2.18) is similar to the THP design in the 

conventional MIMO system, and the optimum solution C, denote as 
opt
C , has been solved as 

[24] 
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−= 1
optC DL  (2.19) 

where 

σ
σ

−
− 

= + 
 

ɶ ɶ
1

,2
2

S TH H H
s N S S

s

P

N
LL I U H HU  (2.20) 

is the Cholesky factorization of σ
σ

−
− 

+ 
 

ɶ ɶ
1

,2
2

S T H H
s N S S

s

P

N
I U H HU  while D  is a diagonal 

matrix that scales each element on the main diagonal of C  to unity. (The proof is 

summarized in Appendix A).  

Substituting (2.19), (2.20) into (2.18), we then have 

( ) ( )

1

,2
2min

2/
2

11

Tr

, ,

S T H H H
s N S S

s

NN N

kk

P
J

N

k k N k k

C I U H HU C

L L

σ
σ

−

−

==

     = +       

  = ≥    
∑ ∏

ɶ ɶ

 
(2.21) 

The inequality in (2.21) is obtained from the arithmetic-mean-geometric-mean (AM-GM) 

inequality, and the equality is held when ( ) ( ), , ,  i i j j i j= ∀ ≠L L . If SU  is designed 

properly, the bound in (2.21) can be achieved. For this purpose, we first decompose SU  as 

the form of 


S S′=
H

U V U  (2.22) 

where ×∈ɶ ℂN N

H
V  is the left singular matrices of ɶH , and ×′ ∈ℂN N

SU  is an unitary 

matrix to be further specified. Note that this decomposition is always possible for any unitary 

matrix. Substituting (2.22) into (2.20), we can have (2.20) as 

σ
σ

−
−

=

 ′ ′= + Λ 
 

ɶ
���������

1

,2
2

:

S TH H
S s N S

s

P

N

D

LL U I U  (2.23) 

where { }λ λΛ =
ɶ ɶ
⋯

,1 ,
, ,

N
diag

H H
 , and λ λɶ ɶ⋯

,1 ,
, ,

NH H
are the eigenvalues of ɶ ɶHH H . To 

obtain S′U , we apply geometric mean decomposition (GMD) [26] on 
1

2Dɶ  which can be 

expressed as 

=ɶ 1/2 HD QRP  (2.24) 

,Q P  are some unitary matrices, and R  is a upper triangular matrix with equal diagonal 

elements. Letting S′ =U P  and substituting (2.24) in (2.23), we can have H=L R  .  The 
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lower bound in (2.21) is achieved since ( ) ( ), , ,  i i j j i j= ∀ ≠L L . So, the optimum SF , 

denote as ,S optF , can be expressed as 



,

, 2

S T
S opt

e

P

Nσ
=

H
F V P  (2.25) 

From (2.23) and (2.24), we can have the resultant MSE 

λ σ
σ

−= =

 
 
 = =
 + 
 

∑ ∏
ɶ

1/

2
min

, 21 1
2,

1
( , )

N

NN

S Tk k
sk

s

J k k N
P

NH

L  (2.26) 

Now, our problem becomes to minimize (2.26) in the master problem. Note that the 

equality of the right side of (2.26) is satisfied when the diagonal elements of L  are all equal. 

With a propoer SF , we can not only minimize the MSE but also make the optimization 

problem more tractable. To proceed, let us consider the following equivalence:  

σ
λ σ

σ

−

−=

 
       = +            + 
 

∏
ɶ

ɶ ɶ

1/

,2

, 21 ,
2,

1
min max det

R R

N

NN
S T H

s N
S Tk S T

sk
s

P N
N

P N P

N

F F

H

I H H  (2.27) 

Note that σ − 
 
 

,2
N

S T
s

P

N
in (2.27) is a constant so we can reformulate the master problem as: 

σ

 
 +
 
 

   + ≤  
   

ɶ ɶ

,

,2
,2 ,

max  det

s.t.

: Tr .

R

H

N

S T

S T H H
n rR R SR SR R RT

N

P

P
C P

N

F
I H H

F I H H F

 (2.28) 

The problem (2.28) is still difficult to solve because the cost function is a nonlinear 

function of RF  and the problem is not convex either. To solve the problem, we propose a 

relay precoder structure such that a closed-form solution can be solved. Directly solving (2.28) 

is not feasible. We then use a lemma describe below: 

 Lemma 2.2 [41]: Let ×∈ ℂN NM  be a positive definite matrix, then 

( ) ( )
=

≤ ∏
1

det ,
N

i

i iM M  (2.29) 

where ( , )i iM denotes the ith diagonal element of M. Note that the equality in (2.29) holds 
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when M is a diagonal matrix. If we let = ɶ ɶHM H H , it turns out that when M is diagonal, the 

maximization of the cost function becomes possible. To have the diagonalization, we need 

another lemma shown below: 

 Lemma 2.3 [41]: Let ×∈ ℂN NA  be a positive matrix and ×∈ ℂN NB , then 

( ) ( ) ( )− −+ = + 1/2 1/2det det det NA B A I A BA  (2.30) 

Form (2.30), we let B  = H H H
SR R RDH F H ( )σ σ

−
+

12 2
, ,

H H
n r RD R R RD n d M RD R SRH F F H I H F H   

and σ −= + 2

,
,

H

N n d SD SD

S T

N

P
A I H H  we have the following equivalence: 

( ) )σ σ
−

 
 +
 
 

 ′ ′= + +


ɶ ɶ

,

1
2 2
, ,

argmax det

argmax det

R

R

H

N

S T

H H H H H
n rN SR R RD RD R R RD n d M RD R SR

N

PF

F

I H H

I H F H H F F H I H F H

 (2.31) 

where ( )σ
−−′ = +
1

2 2
, ,: / H

SR SR S T N n d SD SDN PH H I H H . Note that ( )det A  is not the function of 

RF , so we can ignore it. The optimization problem can be rewritten as 

( )

(
( ) )σ σ

σ

−

′

′ ′= +

′+

+ ≤

1
2 2
, ,

2 2,2
,2 ,2 2

max  det

s.t.

: .

R

H H H

N SR R RD

H H
n r RD R R RD n d M RD R SR

S T
n r R R SR RT

P
C P

N

F
M

M I H F H

H F F H I H F H

F F H

 
(2.32) 

Taking a close look at (2.32), we can see that there exists a precoder structure for the 

relay precoder RF  such that the diagonalization can be achieved. Consider the singular value 

decomposition (SVD) on RDH  and ′
SRH : 

= Σ H
RD rd rd rdH U V  (2.33) 

′ ′ ′ ′= Σ H
SR sr sr srH U V  (2.34) 

where ×∈ℂM M
rdU  and ×′ ∈ℂR R

srU  are left singular matrices of RDH  and ′
SRH , 

respectively; ×Σ ∈ ℝM R
rd  and ×′Σ ∈ ℝR N

sr  are the diagonal singular value matrices of 

RDH  and ′
SRH , respectively; ×∈ℂH R R

rdV  and ×′ ∈ℂH N N
srV  are the right singular 

matrices of RDH  and ′
SRH , respectively. If we let RF  have the structure as the following 
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form, a full diagonalization of the matrix of the determinant in (2.32) can be achieved: 

′= Σ,
H

R opt rd r srF V U  (2.35) 

where rΣ  is a diagonal matrix with its ith diagonal element of σ ,r i  . Let σ ,rd i  and σ ′ ,sr i  

be the ith diagonal element of Σrd  and ′Σsr , respectively. With the relay precoder structure, 

the optimization in the master problem can finally be translated into a scalar-value concave 

optimization problem. Substituting (2.33), (2.34), (2.35) into (2.32), we can rewrite (2.32) as: 

( )

σ σ σ
σ σ σ

σ σ

≤ ≤ =

=

 ′
+  + 

 ′ ′ + ≤ ≥ 
 

∑

∑

,

2 2 2
, , , ,

2 2 2,   1 1 , , , ,

, 2 2
, , , , ,

1

max ln 1     

. .

, , 0,

r i

N
r i n d rd i sr i

p i N
i r i n r rd i n d

N
S T

r i sr i sr n r RT r i
i

p

p

s t

P
p i i P p

N
D

 (2.36) 

where  σ= 2
, ,r i r ip  , ( )′ ′ ′= +,/H H

sr sr S T N SD SD srN PD V I H H V  , and ( )′ ,sr i iD  stands for the 

ith diagonal element of ′srD . It is apparent that the mast problem is now a scalar optimization 

problem. And, since ≥, 0r ip , the cost function (2.36) is concave [42]. To solve this problem, 

we apply the KKT conditions given by [42] and find the solution for ,r ip , = ⋯1, ,i N  as: 

( )
µ

σ σ σ σ σ σ

σ σ σ
σ σ

σσ σ σσ σσ σ

− −

+



= +
  ′ ′ ′+ + 

 

′
+


− 
   ′+ +     ′    

,
,2 2 2 2 2 2

, , , , ,

4 2 2
, , ,
4 2
, ,

2 22
,2 2,4

, ,2, 2 2
,, ,

( , ) 1

1 1
1

4 2
  ,

1

r i
S T

rd i sr i sr n n r n d sr i

n d n d sr i

n r n r

n rn r
rd i sr ird i

n dn d sr i

p
P

i i
N

D

 (2.37) 

where µ  is chosen to satisfy the power constraint in (2.36). Substituting (2.37) into (2.35), 

we can obtain the optimum relay precoder, and then ɶH  in (2.12) can also be obtained. 

Finally, the unitary source precoder can be derived by substituting (2.24) into (2.25) , and the 

matrix C can be obtained by (2.19). 
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 Figure 2.1: THP source and linear relay precoded AF MIMO relay system with MMSE receiver. 
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Chapter 3   

Robust Joint MMSE Transceiver Desgin with 

Tomlinson-Harashima Source and Linear Relay Precoders 
 

 

As well known, the performance of transceiver design relies on the accuracy of channel 

state information (CSI). In the literature, most transceiver designs assume perfect CSI. Our 

design in Chapter 2 also assumes that the destination has perfect CSIs of the three links. 

However, for real-world implementation, perfect CSIs are usually not attainable due to 

channel estimation or quantization error. The performance of the transceiver designed with 

imperfect CSIs may be degraded seriously. In this chapter, we consider a robust nonlinear 

transceiver design in which the THP, the linear relay and the MMSE receiver are used at the 

source, the relay and the destination, respectively. The imperfect CSIs from both the relay and 

direct links are incorporated into design where channel estimation errors are modeled as 

Gaussian random variables. The design procedure is similar to that we have used in Chapter 2. 

The main idea is to use the primal decomposition and some approximations such that a 

close-form solution of the optimization problem can be obtained. In Section 3.1, we build the 

system model taking the channel uncertainty into consideration. In Section 3.2, we formulate 

the designing problem under the MMSE criterion. In Section 3.3, we propose a new approach 

to solve the problem in closed-form. 

 

3.1 System model 

We consider a three-node AF MIMO relay precoded system which has been presented in 

Chapter 2, as shown in Figure 2.1. With the two-phase transmission protocol, the signal from 

the source is transmitted to the relay and the destination simultaneously in the first phase. 

Then the received signal at the relay is multiplied by the relay precoder and send to the 

destination in the second phase. For simplicity, we let the signal notations are similar to those 

in Chapter 2, (2.1)-(2.4). In general, the actual channel matrix can be modeled as a summation 

of an estimated channel and an error matrix [36]. Thus, we have: 

�= + ∆SRSR SRH H H  (3.1) 
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�= + ∆RDRD RDH H H  (3.2) 

�= + ∆SDSD SDH H H  (3.3) 

where ×∈ℂR N
SRH , ×∈ℂM N

SDH  and ×∈ℂM R
RDH  are the actual channel matrices of 

the source-to-relay, the source-to-destination, and the relay-to-destination links, respectively; 

�
SRH , �RDH , and �SDH  are the estimated channel matrices of SRH , RDH , and SDH , 

respectively. ∆ SRH , ∆ RDH , and ∆ SDH  are the corresponding channel errors matrices in 

which all the elements are assumed to be zero mean Gaussian random variables. An 

estimation channel matrix can be further decomposed into a product of three matrices. For 

example, ∆ SRH  can be express as: 

∆ = Σ Ψ1/2 1/2
i.i.d.SR SR SRH H  (3.4) 

where the elements of i.i.d.H  are independent and identically distributed (i.i.d) Gaussian 

random variables with zero-mean and unit variance; ×Σ ∈ ℂR R
SR  and ×Ψ ∈ℂN N

SR  are the 

row and column covariance matrices of ∆ SRH , respectively [38].  

 From (3.4), it is clear that ( )∆vec SRH  ~ ( )× Σ ⊗ Ψ1,
T

NR SR SRCN 0 , where ( ),CN m C  

denotes a complex Gaussian random vector with mean m and covariance C [44]. Similarly, 

we can set the distribution of channel estimation error ∆ RDH  and ∆ SDH  as ( )∆vec RDH  

~ ( )× Σ ⊗ Ψ1,
T

RM RD RDCN 0  and ( )∆vec SDH  ~ ( )× Σ ⊗ Ψ1,
T

NM SD SDCN 0 . It is noteworthy 

that the expression of ΣSR , ΨSR , ΣRD , ΨRD , ΣSD , ΨSD  depend on specific channel 

estimation algorithms. For example, Ψ = ,SR T SRR  and σΣ = 2
, ,SR e sr R SRR  if we use the 

estimation method proposed in [29]. ,T SRR  and ,R SRR  are the transmit and receive antenna 

correlation matrices; σ 2
,e sr  is the source-relay link channel estimation error variance. And 

note that the other two matrices have the similar structures. Here, we assume all the channels 

are time-invariant and all second-order statistics - ΣSR , ΨSR , ΣRD , ΨRD , ΣSD , ΨSD  are 

known as a prior.  

At the destination, we can have a single received vector for the two-phase transmission: 

==

   
= +   +     ����������������

,1

,2

::

:
DSD

D S
RD R R DRD R SR

wH

nH
y F x

H F n nH F H
 (3.5) 

We use the MMSE receiver, that takes both the noise and the channel estimation error 
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into account at the destination, to recover the transmitted signal. Define the MSE as: 

( ) { }
( )( ) ( )( ){ }{ }

∆

∆

= −

= − + − +

2

,

,

, , ,

Tr

S R D

H

S S

J E

E

w

w

C F F G Gy v

GHF C x Gw GHF C x Gw

 (3.6) 

where G represents the equalization matrix and the subscript ∆ , w denote that the 

expectation is taken over both the channel estimation error and noise. With the same  

assumption in Chapter 2, we can have σ  = 
2H
s NE xx I  and σ  = 

2H H
sE vv CC . Thus, we 

can rewrite the MSE in (3.6) as: 

( )
� � �

� � � ( ) � �

�{ } �{ } { }

( ) � �

σ

σ σ σ

σ

σ σ

=

  
  
  
 Ψ Σ +   

− − +

+
Ψ Σ +

2

2 2 2

2
,

2 2
, ,

, , ,

Tr
Tr

   Tr Tr Tr

   Tr
Tr

S R

H HH H
SD SR RD

SD S S R H
s H HH H H

RD SR SD RD RD
R S S R SR R RD RD R SR R

HH H H H
s s sS S

n d M

HH H
RD RDn r n rR R RD RD R R

J C F F G

T H F F H F H
G G

H F H F F H F T F H F T F H

GHF C CF H G CC

I 0

G
0 F F H F F H

� � �( ){ } �{ }
�{ } { }

σ

σ σ

σ σ

  
   

 +   

= + + ∆ − −

+

2
,

2 2

2 2

Tr Tr

Tr Tr

H

n d M

HH H H
ws sS S S

HH H H
s sS

G
I

G HF F H R err G GHF C

CF H G CC

 (3.7) 

where 

�
�

� �

 
 =
 
 

SD

RD SRR

H
H

H F H
 (3.8) 

( )
( )( )

� ( )( ) �

σ

σ σ

σ

 Ψ Σ
 
 + Ψ Σ +∆ =
 
 Ψ Σ  

2

2 2
,

2

Tr

Tr

Tr

H
s S S SD SD

H
R s SR n r R R RD RD

HH H
RD RDs R S S SR SR R

F F 0

F T I Ferr
0

H F F F F H

 (3.9) 

�
�

�
  

  = +    +    

,1

,1 ,2
,2

D
HH H H H

w RDD R R D
RD R R D

E

n

R n n F H n
H F n n

 (3.10) 

( ) � �= Ψ Σ +Tr
HH H

SD SDSD S S SD SD S ST F F H F F H  (3.11) 

( ) � �= Ψ Σ +Tr
HH H

SR SRSR S S SR SR S ST F F H F F H  (3.12) 

The derivation of the MSE in (3.7) can be found in Appendix B. 
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Since the cost function is convex in G, we can find the minimum MSE in (3.7) by taking 

the gradient of J with respect to G and set the result to zero. Note that we keep FS, FR, and C 

fixed in the operation. Then we can obtain the optimum equalization matrix G, denote as 

opt
G , as 

� � � �( )σ σ
−

= + + ∆
1

2 2H HH H
wopt s S s S SG CF H HF F H R err  (3.13) 

 Substituting (3.13) to (3.7), we then have the minimum MSE as 

( ) ( )
{ } � � � �( )( ) �σ σ σ

−
− = − + + ∆ 

 

≜
min

1
2 2 2

, , , , ,

Tr Tr .

optS R S R

H HH H H H
ws s sS S S S

J JC F F G C F F

CC CF H HF F H R err HF C

 (3.14) 

By using matrix inversion lemma ( ) ( )1 1H H H− −
+ = − +A AA I A I A A I  [42], (3.14) can 

be further rewritten as: 

( )

{ } � � � �( ) �

{ } � � � �

min

1

2 2 2
s s

1
1 1

2 2 2 2 2 2
s s 2

2
s

, ,

Tr Tr

Tr Tr

Tr

H H

S R

H H
H H H H

wS S S s S

H H
H H

H H H H
S S S M S

J

σ σ σ

σ σ

σ

−

−

−

− − − −

  
  = − + +  
  

  

    = − + 
    

=

∆R

∆ ∆ ∆ ∆

A AA A

C F F

CC CF H HF F H R ∆err HF C

CC CF H R R HF F H R I R HF C

C F

�������

����� ���������� �����

� �( )
( ){ }

1
1

2
s Tr , ,

H
H H
S S N

S Rσ

−
− + 

 

=

∆
H R HF I C

E C F F

 
(3.15) 

where 

�( )σ

σ

−
∆

∆−

∆

= + ∆

 
=  

  

2

,1,12

,2,2

ws

s

R R err

R 0

0 R

 (3.16) 

and 

( )σ σ∆ = + Ψ Σ2 2
,1,1 , Tr H

n d M s S S SD SDR I F F  (3.17) 

( ) � �( )( )
� ( )( ) � � �

σ σ

σ σ σ

∆
 = Ψ Σ + + Ψ Σ 
 

+ Ψ Σ + +

2 2
,2,2 ,

2 2 2
, ,

Tr Tr

Tr .

HH H H
SR SRR s S S SR SR S S n r R R RD RD

H HH H H
RD RD RD RDs R S S SR SR R n r R R n d M

R F F F H F F H I F

H F F F F H H F F H I

 (3.18) 

From (3.16)-(3.18), we can see that the MSE in (3.15) is a complicate and nonlinear function 
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of SF  and RF . 

 

3.2 Problem formulation 

In Section 3.1, we construct the system model using the MMSE criterion. The objective 

is to find C , SF  and RF  so that the MSE (3.15) can be minimized. We now can formulate 

the joint precoder design problem as below: 

� �( )σ
−

−
∆

 + 
 

1
2 1

, ,

1 2

min Tr        

s.t

,

S R

HH H
s S S N

C C

C F F
C F H R HF I C

 (3.19) 

where 

{ }
( ){ }

{ } ( ) � �( ){ }

σ

σ σ

σ σ

≤

 + =
 

+ Ψ Σ + ≤

2
1 ,

2 2
,2

2 2
, ,

: Tr ,

: Tr

Tr Tr Tr ,

H
s S S S T

H H H
n r sR R SR S S SR R

HH H H H
SR SRn r sR R R S S SR SR S S R RT

C P

C E

P

F F

F I H F F H F

F F F F F H F F H F

 (3.20) 

 In (3.20), 
1

C  and 
2

C  stand for the transmission power constraints at the source and 

the relay, respectively, C is a lower triangular matrix with unit diagonal, and ∆R  is the 

matrix specified in (3.16). 

From (3.20), we see that the cost function and constraints are functions of C , SF  and 

RF . As we can also see, the functions are complicated and the problem is not a convex 

optimization problem. Since imperfect CSIs of all links are involved, the problem becomes 

much more difficult than that in Chapter 2. In the next section, we propose a new approach to 

solve this problem. 

 

3.3 Robust joint source and relay precoder design 

Similar to that in Chapter 2, we also cascade an unitary precoder SF  after the THP. The 

precoder SF  can not only facilitate the optimization but improve the BER performance. The 

cost function is a nonlinear function of SF , RF  and C . It is then difficult to find the 

optimum precoders simultaneously. We use the primal decomposition method so that the 

optimization problem can be translated into a subproblem and a master problem [42]. The 

procedure is first to split unknown variables into two group and the variables in the first group 
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are treated as known constants. Then, the variables in second group are solved as the 

functions of the functions of the variables in first group (the subproblem), and the cost 

function is reduce to a function of the variables in the first group. Finally, the variables in first 

group are solved (the master problem). In this case, the subproblem is to find the optimal C  

and SF  by letting RF  be fixed, and the master problem is optimized for RF . For 

convenience, we rewrite the problem in (3.19) as: 

( ){ } ( ){ }

� � ( )( ){ }

� � ( )( )
� �

α

σ α

σ σ α σ α

σ σ α

′ ′=

=

′ ≤

+ + Ψ Σ

  
  
  = + + Ψ Σ

 
 
 

�������������

, ,

2 2
1 ,

2 2 2 2 2
,2

2 2 2
,

:

min Tr , minminTr ,

s.t.

= ,   

: ,

: r Tr

Tr Tr

S R R S

H

SR SR

S R S R

S S S

s S S T

H H
SR SRn r s sR R S S SR SR R

H H
SR SRn r sR R S SR SR R

C N P

C T

C,F F F C F

H H

E C,F F E C,F F

F U

F I H H F

F I H H F



 ≤

 
 

,RT
P

 

(3.21) 

where ( ) � �( )−
−
∆= +

1
1,

HH H

S R S S N
E C,F F C F H R HF I C  and � � � ( )( )′ = + Ψ Σ

1/2

: Tr
H

SR SR SR SR SRH H H .  

We let 
S
F  have the form as that shown in (3.21), where αS  is a scalar and ×∈ℂN N

SU  is 

a unitary matrix. The constraint ′
1

C  is obtained by substituting α=
S S
F U  into 

1
C  in 

(3.20). In the subproblem, we can observe that the transmitted power constraint at the relay, 

2
C , is not the function of C  or SF , so we can move it to the master problem. Let 

α=
S S
F U , the cost function and the constraints can then become functions of C , α  and 

S
U . Then the subproblem can be rewritten as: 
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( ) ( ) ( )( )

( ) ( )

� �

α

α

σ α

σ σ α

−
= +

′ ≤

   ′ ′+ ≤  
   

ɶ ɶ

,

1

S

2 2
1 ,

2 2 2
,2 ,

min Tr ,

s.t.

,  ,

= ,   

: ,

: Tr

R S R
S R

H H H

S R S S N

S S

s S S T

H
H

SR SRn r sR R S R RT

C N P

C P

C F U F
E C,F F

E C,F F C F H HF I C

F U

F I H H F

 (3.22) 

where E  is now a function of C, αS , SU , and 

� �

� � �
( )( )

( )

�

� �

� ( )( ) � � � ( ) � �( )

σ σ α
σ

σ σ σ σ α

−
∆

−

−

− −−

=

   + Ψ Σ
     =       ∆ +   

= + Ψ Σ + ∆ +

ɶ ɶ 1

12 2 2
,2

1

1 12 2 2 2 2
, ,

:

Tr

Tr

HH

SDH H H n d M s s SD SDH
SD SR RDs R

RD SRR

H H HH
SD SD SR RD RD SRs n d n d M s s SD SD R R

H H H R H

HI 0
H H F H

H F H0 A A

H I H H F H A A H F H

 

(3.23) 

with 

( ) � �( )
� �

( ) � �

σ α σ

σ α

′ ′=

  
  
  ∆ = Ψ Σ + + Ψ Σ
  

  
  

+ Ψ Σ

�������������

2 2 2
,

2 2

Tr Tr

Tr

H
SR SR

H H
SR SRR s S SR SR n r R R RD RD

HH
RD RDs S SR R SR R

H H

A F H H I F

H F F H

 (3.24) 

� �σ σ= +2 2
, ,

HH
RD RDn r R R n d MA H F F H I  (3.25) 

 

We first optimize αS  by treating C , RF  and SU  as known entities. It is simple to 

see that the cost function in (3.22) is monotonically decreasing with αS  (see the proof in 

Appendix C). So, the optimum value can be found as 

α
σ

= ,
, 2

S T
S opt

s

P

N
 (3.26) 

This corresponds to the largest αS  under the constraint ′
1

C  in (3.22). Substituting 

(3.26) into (3.22). The subproblem can be re-written into a conventional point-to-point THP 

MIMO problem [24] given by 

( ) ( ) σ

−   +  
   

ɶ ɶ
1

,
2

,
min Tr

R S R

S T H H H

S S N
s

P

NC F U F
C U H HU I C  (3.27) 
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The optimum solution of C  has been derived in [24] (see Appendix A), denote as optC , as : 

−= 1
optC DL  (3.28) 

and 

σ

−
 

= + 
 

ɶ ɶ
1

,
2

S TH H H

S S N
s

P

N
LL U H HU I  (3.29) 

is the Cholesky factorization of 
 

σ

−
 

+ 
 

1

,
2

HS T H

S S N
s

P

N
U H HU I ; L is a lower triangular matrix 

with real diagonal elements; D is a diagonal matrix scaling the diagonal elements of C to 

unity, that is ( )( )diag , , 1, ,k k k N= =D L … . Substituting (3.28) and (3.29) into (3.27), we 

can have the cost function as: 

σ

−

= =

   +  
   

 = ≥  
 

∑ ∏

ɶ ɶ
1

,
2

1

2 2

1 1

Tr

( , ) ( , )

S T H H H

S S N
s

NNN

k k

P

N

k k N k k

C U H HU I C

L L

 (3.30) 

which is a function of SU . Note that ( ),k kL  means the kth diagonal element of L. The 

inequality in (3.30) is the arithmetic-geometric inequality (AGI) and the equality is held when 

( ) ( ), , ,   i i j j i j= ∀ ≠L L . 

 The next step is to find SU  so that the bound in (3.30) can be achieved. First, we 

decompose SU  as 

′= ɶS SH
U V U  (3.31) 

where ×∈ɶ ℂN N

H
V  is the right singular matrices of ɶH  and ×′ ∈ℂN N

SU  is a unitary 

matrix to be determined later. Note that the decomposition can always be conducted for a 

unitary matrix. Substituting (3.31) in (3.30), we have: 

σ σ

− −

=

   
′ ′= + = Λ +   

   
ɶ

ɶ ɶ

���������

1 1

, ,
2 2

:

S T S TH H H H

S S N S N S
s s

P P

N N

D

LL U H HU I U I U  
(3.32) 

where { }λ λΛ = ɶ ɶ⋯
,1 ,

diag , ,
NH H

, λ ɶ ,kH  are the eigenvalues of ɶ ɶHH H . To achieve the 

equality of the AGI, we apply GMD [26] method on ɶ 1/2D . Let =ɶ ɶ ɶ1/2 1/2D D D  and ɶ 1/2D  is 

the square-root matrix of ɶD . Then we have: 
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=ɶ 1/2 HD QRP  (3.33) 

where Q and P are unitary matrices, and R is an upper triangular matrix with equal and real 

diagonal elements. Letting ′ =SU P  and substituting (3.33) into (3.32), we can have 

=H HLL R R  (3.34) 

which indicates that = HL R , and the diagonal elements of L are real and all equal. Then the 

equality of AGI in (3.30) is held so that the lower bound is achieved. Therefore, the optimum 

SF , denoted as ,S optF , can be expressed as 

σ
= ɶ

,
2,

S T

S opt
s

P

N H
F V P  (3.35) 

By substituting (3.28) and (3.35) into (3.15), the result MSE can be expressed as: 

σ σ

σ λ
σ

= =
−

=

 = =  
 

 
= + 

 

∑ ∏

∏ ɶ

1

2 2 2 2
min

1 1

1/

,2
2 ,

1

( , ) ( , )

     1

NN N

s s
k k

N
N

S T
s k

k s

J k k N k k

P
N

N H

L L

 (3.36) 

Now, the problem becomes the minimization of (3.36), which is master problem. It is 

seen that the cost function now is a function of RF . 

To proceed, we consider the following equivalence: 

λ
σ σ=

    
+ = +     

    
∏ ɶ

ɶ ɶ, ,
2 2,

1

1 det
N

S T S T H

Nk
k s s

P P

N NH
I H H  (3.37) 

Substituting (3.37) into (3.36) , we can reformulate the problem as 

� �

σ

σ

 
+ 

 

   ′ ′+ ≤  
   

ɶ ɶ,
2

,2
,2 ,

max  det

s.t.

: Tr .

R

S T H

N
s

H
S T H

SR SRn rR R R RT

P

N

P
C P

N

F
I H H

F I H H F

 (3.38) 

Since the structure of ɶ ɶHH H  is still complicate and difficult to deal with, we find 

another equivalent form as follows: 

� � ( ) � �
σ

−′′ ′′= ∆ +ɶ ɶ 1,

2

H
HS T H H

SR RD RD SR
R R

s

P

N
H H H F H A A H F H  (3.39) 

where  
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� � � ( ) �σ
σ

−−  ′′  = + + Ψ Σ 
   

1/21

, , ,2
2 ,
,

Tr
HS T S T S T

SR SR SD SD
N n d M SD SD

n d

P P P

N N N
H H I H I H  (3.40) 

Then (3.38) can be rewritten as 

� � ( ) � �− ′′ ′′+ ∆ + 
 

1

2

max  det

s.t.  .

R

H
HH

SR RD RD SR
N R R

C

F
I H F H A A H F H

 (3.41) 

Taking a close look at (3.41), we can find that ( )∆ +A A  is a complicated function of 

RF  . The master problem is difficult to solve, even using the numerical method [42]. To 

overcome the problem, we propose maximizing a lower bound of (3.41) instead of trying to 

maximize it directly. In this manner, we can have an amenable form and the optimization 

problem in the master optimization can be made easier. For this purpose, we consider the 

following property. 

 Property: The utility function in (3.38) is lower bounded by 

� � ( ) � �

� � ( ) � �

−

−

 ′′ ′′+ ∆ + 
 

 ′′ ′′′≥ + ∆ + 
 

1

1

det

det

H
HH

SR RD RD SR
N R R

H
HH

SR RD RD SR
N R R

I H F H A A H F H

I H F H A A H F H

 (3.42) 

where  

( ) � �( )
� �

( ) � �

σ α σ

σ α

′ ′=

  
  
  ∆ = Ψ Σ + + Ψ Σ
  

  
  

+ Ψ Σ

�������������

2 2 2
,

2 2

Tr Tr

Tr

H
SR SR

H H
SR SRR s S SR SR n r R R RD RD

HH
RD RDs S SR R SR R

H H

A F H H I F

H F F H

 (3.43) 

( ) ( ) ( ) � �λ λ λ′∆ = Ψ Σ + Ψ Σ,
, max max maxTr ( )

HS T H
RD RDRT RD RD M SR SR R R

P
P

N
A I H F F H  (3.44) 

the equality of (3.42) is held when  βΨ =RD RD RI , γ ×Σ =RD RD M MI , βΨ =SR SR NI  and 

γ ×Σ =SR SR R RI  with some scalars βRD , βSR , γRD  and γSR . As we will see, the 

optimization with the lower bound is much easer. The derivation of the lower bound in (3.42) 

can be found in Appendix D. 

 Using the lower bound of the utility function, we can reformulate the master 

optimization problem as: 
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� � ( ) � �

( ) � �

� �

α β

σ

− ′′ ′′′+ ∆ + 
 

′∆ + = +

   ′ ′+ ≤  
   

1

,2
,2 ,

max  det

s.t.

,

: tr .

R

H
HH

SR RD RD SR
N R R

HH
RD RD

M R R

H
S T H

SR SRn rR R R RT

P
C P

N

F
I H F H A A H F H

A A I H F F H

F I H H F

 (3.45) 

where  

( ) ( )α λ λ σ= Ψ Σ + 2
, max max ,RT RD RD n dP  (3.46) 

( )β λ σ= Ψ Σ +, 2
max ,Tr ( )

S T
SR SR n r

P

N
 (3.47) 

As we will see in latter development, ′∆A  in (3.45) is easier to handle compared to∆A . 

Although the function in (3.45) is simplified, it is still a complicated function ofRF . We now 

let RF  have a specific structure such that the master optimization problem can be easier to 

solve. This relay precoder structure can transfer the matrix-valued optimization problem in 

(3.45) to a scalar-valued problem, though it is suboptimal.  

Similar the procedure in Chapter 2, we first use Lemma 2.2 and Lemma 2.3. Consider 

the following singular-value-decomposition (SVD): 

� � ɵ � H

RD rdrd rd= ΣH U V  (3.48) 

�′′ ′′ ′′ ′′= Σ H
SR sr sr srH U V  (3.49) 

where � ×∈ℂM M
rdU  and ×′′ ∈ℂR R

srU  are left singular matrices of �RDH  and �′′
SRH , 

respectively; ×Σ ∈ ℝM R
rd  and ×′′Σ ∈ ℝR N

sr  are the diagonal singular value matrices of 

RDH  and �′′
SRH , respectively; ×∈ℂH R R

rdV  and ×′′ ∈ℂH N N
srV  are the right singular 

matrices of RDH  and �′′
SRH , respectively. Substitute (3.48) and (3.49) into (3.45), we can 

rewrite (3.45) as 

( )

� � � � � �( ) � �

2

1

det

s.t.   

H H
H H H

rd rd rd rdrd rd rd rdN sr sr R M R R R sr sr

C

α β
−

′

′ ′′ ′′ ′′ ′′= + +

M

M I Σ U F V Σ I Σ V F F V Σ Σ V F U Σ

 
(3.50) 

From Lemma 2.2, we see that if ′M  is diagonalized, the utility function in (3.50) can be 

maximized. Note here that the result is not held when the power constraint in (3.50) is 

included. However, we use it to obtain a suboptimal solution. Let RF  have a structure shown 
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below: 

� ′′= Σ
,

H
rd r srR opt

F V U  (3.51) 

where Σr  is a diagonal matrix with ith diagonal element σ ,r i , κ= ⋯1, ,i ,  

{ }min ,N Rκ =  whose value will be determined. The general structure for the relay precoder 

should have the form of { }2,  H
R R r r r R C= ∈F F U Σ V F  with rU  is a M M×  unitary matrix 

and rV  is a R R×  unitary matrix. However, the optimum RF  in (3.50) is very difficult to 

find. Here, we only consider a specific feasible set of RF  in (3.51) simplifying the 

optimization problem. 

The next step is to transfer the matrix-valued problem to the scalar-valued one with the 

precoder structure of RF  in (3.51). Let σ ,rd i  and σ ′′ ,sr i  be the ith diagonal element of  � rdΣ  

and sr′′Σ , respectively. Substituting (3.51) into (3.50) and taking ln operation on the utility 

function, we can rewrite (3.50) as: 

( )

κ

κ
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σ σ
α β σ
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( , ) ,
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p i i r i rd i

n r srr i RT
i

r i
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p

p i i P

p

D

 (3.52) 

where σ= 2
, ,r i r ip  and � � ( )( )′′ ′′= + Ψ Σ,

Tr
HS T H

SR SRsr sr srSR SR

P

N
D U H H U  with ( ),sr i iD  

being the ith diagonal element of srD . Now, the utility function and the constraints are all 

functions of scalars. Since the utility function and the constraints are all concave for ≥, 0r ip  

[42], we see that (3.52) is a standard concave optimization problem. As a result, we can find 

the optimum solution of ,r ip , κ= ⋯1, ,i  by Karush-Kuhn-Tucker (KKT) conditions. The 

solution is given by: 

( )( ) ( )

ασ
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µ β
σ β σβ β β βσ σ σα σ α σ

+
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 
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1 24  

, 1 1
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r i
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n r sr rd i rd i

sr i sr i
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i iD

 (3.53) 

where µ  is chosen to satisfy the power constraint in (3.52). The detail derivation can be 
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found in Appendix E. Substituting (3.53) into (3.51), we can have the optimum relay precoder 

RF . After the optimum RF is found, we can obtain ɶ ɶHH H  by (3.23). Subsequently, SF  and 

C  can also be obtained by (3.35) and (3.28) with the same procedure described in Chapter 2. 

In this chapter, we joint design the robust transceiver in an AF MIMO relay system in 

which a THP is used at the source, a linear precoder at the relay, and an MMSE receiver at the 

destination. Since the channel uncertainty has been taken into consideration, we can expect 

that the design will outperform that in Chapter 2. The price we pay is a more complicated 

design. The computational complexity of the non-robust/robust designs includes SVD, GMD, 

and matrix inversion operations, are mentioned in Chapter 2 and Chapter 3. The overall 

computational complexity and steps of the non-robust/robust designs, measured by FLOPs, 

are summarized in Table 3.1 and Table 3.2. 

 

 

 

 
Table 3.1: Computational complexity of THP source and linear relay precoders (MMSE receiver) 
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Table 3.2: Computational complexity of robust THP source and linear relay precoders (MMSE receiver) 
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Chapter 4  

Simulation results and discussions 
 

 

4.1 Simulation Setup 

 In this section, we describe our simulation environment. We consider an AF MIMO 

relay system with N, R and M antennas at the source, the relay and the destination, 

respectively. We let 4N R M= = = . The widely used exponential model [29] is chosen for 

the generation of the channel estimation error covariance matrices, which can be represented 

by 

δ δ δ

δ δ δ

δ δ δ

δ δ δ

 
 
 
 Ψ = Ψ = Ψ =
 
 
 
 

2 3

2

2

3 2

1

1

1

1

SR RD SD  (4.1) 

and 

γ γ γ

γ γ γ
σ

γ γ γ

γ γ γ

 
 
 
 Σ = Σ = Σ =
 
 
 
 

2 3

2

2

2

3 2

1

1

1

1

SR RD SD e  (4.2) 

where δ  and γ  are the correlation coefficients of the row and column covariance matrices, 

2
eσ  denotes the estimation error variance. The resultant covariance matrices can be obtained 

from the channel estimation method proposed in [29]. The estimate channels, �
SRH , �RDH  

and �SDH , are generated base on the following distributions 

�( ) σ
σ×

 − Σ ⊗ Ψ 
 

2

1 2

1
~ , Te

SR NR SR SR

e

vec CNH 0  (4.3) 

�( ) σ
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e

vec CNH 0  (4.4) 

�( ) σ
σ×

 − Σ ⊗ Ψ 
 

2

1 2

1
~ , Te

SD MN SD SD

e

vec CNH 0  (4.5) 

So that the relationships of the actual and estimation channels can be expressed as: 
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�= + ∆SRSR SRH H H , �= + ∆RDRD RDH H H  and �= + ∆SDSD SDH H H . Note that 
SR

H , 

RD
H  and 

SD
H  have a unit variance for each element. Let SNRsr , SNRsd  and SNRrd  

denote the received signal-to-noise ratio (SNR) at each relay antenna in the first phase, that at 

each destination antenna in the first phase, and that at each destination antenna in the second 

phase, respectively. As defined in Chapter 2 and Chapter 3, the definition of SNR of each link 

can be represented as: 

( )
( )
( )

,

, ,2

, ,1

SNR tr

SNR tr

SNR tr

sr S T nR

rd R T nD

sd S T nD

P

P

P

=

=

=

R

R

R

 (4.6) 

where ,S TP  and ,R TP  are the total power constrained at the source and the relay, nRR  is the 

covariance matrix of the noise vector at the relay antennas, and ,1nDR  and ,2nDR  are the 

covariance matrices of the noise vector at the destination antennas for first phase and second 

phase transmission, respectively. 

Without of generality, we use the 16-QAM scheme for each transmission symbol stream. 

The data symbols are assumed to be independently transmitted form the four antennas with 

the same power. We regard the channel estimation error as the channel uncertainty, generated 

based on (3.4). We assume that the destination has the perfect knowledge of channel statistics 

such that the precoders can be calculated there.  

 

4.2 Simulation results and discussions 

 In this section, simulation results are reported demonstrating the effectiveness of the 

proposed scheme. In the first set of simulations, we let =SNR 30 dBsr , SNR 15 dBsd =  

and SNRrd be varied. We also let 0δ γ= =  and 2 0eσ = , which means perfect CSIs are 

available. Figure 4.1 and Figure 4.2 compare the MSE and BER performances for (a) an 

un-precoded system (U-U) (b) the relay precoded system [15] (U-L) (c) the linear source and 

linear relay precoded system [18] (L-L) (d) the TH source and linear relay precoded system 

(TH-L) and (e) the proposed robust TH source and linear relay precoded system (TH-L 

robust). All the systems considered, (a)-(e), use the MMSE receiver. The notation 

“ SNR(dB)” in the figures is the average signal-to-noise ratio of the relay-to-destination link 

in dB scale. For fairly comparison, we include the direct link in (c) although the original relay 

precoded scheme in [15] only considers the relay link. As shown in Figure 4.1 and Figure 4.2, 

we can see that the relay precoded system outperforms the un-precoded system. However, it is 
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inferior to the linear source and linear relay precoded system. Since the nonlinear TH source 

and linear relay precoded system are considered in (d) and (e), both systems outperform the 

other systems. We can observe that the performance of the proposed robust TH source and 

linear relay precoded system (e) is the same with the non-robust design system (d). This 

indicates that the proposed robust precoded system is a generalization of the non-robust 

precoded system. When perfect CSIs are available, the proposed robust system is degenerated 

to the non-robust one. 

In the second set of simulations, we let 2 0.003eσ =  and the other parameters be the 

same as those in the first set of simulations. Figure 4.3 and Figure 4.4 show the MSE and 

BER performances for the imperfect CSI case. From the figures, we can also observe that the 

un-precoded system is still inferior to the precoded systems. The nonlinear source precoded 

systems are superior to the linear ones. Since the TH-L-robust take channel uncertainties into 

consideration, it outperforms TH-L. Note that the performance of the non-robust precoded 

system slightly is degraded at the high SNR region. This is because when SNR is high, the 

interference caused by channel uncertainties offset the noise effect and dominate the overall 

performance. 

In the third set of simulations, we compare the performance of the proposed non-linear 

source and linear relay robust system and the existed linear robust relay precoded system 

(U-L-robust) [36]. Figure 4.5 and Figure 4.6 show the MSE and BER performances for 

0δ γ= =  and 2 0eσ =  ( 2 0.003eσ = ). As we can see, both U-L-robust and TH-L-robust are 

degenerated to U-L and TH-L, respectively in this case. In imperfect CSIs environments, the 

performance of U-L-robust is superior to that of U-L. However, since it only considers a relay 

precoder, its performance is still inferior to the proposed TH-L-robust. 

In the fourth set of simulations, we show the MSE performance of the proposed method 

with various correlation covariance parameters. Here, we let 0γ = , 2 0.002eσ =  and δ  be 

varied. Also let =SNR 30 dBsr , SNR 15 dBsd =  and SNRrd  be varied. Figure 4.7 shows 

the simulation result. From Figure 4.7, we can see that the performance of the proposed 

method is increased as the decrease of δ . As δ  becomes small, the covariance matrices 

Σ
SR

, Σ
RD

 and Σ
SD

 will approach to 2
eσ I . This matches our expectation that the 

performance of the proposed method depends on the quality of channel estimation. 

In the last set of simulations, we evaluate the MSE performance of TH-L and 

TH-L-robust under the scenario that 0δ γ= =  and 2
eσ  is varied. The results are shown in 
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Figure 4.8. The SNR of each link in the system is the same as the previous case. As we can 

see from Figure 4.8, the performance of TH-L and TH-robust both are significantly degraded 

when 2
eσ  becomes large. The performance gap between TH-L and TH-L-robust increases 

when the CSI uncertainty increases.  
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Figure 4.1: MSE performance comparison for existing precoded systems and proposed robust/non-robust TH 
source and linear relay precoded system. (All with MMSE receiver.) 
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Figure 4.2: BER performance comparison for existing precoded systems and proposed robust/non-robust TH 
source and linear relay precoded system. (All with MMSE receiver.) 
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Figure 4.3: MSE performance comparison for existing precoded systems and proposed robust/non-robust TH 
source and linear relay precoded system. ( 0δ γ= = , 2 0.003eσ = ) 
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Figure 4.4: BER performance comparison for existing precoded systems and proposed robust/non-robust TH 
source and linear relay precoded system. ( 0δ γ= = , 2 0.003eσ = ) 
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Figure 4.5: MSE performance comparison for existing robust/non-robust relay precoded systems and proposed 
robust/non-robust TH source and linear relay precoded system. ( 0δ γ= = , 2 0eσ = / 2 0.003eσ = ) 
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Figure 4.6: BER performance comparison for existing robust/non-robust relay precoded systems and proposed 
robust/non-robust TH source and linear relay precoded system. ( 0δ γ= = , 2 0eσ = / 2 0.003eσ = ) 
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Figure 4.7: MSE comparison for proposed robust precoded system with differentδ . ( 0γ = , 2 0.002eσ = ) 
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Figure 4.8: MSE comparison for proposed robust precoded system with different2

eσ . ( 0δ γ= = ) 
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Chapter 5  

Conclusions 
 

 

 Many transceiver designs in three-node MIMO AF relay systems only consider the relay 

precoder. Also, the direct link is often ignored. As a result, the resource provided by the 

channel is not fully explored. This motivates us to study the transceiver designs such that both 

the source and relay pecoders are considered and both and the direct and relay links are taken 

into account. In this thesis, we consider a three-node MIMO AF relay system with a THP at 

the source, a linear precoder at the relay, and a MMSE receiver at the receiver. We employ 

the primal decomposition method, transferring the problem into a subproblem and master 

problem, to solve the design problem. Using a special precoder structure, we are able to 

obtain a suboptimum solution in closed-form. In real-world applications, however, perfect 

CSIs, required for the precoders design, may not be available. So, we step forward to consider 

a robust design. We take the CSI uncertainties into consideration and formulate the 

optimization problem. Similar to the non-robust design, we use the primal decomposition 

approach, transferring the problem into a subproblem and master problem. To facilitate the 

development, we derive a lower bound for the utility function of the optimization. It is shown 

that the tightness of the bound depends on the channel correlation between the transmit and 

receive antennas. If no correlation exists, the bound will be equal to the utility function itself. 

Finally, using the same precoder structure as that in the non-robust design, a closed-form 

solution is obtained. Simulation results shows that the proposed robust precoded system 

outperform existing un-precoded and relay precoded systems no matter perfect CSIs are 

available or not. In concluding the thesis, we suggest some possible topics for future research. 

1. In this thesis, we consider a three-node AF MIMO system with direct link included. 

In the design procedure, the estimation of CSIs is less addressed. The design of 

training sequences or pilots for effective channel estimation is important in 

real-world applications. 

2. In the precoded system, the estimated CSIs or computed precoders have to be fed 

back to the source and relay node. How to design efficient feedback systems deserves 

further studies. 

3. In this thesis, we only study a typical three-node MIMO relay system with one 
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source node, one relay node and one destination node. In a general relay system, 

there may have multiple source, relay and destination nodes. The precoders design in 

such a system is challenge and need for further study. 

4. The relay precoder in our consideration is linear. How to design a nonlinear source 

and nonlinear relay precoders is still an open problem. 
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Appendix 
 

 

Appendix A : Optimal feed-back matrix B [37] 

We try to find the optimum C  to minimize ( )tr E , described in (2.17)-(2.20), which is 

a function of the precoding matrices. This can be formulated to minimize 

( ) ( )tr tr H=E CMC  subject to C  being a unit diagonal lower triangular matrix. Using 

Cholesky factorization, we have 

H=M LL  (A.1) 

where L  is a real diagonal lower triangular matrix. Write the cost function as 

( ) ( ) 2
tr trH H H

F
= =CMC CLL C CL  and note that CL  is a positive definite lower 

triangular matrix. Let 1 Kλ λ≥ ≥⋯  and 1 Kσ σ≥ ≥⋯  denote the eigenvalues and singular 

values of CL . Then we can obtain the following lower bound by applying Weyl’s inequality 

[40]: 

[ ]22 2 2

1 1 1

2

1

                                    

K K K

i iF ii
i i i

K

ii
i

σ λ
= = =

=

= ≥ =

=
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∑

CL CL

L

 (A.2) 

We find that the term in the right hand side of (A.2) is a bound of 
2

F
CL  and it is 

dependent on C . The equality of (A.2) is held when CL  is normal. If a lower triangular 

matrix is normal, it must be a diagonal matrix [40]. Therefore, we can choose a C  to achieve 

the bound in (A.2). So, we have: 

{ } 1
11diag , , KK

−= ⋅C L L L…  (A.3) 

Using the optimumC , we can rewrite the MSE matrix E  as: 

( )2 2
11diag , , KK=E L L…  (A.4) 

 So, the optimum C  will yield a diagonal MSE matrix, and it also minimizes the trace of 

the MSE matrix. 
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Appendix B: MSE in (3.7) 

In this section, we derive (3.7). To proceed, we start from the MSE in (3.6). As assumed, 

the elements in the precoded signal xk’s are statistically independent and have zero-mean and 

a same variance σ 2
s . Then we can have 2H

s NE σ  = xx I  and 2H H
sE σ  = vv CC . Note that 

the independent assumption is valid only for the large QAM size (e.g. ≥ 16m ) [21]. 

Therefore, we rewrite (3.6) as 

( ) { }{ } { }{ }
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s s wS
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 (B.1) 

where  =  
H

w ER ww . We consider the first term of (B.1) : 

{ }{ } { }{ }
{ } { }

{ } { }

σ σ

σ

∆ ∆

∆ ∆

∆ ∆
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 (B.2) 

Since ∆
SD

H , ∆
SR

H  and ∆
RD

H  are matrix-variate complex Gaussian random variables 

with zero mean and all independent, we can use a useful property as described below: 

 Property [44]. Let ( ), ,p nN Σ ⊗ ΨX M∼  and ( )ijσΣ = , ( )ijψΨ = , then  

( ) ( )trE ′ ′ ′= Ψ Σ +XAX A MAM  (B.3) 

This property has been proved in [44]. Thus, we can have the first diagonal term of (B.2) 

as 

{ } �( ) �( ){ }
{ } � �

∆ ∆= + ∆ + ∆

= Ψ Σ + =:

H
H H H

SD SDSD S S SD SD S S SD

HH H
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 (B.4) 

For the second diagonal term in (B.2), we have 

{ } { }{ }∆ ∆ ∆=H H H H H H H H

RD R SR S S SR R RD RD R SR S S SR R RD
E E EH F H F F H F H H F H F F H F H  (B.5) 

          { }∆= H H

RD R SR R RD
E H F T F H  (B.6) 

                      { } � �= Ψ Σ +Tr
HH

RD RD
RD RD R SR R

H F T F H  (B.7) 

where the equality in (B.5) is due to the assumption that SR∆H  and RD∆H  are independent. 
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The matrix SRT  has a similar form as that of SDT  in (B.4) and it can be expressed as 

{ } { } � �
∆= = Ψ Σ +: Tr

HH H H H
SR SR

SR SR S S SR S S SR SR S S
ET H F F H F F H F F H  (B.8) 

The equality (B.7) is obtained by using the property outlined above. For the off-diagonal 

matrices in (B.2), we have: 

{ } � � �
∆ =

H HH H H H H H
SD SR RDSD S S SR R RD S S RE H F F H F H H F F H F H  (B.9) 
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∆ =
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RD SR SDRD R SR S S SD R S SE H F H F F H H F H F F H  (B.10) 

For the second and third term of (B.1), it is clear that 

{ }{ } �{ }σ σ∆ =2 2Tr TrH H
s S s SE GHF C GHF C  (B.11) 

{ }{ } �{ }σ σ∆ =2 2Tr
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s S s SE TrCF H G CF H G  (B.12) 

For the last term of (B.1), we have 
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Finally, substituting (B.2)-(B.13) into (B.1), we can obtain (3.7) after some 

simplifications. 

 

 

Appendix C: To prove the cost function (3.22) is monotonically 

decreasing in 0Sα ≥ . 

 Let’s rewrite the MSE matrix E in (3.22) as a function of Sα , 
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(C.1) 

where ∆A  and A  are those defined in (3.24) and (3.25). We know that ( ){ }αStr E  is 

monotonically decreasing in 0Sα ≥  which implies ( ) ( )α α≺
,1 ,2S S

E E  for any α α≥,1 ,2S S , 
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α
,1S

 and α
,2S

 are real numbers. Our purpose is to check if ( ) ( )α α≺
,1 ,2S S

E E  for any 

α α≥,1 ,2S S  or not. First, we start the proof with the following lemmas. 

Lemma C.1 [43]: For any two Hermitian matrices, P1 and P2, if ≥1 2P P , then 

≥
1 2

H HX PX X PX  with an arbitrary matrix X where ≥1 2P P  indicates that −
1 2
P P  is a 

semi-positive definite matrix. 

Lemma C.2 [43]: For any two Hermitian matrices, P1 and P2, ≥1 2P P  if and only if 

− −≤1 1
1 2P P . 

 To start with, we consider the cumbersome part in (C.1) 
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 (C.2) 

Since ∆A  and A  are Hermitian matrices and ∆A  is a function of αS . By (C.2), it is 

easy to observe that 

α α α αα α− −
= =∆ ≤ ∆

,1 ,2

2 2

S S S SS S
A A , if α α≥,1 ,2S S  (C.3) 

By Lemma C.2, we have 

( ) ( )α α α αα α α α
− −− − − −

= =∆ + ≥ ∆ +
,1 ,2

1 12 2 2 2
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By Lemma C.1, we have 
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Similarly, 
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Summing M and N in (C.5) and (C.6), and using Lemma C.1, we can have 
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Therefore, we have ( ) ( )α α≤,1 ,2S SE E  for any α α≥,1 ,2S S  which implies that 

( ){ } ( ){ }α α≤,1 ,2S Str trE E  for any α α≥,1 ,2S S , e.g., ( ){ }αStr E  is monotonically 

decreasing with α
S

.  

 

 

Appendix D: To prove the property in (3.42) 

In this section, we derive the lower bound in (3.42). We start the proof by using Lemma 

C.1-Lemma C.2 in Appendix C and the following lemmas. 

Lemma D.1 [41]: For any two semi-positive definite matrices, P1 and P2, we have 

( ) λ≤1 2 1 max 2Tr Tr( ) ( )PP P P , and the equality is satisfied if λ=2 maxP I . 

Lemma D.2 [41]: For any semi-positive definite matrix P, we have ( )λ ≥max P I P . 

Lemma D.3: For any two positive matrices P1, P2, and semi-positive definite matrix Y, 

we have if ≥1 2P P , then ( ) ( )− −+ ≤ +1 1
1 2

det detH HY XP X Y XP X . 

Proof: This is obviously because if ≥1 2P P , then ( ) ( )− −+ ≤ +1 1
1 2

det detH HY XP X Y XP X  

by Lemma C.1 and C.2. 

We now consider ∆A  in (3.43). By Lemma D.1 and Lemma D.2, we have 
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 (D.1) 

The last inequality of (D.1) is due to power constraint at the relay. Note that the equality 

is held if βΨ =RD RD RI , γ ×Σ =RD RD M MI , βΨ =SR SR NI  and γ ×Σ =SR SR R RI , which 

means the channel of each antenna pair is uncorrelated (transmit or receive antenna 

correlation matrix is an identity matrix). Then, from (D.1) and (3.40), we have 
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( ) ( )′∆ + ≤ ∆ +A A A A  (D.2) 

Now, let � ( ) �
1
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′= ∆ +1P A A  and = ∆ +2P A A  in Lemma D.1, and we can obtain the desired result. 

 

 

Appendix E: Derivation of optimum solution in (3.53) 

 To solve the optimization problem in (3.53), we first consider the corresponding 

Lagrangian function 
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where λ 0≥ , ,r iv 0≥  with 1, ,i κ= ⋯ . By the KKT conditions (for all i), we have 
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Substituting (E.2) into (E.3) with the consideration of , 0r ip > , we have 
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Then, we have 
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After some manipulations and using the constraint in (E.4), the optimum ,r ip  can be 

expressed as 
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where : 1/µ λ=  is chosen to satisfy the constraint in (3.52). 
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