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正交分頻多工系統下運用壓縮取樣技術執行通道估測 

 

學生：闕瑞慶                               指導教授：吳文榕 教授 

 

 

國立交通大學電信工程學系碩士班 

 

摘要摘要摘要摘要 

 

在正交分頻多工(OFDM)系統中，通道估測(channel estimation)經常是藉由安插在

OFDM 符元(symbol)間的領航訊號(pilot)來完成。但是領航訊號的使用卻會影響到系統的

效能，越多的領航訊號被安插在 OFDM 符號間則能傳送的資料量就越少，系統的傳送

速率(transmission rate)便會下降；此外，在某些系統中領航訊號的數量是有所限制的，

因此如何利用少量的領航訊號來達到準確的通道估測便成了一個值得探討的問題。近年

來，有研究提出一項名為 Compressive Sampling (CS)的新技術，宣稱只需要運用少許的

取樣值便能還原原始的訊號，只要該訊號本身擁有稀疏(sparse)的特性即可。而在時域上

的通道響應其非零的位置通常不多，符合 CS技術的要求，因此我們可以將此技術應用

在通道估測的問題上。在本篇論文中，我們提出使用一個 Subspace Pursuit (SP)方法，證

明其在通道估測方面比現存應用 CS 技術的眾多方法有更佳的效能表現，並透過回授

(feedback)的機制使此方法能在領航訊號密度很低的時候仍保有好的準確度，最後我們延

伸此估測法至時變通道。透過模擬結果，可以看出我們所提出的通道估測法在高速移動

的環境中依然擁有很好的效能。 
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Channel Estimation in OFDM Systems Using Compressive Sampling 

Technique 

 

Student: Ruey-Ching Chiueh                 Advisor: Dr. Wen-Rong Wu 

 

Department of Communication Engineering 

National Chiao-Tung University 

Abstract 

 

In pilot-assisted OFDM systems, the channel estimation problem is usually solved by the 

using the pilot subcarriers inserted in OFDM symbols. However, more pilots used will lead to 

lower transmission rate, and the number of pilots is sometimes limited due to the systems. So 

we are facing a problem to accurately estimate the channel response while using a small 

number of pilots. Recently, a novel technique called compressive sampling (CS) has emerged, 

asserting to recover the sparse signals with a few measurements. Since the number of 

non-zero taps in time-domain channel response is small, we can then apply the CS methods to 

the channel estimation problem in OFDM systems. In this thesis, we propose using a subspace 

pursuit (SP) algorithm which is shown to be superior to the existing CS methods in channel 

estimation. The performance of proposed method is also shown to be good when pilot density 

is very low by adding a decision-feedback mechanism. Then, our problem is extended to the 

time-variant case. And simulation results show the proposed method performs well even when 

the speed of mobility is high. 
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Chapter 1  Introduction 

 

Wireless communication technique has attracted more and more attention in recent years 

since it can overcome the mobility problem. And the demand for high data rate transmission 

also emerges along with the popularity of high quality video and audio service. Orthogonal 

Frequency Division Multiplexing (OFDM) offers high spectrum efficiency and strong 

immunity to multipath fading channel and has become an important modulation technique in 

wideband wireless communications. It has also been widely used in many applications such as 

digital audio broadcasting (DAB), digital video broadcasting (DVB), wireless local area 

network (LAN), and WiMAX. 

One of the most important tasks in OFDM receivers is to accurately estimate the channel 

response in order to recover the transmitted signals. To do that, a common practice is to insert 

pilot subcarriers in OFDM symbols. Since the data in pilot subcarriers are known, the related 

channel responses can be estimated and the response of other subcarriers can be interpolated 

[1],[2]. Pilot subcarriers cannot be used to transmit data and this approach affects the actual 

data rate. The more pilots we use, the lower the data rate will be. On the other hand, if the 

density of the pilot subcarriers is not high enough, the channel responses in data subcarriers 

cannot be accurately estimated and the data rate is affected also. In many applications, the 

time-domain channel response is sparse. In other words, the delay spread is large but the 

nonzero taps is a few. In these cases, a large number of pilots are still used. The sparsity of the 

channel is not explored. 

In recent years, the compressive sampling (CS) technique has been developed to recover 

the sparse signals [3],[4]. Using the CS method, the number of measurements can be reduced 

dramatically since it exploits the sparse property of the signal. However, the complexity of the 

existing methods is high, despite the fact that some of them can be solved by the standard 
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linear programming (LP) [5]. Another way to reconstruct the sparse signal is using the greedy 

algorithm, which retrieves the desired signals from a large redundant set of vectors in an 

iterative fashion. The matching pursuit (MP) algorithm was developed and proved to be 

superior to the least squares (LS) algorithm [6],[7]. Later, the orthogonal matching pursuit 

(OMP) algorithm was introduced on purpose to overcome the re-selection problem occurred 

in the MP algorithm, and it also showed better performance than MP [8],[9]. Recently, a new 

method, called subspace pursuit (SP), was developed for the sparse signal reconstruction [10]. 

It has been shown that its computational complexity is lower than that of OMP and it can have 

the accuracy of LP. 

The CS technique has found many applications in wireless communication, including the 

time-domain channel estimation in OFDM systems [11]. In the channel estimation of OFDM 

system, the received signals in pilot subcarriers serve as the measurements. As stated in 

[12],[13], sparse signals can be exactly recovered under the limited number of measurements 

when the sensing matrix satisfies the restricted isometry property (RIP). Thus, we can use a 

small number of pilots to recover the sparse channel response as long as RIP is held.  

In this thesis, we study the spare channel estimation problem in OFDM systems. We first 

apply the SP algorithm and compare it with the LP, MP, and OMP algorithms. From 

simulation results, we show that SP indeed outperforms other methods. Next, we reduce the 

pilot density in order to raise the transmission rate. However, this causes aliasing in the 

time-domain channel response, and the response in the aliasing region cannot be recovered. 

To overcome the problem, we propose a decision-feedback method. The main idea is first to 

conduct an initial symbol detection with the partial aliasing-free channel response, and then 

use some decisions as pseudo pilots. With the original and pseudo pilots, the SP algorithm can 

then be conducted to estimate the whole channel response. Simulations results show that the 

proposed SP method works well even when the pilot density is low. Finally, we discuss the 

channel estimation problem in the high-mobility wireless environments, where the channel 



 

3 
 

becomes time-variant. In time-variant channel, the orthogonality of the subcarriers in one 

OFDM symbol is no longer held, causing the inter-carrier interference (ICI) effect. For ICI 

mitigation, accurate channel estimation is needed. We then extend the proposed 

decision-feedback SP algorithm to the channel estimation in time-variant channels. 

Simulations also show that the performance of the proposed method is satisfactory. 

This thesis is organized as follows. First, we give an introduction to the OFDM system 

and show the main concepts and terminology of CS reconstruction technique in Chapter 2. In 

Chapter 3, various channel estimation methods are reviewed. In Chapter 4, decision-feedback 

SP algorithms for linear time-invariant and time-variant OFDM systems with uniformly 

distributed pilot subcarriers are proposed. In Chapter 5, we evaluate the performance of the 

proposed method and with simulations demonstrating its superior performance. Finally, the 

conclusions and future works are drawn in Chapter 6. 
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Chapter 2  Introduction to OFDM System and Compressive 

Sampling 

 

2.1 OFDM system 

OFDM is a frequency division multiplexing (FDM) scheme and can be view as a digital 

multi-carrier modulation technique. In FDM, the high rate stream is divided into several 

parallel lower rate sub-streams, and this is equivalently to divide the available wideband 

channel into narrowband sub-channels, and each data stream is transmitted with a subcarrier 

in a sub-channel. While the data to be transmitted need not to be divided equally nor do they 

have to originate from the same information source. 

The primary advantage of OFDM over single-carrier modulation is the resistance to the 

frequency selective fading effect. As the bandwidth of each OFDM sub-channel is sufficiently 

narrow, the effect of frequency selective fading for each transmitted signal in each 

sub-channel can be considered as flat. Thus, the equalizer at the receiver can be simplified to 

an one-tap frequency-domain equalizer. Furthermore, since the symbol duration increases for 

lower rate subcarriers, OFDM provides additional immunity to impulse noise and other 

impairments and the system stability is raised. 

In OFDM systems, the subcarriers are designed to be orthogonal to each other, allowing 

the spectrum of individual subcarrier overlapping with minimum frequency spacing, 

achieving high spectral efficiency. Due to the orthogonality, the signal transmitted on each 

subcarrier can be recovered despite the overlapped spectrum. Figure 2- 1 shows the 

overlapped spectrum of OFDM modulated signals. Since the sinc-shaped spectrum of one 

subcarrier is required to be nulled at other subcarriers’ frequencies. The subcarrier spacing 
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between two neighbor subcarriers can be calculated as
1W

f
N T

∆ = = , where W  is the 

bandwidth, N  is the number of subcarriers, and T  is the symbol period. 

 

W
f

N
∆ =

 

Figure 2- 1 Amplitude spectrum of an OFDM signal with N subcarriers. 

 

In most wireless systems, signal usually travels through different paths causing the 

multipath effect, which results previous symbols to interfere with the latter symbols and the 

phenomenon is known as inter-symbol interference (ISI). By adding a cyclic prefix (CP) in 

front of each symbol, the OFDM scheme offers an effective solution for ISI mitigation. The 

size of CP is designed to be larger than the maximum channel delay spread, so that the effect 

of ISI is eliminated. Since CP is a copy of the end portion of an OFDM symbol, the 

transmitted signal becomes partially periodic, and the effect of the linear convolution with a 

multipath channel can be translated to a circular convolution. As is known, conducting a 

circular convolution in the time-domain is equal to conducting a multiplication in the 

frequency-domain. Thus, the received data in frequency-domain is simplified to a 
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point-to-point multiplication of the data symbol and channel frequency response. Moreover, if 

the CP length is long enough, the inter-carrier interference (ICI) can also be eliminated to 

maintain the orthogonality of subcarriers in the multipath fading environments. Figure 2- 2 

shows the generation of the CP. In the figure, T  denotes the symbol duration excluding CP, 

CPT  the length of CP, and sT  the total symbol duration. 

 

sT

TCPT

 
Figure 2- 2 An OFDM symbol with cyclic prefix. 

 

2.1.1 Continuous-time OFDM signal model 

Figure 2- 3 shows a typical continuous-time OFDM baseband modulator. The operation 

of the modulation can be described as below. The transmitted symbol stream is first split into 

parallel sub-streams using a serial-to-parallel converter and each sub-stream modulates a 

subcarrier. The modulated signals are then transmitted simultaneously. 
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( )tφ 0

( )tφ 1

( )N tφ -1

∑

(0)kxɶ

(1)kxɶ

( 1)kx N −ɶ

( )kx t

 
Figure 2- 3 Continuous-time OFDM baseband modulator. 

 

The i -th modulated subcarrier ( )tφ i  can be represented as 

( )CPt-
j2 k

T
CP

1
, [0, )

( )

0 ,

T

se t T T T
t T

otherwise

π

φ


∈ = += 



 

    

                      
i  (2. 1) 

In Figure 2- 3, ( )kx iɶ  denotes the transmitted symbol, drawn from a set of signal constellation 

points, at the i -th subcarrier of the k -th OFDM symbol. The modulated baseband signal for 

the k -th OFDM symbol can then be expressed as 

1

0

( ) ( ) ( ) , ( 1)
N

k k i s s s
i

x t x i t kT kT t k Tφ
−

=

= − ≤ < +∑        ɶ  (2. 2) 

where N  is the number of subcarriers. The received signal ( )y t can be expressed as 

( ) ( , ) ( ) ( )y t h t x t w tτ= ∗ +  (2. 3) 

where ( , )h t τ  denotes the time-variant channel impulse response at time t, ( ) ( )k

k

x t x t
∞

=−∞

= ∑
 

is the transmit signal, ( )w t  is the additive white complex Gaussian noise, and ∗  denotes 

the operation of linear convolution. 
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( )y t

0( )tψ

1( )tψ

1( )N tψ −

(0)kyɶ

(1)kyɶ

( 1)ky N −ɶ

 

Figure 2- 4 Continuous-time OFDM baseband demodulator. 

 

Figure 2- 4 shows a typical continuous-time OFDM baseband demodulator, in which 

( )i tψ denotes the matched filter for the i -th subcarrier and ( )ky iɶ  is the demodulated signal 

at i -th subcarrier for the k -th symbol. The matched filter is defined as: 

( ) [0, )
( )

0
s

i

T t t T
t

otherwise

φ
ψ

∗ − ∈
= 


     ,  

                 ,   
i  (2. 4) 

 

2.1.2 Discrete-time OFDM signal model 

Consider an OFDM symbol, the modulated baseband signal is given by 

21

0

1
( ) 0

itN j
T

i
i

x t x e t T
T

π−

=

= ≤ ≤∑      , ɶ  (2. 5) 

where ixɶ  is the transmitted data symbol. Now, sampling the signal ( )x t with the 

sampling period d

T
T

N
= , then (2. 5) can be rewritten as: 
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[ ] ( )

{ }

1 2

0

21

N
0

1

1
                                , 0 1

N

d

d

nTN j i
T

it nT
id

j inN
N

i i
i

x n x t x e
NT

x e IDFT x n N

π

π

−

=
=

−

=

= =

∝ = ≤ ≤ −

∑

∑

ɶ

ɶ ɶ

 (2. 6) 

For a noise-free system, the discrete demodulated signal [ ]y kɶ
 
can be expressed as: 

[ ] [ ] [ ]{ }
21

N
0

1
 =    , 0 1

j knN
N

n

y k y n e DFT y n k N
N

π−−

=

= ≤ ≤ −∑ɶ  (2. 7) 

Equations (2. 6) and (2. 7) show that modulation and demodulation in OFDM systems can be 

conducted by inverse discrete Fourier transform (IDFT) and discrete Fourier transform (DFT), 

respectively. In practice, IDFT/DFT is implemented with inverse fast Fourier transform 

(IFFT)/fast Fourier Transform (FFT). Figure 2- 5 shows the discrete-time OFDM system 

model. 

IDFT

P/S S/P

DFT

CP

Transmitter Channel Receiver

[ ]y n[ ]x n

[ ],h l n

[ ]w n
[ ]0yɶ

[ ]1yɶ

[ ]1y N −ɶ

[ ]0xɶ

[ ]1xɶ

[ ]1x N −ɶ

 

Figure 2- 5 Discrete-time OFDM system model. 

 

Now, the modulation operation can then be summarized as follows. Data streams in the 

transmitter first modulate N  subcarriers, which is performed by a N -point IDFT unit, and 

then a CP of length CPT  is added in the time-domain symbol. The resultant signal [ ]x n
 
is 

then passed through a time-variant multipath channel. Assuming that both timing and carrier 

frequency synchronization are perfect, we can express the received signal [ ]y n
 
at receiver as 
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[ ] [ ] [ ] [ ]

[ ] ( )( ) [ ]
1

,

       ,  
L

N
l

y n h l n x n w n

h l n x n l w n
=

= ⊗ +

 = − + ∑
 (2. 8) 

where [ ],h l n  is the channel impulse response of the l -th tap at n -th time instant, L  is the 

number of channel taps, ( )  
N

⋅  represents a cyclic shift in the base of N , ⊗  is the circular 

convolution operator, and [ ]w n  is sampled additive white Gaussian noise (AWGN) with 

variance 2σ  .   

Then a DFT is conducted for each symbol after CP removal, and the received signal in 

frequency-domain is given by 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

1

0

,

        =  ,      ,  0 1

N

m

y k h k m x m w k

h k k x k w k k N

−

=

= +

+ ≤ ≤ −

∑ ɶɶ ɶ ɶ

ɶ ɶ ɶ

 (2. 9) 

Equation (2. 9) can be expressed using a matrix equivalent model as 

000 0 0

111 1 1

2 2 222

1 1 1( 1)( 1)

0 0 0    

0 0 0    

  =  +  0 0 0

     

 0 0 0N N NN N

hy x w

hy x w

y x wh

y x wh− − −− −

      
      
      
      
      
      
             

ɶ ⋯ɶ ɶ ɶ

ɶɶ ɶ ɶ⋯

ɶɶ ɶ ɶ⋯

⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋱ ⋮

ɶ ɶ ɶɶ⋯

 (2. 10) 

where [ ]0 1 1, , ,
T

Nx x x −ɶ ɶ ɶ⋯  is the frequency-domain transmitted data vector, [ ]0 1 1, , ,
T

Ny y y −ɶ ɶ ɶ⋯  

is the frequency-domain received data vector, [ ]0 1 1, , ,
T

Nw w w −ɶ ɶ ɶ⋯  is the AWGN noise vector, 

and { }00 11 ( 1)( 1), , , N Ndiag h h h − − 
 
ɶ ɶ ɶ⋯  is an N N×  matrix with 00 11 ( 1)( 1), , , N Nh h h − − 

 
ɶ ɶ ɶ⋯  as its 

diagonal elements denoting the channel frequency response. 
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2.1.3 Complete OFDM system 

Channel 
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Channel 
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Figure 2- 6 Block diagram of complete OFDM system. 

 

The block diagram of a complete OFDM system is shown in Figure 2- 6. The upper path 

denotes the transmitter chain, and the lower path is the receiver chain. At the transmitter, the 

data are first encoded by channel encoder, then interleaved and mapped onto QAM 

constellation. IFFT operation is then used as a modulator modulating each block of QAM 

symbols onto subcarriers. After that, a copy of the end portion of the symbol is added in front 

of each OFDM symbol as a CP. Finally, the baseband OFDM signal is passed to the 

digital-to-analog (D/A) converter, the RF circuit, and then transmitted. The receiver reverses 

the operations conducted at the transmitter. Note that synchronization and channel estimation 

have to be conducted firstly. 

 

2.2 Compressive sampling 

Conventionally, if we plan to reconstruct a sampled signal without any error, then a basic 

principle must be followed：The sampling rate must be at least twice the maximum frequency 
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contained within the signal. The principle is known as Nyquist/Shannon sampling theory, 

which is one of the crucial theorems in signal processing. However, a novel sampling theory 

called compressive sampling (CS) goes against this common principle has recently emerged 

[3],[4]. It asserts that if we know the signal itself is sparse (the support of the coefficient 

sequence is in a small set) or compressible (the sequence is concentrated near a small set) by 

some known transformation, then it is possible to uniquely recover the signal from far fewer 

measurements with high probability. The idea is that for a K-sparse signal, which there are 

only K coefficients supported on the signal, the unknowns of the signal are actually the K 

non-zero positions and K values. 

Now, consider a general problem of recovering a signal N∈x ℝ  from a noiseless 

measurement vector m
k m ∈ 1 , 2 , ... ,  , ... ,y = y y  y  y ℝ  where 

, ,  =1,...,k k k mϕ=y x      . (2. 11) 

In other words, x  is not directly observed. The measurements are obtained by correlating x  

with the waveforms N
kϕ ∈ℝ . In general, the system is “underdetermined” (m N≪ ) in the 

sense that the measurements are much less than the unknown signal values. Solving the 

ill-posed linear system of equations seems not possible. However, if signal x  is sparse, 

which means the useful information content embedded in the signal is much smaller than its 

length/bandwidth, and the problem can be solved by the CS method, which exploits the 

sparsity and operates as we are directly capturing the information about the signal of 

importance. 
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2.2.1 CS recovery methods 

Let ΦΦΦΦ  be a matrix taking kϕ  as its rows. The relation between the observation y  and 

K-sparse signal vector x  can be expressed as  

0
K≤

 
y = x,   xΦΦΦΦ

 (2. 12) 

where m N×∈ ℝΦΦΦΦ  is referred to as the sensing matrix, and 
0

⋅   denotes the 0ℓ -norm. It has 

been shown that one can recover the signal x  by solving an 0ℓ -norm minimization 

problem: 

min subject to
 0

  x        y = xΦΦΦΦ  (2. 13) 

However, this approach cannot be used in practical since it is NP-hard [5],[14], and the 

computational complexity will be very high. 

A more computationally efficient strategy was then proposed. The signal recovering 

problem is now reformulated as a convex optimization problem: 

min subject to
 1

  x        y = xΦΦΦΦ  (2. 14) 

where 

1
1

N

i
i=

=∑x   x
 

(2. 15) 

denotes the 1ℓ -norm of x . This approach can be efficiently implemented by the standard 

process of linear programming (LP) [5],[15]. 

A Another way to estimate the sparse signals is the use of greedy algorithms such as 

Matching Pursuit (MP) [16],[17],[18], Orthogonal Matching Pursuit (OMP) [8],[9],[18], and 

Regularized Orthogonal Matching Pursuit (ROMP) [19], which iteratively decrease the 

approximation error by relaxing the sparsity constraint. These algorithms are operated as 

follows： Search for the supports of signal x  by adding new candidates into the estimated 
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support set and subtract their contribution from the measurement vector y  successively. The 

objective is to minimize the residue vector j j j=r y - xΦΦΦΦ at iterationj . The greedy algorithm 

provides an effective way to retrieve desired signals, referred as a small subset of vectors, 

from a large redundant set of vectors. 

 

2.2.2 Robustness of CS theory 

To study the reconstruction accuracy of CS, Restricted Isometry Principle (RIP) is 

introduced to describe the robustness of CS [5],[12],[20]. Let TΦΦΦΦ  be a m T×  matrix 

obtained by extracting the T  columns of m N×∈ ℝΦΦΦΦ  with { }T N⊂  1 , ... , . Then matrix ΦΦΦΦ  

is said to satisfy the RIP if 

( ) ( )2

2
1 1k T kδ δ− ≤ ≤ +2 2

2 2
 x   x    xΦΦΦΦ  (2. 16) 

for all coefficient sequence T∈x ℝ , T K≤ , where K m≤  is the sparsity of signal x , 

1kδ≤ ≤0  is the restricted isometry constant, and 

1
22

2
1

N

i
i =

 =  
 
∑x  x  denotes the 2ℓ -norm. 

The principle coveys that when the RIP is held, the columns of sensing matrix ΦΦΦΦ  are 

approximately orthogonal and the exact recovery achieves. A theorem has been proved in [5] 

that if signal x  is K-sparse, and the restricted isometry constant satisfies2 3 1k kδ δ+ <  , the 

solution of (2. 14) is exact. While the signal is just near sparse as a compressible signal, it has 

also been proved that the recovery error will be upper-bounded by 

1

2
ˆ KC

K
− ≤ ⋅

x - x  
x x    (2. 17) 

for some positive constant C and restricted isometry constant 3 4k kδ δ+ <  2 , where x̂  is the 

solution of (2. 17), and Kx is the best K-sparse approximations obtained by keeping K  



 

15 
 

largest coefficients of x  [13]. 

One may ask how to design a sensing matrix whose columns of size K are nearly 

orthogonal. For what value of K is this possible? We give some possible sensing matrices in 

the following： 

1) Gaussian measurements: The entries of the sensing matrix is obtained by sampling 

independent and identically distributed (i.i.d) entries from the normal distribution with 

zero mean and variance 1/m. In this case, if the sparsity K obeys, i.e., 

log( / )

m
K C

N m
≤  (2. 18) 

where C is a constant related to the restricted isometry constant, then the probability of 

exact recovery can be expressed as 1 ( )NO e γ−− for some 0γ >  [20],[21]. 

2) Binary measurements: The entries of the m N× sensing matrix is obtained by sampling 

independently the symmetric Bernouli distribution ijP
K

± 1 1
( = ) =

2
ΦΦΦΦ . When (2. 18) is 

held, the probability of exact recovery is also proved to be 1 ( )NO e γ−− for some 0γ >  

[20]. 

3) Fourier measurements: The m N× sensing matrix ΦΦΦΦ  is obtained by selecting m rows 

from a N N× Fourier matrix randomly and the columns of ΦΦΦΦ  are renormalized to 

have unit norms. Now, the constraint to the sparsity K is 

6(log )

m
K C

N
≤  (2. 19) 

and is refined as 

4(log )

m
K C

N
≤  (2. 20) 

to maintain an overwhelming probability of recovery [20],[22]. 

4) Incoherent measurements: The sensing matrix is obtained by selecting m rows from an 

N N× orthonormal matrix U  randomly, and the columns are normalized to be 

unit-normed. The matrix ∗U = ΦΨΦΨΦΨΦΨ denotes a transform matrix that transforms the 
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signal from the ΨΨΨΨ  domain to the ΦΦΦΦ  domain. Then the exact recovery occurs if 

2 4

1

(log )

m
K C

Nµ
≤ ⋅ ⋅  (2. 21) 

where ,maxi j i jNµ ϕ ,ψ= ⋅    is the mutual coherence betweenΨΨΨΨ and ΦΦΦΦ . 

 

 

In the real-world applications, noise is always present. As a result, (2. 12) becomes 

0
K≤

 
y = x + z,    xΦΦΦΦ  (2. 22) 

where z  is the noise vector with a bounded energy 
2 2

2
σ≤ 

 
z . The problem we have now is 

to solve the equation shown below: 

2
min subject to σ≤

 1  
  x        y - xΦΦΦΦ  (2. 23) 

From the CS theory, it asserts that the solution of (2. 23), x̂ , obeys 

2 2

2
ˆ C Kσ− ≤ ⋅ 

 
x x    (2. 24) 

for some constant C  [13]. Therefore, the stability and robustness of CS are maintained. 

The CS technique has been widely applied in many areas. For example, it is used in data 

compression, sensor networks, and error correcting codes. Recently, it has been applied in 

channel estimation, which is what we are concerned in this thesis. 
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Chapter 3  Channel Estimation 

 

In OFDM systems, there are mainly two types of subcarriers allocated, which is shown 

in Figure 3- 1. The data subcarriers as what it named are used to transmit data symbols, and 

the pilot subcarriers are the subcarriers, spread uniformly in the frequency-domain, used to 

conduct channel estimation. 

 

 
Figure 3- 1 Example of subcarrier allocation in OFDM systems. 

 

 

3.1 Conventional least squares method 

Typically, channel estimation can be performed either in the time-domain or the 

frequency-domain. The time-domain received signal (after CP removal) can be expressed as 
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 ,  0 1n n n ny h x w n N= ⊗ + ≤ ≤ −  (3. 1) 

where N  is the number of subcarriers, ny  is the time-domain received signal, nx  is the 

time-domain training symbols, nh  is the channel impulse response, and nw  is the AWGN 

noise. Reformulating (3. 1) in the matrix form, we can have 

0 0 00 1 1

1 1 11 0 2

2 2 2

2 3 1

1 21 1 1

   

   

   

      

N N L

N L

N N N L

N N N LN L N

y h wx x x

y h wx x x

y h w

x x x

x x xy h w

− − +

− +

− − − −

− − −− − −

      
      
      
      = + = +
      
      
            

Xh w

⋯ ⋯

⋱ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯⋮ ⋮ ⋮

⋯ ⋯

 (3. 2) 

where L is the maximum channel delay. A conventional method for channel estimation is 

the least-squares (LS) method. The LS channel estimate minimizes the squared errors given 

by： 

2ˆ
LSy - Xh  (3. 3) 

where [ ]0 1 1, , ,
T

Ny y y −y = …  is the time-domain received vector. The optimum estimate has 

been solved as 

( ) 1ˆ H H
LS

−
=h X X X y  (3. 4) 

The time-domain LS method described above requires a time-domain training sequence. 

Another LS channel estimation method, described below, uses pilot subcarriers. Consider a 

received OFDM symbol in the i -th subcarrier: 

i i i iy h x w= +ɶɶ ɶ ɶ  (3. 5) 

where iyɶ  is the received signal in the frequency-domain, ixɶ  is the transmitted signal in the 

frequency-domain,  ihɶ is the channel frequency response, and iwɶ is the corresponding AWGN 

noise. Note that  ihɶ  can be expressed as  ih = ⋅f hɶ , where is h  the channel response in the 
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time-domain expressed as a vector, and f  is a row of the DFT matrix. Equation (3. 5) then 

becomes 

i i iy x w= +fhɶ ɶ ɶ  (3. 6) 

Considering the received signals in all pilot subcarriers, we can have following expression: 

0 0 0

1 1 1

0

1
2 2 2
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1
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2 2 2

0 1 ( 1)
2 2 2
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2 2 2
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= X Fh + w

ɶ

ɶ

ɶ

⋮ ⋮

ɶ

⋯

ɶ ɶ

 

(3. 7) 

where 

0

1

2

1

 

 

 

 

 

0 0 0

0 0 0

0 0 0

0 0 0
M

p

p

pp

p

x

x

x

x
−

 
 
 
 =
 
 
 
 

X

ɶ ⋯

ɶ ⋯

ɶ ɶ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

 (3. 8) 

is a diagonal matrix with pilot signals as its diagonal elements,   , 0 1ip i M≤ ≤ −  is the index 

for pilot location and M is the total number of pilots, 
0 1 1

= , , ,
M

T

p p p py y y
−

  yɶ ɶ ɶ ɶ…  is the 

received frequency-domain vector on pilot locations, F  is a partial DFT matrix obtained by 

selecting M rows from a N-point DFT matrix according to pilot positions and retaining the 

first L  columns, [ ]0 1 1, , ,
T

Lh h h −=h … is the time-domain channel impulse response, and 

0 1 1
, , ,

M

T

p p p pw w w
−

  w =ɶ ɶ ɶ ɶ…  is the noise vector. Using the LS channel estimator, the following 

squared error is minimized: 
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2

 ˆ
p p LSy - X Fhɶɶ  (3. 9) 

And the resultant time-domain LS channel estimation can then be derived as 

( ) 1ˆ H HH H
LS p p p p

−
=h F X X F F X yɶ ɶ ɶ ɶ  (3. 10) 

The time-domain LS algorithm requires ( )3O L  arithmetic operations, so the computational 

complexity is high when L  is large. But if only L′  significant taps where L′  is much less 

than L  are taken into account, the computational complexity of the LS method can be 

reduced. For example, if only two taps in h  are considered, say 0h  and 1Lh −  , then only 

the first and the last column of F  are required to use. Then, we have 
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 (3. 11) 

 

With the reduced DFT matrix in (3. 11), the matrix to be inversed in (3. 10) is reduced to a 
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2 2× matrix. As a result, the computational complexity is reduced. 

 

3.2 Compressive sampling approach 

For most wireless channels, the delay spread may be large, but the number of non-zero 

taps is generally small. That raises the subject in exploiting the sparsity of the time-domain 

channel response in the channel estimation problem. Since we are dealing with a sparse 

channel, the CS methods introduced in Chapter 2 are applicable. In the channel estimation of 

OFDM systems, the number of measurements indicates the number of inserted pilots. Now, 

we express the frequency-domain received signal vector on pilot positions as 

,D p pΩ=y F h + eɶɶ  (3. 12) 

where 1  ( - )   0
TT

N L×  h = h with 1  ( - )
1  ( - )0 N L

N L
×

× ∈ℝ being a zero vector, ΩF is a matrix 

collecting the rows of a N-point DFT matrix according to pilot indices { }0 1 1 = , , , Mp p p −Ω … , 

and ( ) ( ), /   ,   =  /   , 0 1
iD p p pi p pi pii y x i w x i M= ≤ ≤ −y eɶɶ ɶ ɶ ɶ ɶ . Equation (3. 12) can be compared 

with (2. 22), indicating that ΩF  is a sensing matrix. Thanks to the CS theory, we can 

estimate the time-domain channel impulse response with low pilot density. 

 

3.2.1 Matching pursuit (MP) algorithm 

 MP algorithm was the first developed greedy algorithm applying in channel estimation, 

and it has been shown that MP is superior to the traditional LS method introduced in 3.1 either 

in the aspect of accuracy or the computational complexity [6],[7]. The block diagram of the 

MP algorithm is shown in Figure 3- 2.  
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1l
r

∗ −yΦΦΦΦ

} 

lT

{1  l lT T −= ∪ -1,
l l

l
r k kϕ ϕy

 

Figure 3- 2 Operations in MP algorithm. 

 

We also summarize the operation of the MP algorithm in Table 3. 1. 

 

Table 3. 1: Matching pursuit algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MP algorithm first finds the column vector of ΦΦΦΦ  having the maximum correlation 

with the measurement vector y . The column index is denoted by 0k  which is added into the 

Define ( )( ) = :, 1:LΩ  FΦΦΦΦ  and ,y = D pyɶ  

Input: yΦ,Φ,Φ,Φ,   

Initialization: 

1): 0 = arg  max ,  , 0,1, , 1n
n

k n N
ϕ

ϕ
∈

= −y …
ΦΦΦΦ

, { }0
0T = k . 

2): 
0 0

0 ,r k kϕ ϕ= −y y y , { }0 00 max , ,k kc signϕ ϕ= ×y y  

Iteration:  At the l -th iteration, go through the following steps. 

1): 1= arg  max ,l
l r n

n
k

ϕ
ϕ−

∈
y

ΦΦΦΦ
, 1T Tl l

lk−= ∪ . 

2): 1 1,
l l

l l l
r r r k kϕ ϕ− −= −y y y , { }1 1max , ,

l l

l l
l r k r kc signϕ ϕ− −= ×y y  

3): If the number of iterations l p=  or 
2

l
r ε≤y , quit the iteration. 

Output: 

1): The estimated channel response, satisfying { }0,1, , 1
ˆ 0lN T− −

=h
…

 and 

the non-zero coefficients are stored in { }1 2C= , , , lc c c… . 
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index set 0T . Then the 0k -th column of ΦΦΦΦ  is selected to compute the residue vector 0
ry , 

and the correlation coefficient. The process is then repeated, and the index set during each 

iteration is updated as 1T Tl l
lk−= ∪  whenever 1T l

lk −∉ , otherwise 1T Tl l −= . The 

algorithm is terminated when either the number of iteration exceeds a preset number, or the 

residue of the measurement vector is sufficiently small after l  iterations. 

 

3.2.2 Orthogonal Matching pursuit (OMP) algorithm 

The MP algorithm searches all vectors in each iterative, leading to the re-selection 

problem. This problem makes the convergence of the algorithm slow. Moreover, MP only 

optimizes the coefficient of the last selected vector to minimize the error. To overcome these 

problems, the OMP method was introduced and it has been shown that OMP has the better 

performance [9]. Figure 3- 3 shows the block diagram of the OMP algorithm, and the 

corresponding operation is described in Table 3. 2. 

 

Correlation Cal.

several indices 

with largest corr. magnitude

good 

enough ?

1l
r

∗ −yΦΦΦΦ

} 

New Iteration

YES

NO

STOP

lT

{1  l lT T −= ∪ ( )T
proj ly,ΦΦΦΦ

 

Figure 3- 3 Operations in OMP algorithm. 
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Table 3. 2: Orthogonal matching pursuit algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main difference between the MP and OMP algorithm is that the OMP maintains a 

stored dictionary containing all the indices selected among the iterations. The corresponding 

vectors are used to compute the new residue vector, avoiding the re-selection problem 

occurred in MP. The coefficients estimated in OMP are optimized with a set of selected 

vectors, which results in a much smaller error while the computational complexity is higher. 

 

Define ( )( ) = :, 1:LΩ  FΦΦΦΦ  and ,y = D pyɶ  

Input: yΦ,Φ,Φ,Φ,  

Initialization: 

1): 0= arg  maxk ∗yΦΦΦΦ , { }0
0T = k . 

2): ( )0
0

Tr resid=y y, ΦΦΦΦ . 

Iteration:  At the l -th iteration, go through the following steps. 

1): 1=arg  max l
l rk ∗ −yΦΦΦΦ , 1T Tl l

lk−= ∪ . 

2): ( )Tl

l
r resid=y y, ΦΦΦΦ . 

3): If the number of iterations l p=  or 
2

l
r ε≤y , quit the iteration. 

Output: 

1): The estimated channel response, satisfying { }0,1, , 1
ˆ 0lN T− −

=h
…

 and 

the non-zero coefficients †ˆ
l lT T

=h yΦΦΦΦ . 

Note here ( ) 1† H H−
=Φ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ , ( ) ( ) 1H Hresid

−
=y, y - yΦ Φ Φ Φ ΦΦ Φ Φ Φ ΦΦ Φ Φ Φ ΦΦ Φ Φ Φ Φ  

and { }( )Tl
l

T
=Φ Φ :,Φ Φ :,Φ Φ :,Φ Φ :, . 
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Chapter 4  Proposed Subspace Pursuit Algorithm in Channel 

Estimation 

 

4.1 Channel estimation in linear time-invariant (LTI) system 

Recently, a new method, called subspace pursuit (SP), was developed for the CS signal 

reconstruction [10]. The computational complexity of the algorithm has been shown to be 

lower than that of OMP while the accuracy can approach that of LP. To the best of our 

knowledge, the SP method has not been used in the OFDM channel estimation problem. Here, 

we propose using the SP-based method in the channel estimation, and show that SP indeed 

outperforms the existing CS methods including LP, MP, and OMP by simulations. In this 

section, we only consider linear time-invariant (LTI) channels. 

Recall that the received signal vector corresponding to the pilot sequence expressed as 

,D p pΩ=y F h + eɶɶ
 

(4. 1) 

with ΩF  is the sensing matrix, h  the channel response, and peɶ  noise. Let ,y = D pyɶ , a 

schematic diagram of the SP algorithm is shown in Figure 4- 1. 

 

( )T
proj ly, ΦΦΦΦ

( )T
proj ly,

ɶ
ΦΦΦΦ

1l
r

∗ −yΦΦΦΦ

1

2 2
?l l

r r
−≥y y

{1  l lT T K−= ∪ɶ

} 

{ lT K=
} 

 

Figure 4- 1 Operations in SP algorithm. 
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The main operation steps of the SP algorithm are summarized in  

Table 4. 1. 

 

Table 4. 1 Subspace Pursuit Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the SP algorithm, K  indices corresponding to the largest magnitude entries in ∗yΦΦΦΦ  

Define ( )( ) = :, 1:LΩ  FΦΦΦΦ  and ,y = D pyɶ  

Input: ,  K yΦ,Φ,Φ,Φ,  

Initialization: 

1): 0T = { K  indices corresponding to the largest magnitude entries in 

the vector }∗yΦΦΦΦ . 

2): ( )0
0

Tr resid=y y, ΦΦΦΦ . 

Iteration:  At the l -th iteration, go through the following steps. 

1): {1  l lT T K−= ∪ɶ  indices corresponding to the largest magnitude 

entries in the vector }1l
r

∗ −yΦΦΦΦ . 

2): Set †
lp T

=h y
ɶ

ΦΦΦΦ . 

3): { lT K=  indices corresponding to the largest magnitude elements 

of }ph . 

4): ( )Tl

l
r resid=y y, ΦΦΦΦ . 

5): If 1

2 2

l l
r r

−≥y y , let 1 l lT T −=  and quit the iteration. 

Output: 

1): The estimated channel response ĥ , satisfying { }0,1, , 1
ˆ 0lN T− −

=h
…

 and 

†ˆ
l lT T

=h yΦΦΦΦ . 
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are first selected to form an index set 0T . Here, K  denotes the channel sparsity, and the 

residue is computed with respect to 0T
ΦΦΦΦ  obtained by collecting the K  columns from ΦΦΦΦ  

according to the elements stored in 0T . During the iteration, an 2K  index set is formed by 

K  indices that maximizing the correlation between the columns of the sensing matrix and 

the residue vector united with the K  indices found at the previous iteration. Then the size of 

this set is shrunk to K  again by choosing K  indices from the largest magnitude elements 

of ph , and this index set can be viewed as a refinement to the indices obtained previously. 

The SP algorithm is stopped when the residue vector derived is larger or equal to the 

preceding one. After convergence, the tap positions of the channel are then found with the 

index set, and the coefficient on the taps can be calculated by the LS method. 

Due to the refinement, the indices that are mistakenly included in the index set can be 

removed in the following iterations, and so as the reliable candidates, which can be retrieved 

at any stage of the recovery process. This is different to the MP-based algorithms which 

generates the list of candidates sequentially without backtracking. So, more accurate indices 

of the sparse channel gains can be expected. 

 

4.1.1 SP algorithm without information of tap numbers 

The number of channel taps may be unknown to the receiver. Therefore, a revised 

version of the SP algorithm is needed. A simple idea is to conduct the SP method iteratively 

with an increasing tap number, and put a threshold on the estimated channel impulse 

responses. Since the gains of the insignificant taps are usually small, we expect that the 

number of estimated channel taps after thresholding will be the same whenever the tap 

number exceeds the channel sparsity K . This can then be used as the stop criterion to the SP 

algorithm. The flowchart of the proposed algorithm is depicted in Figure 4- 2. 
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SP Algorithm

Thresholding

Increase Tap 

Number
( ),KSP yΦ,Φ,Φ,Φ, 1K K= +

l l -1h = h ? 

lh

No

Yes

STOP

, 2, =0K l=y  

An initial frequency domain channel 

estimation without interpolation

 
Figure 4- 2 Recursively conducted SP algorithm. 

 

However, the number of the iteration of the algorithm proposed above can be large since 

the tap number of a channel can be large. If the statistics of the number of the channel taps 

were known a prior with the help of some statistical properties, we can then use the expected 

tap number as the first input instead of two used above. Next, we search forward and 

backward depending on whether the actual taps are more than or less than the expected tap 

number. In this way, the iteration needed for SP re-conduction will be dramatically reduced 

when tap numbers are large. This can be seen from the simulation result in chapter 5. Figure 

4- 3 shows the flowchart of the modified recursively conducted algorithm. 

The upper part of Figure 4- 3 is used to decide whether the true taps are more than or less 

than the expected ones. The idea is to run the SP algorithm twice. If the estimated channel 

response after thresholding process has the same tap number, then we know the tap number of 

the true channel is less than that of the assumed number. Then, go to the right section. 

Otherwise, go left. 
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( ),KSP yΦ,Φ,Φ,Φ,

,   , =0K Expected Tap Number l=y  

1K K= +

1K K= + 1K K= −

l l -1h = h ? 

1?l ≥
lh

, 2K K= −y  

( ),KSP yΦ,Φ,Φ,Φ,( ),KSP yΦ,Φ,Φ,Φ,

, 1K K= +y  

l l -1h = h ? l l -1h = h ? 

 

Figure 4- 3 Efficient recursively conducted SP algorithm. 

 

4.1.2 Channel estimation with insufficient pilots 

Now, if the pilot density is low, the channel estimate conducted by the SP method may be 

inaccurate. As mentioned in chapter 3, the pilot subcarriers are inserted uniformly in the 

spectrum. Since the channel is estimated by the pilot subcarriers, which is equivalent to 



 

30 
 

conduct a sampling on the frequency-domain channel response. As a result, the channel 

response in time-domain can be seen as periodic. If the sampling rate is not high enough, an 

effect similar to aliasing will occur. The effect is depicted in Figure 4- 4. 

 

 

Figure 4- 4 Aliasing in initial channel estimation. 

 

Suppose that the sampling period or we say the pilot interval isK , then the period of the 

time-domain channel estimate will be /N K , denoted as 1D , where N  is the number of 

subcarriers. Let the maximum delay spread of the channel be 2D , it can be easily observed 

that the aliasing problem occurs when 2 1D D≥ . And the response in the aliasing area cannot 

be recovered. 

We propose a decision-feedback method to overcome this problem. In the first step, we 

conduct an initial time-domain channel estimate using the pilots and only take the response in 

the non-aliasing region. Using the estimated channel frequency response, we can use the SP 

algorithm to conduct a refined channel estimation and then symbol detection. Finally, using 

some detected symbols as additional pseudo pilots, we can conduct the SP method again to 

re-estimate the channel. We now describe the proposed method in detail. With the help of 
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pilot subcarriers, we first obtain a frequency-domain channel response, and then transform the 

response to the time-domain. Selecting the response in the non-aliasing region and transform 

them back to the frequency domain, we then obtain a new frequency-domain channel estimate 

obtained. Figure 4- 5 shows the procedure. Since the aliasing area is not large, and the power 

of channel taps inside is usually small, the incomplete channel response can be used to 

recover data with an acceptable error probability. 

 

 
Figure 4- 5 Initial channel estimation method. 

 

Let  ˆ
ihɶ  denote the initial frequency-domain channel estimate. We then use the channel 

response to detect symbols at designated subcarriers. As known, the received signal in the 

frequency-domain at a subcarrier in subcarrier index i  can be expressed as i i i iy h x w= +ɶɶ ɶ ɶ , 

where ihɶ  is the frequency-domain channel response, ixɶ  is the transmitted frequency domain 
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signal, iwɶ  is AWGN noise. With the use of the zero-forcing (ZF) equalizer, the estimated 

symbol at the i -th subcarrier can be calculated by ˆ
ˆ
i

i

i

y
x

h
=
ɶ

ɶ
ɶ

. Then the data is sent to the 

decision device to recover the original transmitted symbol. Let the detected symbol be 

denoted as ̂ dxɶ . The flowchart of this procedure is shown in Figure 4- 6. 

 

yɶ

x̂ɶ

ˆ
dxɶ

 

Figure 4- 6 Data detection procedure. 

 

With detected data in hand, we can then choose some of them as additional pilots, 

increasing the pilot density. By choosing sufficient pseudo pilots, the period of the 

time-domain channel estimate 1D  will be larger than the maximum delay spread of the 

channel 2D . Therefore, aliasing will not occur. As long as aliasing does not occur, we can 

recover the whole channel response. The operation of the re-estimation can be performed as 

that of the channel estimation described previously, with the increased pilots that combining 

the original pilots and the pseudo pilots. To obtain better performance, the re-estimation can 
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be conducted iteratively until a convergence is achieved. The complete flowchart of the 

proposed SP algorithm used with insufficient pilot measurements is shown in Figure 4- 7.  

 

1re reN N= +

?re setN N<

=0reN

 
Figure 4- 7 The proposed SP algorithm with insufficient pilot measurements. 

 

The operations conducted in Figure 4- 7 are summarized as follows： 

1) Use the pilot subcarriers to obtain an initial frequency-domain channel estimate 

without interpolation. 

2) Transform the frequency-domain estimate into the time-domain and obtain the 
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time-domain channel estimate. 

3) Select the channel taps in the non-aliasing region, and then transform them back to 

the frequency-domain as a new frequency-domain channel estimate. 

4) Conduct the SP algorithm in Figure 4- 3 to estimate the channel impulse response, 

and detect transmitted symbols with the corresponding estimated frequency-domain 

channel estimate. Then, make decisions at some designated subcarriers as pseudo 

pilots. 

5) Using the original and pseudo pilots, perform the SP algorithm to re-estimate the 

whole channel response. 

6) If the number of re-estimation reN  has not reached a preset value setN , go to 3), 

where all the taps of channel are in the non-aliasing region when >0reN . 

 

4.2 Channel estimation in time-variant system 

Nowadays, more and more applications are used in high-mobility wireless environments. 

In this case, the channel becomes time-variant within an OFDM symbol, violating the 

common assumption for conventional OFDM systems. This is shown in Figure 4- 8.  

 

 

Figure 4- 8 One time-variant tap. 
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The channel variation rate depends on the Doppler frequency, which is proportional to 

the carrier frequency and the mobile speed. Denote the maximum Doppler frequency as 

C
D

v f
f

c

×=  (4. 2) 

where v  is the mobile speed, Cf  is the carrier frequency, and c  is the speed of light. The 

normalized Doppler frequency, defined as D sf T , is usually used as a parameter to indicate the 

variation rate. If the sampling period sT  and Cf   stay constants, it is obviously that the 

faster the mobile speed, the larger the normalized Doppler frequency will be. 

In time-variant channels, the performance of an OFDM system is degraded when the 

symbol duration is large. If the coherence time is small compared to the symbol duration, the 

channel response will change rapidly during one symbol. The orthogonality of the subcarriers 

in one OFDM symbol is no longer held and the ICI effect occurs. Thus, the frequency-domain 

channel response in (2. 9) will not be a diagonal matrix. Equation (2. 9) is now rewritten as 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

1

0

1

0,

,

        =  , ,      ,  0 1

N

m

N

m m k

y k h k m x m w k

h k k x k h k m x m w k k N

−

=

−

= ≠

= +

+ + ≤ ≤ −

∑

∑

ɶɶ ɶ ɶ

ɶ ɶɶ ɶ ɶ

 (4. 3) 

where the second term [ ] [ ]
1

0,

,
N

m m k

h k m x m
−

= ≠
∑ ɶ ɶ  is known as the ICI term. In this section, we will 

extend the proposed SP channel estimation in the previous section to the time-variant 

environments. 

 

4.2.1 Linear approximation method of time-variant channel 

Since the variation of channel taps is usually small in typical channels, it is reasonable to 

model a variation of a channel tap in an OFDM symbol with a linear function. This is 

equivalent to use a straight line connecting the start and end points of a channel tap within one 
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OFDM symbol. In this way, only the start point of the channel tap and its variation slope are 

needed to be specified. The approximation has been shown to be good for the normalized 

Doppler up to 20％ [23]. We show the approximation method in Figure 4- 9. 

 

Figure 4- 9 Linear approximation of a time-variant channel tap. 

 

By the linear model introduced above, the variation of a time-variant channel tap can 

then be expressed as  

[ ]   ,  0 1h n h n a n N= + × ≤ ≤ −
ℓ ℓ ℓ

 (4. 4) 

where [ ]h n
ℓ

 denotes the response of the ℓ -th channel tap at time instant n , h
ℓ
 is the 

initial value of the response which is set as the response of the start point, and a
ℓ
 is the 

variation slope of ℓ -th channel tap. 

 

4.2.2 Time-domain LS estimator in time-variant channel 

As known, the time-domain received OFDM symbol can be expressed as the transmitted 

symbol convolved with the channel impulse response as in (2. 8), and the operation can be 

formulated in the matrix form as 
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( ) ( ) ( ) ( )

00 1 2 1

1 1 0 0 1 1 2 2 1

2 2 1 1 0 0 3 3 2

1 1 2 2 3 3 0 0 1

 

 

2 2 2 2  

  

1 1 1 1

N N

N N

N N N N N N N

xh h h h
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h N a h N a h N a h N a x
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   
   + + + +   
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   
   
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y = w

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

 (4. 5) 

00 1 1 0 1 1

11 0 2 1 0 2

22 1 3 2 1 3

1 2 0 1 2 0 1

 0 0 0 0

 0 1 0 0

   0 0 2 0

  

0 0 0 1

N N

N N N N N

xh h h a a a

xh h h a a a
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+




w  (4. 6) 

For simplicity, we express equation (4. 6) as 

( )vy = H + D A x + w  (4. 7) 

where y  is the time-domain received signal vector, [ ]0 1 1, , ,
T

Nx x x −x = …  is the time-domain 

transmitted signal vector, w  is the AWGN noise, H  is a circulant matrix with 

[ ]0 1 1, , ,
T

Nh h h −h = …  as its first column, A  is a circulant matrix with [ ]0 1 1, , ,
T

Na a a −a = …  

as its first column, and vD  is a diagonal matrix with [ ]0,1, , 1
T

N −v = …  as its diagonal 

elements. 

We then transform the time-domain received signal vector to the frequency-domain with 

a N N×  unitary DFT matrix F . The result is given by 

N ⋅y = Fyɶ  (4. 8) 

where  
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⋯

⋯

⋯
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 (4. 9) 
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and N=HFF I . By (4. 7), the above equation becomes 

( )
( )

( )
  

ah

N

N N

⋅   

⋅ ⋅

 + 

v

H
v

H H H
v

H
v

y = F H + D A x + w

= F H + D A F Fx + Fw

   = FHF + FD F FAF x + w

   = D FD F D x + w

   = Mx + w

ɶ ɶ

ɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ

 (4. 10) 

where yɶ  is the frequency-domain received signal vector, xɶ  is the frequency-domain 

transmitted signal vector, Mɶ  is the frequency-domain ICI matrix, wɶ  is the corresponding 

frequency-domain noise, 
h

= HD FHFɶ  and a = HD FAFɶ
 are diagonal matrices with 

N ⋅h = Fhɶ  and N ⋅a = Faɶ  as their diagonal elements respectively, and 
h

D ɶ  can be 

viewed as the channel frequency response without ICI. 

Next, we let the ICI matrix be ah
+ H

vM = D FD F Dɶ ɶ
ɶ , and rearrange (4. 10) to a more 

compact form. Neglecting the noise term of (4. 10), we have 

ah
+ H

vy = D x FD F D xɶ ɶ
ɶ ɶ ɶ  (4. 11) 

The first term is rearrange as 
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where if  denotes the i -th row of the DFT matrix F . The second term in (4. 11) is  



 

39 
 

0

1

2

1

 0 0 0

 0 0 0

 0 0 0

  

0 0 0

a

N

x

x

N x

x −

   
   
   
   = ⋅
   
   
        

1

2
H H

v 3

N

f a0 0 0 0

f a0 1 0 0

FD F D x F F f a0 0 2 0

f a0 0 0 N -1

ɶ

ɶ⋯⋯

ɶ⋯⋯

ɶ ɶ⋯⋯

⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋮ ⋱ ⋮ ⋮

ɶ⋯⋯

 

0

1

2

1

0 0 0

0 0 0

0 0 0

 

0 0 0 N

x

x

N x

x −

   
   
   
   ⋅
   
   
        

1

2
H

3

N

f a0 0 0 0

f a0 1 0 0

                   = F F f a0 0 2 0

0 0 0 N -1 f a

ɶ ⋯⋯

ɶ ⋯⋯

ɶ ⋯⋯

⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋮ ⋱ ⋮ ⋮

ɶ⋯⋯

 (4. 13) 

Let 
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Then (4. 13) becomes 
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with iv  as row vectors, and 
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For derivation simplicity, we ignore the noise term and rewrite (4. 11) as follows: 
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Combining the two terms in the parenthesis of the above equation, we get 
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And then 

[ ] a a= × ×    y U V h = Q hɶ  (4. 19) 

where [ ]0 1 1, , , T
Ny y y −=     yɶ ɶ ɶ ɶ…  is the frequency-domain received signal vector, [ ]    Q = U V , 

[ ]0 1 1, , , T
NN x x x −⋅ 1 2 N         U = f f fɶ ɶ ɶ… , [ ], , , TN ⋅ 0 1 N-1         V = v v v… , and ah  is an 1N×2  vector 

containing the start values of the response and its variation slopes that we want to estimate. 

The LS algorithm can then be conducted by  

( ) 1ˆ
a

−
= H Hh Q Q Q yɶ  (4. 20) 

While the data are available only on pilot subcarriers, so only the rows of Q  that 

corresponding to the pilot positions are taken into account. And since the channel is sparse, 

many elements in ah  are actually zero, then only do the columns of Q  corresponding to 

the non-zero tap positions are needed to perform the LS method. For example, if there are 

only two significant taps in ah , say 0h  and 2h , then only the first and third column of U  

and V  need to be considered. We show this relationship in Figure 4- 10. 
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Let [ ]    Q = U V  
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Figure 4- 10 The entries to be selected. 

 

After removing the irrelevant elements in (4. 19), we then have a simplified form of (4. 

19) as 

k kp pk pk a pk a = × ×     y U V h = Q hɶ  (4. 22) 

where 
0 1 1

= , , ,
M

T

p p p py y y
−

  yɶ ɶ ɶ ɶ…  is the frequency-domain received signal vector on pilot 

subcarriers with   , 0 1ip i M≤ ≤ −  as pilot positions and M  as the total number of pilots, 

pkU  and pkV  are sub-matrices of U  and V  respectively, whose rows are determined by 

pilot positions and the columns are selecting according to the non-zero tap positions, and  

0 1 1 0 1 1
, , , , , , ,

k K K

T

a k k k k k kh h h a a a
− −

    =     h … …  is a parameter vector containing the K  start 
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values of the channel taps and the K  variation slopes with , 1jk j K≤ ≤ −        0  as its tap 

positions. From (4. 22), the LS solution for 
kah is obtained as 

( ) 1ˆ
ka pk pk pk p

−
= H Hh Q Q Q yɶ  (4. 23) 

In the time-variant systems, the unknowns of the channel are the starting values of the 

channel taps and the corresponding variation slopes. Thus, the parameters we need to estimate 

are as twice as those in the time-invariant channels. As a result, the accuracy of estimation 

result can be affected. With the proposed algorithm, however, the problem can be alleviated 

since data decisions can be used as additional pseudo pilots as introduced in Section 4.1.2. In 

the re-estimation, the entries of the received signal vector and the rows of matrices U  and 

V  are then selected by the original and pseudo pilot positions. 

 

4.2.3 Proposed method in time-variant channel estimation 

We have discussed the proposed time-invariant channel estimation method in Section 4.1. 

The strategy for the time-variant channel estimation is the same：Use the SP algorithm to 

conduct tap searching. After the tap positions have been located, the values on the positions 

can then be computed with the LS estimator as described in previous section. The main idea 

for performance improvement is the application of decision feedback. The block diagram of 

the proposed scheme is shown in Figure 4- 11, and the detail operations are summarized in the 

procedure following the figure. 
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Figure 4- 11 Proposed method in time-variant channel. 

 

1) Treat the channel as time-invariant and use the pilot subcarriers to obtain an initial 

frequency-domain channel estimate and transform it to the time-domain to obtain 

time-domain channel estimate. 
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2) Select the non-aliasing region of the estimated time-domain channel, and then 

transform it back to the frequency-domain to obtain a new frequency-domain channel 

estimate. 

3) Conduct the SP algorithm for tap searching. Once the tap positions are located, the 

parameters including the start points and the variation slopes of the time-variant 

channel can then be obtained by the LS estimator described in Section 4.2.2.  

4) Construct the ICI matrix Mɶ  with the parameters estimated in 3), estimate the 

transmitted symbols by the zero-forcing equalizer( )ˆ= -1y Mx + w ,  x = M yɶ ɶɶ ɶ ɶ ɶ ɶ , and 

make symbol decisions. Those at the designated subcarriers are then used as pseudo 

pilots. 

5) Obtain the frequency-domain channel estimate again by using original and pseudo 

pilots. The whole channel response can be obtained by re-conducting the SP 

algorithm and the LS estimator. 

6) If the number of re-estimation reN  is less than a preset valuesetN , go to 2). 
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Chapter 5  Simulation Results 

 

In this chapter, the simulation results are reported to demonstrate the performance of the 

proposed SP channel estimation algorithm. It is assumed that the synchronization of the 

receiver has been perfectly achieved. The OFDM system we used has 512 subcarriers and the 

CP length is 64, corresponding to 
1

8
 of the symbol size. The pilot subcarriers are evenly 

allocated in the frequency-domain. For different simulation scenarios, the pilot density will be 

set to be different. Three modulation schemes including BPSK, QPSK, and 16-QAM are 

adopted for each subcarrier. Let the number of non-zero taps be 6, i.e., the sparsity of the 

channel is 6K = . The tap values for the LTI channel are assumed to be independently 

identically-distributed (i.i.d.) with ( )0,1CN , and the relative path power profiles are set as 0, 

-0.9, -4.9, -8, -7.8, and -23.9 (dB) as specified in ITU Ped-B channel [24]. And, the tap 

positions are uniformly distributed between 0 and 1L −  where L  is the maximum delay 

spread. An example of a 6-tap channel is shown in Figure 5- 1. In the time-varying system, 

the fading channel is generated by Jake’s Model with various normalized Doppler frequency. 

The receive signal quality is indicated by the SNR defined as the received signal power 

divided by the noise power at the receiver. Also, the performance of the channel estimate is by 

the resultant bit-error-rate (BER). 
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Figure 5- 1 An example of a 6-tap channel. 

 

5.1 Results of LTI channel estimation 

In this section, we report the performance of the proposed SP method in the LTI channel 

estimation problem. We first show that the proposed method can outperform other CS 

recovery methods. Then, we further explore the performance of the proposed channel 

estimator in different scenarios. 

 

5.1.1 Performance of different CS methods in channel estimation 

We compare the proposed method to the existing CS methods mentioned in Chapter 2, 

including LP, MP, and OMP algorithm. Figure 5- 2 shows the simulation results with the pilot 

density of 1/9 and the QPSK modulation scheme. As we can see, the performance of the SP 

algorithm is much better than MP and OMP, especially when the SNR is high. The 
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performance of LP is very close to that of SP.  However, the computational complexity of the 

LP algorithm is high. 
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Figure 5- 2 Performance comparison of different CS recovery methods. 

 

5.1.2 Simulation results of SP estimator with tap numbers are known 

Figure 5- 3 and Figure 5- 4 show the estimation results for the pilot density of 
1

4
 and 

1

8
 , respectively. Here, we assume that the number of taps is known as a prior. Comparing the 

results with perfect channel information denoted by BPSK perfect, QPSK perfect and 

16-QAM perfect in Figure 5- 3, we see that the performance of the propose SP algorithm is 

good even for the 16-QAM scheme. When the pilot density is reduced, the performance, as 

shown in Figure 5- 4, is only slightly degraded. If this is not satisfactory, we can use the 

proposed decision-feedback algorithm to conduct the re-estimation and the performance can 

be further improved. 
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Figure 5- 3 BER performance of proposed channel estimator for BPSK, QPSK, and 16-QAM 

with pilot density of 1/4. 
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Figure 5- 4 BER performance of proposed channel estimator for BPSK, QPSK, and 16-QAM 

with pilot density of 1/8. 
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5.1.3 Simulation results of SP estimator with tap numbers are unknown 

In this section, we will show the results of the proposed SP algorithm when the number 

of taps is unknown. As discussed in section 4.1.1, we propose two methods, specified in 

Figure 4- 2 and Figure 4- 3, to re-conduct SP algorithm when the tap number is unknown. 

Figure 5- 5 shows the iteration required for the SP algorithm in Figure 4- 2 and Figure 4- 3 vs. 

the expected channel tap. This figure clearly shows that the method depicted in Figure 4- 3 is 

much more efficient than the other one. Figure 5- 6 shows the BER performance with a pilot 

density of 
1

8
. From Figure 5- 6, we see that the SP algorithm still works well even the 

information of the tap number is unknown. 
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Figure 5- 5 Number of iterations required for SP re-conduction specified in Figure 4- 2 and 

Figure 4- 3. 
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Figure 5- 6 Performance of proposed channel estimator with pilot density of 1/8 when tap 

numbers are unknown. 

 

5.1.4 Simulation results of SP estimator with insufficient pilots 

As discussed in Section 4.1.2, low pilot density may causes aliasing in the time-domain 

response. The proposed solution is first to deal with the response in the non-aliasing region 

and use it to conduct symbol detection and re-estimate the whole channel response. In this 

section, we use simulation results to show the number of the iterations required for the 

re-estimation in various modulation schemes and the resultant BER performance. Figure 5- 7 

shows the performance vs. the number of iterations in the BPSK scheme with a pilot density 

of 1/12. From the figure, it is apparent that the performance for the second and third iteration 

is the same. Therefore, two iterations are sufficient for the proposed algorithm to obtain good 

performance. From Figure 5- 8 and Figure 5- 9, we can see that the numbers of iterations 

required for QPSK and 16-QAM are 2 and 4, respectively. Figure 5- 10 and Figure 5- 11 show 
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the resultant BER performance for the cases with and without the known tap number, 

respectively. In Figure 5- 7 to Figure 5- 11, the pilot density (original pilots plus pseudo pilots) 

used for the re-estimation is set to 1/3. 
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Figure 5- 7 Performance comparison of different number of iterations for channel 

re-estimation in BPSK. 
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Figure 5- 8 Performance comparison of different number of iterations for channel 

re-estimation in QPSK. 
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Figure 5- 9 Performance comparison of different number of iterations for channel 

re-estimation in 16-QAM. 
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Figure 5- 10 BER performance of proposed channel estimator with pilot density of 1/12 when 

tap numbers are known. 
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Figure 5- 11 BER performance of proposed channel estimator with pilot density of 1/12 when 

tap numbers are unknown. 
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5.2 Results of time-variant channel estimation 

In the previous section, we have reported the performance of the proposed SP algorithm 

when the channel is assumed to be LTI. In this section, we consider the time-variant channel. 

Two scenarios will be discussed：The normalized Doppler frequency is 0.0244 and that is 

0.1016 respectively. 

 

5.2.1 Results of proposed time-variant channel estimator with normalized 

Doppler frequency of 0.0244 

 Figure 5- 12 shows the comparison of the BER performance of the proposed SP method 

with and without re-estimation procedure when the pilot density is 
1

8
. From the figure, we 

see that the performance can indeed be improved with the re-estimation. Then, we show the 

simulation results for the cases when the tap number is known and unknown in Figure 5- 13 

and Figure 5- 14, respectively. In the figures, the results for perfect channel estimation are 

also shown as the benchmarks. As we can see, the approximation errors of the proposed 

methods are small. 
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Figure 5- 12 Performance comparison of proposed channel estimator with and without 

re-estimation. 
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Figure 5- 13 Performance of proposed channel estimator with normalized Doppler frequency 

of 0.0244 for tap numbers are known. 
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Figure 5- 14 Performance of proposed channel estimator with normalized Doppler frequency 

of 0.0244 for tap numbers are unknown. 

 

5.2.2 Results of proposed time-variant channel estimator with normalized 

Doppler frequency of 0.1016 

When the normalized Doppler frequency becomes 0.1016, the mobility speed becomes 

higher and the ICI effect is more severe. Figure 5- 15 and Figure 5- 16 show the simulation 

results. Notice that the error rate is raised because the ICI becomes larger. Nevertheless, by 

observing the two figures, we can see that the performance of the proposed SP algorithm still 

performs satisfactorily since the BER is close to that of the perfect channel. 
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Figure 5- 15 Performance of proposed channel estimator with normalized Doppler frequency 

of 0.1016 for tap numbers are known. 
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Figure 5- 16 Performance of proposed channel estimator with normalized Doppler frequency 

of 0.1016 for tap numbers are unknown. 
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Chapter 6  Conclusions and Future Works 

 

In this thesis, we have applied the SP algorithm to the channel estimation problem in 

OFDM systems, where the channel impulse response is assumed to be sparse. Using 

simulation results, we first show that the SP algorithm is superior to the existing CS signal 

recovery methods. We then propose an iterative SP algorithm for the scenario that the number 

of channel taps is unknown. Simulation results show that the performance is close to the 

scenario that the number of channel taps is known. If the pilot density is low, aliasing will 

occur in the time-domain channel response and the performance of the SP method will be 

affected. We then further proposed a decision-feedback SP method in which some decisions 

are used as additional pseudo pilots to overcome the problem. Simulations show that the 

proposed decision-feedback SP algorithm still performs well even when the pilot density is 

very low. Finally, we apply the proposed SP channel estimators to time-variant channels. In 

the environments, ICI is introduced and the parameters to be estimated are doubled. And we 

show that the proposed method can yield good performance even when the mobile speed is 

high. 

Through the entire thesis, we only focus on the single-input-single-output (SISO) 

systems. However, multiple-input-multiple-output (MIMO) systems are developed rapidly in 

recent years since they can provide higher data throughput, better coverage, and higher 

reliability. Thus, we may apply the proposed methods to the channel estimation problem in 

MIMO-OFDM systems. In equalization, we use a ZF equalizer to obtain the data decisions; 

however, there are many equalization methods which may provide better performance. This 

can also serve as a topic for further research. 
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