

 國 立 交 通 大 學

電信工程研究所

碩 士 論 文

深度封包檢測使用進階

Aho-Corasick 演算法

Deep Packet Inspection with The Enhanced

Aho-Corasick Algorithm

研究生：机奕璉

指導教授：李程輝 教授

中 華 民 國 九十九 年 六 月

深度封包檢測使用進階 Aho-Corasick 演算法

Deep Packet Inspection with The Enhanced Aho-Corasick

Algorithm

研 究 生： 机奕璉 Student: Yi-Lien Chi
指導教授： 李程輝 教授 Advisor: Prof. Tsern-Huei Lee

國 立 交 通 大 學

電 信 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

June 2010
Hsinchu, Taiwan, Republic of China.

中 華 民 國 九 十 九 年 六 月

深度封包檢測使用進階 Aho-Corasick 演算法

學生: 机奕璉 指導教授: 李程輝 教授

國立交通大學

電信工程研究所碩士班

中文摘要

 因為字串比對的準確性，使其技術近年來被廣泛運用到網際網路應用上，其

中，Snort 為最具彈性與精確性的偵測軟體之一。Snort 是一套開放原始碼的網路

入侵預防與入侵檢測軟體，使用以特徵值(signature-based)和通訊協定的偵測方

式，加上 Snort 規則語言(rules language)，搭配正規表示式(Perl compatible regular

expression-PCRE)資料庫透過正規表示式字串比對，來達到流量封包辨識目的。

其不僅單純檢測網路封包的表頭(header)，更依據封包內容(payload)做比對，檢

查其是否與所設定的網路安全規範一致，這過程稱深度封包檢測(deep packet

inspection)，效果會比傳統偵測方式僅檢測封包表頭更具安全性。有一著名正規

表示式比對的演算法稱 Aho-Corasick 演算法，不僅可以同時比對多字串並保證

在各情形下有合理的效能。我們提出一個方法延伸 Aho-Corasick 演算法，可以

將 Snort PCRE 部分，依其特徵規則式有系統地建造特徵正規表示式比對圖，實

驗數據顯示可得到合理的效能及較少的記憶體需求量。

關鍵字：深度封包檢測、網路安全、字串比對、正規表示式

 i

Deep Packet Inspection with The Enhanced Aho-Corasick

Algorithm
Student: Yi-Lien Chi Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering
National Chiao Tung University

Abstract

Snort is an open source and free network intrusion prevention system (NIPS) and

network intrusion detection system (NIDS) clever of performing packet logging and

real-time traffic analysis on IP networks. Snort can also deal with deep packet

inspection (DPI) which is an effective security measure that checks not only the

packet headers but also the packet content. It uses Perl Compatible Regular

Expression (PCRE) library for checking regular expressions which is replacing

explicit string patterns as the pattern matching language of choice in many deep

packet scanning applications. For regular expression, there is a famous pattern

matching algorithm named Aho-Corasick (AC) which can match multiple patterns

simultaneously and guarantee deterministic performance under all circumstances. We

provide a method to extend the AC algorithm, and use this scheme to systematically

construct a signature matching system which can indicate the ending position in a

finite input string for the occurrence of Snort rules signatures that are specified by

regular expressions. Use extended AC algorithm on Snort PCRE yields acceptable

throughput performance and memory requirement.

Keywords: deep packet inspection, network security, string matching, regular

expression

 ii

誌 謝

 誠摯的感謝指導教授 李程輝老師，在研究所的求學過程中悉心地指導我，

使我在兩年的研究所生涯獲益匪淺。在您的教誨下，我學習到了做研究應有的態

度和嚴謹的思維，在做研究和撰寫論文的過程中，成長不少。您對學問的嚴謹態

度更是學生做學問的優良典範；且您平時的親和力及幽默感，更拉近了師生間的

距離，讓實驗室氣氛溫暖又歡樂，開心自己可以加入這個團體。

 感謝NTL實驗室，博士班-迺倫學姊、孟諭學長、郁文學長、景融學長、瑋哥

學長；已畢業學長-大頭、鈞鈞、松松、阿信和丹奇；同窗-韋儒、菜人、KV、曉

薇、阿祥、熊仔、阿倫；學弟妹們一大票真的列舉不完；朋友大餅、蔣阿蕾、邱

阿智、程敬智、李天琴。感謝各位在我的課業、生活以及研究上不吝嗇地給我最

大的指教和關懷，使我一路茁壯，碩士生涯過的很充實愉快，充滿了各種美好的

回憶，謝謝每一個曾經伴我成長的戰友們，我以你們為傲。

 最後，更要特別感謝我的父親机德茂先生與母親周秀珍女士，謝謝你們對我

從小無微不至的養育照顧與支持，讓我可以無後顧之憂地完成學業。感謝我的兄

長机亮燁先生以及各位親朋好友，謝謝你平時對我的關懷和勉勵，也謝謝男友黃

郁文，默默地支持我、陪伴我、鼓勵我。由衷的感謝每一個為我付出的人，因為

你們，才能讓我求學之路走得堅定踏實，我的成就與驕傲全因您們而得，將一切

的榮耀都奉獻給大家!

 謹將此論文獻給所有愛我與我愛的人

 2010年6月 於風城交大

 iii

Contents

中文摘要……………………………………………………………………………i

Abstract……………………………………………………………………………..ii

誌謝………………………………………………………………………………...iii

Contents…………………………………………………………………………….iv

List of Tables………………………………………………………………………..v

List of Figures………………………………………………………………………vi

Chapter 1. Introduction…………………………………………………….………..1

Chapter 2. Background……………………………………………………………...4

 2.1. Snort Overview……………………………………………………………4

 2.2. Regular Expression Overview……………………………………………11

Chapter 3. Related Works…………………………………………………………..16

3.1. The Aho-Corasick Algorithm…………….……………………………….16

3.2. Enhancing The Aho-Corasick Algorithm…………………………………21

Chapter 4. PCRE Handling with The Enhanced Aho-Corasick Algorithm………....33

 4.1.Rule Form Case 1..………………………………………………...………34

 4.2.Rule Form Case 2..………………………………………………...………36

 4.3.Rule Form Case 3..………………………………………………...………37

 4.4.Rule Form Case 4..………………………………………………...………39

 4.5.Rule Form Case 5..………………………………………………...………40

 4.6.Rule Form Case 6..………………………………………………...………44

Chapter 5. Experimental Results…………………………………………………....46

Chapter 6. Conclusion……………………………………………………………....50

Bibliography……………………………………………………………………...…51

 iv

List of Tables

Table 1. Rule option keywords…………………………………………………….10

Table 2. Features of Regular Expressions………………………………………....12

Table 3. Features of Extended Regular Expression……………………………......12

Table 4. Snort-PCRE Basic Syntax……………………………………………...…15

Table 5. Analysis of patterns with k characters………………………………...…..34

 v

List of Figures

Figure 1.Snort system architecture………...……………………………………….5

Figure 2. Snort rule header and rule body example………………………………...7

Figure 3. (a) goto function, (b) failure function, and (c) output function for Y = {he,

 she, his, hers}……………………………………………………………16.

Figure 4. The stateful pre-filter architecture for m = 6 and k = 3…………………..23

Figure 5. The goto graphs for 1 * *RE a bc d= , 2 * *RE a ef d= , , and 3 *RE pqr st=

4 * {2,4} {3,5} *RE p q u vw xy= …………………………………………...29

Figure 6. (a) The failure function and (b) the output function for the example regular

expressions used for Figure 5……………………………………………..30

Figure 7. DFA of ^ABCD and .*ABCD……………………………………………..35

Figure 8. Snort PCRE rule example…………………………………………………35

Figure 9. DFA of ^AB.*CD and .*AB.*CD…………………………………………36

Figure 10. Snort PCRE rule example……………………………………………......37

Figure 11. DFA of ^AB.{0,j}CD………………………………………………...…..38

Figure 12. Snort PCRE rule example……………………………………………......38

Figure 13. Snort PCRE rule example……………………………………………...…39

Figure 14. DFA of ^AB.{j}CD…………………………………………………...….40

Figure 15. DFA of ^B+[^\n]{3}D………………………………………………...….41

Figure 16. Snort PCRE rule example…………………………………………....…41

Figure 17. fork_counter to count previously continuous character……………..….42

Figure 18. The value of min minus value of fork_counter……………………..…..43

Figure 19.Value of fork_counter is equal or larger than value of min……………..44

 vi

Figure 20. DFA of .*A.{2}CD……………………………………………………..45

Figure 21. Snort PCRE rule example………………………………………………45

Figure 22. The Procedure of algorithm…………………………………………….46

Figure 23. The Programming flow…………………………………………………47

Figure 24. Performance using our proposed signature matching system for clean files

 of various sizes…………………………………………………………48

Figure 25. Performance using our proposed signature matching system for a file with

 an inserted Snort PCRE rules at various positions……………………..49

 vii

Chapter 1.

Introduction

From before until now, most security detection device only can examine the

packet headers, so Layer-7 intrusions can go through these device undetected. For

such problems, deep packet inspection (DPI) is an effective security measure checks

which not only the packet headers but also the packet content. Packet content scanning

(also known as Layer-7 filtering or payload scanning) is very important to network

intrusion detection system (NIDS) and network intrusion detection prevention (NIDP)

applications. In these applications, the payload of packets in a traffic stream is

matched against a given set of patterns to identify specific classes of applications,

viruses, and protocol definitions.

Snort is an open source and free network intrusion prevention system (NIPS) and

network intrusion detection system (NIDS) clever of performing packet logging and

real-time traffic analysis on IP networks. It can also deal with deep packet inspection

(DPI) which is an effective security measure checks which not only the packet headers

but also the packet content.

Currently, regular expression used to specify virus signatures are often simple

ones and flexibility for describing information than exact strings, so it is replacing

explicit string patterns as the pattern matching language of choice in many deep packet

scanning applications.

 1

According to [1], the deep packet inspection are the most expensive parts of

Snort (a popular open source IDS) [2], accounting for 21% and 31% of the execution

time. In [3], there is a table to show that memory requirements using traditional ways,

which are prohibitively high for many patterns used in packet scanning applications. I

will list the table out in Chapter 2. The Snort-like systems are usually specified the

signatures using simple rule-based language. So, the IDS use a scheme to check

whether any rule matches an incoming packet. The concept of Snort will be reviewed

roughly in Chapter 2.

Much research has focused on improving the performance of signature matching

component of Snort. Snort uses Perl Compatible Regular Expression (PCRE) library

for checking regular expressions. The regular expressions are also checked for the

rules whether string matching has succeeded.

When security attacks become more complicated, regular expressions are much

more expressive than plain strings were used to specify their signatures. It is well

known that a regular expression can be recognized with a non-deterministic finite

automaton (NFA), which can be transformed into a deterministic finite automaton

(DFA) so it is equivalent. There are some famous algorithms [4], [5] to construct an

NFA recognizing a given regular expression. However, NFA-based solutions are

often inefficient on a processor with limited parallelism. Hardware accelerators were

proposed to achieve high performance [6].

To be aimed at regular expression, there has a famous pattern matching

algorithms named Aho-Corasick (AC). The AC algorithm can match multiple patterns

simultaneously and guarantee deterministic performance under all circumstances.

 2

Besides, we provide a method to extend the AC algorithm and use this scheme to

systematically construct a signature matching system which can indicate the ending

position in a finite input string for the occurrence of Snort rules signatures that are

specified by regular expressions. The scheme of AC algorithm and the extend AC

algorithm will be sketched briefly in Chapter 3.

In [7], an idea is similar to the failure transition of the AC algorithm, which was

proposed to reduce the number of state transitions. In this way, the space requirement

of a DFA is also reduced. Although the idea works for selected sets of regular

expressions, it still has the risk of resulting in a huge number of states. Therefore, the

purpose of the method to extend the AC algorithm is to present a high-performance,

reasonable memory requirement signature matching system for simple regular

expressions and plain strings that can be efficiently implemented on general-purpose

processors.

 The rest of this paper is organized as follows. In Chapter 2, we introduce some

background about Snort and regular expression. In Chapter 3, we review the related

works, which is about how the enhanced Aho-Corasick algorithm works. In Chapter 4,

we present the PCRE handling with our proposed enhanced Aho-Corasick algorithm.

Experimental results are provided in Chapter 5. Finally, we draw conclusion in

Chapter 6.

 3

Chapter 2.

Background

2.1. Snort Overview

2.1.1. Operation Mode

 Snort with intrusion detection related has four modes:

1. Sniffer mode

Sniffer the packets content in network, and display the packets content on

monitor.

2. Packet Logger mode

Record the sniffer packets content into hard disc.

3. Network Intrusion Detection System mode (NIDS mode)

Analyze the packets content. If there has matched the rules which is made by

user, it will take reaction.

4. Inline mode

Capture the packets from Iptables instead from Libpcap. If these packets

matched Snort rules, this rules corresponding reaction then act to let these

packets pass or throw away.

 4

2.1.2. Snort Operation Architecture

 Snort system architecture has four parts and shown in Figure 1.

Network Backbone

Packets

Sniffer

Preprocessor

Detection
Engine

Alerts/
Logging

Rule
sets

Log Files/
Database

 Figure 1. Snort system architecture.

1. Sniffer

 Detect and capture packets.

2. Preprocessor

 Base on TCP/IP protocol to filter the packets and to analysis the reassociated

packets. Snort is used ‘Libpcap’ to capture the network packets, and can set the

packets filter to catch designated packets.

3. Detection engine

 Snort system take the detection rules to form a tow dimension linking structure,

and use inserted way to organize rule library, which means to divide intrusion

 5

behavior into different parts.

4. Alerts / Logging system

 When intrusion detection system detect the threat, it will alarm and record in log

file. The IDS use TCPDUMP form to record the alarm message, and send the

alarm message to Syslog to notify network security management.

2.1.3. Snort Rule Language

According to [8], following will introduce the rule language of Snort. To specify

signatures, Snort uses a simple rule-based language. Snort signatures are written in a

configuration file which is read when Snort starts up. After starting up, the signature

file consists of several variable declarations and rules, and the value of the variable is

instated in the rules for signature matching. The rules consist of a rule header and a

rule body in Figure 2.

Rule Header

Rule Options General

Non-payload

payload

payload

Post-detection

alert tcp any any -> any 80

(msg:”Not for children”;

flow:to_server, established;

content:”bad_command.htm”;

react:throw,msg,proxy 80;

pcre:”/chat.rules/^\s*block/smi”;)

Figure 2. Snort rule header and rule body example.(From [9])

 6

 Rule Header

The rule header consists of action, protocol, ip addresses, ports, and

direction operator.

 Rule actions

Specify the action like alerting or logging that Snort should perform

when a rule matches a packet. Common action is in following:

 1.alert : provide warning message and log in file.

 2. log : record packets

 3.pass : ignore packets

 4.drop : notify iptables and throw the packets awey

 5.activate : provide warning message and act another rule

 6.dynimic : wait until another rule has been executed

 Rule protocols

Each rule is applicable to packets which belonging to a particular

protocol like TCP, UDP, ICMP, or IP.

 Rule IP and port

According to TCP and UDP rules, the header defined the source and

destination ip addresses and port fields for which the rule is to be

applied.

Snort uses any for one of these field means that the rule will match

for any value in a packet. In other words, any can mean arbitrary

addresses or determined addresses. For example, 140.113.13.118. Also,

Snort rules can use ‘!’ to indicate ‘not’ what kind of network ip

addresses. For example, !140.113.13.0/24 is indicate not from

 7

140.113.13.1 to 140.113.13.255 this range ip addresses.

 Port can present in many way. If use any means arbitrary port, and

assigned port like telnet port is 23 and http port is 80 so on. Snort rule

also have ‘:’ to present designated port range. Following have three

instances:

1.

 log udp any any -> 140.113.13.0/24 1:1024 log udp

 This means traffic coming from any port and destination ports

ranging from 1 to 1024.

2.

 log tcp any any ->140.113.13.0/24 :3000

 This means log tcp traffic from any port going to ports less or equal to

3000.

3.

 log tcp any :1024 -> 140.113.13.0/24 20:

 This means log tcp traffic from privileged ports less than or equal to

1024 going to ports greater than or equal to 20.

 Rule direction

The fields to the left of the direction operator (->) are the source

fields, while the ones on the right hand side are for the destination. An

alternative operator which is called bidirectional operator (<>), indicates

that the rule is to be applied to both directions of the flow.

For example:

 alert tcp 140.113.13.118 80 -> 140.113.13.0/24 any

 This 140.113.13.118 is source ip address, and 80 is source prot.

 8

The direction operator ‘->’ means the packet is from left to right.

This 140.113.13.0/24 is destination ip address, and any is destination

port.

 Rule Options

 Rule options are the most important parts of Snort intrusion detection

engine. There are four classifications as following and in Table 1:

 general

Provide information that related to the rule, and this option has no

relationship with intrusion detection.

 payload

 Matching the content in packets.

 non-payload

 Matching all protocol fields.

 post-detection

 When packets content match Snort rules, it will take other reaction.

Table 1. Rule option keywords (From[10])

Type Keywords
general msg、reference、gid、sid、rev、classtype、priority、

metadata

payload content、nocase、rawbytes、depth、offset、distance、
within、http_client_body、http_cookie、http_header、
http_method 、http_uri 、fast_pattern 、uricontent 、
urilen 、isdataat 、pcre 、bype_test 、byte_jump 、

 9

ftpbounce、asn1、cvs

non-payload fragoffet、ttl、tos、id、ipopts、fragbits、dsize、flags、
flow、flowbits、seq、ack、window、itype、icode、icmp_id、
icmp_seq、rpc、ip_proto、sameip、stream_size

post-detection logto 、session 、resp 、react 、tag 、activates 、
activated_by、count

 In rule option keywords, the most significant words are content and pcre, which are

concerned with whether regular expression string matching is precise or not.

According to this reason, we focus on pcre to achieve regular expression matching

scheme using our algorithm to promote memory space and throughput.

 10

2.2. Regular Expression Overview

2.2.1 Regular Expression Patterns

 Regular expressions also referred to as regex or regexp, which provide a brief

and flexible meaning for matching strings from text, such as particular characters,

words, or patterns of characters. A regular expression describes a set of strings

without enumerating them explicitly, and it is written in a formal language that can be

interpreted by a regular expression processor, a program that either serves as a parser

generator or examines text and identifies parts that match the provided specification.

In addition, regular expression, often called a pattern, is an way that describes a set of

strings. They are usually used to give a concise description of a set, without having to

list all elements. According to [3], Table 2 lists the common features of regular

expression patterns used in packet payload scanning. For example, take consideration

to a regular expression from the Linux L7-filter [11] for detecting Yahoo traffic:

“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern matches any packet

payload that starts with ymsg, ypns, or yhoo, followed by seven or fewer arbitrary

characters, and then a letter l, w or t, and some arbitrary characters, and finally the

ASCII letters c0 and 80 in the hexadecimal form.

 11

Table 2. Features of Regular Expressions

Syntax Meaning Example
^ Pattern to be matched at the

start of the input

^XY means the input starts with XY. A
pattern without ‘^’, e.g., XY, can be
matched anywhere in the input.

| OR relationship X|Y denotes X or Y.
. A single character wildcard

? A quantifier denoting one or
less

W? denotes W or an empty string.

* A quantifier denoting
zero or more

W* means an arbitrary number of Ws.

{} Repeat Q{100} denotes 100 Qs.
{m,n} Matches the preceding

element at least m and not
more than n times.

Z{3,5}denotes ZZZ, ZZZZ, or ZZZZZ

[] A class of characters [lwt] denotes a letter l, w, or t.
[^] Anything but [^\s] denotes any character except \s.

 Metacharacters mean escaped with a backslash is reversed for some characters in

the POSIX Extended Regular Expression (ERE) syntax. In Table 3, it will list

extended regular expression symbol and meaning. A backslash causes the

metacharacter to be treated as a literal character. Additionally, support is removed for

\n backreferences.

 Table 3. Features of Extended Regular Expression

Syntax Meaning Example
+ Matches the preceding

element one or more times.
op+ matches "op", "opp", "oppp", and so
on.

 12

2.2.2 Regular Expression Patterns Using DFA Space

 For regular expressions, finite automata are a natural formalism. Here are two

main categories: Deterministic Finite Automaton (DFA) and Nondeterministic Finite

Automaton (NFA).

A DFA consists of a finite set of input symbols, which denoted as Σ, a transition

function δ [12], and a finite set of states. Σ contains the 28 symbols from the extended

ASCII code in networking applications. Beside the states, there is a single start state

Q0 and a set of accepting states, which we call final state. The transition function δ

takes an input symbol and a state as functions and returns a state. A major feature of

DFA is that at any time, there is only one active state in the DFA. But an NFA works

multiple states simultaneously. Otherwise, an NFA similar to a DFA except that the δ

function, maps from a state and a symbol to a set of new states.

 13

2.2.3 DFA Analysis for Snort PCRE Parts

In this section, we introduce the regular expressions used in deep packet payload

scanning by[13]. Snort assumed the Perl-compatible regular expression (PCRE)

syntax. More precisely, this present the features of the regular expressions included in

Snort IDS. For example, alert tcp any ->(pcre:"/∧PASS\s*\n/smi";) is a Snort rule

and has introduced in section 2.1.3. Based on the above rule, Snort will detect any

packet with payload including a string that matches the “/∧PASS\s*\n/smi” regular

expression. Because “/∧PASS\s*\n/smi” is the content of packets, this means deep

packet inspection (DPI). Take from the famous features of a strict definition of regular

expressions, PCRE have more features such as constrained repetitions and several

flags. Table 4 lists the PCRE basic syntax supported by our regular expression pattern

matching algorithm.

 14

Table 4. Snort-PCRE Basic Syntax (From [13])

 15

Chapter 3.

Related Works

3.1. The Aho-Corasick Algorithm
 The Aho-Corasick (AC) algorithm is dictated by three functions: a goto function

g, a failure function f, and an output function output. Figure 3 shows the three

functions for the pattern set Y = {he, she, his, hers} [7][14][15].

(a)

R 1 2 3 4 5 6 7 8 9
f(R) 0 0 0 1 2 0 3 0 3

 (b)

R output(R)
2 {he}
5 {she, he}
7 {his}
9 {hers}

(c)

Figure 3. (a) goto function, (b) failure function, and (c) output function for Y = {he,
she, his, hers}.

 16

Some definitions are needed. Let represent concatenation of strings

and . We say is a prefix and is a suffix of the string . Moreover,

is a proper prefix if is not empty. Likewise, is a proper suffix if is not

empty. String is said to represent state P on a goto graph if the shortest path from

the start state to state P spells out . Throughout this paper, the representing string of

state

1 2S S 1S

2S 1S 2S 1 2S S 1S

2S 2S 1S

S

S

P is denoted by PS . The start state is represented by the empty string ε .

The length of string S is denoted by . | |S

Note that there might be a self-loop at the start state of a goto graph. However, it

becomes a tree after removing the self-loop, if exists. In the following definitions, we

ignore the self-loop. We call state P the parent of state R and state R the child of state

P if there exists a symbol σ such that (,)g P Rσ = . State R is said to be a

descendent of state P and state P an ancestor of state if R PS is a proper prefix

. The tree which consists of state P and all its descendant states is called the

sub-tree of P.

RS

One state, numbered 0, is designated as the start state. The goto function g maps a

pair (state, input symbol) into a state or the message fail. For the example shown in

Figure 3, we have g(0, h) = 1 and g(1,σ) = fail if σ is not e or i. State 0 is a special

state which never results in the fail message. With this property, one input symbol is

processed by the AC algorithm in every operation cycle.

The failure function f maps a state into a state and is consulted when the outcome

of the goto function is the fail message. We have f(P) = R iff is the longest proper

suffix of

RS

PS that is also a prefix of some pattern. The output function maps a state

 17

into a set (could be empty) of patterns. The set output(P) contains a pattern if the

pattern is a suffix of PS .

Let P be the current state and σ the current input symbol. Also, let denote

the input string. Initially, the start state is assigned as the current state and the first

symbol of is the current input symbol. An operation cycle of the AC algorithm is

defined as follows.

X

X

1. If g(P, σ) = R, the algorithm makes a state transition such that state R

becomes the current state and the next symbol in becomes the current

input symbol. If output(R) ≠

X

∅ , the algorithm emits the set output(R). The

operation cycle is complete.

2. If g(P, σ) = fail, the algorithm makes a failure transition by consulting the

failure function f. Assume that f(P) = R. The algorithm repeats the cycle

with R as the current state and σ as the current input symbol.

The procedures to construct the goto, failure, and output functions are described in

Algorithms AC1 and AC2 below [7]. The goto function and the failure function are

constructed in Algorithms 1 and 2, respectively. The output function is partially

constructed in Algorithm 1 and completed in Algorithm 2.

 18

Algorithm AC1. Construction of the goto function.

Input. Set of keywords . 1 2{ , ,..., }kY y y y=

Output. Goto function g and a partially computed output function output.

Method. We assume output(P)=∅ when state P is first created, and g(P, σ) = fail if

σ is undefined or if g(P,σ) has not yet been defined. The procedure enter(y)

inserts into the goto graph a path that spells out y.

begin

 newstate ← 0

 for i ← 1 until k do ()ienter y

 for all σ such that g(0,σ) = fail do g(0,σ) ← 0
end

procedure : 1 2(...)menter a a a

 begin
 state ← 0; j ← 1

 while (,)jg state a fail≠ do

 begin

 state ← (,)jg state a

 j ← j + l
 end
 for p ← j until m do
 begin
 newstate ← newstate + 1

 (, p)g state a ← newstate

 state ← newstate
 end

 output(state) ← 1 2{ ... ma a a }

 end

 19

Algorithm AC2. Construction of the failure function.

Input. Goto function g and output function output from Algorithm 1.

Output. Failure function f and output function output.

Method.

 begin
 queue ← empty
 for each σ such that g(0,σ) = P ≠ 0 do
 begin
 queue ← queue {∪ P}
 f(P) ← 0
 end
while queue ≠ empty do
 begin
 let R be the next state in queue
 queue ← queue - {R}
 for each σ such that g(R,σ) = P ≠ fail do
 begin
 queue ← queue {∪ P}
 state ← f(R)
 while g (state,σ) = fail do state ← f(state)
 f(P) ← g(state,σ)
 output(P) ←output(P)∪output(f(P))
 end
 end
 end

 20

3.2. Enhancing The Aho-Corasick Algorithm
Let , , …, and be n regular expressions that contain * operators

only. Further, let , , …, and

1RE 2RE nRE

1nRE + 2nRE + n mRE + be m regular expressions, each of

them contains at least one {min, max} operator. We construct in this section the

signature matching system for , , …, , 1RE 2RE nRE 1nRE + , 2nRE + , …, and n mRE + .

An important fact in finding a match for 1 * 2RE RE RE= , where 1RE and 2RE are

plain strings or simple regular expressions, is that, once 1RE was matched before, a

match of is found if RE 2RE is matched. Therefore, we need to remember

whether or not 1RE was matched before. We use different goto graphs to implicitly

memorize such information. Our proposed signature matching system consists of a

pre-filter and a verification module, which are described separately below. With a

pre-filter, the space complexity is largely reduced and the throughput performance can

be significantly improved.

3.2.1. Pre-filter

The pre-filter is designed based on the well-known Bloom filters which guarantee

no false negative. Given block size k, there are m-k+1 membership query module.

Recall that 1 2... m
i i ip p p are the first m symbols of pattern . The sub-string iP

1 2... k
i i ip p p is a member stored in the first membership query module, the sub-string

2 3 1... k
i i ip p p + is a member stored in the second membership query module, …, and the

sub-string 1 2...m k m k m
i i ip p− + − + p 1) is a member stored in the ((or the last)

membership query module. For convenience, these membership query modules are

denoted by

thm k− +

1MQ , 2MQ , …, and 1m kMQ − + . The bit of thh jMQ is set to 1 iff there

 21

exists pattern such that h =iP 1(...)j j j k
i i ihash p p p 1+ + − . Every membership query

module reports 1 if the query result is positive or 0 otherwise.

Again, a search window W of length m is used during scanning. Initially, W is

aligned with T so that the first symbol of T, i.e., , is at the first position of W. The last

k symbols in W, i.e., at this moment, are used to query

1t

1 2...m k m k mt t t− + − + 1MQ ,

2MQ , …, and . Let be the report of1m kMQ − + iqb iMQ and QB =

denote the bitmap of current query result. We observe that not only current query

result but also previous ones are useful for filtering. Therefore, we introduce the

stateful concept in pre-filter design. That is, current query result and previous ones are

utilized to determine how many symbols in the text can be skipped in our pre-filter

design. Note that no additional queries are required to implement the stateful concept.

In our implementation, we use a master bitmap of size m−k+1 bits to accumulate

results obtained from previous queries. Let MB = represent the

master bitmap. Initially, the master bitmap contains all 1's, i.e., = 1 for all i,

. After a query result is fetched, we perform MB= MB QB, where

 is the bitwise AND operation. A suspicious sub-string is found and the verification

engine is consulted if = 1. The advancement of W is m−k+1 positions if i mb =

0 for all i, positions if = 1 and = 0 for all i, r< .

If W is decided to be advanced by g positions, MB is right-shifted by g bits and filled

with 1's for the holes left by the shift. Figure 4. shows the architecture with master

bitmap (stateful) for m = 6 and k = 3.

1 2 ... m kqb qb qb − +1

1

1

1

1 2 ... m kmb mb mb − +

imb

1 i m k≤ ≤ − + ⊕

⊕

1m kmb − +

1 i m k≤ ≤ − + rmb imb i m k≤ −

 22

Figure 4. The stateful pre-filter architecture for m = 6 and k = 3.

3.2.2. Verification Module

 The verification module is an extension of the AC algorithm. We describe

constructions of the goto function, the failure function, the output function, and the

signature matching machine separately.

 The goto function
A regular expression which contains at least one operator is

fragmented by the operators. For example, regular expression =

 is fragmented into , ,

and . Let , , represent the first fragment of

{ ,min max}

}

* *S S min max { ,min max 3

{ ,min max RE

1 2 3S 1 1{ , } 4 5*S S 2 2} 6S 1 2* *S S S 4 5*S S

6S n kre + 1 k m≤ ≤ n kRE + and

. Define as the string derived from RE1 1{ ,..., , ,..., }n n n mY RE RE re re+ += kSRE k

(if1) or (if) by removing all the * operators. We shall

construct multiple goto graphs using suffixes of ,

k n≤ ≤ kre 1n k n+ ≤ ≤ + m

kSRE 1 k n m≤ ≤ + .

Let and be the goto graph 0 1 1{ ,..., , ,..., }n n nZ SRE SRE SRE SRE+= m+ 0G

 23

constructed with the strings contained in 0Z . The self-loop at the start state, if exists,

is deleted. Consider a regular expression RE Y∈ . Assume

that 1 2* *...* 1JRE S S S += . We call states , iQ 1 i J≤ ≤ , on graph with

 switching states. These switching states are said to be

contributed by or they belong to . Note that it is possible for a switching

state to belong to multiple regular expressions. Define = . If

string is included in constructing a goto graph , states

0G

1 2...iQ
iS S S= S

1+

J

RE RE

iQSRE S− 1...i JS S+

iQSRE S− G jQ′ , ,

on graph G with are switching states on graph G . These

switching states also belong to . It is not hard to see that, for the switching state

1 j J i≤ ≤ −

1...
jQ

i iS S S′
+= j+

RE

jQ′ on graph , there is a switching state on graph represented by G 0G 1... i jS S + .

We call this switching state on graph the corresponding switching state of0G jQ′ .

In this paper, we shall use to denote the corresponding switching state of a

switching state Q . We have

*Q

*Q Q= if switching state is on graph .

Construction of other goto graphs is as follows.

Q 0G

Assume that there are a total of M distinct switching states on graph . Let

, and

0G

1 2, ,..Q Q MQ. denote the switching states. A binary flag iFQ is associated

with state . The flag iQ 1iFQ = iff the string representing state Q was found.

The possible values of

i

1 2(, ,...,)MFQ FQ FQ are called configurations. Clearly, there

are 2M possible values for 1 2(, ,...,)MFQ FQ FQ . We say a configuration is feasible

if it is possible to occur during scanning. A goto graph is constructed for each

feasible configuration. In general, not all the 2M possible configurations are

 24

feasible. The goto graph corresponds to the all-zero feasible configuration

= =(0, 0, …, 0). We call goto graph the Level 0 graph. Graph is

used to construct Level 1 goto graphs, which in turn are used to construct Level 2 goto

graphs, and so on. In the construction procedure shown below, the function

Construct_Goto_Graph(,

0G

0C 0 0G 0G

G Z) is to construct goto graph with the strings in G

Z using Algorithm AC1, except that the self-loop at the start state, if exists, is

removed. The goto graph , with corresponding feasible configuration , is

constructed with the strings contained in set

iG iC

iZ . The set 0Z is the input to the

construction procedure. Some states are marked as fork states because, as will

become clear in sub-section B.4, a process is forked whenever a fork state is visited.

State on goto graph is a fork state iff =R 0G RS n kSRE + for some , .

Similarly, state on goto graph) is a fork state iff

k 1 k m≤ ≤

R iG (i ≥1 R Q
n kS SRE S+= − is a

string in iZ , where Q is a switching state on graph that is contributed by

.

0G

n kRE +

Procedure Goto(0Z)

0i = /* index of goto graphs */
0I = /* level of goto graphs */

0C = 0

0_ _ [] {Configurations in }el I C=Lev

Construct_Goto_Graph(, 0G 0Z)

Mark the fork states on graph 0G

_ _ [] {Graphs in Level I = 0G }

 25

while (1)
 1J I= +
 _ _ []Configurations in Level J =∅
 _ _ []Graphs in Level J =∅
 For every _ _ [Graphs in Level I]∈G with corresponding configuration C
 For every switching state on graph G Q

 Determine the corresponding switching state on graph *Q 0G

 Set_Flags(C ,) /* set ′ *Q 1FQj = if is a prefix of */ jQS
*QS

 C C C′′ ′= ⊕ /* ⊕ denotes the bitwise OR operation */

 If jC C′′ ≠ for all j , 0 j i≤ ≤ /* a new feasible configuration */

 i + +

 iC C′′=

 _ _ []Configurations in Level J =

_ _ [] { iConfigurations in Level J C∪ }

 Find_Strings(iZ ,) /* determine iC iZ */

 ` Construct_Goto_Graph(, iG iZ)

Mark the fork states on graph iG

 _ _ [] _ _ [] { iGraphs in Level J Graphs in Level J }= ∪ G

 If _ _ []Configurations in Level J =∅
 Break
 I + +

Set_Flags(C ,) Q
C = 0

For every switching state iQ

If is a prefix of iQS QS

iFQ =1 /* iFQ denotes the bit of C */ thi

 26

Find_Strings(Z ,) C

For every switching state such that iQ iFQ =1

 Find the set of regular expressions that contribute state ()iB Q iQ

 For every ()j iRE B Q∈

 { }iQ
jZ Z SRE S= ∪ −

For every kQ
jSRE S Z− ∈

If there exists which is a proper suffix of lQ
jSRE S Z− ∈ kQ

jSRE S−

 { }kQ
jZ Z SRE S= − −

Construction of the goto graphs for 1 1{ ,..., , ,..., }n n n mY RE RE re re+ += is

accomplished by the above procedure. The remaining work is to handle the other

fragments of , n kRE + 1 k m≤ ≤ . Again, we use =

 as an example for explanation.

Handling of the other fragments of

1nRE +

1 2 3 1 1{ ,* *S S S min max min max} 4 5*S S 2 2{ , } 6S

1nRE + is basically to repeat the above construction

procedure assuming that there is only one regular expression

= . Consider handling of the second fragment .

Two goto graphs are constructed: one for and another one for . The start

state on the goto graph constructed for is modified as follows. It is marked

with and the self-loop, if exists, is not removed. The remaining

fragments are handled the same as the second fragment. For differentiation, we shall

use 's to represent the goto graphs constructed for the fragments other than the first

RE 4 5*S S 2 2} 6S{ ,min max 5

}

}

1}

4 *S S

4 5{S S 5{ }S

4 5{S S

1{ ,min max

Ti

 27

one of , . The construction of goto graphs is completed after all

fragments of

n kRE + 1 k m≤ ≤

n kRE + , , are processed. 1 k m≤ ≤

Note that there is no Level 2 goto graph if the first string of any regular

expression is not a prefix of the first string of any other regular expression. This is

called non-overlapping condition. Under the non-overlapping condition, string

of

iS

1 2* *...* 1JRE S S S += appears exactly i times on i different goto graphs.

Figure 5. shows the goto graphs for 1 * *RE a bc d= , ,

, and . Note that there are five

switching states and one fork state on graph . Switching state is contributed

by both and . Therefore, strings bc and are used to construct

graph . Graphs to are Level 1 graphs while graph is the only

Level 2 graph and is generated by graph . Goto graph is created by the

second fragment of . Note that state 31 is a fork state and marked with{2, .

2 * *RE a ef d=

3 *RE pqr st= 4 * {2,4} {3,5} *RE p q u vw xy=

0G 1Q

1RE 2RE d efd

1G 1G 5G 6G

2G 0T

4RE 4}

1Q 2Q
0G

3Q
0C

5Q4Q

1G
1C

'2Q

'3Q

 28

2G
2C

"3Q

3G
3C

"2Q

4C
4G

5G
5C

6C
6G

0T

1T

Q

 2T

Figure 5. The goto graphs for 1 * *RE a bc d= , 2 * *RE a ef d= , , and 3 *RE pqr st=

4 * {2,4} {3,5} *RE p q u vw xy= .

 The failure function
For convenience, we call a goto graph whose start state is marked with some

 operator a { ,{ ,min max} h} grapmin max − . As an example, the goto graphs and 0T

 29

1T shown in Figure 5 are { , } graphsmin max − . The failure functions for

 and { ,{ , } graphnon min max− − s s} graphmin max − are constructed with the

following Non-{min, max}_Failure and {min, max}_Failure procedures,

respectively. In the procedures, C represents the corresponding feasible

configuration of graph or . An additional state, called the G T END state, is

added in constructing the failure function. As will be seen in Sub-section B.4,

traversal on a goto graph ends if it enters the END state.

Figure 6(a) shows the failure function for the four regular expressions used in

Figure 5. In this figure, the state number of the entry is 10 and value

0 for

(,)thi j *i + j

()f R represents the END state. The symbol “-“ means failure never occurs

in that state. For example, failure never occurs in states 38 and 40.

()f R 0 1 2 3 4 5 6 7 8 9
0 0 13 13 20 20 13 25 25 30 30
1 32 32 32 0 0 20 20 0 25 25
2 0 0 0 36 36 0 0 36 36 0
3 0 0 0 0 0 0 0 0 - 38
4 - 40 45 45 45 0 0 0

(a)

R 4, 16, 21, 28 7, 19, 24, 29 12, 34 44, 47 37
()output R

 1 2 3 4 1 2RE RE RE RE RE , RE

(b)

Figure 6. (a) The failure function and (b) the output function for the example regular

expressions used for Figure 5.

 The output function
Consider some goto graph constructed for . Assume that

, , and

G Y

1 2* *...*k 1RE S S S += 1J 1 k n≤ ≤ 1...j JS S+ + is included in constructing

graph . We assign initially G ()output P =∅ for every state P on graph . G

 30

Let R be the state on graph with G 1...
R

j JS S S 1+ += . The output function

 is modified as ()output R () () { }koutput R output R RE= ∪ .

Now consider a goto graph constructed for some fragment of ,

. For every state P on graph , we assign . If

graph is constructed for the last fragment of

T n kRE +

1 k m≤ ≤ T ()output P =∅

T n kRE + , then is

modified for some state R. Assume that the last fragment of is

()output R

n kRE +

1 2* *...* 1JS S S + and graph T is constructed with 1... 1j JS S+ + . The output

function of state R on graph is modified as

 if

T

() () { }n kE +∪output R output R R= 1 1...R
j JS S S+ +=

 The signature matching machine
During scanning, a set called _Active Graphs is maintained. When the

pre-filter finds the starting position of a suspicious sub-string which may result

in match of some signatures, concurrent traversals begin at the start states of all

the goto graphs contained in _Active Graphs .Initially, we have

. Consider the traversal on a specific goto graph. A

process is forked to traverse a

_ {Active Graphs = 0G }

h{ , } grapmin max − if a fork state is visited. As

an example, consider the goto graphs shown in Figure 4. A process is forked to

traverse graph if state 9, 31, or state 35 is visited. As another example, a

process is forked to traverse graph if state 39 is visited. Assume that the

failure function is consulted in state and

0T

1T

R ()f R is the start state of some

goto graph or , different from the goto graph state is on. In this

case, graph or is added to

G T R

G T _Active Graphs so that it will be traversed

when succeeding suspicious sub-strings are found by the pre-filter. For

 31

example, for the goto graphs shown in Figure 4, if the failure function is

consulted in state 2, then graph is added to 1G _Active Graphs . Traversal

on a ends if a match is found or the failure function is

consulted. Traversal on

{ , } grapnon min max− − h

min max{ , } graph− is as follows. Let

 be the mark of its start state. A counter is maintained when

traversing graph . The content of is initialized to and the next

 symbols are skipped. The counter is increased by one if the current state

is the start state of

T

{min, max} ctr

T ctr min

min

T and it returns to the same state after an input symbol is

processed. Assume that the failure function is consulted in state P. If state

()f P is also on graph , which implies state P is not on the sub-tree of any

switching state, then is updated as = +

T

ctr ctr ctr | |PS - . We set

=ma +1 if state

()| f PS |

ctr x ()f P is on a different graph. The traversal ends iff a

match is found or >ma . ctr x

Assume that a particular goto graph is under traversal. , , is

a candidate signature to be matched if some suffix of is included in

constructing the goto graph. Similarly,

kRE 1 k n≤ ≤

kSRE

n kRE + , 1 k m≤ ≤ , is a candidate

signature to be matched if some suffix of the string obtained by removing the *

operators of some fragment of n kRE + is included in constructing the goto graph.

Obviously, the number of candidates never increases during traversal for a given

suspicious sub-string. The verification process ends if any signature is matched,

the input string is exhausted, or all concurrent traversals end.

 32

Chapter 4.

PCRE Handling with The Enhanced
Aho-Corasick Algorithm

PCRE Rules Pattern Form
 In this section, we divide the PCRE rules into six parts[3]. The division factor is

focus on regular expression, so Table 5 will list the six parts of pattern features and the

complexity of states. Definite strings generate DFAs of length linear to the number

of characters in the string. If a pattern starts with ‘^’, it originates a DFA of

polynomial complexity with respect to the pattern length k and the length restriction j.

From the existing content scanning rule sets is that the pattern length k is usually

limited but the length restriction j maybe reach hundreds or even thousands. It will

cause very large and high complexity of space. Therefore, Case 5 can effect in a large

DFA because it has a element quadratic in j. This patterns starting with “.*” and

having length restrictions, Case 6, cause the creation of DFA of exponential size.

 33

Table 5. Analysis of patterns with k characters

1515

Pattern features Example #of states
1.Explicit strings with k characters ^ABCD

.*ABCD
K+1

2.Wildcards

3.Patterns with ^, a wildcard, and
a length restriction j

^AB.*CD
.*AB.*CD

^AB.{0,j}CD

K+1

O(k*j)

4. Patterns with ^, a wildcard, and
a length restriction j(min=max=j)

^AB.{j}CD K+j

5.Patterns with ^, a class of
characters overlaps with the
prefix, and a length restriction j

^A+[A-Z]{j}D O(k+j2)

6.Patterns with a length restriction
j, where a wildcard or a class of
characters overlaps with the prefix

.*AB.{j}CD
.*A[A-Z]{j}D

O(k+2j)

The following will show above six cases DFA graphs and our proposed

signature matching system.

 PCRE Patterns Form- Case 1

 The pattern features : Explicit strings with k characters, k is the pattern

length.

 Size of DFA : linear.

 Number of states : k+1

 Example: ^ABCD and .*ABCD on Figure 7.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

 34

Figure 7. DFA of ^ABCD and .*ABCD

PCRE rules example(take from snort PCRE library[10]) after using the

enhanced Aho-Corasick algorithm:

 1.ftp.rules 3441 /^PORT/smi

2.backdoor.rules 12242 /^Start$/smi

Shown on Figure 8.

Figure 8. Snort PCRE rule example

 35

 PCRE Patterns Form- Case 2

 The pattern features : Wildcards.

 Size of DFA : linear.

 Number of states : k+1

 Example: ^AB.*CD and .*AB.*CD on Figure 9.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

Figure 9. DFA of ^AB.*CD and .*AB.*CD

PCRE rules example(take from snort PCRE library[10]) after using the

enhanced Aho-Corasick algorithm:

 1.chat.rules 6182 /^\s*NOTICE/smi

2.smtp.rules 664 /^rcpt to\:\s*decode/smi

Shown on Figure 10.

 36

Figure 10. Snort PCRE rule example

 PCRE Patterns Form- Case 3

 The pattern features : Patterns with ^, a wildcard, and a length

restriction j.

 Size of DFA : Polynomial.

 Number of states : O(k*j)

 Example: ^AB.{0,j}CD on Figure 11.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

Figure 11. DFA of ^AB.{0,j}CD

 37

PCRE rules example(take from snort PCRE library[10]) before using

the enhanced Aho-Corasick algorithm:

 1.ddos.rules 228 /^[0-9]{1,5}\x00/ [0 - 9] \x00

2.Shown on Figure 12.

Figure 12. Snort PCRE rule example

PCRE rules example(take from snort PCRE library[10]) after using The

Enhanced Aho-Corasick Algorithm:

1.ddos.rules 228 /^[0-9]{1,5}\x00/ [0 - 9] \x00

Shown on Figure 13.

Figure 13. Snort PCRE rule example

 38

 PCRE Patterns Form- Case 4

 The pattern features : Patterns with ^, a wildcard, and a length

restriction j(min=max=j).

 Size of DFA : linear.

 Number of states : k+j

 Example: ^AB.{j}CD on Figure 14.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

Figure 14. DFA of ^AB.{j}CD

 39

 PCRE Patterns Form- Case 5

 The pattern features : Patterns with ^, a class of characters

overlaps with the prefix, and a length restriction j.

 Size of DFA : quadratic.

 Number of states : O(k+j2)

 Form example: ^A+[A-Z]{j}D

 Example: ^B+[^\n]{3}D on Figure 15.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

Figure 15. DFA of ^B+[^\n]{3}D

PCRE rules example(take from snort PCRE library[10]) after using The

Enhanced Aho-Corasick Algorithm:

1.^B+[^\n]{3}D

Shown on Figure 16.

 40

Figure 16. Snort PCRE rule example

Here, our proposed enhanced AC algorithm surely decrease total

states of this Snort PCRE case. But notice that if the {min,max}

number is larger than this figure example, it will create large number of

fork graphs and take a lot of time to scan between these graphs.

To avoid creating so many graphs, we bring up an idea that using a

fork_counter to count how many times the previously continuous

character has happened.

For example, the pattern form is the same as previous figure 16,

^B+[^\n]{3}D. The example of this pattern is BYAAD or BABAD.

Starting character is B, and next is Y or A which is not equaled to B. So

the fork_counter is still keep the same(here is still 3 in Figure 17).

 41

 Figure 17. fork_counter to count previously continuous character.

In the same pattern form instance, BBAAD let the fork_counter

become 1 because the second character B which is same as the first

character.

See Figure 18, the value of min is countdown because original min

value minus value of fork_counter.

 Figure 18. The value of min minus value of fork_counter.

 42

But if the value of fork_counter is equal or larger than value of

min? In this situation, the min value is become zero. In Figure 19(a),

the same pattern form instance, BBBBD let the fork_counter become 3

because the number of second and later character B which is same as

the first character. So the value of min minus value of fork_counter is

equal to zero. In Figure 19(b), the value of fork_counter is larger than

min value, so min value sets to zero.

(a)

(b)

Figure 19.Value of fork_counter is equal or larger than value of min

 43

 PCRE Patterns Form- Case 6

 The pattern features : Patterns with a length restriction j, where a

wildcard or a class of characters overlaps with the prefix.

 Size of DFA : exponential.

 Number of states : O(k+2j)

 Form example: *AB.{j}CD and .*A[A-Z]{j}D

 Example: .*A.{2}CD on Figure 20.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

Figure 20. DFA of .*A.{2}CD

PCRE rules example(take from snort PCRE library[10]) after using The

Enhanced Aho-Corasick Algorithm:

1..*A.{2}CD

Shown on Figure 21.

 44

Figure 21. Snort PCRE rule example

 45

Chapter 5.

Experimental Results

In this chapter, we present simulation results for the Snort PCRE rules parts using

the enhanced Aho-Corasick algorithm.

There are divided into two sections which shown on Figure 22: Pre-filter and

verification module. Using pre-filter to find the suspicious starting position from input

file. Once the suspicious position has found, pre-filter pause at that position to transfer

to verification module procedure then starting to run all active graph structure.

Figure 22. The Procedure of algorithm.

 46

Programming Procedure

 The programming flow is shown on Figure 23.

Figure 23. The Programming flow.

The beginning, we process the pattern file to make it become legitimate pattern

rules. After process the rule file, take all rule file to construct graphs. When graphs

construct completely, we first read in a clean file which means there has not exist any

string that matched by PCRE rules. Simultaneously, the pre-filter will look for the

suspicious position which matched any PCRE rule starting segment. Once find the

matched rule position, turn into verification steps.

In our experiment, we use 11147 Snort PCRE rules to construct matching graphs.

Figure 24 displays performance using our proposed signature matching system for

 47

clean files of various sizes.

Figure 24. Performance using our proposed signature matching

system for clean files of various sizes.

Figure 25 displays performance using our proposed signature matching system

for a file with an inserted Snort PCRE rules at various positions.

 48

Figure 25. Performance using our proposed signature matching system for a

 file with an inserted Snort PCRE rules at various positions.

 49

Chapter 6.

Conclusion

We have presented in this paper Snort PCRE rule to detect deep packet content

using enhanced Aho-Corasick algorithm. Numerical results show that our proposed

algorithm provides less regular expression matching states, that means, we use less

memory space to apply PCRE matching.

In this way, the space requirement of a DFA is also reduced. Therefore, the

purpose of the method to extend the AC algorithm is to present a high-performance,

reasonable memory requirement signature matching system for simple regular

expressions and plain strings that can be efficiently implemented on general-purpose

processors.

Because this scheme is only simulated in our personal computer, how to

implement on hardware like FPGA remains to be further studied.

 50

Bibliography

[1] Fisk, M. and G. Varghese, Fast Content Based Packet Handling for Intrusion

Detection, 2001.

[2] Roesch, Martin, ‘‘Snort – Lightweight Intrusion Detection for Networks,’’ 13th

Systems Administration Conference, USENIX, 1999.

[3] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspection,” in

Proc. of Architectures for Networking and Communications Systems (ANCS), pp.

93-102, 2006.

[4] K. Thompson, “Programming techniques: Regular expression search algorithm,”

Commun. ACM, 11(6):419-422, 1968.

[5] V. M. Glushkov, “The abstract theory of automata,” Russian Mathematical

Surveys, 16:1-53, 1961.

[6] R. W. Floyd and J. D. Ullman, “The compilation of regular expression into

integrated circuits,” Journal of ACM, vol. 29, no. 3, pp. 603-622, July 1982.

[7] T. H. Lee, “Enhancing the Aho-Corasick Algorithm for Signature Based

Anti-Virus/Worm Applications,” ICCCN 2007.

 51

[8] Alok Tongaonkar, Sreenaath Vasudevan, and R. Sekar, “Fast Packet Classification

for Snort by Native Compilation of Rules,” (LISA ’08).

[9] 王聲浩，陳一瑋，林盈達，”攻擊、病毒與廣告信的辨識機制與套件，”2008

[10] http://www.snort.org.

[11] J. Levandoski, E. Sommer, and M. Strait, "Application Layer Packet Classifier

for Linux." http://l7-filter.sourceforge.net/.

[12] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata

Theory, Languages, and Computation, Addison Wesley, 2001.

[13] Jo˜ao Bispo, Ioannis Sourdis, Jo˜ao M.P. Cardoso and Stamatis Vassiliadis ,

“Regular Expression Matching for Reconfigurable Packet Inspection,” supported

by the European Commission in the context of the Scalable computer

ARChitectures (SARC) integrated project.

[14] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, vol. 18, pp. 333–340, Jun. 1975.

[15] Tsern-Huei Lee, IEEE, and Nai-Lun Huang, ” A Pattern Matching Scheme with

High Throughput Performance and Low Memory Requirement,” Submitted for

publication.

 52

[16] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Technical

Report, May 1994.

 53

	封面.pdf
	Abstract 1.pdf
	Chapter1 Introduction.pdf
	Chapter2 Background.pdf
	Chapter3 Related works.pdf
	Chapter4 PCRE using Enhencing AC.pdf
	Chapter5 Experimentak Results.pdf
	Chapter6 Conclusion.pdf
	Bibliography.pdf

