e S B R R - s
Aho-Corasick /& & ;+

Deep Packet Inspection with The Enhanced
Aho-Corasick Algorithm

R 3 A Foit

- N A

R AtE ¥pl i * i2Ff Aho—Corasick & & ;2

Deep Packet Inspection with The Enhanced Aho-Corasick

Algorithm
Foyo4 o felph Student: Yi-Lien Chi
R FRm KR Advisor: Prof. Tsern-Huei Lee

A Thesis
Submitted to Institute of Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Communication Engineering
June 2010
Hsinchu, Taiwan, Republic of China.

P 3 K 4 L+ 4 £ =~

ERAte Hpl @ * 2 Aho—Corasick ;& 5 i

B4 ol I R A KR

RIREEETRE ¢

TR AL

PR

FliF B vt R HEHTTE KRR LY Dlesei g 0 4
¢ ooSnort & B 5B Rt 0 R 2 — o Snort - B B AR 4eAS hR R
> I O~ PRl o 1 % g fE(signature-based) feid kb g e i p)
5% 5 4r b oSnort AR 3F 7 (rules language) > 45 fie & 2R % 5+ 3% (Perl compatible regular
expression-PCRE) T L B35 3 i+ A F 3V F B ¥ > RE DI E 3¢ 7538P o
#7 WH SR R4t e ond g (header) s { k¥4t e P % (payload) kit 4t 0 tk

HHEFERTDERE 2RF - R EAFIFR e R (deep packet

?\'E

inspection) » x4 g vt BAW P TP AL ELE 2B F - F LD

«-}4

Fom 3t fF e B 2 AL Aho-Corasick % 5 7% » 3 7 P PRILE S 38 B RRE
EEFAT 3 ey o AP - B2 2@ Aho-Corasick G &2 0 T Y
#-Snort PCRE 54 » i 8 AN § sty g B A7 A HE - F

HHA T T D) £ Tl B RS A B G A E -

MEEF T FRATE RPIC RRBRE D F P VE S RA TS

Deep Packet Inspection with The Enhanced Aho-Corasick

Algorithm
Student: Yi-Lien Chi Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering
National Chiao Tung University

Abstract

Snort is an open source and free network intrusion prevention system (NIPS) and
network intrusion detection system (NIDS) clever of performing packet logging and
real-time traffic analysis on IP networks. Snort can also deal with deep packet
inspection (DPI) which is an effective security measure that checks not only the
packet headers but also the packet content. It uses Perl Compatible Regular
Expression (PCRE) library for checking regular expressions which is replacing
explicit string patterns as the pattern.matching language of choice in many deep
packet scanning applications. For regular expression, there is a famous pattern
matching algorithm named Aho-Corasick (AC) which can match multiple patterns
simultaneously and guarantee deterministic performance under all circumstances. We
provide a method to extend the AC algorithm, and use this scheme to systematically
construct a signature matching system which can indicate the ending position in a
finite input string for the occurrence of Snort rules signatures that are specified by
regular expressions. Use extended AC algorithm on Snort PCRE yields acceptable

throughput performance and memory requirement.

Keywords: deep packet inspection, network security, string matching, regular

expression

%
:mﬁ

BE R Py BRI FAEEE S AP R BT E s EA
A LA ESHT YD BEF BN o BB RET AV I WL T Pl
BArBar el > A T o Bk e BT > R E 3 0 o GHE R PN
RIS A SR nBAL ;0 ETprenifed 2 dumg o ($IT7 2 i

‘&E%Ei’ﬁ?.ﬁiﬁgm_ﬂ»ag\w,ﬁ@.bgo?u%c)\ »m|E o

EHNILR % Z > F L0k FH - THEL U FL - IRFL -5
L

()

k|
BEBE <o/l PR PR A FE-FEF 4 KV 8E

RSN R I o B UERE - e E1I P M A IS S SN O I S

7

ra
=
pod

P ARRCT 35 F B B RASED 3 R R A
% gy Jofe MR A - B STE AL D IRER A T M A8 A R e

TR BEE - B E LA LR R AR S o

B {RBEFRR AN BMAL AL BRI 454 SR P
ol A 3R TRAFE L F CRAT LRSI B R E o R PR
EACR LA 2 L A S R T RS R e S ST A
MR o BB LR A RN o d RAOEBE - B S AT IS A
i R EARE 2 g 7R wﬁ’AnﬁﬁL‘xﬁiqﬁw M B

SRR LS AR N

At Y R Ip AT B S et

2010£67 * R B2 &

Contents

AR R

Abstract

(000111 (= 1| ST |

LSt OF TaIS . o oo e e e e e

List of Figures

Chapter 1. INtrodUCHION.e et e e e e e e e e e
Chapter 2. BaCkground.coeiniit it e e e e
2.1. Snort Overview
2.2. Regular Expression Overview
Chapter 3. Related Works
3.1. The Aho-Corasick Algorithm
3.2. Enhancing The Aho-Corasick Algorithm....................oo.
Chapter 4. PCRE Handling with The Enhanced Aho-Corasick Algorithm...........
4.1.Rule Form Case 1
4.2.Rule Form Case 2
4.3.Rule Form Case 3
4.4 Rule Form Case 4
4.5.Rule Form Case 5
4.6.Rule Form Case 6
Chapter 5. Experimental Results

Chapter 6. Conclusion....

BIblIOGrapny e

.33

34

36

37

39

40

44

List of Tables

Table 1. Rule option KEYWOIdS.ue i e e 10
Table 2. Features of Regular EXPressions...........c.cvvvvvieiie e iiviiiiiieenennn. 12
Table 3. Features of Extended Regular Expression
Table 4. SNort-PCRE BaSiC SYNtaX.......c.uvvuieiieie e e e v ee e 15

Table 5. Analysis of patterns with k characters................ccccooviiviiie e .34

List of Figures

Figure 1.Snort system architeCture.cooovuvie e e e 5

Figure 2. Snort rule header and rule body example............ccccovvvviviinii 7

Figure 3. (a) goto function, (b) failure function, and (c) output function for Y = {he,
She, Nis, Ners}.. ..o e a0 16

Figure 4. The stateful pre-filter architecture form=6andk=3....................... 23

Figure 5. The goto graphs for RE, =a*bc*d, RE,=a*ef *d, RE,= pgr*st, and

RE, = p*a{2, 4U{3,5VW* XY ..ol 29

Figure 6. (a) The failure function and (b) the ‘output function for the example regular
expressions used for FIQUIE 5. ..t i e e e, 30
Figure 7. DFA of "ABCD and . *ABCDol i i35
Figure 8. Snort PCRE rule example.......... .o 35
Figure 9. DFA of ~AB.*CD and . *AB.*CD.......ovvvi i i en 0. 36
Figure 10. Snort PCRE rule example...........cocoii i 37
Figure 11. DFA Of MAB{0,3CD .. oot e 38
Figure 12. Snort PCRE rule example............coooii i 38
Figure 13. Snort PCRE rule example...........c.ccoveiii i 2. 39
Figure 14. DFA Of AMAB.{ICD...... v 40
Figure 15. DFAOf "B+[MNJ{3}D ..o 4

Figure 16. Snort PCRE rule example..........ccooooii i 41

Figure 17. fork_counter to count previously continuous character..................... 42
Figure 18. The value of min minus value of fork_counter.....................c..eii 43
Figure 19.Value of fork_counter is equal or larger than value of min................. 44

Vi

Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.

Figure 25.

DFA OFf *A{2ICD ..ot A5
Snort PCRE rule example..........cooov i iiiiiiiiiiciiie e e e 46
The Procedure of algorithm.............cooooiiii i, 46
The Programming flow...........c.ooii e, 47
Performance using our proposed signature matching system for clean files
OF VariOUS SIZES.....iviie it e et et e eeen 2 48
Performance using our proposed signature matching system for a file with

an inserted Snort PCRE rules at various positions.......................... 49

vii

Chapter 1.

Introduction

From before until now, most security detection device only can examine the
packet headers, so Layer-7 intrusions can go through these device undetected. For
such problems, deep packet inspection (DPI) is an effective security measure checks
which not only the packet headers but also the packet content. Packet content scanning
(also known as Layer-7 filtering or payload scanning) is very important to network
intrusion detection system (NIDS) and network intrusion detection prevention (NIDP)
applications. In these applications, the payload of packets in a traffic stream is
matched against a given set of patterns to identify specific classes of applications,

viruses, and protocol definitions.

Snort is an open source and free network intrusion prevention system (NIPS) and
network intrusion detection system (NIDS) clever of performing packet logging and
real-time traffic analysis on IP networks. It can also deal with deep packet inspection
(DPI) which is an effective security measure checks which not only the packet headers

but also the packet content.

Currently, regular expression used to specify virus signatures are often simple
ones and flexibility for describing information than exact strings, so it is replacing
explicit string patterns as the pattern matching language of choice in many deep packet

scanning applications.

According to [1], the deep packet inspection are the most expensive parts of
Snort (a popular open source IDS) [2], accounting for 21% and 31% of the execution
time. In [3], there is a table to show that memory requirements using traditional ways,
which are prohibitively high for many patterns used in packet scanning applications. |
will list the table out in Chapter 2. The Snort-like systems are usually specified the
signatures using simple rule-based language. So, the IDS use a scheme to check
whether any rule matches an incoming packet. The concept of Snort will be reviewed

roughly in Chapter 2.

Much research has focused on improving the performance of signature matching
component of Snort. Snort uses Perl Compatible Regular Expression (PCRE) library
for checking regular expressions. The:regular expressions are also checked for the

rules whether string matching has succeeded.

When security attacks become more complicated, regular expressions are much
more expressive than plain strings were used to specify their signatures. It is well
known that a regular expression can be recognized with a non-deterministic finite
automaton (NFA), which can be transformed into a deterministic finite automaton
(DFA) so it is equivalent. There are some famous algorithms [4], [5] to construct an
NFA recognizing a given regular expression. However, NFA-based solutions are
often inefficient on a processor with limited parallelism. Hardware accelerators were

proposed to achieve high performance [6].

To be aimed at regular expression, there has a famous pattern matching
algorithms named Aho-Corasick (AC). The AC algorithm can match multiple patterns

simultaneously and guarantee deterministic performance under all circumstances.

2

Besides, we provide a method to extend the AC algorithm and use this scheme to
systematically construct a signature matching system which can indicate the ending
position in a finite input string for the occurrence of Snort rules signatures that are
specified by regular expressions. The scheme of AC algorithm and the extend AC

algorithm will be sketched briefly in Chapter 3.

In [7], an idea is similar to the failure transition of the AC algorithm, which was
proposed to reduce the number of state transitions. In this way, the space requirement
of a DFA is also reduced. Although the idea works for selected sets of regular
expressions, it still has the risk of resulting in a huge number of states. Therefore, the
purpose of the method to extend the AC algorithm is to present a high-performance,
reasonable memory requirement signature :matching system for simple regular
expressions and plain strings that can be efficiently implemented on general-purpose

processors.

The rest of this paper is organized as follows. In Chapter 2, we introduce some
background about Snort and regular expression. In Chapter 3, we review the related
works, which is about how the enhanced Aho-Corasick algorithm works. In Chapter 4,
we present the PCRE handling with our proposed enhanced Aho-Corasick algorithm.
Experimental results are provided in Chapter 5. Finally, we draw conclusion in

Chapter 6.

Chapter 2.

Background

2.1. Snort Overview

2.1.1. Operation Mode

Snort with intrusion detection related has four modes:
1. Sniffer mode
Sniffer the packets content in network, and display the packets content on
monitor.
2. Packet Logger mode
Record the sniffer packets content into hard disc.
3. Network Intrusion Detection System mode (NIDS mode)
Analyze the packets content. If there has matched the rules which is made by
user, it will take reaction.
4. Inline mode
Capture the packets from Iptables instead from Libpcap. If these packets
matched Snort rules, this rules corresponding reaction then act to let these

packets pass or throw away.

2.1.2. Snort Operation Architecture

Snort system architecture has four parts and shown in Figure 1.

Yy ewenkBadBene
LI] e

Sniffer
Preprocessor
e | ru
g sets
Alerts/
Logging

Figure 1. Snort system architecture.
1. Sniffer
Detect and capture packets.
2. Preprocessor
Base on TCP/IP protocol to filter the packets and to analysis the reassociated
packets. Snort is used ‘Libpcap’ to capture the network packets, and can set the
packets filter to catch designated packets.
3. Detection engine
Snort system take the detection rules to form a tow dimension linking structure,

and use inserted way to organize rule library, which means to divide intrusion

5

behavior into different parts.

4. Alerts/ Logging system
When intrusion detection system detect the threat, it will alarm and record in log
file. The IDS use TCPDUMP form to record the alarm message, and send the

alarm message to Syslog to notify network security management.

2.1.3. Snort Rule Language

According to [8], following will introduce the rule language of Snort. To specify
signatures, Snort uses a simple rule-based language. Snort signatures are written in a
configuration file which is read when Snort starts up. After starting up, the signature
file consists of several variable declarations and rules, and the value of the variable is
instated in the rules for signature matching. The rules consist of a rule header and a

rule body in Figure 2.

react:throw,msg,proxy 80; Post-detection

Rule Header : alert tcp any any -> any 80 i
= 1
Rule Options | (msg:"Not for children”; General
!
! flow:to_server, established; Non-payload
!
!
!
!
!

pcre:”/chat.rules/Ns*block/smi”) - payload

I
I
I
I
content:"bad_command.htm”; | payload
I
I
I
I

Figure 2. Snort rule header and rule body example.(From [9])

Rule Header
The rule header consists of action, protocol, ip addresses, ports, and
direction operator.
® Rule actions
Specify the action like alerting or logging that Snort should perform
when a rule matches a packet. Common action is in following:
l.alert : provide warning message and log in file.
2. log : record packets
3.pass : ignore packets
4.drop : notify iptables and throw the packets awey
5.activate : provide warning message and act another rule

6.dynimic : wait until another'rule has been executed

® Rule protocols
Each rule is applicable to packets which belonging to a particular

protocol like TCP, UDP, ICMP, or IP.

® Rule IP and port

According to TCP and UDP rules, the header defined the source and
destination ip addresses and port fields for which the rule is to be
applied.

Snort uses any for one of these field means that the rule will match
for any value in a packet. In other words, any can mean arbitrary
addresses or determined addresses. For example, 140.113.13.118. Also,
Snort rules can use ‘!’ to indicate ‘not’ what kind of network ip

addresses. For example, !140.113.13.0/24 is indicate not from

7

140.113.13.1 to 140.113.13.255 this range ip addresses.

Port can present in many way. If use any means arbitrary port, and
assigned port like telnet port is 23 and http port is 80 so on. Snort rule
also have ‘:’ to present designated port range. Following have three
instances:

1.
log udp any any -> 140.113.13.0/24 1:1024 log udp

This means traffic coming from any port and destination ports

ranging from 1 to 1024.

log tcp any any ->140.113.13.0/24 :3000
This means log tcp traffic from any port going to ports less or equal to

3000.

log tcp any :1024 -> 140.113.13.0/24 20:
This means log tcp traffic from privileged ports less than or equal to

1024 going to ports greater than or equal to 20.

Rule direction
The fields to the left of the direction operator (->) are the source
fields, while the ones on the right hand side are for the destination. An
alternative operator which is called bidirectional operator (<>), indicates
that the rule is to be applied to both directions of the flow.
For example:
alert tcp 140.113.13.118 80 -> 140.113.13.0/24 any

This 140.113.13.118 is source ip address, and 80 is source prot.

8

b

The direction operator ‘->’ means the packet is from left to right.
This 140.113.13.0/24 is destination ip address, and any is destination

port.

€ Rule Options
Rule options are the most important parts of Snort intrusion detection
engine. There are four classifications as following and in Table 1:
® general
Provide information that related to the rule, and this option has no
relationship with intrusion detection.
® payload
Matching the content in packets.
® non-payload
Matching all protocol fields.
® post-detection

When packets content match Snort rules, it will take other reaction.

Table 1. Rule option keywords (From[10])

Type Keywords

general msg * reference ~ gid ~ sid ~ rev ~ classtype ™ priority *
metadata

payload content ~ nocase ~ rawbytes ~ depth - offset ~ distance *

within ~ http _client body * http _cookie ~ http header »
http_method ~ http uri ~ fast pattern ~ uricontent

urilen »~ isdataat ~ pcre -~ bype test * byte jump

9

ftpbounce ~ asnl ~ cvs

non-payload

fragoffet ~ ttl ~ tos ~ id ~ ipopts fragbits ~ dsize ~ flags *
flow ~ flowbits ~ seq » ack ~» window ~ itype ~ icode ~ icmp id »

icmp_seq ™ rpc ™ ip_proto * sameip ™ stream_size

post-detection

logto ~ session ~resp ~react ~tag > activates

activated by ~ count

In rule option keywords, the most significant words are content and pcre, which are

concerned with whether regular expression string matching is precise or not.

According to this reason, we focus on pcre to achieve regular expression matching

scheme using our algorithm to promote memoty space and throughput.

10

2.2. Regular Expression Overview

2.2.1 Regular Expression Patterns

Regular expressions also referred to as regex or regexp, which provide a brief
and flexible meaning for matching strings from text, such as particular characters,
words, or patterns of characters. A regular expression describes a set of strings
without enumerating them explicitly, and it is written in a formal language that can be
interpreted by a regular expression processor, a program that either serves as a parser
generator or examines text and identifies parts that match the provided specification.
In addition, regular expression, often called a pattern, is an way that describes a set of
strings. They are usually used to give a concise description of a set, without having to
list all elements. According to [3], Table 2 lists the common features of regular
expression patterns used in packet payload scanning. For example, take consideration

to a regular expression from the Linux L7-filter [1] for detecting Yahoo traffic:
payload that starts with ymsg, ypns, or yhoo, followed by seven or fewer arbitrary

characters, and then a letter |, w or t, and some arbitrary characters, and finally the

ASCII letters c0 and 80 in the hexadecimal form.

11

Table 2. Features of Regular Expressions

Syntax | Meaning Example
A Pattern to be matched at the | XY means the input starts with XY. A
start of the input pattern without ‘*’, e.g., XY, can be

matched anywhere in the input.

OR relationship X|Y denotes X or Y.

A single character wildcard

? A quantifier denoting one or | W? denotes W or an empty string.
less
* A quantifier denoting W* means an arbitrary number of Ws.

Z€ro or more

{} Repeat Q{100} denotes 100 Qs.

{mn} Matches the preceding | Z{3,5}denotes ZZZ, 72777, or ZZZ7Z
element at least m and not

more than n times.

[A class of characters [lwt] denotes a letter I, w, or t.

"] Anything but [A\s] denotes any character except \s.

Metacharacters mean escaped with a backslash is reversed for some characters in
the POSIX Extended Regular Expression (ERE) syntax. In Table 3, it will list
extended regular expression symbol and meaning. A backslash causes the
metacharacter to be treated as a literal character. Additionally, support is removed for

\n backreferences.

Table 3. Features of Extended Regular Expression

Syntax | Meaning Example

nn "nn

+ Matches the preceding op+ matches "op", "opp", "oppp", and so

element one or more times. | on.

12

2.2.2 Regular Expression Patterns Using DFA Space

For regular expressions, finite automata are a natural formalism. Here are two
main categories: Deterministic Finite Automaton (DFA) and Nondeterministic Finite

Automaton (NFA).

A DFA consists of a finite set of input symbols, which denoted as X, a transition
function 6 [12], and a finite set of states. £ contains the 28 symbols from the extended
ASCII code in networking applications. Beside the states, there is a single start state
Qo and a set of accepting states, which we call final state. The transition function 6
takes an input symbol and a state as functions and returns a state. A major feature of
DFA is that at any time, there is only one active state in the DFA. But an NFA works
multiple states simultaneously. Otherwise, an NFA similar to a DFA except that the 6

function, maps from a state and a symbol to a set of new states.

13

2.2.3 DFA Analysis for Snort PCRE Parts

In this section, we introduce the regular expressions used in deep packet payload
scanning by[13]. Snort assumed the Perl-compatible regular expression (PCRE)
syntax. More precisely, this present the features of the regular expressions included in
Snort IDS. For example, alert tcp any ->(pcre:"/ APASS\s*\n/smi";) is a Snort rule
and has introduced in section 2.1.3. Based on the above rule, Snort will detect any
packet with payload including a string that matches the “/ APASS\s*\n/smi” regular
expression. Because “/ APASS\s*\n/smi” is the content of packets, this means deep
packet inspection (DPI). Take from the famous features of a strict definition of regular
expressions, PCRE have more features such as constrained repetitions and several
flags. Table 4 lists the PCRE basic syntax supported by our regular expression pattern

matching algorithm.

14

Table 4. Snort-PCRE Basic Syntax (From [13])

Feature || Description |

a All ASCII characters, excluding meta-characters, match a
single instance of themselves

V5 —7%+) Meta-characters. Each one has a special meaning

. Maitches any character except new line

\? Backslash escapes meta-characters, returning them to their
literal meaning

[abc] Character class. Matches one character inside the brackets.
In this case, equivalent to {a|b|c)

[a-fA-F0-9] Character class with range.

[abc] Megated character class. Matches every character except
each non-Meta character inside breackets.

RegExp* Kleene Star Matches zero or more times the regular
expression.

RegExp+ Plus. Matches one or more times the regular expression.

RegExp? Question. Matches zero or one times the regular expres-
sion.

RegExp{N} Exactly. Matches N times the regular expression,

RegExp{N, } Atleast. Matches N times or more the regular expre ssion.

RegExp{N.M} Between., Matches between N and M times the regular
EXpression

‘\xFF Matches the ASCII character with the numerical value
indicated by the hexadecimal number FE

000 Maiches the ASCII character with the numerical value
indicated by the octal number 000,

hd, \woand \s PCRE Shorthand character classes matching digits 0-
9, word characters (letters and digits) and whitespace,
respectively.

o, hroand St Match an LF character, CR character and a tab character
respectively.

RegExp) Groups regular expressions, so operators can be applied.

RegExplRegkxp2 Concatenation. Regular Expression 1, followed by Regular

Expression 2

RegExpl | RegExp2

Union, Regular Expression 1 or Regular Expression 2.

“RegExp

Matches Regular Expression 1 only if at the beginning of
the string,

RegExp$ Dollar. Matches Regular Expression only if at the end of
the string,

i ?=RegExp), Lookaround. Without consuming characters, stops the

i ?'RegExp). matching if the RegExp inside does not match.

([Tem=text), (7= text)

{?(?=RegExp) then Conditional. If the lookahead succeeds, continues the

|else) matching with the then RegExp. If not, with the else
RegExp.

VA2 UAN Backreferences. Have the same value as the text matched
by the corresponding pair of capturing parethesis, from 1st
through Nth.

Flags [| Description |

i

Regular Expression becomes case insensitive.

B

Dot matches all characters, including newline,

m

" and % match after and before newlines.

15

Chapter 3.

Related Works

3.1. The Aho-Corasick Algorithm

The Aho-Corasick (AC) algorithm is dictated by three functions: a goto function
g, a failure function f, and an output function output. Figure 3 shows the three

functions for the pattern set Y = {he, she, his, hers} [7][14][15].

fRy 0 0 0 1 2 0 3 0

R output(R)
2 {he}

5 {she, he}
7 {his}

9 {hers}
(c)

Figure 3. (a) goto function, (b) failure function, and (¢) output function for Y = {he,
she, his, hers}.

16

Some definitions are needed. Let S;S, represent concatenation of strings S,
and S,. We say S, is a prefix and S, is a suffix of the string S,S,. Moreover, S,

is a proper prefix if S, is not empty. Likewise, S, is a proper suffix if S, is not

empty. String S is said to represent state P on a goto graph if the shortest path from
the start state to state P spells out S . Throughout this paper, the representing string of

state P is denoted by S”. The start state is represented by the empty string &.

The length of string S is denoted by |S|.

Note that there might be a self-loop at the start state of a goto graph. However, it
becomes a tree after removing the self-loop, if exists. In the following definitions, we
ignore the self-loop. We call state P the parent.of state R and state R the child of state
P if there exists a symbol o such that g(P,o)=R. State R is said to be a
descendent of state P and state P~ an ancestor of state R if S° is a proper prefix
S®. The tree which consists of state P and all its descendant states is called the

sub-tree of P.

One state, numbered 0, is designated as the start state. The goto function g maps a
pair (state, input symbol) into a state or the message fail. For the example shown in
Figure 3, we have g(0, h) =1 and g(1,0) =fail if o is note or i. State 0 is a special
state which never results in the fail message. With this property, one input symbol is

processed by the AC algorithm in every operation cycle.

The failure function f maps a state into a state and is consulted when the outcome
of the goto function is the fail message. We have f(P) =R iff S® is the longest proper

suffix of S° that is also a prefix of some pattern. The output function maps a state

17

into a set (could be empty) of patterns. The set output(P) contains a pattern if the

pattern is a suffix of S°.

Let P be the current state and o the current input symbol. Also, let X denote
the input string. Initially, the start state is assigned as the current state and the first
symbol of X is the current input symbol. An operation cycle of the AC algorithm is
defined as follows.

1. If g(P, o) = R, the algorithm makes a state transition such that state R
becomes the current state and the next symbol in X becomes the current
input symbol. If output(R) # O, the algorithm emits the set output(R). The
operation cycle is complete.

2. If g(P, o) = falil, the algorithm 'makes a failure transition by consulting the
failure function f. Assume that f(P) = R. The algorithm repeats the cycle

with R as the current state and .o as the current input symbol.

The procedures to construct the goto, failure, and output functions are described in
Algorithms AC1 and AC2 below [7]. The goto function and the failure function are
constructed in Algorithms 1 and 2, respectively. The output function is partially

constructed in Algorithm 1 and completed in Algorithm 2.

18

Algorithm AC1. Construction of the goto function.

Input. Set of keywords Y ={Y,, Y,,.., ¥ } -

Output. Goto function g and a partially computed output function output.

Method. We assume output(P)=C when state P is first created, and g(P, o) = fail if
o is undefined or if g(P,o) has not yet been defined. The procedure enter(y)

inserts into the goto graph a path that spells out y.
begin

newstate < 0

for i — 1 until k do enter(y,)

for all o such that g(0,0) = fail do g(0,0) < 0
end

procedure enter(aa,..a):

begin
state «— 0; j « 1

while g(state,a;)= fail do
begin
state < g(state,a;)
je—ijtl
end
for p < j until m do

begin
newstate <« newstate + 1

g(state,a,) <« newstate

state «— newstate
end

output(state) — {aa,...a,}

end

19

Algorithm AC2. Construction of the failure function.

Input. Goto function g and output function output from Algorithm 1.

Output. Failure function f and output function output.

Method.

begin
queue «— empty
for each o suchthatg(0,0)=P#0do
begin
queue «— queue U {P}
f(P)—0
end
while queue # empty do
begin
let R be the next state in queue
queue «— queue - {R}
for cach o suchthatg(R, o) =P #fail do
begin
queue «— queue U {P}
state — f(R)
while g (state, o) = fail do state « f(state)
f(P) « g(state,o)
output(P) «—output(P) U output(f(P))
end
end
end

20

3.2. Enhancing The Aho-Corasick Algorithm

Let RE,, RE,, ..., and RE_ be n regular expressions that contain * operators

only. Further, let RE RE .., and RE_ = be m regular expressions, each of

n+l o n+2o° °

them contains at least one {min, max} operator. We construct in this section the

signature matching system for RE,, RE,, ..., RE,, RE RE .and RE_ .

no> n+1° n+2o° *°

An important fact in finding a match for RE = RE'*RE?, where RE' and RE® are
plain strings or simple regular expressions, is that, once RE' was matched before, a
match of RE is found if RE? is matched. Therefore, we need to remember
whether or not RE' was matched before. We use different goto graphs to implicitly
memorize such information. Our proposed signature matching system consists of a
pre-filter and a verification module; which are described separately below. With a
pre-filter, the space complexity is largely reduced and the throughput performance can

be significantly improved.

3.2.1. Pre-filter

The pre-filter is designed based on the well-known Bloom filters which guarantee

no false negative. Given block size K, there are m-k+1 membership query module.

Recall that p/p’..p!" are the first m symbols of pattern P . The sub-string

p'p’...pS is a member stored in the first membership query module, the sub-string
p/p’...pS*" is a member stored in the second membership query module, ..., and the

sub-string p"**'p™**?_.p" is a member stored in the (M—Kk+1)" (or the last)
membership query module. For convenience, these membership query modules are

denoted by MQ, , MQ,, ..., and MQ The h™ bit of MQ; is set to 1 iff there

m-k+1 *

21

exists pattern P such that h =hash(p/p/™...p/""") . Every membership query

module reports 1 if the query result is positive or 0 otherwise.

Again, a search window W of length m is used during scanning. Initially, W is

aligned with T so that the first symbol of T, 1.e.,t, , is at the first position of W. The last

k symbols in W, ie., t . t t. at this moment, are used to query MQ, ,

m—k+1"m-k+2°**"m

MQ,, ..., and MQ Let gb be the report of MQ, and QB = qb, gb,...qb, .,

m—k+1 *
denote the bitmap of current query result. We observe that not only current query
result but also previous ones are useful for filtering. Therefore, we introduce the
stateful concept in pre-filter design. That is, current query result and previous ones are
utilized to determine how many symbols in the text can be skipped in our pre-filter
design. Note that no additional queries are required to implement the stateful concept.

In our implementation, we use a master bitmap of size m—k+1 bits to accumulate

results obtained from previous queries. Let MB = mb, mb,...mb, represent the

m—k+1
master bitmap. Initially, the master bitmap contains all 1's, i.e., mb. = 1 for all i,
1<i<m-k+1. After a query result is fetched, we perform MB= MB @ QB, where
@ 1is the bitwise AND operation. A suspicious sub-string is found and the verification

engine is consulted if mb__, . = 1. The advancement of W is m—k+1 positions if i mb =

m—k+1
O0foralli, 1<i<m-Kk+1 positionsif mb, =1and mb, =0 foralli, r<i<m-Kk.

If W is decided to be advanced by g positions, MB is right-shifted by g bits and filled
with 1's for the holes left by the shift. Figure 4. shows the architecture with master

bitmap (stateful) for m = 6 and k = 3.

22

W

T= fé-S ti—2 rI'-l té' rI'+1 rI'+2 fi+3

Master bitmap MB

| ——
// Nlmbzmbsmb“

MQu! ‘MQ1 mbl‘ MQ, n:bz‘ MQaHmbz MQu| | mb 4

1
| AND | | AND | | AND | | AND |
Rightmost 1 detector Verification
’"l engine

{ » is used to compute the window advancement g = m-k+1-r)

Figure 4. The stateful pre-filter architecture for m = 6 and k = 3.

3.2.2. Verification Module

The verification module is an_extension of the AC algorithm. We describe
constructions of the goto function, the failure function, the output function, and the

signature matching machine separately.

@ The goto function

A regular expression which contains at least one {min,max} operator is

fragmented by the {min,max} operators. For example, regular expression RE=

S, *S,*S, {min,max} S, *S, {min,,max,} S, is fragmented into S, *S,*S,, S, *S,,

and S,. Letre 1<k <m, represent the first fragment of RE_,, and

n+k »

Y ={RE,,..,RE,,re re Define SRE, as the string derived from RE

n+12°°s n+m}'

(ifl<k<n)or re (ifn+1<k <n+m) by removing all the * operators. We shall

construct multiple goto graphs using suffixes of SRE,, 1<k <n+m.

Let Z,={SRE,..,SRE,,SRE,,,,...,SRE and G, be the goto graph

n+l1>°° n+m}

23

constructed with the strings contained inZ,. The self-loop at the start state, if exists,
is deleted. Consider a regular expression REeY . Assume
that RE=S5,*S,*..*%S, . We call states Q , 1<i<J, on graph G, with
S*=SS,..S, switching states. ~These J switching states are said to be
contributed by RE or they belong toRE. Note that it is possible for a switching
state to belong to multiple regular expressions. Define SRE—SQ‘=Si+1 S If

cee gy

string SRE —S9 is included in constructing a goto graph G, states Qj, 1<j<J-i,
on graph G with S% = Si,pS

i,; are switching states on graph G . These

switching states also belong toRE. It is not hard to see that, for the switching state

Q; on graphG, there is a switching state-on graph G, represented by S,..S, ;.
We call this switching state on graph G the ‘corresponding switching state of Q.
In this paper, we shall use Q to denote the corresponding switching state of a

switching state Q. We have Q =Q if switching state Q is on graph G, .
Construction of other goto graphs is as follows.

Assume that there are a total of M distinct switching states on graphG,. Let
Q,Q,,..., and Q,, denote the switching states. A binary flag FQ. is associated
with state Q.. The flag FQ =1 iff the string representing state Q was found.
The possible values of (FQ,,FQ,,...,FQ,,) are called configurations. Clearly, there

are 2" possible values for (FQ,,FQ,,...,FQ,,). We say a configuration is feasible

if it is possible to occur during scanning. A goto graph is constructed for each

feasible configuration. In general, not all the 2" possible configurations are

24

feasible. The goto graph G, corresponds to the all-zero feasible configuration

C,=0=(0, 0, ..., 0). We call goto graph G, the Level 0 graph. Graph G, is

used to construct Level 1 goto graphs, which in turn are used to construct Level 2 goto
graphs, and so on. In the construction procedure shown below, the function

Construct_Goto_Graph(G, Z) is to construct goto graph G with the strings in

Z using Algorithm ACI1, except that the self-loop at the start state, if exists, is

removed. The goto graph G,, with corresponding feasible configuration C,, is

constructed with the strings contained in set Z;. The set Z, is the input to the

construction procedure. Some states are marked as fork states because, as will

become clear in sub-section B.4, a process is forked whenever a fork state is visited.

State R on goto graph G, is a fork state.iff ‘S*=SRE,, for some k, 1<k<m.

n+k

Similarly, state R on goto graph G, «(i=1)is a fork state iff S® =SRE_, —S? isa
string in Z;, where Q is a switching state on graph G, that is contributed by

RE

n+k *

Procedure Goto(Z,)

i=0 /*index of goto graphs */
I =0 /*level of goto graphs */

C,=0

Configurations _in_ Level[l]={C,}
Construct_Goto_Graph(G,, Z))
Mark the fork states on graph G,

Graphs _in_ Level[l]={G,}

25

while (1)
J=1+1
Configurations _in_Level[J]=O
Graphs _in_Level[J]=Y
For every G €Graphs _in_Level[l] with corresponding configuration C
For every switching state Q on graph G

Determine the corresponding switching state Q" on graph G,

Set_Flags(C', Q") /*set FQ, =1 if S isaprefixof S% *
C"=C@®C’' /* @ denotes the bitwise OR operation */
If C"#C,; forall j, 0<j<i /*anew feasible configuration */
I++
C =C"
Configurations _in_Level[J]=

Configurations _in_ Level[J]W{C.}
Find_Strings(Z;, (C,) /* determine Z, */
Construct_Goto_Graph(G,, 7))

Mark the fork states on graph G,

Graphs _in_Level[J]=Graphs in_Level[J]U{G;}

If Configurations in_Level[J]=C
Break
I ++

Set_Flags(C, Q)
C=0
For every switching state Q,

If S9 isa prefix of S°

FQ=1 /* FQ, denotesthe i" bitof C */

26

Find_Strings(Z, C)

For every switching state Q. such that FQ =1
Find B(Q,) the set of regular expressions that contribute state Q.
Forevery RE; eB(Q)
Z =7 U{SRE,; -S%}
Forevery SRE,-S% eZ
If there exists SRE, —S® e Z which is a proper suffix of SRE; —-S%
Z =7 —{SRE,; -S“}

Construction of the goto graphs for Y ={RE,...,RE_,re re is

n+ls°°" n+m}

accomplished by the above procedure. The remaining work is to handle the other

fragments of RE,., , Isk<m Again, we use RE, =

S, *S,*S, {min,max,} S,*S, {min,,max,;} 'S, as an example for explanation.

Handling of the other fragments of RE,,, is basically to repeat the above construction

procedure assuming that there is only one regular expression

RE =S, *S, {min,,max,} S,. Consider handling of the second fragment S,*S;.
Two goto graphs are constructed: one for {S5,S,} and another one for{S;}. The start
state on the goto graph constructed for {S,S.} is modified as follows. It is marked

with {min,max} and the self-loop, if exists, is not removed. The remaining

fragments are handled the same as the second fragment. For differentiation, we shall

use T, 's to represent the goto graphs constructed for the fragments other than the first

27

one of RE 1<k<m. The construction of goto graphs is completed after all

n+k »

fragments of RE 1<k <m, are processed.

n+k »

Note that there is no Level 2 goto graph if the first string of any regular

expression is not a prefix of the first string of any other regular expression. This is

called non-overlapping condition. Under the non-overlapping condition, string S;
of RE=S,*§,*..*§,,, appears exactly i times on i different goto graphs.

Figure 5. shows the goto graphs for RE,=a*bc*d , RE, =a*ef *d ,
RE, =pgr*st, and RE,=p*q{2,4}u{3,5}vw*xy . Note that there are five
switching states and one fork state on graph G,. Switching state Q, is contributed
by both RE, and RE,. Therefore, strings. bed and efd are used to construct
graph G,. Graphs G, to G are Level 1.graphs while graph G4 is the only
Level 2 graph and is generated by graphG,. Goto graph T, is created by the

second fragment of RE,. Note that state 31 is a fork state and marked with {2,4} .

28

G,

C,=(1.100.0)

GS
C,=(0.0,0,1,1)

d G,
@ Q C=1.1,1,0,0)
(24 3,5)
u
:

WIRGRES) Q
1% w X y
O 0,000 0R
x y
T
Figure 5. The goto graphs for RE, =a*bc*d, RE,=a*ef *d, RE, = pqgr*st, and

RE, = p*0q{2,4}u{3,5}vw*xy .

@® The failure function

For convenience, we call a goto graph whose start state is marked with some

{min,max} operator a {min,max}—graph. As anexample, the goto graphs T, and

29

T, shown in Figure 5 are {min,max}—graphs. The failure functions for

non —{min,max} —graphs and {min,max} —graphs are constructed with the
following Non-{min, max} Failure and {min, max} Failure procedures,
respectively. In the procedures, C represents the corresponding feasible
configuration of graph G or T. An additional state, called the END state, is
added in constructing the failure function. As will be seen in Sub-section B.4,
traversal on a goto graph ends if it enters the END state.

Figure 6(a) shows the failure function for the four regular expressions used in
Figure 5. In this figure, the state number of the (i, j)" entryis 10*i+ j and value

0 for f(R) represents the END state. The symbol “-* means failure never occurs

in that state. For example, failure never occurs in states 38 and 40.

f(R) [0 1 2 3 4 5 6 7 8 9
0 0 13 13 |20 |20 13- |25 |25 |30 |30
1 32 |32 32 |0 0 200 |20 |0 25 |25
2 0 36 13610 0 36 |36 |0
3 0 0 0 0 0 - 38
4 - 40 |45 |45 |45
(a)
R 4,16,21,28 |7,19,24,29 | 12,34 | 44,47 37
output(R)
RE, RE, RE, RE, RE,, RE,
(b)

Figure 6. (a) The failure function and (b) the output function for the example regular

expressions used for Figure 5.

® The output function

Consider some goto graph G constructed for Y. Assume that

RE, =S, *S,*..*%S,,,, 1<k<n,and S ,..S,,, isincluded in constructing

JE2 SN RS |

graph G. We assign initially output(P)=& for every state P on graph G.

30

Let R be the state on graph G with S® =9 js1--9;, - The output function
output(R) is modified as output(R) =output(R) U{RE,}.

Now consider a goto graph T constructed for some fragment of RE_,,,

1<k<m. Forevery state P on graph T, we assign output(P)=<. If

graph T is constructed for the last fragment of RE__, , then output(R) is

n+k >

modified for some state R. Assume that the last fragment of RE,_,, is

S, *S,*..*S,,, and graph T is constructed with S, ..S;,,. The output

function of state R on graph T is modified as
output(R) = output(R) U{RE,, } if S*=S,,..5S,,

@ The signature matching machine

During scanning, a set called Active - Graphs is maintained. When the
pre-filter finds the starting position of a suspicious sub-string which may result

in match of some signatures, concurrent traversals begin at the start states of all

the goto graphs contained in Active Graphs .Initially, we have
Active_Graphs ={G,}. Consider the traversal on a specific goto graph. A

process is forked to traverse a {min,max} —graph if a fork state is visited. As

an example, consider the goto graphs shown in Figure 4. A process is forked to

traverse graph T if state 9, 31, or state 35 is visited. ~ As another example, a

process is forked to traverse graph T, if state 39 is visited. Assume that the

failure function is consulted in state R and f(R) is the start state of some
goto graph G or T, different from the goto graph state R ison. In this
case, graph G or T isaddedto Active Graphs so that it will be traversed

when succeeding suspicious sub-strings are found by the pre-filter. For

31

example, for the goto graphs shown in Figure 4, if the failure function is
consulted in state 2, then graph G, is added to Active Graphs. Traversal

ona non-{min,max}—graph ends if a match is found or the failure function is
consulted. Traversal on {min,max}—graph T is as follows. Let

{min, max} be the mark of its start state. A counter Ctr is maintained when
traversing graph T . The content of Ctr is initialized to min and the next
min symbols are skipped. The counter is increased by one if the current state
is the start state of T and it returns to the same state after an input symbol is
processed. Assume that the failure function is consulted in state P. If state

f(P) isalso on graph T, which implies state P is not on the sub-tree of any

switching state, then ctr isupdatedas ctr = ctr+ [S7| - |S'™|. Weset

ctr =max +1 if state f(P) isona different graph. The traversal ends iff a

match is found or Ctr >max-

Assume that a particular goto'graph'is under traversal. RE,, 1<k<n,is
a candidate signature to be matched if some suffix of SRE, is included in

constructing the goto graph. Similarly, RE I1<k<m, is a candidate

n+k >
signature to be matched if some suffix of the string obtained by removing the *

operators of some fragment of RE_,, is included in constructing the goto graph.

Obviously, the number of candidates never increases during traversal for a given
suspicious sub-string. The verification process ends if any signature is matched,

the input string is exhausted, or all concurrent traversals end.

32

Chapter 4.

PCRE Handling with The Enhanced
Aho-Corasick Algorithm

PCRE Rules Pattern Form

In this section, we divide the PCRE rules into six parts[3]. The division factor is
focus on regular expression, so Table 5 will list the six parts of pattern features and the
complexity of states. Definite strings generate DFAs of length linear to the number
of characters in the string. If a pattern starts with ‘) it originates a DFA of
polynomial complexity with respect to the pattern length k and the length restriction j.
From the existing content scanning rule sets is that the pattern length Kk is usually
limited but the length restriction j maybe reach hundreds or even thousands. It will
cause very large and high complexity of space. Therefore, Case 5 can effect in a large

“ s

DFA because it has a element quadratic in j. This patterns starting with “.*” and

having length restrictions, Case 6, cause the creation of DFA of exponential size.

33

Table 5. Analysis of patterns with k characters

Pattern features Example #of states
1.Explicit strings with k characters "ABCD K+1
*ABCD
2.Wildcards ~AB.*CD K+1
*AB.*CD
3.Patterns with », a wildcard, and ~AB.{0,j}CD O(k*)
a length restriction |
4. Patterns with #, a wildcard, and "AB.{j}CD K+j
a length restriction j(min=max=j)
5.Patterns with #, a class of NA+H[A-ZI{}D O(k+j?)
characters overlaps with the
prefix, and a length restriction |
6.Patterns with a length restriction FAB.{j}CD O(k+2))
j» where a wildcard or a class of FAJA-Z]{ID

characters overlaps with the prefix

The following will show above six cases DFA graphs and our proposed

signature matching system.

® PCRE Patterns Form- Case 1

v

The pattern features : Explicit strings with k characters, k is the pattern

length.
Size of DFA ; linear.

Number of states : k+1

Example: ~ABCD and .*ABCD on Figure 7.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

34

oYoXototYo

Figure 7. DFA of ~ABCD and .*ABCD

PCRE rules example(take from snort PCRE library[10]) after using the
enhanced Aho-Corasick algorithm:

1.ftp.rules 3441 /"PORT/smi

2.backdoor.rules 12242 /~Start$/smi

Shown on Figure 8.

[~PpS

o) el R Y
DEO=0E00)

ss) s \LTH g \haly 5 Rr] (D[Tt]@
R N

Figure 8. Snort PCRE rule example

35

PCRE Patterns Form- Case 2

v' The pattern features : Wildcards.

v' Size of DFA: linear.

v Number of states : k+1

v' Example: “AB.*CD and .*AB.*CD on Figure 9.
Notice that, if the next state is failed, we assume that it will terminate
immediately. So, we do not show the failed path back to the stating

state on the graphs.

Figure 9. DFA of “AB.*CD and .*AB.*CD

PCRE rules example(take from snort PCRE library[10]) after using the
enhanced Aho-Corasick algorithm:

1.chat.rules 6182 /Ms*NOTICE/smi

2.smtp.rules 664 /~rcpt to\:\s*decode/smi

Shown on Figure 10.

36

[%s |™MNnRr]

[Hnl/ 00l T S [Ii]CCEe]
RN @

Figure 10. Snort PCRE rule example

® PCRE Patterns Form- Case 3

v' The pattern features : Patterns with #, a wildcard, and a length
restriction j.

v' Size of DFA : Polynomial.

v" Number of states : O(k*j)

v' Example: “AB.{0,j}CD on Figure 11.
Notice that, if the next state is failed, we assume that it will terminate
immediately. So, we do not show the failed path back to the stating

state on the graphs.

[~co]

if j=2;

[~C C
O=00=0

Figure 11. DFA of “AB.{0,j}CD

37

PCRE rules example(take from snort PCRE library[10]) before using
the enhanced Aho-Corasick algorithm:
1.ddos.rules 228 /~[0-9]{1,5}\x00/ [0 - 9] \x00

2.Shown on Figure 12,

Figure 12. Snort PCRE rule example

PCRE rules example(take fram snort PCRE library[10]) after using The
Enhanced Aho-Corasick Algorithm:
1.ddos.rules 228 /~[0-9]{1,5}\x00/[0 -9]\x00

Shown on Figure 13.

Figure 13. Snort PCRE rule example

38

® PCRE Patterns Form- Case 4
v' The pattern features : Patterns with #, a wildcard, and a length
restriction j(min=max=j).
v Size of DFA: linear.
v" Number of states : k+j
v' Example: "AB.{j}CD on Figure 14.
Notice that, if the next state is failed, we assume that it will terminate
immediately. So, we do not show the failed path back to the stating

state on the graphs.

if j=2:

DD OD

Figure 14. DFAof ~AB.{j}CD

39

PCRE Patterns Form- Case 5

v' The pattern features : Patterns with », a class of characters
overlaps with the prefix, and a length restriction j.

v' Size of DFA : quadratic.

v" Number of states : O(k+j2)
Form example: "A+[A-Z]{j}D

v' Example: *B+[™n]{3}D on Figure 15.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

E Mot B ar'r Mot 'r B
—_— - — Ay

L&-d-

B

- NnTB’ot

L B‘m?:(

B.
I/':'\'
Y ol B noﬁ"’l\“ ,J Mot e '\

5
e “\ Y) ——. \:E'P‘
fran‘_"'\ e P e N AT "‘\«/

Figure 15. DFA of "B+["\n]{3}D

PCRE rules example(take from snort PCRE library[10]) after using The
Enhanced Aho-Corasick Algorithm:
1.AB+[Mn]{3}D

Shown on Figure 16.

40

3,3

[~Wn]13,3)
"

Figure 16. Snort PCRE rule example

Here, our proposed enhanced AC algorithm surely decrease total
states of this Snort PCRE case. But notice that if the {min,max}
number is larger than this figure example, it will create large number of
fork graphs and take a lot of time to scan between these graphs.

To avoid creating so many. graphs, we bring up an idea that using a
fork_counter to count how many- times the previously continuous

character has happened.

For example, the pattern form is the same as previous figure 16,
AB+[Mn]{3}D. The example of this pattern is BYAAD or BABAD.
Starting character is B, and next is Y or A which is not equaled to B. So

the fork_counter is still keep the same(here is still 3 in Figure 17).

4

fork. counter=0, {3,3}-0={3,3}

B {3,3}
.

[~\nf23)

n G

Figure 17. fork_counter to count previously continuous character.

In the same pattern form instance, BBAAD let the fork_counter
become 1 because the second character B which is same as the first

character.

See Figure 18, the value of min is countdown because original min

value minus value of fork_counter.

fork_counter=1, {3,3}-1={2,3}

x {2,3}
.

[A\n]{2,3}
:

Figure 18. The value of min minus value of fork_counter.

42

But if the value of fork_counter is equal or larger than value of
min? In this situation, the min value is become zero. In Figure 19(a),
the same pattern form instance, BBBBD let the fork_counter become 3
because the number of second and later character B which is same as
the first character. So the value of min minus value of fork_counter is
equal to zero. In Figure 19(b), the value of fork_counter is larger than

min value, so min value sets to zero.

EX: BBBBD

M[=3 r {3!3}_3={0!3}

B {0,3}
.

A\n]{o 3}

EX: BBBBBBBZD

"fork_counter>3 , {3,3}-ctr={0,3}

\{0.3}

G, (0)2+(1)
[~\n[{0.3}
>(G)

(b)

Figure 19.Value of fork_counter is equal or larger than value of min

PCRE Patterns Form- Case 6

v

v

The pattern features : Patterns with a length restriction j, where a
wildcard or a class of characters overlaps with the prefix.

Size of DFA : exponential.

Number of states : O(k+2j)

Form example: *AB.{j}CD and .*A[A-Z]{j}D

Example: . *A.{2}CD on Figure 20.

Notice that, if the next state is failed, we assume that it will terminate

immediately. So, we do not show the failed path back to the stating

state on the graphs.

A MotA NotAorG "\
—_— = — =
v\ /

A
|/;‘:—||\lﬂlﬁ - 'f_s_\\ \
_ﬂ__./_‘ .
N?\fq .h'., e '|' '
A .
Starﬂ—h-[- — {3
N, N NolA\}.
-_H"'E-N_Q_l_af\ orD

Figure 20. DFA of .*A.{2}CD

PCRE rules example(take from snort PCRE library[10]) after using The

Enhanced Aho-Corasick Algorithm:

1.*A{2}CD

Shown on Figure 21.

44

Figure 21. Snort PCRE rule example

45

Chapter 5.

Experimental Results

In this chapter, we present simulation results for the Snort PCRE rules parts using

the enhanced Aho-Corasick algorithm.

There are divided into two sections which shown on Figure 22: Pre-filter and
verification module. Using pre-filter to find the suspicious starting position from input
file. Once the suspicious position has found, pre-filter pause at that position to transfer

to verification module procedure then starting to run all active graph structure.

Verification

Pre-filter |[suspicious positions
module

Figure 22. The Procedure of algorithm.

46

Programming Procedure

The programming flow is shown on Figure 23.

Process the pattern file

1.Truncate pcre content

2.Convert hex to ascii

3.Convert *?" to {0,1}

4 Fill max number if neecded
(ex:{min, } to {min,2K})

Construct graphs

1 Goto Pre-filter
2 Failure m=6 , k=3
3.Output i, 1=i=4
Verification

1.Using queue to store active _graph
2.Run all active_araph

Figure 23. The Programming flow.

The beginning, we process the pattern file to make it become legitimate pattern
rules. After process the rule file, take all rule file to construct graphs. When graphs
construct completely, we first read in a clean file which means there has not exist any
string that matched by PCRE rules. Simultaneously, the pre-filter will look for the

suspicious position which matched any PCRE rule starting segment. Once find the

matched rule position, turn into verification steps.

In our experiment, we use 11147 Snort PCRE rules to construct matching graphs.

Figure 24 displays performance using our proposed signature matching system for

47

clean files of various sizes.

Clean files of various sizes

W~ =z = 7 = =
9|:||:| -.
BDD _. -
00} - . . » -
ST . e - e b b
&00

400

CPU execution time(ms)

300

200

100

O
0 10 20 30 40 50 B0 70 B0 90 100
File Size(100 KE)

Figure 24. Performance using our proposed signature matching

system for clean files of various sizes.

Figure 25 displays performance using our proposed signature matching system

for a file with an inserted Snort PCRE rules at various positions.

48

2MB file with an inserted rule at wvarious positions

1000 T !
9|:||:| _
=T | rne——

E 1 £ S i

an . : ;

£ B0 |emmm s TN SRTRIRERPMREE s

= : : :

o e e e S R .

= : : :

Iz : ; :

% 4|:||:| 4

= : i :

R 51| OSSP e
S J
1B p| RS

0 1

1] 0.5 1 1.5 2
Fule occurence position(MB)

Figure 25. Performance using our proposed signature matching system for a

file with an inserted Snort PCRE rules at various positions.

49

Chapter 6.

Conclusion

We have presented in this paper Snort PCRE rule to detect deep packet content
using enhanced Aho-Corasick algorithm. Numerical results show that our proposed
algorithm provides less regular expression matching states, that means, we use less

memory space to apply PCRE matching.

In this way, the space requirement of a DFA is also reduced. Therefore, the
purpose of the method to extend the AC algorithm is to present a high-performance,
reasonable memory requirement -signature’ matching system for simple regular
expressions and plain strings that can_ be efficiently implemented on general-purpose

processors.

Because this scheme is only simulated in our personal computer, how to

implement on hardware like FPGA remains to be further studied.

50

Bibliography

[1] Fisk, M. and G. Varghese, Fast Content Based Packet Handling for Intrusion

Detection, 2001.

[2] Roesch, Martin, ““Snort — Lightweight Intrusion Detection for Networks,”” 13th

Systems Administration Conference, USENIX, 1999.

[B]F Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspection,” in
Proc. of Architectures for Networking and Communications Systems (ANCS), pp.

93-102, 2006.

[4] K. Thompson, “Programming techniques: Regular expression search algorithm,”

Commun. ACM, 11(6):419-422, 1968.

[5] V. M. Glushkov, “The abstract theory of automata,” Russian Mathematical

Surveys, 16:1-53, 1961.

[6] R. W. Floyd and J. D. Ullman, “The compilation of regular expression into

integrated circuits,” Journal of ACM, vol. 29, no. 3, pp. 603-622, July 1982.

[7]1 T. H. Lee, “Enhancing the Aho-Corasick Algorithm for Signature Based

Anti-Virus/Worm Applications,” ICCCN 2007.

51

[8] Alok Tongaonkar, Sreenaath Vasudevan, and R. Sekar, “Fast Packet Classification

for Snort by Native Compilation of Rules,” (LISA °08).

[9] = B, » B 7o MAE > "SR A (RIS 1 > 2008

T

[10] http://www.snort.org.

[11] J. Levandoski, E. Sommer, and M. Strait, "Application Layer Packet Classifier

for Linux." http://I7-filter.sourceforge.net/.

[12] J. E. Hopcroft, R. Motwani, and J..D."Ullman, Introduction to Automata

Theory, Languages, and Computation, Addison Wesley, 2001.

[13] Jo™ao Bispo, loannis Sourdis, Jo"ao M.P. Cardoso and Stamatis Vassiliadis |,
“Regular Expression Matching for Reconfigurable Packet Inspection,” supported
by the European Commission in the context of the Scalable computer

ARChitectures (SARC) integrated project.

[14] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, vol. 18, pp. 333-340, Jun. 1975.

[15] Tsern-Huei Lee, IEEE, and Nai-Lun Huang, ” A Pattern Matching Scheme with
High Throughput Performance and Low Memory Requirement,” Submitted for

publication.

52

[16] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Technical

Report, May 1994.

53

	封面.pdf
	Abstract 1.pdf
	Chapter1 Introduction.pdf
	Chapter2 Background.pdf
	Chapter3 Related works.pdf
	Chapter4 PCRE using Enhencing AC.pdf
	Chapter5 Experimentak Results.pdf
	Chapter6 Conclusion.pdf
	Bibliography.pdf

