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Abstract

In pilot-assisted OFDM systems, the channel estimation problem is usually solved by the
using the pilot subcarriers inserted in OFDM symbols. However, more pilots used will lead to
lower transmission rate, and the number of pilots is sometimes limited due to the systems. So
we are facing a problem to accurately estimate-the channel response while using a small
number of pilots. Recently, a novel technique called compressive sampling (CS) has emerged,
asserting to recover the sparse signals with a few measurements. Since the number of
non-zero taps in time-domain channel response is small, we can then apply the CS methods to
the channel estimation problem in OFDM systems. In this thesis, we propose using a subspace
pursuit (SP) algorithm which is shown to be superior to the existing CS methods in channel
estimation. The performance of proposed method is also shown to be good when pilot density
is very low by adding a decision-feedback mechanism. Then, our problem is extended to the
time-variant case. And simulation results show the proposed method performs well even when

the speed of mobility is high.
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Chapter 1 Introduction

Wireless communication technique has attracted more and more attention in recent years
since it can overcome the mobility problem. And the demand for high data rate transmission
also emerges along with the popularity of high quality video and audio service. Orthogonal
Frequency Division Multiplexing (OFDM) offers high spectrum efficiency and strong
immunity to multipath fading channel and has become an important modulation technique in
wideband wireless communications. It has also been widely used in many applications such as
digital audio broadcasting (DAB), digital video broadcasting (DVB), wireless local area
network (LAN), and WiMAX.

One of the most important tasksin OFDM receivers is to accurately estimate the channel
response in order to recover.the transmitted signals: To do that, a common practice is to insert
pilot subcarriers in OFDM symbols. Since the data in pilot subcarriers are known, the related
channel responses can be estimated and the response of other subcarriers can be interpolatec
[1],[2]. Pilot subcarriers cannot be used to.-transmit data and this approach affects the actual
data rate. The more pilots we use, the lower the data rate will be. On the other hand, if the
density of the pilot subcarriers is not high enough, the channel responses in data subcarriers
cannot be accurately estimated and the data rate is affected also. In many applications, the
time-domain channel response is sparse. In other words, the delay spread is large but the
nonzero taps is a few. In these cases, a large number of pilots are still used. The sparsity of the
channel is not explored.

In recent years, the compressive sampling (CS) technique has been developed to recover
the sparse signals [3],[4]. Using the CS method, the number of measurements can be reduced
dramatically since it exploits the sparse property of the signal. However, the complexity of the

existing methods is high, despite the fact that some of them can be solved by the standard



linear programming (LP) [5]. Another way to reconstruct the sparse signal is using the greedy
algorithm, which retrieves the desired signals from a large redundant set of vectors in an
iterative fashion. The matching pursuit (MP) algorithm was developed and proved to be
superior to the least squares (LS) algorithm [6],[7]. Later, the orthogonal matching pursuit
(OMP) algorithm was introduced on purpose to overcome the re-selection problem occurred
in the MP algorithm, and it also showed better performance than MP [8],[9]. Recently, a new
method, called subspace pursuit (SP), was developed for the sparse signal reconstruction [10].
It has been shown that its computational complexity is lower than that of OMP and it can have
the accuracy of LP.

The CS technique has found many applications in wireless communication, including the
time-domain channel estimation in OFDM ‘systems [11]. In the channel estimation of OFDM
system, the received signals in pilot subcarriers serve as the measurements. As stated in
[12],[13], sparse signhals can be exactly recovered under the limited number of measurements
when the sensing matrix satisfies the restricted isometry property (RIP). Thus, we can use a
small number of pilots to recover the sparse channelresponse as long as RIP is held.

In this thesis, we study the spare channel estimation problem in OFDM systems. We first
apply the SP algorithm and compare it with the LP, MP, and OMP algorithms. From
simulation results, we show that SP indeed outperforms other methods. Next, we reduce the
pilot density in order to raise the transmission rate. However, this causes aliasing in the
time-domain channel response, and the response in the aliasing region cannot be recovered.
To overcome the problem, we propose a decision-feedback method. The main idea is first to
conduct an initial symbol detection with the partial aliasing-free channel response, and then
use some decisions as pseudo pilots. With the original and pseudo pilots, the SP algorithm can
then be conducted to estimate the whole channel response. Simulations results show that the
proposed SP method works well even when the pilot density is low. Finally, we discuss the

channel estimation problem in the high-mobility wireless environments, where the channel
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becomes time-variant. In time-variant channel, the orthogonality of the subcarriers in one
OFDM symbol is no longer held, causing the inter-carrier interference (ICI) effect. For ICI
mitigation, accurate channel estimation is needed. We then extend the proposed
decision-feedback SP algorithm to the channel estimation in time-variant channels.
Simulations also show that the performance of the proposed method is satisfactory.

This thesis is organized as follows. First, we give an introduction to the OFDM system
and show the main concepts and terminology of CS reconstruction technique in Chapter 2. In
Chapter 3, various channel estimation methods are reviewed. In Chapter 4, decision-feedback
SP algorithms for linear time-invariant and time-variant OFDM systems with uniformly
distributed pilot subcarriers are proposed. In Chapter 5, we evaluate the performance of the
proposed method and with simulations demonstrating its superior performance. Finally, the

conclusions and future works are drawn in Chapter 6.



Chapter 2 Introduction to OFDM System and Compressive

Sampling

2.1 OFDM system

OFDM is a frequency division multiplexing (FDM) scheme and can be view as a digital
multi-carrier modulation technique. In FDM, the high rate stream is divided into several
parallel lower rate sub-streams, and this is equivalently to divide the available wideband
channel into narrowband sub-channels, and each data stream is transmitted with a subcarrier
in a sub-channel. While the data to be transmitted need not to be divided equally nor do they
have to originate from the same infermation source.

The primary advantage of OFDM over single-carrier modulation is the resistance to the
frequency selective fading effect. As the bandwidth of each OFDM sub-channel is sufficiently
narrow, the effect of frequency selective fading for each transmitted signal in each
sub-channel can be considered as flat. Thus, the equalizer at the receiver can be simplified to
an one-tap frequency-domain equalizer. Furthermore, since the symbol duration increases for
lower rate subcarriers, OFDM provides additional immunity to impulse noise and other
impairments and the system stability is raised.

In OFDM systems, the subcarriers are designed to be orthogonal to each other, allowing
the spectrum of individual subcarrier overlapping with minimum frequency spacing,
achieving high spectral efficiency. Due to the orthogonality, the signal transmitted on each
subcarrier can be recovered despite the overlapped spectrum. Figure 2- 1 shows the
overlapped spectrum of OFDM modulated signals. Since the sinc-shaped spectrum of one

subcarrier is required to be nulled at other subcarriers’ frequencies. The subcarrier spacing



. . W 1 .
between two neighbor subcarriers can be calculatefif asﬁ:?, where W is the

bandwidth, N is the number of subcarriers, afid is the symbol period.

N subcarriers

Figure 2- 1 Amplitude spectrum of an-OFDM signal witsibcarriers.

In most wireless systems, signal usually travels through different paths causing the
multipath effect, which results previous symbols to interfere with the latter symbols and the
phenomenon is known as inter-symbol interference (ISI). By adding a cyclic prefix (CP) in
front of each symbol, the OFDM scheme offers an effective solution for ISI mitigation. The
size of CP is designed to be larger than the maximum channel delay spread, so that the effect
of ISI is eliminated. Since CP is a copy of the end portion of an OFDM symbol, the
transmitted signal becomes partially periodic, and the effect of the linear convolution with a
multipath channel can be translated to a circular convolution. As is known, conducting a
circular convolution in the time-domain is equal to conducting a multiplication in the

frequency-domain. Thus, the received data in frequency-domain is simplified to a
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point-to-point multiplication of the data symbol and channel frequency response. Moreover, if
the CP length is long enough, the inter-carrier interference (ICI) can also be eliminated to
maintain the orthogonality of subcarriers in the multipath fading environments. Figure 2- 2

shows the generation of the CP. In the figufe,denotes the symbol duration excluding CP,

Tee the length of CP, and, the total symbol duration.

R {3 —

' CP OFDM symbol

p— —
I

i Ter | T K

N "

T

S

Figure 2- 2 An OFDM symbol with cyclic prefix.

2.1.1 Continuous-time OFDM signal model

Figure 2- 3 shows a typical continuous-time OFDM baseband modulator. The operation
of the modulation can be described as below. The transmitted symbol stream is first split into
parallel sub-streams using a serial-to-parallel converter and each sub-stream modulates a

subcarrier. The modulated signals are then transmitted simultaneously.



OFDM
Symbol

B4 (1)

Figure 2- 3 Continuous-time OFDM baseband modulator.

The i -th modulated subcarrie@?(t)- can be represented as

1 jznk(t'TCP)
—e T tO[o, .= T+
at)=<JT [ ) 2. 1)
0 ,otherwise

In Figure 2- 3, X (i) denotes the transmitted symbol, drawn from a set of signal constellation

points, at thei -th subcarrier of thek -th OFDM symbol. The modulated baseband signal for

the k -th OFDM symbol can then be expressed as
K= K0 @CKT), Kis (kT 2.2
where N is the number of subcarriers. The received sigyél can be expressed as
y(t) = h(t,7) OxX() + () (2. 3)

where h(t,7) denotes the time-variant channel impulse response atttimg) = > x‘(t)

k=—00

is the transmit signalw(t) is the additive white complex Gaussian noise, @hdalenotes

the operation of linear convolution.



&, (1)

y(t)

P/S b—»

VNS

Figure 2- 4 Continuous-time OFDM baseband demodulator.

Figure 2- 4 shows a typical continuous-time OFDM baseband demodulator, in which

. (t) denotes the matched filter for theth subcarrier ‘andy, (i) is the demodulated signal

at i-th subcarrier for thek -th symbol. The matched filter is defined as:

0() = {(/F(rs—t) ,t0[o,T) 2.8

0 , otherwise

2.1.2 Discrete-time OFDM signal mode

Consider an OFDM symbol, the modulated baseband signal is given by

X=—=> %€ T ,0<t<T (2.5)
where %X is the transmitted data symbol. Now, sampling the sigx@#) with the

sampling periodT, =%, then (2. 5) can be rewritten as:



(2. 6)

DiN xeN =IDFT{%x} ,0sns N-!

For a noise-fresystem, the discrete demodulated sigﬁ{ak] can be expressed as:

—j2mkn

y[k]=%§y[rie’“= DFT{ Y} .0s k& N1 2.7)
Equations (2. 6) and (2. ghow that modulation and demodulation in OFDM systean be
conducted by inverse discrete Fourier transform (IDFT) and discrete Fourier transform (DFT),
respectively. In practice, IDFT/DFT is implemented with inverse fast Fourier transform

(IFFT)/fast Fourier Transform (FFT). Figure 2- 5 shows the discrete-time OFDM system

model.
Cp
~ Kagim< w[n} _ i
X(0] — =5 — V|0
3 = B
=l s = h[l,n] sp =) >
= iprT [ —> prT [
O IR N S R B E
= ~aBk — —>
X[ N —1]—> e F —> —> y[N-1]
) ’ X .

Transmitter Channel Receiver

Figure 2- 5 Discrete-time OFDM system model.

Now, the modulation operation can then be summarized as follows. Data streams in the

transmitter first modulateN subcarriers, which is performed by -point IDFT unit, and

then a CP of lengthl, is added in the time-domain symbol. The resultant sigdal] is

then passed through a time-variant multipath channel. Assuming that both timing and carrier

frequency synchronization are perfage can express the received sigrya[ln] at receiver as



y[n]=hLa O]+ v 1
:IZ:l:h[I n| x[((n— I))N}+v\,{r]

(2. 8)

where h[I,n] is the channel impulse response of théh tap at n-th time instant, L is the
number of channel taps(, D)N represents a cyclic shift in the base Nf, [J is the circular
convolution operator, andv[n| is sampled additive white Gaussian noise (AWGN) with
variance o” .

Then a DFT is conducted for each symbol after CP removal, and the received signal in

frequency-domain is given by

9= Y Ak ] e Wk 2. 9)

:ﬁkﬂﬂ@+wq , 02 ls-N-1

Equation (2. 9) can be expressed using a matrix equivalent model as

B _ﬁoo o 0 .. 0 lrg T [
¥ O h, O
¥ |=| 0 0 h,

(2. 10)

R X
..éz éx dgz

| YN i O 0 O - F‘(N—1)(N—1)_—XN'1— RUEY
where [%, %, %] is the frequency-domain transmitted data vec{dt, %, -, %]’
is the frequency-domain received data vec{(w ,V\g,---,\ﬂh_l]T is the AWGN noise vector,

and diag{[ﬁm,hl,---,ﬁN_l)(N_l)]} is an NxN matrix with [Fbo,ﬁl,---,ﬁm_lx,\,_l)] as its

diagonal elements denoting the channel frequency response.
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2.1.3 Complete OFDM system

Channel Signal
—>»| coding/ |»| mapping | sp > Ig&fgg?ﬂ? > AddCP p/s | pac
Input | Interleaving (Modulation)
Data
Source A 4
Channel
Y
AWGN —>€9
: \ 4
Decoding / Nignal FFT (OFDM
D g = ¢ demapping |€—] P/S [<— . . |€— Remove CP |¢— S/P [¢— ADC
Deinterleaving . demodulation)
Output (Detection)
Data
Source T T
Channel i
Estimation Sybchronization

Figure 2- 6 Block diagram.of complete OFDM system.

The block diagram of a-complete OFDM system is shown in Figure 2- 6. The upper path
denotes the transmitter chain, and the lower path is‘the receiver chain. At the transmitter, the
data are first encoded by channel encoder, then interleaved and mapped onto QAM
constellation. IFFT operation is then used as a modulator modulating each block of QAM
symbols onto subcarriers. After that, a copy of the end portion of the symbol is added in front
of each OFDM symbol as a CP. Finally, the baseband OFDM signal is passed to the
digital-to-analog (D/A) converter, the RF circuit, and then transmitted. The receiver reverses
the operations conducted at the transmitter. Note that synchronization and channel estimation

have to be conducted firstly.

2.2 Compressive sampling

Conventionally, if we plan to reconstruct a sampled signal without any error, then a basic

principle must be followed The sampling rate must be at least twice the maxifmaquency
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contained within the signal. The principle is known as Nyquist/Shannon sampling theory,
which is one of the crucial theorems in signal processing. However, a novel sampling theory
called compressive sampling (CS) goes against this common principle has recently emerged
[3],[4]. It asserts that if we know the signal itself is sparse (the support of the coefficient
sequence is in a small set) or compressible (the sequence is concentrated near a small set) by
some known transformation, then it is possible to uniquely recover the signal from far fewer
measurements with high probability. The idea is that f&rsparse signal, which there are

only K coefficients supported on the signal, the unknowns of the signal are actually the
non-zero positions and ¥alues.

Now, consider a general problem of recovering a signalR" from a noiseless

measurement vectoy =[y,y, Y,  Y.JOR™ where

Yo = (X, ¢, k=1,..m. (2. 11)
In other words, x is not directly observed. The measurements are obtained by correlating

with the waveformg, OR". In general, the system is “underdeterminedi< N) in the

sense that the measurements are much' less than the unknown signal values. Solving the
ill-posed linear system of equations seems not possible. However, if signalsparse,

which means the useful information content embedded in the signal is much smaller than its
length/bandwidth, and the problem can be solved by the CS method, which exploits the
sparsity and operates as we are directly capturing the information about the signal of

importance.
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2.2.1 CSrecovery methods

Let ® be a matrix takingg, as its rows. The relation between the observatorand
K-sparse signal vectox can be expressed as
y=ox, [x|,<K (2.12)
where @ OR™" is referred to as the sensing matrix, ghig, denotes the/,-norm. It has

been shown that one can recover the sigralby solving an /,-norm minimization

problem:
min x|, subjectto y =®x (2. 13)

However, this approach cannot be used in practical since it is NP-hard [S5§fidtthe
computational complexity will be very high.
A more computationally efficient strategy was thelwpgmsed. The signal recovering

problem is now reformulated-as.a convex optimization problem:

min |x|, subjecttoy =®x (2. 14)
where
N
x|, = Z_;,|Xi| 2. 15)

denotes the/,-norm of X. This approach can be efficiently implemented by the standard
process of linear programming (LP) [5],[15].

A Another way to estimate the sparse signals is the use of greedy algorithms such as
Matching Pursuit (MP) [16],[17],[18], Orthogonal Matching Pursuit (OMP) [8],[9],[18], and
Regularized Orthogonal Matching Pursuit (ROMP) [19], which iteratively decrease the
approximation error by relaxing the sparsity constraint. These algorithms are operated as

follows : Search for the supports of signal by adding new candidates into the estimated

13



support set and subtract their contribution from the measurement wectrccessively. The
objective is to minimize the residue vector=y - @ x at iterationj . The greedy algorithm

provides an effective way to retrieve desired signals, referred as a small subset of vectors,

from a large redundant set of vectors.

2.2.2 Robustness of CStheory

To study the reconstruction accuracy of CS, Restricted Isometry Principle (RIP) is

introduced to describe the robustness of CS [5],[12],[20]. ®et be a mx|T| matrix

obtained by extracting théT| columns of ®R™" with T O{1,..., N}. Then matrix ®

is said to satisfy the RIP if

(=) X = erd; < (1+ )X, (2.16)

for all coefficient sequencex DR™, |T|< K, where K <m is the sparsity of signak

1
N 2
0< g, <1 is the restricted isometry constant, aM2=(2|xi|2J denotes the/,-norm.

i=1
The principle coveys that when the RIP is held, the columns of sensing ndataxe

approximately orthogonal and the exact recovery achieves. A theorem has been proved in [5]

that if signal X is K-sparse, and the restricted isometry constant saisfie®,, < 1, the

solution of (2. 14) is exact. While the signal is just near sparse as a compressible signal, it has

also been proved that the recovery error will be upper-bounded by
X=X | 1

7K

for some positive constaf and restricted isometry constady, +9J,, < 2, where X is the

[%x=x|,= C 2. 17)

solution of (2. 17), andX, is the bestK-sparse approximations obtained by keepig
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largest coefficients ofx [13].

One may ask how to design a sensing matrix whose columns oKs@e nearly
orthogonal. For what value &f is this possible? We give some possible sensing matrices in
the following :

1) Gaussian measurements: The entries of the sensing matrix is obtained by sampling
independent and identically distributed (i.i.d) entries from the normal distribution with

zero mean and varianck/m. In this case, if the sparsik/obeys, i.e.,

m
KsC———
log(N / m) (2.18)

whereC is a constant related to the restricted isometry constant, then the probability of
exact recovery can be expressedlaO(e”™ )for some y>0 [20],[21].

2) Binary measurements: The entries of thiex. N.sensing matrix is obtained by sampling

independently the symmetric Bernouli distributid?(®, = _%) :%. When (2. 18) is

held, the probability of exact recovery-is-also proved talb&®(e " )for some y>0

[20].
3) Fourier measurements: Thex Nsensing matrix® is obtained by selectingn rows

from a Nx NFourier matrix randomly and the columns & are renormalized to

have unit norms. Now, the constraint to the spak§ity

m

K< CW (2.19)
and is refined as
m

to maintain an overwhelming probability of recovery [20],[22].
4) Incoherent measurements: The sensing matrix is obtained by sel@atovgs from an

N x N orthonormal matrix U randomly, and the columns are normalized to be

unit-normed. The matrixU = ®¥”denotes a transform matrix that transforms the
15



signal from the W domain to the® domain. Then the exact recovery occurs if

1 m
K<CEl=GE——
17 (logN)’ (2.21)

where ,u:«/ﬁﬁma)gJ Kqﬁl W, >‘ is the mutual coherence betwéand @ .

In the real-world applications, noise is always present. As a result, (2. 12) becomes

y=ox+z, |3, <K @.22)

where z is the noise vector with a bounded enelfpﬂz < o’. The problem we have now is
to solve the equation shown below:
min |x|, subjectto |y-®x|,<o (2. 23)
From the CS theory, it asserts that the solution of (2. 3)pbeys
[x-x|; < CKo? (2. 24)

for some constanC [13]. Therefore, the stability and robustness of CS are maintained.
The CS technique has been widely applied'in many areas. For example, it is used in data
compression, sensor networks, and error correcting codes. Recently, it has been applied in

channel estimation, which is what we are concerned in this thesis.
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Chapter 3 Channel Estimation

In OFDM systems, there are mainly two types of subcarriers allocated, which is shown
in Figure 3- 1. The data subcarriers as what it named are used to transmit data symbols, and
the pilot subcarriers are the subcarriers, spread uniformly in the frequency-domain, used to

conduct channel estimation.

Frequency

00000000000 000000000000000000000 O Data
00000000000000000000000000000000 subcarrier
00000000000000000000000000000000 @ Pilot
00000000000 000000000000000000000 .
subcarrier

A 4

Time

Figure 3- 1 Example of subcarrier allocation in OFDM systems.

3.1 Conventional least squares method

Typically, channel estimation can be performed either in the time-domain or the

frequency-domain. The time-domain received signal (after CP removal) can be expressed as
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y,=h Ox+w,0<ns N-1 (3.1)
where N is the number of subcarrierg;, is the time-domain received signaf, is the

time-domain training symbolsh, is the channel impulse response, angd is the AWGN

noise. Reformulating (3. 1) in the matrix form, we can have

Yo | Xo XN o K- ho Wo
Y % e Xy || | W
Y, |=| : Do : h, [+| w, |=Xh+w (3.2)
: X2 K-z 0 XN- f E
_yN—l_ | X Xn-2 0 XL _hL—l_ _WN—l_

whereL is the maximum channel delay. A conventional method for channel estimation is
the least-squares (LS) method. The LS.channel estimate minimizes the squared errors given

by :

2

Jv-Xhis (3.3)

where y =[Yy,, Vi,---, Y] is the time-domain received vector. The optimum estimate has
been solved as
A =(X"X)" X"y (3. 4)
The time-domain LS method described above requires a time-domain training sequence.

Another LS channel estimation method, described below, uses pilot subcarriers. Consider a

received OFDM symbol in theé-th subcarrier:

v =hx+w (3.5)
where ¥, is the received signal in the frequency-domain,is the transmitted signal in the
frequency-domain,ﬁi is the channel frequency response, afds the corresponding AWGN

noise. Note thath, can be expressed ds =f [h, where ish the channel response in the
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time-domain expressed as a vector, &nds a row of the DFT matrix. Equation (3. 5) then

becomes
Y, = %fth+ W (3. 6)
Considering the received signals in all pilot subcarriers, we can have following expression:
[ —janR® ~jonP B
N e N N
I Yoo | -j2r 2 e—jzﬂplTﬂ e_jz,rplE(NL—l) "y ] r W, .
y W
~pl v —j2r{p2—m —j27'{p2—EL —j2np2E“‘_l) hl ~p1
P2 = Xp N N N hz + P,
i S (3.7)
_pr 1| Lt _WpM—l
-jarPual® —jorPual _jzn.pM—ll:(L_l)
N N N
=X, ,Fh+w,
where
i X, O 0 0 ]
0 X, O 0
X,=1 0 0 X, 0 3. 8)
0 0 0 X,
L M-1_]

is a diagonal matrix with pilot signals as its diagonal elemepts,0<i<M -1 is the index

for pilot location and M is the total number of pilotsyp:[ypo,S/Q,...,S/M]T is the

received frequency-domain vector on pilot locatiofs,is a partial DFT matrix obtained by

selecting M rows from aN-point DFT matrix according to pilot positions and retaining the

first L columns, h=[hy,h,...,h] is the time-domain channel impulse response, and

W, =[\Tvpu,\Tvﬁ,...,\7qu]T is the noise vector. Using the LS channel estimator, the following

squared error is minimized:
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~ ~ 2
[95-% 0 (3.9)
And the resultant time-domain LS channel estimation can then be derived as

~ -1 el
hio=(F"X,"X F) F*X,"y, (3. 10)

p

The time-domain LS algorithm requir@(ﬁ) arithmetic operations, so the computational

complexity is high whenL is large. But if only L' significant taps wherel'" is much less

than L are taken into account, the computational complexity of the LS method can be
reduced. For example, if only two taps n are considered, saf, and h_, , then only

the first and the last column df are required to use. Then, we have

1 \
—err%D \: —jznp'TEl : _jZ,TIOoE(NL D
) e |
1 I 1
_y ] j27P0 i | 2P E 2P i i Tw
- - » i - ]
Po N | e N 3 P
y 1 1 | W
~ ~ o P[0 : _ P2l : o pOLD) : hl P
~ :X IZITN h IZIT—N \ 12717N h hz + \7V
Yp, p ' € ! (N
. ] ) 1 .
I | : :
. 1 1 | ,H_\
~ . \ 1 [N | X
_pr—l_ ' | L YE
| 1 ]
—jorPual! —jorPuall ! _jzan_l[(L—l)'
G Nrooe N ‘e N
e N P
\\ ”’—”
\\\ ””,
| 4
—j2mP® “janPdtD) ]
_ . e N e N ~ _
y _
Po _J-Z,,plNED _J-Z,,plE(NL 1) Po
ypl e e NPL
- S P[0 (L) h _
= —j2mr—=— s +
Yo, Xole N e N h W, (3.11)
-1 .
pr -1 o qL-1) _WpM-l i
_J'zﬂpM—l _j2npm_1
e N e N

With the reduced DFT matrix in (3. 11), the matrix to be inversed in (3. 10) is reduced to a
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2x 2matrix. As a result, the computational complexity is reduced.

3.2 Compressive sampling approach

For most wireless channels, the delay spread may be large, but the number of non-zero
taps is generally small. That raises the subject in exploiting the sparsity of the time-domain
channel response in the channel estimation problem. Since we are dealing with a sparse
channel, the CS methods introduced in Chapter 2 are applicable. In the channel estimation of
OFDM systems, the number of measurements indicates the number of inserted pilots. Now,

we express the frequency-domain received signal vector on pilot positions as
Yo, = FQH+ép (3.12)

—_ T
where h:[hT QX(N_L)] with * 0, oy DR™ ™ being a zero vector,F, is a matrix

collecting the rows of &l-point DFT matrix according to pilot indice :{ P> Proe-- s pw_} :

and ¥, ,()=9, /%, ,&/(i) =W;./%;, ,GisM-~ . Equation (3. 12) can be compared

with (2. 22), indicating thatF, is a sensing matrix. Thanks to the CS theory, we can

estimate the time-domain channel impulse response with low pilot density.

3.2.1 Matching pursuit (MP) algorithm

MP algorithm was the first developed greedy algorithm applying in channel estimation,
and it has been shown that MP is superior to the traditional LS method introduced in 3.1 either
in the aspect of accuracy or the computational complexity [6],[7]. The block diagram of the

MP algorithm is shown in Figure 3- 2.
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Correlation Cal. New Iteration

¢Dy|—l

STOP

with largest corr. magnitude

N -I-.l = T| = D{ several ’indice}s — <yr ’¢kl >¢|ﬁ

Figure 3- 2 Operations in MP algorithm.

We also summarize the operation of the MP algorithm in Table 3. 1.

Table 3. 1: Matching pursuit algorithm

Define ® =[F, (:,(1:L))] and Y =¥,

Input: @,y
Initialization:

1): k=arg max [(y 4,)| n= 01. N~ T°={k}.

2): y2=y=(y. 4 )8 & =max(y g )[xsign{(v.4, )}
Iteration: At the | -th iteration, go through the following steps.

1): k=arg max Ky'r-l ¢n> , T =T"0k.

2): ¥y, =y - <yr @, >¢k| G = max‘ |1¢k ‘xs|gn{ yr ’¢kl}

3): If the number of iterationd =p or [y!

,S€, quit the iteration.

Output:

1): The estimated channel response, satisfyﬁ{%ng_i_T. =0 and

the non-zero coefficients are stored @F{c,,c, ..., G} .

The MP algorithm first finds the column vector @ having the maximum correlation

with the measurement vector . The column index is denoted by which is added into the
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index set T°. Then the k,-th column of ® is selected to compute the residue vecyy
and the correlation coefficient. The process is then repeated, and the index set during each
iteration is updated asT'=T'*Ok whenever k OT'™", otherwise T'=T'". The

algorithm is terminated when either the number of iteration exceeds a preset number, or the

residue of the measurement vector is sufficiently small dftéterations.

3.2.2 Orthogonal Matching pursuit (OMP) algorithm

The MP algorithm searches all vectors in each iterative, leading to the re-selection
problem. This problem makes the convergence of the algorithm slow. Moreover, MP only
optimizes the coefficient of the last selected vector to minimize the error. To overcome these
problems, the OMP method was introduced and it-has been shown that OMP has the better
performance[9]. Figure 3--3 shows the block diagram of the OMIBorithm, and the

corresponding operation is described in Table 3. 2.

Correlation Cal. New Iteration

¢Ey|—l

NO

TI good

enough ? STOP

T| — TI -1 D{ several indices > prOj(y, q)-l-l

with largest corr. magnitude

S

Figure 3- 3 Operations in OMP algorithm.
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Table 3. 2: Orthogonal matching pursuit algorithm

Define ® =[ F, (:,(1:L))] and y =Y,

Input: @,y
Initialization:

1): k=arg maxdy|, T°={k}.
2): y? :resid(y,dJTo).
Iteration: At the | -th iteration, go through the following steps.

1): k=arg ma#d)gy'r'1 , T'=T"0k.

2.y = resid(y,d)T. )

3): If the number of iterationd =p or |y,

,SE, quit the iteration.

Output:

1): The estimated channel response, satisfﬁr{}ng_i_T. =0 and
the non-zero coefﬁcientsﬁT. = CDTT.y .
Note here ®' =(®"®) ®", resid(y,®)=y-®(o"®) oty

and &, =@(:{T}).

The main difference between the MP and OMP algorithm is that the OMP maintains a
stored dictionary containing all the indices selected among the iterations. The corresponding
vectors are used to compute the new residue vector, avoiding the re-selection problem
occurred in MP. The coefficients estimated in OMP are optimized with a set of selected

vectors, which results in a much smaller error while the computational complexity is higher.
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Chapter 4 Proposed Subspace Pursuit Algorithm in Channel

Estimation

4.1 Channel estimation in linear time-invariant (LTI) system

Recently, a new method, called subspace pursuit (SP), was developed for the CS signal
reconstruction [10]. The computational complexity of the algorithm has been shown to be
lower than that of OMP while the accuracy can approach that of LP. To the best of our
knowledge, the SP method has not been used in the OFDM channel estimation problem. Here,
we propose using the SP-based method in the channel estimation, and show that SP indeed
outperforms the existing CS"methods including LP, MP, and OMP by simulations. In this
section, we only consider linear time-invariant (LTI) channels.

Recall that the received signal vector corresponding to the pilot sequence expressed as

yD,p :FQﬁ+ép (4 1)

with F, is the sensing matrixh the channel response, ag] noise. Lety=y, , a

schematic diagram of the SP algorithm is shown in Figure 4- 1.

New Iteration

T =1 D{ Kindices with Correlation Cal.

| largest correlation magnitude} q)Dylr—l

proj(y. ;)

TI :{ K indices with largest
projection coefficients }

—>{ proj(y, @, ) STOP

Figure 4- 1 Operations in SP algorithm.
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The main operation steps of the SP algorithm are summarized in

Table 4.1.

Table 4. 1 Subspace Pursuit Algorithm.

Define ® =[F, (:,(1:L))] and y=y,,

Input: K,®,y
Initialization:

1): T° ={ K indices corresponding to the largest magnitude entrigs in
the vector CDDy} :

2): yo= resid(y,thO).
Iteration: At the | -th iteration, go through the following steps.

1): T'=T70{ K indices corresponding to the largest magnitude
entries in the vectord'y, "} .

2):Seth, =adly.

3): T'={ K indices corresponding to the largest magnitude elements
of h,}.

4): yl = resid(y,(DT. )

5): If

2

y| -1

y! , ,» let T' =T and quit the iteration.
Output:

1): The estimated channel resporiAsesatisfying h =0 and

{0,4,..N-}-T'

h, =dly.

In the SP algorithm,K indices corresponding to the largest magnitude entrie®'i
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are first selected to form an index s€t. Here, K denotes the channel sparsity, and the

residue is computed with respect @, obtained by collecting theK columns from @

according to the elements stored Ti. During the iteration, ar2K index set is formed by
K indices that maximizing the correlation between the columns of the sensing matrix and
the residue vector united with thK indices found at the previous iteration. Then the size of

this set is shrunk toK again by choosingK indices from the largest magnitude elements

of h , and this index set can be viewed as a refinement to the indices obtained previously.

The SP algorithm is stopped when the residue vector derived is larger or equal to the
preceding one. After convergence, the tap positions of the channel are then found with the
index set, and the coefficient on the taps can be calculated by the LS method.

Due to the refinement, the indices that are mistakenly included in the index set can be
removed in the following iterations, and so as the reliable candidates, which can be retrieved
at any stage of the recovery process. This is different to the MP-based algorithms which
generates the list of candidates sequentially without backtracking. So, more accurate indices

of the sparse channel gains can be expected.

4.1.1 SP algorithm without infor mation of tap numbers

The number of channel taps may be unknown to the receiver. Therefore, a revised
version of the SP algorithm is needed. A simple idea is to conduct the SP method iteratively
with an increasing tap number, and put a threshold on the estimated channel impulse
responses. Since the gains of the insignificant taps are usually small, we expect that the
number of estimated channel taps after thresholding will be the same whenever the tap
number exceeds the channel spardity This can then be used as the stop criterion to the SP

algorithm. The flowchart of the proposed algorithm is depicted in Figure 4- 2.
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An initial frequency domain channel
estimation without interpolation

y,K=2,1=0 l<

SP Algorithm Ingﬁ?rff);l;'ap
SP(K,®,y) K=K+1
Thresholding
h,

STOP

Figure 4- 2 Recursively-.conducted SP algorithm.

However, the number of the‘iteration of the algorithm proposed above can be large since
the tap number of a channel can be large. If the statistics of the number of the channel taps
were known a prior with the help of some statistical properties, we can then use the expected
tap number as the first input instead: of two used above. Next, we search forward and
backward depending on whether the actual taps are more than or less than the expected tap
number. In this way, the iteration needed for SP re-conduction will be dramatically reduced
when tap numbers are large. This can be seen from the simulation result in chapter 5. Figure
4- 3 shows the flowchart of the modified recursively conducted algorithm.

The upper part of Figure 4- 3 is used to decide whether the true taps are more than or less
than the expected ones. The idea is to run the SP algorithm twice. If the estimated channel
response after thresholding process has the same tap number, then we know the tap number of
the true channel is less than that of the assumed number. Then, go to the right section.

Otherwise, go left.
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An initial frequency domain channel
estimation without interpolation

+ y, K = Expected Tap Number=D
SP Algorithm <
SP(K,®,y)
Increase Tap
Thresholding Number
K=K+1

|

No
y.K=K+1 & Mo > Y  y  y,K=K-2
SP Algorithm ¢ N SP Algorithm
SP(K,®,y) SP(K,®,y)

v

Thresholding

Increase Tap
Number

Decrease Tap
Number

v

Thresholding

K=K+1 K=K-1

STOP

STOP

Figure 4- 3 Efficient recursively conducted SP algorithm.

4.1.2 Channel estimation with insufficient pilots

Now, if the pilot density is low, the channel estimate conducted by the SP method may be
inaccurate. As mentioned in chapter 3, the pilot subcarriers are inserted uniformly in the

spectrum. Since the channel is estimated by the pilot subcarriers, which is equivalent to
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conduct a sampling on the frequency-domain channel response. As a result, the channel
response in time-domain can be seen as periodic. If the sampling rate is not high enough, an

effect similar to aliasing will occur. The effect is depicted in Figure 4- 4.

Magnitude

A Non-aliasing D, is the period of time-domain channel response

R4 region D, is the length of maximum delay spread

‘\, Aliasing
region

Figure 4- 4 Aliasing in initial channel estimation.

Suppose that the sampling period or-we say-the pilot interkal tisen the period of the
time-domain channel estimate will b /K, denoted asD,, where N is the number of
subcarriers. Let the maximum delay spread of the channdd heit can be easily observed
that the aliasing problem occurs whéh, > D,. And the response in the aliasing area cannot
be recovered.

We propose a decision-feedback method to overcome this problem. In the first step, we
conduct an initial time-domain channel estimate using the pilots and only take the response in
the non-aliasing region. Using the estimated channel frequency response, we can use the SP
algorithm to conduct a refined channel estimation and then symbol detection. Finally, using
some detected symbols as additional pseudo pilots, we can conduct the SP method again to

re-estimate the channel. We now describe the proposed method in detail. With the help of
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pilot subcarriers, we first obtain a frequency-domain channel response, and then transform the
response to the time-domain. Selecting the response in the non-aliasing region and transform
them back to the frequency domain, we then obtain a new frequency-domain channel estimate
obtained. Figure 4- 5 shows the procedure. Since the aliasing area is not large, and the power
of channel taps inside is usually small, the incomplete channel response can be used to

recover data with an acceptable error probability.

An initial frequency domain channel
estimation without interpolation

v

IFFT

v

The non-aliasing part of the time
domain channel estimate

v

FFT

v

SP Algorithm in Figure 4-3

v

Figure 4- 5 Initial channel estimation method.

Let ﬁ denote the initial frequency-domain channel estimate. We then use the channel
response to detect symbols at designated subcarriers. As known, the received signal in the

frequency-domain at a subcarrier in subcarrier indegan be expressed ag = hX + W,

where ﬁ is the frequency-domain channel responge,is the transmitted frequency domain
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signal, W is AWGN noise. With the use of the zero-forcing (ZF) equalizer, the estimated

symbol at thei-th subcarrier can be calculated b:y:i Then the data is sent to the

s b}

decision device to recover the original transmitted symbol. Let the detected symbol be

denoted as>:<d . The flowchart of this procedure is shown in Figure 4- 6.

Channel estimate obtained in Figure 4-5

v

FFT

v

ZF Equalizer j&— VY

v X

Decision device
V%,

Figure 4- 6 Data detection procedure.

With detected data in hand, we can then choose some of them as additional pilots,
increasing the pilot density. By choosing sufficient pseudo pilots, the period of the
time-domain channel estimat®, will be larger than the maximum delay spread of the
channel D, . Therefore, aliasing will not occur. As long as aliasing does not occur, we can
recover the whole channel response. The operation of the re-estimation can be performed as
that of the channel estimation described previously, with the increased pilots that combining

the original pilots and the pseudo pilots. To obtain better performance, the re-estimation can
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be conducted iteratively until a convergence is achieved. The complete flowchart of the

proposed SP algorithm used with insufficient pilot measurements is shown in Figure 4- 7.

START
N re :0

An initial frequency domain channel
estimation without interpolation

v

FFT e IFFT

J v

The non-aliasing part of the time
domain channel estimate

v 7

Decision device FFT

v

SP Algorithm in Figure 4-3

Equalizer

Nre = Nre +1 < I
+ Decision device
Frequency-domain channel estimation using *
original and pseudo pilots without interpolation
+ Equalizer
SP Algorithm in Figure 4-3 *
FFT
STOP re < Nt
NO YES

Figure 4- 7 The proposed SP algorithm with insufficient pilot measurements.

The operations conducted in Figure 4- 7 are summarized as follows
1) Use the pilot subcarriers to obtain an initial frequency-domain channel estimate
without interpolation.

2) Transform the frequency-domain estimate into the time-domain and obtain the
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time-domain channel estimate.

3) Select the channel taps in the non-aliasing region, and then transform them back to
the frequency-domain as a new frequency-domain channel estimate.

4) Conduct the SP algorithm in Figure 4- 3 to estimate the channel impulse response,
and detect transmitted symbols with the corresponding estimated frequency-domain
channel estimate. Then, make decisions at some designated subcarriers as pseudo
pilots.

5) Using the original and pseudo pilots, perform the SP algorithm to re-estimate the

whole channel response.

6) If the number of re-estimatiorN,, has not reached a preset valdg,, go to 3),

where all the taps of channel.arein the non-aliasing region wWier0.

4.2 Channdl estimation in time-variant system

Nowadays, more and more applications are used in high-mobility wireless environments.
In this case, the channel becomes time-variant within an OFDM symbol, violating the

common assumption for conventional OFDM systems. This is shown in Figure 4- 8.

OFDM Symbols
Cp Data CP Data
1/"‘-'\\— Y
mT e o 0 0 0 0 \\‘s »time

S . .
*<p Time-variant
response

Figure 4- 8 One time-variant tap.
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The channel variation rate depends on the Doppler frequency, which is proportional to

the carrier frequency and the mobile speed. Denote the maximum Doppler frequency as

vx f.

fo = S

4. 2)
where v is the mobile speedf. is the carrier frequency, and is the speed of light. The
normalized Doppler frequency, defined dsT,, is usually used as a parameter to indicate the

variation rate. If the sampling perio@, and f. stay constants, it is obviously that the

faster the mobile speed, the larger the normalized Doppler frequency will be.

In time-variant channels, the performance of an OFDM system is degraded when the
symbol duration is large. If the coherence time is small compared to the symbol duration, the
channel response will change rapidly-during one symbol. The orthogonality of the subcarriers
in one OFDM symbol is no longer-held and the.ICI effect occurs. Thus, the frequency-domain
channel response in (2. 9) will not be a diagonal matrix. Equation in8yv rewritten as

N-1
vk =2 Ak nf 5f b+ W

CUECED MR PE 2 208 1 ST

=0, m# k

(4. 3)

N-1
where the second term > h[k, m { n} is known as the ICI term. In this section, we will
m=0,m¢ k

extend the proposed SP channel estimation in the previous section to the time-variant

environments.

4.2.1 Linear approximation method of time-variant channel

Since the variation of channel taps is usually small in typical channels, it is reasonable to
model a variation of a channel tap in an OFDM symbol with a linear function. This is

equivalent to use a straight line connecting the start and end points of a channel tap within one
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OFDM symbol. In this way, only the start point of the channel tap and its variation slope are
needed to be specified. The approximation has been shown to be good for the normalized

Doppler up to 20%[23]. We show the approximation method in Figur®4-

OFDM Symbols

CpP Data CP Data

-

» time

]
Start point of the
response in 1*' symbol

Start point of the

—
(]
[]
] ]
(]
(]
' d
] .
' response in 2" symbol

Slope variation of the Slope variation of the
response in 1% symbol response in 2" symbol

Figure 4- 9 Linear approximation of a time-variant channel tap.

By the linear model introduced above, the variation of a time-variant channel tap can

then be expressed as

h[n=h+nxa ,h 0< nc N=1 (4. 4)

where hf[n] denotes the response of ‘teth channel tap at time instamt, h, is the

initial value of the response which is set as the response of the start poira, asndhe

variation slope of 7 -th channel tap.

4.2.2 Time-domain LS estimator in time-variant channe

As known, the time-domain received OFDM symbol can be expressed as the transmitted
symbol convolved with the channel impulse response as in (2. 8), and the operation can be

formulated in the matrix form as
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For simplicity, we express equation (4. 6) as

y=(H+D,A)x+w

where y is the time-domain received signal vector: [xo, Xiyenes xN_l]T

transmitted signal vectorw

is _the "AWGN noise, H

h
h,+a,
h+ 22

(N g

R N )

+w

+W  (4.5)

(4. 6)

4.7)

is the time-domain

is a circulant matrix with

h=[h,h,....h] as its first column,A isa circulant matrix witha=[a,, a,..., 8]

as its first column, and, is a diagonal matrix withv:[O,l,... N - J]T as its diagonal

elements.

We then transform the time-domain received signal vector to the frequency-domain with

a NxN unitary DFT matrix F . The result is given by

)7=«/N[Fy

where
—]217%0 - 217%:l - 2717()':(3_1)
e e
= 271% -j ZITWH -j ZnL(m_l)
1 e e
F=— —]217%0 = 217%1 -j 21772[%_1)
VN | e e e
S L (e & onN
e e e |
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and FF" =1 . By (4. 7), the above equation becomes

§=+NF[(H+D,A)x+w]
=N F(H +D,A)F"Fx++/N [Fw
= (FHF" +FD F"FAF" )%+ W (4. 10)

0

[D; +FD,F"D, |x+W

MK +

<
=

where § is the frequency-domain received signal vect#r,is the frequency-domain
transmitted signal vectoM is the frequency-domain ICl matrixy is the corresponding
frequency-domain noise,Dﬁ:FHFH and D,=FAF" are diagonal matrices with
h=VNFh and a=+/N[Fa as their diagonal elements respectively, abd can be

viewed as the channel frequency response without ICl.

Next, we let the ICI matrix-beM = Dﬁ+FDVFHDa, and rearrange (4. 10) to a more
compact form. Neglecting the noise term of (4. 10), we have
¥ =D:X+FD F"D,% (4. 11)

The first term is rearrange as

fh 0 0 - 0% [ fhiX ]|
0 5h 0 - 0% fhX,

Dx=VN| 0 0 fh - 0| % [=VN| f.h(x%
10 0 0 - feh| %y fh Xy |
L [ R ]
f || h

=JN| f,% || h (4. 12)

_fN DZN—1_ _hN—l_

where f, denotes thei -th row of the DFT matrixF . The second term in (4. 11) is
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0 0 0 0] [% 0 0 - 017fa
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000 - N-1] |0 0 0 - %] fa]
Let
00 0 - 0]
010 0
FD,F" =F|0 0 2 0 |FF
10 0 0 - N:1j
[ w, Wo1 Woo o Wy | Wy |
Wio Wiy VAN ¥ Win-g) W,
=1 W Woq Wo, V\£(N—l) = Ws (4- 14)
(Win-go Waegn Waegz 0 Wy | L7V
Then (4. 13) becomes
[0 00 0] [% 0 O 0 ][f,a
010 - 0 0 % O 0 ||f,a
FD,F"D,x=+NF|0 0 2 0 |F"l0 0 % 0 |[fa
0 00 - N-1] |0 0 0 - %] fa
‘'w, [[% 0 O 0 |[f,a
w, |0 % O 0 ||f,a
=JN|w, [0 0 % 0 ||fa
w,J|O 0 © %y || fua|
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with v; as row vectors, and

v, | Voo Vo Vo2
1 Vio Via Vip
2 || Vao Var Voo
[Vt Vin-go -1 Yn-92
'w, [[% 0 O
w, (|0 X O
=lw, [0 0 X
(w0 0 O

o O

I\?(l

XN -1_|

X

N

-1

(4. 15)

(4. 16)

For derivation simplicity, we ignore the noise term and rewrite (4. 11) as follows:

§=D.X+FD,F'D% =

yo | — fl |jo ] h)

. f,% || h

¥, |=JYN|| f,0% || h
_yN—l_ _fN |}N—l_ _hN—l_

Combining the two terms in the parenthesis of the above equation, we get

108N ]

2
&
&
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Yo L% Vo .
yl ny(l Vl h
¥, [=VN| f.%, v, ao (4. 18)
_)7N_1_ _fN)~(N—1 VN—l_ 212
[ AN ]
And then
y:[U V]xha:Qxha (4.19)

where § =[¥,, %..... o] is the frequency-demain received signal vecQr=[U V],

U =N, %, F %y %ea T 0 V=NV, vy, V] T, and h, is an 2Nx1 vector

containing the start values’'of the response and its variation slopes that we want to estimate.

The LS algorithm can then be conducted by

~ -1 ~

h,=(Q"Q) Q"y (4. 20)
While the data are available only on pilot subcarriers, so only the row® athat

corresponding to the pilot positions are taken into account. And since the channel is sparse,

many elements irh, are actually zero, then only do the columns@f corresponding to

the non-zero tap positions are needed to perform the LS method. For example, if there are

only two significant taps inh_, say h, and h,, then only the first and third column df

and V need to be considered. We show this relationship in Figure 4- 10.
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Figure 4-10 The entries to be selected.

After removing the irrelevant elements in (4. 19), we then have a simplified form of (4.
19)as
yp:[upk Vpk]Xha:kaxh@ (4. 22)
where yp:[y%,yﬁ,...,y%T is the frequency-domain received signal vector on pilot
subcarriers withp , 0<i<M -1 as pilot positions andM as the total number of pilots,
U, and Vv, are sub-matrices ofJ and V respectively, whose rows are determined by
pilot positions and the columns are selecting according to the non-zero tap positions, and

.
h,, :[[h%hﬁh&lj[a,saka&lﬂ is a parameter vector containing the start
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values of the channel taps and tKe variation slopes withk;, 0< j<K -1 as its tap

positions. From (4. 22), the LS solution fér, is obtained as

h, =(Qu"Qu) QW'Y 4. 23)

In the time-variant systems, the unknowns of the channel are the starting values of the
channel taps and the corresponding variation slopes. Thus, the parameters we need to estimate
are as twice as those in the time-invariant channels. As a result, the accuracy of estimation
result can be affected. With the proposed algorithm, however, the problem can be alleviated
since data decisions can be used as additional pseudo pilots as introduced in Section 4.1.2. In
the re-estimation, the entries of the received signal vector and the rows of matricesl

V are then selected by the originaliand pseudo pilot positions.

4.2.3 Proposed method in time-variant channel estimation

We have discussed the proposed time-invariant channel estimation method in Section 4.1.
The strategy for the time-variant channel ‘estimation is the sagse the SP algorithm to
conduct tap searching. After the tap positions have been located, the values on the positions
can then be computed with the LS estimator as described in previous section. The main idea
for performance improvement is the application of decision feedback. The block diagram of
the proposed scheme is shown in Figure 4- 11, and the detail operations are summarized in the

procedure following the figure.

43
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An initial frequency domain channel
estimation without interpolation

LS estimator for estimating taps’ start g +
points and slope variations by pilots

IFFT
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Construct the frequency-domain
ICI matrix The non-aliasing part of the time
* domain channel estimate
Equalizer ‘
FFT

v 7

Decision device

v

— SP Algorithm for tap searching

Nre = Nre +1 <
l Decision device
Frequency-domain channel estimation using T
original and pseudo pilots without interpolation
l Equalizer
SP Algorithm for tap searching Construct the frequency-domain
ICI matrix

l YES

LS estimator for estimating taps’ start points and

slope variations by pilots and pseudo pilots STOP
NO

Figure 4- 11 Proposed method in time-variant channel.

1) Treat the channel as time-invariant and use the pilot subcarriers to obtain an initial
frequency-domain channel estimate and transform it to the time-domain to obtain

time-domain channel estimate.
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2) Select the non-aliasing region of the estimated time-domain channel, and then
transform it back to the frequency-domain to obtain a new frequency-domain channel
estimate.

3) Conduct the SP algorithm for tap searching. Once the tap positions are located, the
parameters including the start points and the variation slopes of the time-variant
channel can then be obtained by the LS estimator described in Section 4.2.2.

4) Construct the ICI matrixM with the parameters estimated in 3), estimate the
transmitted symbols by the zero-forcing equal(iecp MK +W , >:<:I\7I'137), and
make symbol decisions. Those at the designated subcarriers are then used as pseudo
pilots.

5) Obtain the frequency-demain channel estimate again by using original and pseudo
pilots. The whole channel response. can- be obtained by re-conducting the SP

algorithm and the L.S estimator.

6) If the number of re-estimatioN,, 'is less than a preset valNg,, go to 2).

45



Chapter 5 Simulation Results

In this chapter, the simulation results are reported to demonstrate the performance of the
proposed SP channel estimation algorithm. It is assumed that the synchronization of the

receiver has been perfectly achieved. The OFDM system we used has 512 subcarriers and the
CP length is 64, corresponding %—) of the symbol size. The pilot subcarriers are evenly

allocated in the frequency-domain. For different simulation scenarios, the pilot density will be
set to be different. Three modulation schemes including BPSK, QPSK, and 16-QAM are
adopted for each subcarrier. Let the number of non-zero taps be 6, i.e., the sparsity of the

channel isK =6. The tap values for the LTI channel are assumed to be independently

identically-distributed (i.i.d.) withCN (0,1}, and the relative path power profiles are sefl,as

-0.9, -4.9, -8, -7.8, and -23@IB) as specified in ITU Ped-B channel [24]. Ande ttap
positions are uniformly distributed .between 0 abhé1 where L is the maximum delay
spread. An example of a 6-tap channel is shown in Figure 5- 1. In the time-varying system,
the fading channel is generated by Jake’s Model with various normalized Doppler frequency.
The receive signal quality is indicated by the SNR defined as the received signal power
divided by the noise power at the receiver. Also, the performance of the channel estimate is by

the resultant bit-error-rate (BER).
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Figure 5- 1. An example of a'6-tap channel.

5.1 Resultsof LTI channel estimation

In this section, we report the performance of the proposed SP method in the LTI channel
estimation problem. We first show that the proposed method can outperform other CS
recovery methods. Then, we further explore the performance of the proposed channel

estimator in different scenarios.

5.1.1 Performance of different CS methodsin channd estimation

We compare the proposed method to the existing CS methods mentioned in Chapter 2,
including LP, MP, and OMP algorithm. Figure 5- 2 shows the simulation results with the pilot
density of 1/9 and the QPSK modulation scheme. As we can see, the performance of the SP

algorithm is much better than MP and OMP, especially when the SNR is high. The
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performance of LP is very close to that of SP. However, the computational complexity of the

LP algorithm is high.
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Figure 5- 2 Performance comparison-of different CS recovery methods.

5.1.2 Simulation results of SP estimator with tap numbersare known

Figure 5- 3 and Figure 5- 4 show the estimation results for the pilot dens%y ahd

1 . . . .
e respectively. Here, we assume that the number of taps is known as a prior. Comparing the

results with perfect channel information denoted by BPSK perfect, QPSK perfect and
16-QAM perfect in Figure 5- 3, we see that the performance of the propose SP algorithm is
good even for the 16-QAM scheme. When the pilot density is reduced, the performance, as
shown in Figure 5- 4, is only slightly degraded. If this is not satisfactory, we can use the
proposed decision-feedback algorithm to conduct the re-estimation and the performance can

be further improved.
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Figure 5- 3 BER performance of proposed channel estimator for BPSK, QPSK, and 16-QAM
with pilot density of 1/4.
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Figure 5- 4BER performance of proposed channel estimator for BPSK, QPSK, and 16-QAM
with pilot density of 1/8.
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5.1.3 Simulation results of SP estimator with tap numbersare unknown

In this section, we will show the results of the proposed SP algorithm when the number
of taps is unknown. As discussed in section 4.1.1, we propose two methods, specified in
Figure 4- 2 and Figure 4- 3, to re-conduct SP algorithm when the tap number is unknown.
Figure 5- 5 shows the iteration required for the SP algorithm in Figure 4- 2 and Figure 4- 3 vs.
the expected channel tap. This figure clearly shows that the method depicted in Figure 4- 3 is

much more efficient than the other one. Figure 5- 6 shows the BER performance with a pilot
density of%. From Figure 5- 6, we see that the SP algorithm still works well even the

information of the tap number is unknown.

22

| |
20 L - - | —©— Method in Figure 4-3
—¥— Method in Figure 4-2
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Figure 5- 5 Number of iterations required for SP re-conduction specified in Figure 4- 2 and
Figure 4- 3.
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Figure 5- 6 Performance of proposed channel estimator with pilot density of 1/8 when tap
numbers are unknown.

5.1.4 Simulation results of 'SP estimator with insufficient pilots

As discussed in Section 4.1.2, low pilot density may causes aliasing in the time-domain
response. The proposed solution is first to deal with the response in the non-aliasing region
and use it to conduct symbol detection and re-estimate the whole channel response. In this
section, we use simulation results to show the number of the iterations required for the
re-estimation in various modulation schemes and the resultant BER performance. Figure 5- 7
shows the performance vs. the number of iterations in the BPSK scheme with a pilot density
of 1/12. From the figure, it is apparent that the performance for the second and third iteration
is the same. Therefore, two iterations are sufficient for the proposed algorithm to obtain good
performance. From Figure 5-d@hdFigure 5- 9, we can see that the numbers of itersitio

required for QPSK and 16-QAM are 2 and 4, respectively. Figure 5- 10 and Figure 5- 11 show

51



the resultant BER performance for the cases with and without the known tap number,
respectively. In Figure 5- 7 to Figure 5- 11, the pilot density (original pilots plus pseudo pilots)

used for the re-estimation is set to 1/3.
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Figure 5- 7 Performance comparison of different number of iterations for channel
re-estimation in BPSK.
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Figure 5- 8 Performance comparison of different number of iterations for channel
re-estimation in QPSK.
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re-estimation in 16-QAM.
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Figure 5- 10 BER performance of‘proposed channel estimator with pilot density of 1/12 when
tap numbers are known.
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Figure 5- 11 BER performance of proposed channel estimator with pilot density of 1/12 when
tap numbers are unknown.

54



5.2 Results of time-variant channel estimation

In the previous section, we have reported the performance of the proposed SP algorithm
when the channel is assumed to be LTI. In this section, we consider the time-variant channel.
Two scenarios will be discussed’he normalized Doppler frequency is 0.0244 and ihat

0.1016 respectively.

5.2.1 Results of proposed time-variant channel estimator with normalized
Doppler frequency of 0.0244

Figure 5- 12 shows the comparison of the BER performance of the proposed SP method
with and without re-estimation procedure when the pilot densit% igrom the figure, we

see that the performance can indeed be improved with the re-estimation. Then, we show the
simulation results for the cases when the tap number is known and unknown in Figure 5- 13
and Figure 5- 1l4respectivelyln the figures; the results for perfect channelnestion are

also shown as the benchmarks. As.we can See, the approximation errors of the proposed

methods are small.
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Figure 5- 12 Performance comparison of proposed channel estimator with and without
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Figure 5- 13 Performance of proposed channel estimator with normalized Doppler frequency
of 0.0244 for tap numbers are known.
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Figure 5- 14 Performance of proposed channel estimator with normalized Doppler frequency
of 0.0244 for tap numbers are unknown.

5.2.2 Results of proposed time-variant channel estimator with normalized

Doppler frequency of 0.1016

When the normalized Doppler frequency becomes 0.1016, the mobility speed becomes
higher and the ICI effect is more severe. Figure 5- 15 and Figure 5- 16 show the simulation
results. Notice that the error rate is raised because the ICI becomes larger. Nevertheless, by
observing the two figures, we can see that the performance of the proposed SP algorithm still

performs satisfactorily since the BER is close to that of the perfect channel.
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Figure 5- 15 Performance of proposed channel estimator with normalized Doppler frequency
of 0.1016 for tap numbers are known.
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Figure 5- 16 Performance of proposed channel estimator with normalized Doppler frequency
of 0.1016 for tap numbers are unknown.
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Chapter 6 Conclusionsand FutureWorks

In this thesis, we have applied the SP algorithm to the channel estimation problem in
OFDM systems, where the channel impulse response is assumed to be sparse. Using
simulation results, we first show that the SP algorithm is superior to the existing CS signal
recovery methods. We then propose an iterative SP algorithm for the scenario that the number
of channel taps is unknown. Simulation results show that the performance is close to the
scenario that the number of channel taps is known. If the pilot density is low, aliasing will
occur in the time-domain channel response and the performance of the SP method will be
affected. We then further proposed a decision-feedback SP method in which some decisions
are used as additional pseudo pilots to -overcome the problem. Simulations show that the
proposed decision-feedback SP algorithm still performs well even when the pilot density is
very low. Finally, we apply the proposed SP channel estimators to time-variant channels. In
the environments, ICI is introduced-and the-parameters to be estimated are doubled. And we
show that the proposed method can yield good performance even when the mobile speed is
high.

Through the entire thesis, we only focus on the single-input-single-output (SISO)
systems. However, multiple-input-multiple-output (MIMO) systems are developed rapidly in
recent years since they can provide higher data throughput, better coverage, and higher
reliability. Thus, we may apply the proposed methods to the channel estimation problem in
MIMO-OFDM systems. In equalization, we use a ZF equalizer to obtain the data decisions;
however, there are many equalization methods which may provide better performance. This

can also serve as a topic for further research.
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