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中文摘要 

 

    因為字串比對的準確性，使其技術近年來被廣泛運用到網際網路應用上，其

中，Snort 為最具彈性與精確性的偵測軟體之一。Snort 是一套開放原始碼的網路

入侵預防與入侵檢測軟體，使用以特徵值(signature-based)和通訊協定的偵測方

式，加上 Snort 規則語言(rules language)，搭配正規表示式(Perl compatible regular 

expression-PCRE)資料庫透過正規表示式字串比對，來達到流量封包辨識目的。 

其不僅單純檢測網路封包的表頭(header)，更依據封包內容(payload)做比對，檢

查其是否與所設定的網路安全規範一致，這過程稱深度封包檢測(deep packet 

inspection)，效果會比傳統偵測方式僅檢測封包表頭更具安全性。有一著名正規

表示式比對的演算法稱 Aho-Corasick 演算法，不僅可以同時比對多字串並保證

在各情形下有合理的效能。我們提出一個方法延伸 Aho-Corasick 演算法，可以

將 Snort PCRE 部分，依其特徵規則式有系統地建造特徵正規表示式比對圖，實

驗數據顯示可得到合理的效能及較少的記憶體需求量。 

 

關鍵字：深度封包檢測、網路安全、字串比對、正規表示式 
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Institute of Communication Engineering  
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Abstract 

Snort is an open source and free network intrusion prevention system (NIPS) and 

network intrusion detection system (NIDS) clever of performing packet logging and 

real-time traffic analysis on IP networks. Snort can also deal with deep packet 

inspection (DPI) which is an effective security measure that checks not only the 

packet headers but also the packet content. It uses Perl Compatible Regular 

Expression (PCRE) library for checking regular expressions which is replacing 

explicit string patterns as the pattern matching language of choice in many deep 

packet scanning applications. For regular expression, there is a famous pattern 

matching algorithm named Aho-Corasick (AC) which can match multiple patterns 

simultaneously and guarantee deterministic performance under all circumstances. We 

provide a method to extend the AC algorithm, and use this scheme to systematically 

construct a signature matching system which can indicate the ending position in a 

finite input string for the occurrence of Snort rules signatures that are specified by 

regular expressions. Use extended AC algorithm on Snort PCRE yields acceptable 

throughput performance and memory requirement. 

 

Keywords: deep packet inspection, network security, string matching, regular 

expression 
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Chapter 1.  
 

Introduction 
 

From before until now, most security detection device only can examine the 

packet headers, so Layer-7 intrusions can go through these device undetected. For 

such problems, deep packet inspection (DPI) is an effective security measure checks 

which not only the packet headers but also the packet content. Packet content scanning 

(also known as Layer-7 filtering or payload scanning) is very important to network 

intrusion detection system (NIDS) and network intrusion detection prevention (NIDP) 

applications. In these applications, the payload of packets in a traffic stream is 

matched against a given set of patterns to identify specific classes of applications, 

viruses, and protocol definitions. 

 

Snort is an open source and free network intrusion prevention system (NIPS) and 

network intrusion detection system (NIDS) clever of performing packet logging and 

real-time traffic analysis on IP networks. It can also deal with deep packet inspection 

(DPI) which is an effective security measure checks which not only the packet headers 

but also the packet content. 

 

Currently, regular expression used to specify virus signatures are often simple 

ones and flexibility for describing information than exact strings, so it is replacing 

explicit string patterns as the pattern matching language of choice in many deep packet 

scanning applications.  
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According to [1], the deep packet inspection are the most expensive parts of 

Snort (a popular open source IDS) [2], accounting for 21% and 31% of the execution 

time. In [3], there is a table to show that memory requirements using traditional ways, 

which are prohibitively high for many patterns used in packet scanning applications. I 

will list the table out in Chapter 2. The Snort-like systems are usually specified the 

signatures using simple rule-based language. So, the IDS use a scheme to check 

whether any rule matches an incoming packet. The concept of Snort will be reviewed 

roughly in Chapter 2. 

 

Much research has focused on improving the performance of signature matching 

component of Snort. Snort uses Perl Compatible Regular Expression (PCRE) library 

for checking regular expressions. The regular expressions are also checked for the 

rules whether string matching has succeeded. 

 

When security attacks become more complicated, regular expressions are much 

more expressive than plain strings were used to specify their signatures.  It is well 

known that a regular expression can be recognized with a non-deterministic finite 

automaton (NFA), which can be transformed into a deterministic finite automaton 

(DFA) so it is equivalent.  There are some famous algorithms [4], [5] to construct an 

NFA recognizing a given regular expression.  However, NFA-based solutions are 

often inefficient on a processor with limited parallelism.  Hardware accelerators were 

proposed to achieve high performance [6]. 

 

To be aimed at regular expression, there has a famous pattern matching 

algorithms named Aho-Corasick (AC). The AC algorithm can match multiple patterns 

simultaneously and guarantee deterministic performance under all circumstances. 
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Besides, we provide a method to extend the AC algorithm and use this scheme to 

systematically construct a signature matching system which can indicate the ending 

position in a finite input string for the occurrence of Snort rules signatures that are 

specified by regular expressions. The scheme of AC algorithm and the extend AC 

algorithm will be sketched briefly in Chapter 3. 

 

In [7], an idea is similar to the failure transition of the AC algorithm, which was 

proposed to reduce the number of state transitions. In this way, the space requirement 

of a DFA is also reduced. Although the idea works for selected sets of regular 

expressions, it still has the risk of resulting in a huge number of states. Therefore, the 

purpose of the method to extend the AC algorithm is to present a high-performance, 

reasonable memory requirement signature matching system for simple regular 

expressions and plain strings that can be efficiently implemented on general-purpose 

processors. 

 

 The rest of this paper is organized as follows. In Chapter 2, we introduce some 

background about Snort and regular expression. In Chapter 3, we review the related 

works, which is about how the enhanced Aho-Corasick algorithm works. In Chapter 4, 

we present the PCRE handling with our proposed enhanced Aho-Corasick algorithm. 

Experimental results are provided in Chapter 5. Finally, we draw conclusion in 

Chapter 6. 
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Chapter 2.  
 

Background 
 
2.1. Snort Overview 

2.1.1. Operation Mode 

 Snort with intrusion detection related has four modes: 

1. Sniffer mode 

Sniffer the packets content in network, and display the packets content on 

monitor. 

2. Packet Logger mode 

Record the sniffer packets content into hard disc.  

3. Network Intrusion Detection System mode (NIDS mode) 

Analyze the packets content. If there has matched the rules which is made by 

user, it will take reaction. 

4. Inline mode 

Capture the packets from Iptables instead from Libpcap. If these packets 

matched Snort rules, this rules corresponding reaction then act to let these 

packets pass or throw away. 
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2.1.2. Snort Operation Architecture 

 

 Snort system architecture has four parts and shown in Figure 1. 

Network Backbone

Packets

Sniffer

Preprocessor

Detection 
Engine

Alerts/
Logging

Rule 
sets

Log Files/
Database

       Figure 1. Snort system architecture. 

1. Sniffer 

 Detect and capture packets. 

2. Preprocessor 

 Base on TCP/IP protocol to filter the packets and to analysis the reassociated 

packets. Snort is used ‘Libpcap’ to capture the network packets, and can set the 

packets filter to catch designated packets. 

3. Detection engine 

 Snort system take the detection rules to form a tow dimension linking structure, 

and use inserted way to organize rule library, which means to divide intrusion 
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behavior into different parts.  

4. Alerts / Logging system 

 When intrusion detection system detect the threat, it will alarm and record in log 

file. The IDS use TCPDUMP form to record the alarm message, and send the 

alarm message to Syslog to notify network security management. 

 

2.1.3. Snort Rule Language 

According to [8], following will introduce the rule language of Snort. To specify 

signatures, Snort uses a simple rule-based language. Snort signatures are written in a 

configuration file which is read when Snort starts up. After starting up, the signature 

file consists of several variable declarations and rules, and the value of the variable is 

instated in the rules for signature matching. The rules consist of a rule header and a 

rule body in Figure 2.  

Rule Header

Rule Options General 

Non-payload

payload

payload

Post-detection

alert tcp any any -> any 80

(msg:”Not for children”;

flow:to_server, established;

content:”bad_command.htm”;

react:throw,msg,proxy 80;

pcre:”/chat.rules/^\s*block/smi”;)

 

Figure 2. Snort rule header and rule body example.(From [9]) 
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 Rule Header 

The rule header consists of action, protocol, ip addresses, ports, and 

direction operator.  

 Rule actions 

Specify the action like alerting or logging that Snort should perform 

when a rule matches a packet. Common action is in following: 

  1.alert : provide warning message and log in file. 

  2. log : record packets 

  3.pass : ignore packets  

  4.drop : notify iptables and throw the packets awey 

  5.activate : provide warning message and act another rule 

  6.dynimic : wait until another rule has been executed 

 

 Rule protocols 

Each rule is applicable to packets which belonging to a particular 

protocol like TCP, UDP, ICMP, or IP.  

 

 Rule IP and port 

According to TCP and UDP rules, the header defined the source and 

destination ip addresses and port fields for which the rule is to be 

applied.  

Snort uses any for one of these field means that the rule will match 

for any value in a packet. In other words, any can mean arbitrary 

addresses or determined addresses. For example, 140.113.13.118. Also, 

Snort rules can use ‘!’ to indicate ‘not’ what kind of network ip 

addresses. For example, !140.113.13.0/24 is indicate not from 
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140.113.13.1 to 140.113.13.255 this range ip addresses. 

  Port can present in many way. If use any means arbitrary port, and 

assigned port like telnet port is 23 and http port is 80 so on. Snort rule 

also have ‘:’ to present designated port range. Following have three 

instances: 

1.  

  log udp any any -> 140.113.13.0/24 1:1024 log udp 

  This means traffic coming from any port and destination ports  

ranging from 1 to 1024. 

2.  

  log tcp any any ->140.113.13.0/24 :3000 

  This means log tcp traffic from any port going to ports less or equal to 

3000. 

3. 

 log tcp any :1024 -> 140.113.13.0/24 20: 

  This means log tcp traffic from privileged ports less than or equal to 

1024 going to ports greater than or equal to 20. 

 

 Rule direction  

The fields to the left of the direction operator (->) are the source 

fields, while the ones on the right hand side are for the destination. An 

alternative operator which is called bidirectional operator (<>), indicates 

that the rule is to be applied to both directions of the flow. 

For example: 

   alert tcp 140.113.13.118 80 -> 140.113.13.0/24  any  

            This 140.113.13.118 is source ip address, and 80 is source prot.             
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The direction operator ‘->’ means the packet is from left to right.             

This 140.113.13.0/24 is destination ip address, and any is destination 

port.        

 

 

 Rule Options  

         Rule options are the most important parts of Snort intrusion detection 

engine. There are four classifications as following and in Table 1: 

 general  

Provide information that related to the rule, and this option has no 

relationship with intrusion detection. 

 payload  

  Matching the content in packets. 

 non-payload  

  Matching all protocol fields. 

 post-detection  

  When packets content match Snort rules, it will take other reaction. 

 

 
 

Table 1. Rule option keywords (From[10]) 

Type Keywords 
general msg、reference、gid、sid、rev、classtype、priority、 

metadata 
 

payload content、nocase、rawbytes、depth、offset、distance、 
within、http_client_body、http_cookie、http_header、 
http_method 、http_uri 、fast_pattern 、uricontent 、 
urilen 、isdataat 、pcre 、bype_test 、byte_jump 、 
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ftpbounce、asn1、cvs 
 

non-payload fragoffet、ttl、tos、id、ipopts、fragbits、dsize、flags、 
flow、flowbits、seq、ack、window、itype、icode、icmp_id、
icmp_seq、rpc、ip_proto、sameip、stream_size 
 

post-detection logto 、session 、resp 、react 、tag 、activates 、 
activated_by、count 
 

 
 
 

  In rule option keywords, the most significant words are content and pcre, which are 

concerned with whether regular expression string matching is precise or not.              

According to this reason, we focus on pcre to achieve regular expression matching  

scheme using our algorithm to promote memory space and throughput. 
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2.2. Regular Expression Overview 

2.2.1 Regular Expression Patterns 

 Regular expressions also referred to as regex or regexp, which provide a brief 

and flexible meaning for matching strings from text, such as particular characters, 

words, or patterns of characters. A regular expression describes a set of strings 

without enumerating them explicitly, and it is written in a formal language that can be 

interpreted by a regular expression processor, a program that either serves as a parser 

generator or examines text and identifies parts that match the provided specification.  

In addition, regular expression, often called a pattern, is an way that describes a set of 

strings. They are usually used to give a concise description of a set, without having to 

list all elements. According to [3], Table 2 lists the common features of regular 

expression patterns used in packet payload scanning. For example, take consideration 

to a regular expression from the Linux L7-filter [11] for detecting Yahoo traffic: 

“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern matches any packet 

payload that starts with ymsg, ypns, or yhoo, followed by seven or fewer arbitrary 

characters, and then a letter l, w or t, and some arbitrary characters, and finally the 

ASCII letters c0 and 80 in the hexadecimal form. 
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Table 2. Features of Regular Expressions 

Syntax Meaning Example 
^ Pattern to be matched at the 

start of the input 
 

^XY means the input starts with XY. A 
pattern without ‘^’, e.g., XY, can be 
matched anywhere in the input. 

| OR relationship X|Y denotes X or Y. 
. A single character wildcard 

 
 

? A quantifier denoting one or 
less 

W? denotes W or an empty string. 

* A quantifier denoting 
zero or more 

W* means an arbitrary number of Ws. 

{} Repeat Q{100} denotes 100 Qs. 
{m,n} Matches the preceding 

element at least m and not 
more than n times. 

Z{3,5}denotes ZZZ, ZZZZ, or ZZZZZ 

[] A class of characters [lwt] denotes a letter l, w, or t. 
[^] Anything but [^\s] denotes any character except \s. 

 

 

 

 Metacharacters mean escaped with a backslash is reversed for some characters in 

the POSIX Extended Regular Expression (ERE) syntax. In Table 3, it will list 

extended regular expression symbol and meaning. A backslash causes the 

metacharacter to be treated as a literal character. Additionally, support is removed for 

\n backreferences. 

 

 

 Table 3. Features of Extended Regular Expression 

Syntax Meaning Example 
+ Matches the preceding 

element one or more times. 
op+ matches "op", "opp", "oppp", and so 
on. 
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2.2.2 Regular Expression Patterns Using DFA Space 

 For regular expressions, finite automata are a natural formalism. Here are two 

main categories: Deterministic Finite Automaton (DFA) and Nondeterministic Finite 

Automaton (NFA). 

 

A DFA consists of a finite set of input symbols, which denoted as Σ, a transition 

function δ [12], and a finite set of states. Σ contains the 28 symbols from the extended 

ASCII code in networking applications. Beside the states, there is a single start state 

Q0 and a set of accepting states, which we call final state. The transition function δ 

takes an input symbol and a state as functions and returns a state. A major feature of 

DFA is that at any time, there is only one active state in the DFA. But an NFA works 

multiple states simultaneously. Otherwise, an NFA similar to a DFA except that the δ 

function, maps from a state and a symbol to a set of new states.  
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2.2.3 DFA Analysis for Snort PCRE Parts 

In this section, we introduce the regular expressions used in deep packet payload 

scanning by[13]. Snort assumed the Perl-compatible regular expression (PCRE) 

syntax. More precisely, this present the features of the regular expressions included in 

Snort IDS. For example, alert tcp any ->(pcre:"/∧PASS\s*\n/smi";) is a Snort rule 

and has introduced in section 2.1.3. Based on the above rule, Snort will detect any 

packet with payload including a string that matches the “/∧PASS\s*\n/smi” regular 

expression. Because “/∧PASS\s*\n/smi” is the content of packets, this means deep 

packet inspection (DPI). Take from the famous features of a strict definition of regular 

expressions, PCRE have more features such as constrained repetitions and several 

flags. Table 4 lists the PCRE basic syntax supported by our regular expression pattern 

matching algorithm. 
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Table 4. Snort-PCRE Basic Syntax (From [13]) 
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Chapter 3.  
 

Related Works 
 
3.1. The Aho-Corasick Algorithm 
 The Aho-Corasick (AC) algorithm is dictated by three functions: a goto function 

g, a failure function f, and an output function output. Figure 3 shows the three 

functions for the pattern set Y = {he, she, his, hers} [7][14][15]. 

 

 
(a) 

 
 

R 1 2 3 4 5 6 7 8 9 
f(R) 0 0 0 1 2 0 3 0 3 

          (b) 
  

R output(R) 
2 {he} 
5 {she, he} 
7 {his} 
9 {hers} 

(c) 
 

Figure 3. (a) goto function, (b) failure function, and (c) output function for Y = {he, 
she, his, hers}. 
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Some definitions are needed. Let  represent concatenation of strings  

and . We say  is a prefix and  is a suffix of the string . Moreover,  

is a proper prefix if  is not empty. Likewise,  is a proper suffix if  is not 

empty. String  is said to represent state P on a goto graph if the shortest path from 

the start state to state P spells out . Throughout this paper, the representing string of 

state 

1 2S S 1S

2S 1S 2S 1 2S S 1S

2S 2S 1S

S

S

P  is denoted by PS . The start state is represented by the empty string ε .  

The length of string S is denoted by . | |S

 

Note that there might be a self-loop at the start state of a goto graph. However, it 

becomes a tree after removing the self-loop, if exists. In the following definitions, we 

ignore the self-loop. We call state P the parent of state R and state R the child of state 

P if there exists a symbol σ  such that ( , )g P Rσ = . State R is said to be a 

descendent of state P and state P  an ancestor of state  if R PS  is a proper prefix 

. The tree which consists of state P and all its descendant states is called the 

sub-tree of P. 

RS

 

One state, numbered 0, is designated as the start state. The goto function g maps a 

pair (state, input symbol) into a state or the message fail. For the example shown in 

Figure 3, we have g(0, h) = 1 and g(1,σ ) = fail if σ  is not e or i. State 0 is a special 

state which never results in the fail message. With this property, one input symbol is 

processed by the AC algorithm in every operation cycle. 

 

The failure function f maps a state into a state and is consulted when the outcome 

of the goto function is the fail message. We have f(P) = R iff  is the longest proper 

suffix of 

RS

PS  that is also a prefix of some pattern. The output function maps a state 
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into a set (could be empty) of patterns. The set output(P) contains a pattern if the 

pattern is a suffix of PS . 

 

Let P be the current state and σ  the current input symbol.  Also, let  denote 

the input string. Initially, the start state is assigned as the current state and the first 

symbol of  is the current input symbol. An operation cycle of the AC algorithm is 

defined as follows. 

X

X

1. If g(P, σ ) = R, the algorithm makes a state transition such that state R 

becomes the current state and the next symbol in  becomes the current 

input symbol.  If output(R) ≠ 

X

∅ , the algorithm emits the set output(R).  The 

operation cycle is complete. 

2. If g(P, σ ) = fail, the algorithm makes a failure transition by consulting the 

failure function f.  Assume that f(P) = R.  The algorithm repeats the cycle 

with R as the current state and σ  as the current input symbol. 

 

The procedures to construct the goto, failure, and output functions are described in 

Algorithms AC1 and AC2 below [7].  The goto function and the failure function are 

constructed in Algorithms 1 and 2, respectively. The output function is partially 

constructed in Algorithm 1 and completed in Algorithm 2. 
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Algorithm AC1. Construction of the goto function. 

Input. Set of keywords . 1 2{ , ,..., }kY y y y=

Output. Goto function g and a partially computed output function output. 

Method. We assume output(P)=∅  when state P is first created, and g(P, σ ) = fail if 

σ  is undefined or if g(P,σ ) has not yet been defined.  The procedure enter(y) 

inserts into the goto graph a path that spells out y. 

begin 

  newstate ← 0 

  for i ← 1 until k do  ( )ienter y

  for all σ  such that g(0,σ ) = fail do g(0,σ ) ← 0 
end 

procedure : 1 2( ... )menter a a a

 begin 
   state ← 0; j ← 1 

   while ( , )jg state a fail≠  do 

     begin 

       state ← ( , )jg state a  

       j ← j + l 
     end 
   for p ← j until m do 
     begin 
       newstate ← newstate + 1 

       ( , p )g state a  ← newstate 

       state ← newstate 
     end 

   output(state) ←  1 2{ ... ma a a }

 end 
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Algorithm AC2. Construction of the failure function. 

Input. Goto function g and output function output from Algorithm 1. 

Output. Failure function f and output function output. 

Method. 
 
 begin 
   queue ← empty 
   for each σ  such that g(0,σ ) = P ≠ 0 do 
     begin 
       queue ← queue {∪ P} 
       f(P) ← 0 
     end    
while queue ≠ empty do 
     begin 
       let R be the next state in queue 
       queue ← queue - {R} 
       for each σ  such that g(R,σ ) = P ≠ fail do 
         begin 
           queue ← queue {∪ P} 
           state ← f(R) 
           while g (state,σ ) = fail do state ← f(state) 
           f(P) ← g(state,σ ) 
           output(P) ←output(P)∪output(f(P)) 
         end 
     end 
 end 
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3.2. Enhancing The Aho-Corasick Algorithm 
Let , , …, and be n regular expressions that contain * operators 

only.  Further, let , , …, and 

1RE 2RE nRE

1nRE + 2nRE + n mRE +  be m regular expressions, each of 

them contains at least one {min, max} operator.  We construct in this section the 

signature matching system for , , …, , 1RE 2RE nRE 1nRE + , 2nRE + , …, and n mRE + .  

An important fact in finding a match for 1 * 2RE RE RE= , where 1RE  and 2RE  are 

plain strings or simple regular expressions, is that, once 1RE  was matched before, a 

match of  is found if RE 2RE  is matched.  Therefore, we need to remember 

whether or not 1RE  was matched before.  We use different goto graphs to implicitly 

memorize such information.  Our proposed signature matching system consists of a 

pre-filter and a verification module, which are described separately below.  With a 

pre-filter, the space complexity is largely reduced and the throughput performance can 

be significantly improved. 

3.2.1. Pre-filter 

The pre-filter is designed based on the well-known Bloom filters which guarantee 

no false negative. Given block size k, there are m-k+1 membership query module. 

Recall that 1 2... m
i i ip p p  are the first m symbols of pattern . The sub-string iP

1 2... k
i i ip p p  is a member stored in the first membership query module, the sub-string 

2 3 1... k
i i ip p p +  is a member stored in the second membership query module, …, and the 

sub-string 1 2...m k m k m
i i ip p− + − + p 1) is a member stored in the (  (or the last) 

membership query module. For convenience, these membership query modules are 

denoted by

thm k− +

1MQ , 2MQ , …, and 1m kMQ − + . The  bit of thh jMQ  is set to 1 iff there 
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exists pattern  such that h =iP 1( ... )j j j k
i i ihash p p p 1+ + − . Every membership query 

module reports 1 if the query result is positive or 0 otherwise. 

 

Again, a search window W of length m is used during scanning. Initially, W is 

aligned with T so that the first symbol of T, i.e., , is at the first position of W. The last 

k symbols in W, i.e.,  at this moment, are used to query

1t

1 2...m k m k mt t t− + − + 1MQ , 

2MQ , …, and . Let be the report of1m kMQ − + iqb iMQ and QB =  

denote the bitmap of current query result. We observe that not only current query 

result but also previous ones are useful for filtering. Therefore, we introduce the 

stateful concept in pre-filter design. That is, current query result and previous ones are 

utilized to determine how many symbols in the text can be skipped in our pre-filter 

design. Note that no additional queries are required to implement the stateful concept. 

In our implementation, we use a master bitmap of size m−k+1 bits to accumulate 

results obtained from previous queries. Let MB = represent the 

master bitmap. Initially, the master bitmap contains all 1's, i.e., = 1 for all i, 

. After a query result is fetched, we perform MB= MB QB, where 

 is the bitwise AND operation. A suspicious sub-string is found and the verification 

engine is consulted if = 1. The advancement of W is m−k+1 positions if i mb = 

0 for all i,  positions if  = 1 and  = 0 for all i, r< . 

If W is decided to be advanced by g positions, MB is right-shifted by g bits and filled 

with 1's for the holes left by the shift. Figure 4. shows the architecture with master 

bitmap (stateful) for m = 6 and k = 3. 

1 2 ... m kqb qb qb − +1

1

1

1

1 2 ... m kmb mb mb − +

imb

1 i m k≤ ≤ − + ⊕

⊕

1m kmb − +

1 i m k≤ ≤ − + rmb imb i m k≤ −
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Figure 4. The stateful pre-filter architecture for m = 6 and k = 3. 

 

3.2.2. Verification Module 

 The verification module is an extension of the AC algorithm.  We describe 

constructions of the goto function, the failure function, the output function, and the 

signature matching machine separately. 

 The goto function 
A regular expression which contains at least one  operator is 

fragmented by the  operators.  For example, regular expression = 

 is fragmented into , , 

and .  Let , , represent the first fragment of 

{ ,min max}

}

* *S S min max { ,min max 3

{ ,min max RE

1 2 3S 1 1{ , } 4 5*S S 2 2} 6S 1 2* *S S S 4 5*S S

6S n kre + 1 k m≤ ≤ n kRE +  and 

.  Define  as the string derived from RE1 1{ ,..., , ,..., }n n n mY RE RE re re+ += kSRE k 

(if1 ) or  (if ) by removing all the * operators.  We shall 

construct multiple goto graphs using suffixes of , 

k n≤ ≤ kre 1n k n+ ≤ ≤ + m

kSRE 1 k n m≤ ≤ + . 

Let  and  be the goto graph 0 1 1{ ,..., , ,..., }n n nZ SRE SRE SRE SRE+= m+ 0G
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constructed with the strings contained in 0Z .  The self-loop at the start state, if exists, 

is deleted.  Consider a regular expression RE Y∈ .  Assume 

that 1 2* *...* 1JRE S S S += .  We call states , iQ 1 i J≤ ≤ , on graph  with 

 switching states.  These  switching states are said to be 

contributed by  or they belong to .  Note that it is possible for a switching 

state to belong to multiple regular expressions.  Define = .  If 

string  is included in constructing a goto graph , states

0G

1 2...iQ
iS S S= S

1+

J

RE RE

iQSRE S− 1...i JS S+

iQSRE S− G jQ′ , , 

on graph G  with  are switching states on graph G .  These 

switching states also belong to .  It is not hard to see that, for the switching state 

1 j J i≤ ≤ −

1...
jQ

i iS S S′
+= j+

RE

jQ′  on graph , there is a switching state on graph  represented by G 0G 1... i jS S + .  

We call this switching state on graph  the corresponding switching state of0G jQ′ .  

In this paper, we shall use  to denote the corresponding switching state of a 

switching state Q .  We have 

*Q

*Q Q=  if switching state  is on graph .  

Construction of other goto graphs is as follows. 

Q 0G

Assume that there are a total of M distinct switching states on graph .  Let 

, and 

0G

1 2, ,..Q Q MQ.  denote the switching states.  A binary flag iFQ  is associated 

with state .  The flag iQ 1iFQ =  iff the string representing state Q  was found.  

The possible values of 

i

1 2( , ,..., )MFQ FQ FQ  are called configurations.  Clearly, there 

are 2M  possible values for 1 2( , ,..., )MFQ FQ FQ .  We say a configuration is feasible 

if it is possible to occur during scanning.  A goto graph is constructed for each 

feasible configuration.  In general, not all the 2M  possible configurations are 
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feasible.  The goto graph  corresponds to the all-zero feasible configuration 

= =(0, 0, …, 0).  We call goto graph  the Level 0 graph.  Graph  is 

used to construct Level 1 goto graphs, which in turn are used to construct Level 2 goto 

graphs, and so on.  In the construction procedure shown below, the function 

Construct_Goto_Graph( , 

0G

0C 0 0G 0G

G Z ) is to construct goto graph  with the strings in G

Z  using Algorithm AC1, except that the self-loop at the start state, if exists, is 

removed.  The goto graph , with corresponding feasible configuration , is 

constructed with the strings contained in set 

iG iC

iZ .  The set 0Z  is the input to the 

construction procedure.  Some states are marked as fork states because, as will 

become clear in sub-section B.4, a process is forked whenever a fork state is visited.  

State  on goto graph  is a fork state iff =R 0G RS n kSRE +  for some , .  

Similarly, state  on goto graph  ) is a fork state iff 

k 1 k m≤ ≤

R iG (i ≥1 R Q
n kS SRE S+= −  is a 

string in iZ , where Q  is a switching state on graph  that is contributed by 

. 

0G

n kRE +

Procedure Goto( 0Z ) 

0i =    /* index of goto graphs */ 
0I =    /* level of goto graphs */ 

0C = 0  

0_ _ [ ] {Configurations in }el I C=Lev  

Construct_Goto_Graph( , 0G 0Z ) 

Mark the fork states on graph  0G

_ _ [ ] {Graphs in Level I = 0G } 

 25



while  (1) 
  1J I= +
 _ _ [ ]Configurations in Level J =∅  
  _ _ [ ]Graphs in Level J =∅
 For every _ _ [Graphs in Level I ]∈G  with corresponding configuration  C
  For every switching state  on graph G  Q

   Determine the corresponding switching state  on graph  *Q 0G

   Set_Flags(C , )   /* set ′ *Q 1FQj =  if  is a prefix of  */ jQS
*QS

   C C C′′ ′= ⊕  /* ⊕  denotes the bitwise OR operation */ 

   If jC C′′ ≠  for all j , 0 j i≤ ≤    /* a new feasible configuration */ 

     i + +

     iC C′′=

    _ _ [ ]Configurations in Level J =  

_ _ [ ] { iConfigurations in Level J C∪ } 

    Find_Strings( iZ , )   /* determine iC iZ  */ 

 `   Construct_Goto_Graph( , iG iZ ) 

Mark the fork states on graph  iG

    _ _ [ ] _ _ [ ] { iGraphs in Level J Graphs in Level J }= ∪ G  

 If _ _ [ ]Configurations in Level J =∅  
  Break 
  I + +
 
Set_Flags(C , )  Q
C = 0  

For every switching state  iQ

If  is a prefix of  iQS QS

iFQ =1  /* iFQ  denotes the  bit of C  */ thi
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Find_Strings( Z , ) C

For every switching state  such that iQ iFQ =1 

 Find  the set of regular expressions that contribute state  ( )iB Q iQ

 For every ( )j iRE B Q∈  

  { }iQ
jZ Z SRE S= ∪ −  

For every  kQ
jSRE S Z− ∈

If there exists  which is a proper suffix of  lQ
jSRE S Z− ∈ kQ

jSRE S−

  { }kQ
jZ Z SRE S= − −  

Construction of the goto graphs for 1 1{ ,..., , ,..., }n n n mY RE RE re re+ +=  is 

accomplished by the above procedure.  The remaining work is to handle the other 

fragments of , n kRE + 1 k m≤ ≤ .  Again, we use = 

 as an example for explanation.  

Handling of the other fragments of 

1nRE +

1 2 3 1 1{ ,* *S S S min max min max} 4 5*S S 2 2{ , } 6S

1nRE +  is basically to repeat the above construction 

procedure assuming that there is only one regular expression 

= .  Consider handling of the second fragment .  

Two goto graphs are constructed: one for  and another one for .  The start 

state on the goto graph constructed for  is modified as follows.  It is marked 

with  and the self-loop, if exists, is not removed.  The remaining 

fragments are handled the same as the second fragment.  For differentiation, we shall 

use 's to represent the goto graphs constructed for the fragments other than the first 

RE 4 5*S S 2 2} 6S{ ,min max 5

}

}

1}

4 *S S

4 5{S S 5{ }S

4 5{S S

1{ ,min max

Ti
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one of , .  The construction of goto graphs is completed after all 

fragments of 

n kRE + 1 k m≤ ≤

n kRE + , , are processed. 1 k m≤ ≤

Note that there is no Level 2 goto graph if the first string of any regular 

expression is not a prefix of the first string of any other regular expression.  This is 

called non-overlapping condition.  Under the non-overlapping condition, string  

of 

iS

1 2* *...* 1JRE S S S +=  appears exactly i times on i different goto graphs. 

Figure 5. shows the goto graphs for 1 * *RE a bc d= , , 

, and .  Note that there are five 

switching states and one fork state on graph .  Switching state  is contributed 

by both  and .  Therefore, strings bc  and  are used to construct 

graph .  Graphs  to  are Level 1 graphs while graph  is the only 

Level 2 graph and is generated by graph .  Goto graph  is created by the 

second fragment of .  Note that state 31 is a fork state and marked with{2, . 

2 * *RE a ef d=

3 *RE pqr st= 4 * {2,4} {3,5} *RE p q u vw xy=

0G 1Q

1RE 2RE d efd

1G 1G 5G 6G

2G 0T

4RE 4}

1Q 2Q
0G

3Q
0C

5Q4Q

 

1G
1C

'2Q

'3Q
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2G
2C

"3Q

 

3G
3C

"2Q

 

4C
4G

 

5G
5C

 

6C
6G

 

0T
 

1T

Q

  

 2T
 

 

Figure 5. The goto graphs for 1 * *RE a bc d= , 2 * *RE a ef d= , , and 3 *RE pqr st=

4 * {2,4} {3,5} *RE p q u vw xy= . 

 
 

 The failure function 
For convenience, we call a goto graph whose start state is marked with some 

 operator a { ,{ ,min max} h} grapmin max − .  As an example, the goto graphs  and 0T
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1T  shown in Figure 5 are { , } graphsmin max − .  The failure functions for 

 and { ,{ , } graphnon min max− − s s} graphmin max −  are constructed with the 

following Non-{min, max}_Failure and {min, max}_Failure procedures, 

respectively.  In the procedures, C  represents the corresponding feasible 

configuration of graph  or .  An additional state, called the G T END  state, is 

added in constructing the failure function.  As will be seen in Sub-section B.4, 

traversal on a goto graph ends if it enters the END  state. 

Figure 6(a) shows the failure function for the four regular expressions used in 

Figure 5.  In this figure, the state number of the  entry is 10  and value 

0 for 

( , )thi j *i + j

( )f R  represents the END  state.  The symbol “-“ means failure never occurs 

in that state.  For example, failure never occurs in states 38 and 40. 

( )f R  0 1 2 3 4 5 6 7 8 9 
0 0 13 13 20 20 13 25 25 30 30 
1 32 32 32 0 0 20 20 0 25 25 
2 0 0 0 36 36 0 0 36 36 0 
3 0 0 0 0 0 0 0 0 - 38 
4 - 40 45 45 45 0 0 0   

(a) 
 

R  4, 16, 21, 28 7, 19, 24, 29 12, 34 44, 47 37 
( )output R

 1 2 3 4 1 2RE  RE  RE  RE  RE ,  RE

(b) 

Figure 6. (a) The failure function and (b) the output function for the example regular 

expressions used for Figure 5. 

 The output function 
Consider some goto graph  constructed for .  Assume that 

, , and 

G Y

1 2* *...*k 1RE S S S += 1J 1 k n≤ ≤ 1...j JS S+ +  is included in constructing 

graph .  We assign initially G ( )output P =∅  for every state P on graph .  G
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Let R be the state on graph  with G 1...
R

j JS S S 1+ += .  The output function 

 is modified as ( )output R ( ) ( ) { }koutput R output R RE= ∪ . 

Now consider a goto graph  constructed for some fragment of , 

.  For every state P on graph , we assign .  If 

graph  is constructed for the last fragment of 

T n kRE +

1 k m≤ ≤ T ( )output P =∅

T n kRE + , then  is 

modified for some state R.  Assume that the last fragment of  is 

( )output R

n kRE +

1 2* *...* 1JS S S +  and graph T  is constructed with 1... 1j JS S+ + .  The output 

function of state R on graph  is modified as 

 if 

T

( ) ( ) { }n kE +∪output R output R R= 1 1...R
j JS S S+ +=  

 The signature matching machine 
During scanning, a set called _Active Graphs  is maintained.  When the 

pre-filter finds the starting position of a suspicious sub-string which may result 

in match of some signatures, concurrent traversals begin at the start states of all 

the goto graphs contained in _Active Graphs .Initially, we have 

.  Consider the traversal on a specific goto graph.  A 

process is forked to traverse a 

_ {Active Graphs = 0G }

h{ , } grapmin max −  if a fork state is visited.  As 

an example, consider the goto graphs shown in Figure 4.  A process is forked to 

traverse graph  if state 9, 31, or state 35 is visited.  As another example, a 

process is forked to traverse graph  if state 39 is visited.  Assume that the 

failure function is consulted in state  and 

0T

1T

R ( )f R  is the start state of some 

goto graph  or , different from the goto graph state  is on.  In this 

case, graph  or  is added to 

G T R

G T _Active Graphs  so that it will be traversed 

when succeeding suspicious sub-strings are found by the pre-filter.  For 
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example, for the goto graphs shown in Figure 4, if the failure function is 

consulted in state 2, then graph  is added to 1G _Active Graphs .  Traversal 

on a  ends if a match is found or the failure function is 

consulted. Traversal on 

{ , } grapnon min max− − h

min max{ , } graph−   is as follows.  Let 

 be the mark of its start state.  A counter  is maintained when 

traversing graph .  The content of  is initialized to  and the next 

 symbols are skipped.  The counter is increased by one if the current state 

is the start state of 

T

{min, max} ctr

T ctr min

min

T  and it returns to the same state after an input symbol is 

processed.  Assume that the failure function is consulted in state P.  If state 

( )f P  is also on graph , which implies state P is not on the sub-tree of any 

switching state, then  is updated as  = + 

T

ctr ctr ctr | |PS  - .  We set 

=ma +1 if state 

( )| f PS |

ctr x ( )f P  is on a different graph.  The traversal ends iff a 

match is found or >ma . ctr x

Assume that a particular goto graph is under traversal.  , , is 

a candidate signature to be matched if some suffix of  is included in 

constructing the goto graph.  Similarly, 

kRE 1 k n≤ ≤

kSRE

n kRE + , 1 k m≤ ≤ , is a candidate 

signature to be matched if some suffix of the string obtained by removing the * 

operators of some fragment of n kRE +  is included in constructing the goto graph.  

Obviously, the number of candidates never increases during traversal for a given 

suspicious sub-string.  The verification process ends if any signature is matched, 

the input string is exhausted, or all concurrent traversals end. 
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Chapter 4.  
 

PCRE Handling with The Enhanced 
Aho-Corasick Algorithm  
 
PCRE Rules Pattern Form 
 In this section, we divide the PCRE rules into six parts[3]. The division factor is 

focus on regular expression, so Table 5 will list the six parts of pattern features and the 

complexity of states. Definite strings generate DFAs of length linear to the number 

of characters in the string. If a pattern starts with ‘^’, it originates a DFA of 

polynomial complexity with respect to the pattern length k and the length restriction j. 

From the existing content scanning rule sets is that the pattern length k is usually 

limited but the length restriction j maybe reach hundreds or even thousands. It will 

cause very large and high complexity of space. Therefore, Case 5 can effect in a large 

DFA because it has a element quadratic in j. This patterns starting with “.*” and 

having length restrictions, Case 6, cause the creation of DFA of exponential size. 
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Table 5. Analysis of patterns with k characters 

 
1515

Pattern features Example #of states
1.Explicit strings with k characters ^ABCD

.*ABCD
K+1

2.Wildcards

3.Patterns with ^, a wildcard, and   
a length restriction j

^AB.*CD
.*AB.*CD

^AB.{0,j}CD

K+1

O(k*j)

4. Patterns with ^, a wildcard, and 
a length restriction j(min=max=j)

^AB.{j}CD K+j

5.Patterns with ^, a class of  
characters overlaps with the  
prefix, and a length restriction j

^A+[A-Z]{j}D O(k+j2)

6.Patterns with a length restriction 
j, where a wildcard or a class of 
characters overlaps with the prefix

.*AB.{j}CD
.*A[A-Z]{j}D

O(k+2j)

 

 

The following will show above six cases DFA graphs and our proposed 

signature matching system. 

 

 

 PCRE Patterns Form- Case 1 

 The pattern features : Explicit strings with k characters, k is the pattern 

length. 

 Size of DFA : linear. 

 Number of states : k+1  

 Example: ^ABCD and .*ABCD on Figure 7. 

Notice that, if the next state is failed, we assume that it will terminate 

immediately. So, we do not show the failed path back to the stating 

state on the graphs. 
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Figure 7. DFA of ^ABCD and .*ABCD 

 
 
 

PCRE rules example(take from snort PCRE library[10]) after using the 

enhanced Aho-Corasick algorithm: 

   1.ftp.rules 3441 /^PORT/smi  

2.backdoor.rules 12242 /^Start$/smi  

Shown on Figure 8. 

 

 

Figure 8. Snort PCRE rule example 
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 PCRE Patterns Form- Case 2 

 The pattern features : Wildcards. 

 Size of DFA : linear. 

 Number of states : k+1  

 Example: ^AB.*CD and .*AB.*CD on Figure 9. 

Notice that, if the next state is failed, we assume that it will terminate 

immediately. So, we do not show the failed path back to the stating 

state on the graphs. 

 

 

Figure 9. DFA of ^AB.*CD and .*AB.*CD 

 

 

PCRE rules example(take from snort PCRE library[10]) after using the 

enhanced Aho-Corasick algorithm: 

   1.chat.rules 6182 /^\s*NOTICE/smi  

2.smtp.rules 664 /^rcpt to\:\s*decode/smi  

Shown on Figure 10. 
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Figure 10. Snort PCRE rule example 

 

 

 

 

 PCRE Patterns Form- Case 3 

 The pattern features : Patterns with ^, a wildcard, and a length 

restriction j. 

 Size of DFA : Polynomial. 

 Number of states : O(k*j) 

 Example: ^AB.{0,j}CD on Figure 11. 

Notice that, if the next state is failed, we assume that it will terminate 

immediately. So, we do not show the failed path back to the stating 

state on the graphs. 

 

 

 

Figure 11. DFA of ^AB.{0,j}CD 
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PCRE rules example(take from snort PCRE library[10]) before using 

the enhanced Aho-Corasick algorithm: 

   1.ddos.rules 228 /^[0-9]{1,5}\x00/ [ 0 - 9 ] \x00  

2.Shown on Figure 12. 

 

 

Figure 12. Snort PCRE rule example 

 

PCRE rules example(take from snort PCRE library[10]) after using The 

Enhanced Aho-Corasick Algorithm: 

1.ddos.rules 228 /^[0-9]{1,5}\x00/ [ 0 - 9 ] \x00  

Shown on Figure 13. 

 

 

Figure 13. Snort PCRE rule example 
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 PCRE Patterns Form- Case 4 

 The pattern features : Patterns with ^, a wildcard, and a length 

restriction j(min=max=j). 

 Size of DFA : linear. 

 Number of states : k+j 

 Example: ^AB.{j}CD on Figure 14. 

Notice that, if the next state is failed, we assume that it will terminate 

immediately. So, we do not show the failed path back to the stating 

state on the graphs. 

 

Figure 14. DFA of ^AB.{j}CD 
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 PCRE Patterns Form- Case 5 

 The pattern features : Patterns with ^, a class of characters 

overlaps with the prefix, and a length restriction j. 

 Size of DFA : quadratic. 

 Number of states : O(k+j2) 

 Form example: ^A+[A-Z]{j}D 

 Example: ^B+[^\n]{3}D on Figure 15. 

Notice that, if the next state is failed, we assume that it will terminate 

immediately. So, we do not show the failed path back to the stating 

state on the graphs. 

 

 

Figure 15. DFA of ^B+[^\n]{3}D 

 

 

 

PCRE rules example(take from snort PCRE library[10]) after using The 

Enhanced Aho-Corasick Algorithm: 

1.^B+[^\n]{3}D 

Shown on Figure 16. 
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Figure 16. Snort PCRE rule example 

 

Here, our proposed enhanced AC algorithm surely decrease total 

states of this Snort PCRE case. But notice that if the {min,max} 

number is larger than this figure example, it will create large number of 

fork graphs and take a lot of time to scan between these graphs. 

To avoid creating so many graphs, we bring up an idea that using a 

fork_counter to count how many times the previously continuous 

character has happened.  

 

For example, the pattern form is the same as previous figure 16, 

^B+[^\n]{3}D. The example of this pattern is BYAAD or BABAD. 

Starting character is B, and next is Y or A which is not equaled to B. So 

the fork_counter is still keep the same(here is still 3 in Figure 17). 
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 Figure 17. fork_counter to count previously continuous character. 

 

In the same pattern form instance, BBAAD let the fork_counter 

become 1 because the second character B which is same as the first 

character. 

 

See Figure 18, the value of min is countdown because original min 

value minus value of fork_counter.  

   

           

 Figure 18. The value of min minus value of fork_counter. 
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But if the value of fork_counter is equal or larger than value of 

min? In this situation, the min value is become zero. In Figure 19(a), 

the same pattern form instance, BBBBD let the fork_counter become 3 

because the number of second and later character B which is same as 

the first character. So the value of min minus value of fork_counter is 

equal to zero. In Figure 19(b), the value of fork_counter is larger than 

min value, so min value sets to zero. 

 

 
(a) 

 
(b) 

Figure 19.Value of fork_counter is equal or larger than value of min 
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 PCRE Patterns Form- Case 6 

 The pattern features : Patterns with a length restriction j, where a 

wildcard or a class of characters overlaps with the prefix. 

 Size of DFA : exponential. 

 Number of states : O(k+2j) 

 Form example: *AB.{j}CD and .*A[A-Z]{j}D 

 Example: .*A.{2}CD on Figure 20. 

Notice that, if the next state is failed, we assume that it will terminate 

immediately. So, we do not show the failed path back to the stating 

state on the graphs. 

 

 

 

Figure 20. DFA of .*A.{2}CD 

 

 

PCRE rules example(take from snort PCRE library[10]) after using The 

Enhanced Aho-Corasick Algorithm: 

1..*A.{2}CD  

Shown on Figure 21. 
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Figure 21. Snort PCRE rule example 
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Chapter 5.  
 

Experimental Results 
 

In this chapter, we present simulation results for the Snort PCRE rules parts using 

the enhanced Aho-Corasick algorithm. 

 

There are divided into two sections which shown on Figure 22: Pre-filter and 

verification module. Using pre-filter to find the suspicious starting position from input 

file. Once the suspicious position has found, pre-filter pause at that position to transfer 

to verification module procedure then starting to run all active graph structure.  

 

 

 

Figure 22. The Procedure of algorithm. 

 
 
 
 
 
 
 
 
 
 
 

 46



Programming Procedure 

 The programming flow is shown on Figure 23.  

 

 

Figure 23. The Programming flow. 

 

 

The beginning, we process the pattern file to make it become legitimate pattern 

rules. After process the rule file, take all rule file to construct graphs. When graphs 

construct completely, we first read in a clean file which means there has not exist any 

string that matched by PCRE rules. Simultaneously, the pre-filter will look for the 

suspicious position which matched any PCRE rule starting segment. Once find the 

matched rule position, turn into verification steps.  

 

In our experiment, we use 11147 Snort PCRE rules to construct matching graphs. 

Figure 24 displays performance using our proposed signature matching system for 
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clean files of various sizes. 

 

 

Figure 24. Performance using our proposed signature matching  

system for clean files of various sizes. 

 

 

Figure 25 displays performance using our proposed signature matching system 

for a file with an inserted Snort PCRE rules at various positions. 
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Figure 25. Performance using our proposed signature matching system for a 

 file with an inserted Snort PCRE rules at various positions. 
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Chapter 6.  
 

Conclusion 
 

We have presented in this paper Snort PCRE rule to detect deep packet content 

using enhanced Aho-Corasick algorithm. Numerical results show that our proposed 

algorithm provides less regular expression matching states, that means, we use less 

memory space to apply PCRE matching. 

 

In this way, the space requirement of a DFA is also reduced. Therefore, the 

purpose of the method to extend the AC algorithm is to present a high-performance, 

reasonable memory requirement signature matching system for simple regular 

expressions and plain strings that can be efficiently implemented on general-purpose 

processors. 

 

Because this scheme is only simulated in our personal computer, how to 

implement on hardware like FPGA remains to be further studied. 
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