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Robust Tomlinson-Harashima source and linear relay precoders

design in amplify-and-forward MIMO relay systems

Student:Min-Yao Chang Advisor: Dr. Wen-Rong Wu

Institute of Communication Engineering

National Chiao Tung University

Abstract

The existing transceiver _design in. amplify-and-forward (AF) multiple-input
multiple-output (MIMO) relay systems often assume the perfect channel state information
(CSI) is available. In practice, the perfect CSI is not attainable and the robust design with
considering imperfect CSl is-applied. In this:paper, we propose a robust transceiver design for
the system with Tomlinson-Harashima (TH) precoder, a linear relay precoder and a
minimum-mean-square (MMSE) receiver. Since two precoders and the imperfect CSI are
involved, the robust design problem is difficult. To overcome the difficulty, we additionally
cascade a unitary precoder after the TH precoder. The unitary precoder can not only simply
the optimization problem but improve the performance of the system. With the precoders, we
use the primal decomposition to divide the original optimization problem into a subproblem
and a master problem. The subproblem can be solved and the two-precoder problem can be
reduced to the problem composed of single relay precoder. However, the master problem is
still difficult to solve. We then proposed a lower bound for the cost function and transfer the
master problem to a convex optimization problem. A closed-form solution can then be
obtained by Karush-Kuhn-Tucker (KKT) conditions. Simulations show the that the proposed
transceiver design have better performance than existing linear transceiver with either

perfect/imperfect CSI.
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Chapter 1

I ntroduction

In recent years, many works have been devoted to the study of cooperative
communication due to its great potential to improve coverage, capacity and reliability of
wireless link [1]-[3]. Due to shadowing, multipath fading, path losses observed in wireless
channels, the link between a signal source and a destination may not be always reliable. In
cooperative communication systems, relays are placed at some strong shadowing
environments such that signals can be transmitted to the destination by a direct link and relay
links. With the additional relay links, it provides the enhancement of diversity gain or
capacity gain [1]-[18]. There are some relay strategies such as amplified-and-forward (AF),
decode-and-forward (DF), and«compress-and-forward(CF) [1],[2]. In AF, the relays receive
signal from the source and retransmit it to the destination with signal amplification only. In
DF, the relays decode the received signal, re-encode information bits, and then transmission
the resultant signal to the destination. CF, being a compromise between AF and DF, estimates
information bits, compress their information, and then transmit the modulated signal to the
destination. In this thesis, we’only. consider the AF-based system since the AF strategy
requires less implement complexity and smaller processing delay. Research in this subject has
attracted a lot of attention.

MIMO systems have been widely studied in the literature since it can enhance spatial
diversity or multiplexing gain in the rich scattering environments. It is known that a precoder
can be used in a MIMO system to further enhance the performance. Linear or non-linear
precoder designs in the point-to-point MIMO system have been extensively studied [7]-[9]. In
cooperative systems, multiple antennas can be equipped at the source, the relays, and the
destination, resulting MIMO relay systems. Similar to conventional MIMO systems, the
precoding operation can be conducted in a MIMO relay system [12]-[19]. In this thesis, we
only consider the transceiver design in AF MIMO systems.

For the AF MIMO relay system, the capacity bound of the systems have been derived in
[12]. Apart from the capacity, the link quality is another criterion has been studied. In [15], a
dual-hop single relay precoder in an AF MIMO system was designed for a minimum

mean-square error (MMSE) receiver without considering direct link (source to destination). It



has been shown in [15] that the joint design has a better performance than separate design
scheme. In [16], a joint transceiver design for the multi-relay case has been discussed. In [18],
a transceiver design has been proposed for a three-node AF MIMO system using MMSE
criterion. This scheme takes both the direct and relay links into consideration, and uses a
linear precoder at the source and another linear precoder at the relay. Recently, the joint
source and relay precoders design for multiple transmission streams were studied in [17]-[20],
where the source and relay precoders are jointly designed with the direct and relay links via
MMSE [17], QR successive-interference-cancellation (SIC) [19], and MMSE-SIC [20],
respectively.

As well known, the nonlinear transceivers are superior to linear transceivers. To obtain
better performance for the precoded system, we then focus on a nonlinear source precoder
design in this thesis. There exist several nonlinear MIMO transceivers, e.g. the system with a
Tomlinson-Harashima precoder (THP), and that with a decision-feed-back equalizer (DFE).
As well known, the DFE at the destination estimate and cancel the interferences and it may
cause error propagation in low<SNR environments. We consider a precoded AF MIMO relay
system in which the nonlinear THP-is used at the Source, a linear precoder at the relay and a
MMSE receiver at the destination [22]. The THP can pre-cancel the known interference at the
source and will not induce’error propagation. It is widely used in point-to-point or multiuser
MIMO systems [21]. In the first part of the thesis, we consider a transceiver design in AF
MIMO relay system. The design uses the MMSE criterion and take both the direct and relay
links into consideration. Since the THP is involved, the cost function becomes a highly
nonlinear and complicated function of the source precoder and relay precoder. The
optimization problem becomes very difficult. To solve the problem, we first cascade a unitary
precoder with the THP. The specially designed unitary precoder not can only simplify the
optimization problem but also improve the MMSE performance. Then, we use the primary
decomposition method, decomposing the problem into a master problem and a subproblem.
With our formulation, the subproblem problem, designing the unitary precoder and feed-back
matrix in the THP, can be degenerated to the system in [24], and the solution is readily
obtained. In the master problem, the cost function becomes a function of the relay precoder
only. With some precoder structure, we can translate the optimization problem from
matrix-valued into a scalar-valued optimization problem, and use Karush-Kuhn-Tucker (KKT)
conditions to obtain a closed-form solution for the source and relay precoders.

Most transceiver design in AF MIMO system assume that it knows perfect channel state

information (CSI) of each link at each node [14]-[20]. In practice, the perfect CSI is not



attainable due to channel estimation or quantization errors. For conventional MIMO systems,
some works study the sensitivity of the MIMO precoder with respect to channel uncertainties
[29], [30]. In [31]-[35], a robust design for the THP precoded point-to-point MIMO system
has been studied. In [36], the design is extended to an AF MIMO relay system. In the design,
the direct link is not taken into consideration.

In the second part of this thesis, we study a robust AF MIMO transceiver design with the
THP. The optimization problem is similar to that of perfect CSI. The only difference is to
consider the estimation errors as extra noise sources. Still, we use the primal decomposition
method to decompose the optimization problem into subproblem and master problem. To ease
the optimization, we then propose a method that can translate the master problem to a
standard scalar-valued concave optimization. The key idea is to apply some approximations
for the cost function such that the optimization in the master problem can be solved. We then
propose a relay precoding structure in the optimization. Though the structure is suboptimal
method, however, it can translate the master optimization problem to a standard scalar-valued
concave optimization problem.«Finally, similarto the perfect CSI case, we can obtained the
close-form solution of the relay and source precoder. by using KKT conditions.

The organization of the thesis is described-as follows. In Chapter 2, we describe the
proposed THP precoded 'AF MIMO relay system. In Chapter 3, we take the channel
estimation error into consideration and propose a robust transceiver design. In Chapter 4, we
present the simulation results and. related discussions. Finally, we draw conclusions in
Chapter 5.



Chapter 2
Joint MM SE Transcelver Desgin with

Tomlinson-Harashima Source and Linear Relay Precoders

In this chapter, we consider the MMSE transceiver design with a nonlinear
Tomlinson-Harashima precoder (THP) at the source, a linear precoder at the relay in AF
MIMO relay systems. Here, we assume that perfect CSls of all channels are known at the
destination. In Section 2.1, we first give the system model, while in Section 2.2 we formulate
the design problem under the MMSE criterion. It is found that the MSE is a complicated
function of the source and relay precoders, and the optimization problem is non-convex. Thus,
the problem is difficult to solve. In -Section. 2.3, we propose a method translating the
two-precoder design problem into a.single-relay problem. By using this method, the
optimization problem can+~be formulated as a convex optimization problem, and the

close-form solution can then be obtained:

2.1 System model

We consider a typical three-node AF MIMO relay system with a THP. The block
diagram of the system is shown in Figure 2.1. The system includes a THP precoder cascaded
with a unitary precoder~; at the source, a linear precodgt at the relay, and a MMSE
receiver G at the destination. Here, we define the number of antenna at the source, the relay
and the destination &¢, R andM, respectively. The MIMO channels are assumed to be flat
fading. In this cooperative system, we use a half-duplex relay protocol, which means it require
a two-phase transmission for a data packet. Let's start with the THP. The THP conducts a

interference pre-cancelling operation characterized by a backward, strict low-triangular matrix

B and a modulo operatiorMODm(-) . Let the input signal vector be D C"*; each element
of s= [sl,---,sN]T is a symbol mapped to a squarg)AM constellation where. Each QAM
symbol is drawn from the seA:{s + st‘s S D{il,... i\/ﬁ}} The feed-back operation

conducted in THP may increase the transmit power, and it can be avoided by a modulo



operation [21]. The modulo operation applied over both the real and image parts of the input x

is expressed as:

MOD,, (z) = & - 24 EVN—J 2.1)
With B and the modulo operation, the elementsxofcan be expressed as:
k-1

where x, is thekth element of vectox, xOOC™*, B(k,l) is the k) element of matriB,

T

and e =[e,,---,ey]" denotes the errors caused by the modulo operation. Then, (2.2) can be

rewritten with the following matrix form as:
x =Cly (2.3)

where C =B +1, is a lower triangular matrix an& =s+e [21].

The transmission in the cooperative system has two-phase [1]. In the first phase, the THP
precoded signat is passed through:the cascaded unitary precédeand subsequently send
to the relay and the destination simultaneously. As we will show, an appropriate design of the
additional unitary precoder will improve the performance of the MIMO relay system.

In the second phase, the received signal at the relay is multiplied by the relay precoder
F. and the resultant signal is then transmitted to the destination. Therefore, the signal
received at the destination after the two consecutive phases can be expressed as a vector form
as [17]-[20], [22]:

H, Bx+ { M }
y, = X
P Hp FH g, HopFpn, 0y, (2.4)
:=H =w ‘

where H and w denote the equivalent channel matrix and the equivalent noise vector,

respectively. In (2.4% O C" is the THP precoded signal vector (2.3);, O C*"* is the
received signal vector at the destinatidd, 0 C™", Hg, OC"* and H,, O0C"*"

are the channel matrices of the source-to-relay, the source-to-destination, and the

relay-to-destination channels, respectively. Note that these channel matrices are all assumed
to be flat fading channeln,, OCY*, n, 0C™, and n,, OC"* are the received
noise vectors at the destination, at the relay in the first-phase, and at the destination in the

second-phase. Here, we assume that M such that sufficient degree of freedom for

signal transmission can be assured.



Note that ifv can be estimated at the destinatisgan be reconstructed by the modulo
operation. We define the mean-square-error of the estimation as:

2
J = B{|Gy, -} (2.5)
By minimizing the MSE, we can derive the optimuB The signal elements a&fis

assumed to be independent each other and the variamge i has been shown in [21] that

each element of x is approximately iid and distributed in the
regionA:{q+st‘s,sQ D{il,...,i\/ﬁ}} uniformly. The approximation error becomes
small as the number of signal levels is large. Thus, it is valid only mhsrsufficiently large.
With the approximation, we haveE[xxH] = 0’1, E[va]:UECCH. The modulo

operation in the THP may cause a transmit power penalty, called precoding loss. According

[21], precoding loss for a two-dimentiormalary square constellations can be calculated as:

=E|:|Xk|2j|: m
§ EDSKH m=1

where x ,s  indicates thek-th' element of signal vectok,s, respectively. We show the

(2.6)

precoding loss for various in Table 2.1 As we can see, the precoding loss is negligible and
vanishes completely am goes to infinity. It-is recommended that at least16 should be

used.

m = 4 8 16 | 32 | 64

10log,, (77) [dB] | 1.25]0.58|0.28|0.14 | 0.07

Table 2.1: Precoding Ios:ys (in dB) of Tomlinson-Harashima Precoding [21].

Taking the derivative the MSE with respectGoand setting the result to zero, we can
obtain the optimun® as[24]:

(%_JHzmiHE[Tr{(GyD-V)(GVD‘V)HH

(2.7)
=GIE|y,ys |-E[wh ]=0
Then, the optimun®, denoted by, is given by
G,, = 0°CF/H" (c’HF,F/H" +R,)” (2.8)



where R, =E[wwH] is the covariance matrix of the equivalent noise. Note that the
equivalent noise is colored. Denote the variance of the noise at the rebfyr asnd that at

the destination asvf,,’d. Substituting (2.8) into (2.5), we obtain the minimum MSE. To

simplify the expression of the MSE, we consider the following leamma:

Lemma 2.1: Matrix inversion lemma [42]
A" (AAY +1) A= -(ARA+)T (2.9)
where A,l denote matrices with appropriate size. Using the lemma, we can rewrite the error

matrix in (2.5) as

E = C (07, + F/H"R;'HE;) " "

S

4 (2.10)
= C(o’1, + F/H"HF) C"
and (2.5) becomes
J o0 = Ti{E} (2.11)
where
H=R)'’H
0,Hgp (2.12)

n,r

(U2 H B Fy Hyp + a?z,dIM)_l/Q HppFrHgp

is defined as the equivalent channel matrix after noise whitening. Note that the MSE is
contributed by both the relay link and direct links. If we ignore the direct link, the MSE will
be reduced to that in [24]. From (2.10) and (2.11), we see that the achievable minimum MSE

is a complicated function oC, Fg and F;. In the next section, we formulate the precoders

design problem using the signal model derived in this section.

2.2 Problem formulation

For the MIMO relay system, two precoders are involved. Using (2.5), (2.8)-(2.12), we
can formulate the precoders design problem as:



: -2 agHae ' of
min TriC(o;’1, + F/H"HE,) C

CFy.F,
=E(C.Fy Fy) (2.13)

S.t.
F.=aU,,C|,C,
where

N A
H'H = Un,dHSDHSD +

H pHygH [ 2 HygH 2 -1 (2.14)
H F,Hy), (JNJ’HRDFRFR Hp,,+ Jn,dIM) H, F.Hg

and C|, C, denote the power constraints at the source and the relay, respectively:

C,: T E[Fxx"F! |} = ? TR F/} < P,
¢, : To{F, (02,1, + H FFRI FI < P, (215
Here we letF; =aUg in which a is a scalar andJg is a unitary matrix. In next
section, we show that the unitary structure can facilitate the derivation of the optimization
problem and improve the performance .of the MIMO rely system. From (2.13), it is apparent
that both the cost function.and the constraints are complicated functibg ehd F;. Yet,
the problem is non-convex. Solving -such a problem is a very difficult problem, if not

impossible. In the next section, we propose a method to overcome the problems.

2.3 Joint source and relay precodersdesign
Since a direct solution for optimurirg and F; in (2.13) is difficult, we use the primal

decomposition method [42] such that the problem can be translated into a subproblem and a
master problem and~; and F;can be solved separately. In the subproblem, the relay
precoder is assumed to be known and the source precoder is solved as a function of the relay

precoder. Then, in the master problem, the relay precoder is solved. The problem now can be

re-formulated as



C{%%R Tr{E} = min Iél%? Tr{ E(C,F,F, )}

R
s.t.
_ o -1
E=C(o’L, +F/R'AF) C",
(2.16)
F.=aU,,

C,: a?Tr{FSFSff } <P,

C,: To{F, (a2,1, + a®c’H 0 )R < P,
In the subproblem, as mentioned, the optim@mand F, are derived as a function of
Fr. by assumingF; is given. Then the joint precoder design problem is reduced to the
determination of F, which is the master problem.
The unitary precodelF is included for two reasons: (i) It can simply the solutoin of the
relay precoder. (ii) By a proper design &f, the minimum MSE can have an amenable form,
leading to a tractable optimization problem. SinEe=aUg, the subproblem becomes the

optimization of &, Uy and C, given as

min )Tr(E(C,a’US,FR))
, (2.17)
aU,,C,¢,
E = C(07 T, +a*UBAAU,) ¢
where C;:Na“o5 < P;; is obtained fromC, by setting Fg to be unitary. If we fix Uy

and C in (2.17) , we can find that the trace of MSE matrix is a decreasing functionSu

Py r

No?

S

under the transmission power constraint, we can have the optimuas @, = to

minimize the MSE. We substitute

ot INto constraintC, in (2.17) and find thatC, is not

a function of the source precoder. So, we can just consider it in the master problem. Thus the

subproblem becomes:

P o -1
min_ Tr {c [q;QIN + NS;’Q 08 80 {1 j CHJ (2.18)

With a known relay precoder, the problem (2.18) is similar to the THP design in the

conventional MIMO system, and the optimum soluti@rdenote asCopt, has been solved as

[24]



C,, =DL" (2.19)

where

P -
H _ -2 S, T HyrH 13
LI = (as I, + o Ul HUSj (2.20)

S

2
s

P o -1
is the Cholesky factorization oEafIN + 51 U?HHHUSJ while D is a diagonal
‘ No
matrix that scales each element on the main diagonaC ofo unity. (The proof is
summarized in Appendix A).

Substituting (2.19), (2.20) into (2.18), we then have

No?

S

P _1
-2 S, T HyrH1y H
J = TrlC o1, +—=UMH HUS] C ]
(2.21)
al 2
=Y L(kk) =N

k=1

N

2/N
o L<k,k>]

k=1
The inequality in (2.21) is.obtained from the arithmetic-mean-geometric-mean (AM-GM)
inequality, and the equality is held whdn(i,i)=L(j,j),0i#j. If Ug is designed
properly, the bound in (2.21) can be achieved. For this purpose, we first decokipoas
the form of
Ug = V. Uj (2.22)

(CNXN

where V; OCY™" is the left singular matrices off, and Uy O is an unitary

matrix to be further specified. Note that this decomposition is always possible for any unitary
matrix. Substituting (2.22) into (2.20), we can have (2.20) as

S 2
S

-1
P
S( " No s (2.23)

=D
where /\:dz'ag{/L e A } , and A_ ,---,A_ _are the eigenvalues ofI”’H . To
i1 N i1 f,N

1
obtainUg, we apply geometric mean decomposition (GMD) [26] DA which can be

expressed as
D'/? = QRPY (2.24)
Q,P are some unitary matrices, ari®l is a upper triangular matrix with equal diagonal

elements. Letting, =P and substituting (2.24) in (2.23), we can have=R" . The
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lower bound in (2.21) is achieved sinde(i,i)=L(j,j),0i# j. So, the optimumFg,

denote asF; ,, , can be expressed as

—_ PS,T
I:S,opt T4 ’ Na_ez Vﬁ P (225)

From (2.23) and (2.24), we can have the resultant MSE

1/N

N 5 N 1
Jmin = Z L(k7 k) = Nl_l P
k=1 k=1l ). 28T 4 572
BE Ng?2  °

(2.26)

Now, our problem becomes to minimize (2.26) in the master problem. Note that the

equality of the right side of (2.26) is satisfied when the diagonal elemerits afe all equal.

With a propoerFg, we can not only minimize the MSE but also make the optimization

problem more tractable. To proceed, let us consider the following equivalence:

1/N
N PondY N
min N7 L =max| 0,2 — |~ det iIN +H'H (2.27)
F P, - F )
LS ST L 52 R N Py,
H,k No> P ’

S

N
Note that [af %) in (2.27) is )a constant so we can reformulate the master problem as:

max det iIN +H'H
Fr PS,T

5.t (2.28)
C. :Tri{F, | o> 1 +—PS’TH H? [Ffl<p
gt AT ER 1 Oy dp N SRUSR TR [T URT

The problem (2.28) is still difficult to solve because the cost function is a nonlinear
function of F; and the problem is not convex either. To solve the problem, we propose a

relay precoder structure such that a closed-form solution can be solved. Directly solving (2.28)
is not feasible. We then use a lemma describe below:

Lemma 2.2 [41]: Let M O CY*" be a positive definite matrix, then
N
det (M) < [TM(4.1) (2.29)
1=1

where M(i,7) denotes theth diagonal element d¥I. Note that the equality in (2.29) holds

11



whenM is a diagonal matrix. If we leM = H?H , it turns out that wheM is diagonal, the

maximization of the cost function becomes possible. To have the diagonalization, we need
another lemma shown below:

Lemma2.3[41]: Let AOCY" be a positive matrix and 0 C**", then

det(A +B) = det (A)det (I, + A™/?BA™/2) (2.30)

Form (2.30), we letB = HI,F/H], (07 H,,F,F/H], + 0 dIM)_l H,, F.H,,

N _ . .
and A = P_IN +0 >H H_ we have the following equivalence:
S, T

R

arg max det iIN +H'H
F P .
’ (2.31)
-1
' HpHypH HypH '
se¥r Hpp (Jﬁ,T’HRDFRFR Hpp + JridIM) H FH

=argmaxdet(IN+H ot pHop

Fp

L,
where Hy, = Hy, (N/PS’TIN + J;,ngDHSD) 2..Note that det(A) is not the function of

F., SO we can ignore it. The-optimization problem can be rewritten as

max det(M')

FR

s.t.

r 1 HyHyyH

M’ = (IN + HSRFR HRD (2.32)
'y FEPH!. +021 ) H FH

Oy pXp¥ g Bpp 7O, Ay RDETRMSR

)
C,:o,,

P
S [ p,

Taking a close look at (2.32), we can see that there exists a precoder structure for the

relay precoderF; such that the diagonalization can be achieved. Consider the singular value
decomposition (SVD) onH, and Hy,:

H,,=U, VI (2.33)

Hy, = U, 2, V' (2.34)
where U, OC"" and U, OC™" are left singular matrices ofl,, and Hy,,
respectively; = , DR and = OR™" are the diagonal singular value matrices of
H,, and Hj, , respectively; Vi OC™" and V¥ OC"™" are the right singular

matrices of H,, and H,, respectively. If we letF, have the structure as the following

12



form, a full diagonalization of the matrix of the determinant in (2.32) can be achieved:
FR,opt = VrdZ7U'f (235)

where ¥, is a diagonal matrix with itgh diagonal element ot ; . Let 0,,; and o,

rd,i STy

be theith diagonal element of , and %, respectively. With the relay precoder structure,

the optimization in the master problem can finally be translated into a scalar-value concave

optimization problem. Substituting (2.33), (2.34), (2.35) into (2.32), we can rewrite (2.32) as:

N U U
max Zln 1+ pTl nd 8Ty
Pris 1SisN 5o p7 a7n ra7d7 + Jn,d

st. (2.36)

me( N ;72ZD ( ) 0-7L7JSPR,T7p7‘.72207

where p., =07, , D, =V (N/PS,TIN + H?DHSD)V;T , and D', (4,7) stands for the
ith diagonal element oD’ . It is apparent that.the mast problem is now a scalar optimization
problem. And, sincep, ; = 0, the cost function (2.36) is concave [42]. To solve this problem,

we apply the KKT conditions given by [42] and find the solution for,, i =1,---,N as:

D, = I ,U +
" o (Bsrisry . 2
ard,i T oér,iDsr (27 Z) * Oy (J7L r an do-sr i 1)
- T (2.37)
1 an,d 1 an d097 i
. 1+ =
40,, 2 J

n,7

g, . o, 7
2 n,r 12
o-fd.i 27 +1 O 5 T 04
-\ G, Jsr i Unvd

where 4 is chosen to satisfy the power constraint in (2.36). Substituting (2.37) into (2.35),

we can obtain the optimum relay precoder, and tEEnin (2.12) can also be obtained.
Finally, the unitary source precoder can be derived by substituting (2.24) into (2.25) , and the
matrix C can be obtained by (2.19).
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Figure 2.1: THP source and linear relay precoded AF MIMO relay system with MMSE receiver.
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Chapter 3
Robust Joint MM SE Transceiver Desgin with

Tomlinson-Harashima Source and Linear Relay Precoders

As well known, the performance of transceiver design relies on the accuracy of channel
state information (CSI). In the literature, most transceiver designs assume perfect CSI. Our
design in Chapter 2 also assumes that the destination has perfect CSls of the three links.
However, for real-world implementation, perfect CSls are usually not attainable due to
channel estimation or quantization error. The performance of the transceiver designed with
imperfect CSls may be degraded seriously. In this chapter, we consider a robust nonlinear
transceiver design in which the THP, the linear relay and the MMSE receiver are used at the
source, the relay and the destination, respectively..The imperfect CSls from both the relay and
direct links are incorporated into-design where channel estimation errors are modeled as
Gaussian random variables: The design procedure is similar to that we have used in Chapter 2.
The main idea is to use the primal decomposition and some approximations such that a
close-form solution of the optimization problem-can be obtained. In Section 3.1, we build the
system model taking the channel uncertainty into consideration. In Section 3.2, we formulate
the designing problem under the MMSE criterion. In Section 3.3, we propose a new approach
to solve the problem in closed-form.

3.1 System mod€

We consider a three-node AF MIMO relay precoded system which has been presented in
Chapter 2, as shown in Figure 2.1. With the two-phase transmission protocol, the signal from
the source is transmitted to the relay and the destination simultaneously in the first phase.
Then the received signal at the relay is multiplied by the relay precoder and send to the
destination in the second phase. For simplicity, we let the signal notations are similar to those
in Chapter 2, (2.1)-(2.4). In general, the actual channel matrix can be modeled as a summation
of an estimated channel and an error matrix [36]. Thus, we have:

Hg, = Hor + AHg, (3.1)
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Hy, = Hep + AHp), (3.2)

H,, = Hsp + AHg, (3.3)
where Hy, 0C™", Hy, OC"Y and H,, DC"" are the actual channel matrices of
the source-to-relay, the source-to-destination, and the relay-to-destination links, respectively;
Hsz, Hrp, and Hsp are the estimated channel matrices ®f,, H,,, and Hy,,
respectively. AH,, AH,,, and AHg;,, are the corresponding channel errors matrices in

which all the elements are assumed to be zero mean Gaussian random variables. An
estimation channel matrix can be further decomposed into a product of three matrices. For

example, AHg, can be express as:

AHg, = ZlSéin.i.

LW (3.4)
where the elements oH,;, are independent and identically distributed (i.i.d) Gaussian
random variables with zero-mean and unit variangg; 0 C™" and W, OC"" are the

row and column covariance matrices AH,, , respectively [38].
From (3.4), it is clear thatec(AHgy) -~ CN(ONRXl,ZSR O LIJ?;R), where CN (m,C)

denotes a complex Gaussian random vector with meamd covarianc€ [44]. Similarly,

we can set the distribution-of channel estimation em#,, and AHg, as vec(AHj),)
~ CN(ORMXl,ZRD 0 WﬁD) and‘vec(AHg, ) ~ CN(ONMXl,ZSD O wgD). It is noteworthy

that the expression okg,, W, Zpp, Wi, Zgp, WYgp depend on specific channel

estimation algorithms. For examplé¥y, =R, ¢, and Zy, = 0., Ry, if we use the

€,sr

estimation method proposed in [29R; 5, and Ry, are the transmit and receive antenna

correlation matrices;o?

e,sr

is the source-relay link channel estimation error variance. And

note that the other two matrices have the similar structures. Here, we assume all the channels
are time-invariant and all second-order statisticSg;,, Wo,, Zzp, Wrp, Zgp, Wy are

known as a prior.

At the destination, we can have a single received vector for the two-phase transmission:

H n
SD D1
y, = F.x+
v |:HRDFRHSR ° {HRDFRHR + npz} (3.5)
T \ e /

We use the MMSE receiver, that takes both the noise and the channel estimation error
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into account at the destination, to recover the transmitted signal. Define the MSE as:

J(CF,F,.G)=E {HGyD - VHQ}

= EMV{Tr{((GHFS - C)x +Gw)((GHE, - C)x + Gw)H}] o

where G represents the equalization matrix and the subsaliptw denote that the
expectation is taken over both the channel estimation error and noise. With the same

assumption in Chapter 2, we can haEx{xxH] =o0’I, and E[VVH:I = g?CC" . Thus, we

can rewrite the MSE in (3.6) as:

J(CF,.F,.G)=
T, ﬁSDF FH ﬁgRFH ﬁgD
Tri02G G"
HupF, HorFF/ Hop  Tr(F, T, FIW )%, +HapF, T, F/ Hip
- Tr{o?GHF,C"} - Tr{qchSH i GH} + Tr{o%cC”)
3.7
oI, 0 37
+Tr{G| (el
0 o Tr(BFIWw, )5+ ot ek, Fi g + 00 1,
= Tr{G(qu-\[FSF;IﬁH + R+ Aerr) GH} 7 Tr{a?Gf]I‘SCH} -
Tr{JECF;f ﬁHGH} + Tr{0?0¢")
where
R Hsp
H=|_ (3.8)
HrpFrHsr
_USQTI' (FSFS{{qJSD)ZSD 0 ]
Aerr = . ( 0, Tgp + 0,1 )FHLPRD)ZRD + (3.9)
i O AroFy (Tr(FF W ) S ) B HRD
~H
R.=FE [ HpHfify +nll } 3.10
!|:HRDFRHR + HDJ Npy NpEkp HORD TNp, ( )
Ty, = Tr (FyFY Wy ) Iy, + HspFgEY Hop (3.11)
Ty, = Tr (FsFI Wy ) Zgp + HsnFgFY Hon (3.12)

The derivation of the MSE in (3.7) can be found in Appendix B.
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Since the cost function is convex@) we can find the minimum MSE in (3.7) by taking
the gradient o with respect t&@5 and set the result to zero. Note that we Kegpr, andC
fixed in the operation. Then we can obtain the optimum equalization n@atrdenote as
Gopt’ as

-1

G, = USQCFg ﬁH (fomngﬁH + Ry + Aerr) (3.13)
Substituting (3.13) to (3.7), we then have the minimum MSE as

J(CF,F,G,, )27, (CF,.F,)

e R 0 (3.14)
= ’Tr{CC?} - o°Tr {CFSH i’ (HFSF;f 8" +07 (R + Aerr)) HFSCH}.

By using matrix inversion lemmaA" (AAH +I)_1A = —(AHA +I)_l [42], (3.14) can

be further rewritten as:
Jmin (C' FS ’ FR)

-1

= 02Tr{CC"} - 0?Tr  CFY A PR FIA " +0.7(Ru+ Aerr ) | AFCH

Ry

-1
SUNINILY et Sl U (3.15)
=02Tr{CC"} -o?Tr{CFH RZ|R2HFFeH R 2 +1,, | R2HF.C"
~H ~ 4
=J§Tr{C(F§H R;HFS+|N) CH}
- 2
=Tr{E(C,Fs.F )}
where
R, =0.° (ﬁw + Aerr)
R,,, O (3.16)
= 0'5_2 .
0 RA,Q,Q
and
Ry =000y + UETT(FSF§IWSD)ZSD (3.17)
Ry,, = Tr(FR (af (Tr (FE Wy ) Zp + HsnFEY ﬁﬁ%) + O'fMIR)Fg wRD) S0
| | (3.18)

+0? HpoFy (Tr (BRI W g, ) S, ) B B + 02, BnoF, Ff Hip + 02,1,

From (3.16)-(3.18), we can see that the MSE in (3.15) is a complicate and nonlinear function
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of F; and F;.

3.2 Problem formulation

In Section 3.1, we construct the system model using the MMSE criterion. The objective

isto find C, F; and F; so that the MSE (3.15) can be minimized. We now can formulate

the joint precoder design problem as below:

L2 B n-11 oo
min JSTr{C(FSH R, I-IFS+IN) C }

Z?FH (3.19)
C,C,
where
¢ :oTe{RE'} <P,
¢, B[ 1e{F, (02,1, + o0 FEIHL )R | = (3.20)

o;, Te{F FlI} + afTr{FR (Tr (FFIw,, )2, +HoF F ﬁ?R)Fjj } <P,

In (3.20), C, and C, stand for the transmission power constraints at the source and
the relay, respectivelyC is7a lower triangular matrix with unit diagonal, aRl, is the
matrix specified in (3.16).

From (3.20), we see that the cost.function and constraints are functicdds 6t and

F.. As we can also see, the functions are complicated and the problem is not a convex

optimization problem. Since imperfect CSls of all links are involved, the problem becomes
much more difficult than that in Chapter 2. In the next section, we propose a new approach to
solve this problem.

3.3 Robust joint source and relay precoder design

Similar to that in Chapter 2, we also cascade an unitary predadeafter the THP. The
precoder F; can not only facilitate the optimization but improve the BER performance. The
cost function is a nonlinear function df;, F; and C. It is then difficult to find the

optimum precoders simultaneously. We use the primal decomposition method so that the
optimization problem can be translated into a subproblem and a master problem [42]. The
procedure is first to split unknown variables into two group and the variables in the first group
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are treated as known constants. Then, the variables in second group are solved as the
functions of the functions of the variables in first group (the subproblem), and the cost
function is reduce to a function of the variables in the first group. Finally, the variables in first
group are solved (the master problem). In this case, the subproblem is to find the @ptimal

and F; by letting F; be fixed, and the master problem is optimized f&r. For

convenience, we rewrite the problem in (3.19) as:

min Tr{E(C F..F )} =minminTr{E(C F.,F )}

'Lt R 'Lt R
C,F, F, F, CF,
s.t.
F,=a,Ug,
I 2,2
. <
Cl:0,a,N < Py,

(3.21)

~ ~H
C, : Tr{FR (J,QMIR +oia HopHsp + 07aTr (W SR)ZSR)Fg }

- 2 2 2 (5. il H
=Tr{F,| 02,1, +0’a’ (HSRHSR +Tr(‘PSR)ZSR) F/ <P,

P Y’
:=H spH SR

~H_  _1A -1 P ~ —~ 1/2
where E(C,FS,FR) =C(F§H R, 'HF, +IN) ¢’ and A, = (HSRH§R+Tr(wSR)zSR) :

We let F, have the form as that shown in (3.21), wherg is a scalar andUg U cM N s
a unitary matrix. The constrain€| is obtained by substituting’, = aU, into C| in

(3.20). In the subproblem, we can observe that the transmitted power constraint at the relay,

C,, is not the function ofC or F;, so we can move it to the master problem. Let

FS = aUS, the cost function and the constraints can then become functiofs af and

U, . Then the subproblem can be rewritten as:
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min _ Tr(E(C,F,F,))

C(Fg ) aUg (k) o
s.t.
- HypH el
E(C,F, F,)=C(E/A"AF, +1 ) C"
_ 3.22
FS_aSUS’ ( )
C,:0}a’N <P,

H
. 2 2 2% o H
C,: Tr{FR (JWIR +o,a,HsrH SRJFR } <P
where E is now a function of C a4, Ug, and
A8 =0 R, H

2 2,2 -1 ~
= g2 [ﬁfq’D ﬁgRFHﬁgD}{(UdeM +o.a, TT(WSD)ZSD) 0 ][ Hsp
- Y R

. ~ 3.23
0 (DA +A)™! HRDFRHSR] ( )
— 22wl (2 2 9 PN ~H _goH PN ~
=0, (0,Hsp (UdeM +0,a,Tr (W) zSD) Hsp + HsrFy Hrp (AA + A)™ HrpFpHsr
with

AA =Tr| F,| 0’a; (Tr(qJSR)ZSR +ﬁSRﬁ§IR)+02 I, [F/W,, |20

n,r

(3.24)
=H'spf5p
+07a5Tr (Wp, ) Hro By By H o
A =0 HroW R Hrp + 02 1, (3.25)

We first optimize ag by treating C, F; and Ug as known entities. It is simple to
see that the cost function in (3.22) is monotonically decreasing ath(see the proof in

Appendix C). So, the optimum value can be found as

/ P
aS,opt = NSOZ (326)

This corresponds to the largest, under the constraint’| in (3.22). Substituting

(3.26) into (3.22). The subproblem can be re-written into a conventional point-to-point THP
MIMO problem [24] given by

P o -1
lgmn )Tr{C(NS&TQ U?HHHUSHN] CH} (3.27)

S
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The optimum solution ofC has been derived in [24] (see Appendix A), denoté&gs, as :

C,, =DL" (3.28)
and
P -1
L’ = (NS% Ula"au, + IN] (3.29)

P L -1
is the Cholesky factorization oﬁ%U?HHHUS + INJ ; L is a lower triangular matrix
No

S

with real diagonal elementf) is a diagonal matrix scaling the diagonal element€ db
unity, that is D =diag(L (k k)) k=1,.. N. Substituting (3.28) and (3.29) into (3.27), we

can have the cost function as:

P -
S, T HyrH13 H
Tr{C(NJQ Ul HUS+INJ C }

E

y (3.30)
= %L(k:,k)? > N(ﬁ L(k,k)zj !
k=1

k=1

which is a function ofUy. Note thatL (k,k)~means-theéth diagonal element df. The
inequality in (3.30) is the arithmetic-geometric inequality (AGI) and the equality is held when
L(i,i)=L(j.j), Oi#j.

The next step is to findUg" so: that-the bound in (3.30) can be achieved. First, we
decomposeU, as

Uy = VU (3.31)

where V; OC™™" is the right singular matrices off and Uy OCY" is a unitary

matrix to be determined later. Note that the decomposition can always be conducted for a

unitary matrix. Substituting (3.31) in (3.30), we have:

P - P -
H _ S, T HyyH3 _ TH S, T r
LL _(NJSQ U/H'HU, +1Nj = U’ (Naf /\+1NJ U, (3.32)

:=D

where /\:diag{ﬂﬁil,"',ﬂﬁ]\,}, A, are the eigenvalues ofi’H . To achieve the

equality of the AGI, we apply GMD [26] method aB'/?. Let D = D'/?D'/? and D'/? is

the square-root matrix oD . Then we have:
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D'/? = QRPY (3.33)
whereQ andP are unitary matrices, arfdl is an upper triangular matrix with equal and real
diagonal elements. LettindJ'; = P and substituting (3.33) into (3.32), we can have

LI =RR (3.34)
which indicates thatL = R” , and the diagonal elementslofare real and all equal. Then the
equality of AGI in (3.30) is held so that the lower bound is achieved. Therefore, the optimum

Fy, denoted asF; ,,, can be expressed as

F, = ﬁvp (3.35)
S.opt ]vag o )

By substituting (3.28) and (3.35) into (3.15), the result MSE can be expressed as:

1

N N N
J . =00y Lkk)? = USQN(H L(F, k)Qj
k=1 k=1

(3.36)

NP -1/N
= ON[|s5 A+
) No H,k

S

Now, the problem becomes the minimization of (3.36), which is master problem. It is

seen that the cost function now is a functionky.

To proceed, we consider the following equivalence:

N (P - ...
M (NS’TQ Ao * 1} S det&IN + NS’TQ HHHD (3.37)
k=1 g, e g

S

Substituting (3.37) into (3.36) , we can reformulate the problem as

P, . .
max det (IN + S'TQ HHHJ
FH ]V- s

s.t. (3.38)

n,r-R RT"

P I ,\IH
C, :Tr{FR(U2 I +£HSRHSR]F}€]}SP
N

Since the structure oHH”H is still complicate and difficult to deal with, we find
another equivalent form as follows:

_P ~ ~ ,\"H ~H 1o~ ~n
NS;; H"H = H 5¢F} Hep (AA + A)” HeoF, H sz (3.39)

£

where
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P P P e

a 0 ol S,.T o

A sn = =L Hsp| T, +—>1 Hsp (JZ q, +—’Tr(WSD)ZSDJ Hsp (3.40)
N No?, A N

Then (3.38) can be rewritten as

"H ~ 1~ ~n
max det| 1 +H seFY Hip (AA + A) " HgpF H sr
N R R (3.41)

Fr

s.t. C..
2
Taking a close look at (3.41), we can find tH#A + A) is a complicated function of

F, . The master problem is difficult to solve, even using the numerical method [42]. To

overcome the problem, we propose maximizing a lower bound of (3.41) instead of trying to
maximize it directly. In this manner, we can have an amenable form and the optimization

problem in the master optimization can be made easier. For this purpose, we consider the

following property.
Property: The utility function in (3.38) is lower bounded by

,\"H ~H o o~ N
det(IN +H SRF}?HRD (DA + A) HrpF H sr

/ (3.42)
> det [IN + ﬁ"SRFg ﬁgD (AA' + A)_1 ﬁRDFR ﬁ”SRJ
where
AA =Tr| F,| 0’a; (Tr(w sr | YT ﬁsgﬁﬁz) +0. Ip \F{Wap [Zkp
(3.43)

A~ ~1H
=H srH SR

+020°Tr (W gy ) HppFy S g, Bl
P, ~ ~H
AA" = Py A (LIJRD ) A (ZRD ) Ly + % Tr (LPSR ) Amax<ZSR)HRDFRF}§] Hrp (3.44)

the equality of (3.42) is held whenW,, = Bupln. Zpp = Vaplyxys Wsr = Bsply and
Zsp = Vsrlpxp With some scalarsfB;, ., Bsp, Vep and yg; . As we will see, the
optimization with the lower bound is much easer. The derivation of the lower bound in (3.42)

can be found in Appendix D.
Using the lower bound of the utility function, we can reformulate the master

optimization problem as:
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A"H ~H 1o~ "
n%?;x det(IN +H szF Hrp (DA + A) 1HRDFRH SR}

s.t.
Ty 3 3.45
(DA"+A) =0l + ﬂHRDFRFgHgD, (3.45)
C, :tr<F o> 1 +PS’Tﬁ' f—ilH Fil<p
2 " r R n,rER T SRI1 SR R (Stgr
where
= Py A (Wio) Auas (Zin) + 0 (3.46)
_ Py 9
- N Tr (LPSR)AmaX(ZSR) + Un,r (347)

As we will see in latter developmenfiA’ in (3.45) is easier to handle comparedAo.
Although the function in (3.45) is simplified, it is still a complicated functioR,ofWe now
let F;, have a specific structure such that the master optimization problem can be easier to
solve. This relay precoder structure can-transfer the matrix-valued optimization problem in
(3.45) to a scalar-valued problem, though itiis suboptimal.

Similar the procedure in Chapter 2, we-first use Lemma 2.2 and Lemma 2.3. Consider

the following singular-value-decompaosition (SVD):
Hio = UreSraVeg (3.48)

I/_i"SR — U" Z" V"H (349)

Sr8sr sr

~I

where U,y OC"Y and U", OC™% are left singular matrices ofizp and H sz,

respectively; = , DR and =" OR™" are the diagonal singular value matrices of
H,, and H s, respectively; VZ OC™F and V¥ OCYY are the right singular

matrices of H,,, and ﬁ"SR, respectively. Substitute (3.48) and (3.49) into (3.45), we can

rewrite (3.45) as
det(M’)

st G (3.50)

~H A~ ~ ~H ~ A -1 ~ o~
M'=1, +X0ULFS Vi Zaal,, + BEaVaFFE ViaZa | T ViU ED
From Lemma 2.2, we see thatM' is diagonalized, the utility function in (3.50) can be
maximized. Note here that the result is not held when the power constraint in (3.50) is

included. However, we use it to obtain a suboptimal solution.Rgthave a structure shown
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below:

- nH
Koyt = Yra2, U (3.51)
where 2 is a diagonal matrix withith diagonal elemento,; , i=1,-,k ,

K= min{ N,R} whose value will be determined. The general structure for the relay precoder

r=r > r 1

should have the form o{ FR‘FR =UX V" F, DCZ} with U, isa M xM unitary matrix

and V, is a RxR unitary matrix. However, the optimurf; in (3.50) is very difficult to
find. Here, we only consider a specific feasible set FRaf in (3.51) simplifying the
optimization problem.

The next step is to transfer the matrix-valued problem to the scalar-valued one with the

precoder structure of; in (3.51). Let g,,; and o, ; be theith diagonal element of Y

and X!, respectively. Substituting (3.51) into (3.50) and takimg@peration on the utility

function, we can rewrite (3.50) as:

4 pr.iagfiafd §
max Zln 1+ —

pr,wlsiSKi:l a+ ﬂpr,iafd,i
s.t. (3.52)
K
Y (@ # D)) S P
=1
pri 2 0’
P
_ 2 _ ST nH | 1y ~H " . ..
where p,, =0, and D, _TU‘W (HSRHSR +Tr(qJSR)ZSR)Us7‘ with D, (i,7)

being theith diagonal element oD, . Now, the utility function and the constraints are all

functions of scalars. Since the utility function and the constraints are all concayg, far0

[42], we see that (3.52) is a standard concave optimization problem. As a result, we can find

the optimum solution ofp, ;, i =1,---,k by Karush-Kuhn-Tucker (KKT) conditions. The

solution is given by:

aoy,
bri = ’ £ + %l 7 20 i 28 2 (3.53)
| \/(0-37 + Dsr (272)) 0-7271,7; Dg( 632 + 1j a-fd i ﬁi(oﬁ + IJ O}dﬂ; (ﬁ * 0-;7“,1')
5751 ta sryi

where 1 is chosen to satisfy the power constraint in (3.52). The detail derivation can be
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found in Appendix E. Substituting (3.53) into (3.51), we can have the optimum relay precoder
F,, . After the optimumF, is found, we can obtaifI”H by (3.23). Subsequentlyk, and

C can also be obtained by (3.35) and (3.28) with the same procedure described in Chapter 2.
In this chapter, we joint design the robust transceiver in an AF MIMO relay system in
which a THP is used at the source, a linear precoder at the relay, and an MMSE receiver at the
destination. Since the channel uncertainty has been taken into consideration, we can expect
that the design will outperform that in Chapter 2. The price we pay is a more complicated
design. The computational complexity of the non-robust/robust designs includes SVD, GMD,
and matrix inversion operations, are mentioned in Chapter 2 and Chapter 3. The overall
computational complexity and steps of the non-robust/robust designs, measured by FLOPS,

are summarized in Table 3.1 and Table 3.2.

Table 3.1: Computational complexity.of THP source and linear relay precoders (MMSE receiver)

Step Operation FLOPs
1 H, O(N*(R+M))
2 SVD Hy, =U,,Z, Vi O(MR*+R*)
3 SVD Hy, =U, 3, v# O(RN*+N?)
4 z, O(l,)
5 F, O(R*)
6 f=R=H O(M*N)
7 SVD H O(MN*+N*)
~1
g GMD D? =QRP” o(N?)
L=R"
9 C,. 0(N?)
10 Fs op o(n’)
I denotes the iteration number of the water-filling process for solving g,
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Table 3.2: Computational complexity of robust THP source and linear relay precoders (MMSE receiver)

step operation FLOPs
1 i er O(NM’ +(R+M)N’)
2 SVD Tz O(MR’+R*)
3 SVD H sz O(RN"+N7)
4 z, O(xl1))
5 F, o(R")
6 R, O(N’ +RN’ + R’ + MR")
7 aH O(M°N)
g svD HYH o(n?)
0 GMD DY? =QRp” o(v)
L=R"
10 C,. o(N?)
1 Fy . o(»)
I, denotes the iteration number of the water-filling process for solving g,
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Chapter 4

Simulation results and discussions

4.1 Simulation Setup

In this section, we describe our simulation environment. We consider an AF MIMO
relay system withN, R and M antennas at the source, the relay and the destination,
respectively. We letN =R=M =4. The widely used exponential model [29] is chosen for
the generation of the channel estimation error covariance matrices, which can be represented

by

1 o o ¢
o/ 1 & o
Wop = Wpp =Wy = 2051 5 (4.1)
00" o 1
and / _
Loyl Y
y- 1y vy
295 =2pp = 2gp T Of (4.2)
vV vy 1 vy
V' v oy 1

where 0 and y are the correlation coefficients of the row and column covariance matrices,
o? denotes the estimation error variance. The resultant covariance matrices can be obtained

from the channel estimation method proposed in [29]. The estimate chakhels, Hrp

and Hsp, are generated base on the following distributions

~ 1-0;

vec (HSR) ~ C’N(ONRWTQZSR O ngRJ (4.3)
& 1-o°

vec (HRD) ~ CN(OMRXDTCZRD O quDj (4.4)
~ 1-o’

vec (HSD) - CN (OMNXD#ZSD O Lpng (4.5)

So that the relationships of the actual and estimation channels can be expressed as:
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Hg, = Hsp + AHg,, Hp, = Hep +AHp, and Hg, = Hep + AHg, . Note that H,

H,, and H,, have a unit variance for each element. ISNR,, SNR, and SNR,

denote the received signal-to-noise ratio (SNR) at each relay antenna in the first phase, that at
each destination antenna in the first phase, and that at each destination antenna in the second
phase, respectively. As defined in Chapter 2 and Chapter 3, the definition of SNR of each link
can be represented as:

SNR, =P,/ tr(R )

SNR, =Py /tr(Ryp.,) (4.6)

SNR,, =P; /t1(R )
where P,; and Py, are the total power constrained at the source and the rglay,is the

covariance matrix of the noise vector at the relay antennasRapd and R ,, are the

covariance matrices of the noise vector at the destination antennas for first phase and second
phase transmission, respectively.

Without of generality, we use the 16-QAM scheme for each transmission symbol stream.
The data symbols are assumed to be independently transmitted form the four antennas with
the same power. We regard the channel estimation error as the channel uncertainty, generated
based on (3.4). We assume that the destination hasthe perfect knowledge of channel statistics

such that the precoders can be calculated there.

4.2 Simulation results and discussions
In this section, simulation results are reported demonstrating the effectiveness of the

proposed scheme. In the first set of simulations, weSlkR,, =30 dB, SNR, =15 dE

and SNR be varied. We also led=y=0 and o =0, which means perfect CSls are

available. Figure 4.1 and Figure 4.2 compare the MSE and BER performances for (a) an
un-precoded system (U-U) (b) the relay precoded system [15] (U-L) (c) the linear source and
linear relay precoded system [18] (L-L) (d) the TH source and linear relay precoded system
(TH-L) and (e) the proposed robust TH source and linear relay precoded system (TH-L
robust). All the systems considered, (a)-(e), use the MMSE receiver. The notation
“SNR(dB)” in the figures is the average signal-to-noise ratio of the relay-to-destination link

in dB scale. For fairly comparison, we include the direct link in (c) although the original relay
precoded scheme in [15] only considers the relay link. As shown in Figure 4.1 and Figure 4.2,
we can see that the relay precoded system outperforms the un-precoded system. However, it is
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inferior to the linear source and linear relay precoded system. Since the nonlinear TH source
and linear relay precoded system are considered in (d) and (e), both systems outperform the
other systems. We can observe that the performance of the proposed robust TH source and
linear relay precoded system (e) is the same with the non-robust design system (d). This
indicates that the proposed robust precoded system is a generalization of the non-robust
precoded system. When perfect CSls are available, the proposed robust system is degenerated

to the non-robust one.
In the second set of simulations, we lgf =0.003 and the other parameters be the

same as those in the first set of simulations. Figure 4.3 and Figure 4.4 show the MSE and
BER performances for the imperfect CSI case. From the figures, we can also observe that the
un-precoded system is still inferior to the precoded systems. The nonlinear source precoded
systems are superior to the linear ones. Since the TH-L-robust take channel uncertainties into
consideration, it outperforms TH-L. Note that the performance of the non-robust precoded
system slightly is degraded at the_highi SNR region. This is because when SNR is high, the
interference caused by channel uncertainties offset the noise effect and dominate the overall
performance.

In the third set of simulations, we compare the performance of the proposed non-linear
source and linear relay robust system and the existed linear robust relay precoded system
(U-L-robust) [36]. Figure 4.5 and Figure 4.6 show the MSE and BER performances for
0=y=0 and 0> =0 (o’ =0.003). As:we can see, both U-L-robust and TH-L-robust are
degenerated to U-L and TH-L, respectively in this case. In imperfect CSls environments, the
performance of U-L-robust is superior to that of U-L. However, since it only considers a relay

precoder, its performance is still inferior to the proposed TH-L-robust.

In the fourth set of simulations, we show the MSE performance of the proposed method

with various correlation covariance parameters. Here, we/le0, o> =0.002 and J be
varied. Also let SNR,. =30 dB, SNR, =15 dE and SNR,, be varied. Figure 4.7 shows
the simulation result. From Figure 4.7, we can see that the performance of the proposed
method is increased as the decrease@ofAs 0 becomes small, the covariance matrices
2,0 2, and X will approach to o?l . This matches our expectation that the
performance of the proposed method depends on the quality of channel estimation.

In the last set of simulations, we evaluate the MSE performance of TH-L and

TH-L-robust under the scenario thé=y=0 and o’ is varied. The results are shown in
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Figure 4.8. The SNR of each link in the system is the same as the previous case. As we can
see from Figure 4.8, the performance of TH-L and TH-robust both are significantly degraded

when g’ becomes large. The performance gap between TH-L and TH-L-robust increases

when the CSI uncertainty increases.
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w | | |
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Figure 4.1: MSE performance comparison for existing precoded systems and proposed robust/non-robust TH
source and linear relay precoded system. (All with MMSE receiver.)
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Figure 4.2: BER performance comparison for existing.precoded systems and proposed robust/non-robust TH
source and linear relay precoded system.-(All with MMSE receiver.)
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Figure 4.3: MSE performance comparison for existing precoded systems and proposed robust/non-robust TH
source and linear relay precoded systedn=(y/ =0, g7 = 0.003)
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Figure 4.4: BER performance comparison for existing precoded systems and proposed robust/non-robust TH
source and linear relay precoded systedi=@= 0,572 =0.003)
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Figure 4.5: MSE performance comparison for existing robust/non-robust relay precoded systems and proposed
robust/non-robust TH source and linear relay precoded systemy(= 0,02 =0/ g? =0.003)
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Figure 4.6: BER performance comparison for-existing robust/non-robust relay precoded systems and proposed
robust/non-robust TH source and linear relay precoded syséemy(=0,0? =0/ g2 =0.003)
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Figure 4.7: MSE comparison for proposed robust precoded system with differept=0, 52 = 0.002)
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Chapter 5

Conclusions

Many transceiver designs in three-node MIMO AF relay systems only consider the relay
precoder. Also, the direct link is often ignored. As a result, the resource provided by the
channel is not fully explored. This motivates us to study the transceiver designs such that both
the source and relay pecoders are considered and both and the direct and relay links are taken
into account. In this thesis, we consider a three-node MIMO AF relay system with a THP at
the source, a linear precoder at the relay, and a MMSE receiver at the receiver. We employ
the primal decomposition method, transferring the problem into a subproblem and master
problem, to solve the design problem. Using a special precoder structure, we are able to
obtain a suboptimum solution «in- closed-form. In real-world applications, however, perfect
CSils, required for the precoders design, may not be available. So, we step forward to consider
a robust design. We take the CSI uncertainties. into consideration and formulate the
optimization problem. Similar to the non-robust design, we use the primal decomposition
approach, transferring the problem.into a subproblem and master problem. To facilitate the
development, we derive a lower bound for the utility function of the optimization. It is shown
that the tightness of the bound depends on the channel correlation between the transmit and
receive antennas. If no correlation exists, the bound will be equal to the utility function itself.
Finally, using the same precoder structure as that in the non-robust design, a closed-form
solution is obtained. Simulation results shows that the proposed robust precoded system
outperform existing un-precoded and relay precoded systems no matter perfect CSls are
available or not. In concluding the thesis, we suggest some possible topics for future research.

1. In this thesis, we consider a three-node AF MIMO system with direct link included.

In the design procedure, the estimation of CSls is less addressed. The design of
training sequences or pilots for effective channel estimation is important in
real-world applications.

2. In the precoded system, the estimated CSIs or computed precoders have to be fed

back to the source and relay node. How to design efficient feedback systems deserves
further studies.

3. In this thesis, we only study a typical three-node MIMO relay system with one
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source node, one relay node and one destination node. In a general relay system,
there may have multiple source, relay and destination nodes. The precoders design in
such a system is challenge and need for further study.

The relay precoder in our consideration is linear. How to design a nonlinear source

and nonlinear relay precoders is still an open problem.
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Appendix

Appendix A : Optimal feed-back matrix B [37]

We try to find the optimumC to minimize tr(E), described in (2.17)-(2.20), which is
a function of the precoding matrices. This can be formulated to minimize
tr(E)=tr(CMCH) subject to C being a unit diagonal lower triangular matrix. Using
Cholesky factorization, we have

M =LL" (A.1)
where L is a real diagonal lower triangular matrix. Write the cost function as

tr(CMCH):tr(CLLHCH):||CL||i and note thatCL is a positive definite lower

triangular matrix. LetA =2---2 4, ‘and g, 2---20y. denote the eigenvalues and singular

values of CL . Then we can-obtain-the following lower bound by applying Weyl’s inequality
[40]:

leLE=Y 0?2 Y A2 =) [oLT
i=1

0
w
I
o

(A.2)

We find that the term in the right hand side of (A.2) is a boundj(hf”i and it is

dependent onC. The equality of (A.2) is held whe&€L is normal. If a lower triangular
matrix is normal, it must be a diagonal matrix [40]. Therefore, we can cho@se@achieve
the bound in (A.2). So, we have:

C:diag{L11 ool KK} m (A.3)
Using the optimun@ , we can rewrite the MSE matri as:
E =diag(L?, ... L%) (A.49)

So, the optimumC will yield a diagonal MSE matrix, and it also minimizes the trace of
the MSE matrix.
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Appendix B: MSE in (3.7)
In this section, we derive (3.7). To proceed, we start from the MSE in (3.6). As assumed,

the elements in the precoded signas are statistically independent and have zero-mean and

a same variances; . Then we can haveE| xx" |=¢?l,, and E| w" |=gZCC" . Note that

the independent assumption is valid only for the large QAM size (e.g.16) [21].

Therefore, we rewrite (3.6) as

o.GHF F/H"G" A

F,, Tr{o*GHF,C"}}

J(CE,F,G)=E {

A

{o - B
{Te{o?crim"G"}} + Tr{o?cc?} + B, {Tr{GR,G"}}
{o -

= To{B,{o’GHF F/B"G"}} - T1{E, {s*GHF,C"}} -
- To{ B, {*CEIR G ]} + Tr{UsCCH} +Ti{E,{GR,G"}},
where R, = E[wwH]. We consider the first term of (B.1) :
Te{ B, {’GHR,FIR"G"}} = Ti{o?GE [HF F/H"} G}
B {0, Friull E{n B rul ¥iul | ; (B.2)

= 0’G

S E {HRDFRHSRFSF;IHH } E {HRDFRHSRFSF:HgRFgHH }
Since AH_ , AH_, and AH , & are matrix-variate complex Gaussian random variables
with zero mean and all independent, we-can-use a useful property as described below:
Property [44]. Let X ~N__ (M, Z0¥) and Zz(aij), W :(z,l/ij), then
E(XAX')=tr(A'W)Z+MAM' (B.3)
This property has been proved in J[4%hus, we can have the first diagonal term of (B.2)
as

EA{HSDFSFs{{HgD} = EA{(ﬁSD + AHSD)FSFS{{ (ﬁSD + AHSD)H}

B.4
) A (B.4)
= Tr{BE Wy} ) + HopBBY Hp = Ty,
For the second diagonal term in (B.2), we have
HyyH pnHyyH —_ HyyH HyyH
Ey (W, FH FERIFE Y = (0, FE (0, FFml ) Eal ) (B.5)
=E,{H, F 1, F'H | (B.6)
=Te{w, } 5, + HroF, T, F Hap (B.7)

where the equality in (B.5) is due to the assumption thidt, and AH ., are independent.
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The matrix Ty, has a similar form as that of, in (B.4) and it can be expressed as

— HypH | — H & il ol
T, = E,{H FF/HI} = To{FF/W 15+ HopB F Hop (B.8)
The equality (B.7) is obtained by using the property outlined above. For the off-diagonal

matrices in (B.2), we have:

En{Hg B FIRE FIHE,) = AsnFoFY ARl Ao (B.9)
En{H,,FHg FFIHD Y = Ao F, AonFoFL B (B.10)
For the second and third term of (B.1), it is clear that
Tr{ B, {0?GHE,C}} = Tr{0?GHF,C") (B.11)
Te{ By {o?CRIR7G"}} = afTr{CFgf ﬁHGH} (B.12)
For the last term of (B.1), we have
_ Nps u R H
ol {[(ﬁ}w + AHRD)FRHR \ nD,J[nD’l ((HRD A ) Falt * nD’Q) }
i 3 (B.13)

n,d M

-~ ~H
0 o, Tr(FFIW N5+ o Haok FiHw +07 1
Finally, substituting (B.2)-(B:13) -into.(B.1),” we can obtain (3.7) after some

simplifications.

Appendix C: To prove the cost function (3.22) is monotonically
decreasingin a,=0.
Let’s rewrite the MSE matrix E in (3.22) as a function @f ,
2 21 HirH T L g
E(a,)=o0C(aU/A"AU, +1,) C
= 02| 02U (o2 H (a‘202 I +0’T (LIJ )Z )_lﬁ +
s s Cg |V gD \Ug O Ay T O LI\ W gp ) ~5p SD (C.1)
all gl -2 24V 5y = o
HsxF, Hro (a’DA +a’A) HRDFRHSR)US +1,| ¢,
where AA and A are those defined in (3.24) and (3.25). We know thdf (ay)} is

monotonically decreasing imrg =0 whichimplies E(aSl) < E(asg) forany a;, 2 a;,,
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ag, and ag, are real numbers. Our purpose is to check]i}(fa&l) < E(aw) for any

as, = dg, ornot. First, we start the proof with the following lemmas.
Lemma C.1 [43]: For any two Hermitian matrice?; and P,, if P, > P,, then
X"PX = X"PX with an arbitrary matrixX where P, = P, indicates thatP, - P, is a

semi-positive definite matrix.

Lemma C.2 [43]: For any two Hermitian matrice®; andP,, P, = P, if and only if
P <P,

To start with, we consider the cumbersome part in (C.1)

a;’AA =Tr| Fy| 07 (Tr(lPSR)ZSR + I?ISRFI?R) +aiol 1y |FiWep |2k )

=H sr B i
+02Tr (W ) FppFy S o B H pp
Since AA and A are Hermitian matrices andA- is a function ofay. By (C.2), it is
easy to observe that

a DA < aAA

ag=ag Qg=0g, ' if aS,l 2 05,2 (C-3)

By Lemma C.2, we have

— _ -1 _ ” -1
(o504 +a?A) |, oy, 2 (a5'0A+a'A) agag, T 05120, (C.4)
By Lemma C.1, we have
/\H /\H — - —]. 2 P
(HSRFg Hpp (a’AA +a’A) HRDFRHSR) —
IR Yl ~ Jf Qg 20ag, (C.5)
> | HonFyy Hro (a5°0A + a’A) HaoF, Hsn (g -,
=M
Similarly,
-0 o H -2 9 2 o
(UdeSD (as T,y + O Tr(LPSD)ZSD) HSD) ag=ag,
. N Y ) 4 , |f aS,1 2 0572 (C.6)
g, Hsp (as g, Ay O Tr(wSD)ZSD) Hsp |4, =ag,

=N

Summing Mand Nin (C.5) and (C.6), and using Lemma C.1, we can have

42



(afc (cPU" (M+N)U, +1,)" CH)

ag=dg

. Jf Qg 20ag, (C.7)
< (qfc(ang (M+N)U, +I,) CH)

Ag=0g
Therefore, we haveE(asvl)sE(aS,Q) for any ag, = a,, which implies that

tr{E(aS,l)}Str{E(aSQ)} for any ag, 2ag, ., eg. tr{E(ay)} is monotonically

decreasing witha .

Appendix D: To provethe property in (3.42)
In this section, we derive the lower bound in (3.42). We start the proof by using Lemma

C.1-Lemma C.2 in Appendix C and the following lemmas.

Lemma D.1 [41]: For any two semi-positive definite matricd®, and P,, we have
Tr(PP,) < Tr(P)A,..(P,), and the equality is satisfied P, = A, I.

Lemma D.2 [41]: For any semi-positive definite. matrix ®e have A, (P)I=P.

Lemma D.3: For any two positive matricd®;, P>, and semi-positive definite matrik,
we have if P, 2 P,, then def(Y + XP'X") < det (Y +XP;'X").
Proof: This is obviously because.iP, > P,, then det(Y +XP X" ) < det(Y +XP, ' X" )
by Lemma C.1 and C.2.

We now considerAA in (3.43). By Lemma D.1 and Lemma D.2, we have

P ~ ~'H P A~ ~H
Tr (FR (%H seH sp + JTQMIRJ F}?LPRDJZRD + %Tr (qJSR)HRDFRZSRFlg Hrp

P ~T ~I
< Tr(FR (%H sk H g[R + Jfb’rIRngJ/lmaX (LIJBD)AmBLX (ZRD)IM

(D.1)

SPR,T

P ~ ~H
+ % Tr (LPSR ) Amax(zSR )HRDFRF}? HRD

P ~ ~H
s PR.TAma.x (LIJRD ) Amax (ZRD ) IM + % Tr (qJSR ) /Lna.x (ZSR )HRDFRF}I; HRD .

The last inequality of (D.1) is due to power constraint at the relay. Note that the equality
is held if Wy, = Bpply . Zrp = Vapluxu » Wsr = Bogly and Zgp = Vogplpar . which
means the channel of each antenna pair is uncorrelated (transmit or receive antenna

correlation matrix is an identity matrix). Then, from (D.1) and (3.40), we have
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(DA +A) < (DA'+A) (D.2)

P ~ P N P ~H _, ~
Now, let Y =1, +-=1 Hg{o—ﬁ,dlwﬁﬂ(ws))zsjj He | B=,/%H:RFF':HSD,

n,d

P =AA"+A and P, =AA+ A inLemma D.1, and we can obtain the desired result.

Appendix E: Derivation of optimum solution in (3.53)

To solve the optimization problem in (3.53), we first consider the corresponding

Lagrangian function
K n2 2
Py O iOra
L=>In —_—
=1

+A
2
a + bpr,iard,i

1+

K K
Z Dy (O-TQLJ‘ + Dsr (Z7 Z)) - PR,T - Z Uy iPr i (El)
=1

1=1

where A >0, v, ;>0 with i=1,.-,x. By the KKT conditions (for alf), we have

Qo T
2
o+ Bp; iaf i
a_L:_ ( 7//2 d72) +)‘[02r+Dsr(i7i)]_UM:O (E.2)
apk 1 + pr,z’asr,iard,i ’ 7
o=+ 6pr,io-7?d,i
UT7ipT7i =0 (E3)
A zpr,z‘ (O-TQL,T + Dsr (272)) - PR,T =0 (E4)
=1
>\7 Ur,i? p'r*,i Z 0 (E.5)

Substituting (E.2) into (E.3) with the consideration pf, > 0, we havev . =0, and thus

(10'”‘2, 2 4
STy rd,i
9 2
(Oé + Bpr,io-rd,i) . 1
P 01/2 0_2 - ﬁ ﬁ ﬁ ]
ri sryi rd,i ) ) (0] E.6
1+a+ﬁ o2 pmarw'a aRa R +§ + 3 (E.6)
pr,i rd,i 0-37’,7} O-sr,i O-sr,z' rd,i
—4 —B =C.

= \o2, +D,, (i,i)]

Then, we have
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1 B> C B
D= —~—t—5 (E.7)
, A( | : _

where
2 1
B —AC, _ A
A? 2
; i 572 8 1 (E.8)
and
e + . A
B, _ 2 (E.9)

2 2
i Ord,i (ﬁ + Usr,i)

After some manipulations and using the constraint in (E.4), the optirpumcan be

expressed as

+
OéO-HQ,
1 o+ sryi
2
b.; = l a i 5 T ) 4 2 o (5 +6”2) (E.10)
2 .. ) 0-7‘ 7 0-37‘72'
\j(om +D,, (z,z))ard’i e +1 fdﬂ. B 62 +1 -

where p:=1/X is chosen to satisfy the constraint'in (3.52).
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