
具有 AHB 介面之 JPEG2000 編碼器系統設計

學生：黃琪文 指導教授：吳炳飛 教授

國立交通大學電機與控制工程學系 (研究所) 碩士班

摘要

 由於 JPEG2000 是最先進的影像壓縮格式，我們實驗室也致力於開發高效能

JPEG2000 晶片，並提出比傳統小波離散轉換 (Discrete Wavelet Transform) 更有效率的

QDWT (Quad Discrete Wavelet Transform)。 QDWT 的優勢在於可以比傳統 DWT 提早

四分之三的時間將編碼資料送出至下級 EBCOT (Embedded Block Coding with Optimized

Truncation) 。我們也開發高效能的算數編碼器，採用三級管線的平行化架構達到 1 CX-D

pair/clock cycle 的輸入率。在本論文中會說明如何透過系統工作流程安排，分析系統內

部每塊模組的工作時間，決定出效能最好的系統架構。

 為了使我們開發的 JPEG2000 編碼器更具 IP 化，我們將其外掛一層 AHB (Advanced

High-performance Bus) Slave 介面。AMBA (Advanced Microcontroller Bus Architecture)為

ARM 所制定的系統內部匯流排的溝通介面，是目前市面上最常被拿來使用的介面，因

此，我們所設計的具有 AHB 介面的 JPEG2000 編碼器可應用於任何 ARM-based 的嵌入

式系統。本論文的貢獻在於成功整合一顆具有平行化架構的 JPEG2000 Coprocessor，並

呈現此架構確實可以大幅提升 JPEG2000 的效能。此外，也成功的為 JPEG2000

Coprocessor 掛上 AHB 介面，並使之與 ARM CPU 一起工作，完成整個 JPEG2000 的編

碼流程。

 i

AHB-based JPEG2000 Coprocessor System Design

Student：Chi-Wen Huang Advisor：Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

 Because JPEG2000 is the state-of-the-art image compression technology, our lab has

made efforts in developing a high-performance JPEG2000 chip and developed QDWT (Quad

Discrete Wavelet Transform) which is more efficient than the traditional DWT (Discrete

Wavelet Transform) . QDWT only needs the quarter of compute time than the traditional

DWT does to generate the coefficients to EBCOT (Embedded Block Coding with Optimized

Truncation). We also develop a high-performance AC (Arithmetic Entropy Coder). The

pipeline architecture is used in the AC and we only use three pipes to reach the input rate, 1

CX-D pair/clock cycle. We will explain that how to organize the best system architecture to

achieve small area and high throughputs by arranging the system work flow properly and

analyzing the timing of the individual modules.

 If the ASIC developed can be popular to be integrated into different systems, the IP issue

should be addressed. We wrapped the JPEG2000 Encoder developed by our team in AHB

(Advanced High-performance Bus) Slave interface. AMBA, which is drawn up by ARM, is an

on-chip communication standard for designing high-performance embedded microcontrollers

and is wildly used in the consumer electronic market now. So, the AHB-based JPEG2000

 ii

Encoder we developed could be applied in an ARM-based embedded system.

 The Contribution of this thesis is to integrate the QDWT, Pass Parallel EBCOT Tier1 and

Pipeline AC as a JPEG2000 coprocessor and show this architecture really could improve the

performance. Besides, wrap the JPEG2000 coprocessor in AHB slave interface and make it

cooperate with ARM CPU to finish the coding procedures of JPEG2000.

 iii

致謝

 首先，最應該感謝的人，當然就是指導我四年的吳炳飛教授了。感謝老師在我大學

時就收我當專題生，猶記當時我根本不懂什麼是硬體設計，什麼叫系統整合，到現在有

能力去 handle 一個系統，這都是老師一點一滴的栽培訓練，把作為一個硬體設計研發人

員該有的 sense 敎給我，讓我懂得如何設計開發，以符合市場和業界的需求。

 另外，也要感謝老師提供我良好的學習環境和學習資源。在設備和開發工具上的資

源可以說是應有盡有，讓我在這幾年中，可以學習和接觸到不同的開發環境，對我未來

的發展奠定了良好的基礎。

 再來，要感謝的人，就是曾經帶領過我的 Money(錢昱瑋學長)，旭哥(顏志旭學長)，

強哥(胡益強學長)，重甫(林重甫學長)，在你們帶領我的期間，都讓我學到很多不同領

域的東西，使我在各方面，都有顯著的成長。

 當然，也要感謝其他實驗室的夥伴們，和大家一起合作，一起討論，讓我體會到什

麼叫團隊，大家一起朝著共同的目標努力的那種感覺，有時讓我覺得做研究也是一件很

快樂的事。在這裡要特別謝謝曾經和我一起開發 JPEG2000 系統的 VK(楊明達學長)，紹

麒(呂紹麒學長)，沛君，晏阡，培恭，和你們一起合作，一起參加比賽，一起努力，這

當中的點點滴滴都是很美好的回憶。

 最後，要感謝一直在背後默默支持我的家人和摯友，謝謝你們辛苦的付出，讓我可

以無後顧之憂，並在我低潮時，陪伴我，鼓勵我，今天可以順利完成研究所的學業，絕

不是光靠我一個人就可以的，謝謝你們！

 iv

Table of Contents

摘要 ...i

ABSTRACT ...ii

致謝 ...iv

Table of Contents..v

Lists of Figures ..viii

Lists of Table ..x

Awards ..xii

Preface ...xiii

Chapter 1 System Overview..1

1-1 Introduction ..1

1-2 ARM Integrator Platform ...1

 1-3 System Block Diagram ...2

1-3.1 Motherboard (Integrator/AP) ..2

1-3.2 Core Module (Integrator/CM920T) ..3

1-3.3 Logic Module (Integator/LM-EP20K600E+) ...3

Chapter 2 JPEG2000 Coprocessor Hardware Design ...4

2-1 Introduction ..4

2-2 Main Module Introduction ...4

2-2.1 QDWT (Quad Discrete Wavelet Transform)...4

2-2.2 Pass Parallel EBCOT Tier-1 and Arithmetic entropy Coding...........................5

2-3 JPEG2000 Coprocessor Architecture ...6

2-3.1 Analysis the overall system timing ...6

2-3.2 Define the module interface I/O and timing properly.......................................8

 v

2-4 Operation Flow Chart... 11

2-5 Coprocessor Controller ..12

2-5.1 the Control of QDWT ...13

2-5.2 The Control of EBCOT...14

2-6 Test Circuit Design...15

2-7 Achievement...18

Chapter 3 Arithmetic Entropy Coding ..19

3-1 Introduction ..19

3-2 AC Operations..19

3-2.1 Recursive interval subdivision ..19

3-2.2 Coding conventions and approximation..20

3-3 Description of the Arithmetic Encoder...21

3-3.1 Encoder code register convention ...21

3-3.2 Encoding a decision (ENCODE) ..22

3-3.3 Encoding a 1 or a 0..23

3-3.4 Encoding an MPS or LPS (CODEMPS and CODELPS)24

3-3.5 Probability estimation ...27

3-3.6 Renormalization in the encoder (RENORME) ...29

3-3.7 Compressed image data output (BYTEOUT) ...29

3-3.8 Initialization of the encoder (INITENC)...30

3-3.9 Termination of coding (FLUSH)...31

3-4 Method for Enhance Performance ...33

3-5 State Machine...40

3-6 Pin Definition ...41

3-7 Timing Diagram ...42

3-8 Achievements & Comparison ..42

 vi

3-8.1 Achievements ..42

3-8.2 Comparison ...43

Chapter 4 AHB Wrapper Design...44

4-1 Introduction ..44

4-2 Work Theory...44

4-2.1 Objectives of the AMBA specification..45

4-2.2 A typical AMBA-based microcontroller ...45

4-2.3 AMBA AHB ..46

4-2.4 Bus interconnection...47

4-2.5 Overview of AMBA AHB operation...48

4-3 Timing Analysis ...49

4-4 AHB JPEG2000 Coprocessor Block Diagram...50

4-5 Register Definition ...52

4-6 Work Flow..53

4-7 System Controller Design ..54

4-8 Pin Definition ...57

4-9 Memory Distribution..59

Chapter 5 Achievements and Perspectives ...60

5-1 Achievements ...60

5-2 JPEG2000 Codec in the Market ...62

5-3 Improvement in the future..65

Reference ..68

Appendix ..70

A-1 Development Flow ..70

A-2 Verification Environment ..72

A-3 Pin Map Table for JPEG2000 Coprocessor In Test Mode73

 vii

Lists of Figures

Figure 1-1 Picture of the ARM Integrator Platform ..1

Figure 1-2 Overall System Block Diagram..2

Figure 2-1 QDWT encode and output sequence ..5

Figure 2-2 the Architecture of JPEG2000 Coprocessor ...7

Figure 2-3 JPEG2000 coprocessor operation flowchart...12

Figure 2-4 the control flow for QDWT ..14

Figure 2-5 the control flow for EBCOT ...15

Figure 2-6 Test mode block diagram..16

Figure 3-1 Encoder for the MQ-coder..22

Figure 3-2 ENCODE procedure ...23

Figure 3-3 CODE1 procedure...23

Figure 3-4 CODE0 procedure...24

Figure 3-5 CODELPS procedure with conditional MPS/LPS exchange25

Figure 3-6 CODEMPS procedure with conditional MPS/LPS exchange28

Figure 3-7 Encoder renormalization procedure..29

Figure 3-8 BYTEOUT procedure for encoder ...30

Figure 3-9 Initialization of the encoder ..31

Figure 3-10 FLUSH procedure...32

Figure 3-11 Setting the final bits in the C register..33

Figure 3-12 AC pipeline architecture ...34

Figure 3-13 AC encoder state machine ..40

Figure 3-14 AC Timing Diagram ...42

Figure 4-1 A typical AMBA AHB -based system...46

 viii

Figure 4-2 Multiplexer interconnection..47

Figure 4-3 JPEG2000 Coprocessor timing analysis ...50

Figure 4-4 AHB-based JPEG2000 Coprocessor block diagram...............................50

Figure 4-5 Overall system work flow...53

Figure 4-6 System controller flow chart...55

Figure 4-7 System controller state machine ...56

Figure 4-8 Memory distribution for JPEG2000 Coprocessor59

 ix

Lists of Table

Table 2-1 JPEG2000 coprocessor pin definition ..9

Table 2-2 Pin map table in normal mode..10

Table 2-3 Test Module ID...17

Table 2-4 JPEG2000 coprocessor chip specification..18

Table 3-1 Encoder register structures ...21

Table 3-2 Qe values and probability estimation ...25

Table 3-3 Pin Definition ...41

Table 3-4 comparison with others ..43

Table 4-1 Register Definition ...52

Table 4-2 AHB-based JPEG2000 chip pin definition...57

Table 5-1 the performance of the JPEG2000 coprocessor on FPGA60

Table 5-2 the comparison between software and hardware......................................61

Table 5-3 JPEG2000 coprocessor chip specification..61

Table 5-4 Preliminary IC specification...62

Table 5-5 CS6590 ASIC Cores...64

Table A- 1 DWT Pin Map Table...73

Table A- 2 EBCOT Pin Map Table...74

Table A- 3 FSM Controller Pin Map Table ..78

Table A- 4 AC Pin Map Table...79

Table A- 5 CBM Pin Map Table ...80

 x

Table A- 6 FIFO&SIPO Pin Map Table ...81

Table A- 7 JP2K Top Pin Map Table ..82

 xi

Awards

＊ 本論文曾經參與 國科會教育部九十二學年度大學校院矽智產(SIP)設計競賽

 榮獲 不定題組 SOFT IP 類佳作

＊ 本論文曾經參與 旺宏金矽獎 第三屆半導體設計與應用大賽

 榮獲 應用組 優等獎

 xii

Preface

 Although the JPEG image compression is widely used in the multimedia products,

ISO/IEC draws up a new image compression standard, JPEG2000 image coding system,

which has higher quality, higher resolution and higher compression ratio than JPEG. The

JPEG2000 can be applied in many regions such as internet, digital photography, medical

imaging, wireless imaging, surveillance, printing and scanning … etc. In these applications,

the high quality, high resolution and high compression ratio of JPEG2000 can make the

performance better than JPEG. But the only weakness of JPEG2000 is its complicated

algorithm. If only use software to implement the JPEG2000, except we have the fastest CPU

and enough memory, the frame rate will not be accepted.

 Our lab has made efforts in developing the JPEG2000 encoder hardware to increase the

performance of JPEG2000. To make it more applicable or popular to the market, we have to

lower the chip cost and make the chip area as small as possible. How we develop the high

performance JPEG2000 ASIC will be shown in this thesis.

 In the JPEG2000 hardware design, QDWT (Quad Discrete Wavelet Transform) [14],

EBCOT (Embedded Block Coding with Optimized Truncation) [2] [13] and AC (Arithmetic

Entropy Coder) [2] are enhanced individually first. How to integrate them properly to achieve

the high performance will be explained in the following chapters. Besides, we wrap the

JPEG2000 encoder in AHB wrapper to apply it in the ARM embedded system.

 The outline of this thesis is the system overview in Chapter 1, JPEG2000 coprocessor

hardware design and integration in Chapter 2, Arithmetic Entropy Coding hardware design in

Chapter 3, AMBA, AHB-based JPEG2000 coprocessor hardware design and integration in

Chapter 4, achievements and perspectives in Chapter 5.

 xiii

Chapter 1 System Overview

1-1 Introduction

 Before we tape out the JPEG2000 encoder chip, it’s better to verify the chip function on

the FPGA first. The JPEG2000 encoder hardware is defined as a coprocessor in this thesis

because we need a microcontroller to do some complicated calculation such as EBCOT

(Embedded Block Coding with Optimized Truncation) Tier2 and packet header information.

Hence, it may be a good choice to use ARM/Integrator as the development platform for

ARM CPU is the most popular CPU in the market now and other considerations are the image

source and demonstration. We plan to apply the JPEG2000 encoder in the surveillance system,

so a camera and internet would be included to make the system more powerful. The

ARM/Integrator contains all we need, so it is the good platform for us.

1-2 ARM Integrator Platform

USB CardCapture Card Ethernet Card

Figure 1-1 Picture of the ARM Integrator Pla
JPEG2000 Coprocessor

 1

ARM9 CPU
tform

 1-3 System Block Diagram

 We draw the block diagram of the integrator as Figure 1-2:

Figure 1-2 Overall System Block Diagram

1-3.1 Motherboard (Integrator/AP)

 Integrator/AP is very similar to general PC (Personal Computer) motherboard; it has

three PCI slots, two COM Ports, PS/2 port. Besides, AP has two sockets, one is for Core

Modules, and the other is for Logic Modules. We can stack up four Core/Logic Modules on

the individual socket, that is, we can use more than two Core/Logic modules at the same time,

and this increases the applicability of the Integrator.

 Three PCI slots are inserted three cards to develop a surveillance system.

＊ Capture Card: Use CCD camera to capture the real time image to be the source

images of JPEG2000 Encoder. The JPEG2000 Encoder will do the real time encoding。

 2

＊ Ethernet Card: Set up a FTP Server in the Integrator. Users can remote access the files

stored in the memory or storage through FTP.

＊ USB Card ： There is no USB Port on the Integrator/AP. If USB devices were needed,

we will need a USB card. For the surveillance system, we can save the images in the

USB storages.

1-3.2 Core Module (Integrator/CM920T)

 ARM Core is put on the core module; we can change different core modules according to

different ARM cores. There are 32MB Flash, 1MB SRAM, 128MB SDRAM on the core

module, Linux OS can be ported to develop the API (Application Program Interface) and the

drivers for the peripherals.

 Besides, we need ARM CPU to help doing the operation of Tier2 and packet header of

the JPEG2000 Coprocessor.

1-3.3 Logic Module (Integator/LM-EP20K600E+)

 There is an ALTERA FPGA, the content in which is about 1,000,000, 1 MB SSRAM,

32MB Flash on the Logic Module. The hardware of the JPEG2000 coprocessor is put here.

 3

Chapter 2 JPEG2000 Coprocessor

Hardware Design

2-1 Introduction

 Because the QDWT (Quad Discrete Wavelet Transform), EBCOT (Embedded Block

Coding with Optimized Truncation) Tier1 and AC (Arithmetic Entropy Coder) has been

enhanced individually, the next is how to integrate them properly to achieve the high

performance. It will be explained that how we organize the system architecture of the

JPEG2000 coprocessor in this chapter.

 Besides, the test circuit is added to make sure the individual module is workable.

Hence, the JPEG2000 coprocessor has two operation modes, Test mode and Normal mode.

When the JPEG2000 coprocessor is in the test mode, we can select the module we would like

to test by its test id, then feed the test patterns to the input of the module and get the results

from the respected output pads.

2-2 Main Module Introduction

 Before starting to integrate the QDWT, EBCOT and AC, let us introduce the features of

these modules first.

2-2.1 QDWT (Quad Discrete Wavelet Transform)

 QDWT [14] cuts the input tile image into four parts as in Figure 2-1 left side. After it

encoded part 1, it generates three code blocks to EBCOT as in Figure2-1 right side. When the

 4

part 2 is coded, another three code blocks to EBCOT are generated again. After the part 2 is

coded, the next is part 3 and part 4; the encoding flow is as follows

1

2

3

4

Tile size : 128x128

128

Code block size : 32x32

64

16

13

14

15

1

4

7

10

2

5

8

11

3

6

9

12

32

QDWT encode sequence QDWT output sequence

Figure 2-1 QDWT encode and output sequence

 Base on this algorithm, when QDWT finishes encoding the quarter of the tile image,

EBCOT could start to encode the code block data (the code block size is 32x32 bytes). That’s

why QDWT just needs the quarter of compute time than the traditional DWT to output the

coefficients to EBCOT and this feature does increase the overall system performance.

2-2.2 Pass Parallel EBCOT Tier-1 and Arithmetic entropy Coding

 EBCOT (Embedded Block Coding with Optimized Truncation) Tier1 is the entropy

coder in the JPEG2000; it transforms the output coefficients of DWT to the optimized single

bit-stream.

The pass-parallel architecture is used in this design[13], that is, the three coding passes

are supposed to be coded in order originally, but it is not needed to code in this way right now.

In the pass-parallel architecture, we can encode the three passes in every bit plane at the same

time and can save about 25% processing time and reduce 4K bits of internal memories when

code-block size is 32 x 32.

AC (Arithmetic Entropy Coding) is also the entropy coder in the JPEG2000, it

 5

cooperates with EBCOT.

AC receives the context label and symbol from EBCOT, then does the encoding

operation and output the compressed image data. The pipeline architecture is used in AC

hardware implementation, the throughput can increase at least 10 times than the standard and

the AC can receive one CX-D pair per clock cycle. We will clearly describe how to design the

high performance AC in Chapter 3.

2-3 JPEG2000 Coprocessor Architecture

To integrate all modules fast and to achieve the high performance, we have to do two

things first:

 Analysis the overall system timing, make all modules to keep on working as possible

as we can

 Define the module interface IO and timing properly

2-3.1 Analysis the overall system timing

 After we know the work flow of the individual module, we can start to organize them in

an efficient way. The ideal case is that every module is always working; the waiting condition

is never happened. We analysis the system timing and organize all modules as in Figure 2-2

 Because the QDWT will generate three code blocks in three bands (LH, HL, HH) to

EBCOT at the same time after encoding a quarter of a tile, we also use three EBCOTs

to deal with these code blocks simultaneously. (See Figure 2-2)

 The transferred data unit is a code block (32x32=1024 bytes) between DWT and

EBCOT, so a buffer is required to store the code block data. In general, ping-pong

buffers will be setup to avoid the waiting condition happened. (See Figure 2-2) When

the EBCOT is reading one buffer, QDWT can be writing another buffer. If two buffers

are full, the waiting condition happens. When the waiting condition happens, it may

 6

not a good idea to add more buffers because of the limitation of the on-chip memory.

Furthermore, to add more buffers cannot solve the waiting condition, the efficient way

is to find out the bottle neck and its performance to balance the operation time of two

modules.

Three pair ping-pong buffers for three EBCOT are used. The sizes of the ping-pong

buffer are 6K+768 bytes.

 Because each EBCOT will generate three passes context labels and symbols at the

same time, every pass is connected to an AC to deal with all passes simultaneously.

There are 9 ACs in the JPEG2000 coprocessor. (See Figure 2-2)

 There are 9 ACs which are encoding at the same time, so, there may be more than two

compressed image bytes generated in the same cycle. So, an FIFO is setup to collect

the data first, then rearrange them and write to the SSRAM outside the JPEG2000

coprocessor.
JP2K

Coprocessor

QCB-DWT

Memory Interface

Quantizer

CB
memory1

(ping pong)

CB
memory2

(ping pong)

CB
memory3

(ping pong)

AC1
EBCOT1

AC2
EBCOT2

AC3
EBCOT3

FIFO1
FIFO2

FIFO3

Host Interface

Coprocessor Controller

Input image
AC & distorsion

SRAM

QCB_DWT

CB_memory

Entropy_coder

Controller

Figure 2-2 the Architecture of JPEG2000 Coprocessor

 7

2-3.2 Define the module interface I/O and timing properly

 When we name the interface I/O port, it is better to name it with a meaningful name. In

general, we name an I/O port by its function in the design. For example, we often name input

clock source CLK. In this way, we can increase the readability of a program. When other

programmer reads your code, he can understand your codes in a short time.

 In our design, every module has two operation modes: Test mode and Normal mode. So,

the additional input ports and output ports are added in some main modules. Only when the

test mode is enabled, these test I/O ports work. The test I/O ports have the different meanings

in the different module. If we don’t use the general test I/O ports, it will become very

complicated to integrate the test circuits because the test input patterns come from the test

bench which is outside the chip. So, the test I/O ports in the different module are named in the

same name for integrating the circuits easily.

 The key point to shorten the time of the system integration is that to define the interface

timing properly. Before we start coding a module, we have to know how to communicate with

others and consider all the conditions happened in communication.

＊ I/O of the JPEG2000 Chip

Table 2-1 is the pin definition of the JPEG2000 coprocessor chip I/O. Test_Mode signal

is for mode select. When Test_Mode=1, the coprocessor enters the test mode; when

Test_Mode=0, the coprocessor enters the normal mode. Com_Sel is for component select

when system is in test mode. CLK is the clock source and nReset is the system reset

signal which is active low. Input_port and Output_port are two general I/O ports.

FIFO_Empty is the signal to indicate if the FIFO outside the chip is empty or not. The

rest pins are the I/O connected to the SSRAM outside the chip.

 8

Table 2-1 JPEG2000 coprocessor pin definition

Name Direction Width Description

Test_Mode Input 1 Mode select. when HIGH: test mode

When LOW: normal mode

Com_Sel Input 7 Test component select.

Input_Port Input 63 General input ports

Output_Port Output 94 General output ports

CLK Input 1 Clock source

nReset Input 1 System reset signal. Active LOW

FIFO_Empty Input 1 Indicate FIFO outside the chip is empty or not

Sn_CE Output 1 Control signal. SSRAM chip enable

SnWR Output 1 Control signal. SSRAM write enable

SnOE Output 1 Control signal. SSRAM output enable

SADDR Output 19 SSRAM address bus

SRDATA Input 32 SSRAM read data bus

SnWBYTE Output 4 Control signals. SSRAM byte select

＊ Pin Map : Normal Mode

In different operation mode, the Input_Port and Output_Port are mapped to the

corresponded pin map tables. When the JPEG2000 coprocessor is in normal mode, these I/O

ports are mapped like in Table 2-2.

When the coprocessor is in test mode, there are 36 test modules and the individual pin

map table is in the Appendix.

 9

Table 2-2 Pin map table in normal mode

Pin Signal Map Description

Input_Port[0] Image_ini Indicates to start a image initialization

Input_Port[1] Tile_EN Indicate to start a tile encoding

Input_Port[2] Tile_Done_ack Acknowledge for Tile_Done signal

Input_Port[11:3] NumTile Indicate how many tiles in this image

Input_Port[19:12] Tile_x Indicate the length of a tile

Input_Port[27:20] Tile_y Indicate the width of a tile

Input_Port[29:28] Numlayer Indicate how many layers

Input_Port[30] SSRAM_Ready Indicate the SSRAM_Addr data is valid

or not

Input_Port[62:31] SSRAM_Addr The compressed data will be saved in the

SSRAM. SSRAM_Addr indicates the

beginning of SSRAM address

Output_Port[0] LLbandMove_ini Indicate the LL band is prepared to be

coded.

Output_Port[1] Tile_Done Indicate a tile is completely compressed.

Output_Port[2] Image_ini_ack Acknowledge for Image_ini signal

Output_Port[3] CB1_Done Indicates a code block is completely

coded.

Output_Port[4] QDWT_req The request signal comes from QDWT

Output_Port[36:5] Address The compressed data will be saved at this

address

Output_Port[68:37] OutBus The 32-bit data bus for compressed data

Output_Port[69] RAM_EN Data valid signal

 10

 2-4 Operation Flow Chart

 Figure 2-3 is the operation flow chart of the JPEG2000 coprocessor.

 After power on, the system will enter IDLE state until Chip Enable is asserted. After the

coprocessor is enabled, it will enter Normal mode or Test mode according to the Test_mode

signal. If Test_mode=1, then the system enters Test mode, otherwise, enters Normal mode.

 When the system is in the Normal mode, it has to get the information of the image

configuration first. Then wait until Tile_EN=1, the coprocessor will start coding a tile. After

finishing a tile-coding, it will check if all tiles are coded. If not, it will wait until Tile_EN=1

again, if it does, the coprocessor will return to the IDLE state.

 When the system is in the Test mode, the host outside has to select the test module by its

ID defined in Table 2-3. Then host feeds the corresponding test input patterns in the test

module and get the results from output pads. We can compare the results with the respected

sequences and dump the report in the text file.

 11

Mode Select

Normal
Mode Test Mode

Image
Configuration

Start a tile
coding

Tile_EN=1?

Test_mode=0 Test_mode=1

All tiles are
coded?

A tile is coded

Yes

No

Idle

Chip
Enable=1?

Yes

No

Yes No

Test module
select

Feed the
corresponding
input patterns

Use the txetio to get
the output and

compare them with
the respected results

Output the
report file

Figure 2-3 JPEG2000 coprocessor operation flowchart

2-5 Coprocessor Controller

 The coprocessor controller controls the work flow of the JPEG2000 Encoder. It does

three things:

 Control the work flow of QDWT

 12

 Control the work flow of EBCOT

 Generate the SSRAM address, where the compressed image data will be stored, to

FIFO Controller.

2-5.1 the Control of QDWT

 First of all, the controller has to receive the image configuration data which includes the

number of tiles in the current image. Then, wait until a tile data are ready, the QDWT

controller will be started. After the QDWT controller finishes its work, the coprocessor

controller will check if this is the last tile. If the current tile is not the last tile, the coprocessor

controller will return to wait until the next tile is ready. If the current tile is the last tile, the

coprocessor controller will check if the EBCOT finishes its work, if not, wait until the

EBCOT finishes its work, if it is, an image coding is done. (See Figure 2.4 left side).

 For the QDWT controller, after a tile data are ready, it will generate the necessary

information which QDWT requires. Then, check if ping-pong buffers are empty. When two

buffers are full, the QDWT controller will wait until one of both is empty. If two buffers are

not full, check if the QDWT finishes its work, if not, waits until it finishes, if it does, check if

the current code block is the last. If the current code block is the last, the QDWT controller

finishes its work, if not, the QDWT controller will return to “Prepare QDWT data” state

again.

 13

Image data
Ready

Receive tile number

Tile data
ready?

Yes

No

Yes

End

Tile data Ready

Prepare QDWT data

Does QDWT
finish work?

Is the last
code-block?

No

Yes

End

Is CBM
empty?

Yes

No

No

Yes

QDWT controller

Is it the last
tile?

No

Does EBCOT
finish all work?

Yes

No

Figure 2-4 the control flow for QDWT

2-5.2 The Control of EBCOT

 For the EBCOT controller, it will wait until the code blocks for three bands are ready,

then, send the initial information of the current code block to the EBCOT. Then, waits until

three EBCOTs finish their work, check if the code blocks of LH, HL and HH bands are coded,

if not, return to wait until another three code-block data are ready, if it does, wait until the

code-block data of LL band are ready. After sending the information of the LL band code

block, EBCOT controller waits until the EBCOT finishes the last code-block coding, then a

tile coding is done.

 14

Start

Are 3 CBM
Ready?

No

Do 3 EBCOT
finish work?

Yes

Yes

Do LH and HL
and HH band

code-block finish?

Yes

No

No
Send code-block initial data

Is LL(LH) CBM
Ready?

Send LL band code-
block initial data

Does LL band
EBCOT finish

work?

End

Yes

No

Yes

No

Figure 2-5 the control flow for EBCOT

2-6 Test Circuit Design

 Test circuit is added to make sure all modules are workable and find out where the chip

bug is quickly, the. As mentioned above, we add the test input ports and output ports for test

circuits. The multiplexers to multiplex these ports for the dedicated module when system

entering test mode are applied.

 15

 Figure 2-6 shows the block diagram in test mode.

 There are four main parts: Code-Block-Memory part, EBCOT-AC part,

System-Controller part and DWT part.

 Code-Block-Memory (CBM) part contains three CBM components, CBM1, CBM2 and

CBM3.

 EBCOT-AC part contains three entropy coders and one FIFO controller. Every entropy

contains one Tier1 and three ACs.

 DWT part contains two single port rams, two dual port rams, line buffer, DWT row

processor and DWT column processor.

EBCOT+AC Test Block

DWT Test Block

Chip IO

Code Block
Memory EBCOT+AC System

Controller DWT

Component_Select[6:0]
C

B
M

 1

C
B

M
 2

C
B

M
 3

D
W

T R
ow

Processor

D
W

T C
olum

n
Processor

2 Single port R
A

M

2 D
ual port R

A
M

Line Buffer

Tier1+dual port ram
+3AC

 II

Tier1+dual port ram
 +3AC

 III

FIFO
 C

ontroller

Tier1+dual port ram
+3AC

 ICBM Test Block

JPEG 2000 Test Block
Figure 2-6 Test mode block diagram

 16

 When the chip enters test mode, we can select the module we want to test by the

module ID. Table 2-3 lists all module IDs.

Table 2-3 Test Module ID

Module Name Module ID Module Name Module ID

DWT_RA1SD1 0000010 HL_AC1 0101001

DWT_RA2SD1 0000000 HL_AC2 0101010

DWT_RA1SD2 0000011 HL_AC3 0101011

DWT_RA2SD2 0000001 HH_Tier1 0110101

DWT_ROW 0000100 HH_Tier1_RAM 0110100

DWT_COL 0000110 HH_SIPO 0110111

Line_buffer 0000101 HH_FIFO 0110110

LH_Tier1 0100101 HH_AC1 0110001

LH_Tier1_RAM 0100100 HH_AC2 0110010

LH_SIPO 0100111 HH_AC3 0110011

LH_FIFO 0100110 FIFO Controller 0111000

LH_AC1 0100001 Coprocessor Controller 1000000

LH_AC2 0100010 CBM1 1100010

LH_AC3 0100011 CBM1_RAM 1100011

HL_Tier1 0101101 CBM2 1100100

HL_Tier1_RAM 0101100 CBM2_RAM 1100101

HL_SIPO 0101111 CBM3 1100110

HL_FIFO 0101110 CBM3_RAM 1100111

 17

2-7 Achievement

 We planed to tape out the JPEG2000 coprocessor chip in January 2004 and the chip

specification is in Table 2-4. The comparison with others will be put in Chapter 5.

Table 2-4 JPEG2000 coprocessor chip specification

Technology TSMC 0.25 um

Package 208-pin CQFP

Core size 3.15mm x 3.15mm

Die size 3.95mm x 3.99mm

Operation frequency 41 MHz

Internal rams 8.25 KB

Power consumption 740 mW

 18

Chapter 3 Arithmetic Entropy Coding

3-1 Introduction

 In JPEG2000 encoder, AC (Arithmetic entropy Coding) is following EBCOT Tier1, it

receives the decision (D) and context (CX) pairs from Tier1 and does more efficient

compression.

 Because the output rates of the previous stage EBCOT Tier1 increase, we need a

corresponding AC with high input rates and can generate the compressed image data as soon

as possible. In this chapter, we will explain how to increase the throughputs by using pipeline

architecture.

3-2 AC Operations

 Let us introduce the AC operations defined in the JPEG2000 standard first [2].

3-2.1 Recursive interval subdivision

 The recursive probability interval subdivision of Elias coding [1] is the basis for the

binary arithmetic coding process. With each binary decision the current probability interval is

subdivided into two sub-intervals, and the code string is modified (if necessary) so that it

points to the base (the lower bound) of the probability sub-interval assigned to the symbol

which occurred.

 In the partitioning of the current interval into two sub-intervals, the sub-interval for the

MPS (More Probable Symbol) is ordered above the sub-interval for the LPS (Less Probable

Symbol). Therefore, when the MPS is coded, the LPS sub-interval is added to the code string.

 19

This coding convention requires that symbols being recognized as MPS or LPS, rather than 0

or 1. Consequently, the size of the LPS interval and the sense of the MPS for each decision

must be known in order to code that decision.

3-2.2 Coding conventions and approximation

 The coding operation are done using fixed precision integer arithmetic and using an

integer representation of fractional values in which 0x8000 is equivalent to decimal 0.75. The

interval A is kept in the range 5.175.0 <≤ A by doubling it whenever the integer value falls

below 0x8000.

 The code register C is also doubled each time when A is doubled. Periodically – to keep

C from overflowing – a byte of compressed image data is removed from the high order bits of

the C-register and placed in an external compressed image data buffer. Carry-over into the

external buffer is prevented by a bit stuffing procedure.

 Keeping A in the range 5.175.0 <≤ A allows a simple arithmetic approximation to be

used in the internal subdivision. The interval is A and the current estimate of the LPS

probability is Qe, a precise calculation of the sub-intervals would require:

 A-(Qe*A)= sub-interval for the MPS

 Qe*A= sub-interval for the LPS

 Because the value of A is of order unity, these are approximated by

A-Qe= sub-interval for the MPS

 Qe= sub-interval for the LPS

 Whenever the MPS is coded, the value of Qe is added to the code register and the

internal is reduced to A-Qe. Whenever the LPS is coded, the code register is left unchanged

and the interval is reduced to Qe. The precision range required for A is then restored, if

necessary, by renormalization of both A and C.

 With the process illustrated above, the approximations in the interval subdivision process

 20

can sometimes make the LPS sub-interval larger than the MPS sun-interval. If, for example,

the value of Qe is 0.5 and A is at the minimum allowed value of 0.75, the approximate scaling

gives 1/3 of the interval to the MPS and 2/3 to the LPS. To avoid this size inversion, the MPS

and LPS intervals are exchanged whenever the LPS interval is larger than then the MPS

interval. This MPS/LPS conditional exchange can only occur when normalization is needed.

3-3 Description of the Arithmetic Encoder

 The ENCODER (Figure 3-1) initializes the encoder through the INITENC procedure.

CX and D pairs are read and passed to ENCODE until all pairs have been read. The

probability estimation procedures which provide adaptive estimates of the probability for each

context are imbedded in ENCODE. Bytes of compressed image data are output when

necessary. When all of the CX and D pairs have been read, FLUSH will output the final bytes,

terminate the encoding and generate the required terminating marker.

3-3.1 Encoder code register convention

 The flow charts given in this chapter assume that the register structures for the encoder

are shown in Table 3-1

Table 3-1 Encoder register structures

 MSB LSB

C-register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

A-register 0000 0000 0000 0000 1aaa aaaa aaaa aaaa

The “a” bits are the fractional bits in the A-register (the current interval value) and the “x” bits

are the fractional bits in the code register. The “s” bits are spacer bits which provide useful

constraints on carry-over, and the “b” bits indicate the bit positions from which the completed

bytes of the compressed image data are removed from the C-register. The “c” bit is a carry bit.
 21

The detailed description of bit stuffing and the handling of carry-over will be given in the

later part of this chapter.

ENCODER

INITENC

Read CX, D

ENCODE

Finished ?

FLUSH

Done

Yes

No

Figure 3-1 Encoder for the MQ-coder

3-3.2 Encoding a decision (ENCODE)

 The ENCODE procedure determines whether the decision D is a 0 or not. Then a

CODE0 or a CODE1 procedure is called appropriately. Often embodiments will not have an

ENCODE procedure, but will call the CODE0 or CODE1 procedures directly to code a

0-decision or a 1-decision. Figure 3-2 shows this procedure.

 22

3-3.3 Encoding a 1 or a 0

 When a given binary decision is coded, one of two possibilities occurs – the symbol is

either the more probable symbol or it is the less probable symbol. CODE1 and CODE0 are

illustrated in Figure 3-3 and Figure 3-4. In these figures, CX is the context. For each context,

the index of the probability estimate which is to be used in the coding operations and the MPS

value are stored. MPS (CX) is the sense (0 or 1) of the MPS for context CX.

ENCODE

D=0?

CODE1 CODE0

Done

YesNo

Figure 3-2 ENCODE procedure

CODE1

MPS(CX)=1?

CODELPS CODEMPS

Done

YesNo

Figure 3-3 CODE1 procedure

 23

CODE0

MPS(CX)=0?

CODELPS CODEMPS

Done

YesNo

Figure 3-4 CODE0 procedure

3-3.4 Encoding an MPS or LPS (CODEMPS and CODELPS)

 The CODELPS (Figure 3-5) procedure usually consists of a scaling of the interval to

Qe(I(CX)), the probability estimate of the LPS determined from the index I stored for context

CX. The upper interval is first calculated so it can be compared to the lower interval to

confirm that Qe has the smaller size. It is always followed by a renormalization (RENORME).

In the event that the interval sizes are inverted, however, the conditional MPS/LPS exchange

occurs and the upper interval is coded. In either case, the probability estimate is updated. If

the SWITCH flag for the index I(CX) is set, then the MPS(CX) is inverted. A new index I is

saved at CX as determined from the next LPS index (NLPS) column in Table 3-2.

 24

CODELPS

A=A-Qe(I(CX))

A< Qe(I(CX))?

A=Qe(I(CX)) C=C+Qe(I(CX))

YesNo

SWITCH(I(CX))
=1?

MPS(CX)=1-MPS(CX)

I(CX)=NLPS(I(CX))

RENORME

Done

Figure 3-5 CODELPS procedure with conditional MPS/LPS exchange

Table 3-2 Qe values and probability estimation

Index Qe_Value NMPS NLPS SWITCH

0 0x5601 1 1 1

1 0x3401 2 6 0

2 0x1801 3 9 0

3 0x0AC1 4 12 0

4 0x0521 5 29 0

 25

5 0x0221 38 33 0

6 0x5601 7 6 1

7 0x5401 8 14 0

8 0x4801 9 14 0

9 0x3801 10 14 0

10 0x3001 11 17 0

11 0x2401 12 18 0

12 0x1C01 13 20 0

13 0x1601 29 21 0

14 0x5601 15 14 1

15 0x5401 16 14 0

16 0x5101 17 15 0

17 0x4801 18 16 0

18 0x3801 19 17 0

19 0x3401 20 18 0

20 0x3001 21 19 0

21 0x2801 22 19 0

22 0x2401 23 20 0

23 0x2201 24 21 0

24 0x1C01 25 22 0

25 0x1801 26 23 0

26 0x1601 27 24 0

27 0x1401 28 25 0

28 0x1201 29 26 0

29 0x1101 30 27 0

 26

30 0x0AC1 31 28 0

31 0x09C1 32 29 0

32 0x08A1 33 30 0

33 0x0521 34 31 0

34 0x0441 35 32 0

35 0x02A1 36 33 0

36 0x0221 37 34 0

37 0x0141 38 35 0

38 0x0111 39 36 0

39 0x0085 40 37 0

40 0x0049 41 38 0

41 0x0025 42 39 0

42 0x0015 43 40 0

43 0x0009 44 41 0

44 0x0005 45 42 0

45 0x0001 45 43 0

46 0x5601 46 46 0

3-3.5 Probability estimation

 Table 3-2 shows the Qe value associated with each Qe index. The Qe values are

expressed as hexadecimal integer’s fractions.

 The estimator can be defined as a finite-state machine – a table of Qe indexes and

associated next states for each type of renormalization (i.e., new table positions) – as shown in

Table 3-2. The change in state occurs only when the arithmetic coder interval register is

renormalized. This is always done after coding the LPS, and whenever the interval register is

 27

less than 0x8000 after coding the MPS.

 After an LPS renormalization, NLPS gives the new index for the LPS probability

estimate. If the switch is 1, the MPS symbol sense is reversed.

 The index to the current estimate is part of the information stored for context CX. This

index is used as the index to the table of values in NMPS, which gives the next index for an

MPS renormalization. This index is saved in the context storage at CX. MPS (CX) does not

change.

 The procedure for estimating the probability on the LPS renormalization path is similar

to that of an MPS renormalization, except that when SWITCH (I (CX)) is 1, the sense of

MPS(CX) is inverted.

CODEMPS

A=A-Qe(I(CX))

A< Qe(I(CX))? YesNo

I(CX)=NMPS(I(CX))

RENORME

Done

A AND 0x8000=0?

C=C+Qe(I(CX))

YesNo

A=Qe(I(CX))C=C+Qe(I(CX))

Figure 3-6 CODEMPS procedure with conditional MPS/LPS exchange

 28

REMORME

A=A<<1
C=C<<1
CT=CT-1

CT=0?

BYTEOUT

A AND 0x8000=0?

Done

No

Yes

No

Yes

Figure 3-7 Encoder renormalization procedure

3-3.6 Renormalization in the encoder (RENORME)

 The RENORME procedure for the encoder renormalization is illustrated in Figure 3-7.

Both the interval register A and the code register C are shifted, one bit at a time. The numbers

of shifts is counted in the counter CT, and when CT is counted down to zero, a byte of

compressed image data is removed from C by the procedure BYTEOUT. Renormalization

continues until A is no longer less than 0x8000.

3-3.7 Compressed image data output (BYTEOUT)

 The BYTEOUT routine called from RENORME is illustrated in Figure 3-8. This routine

contains the bit-stuffing procedures which are needed to limit carry propagation into the

completed bytes of compressed image data. The conventions used make it impossible for a

carry to propagate through more than the byte most recently written to the compressed image

 29

data buffer

The procedure in the block in the lower right section does bit stuffing after a 0xFF byte;

the similar procedure on the left is for the case where bit stuffing is not needed.

B is the byte pointed to by the compressed image data buffer pointer BP. If B is not a

0xFF byte, the carry bit is checked. If the carry bit is set, it is added to B and B is again

checked to see if a bit needs to be stuffed in the next byte. After the need for bit stuffing has

been determined, the appropriate path is chosen, BP is incremented and the new value of B is

removed from the code register “b” bits.

BYTEOUT

B=0xFF?

C<0x8000000?

B=B+1

B=0xFF?

C=C AND 0x7FFFFFF

Done

BP=BP+1
B=C>>20

C=C AND 0xFFFFF
CT=7

BP=BP+1
B=C>>19

C=C AND 0x7FFFF
CT=8

No

Yes

Yes

Yes

No

Figure 3-8 BYTEOUT procedure for encoder

3-3.8 Initialization of the encoder (INITENC)

 The INITENC procedure is used to start the arithmetic coder. After MPS and I are

initialized, the basic steps are shown in Figure 3-9.

 30

 The interval register and code register are set to their initial values, and the bit counter is

set. Setting CT=12 reflects the fact that there are three spacer bits in the register which need to

be filled before the field from which the bytes are removed is reached. BP always points to the

byte preceding the position BPST where the first byte is placed. Therefore, if the preceding

byte is a 0xFF byte, spurious bit stuff will occur, but can be compensated for by increasing

CT.

INITENC

A=0x8000
C=0

BP=BPST -1
CT=12

B=0xFF?

CT=13

Done

Figure 3-9 Initialization of the encoder

3-3.9 Termination of coding (FLUSH)

 The FLUSH procedure shown in Figure 3-10 is used to terminate the encoding

operations and generate the required terminating marker. The procedure guarantees that the

0xFF prefix to the marker code overlaps the final bits of the compressed image data. This

guarantees that any marker code at the end of the compressed image data will be recognized

and interpreted before decoding is complete.

 31

 The first part of the FLUSH procedure sets as many bits in the C-register to 1 as possible

as shown in Figure 3-11. The exclusive upper bound for the C-register is the sum of the

C-register and the interval register. The low order 16 bits of C are forced to 1, and the result is

compared to the upper bound. If C is too big, the leading 1-bit is removed, reducing C to a

value which is within the interval.

 The byte in the C-register is then completed by shifting C, and two bytes are then

removed. If the byte in buffer B, is an 0xFF then it is discarded. Otherwise, buffer B is output

to the bit stream.

FLUSH

SETBITS

C=C<<CT

BYTEOUT

C=C<<CT

BYTEOUT

B=0xFF?

BP=BP+1 Discard B

Done

Yes

No

Figure 3-10 FLUSH procedure

 32

SETBITS

TEMPC=C+A
C=C OR 0xFFFF

C>=TEMPC?

C=C-0x8000

Done

Yes

Figure 3-11 Setting the final bits in the C register

3-4 Method for Enhance Performance

 In order to increase the throughput, the direct way is using pipeline architecture. Our

goal is to receive one CX-D per clock cycle and to output the image compressed data as soon

as possible. To achieve this, we combine all procedures except FLUSH procedure and

separate them into independent operations as possible as we can. Hence, some operations

could be done at the same clock cycle. The less the pipes we use, the sooner the compressed

data will be outputted.

 To reduce the complexity of separating the encoding procedures into the independent

operations, we try to find out the regularity and simplify the algorithm. Using LUT (Look Up

Table) is an efficient way to break up the loop and can finish the operation in one cycle.

 We use three pipes and separate the AC encoding procedures into 12 operations. One

CX-D pair operation could be finished in four clock cycle. The architecture is as below: (See

Figure 3-12)

 33

C.C 5C.C 1 C.C 2 C.C 3

Modeling2

C.C 4

tempQM
tempQe tempQe2

tempQM2
A_out tempA

CODELPS
CODEMPS

CODELPS2
CODEMPS2
Qe3

Modeling

Modeling2.Qe

Modeling2

tempQM
tempQe tempQe2

tempQM2
A_out tempA

CODELPS
CODEMPS

CODELPS2
CODEMPS2
Qe3

Modeling

Modeling2.Qe

Initialize all
registers

Initialize I &
MPS table

Read first
CX-D pair

Read first
CX-D pair

Decide the next
step Is codelps

or codemps

Decide the next
step Is codelps

or codemps

Generate
tempQe,
tempQM

Generate
tempQe,
tempQM

Normalize A

Normalize A

Update I &
MPS table

Update I &
MPS table

Update
register A

Update
register A

Update
Modeling

table

Update
Modeling

table

CT Update

CT Update

C & B
Update

C & B
Update

Bit stuff &
non bit stuff
operations

Bit stuff &
non bit stuff
operations

Figure 3-12 AC pipeline architecture

＊ Initialize All Registers and Initialize I & MPS table

Before starting AC Encoder, it is necessary to initialize all registers and tables. The

initialization only needs one-clock-cycle time.

＊ Read CX & D

Read CX-D is stared after initialization cycle. It is able to push a CX-D pair to the pipes

at every clock cycle.

＊ Decide the next step is CODELPS or CODEMPS

After getting the CX-D pair, Encoder will look up the MPS table by context value, then

decides to enter the CODELPS procedure or CODEMPS procedure according to the D

value.

If D xor MPS(CX)=0, then enter CODEMPS procedure.

If D xor MPS(CX)=1, then enter CODELPS procedure.

 34

＊ Generate tempQe and tempQM

At the beginning of the CODELPS and CODEMPS procedures, A=A-Qe(I(CX)) has to

be calculated first, next, check if A>Qe(I(CX)) or A>0x8000, we rearrange these

equations as below:

 A=A-Qe(I(CX))>Qe(I(CX)) ? A> 2Qe(I(CX)) ?

 A=A-Qe(I(CX))>0x8000 ? A> Qe(I(CX))+0x8000 ?

 Let tempQe=2Qe(I(CX))

 tempQM=Qe(I(CX))+0x8000

In the next two clock cycles, tempQe and tempQM will be used to decide if it is needed

to update the A-register and C-register.

＊ Normalize Register A

The interval A is kept in the range 5.175.0 <≤ A by doubling it whenever the integer

value falls below 0x8000.

Whenever A<0x8000, register A has to be normalized to make . In order to

finish the normalization in one clock cycle, we check how many leading 0-bit of register

A, then do the shift left with the numbers of leading 0-bit directly.

80000xA ≥

 Example：

 If , then A=A. 80000xA ≥

 If , then A=(A<<1). 8000040000 xAx <≤

 If , then A=(A<<2) 4000020000 xAx <≤

 …….

 If 10 ≤≤ A , then A=(A<<15);

At this stage, not only finish the normalization, but recode the numbers of the leading

 35

0-bit of register A. At the next stage, Register C has to be shifted left with the same bits

as register A.

＊ Update I & MPS table

 I (CX) is the pointer for LUT. In the encoding procedure, we can look up the

Qe(I(CX)), NMPS(I(CX)), NLPS(I(CX)), SWITCH(I(CX)) by the I(CX).

 MPS (CX) recodes the attribution of the symbol. It is used to decide the input symbol

belongs to LPS(Less Probable Symbol) or MPS (More Probable Symbol). For the

symbol ’1’, if MPS (CX) is 1, this symbol belongs to MPS; on the contrary, it belongs

to LPS. On the other hand, for symbol ‘0’, if MPS(CX) is 0, this symbol belongs to

MPS, on the contrary, it belongs to LPS。

At this stage, the I (CX) is updated according to CX.

＊ Update Register A

At this stage, register A is updated to A=A-Qe or A=Qe according to tempQe and

tempQM.

＊ Update Modeling Structure

Modeling structure contains Qe, NMPS, NLPS, SWITCH, it is used in probability

estimation.

＊ CT Update

CT is a counter; it is decreased by the same bits when register A does the normalization.

Whenever CT counts down to 0, the BYTEOUT procedure will be processed, then CT

will be reset to 8 or 7. As the BYTEOUT procedure is processing, if the bit stuffing

operation is chosen, CT is set to 7. If the non bit stuffing operation is chosen, CT is set to

8.

 36

If register A is shifted left with E1 bits, there are several cases happened about CT like

below:

 CT>E1

CT=CT-E1

 CT=E1 and Enter bit stuffing operation

CT=7

 CT<E1 and Enter bit stuffing operation

CT=7-(E1-CT)

 CT=E1 and Enter non bit stuffing operation

CT=8

 CT<E1 and Enter non bit stuffing operation

CT=8-(E1-CT)

The cases of CT=E1 and CT<E1 can be merged. So the cases only remain three:

 CT>E1

CT=CT-E1

 and Enter bit stuffing operation 1ECT ≤

CT=7-(E1-CT)

 and Enter non bit stuffing operation 1ECT ≤

CT=8-(E1-CT)

＊ C & B Update and Bit stuff & no bit stuff operations

Register C recodes the probably lower boundary and register B points to the compressed

image data. The operations for this two registers are the most complicated, because many

cases have to be considered. We wish to finish all operations of C-register in one clock

cycle, so any possible case has to be concerned.

Three operations of register C have to be finished at the same clock cycle.

 37

 That’s why we have to set up two registers, tempB1 and lC_out, to do the different

operations at the same time.

Define

 E is the bit numbers of A-register normalization.

 lC_out =normalize(C, E)

 tempB1=lC_out + normalize(Qe,E)

 lC_out2 =normalize(C, CT)

 tempB2=normalize(C, CT)+normalize(Qe,CT)

There are several cases happened about register C:

 Non bit stuffing operation

 C is not changed

C((18+E) downto 0)=lC_out((18+E) downto 0)

C(27 downto (19+E))=(others=>’0’);

 C=C+Qe

C((18+E) downto 0)=tempB1((18+E) downto 0)

C(27 downto (19+E))=(others=>’0’);

 Bit stuffing operation

 C is not changed

C((19+E) downto 0)=lC_out((19+E) downto 0)

C(27 downto (20+E))=(others=>’0’);

 38

 C=C+Qe

C((19+E) downto 0)=tempB1((19+E) downto 0)

C(27 downto (20+E))=(others=>’0’);

There are several cases happened about register B:

 C=C+Qe

 Bit stuffing operation

B=’0’ & tempB2[26:20] or B=tempB2[27:20]

 No bit stuffing operation

B=tempB2[26:19]

 C is not changed

 Bit stuffing operation

B=’0’ & lC_out2[26:20] or B=lC_out2[27:20]

 No bit stuffing operation

B=lC_out2[26:19]

＊ FLUSH Procedure

Before terminating AC encoder, it is necessary to run FLUSH procedure to generate the

terminating marker. This procedure uses about 7 clock cycles; it doesn’t affect the overall

performance.

＊ Additional registers for pipeline architecture

For pipeline architecture, we have to setup additional registers for every pipe, because

the value at different stage has different meaning. That is why pipeline architecture will

increase the chip area.

 39

3-5 State Machine

 We setup the state machine for AC according to the pipeline architecture. (See Figure

3-13) There are five states, IDLE, INITENC, READ_CX, ENCODE, FLUSH, FLUSH1, and

FINISH.

Figure 3-13 AC encoder state machine

 IDLE: when system is powered on, the AC encoder enters the IDLE state.

 INITENC: initialize the AC encoder in the INITENC state.

 READ_CX: stay in this state until the first CX-D pair comes in. If terminal signal is

set in this state, the encoder will enter the ENCODE state.

 ENCDOE: AC is encoding data continuously.

 FLUSH: before the AC coder is terminated, it will enter FLUSH state.

 FLUSH1: this state is also for FLUSH procedure.

 FINISH: when the AC encoder is completely terminated, it will enter FINISH

state then go back to the IDLE state.

 40

3-6 Pin Definition

 For communicating with EBCOT correctly, we define the interface of the AC in the

Table 3-3.

 Table 3-3 Pin Definition

Name Direction Width Description

Clk Input 1 Clock signal

EnEN Input 1 AC Encoder chip enable

FIFO_Busy Input 1 Indicate FIFO is full

EnDataEN Input 1 Input data valid signal

En_CX Input 5 Context label from EBCOT

En_D Input 1 Symbol from EBCOT

EnTerm Input 1 Indicate AC to terminate the process

EnDone Output 1 Indicate AC has finished coding

EnCD_EN Output 1 Output data valid signal

AC_Busy Output 1 Indicate AC is busy or not

EnCD Output 8 Encoded data

CD_length Output 8 Numbers of encoded data

State Output 3 Indicate AC state

 41

3-7 Timing Diagram

 The interface timing is drawn in Figure 3-14.

CLK

nReset

EnDataEN

En_CX

En_D

EnTerm

EnDone

EnCD

EnCD_EN

CD_length

En_CX1 En_CX2

En_D1 En_D2

EnCD1 EnCD2

.

CD_length

Figure 3-14 AC Timing Diagram

3-8 Achievements & Comparison

3-8.1 Achievements

＊ ASIC

 Process : TSMC 0.25 um

 Operation Frequency : 71 MHz

 Gate Counts : 8.97 K

 Power : 16.8 mW

 Throughput : 1 CX-D pair/c.c.

 Core size : 474 um x 474 um

 Die size : 1169 um x 1169 um

 42

＊ Altera FPGA

 Part : APEX20K1000EFC672-2

 Operation Frequency: 39.98 MHz

 Area : 5 %

 Throughput : 1 CX-D pair/c.c.

3-8.2 Comparison

 We find out some AC codec developed by others and list their performance in Table 3-4.

Three-stage pipeline architecture is usually used to enhance the performance of the AC. The

throughputs are almost the same. The throughput of Wu is 2 CX-D pairs/clock cycle but its

maximum operation frequency is only 40MHz.When our chip runs at the 71MHz, the

throughput is almost the same as Wu’s.

 Because our process is more advanced than others, the comparison between area and

power may not be fair.

 Table 3-4 comparison with others

Design Architecture Process Die size Operation

Freq.

Power Throughput

Our AC

encoder

3 stage pipeline TSMC

0.25um

1.169mmx

1.169 mm

71 MHz 16.8mW 1 CX-D

pair/clock cycle

Wang et

al.[16]

3 stage pipeline TSMC

0.35um

2mmx2mm

(Codec)

200 MHz 74.91mW 1 CX-D

pair/clock cycle

Hsiao et

al.[17]

pipeline 0.35 um

CMOS

3.345mmx

3.318mm

142.8

MHz

131.8mW 1.103 clock

cycles/CX-D pair

Wu et

al.[18]

3 stage pipeline TSMC

0.35 um

Gate count:

10.597 K

40 MHz N/A 2 CX-D pairs/clock

cycle

 43

Chapter 4 AHB Wrapper Design

4-1 Introduction

 To make the JPEG2000 coprocessor more applicable, it is a good choice to wrap it in

AHB (Advanced High-performance Bus) interface. The ARM CPUs are widely used in the

embedded systems, so the chip which is compatible with AMBA will be more applicable and

popular in the market.

 The JPEG2000 chip we addressed is defined as the coprocessor which cooperates with an

ARM processor. In this chapter, we will explain how the JPEG2000 coprocessor

communicates with the ARM CPU and introduce what AMBA is. Besides, the most important

is how we wrap the JPEG2000 coprocessor with AHB interface.

4-2 Work Theory

 The Advanced Microcontroller Bus Architecture (AMBA) specification defines an

on-chip communications standard for designing high-performance embedded

microcontrollers.

 Three distinct buses are defined within the AMBA specification:

 The Advanced High-performance Bus (AHB)

The AMBA AHB is for high-performance, high clock frequency system modules.

The AHB acts as the high-performance system backbone bus. AHB supports the efficient

connection of processors, on-chip memories and off-chip external memory interfaces

with low-power peripheral macro cell functions. AHB is also specified to ensure ease of

use in an efficient design flow using synthesis and automated test techniques.

 44

 The Advanced System Bus (ASB)

AMBA ASB is an alternative system bus suitable for use where the

high-performance features of AHB are not required.

 We don’t use ASB in our design.

 The Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals.

AMBA APB is optimized for minimal power consumption and reduced interface

complexity to support peripheral functions. APB can be used in conjunction with either

version of the system bus.

4-2.1 Objectives of the AMBA specification

 The AMBA specification has been derived to satisfy four requirements:

 To facilitate the right-first-time development of embedded microcontroller products

with one or more CPUs or signal processor.

 To be technology-independent and ensure that highly reusable peripheral and system

macro cells can be migrated across a diverse range of IC processes and be appropriate

for full-custom, standard cell and gate array technologies.

 To encourage modular system design to improve processor independence, providing a

development road-map for advanced cached CPU cores and the development of

peripheral libraries.

 To minimize the silicon infrastructure required to support efficient on-chip and off-chip

communication for both operation and manufacturing test.

4-2.2 A typical AMBA-based microcontroller

 An AMBA-based microcontroller typically consists of a high-performance system

backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory bandwidth,

 45

on which the CPU, on-chip memory and other Direct Memory Access (DMA) devices reside.

This bus provides a high-bandwidth interface between the elements that are involved in the

majority of transfers. Also located on the high-performance bus is a bridge to the lower

bandwidth APB, where most of the peripheral devices in the system are located. (See Figure

4-1)

High-bandwidth
 Memory Interface

High-performance
ARM processor

High-bandwidth
On-chip RAM

DMA Bus Master

B
R
I
D
G
E

UART Timer

Keypad PIO

AHB APB

Figure 4-1 A typical AMBA AHB -based system

4-2.3 AMBA AHB

 AHB is a new generation of AMBA bus which is intended to address the requirements of

high-performance synthesizable designs. AMBA AHB is a new level of bus which sits above

the APB and implements the features required for high-performance, high clock frequency

systems including:

 Burst transfers

 Split transactions

 Single cycle bus master handover

 Single clock edge operation

 Non-tristate implementation

 Wider data bus configurations (64/128 bits)

 46

4-2.4 Bus interconnection

 The AMBA AHB bus protocol is designed to be used with a central multiplexer

interconnection scheme. Using this scheme all bus masters drive out the address and control

signals indicating the transfer they wish to perform and the arbiter determines which master

has its address and control signals routed to all of the slaves. A central decoder is also required

to control the read data and response signal multiplexer, which selects the appropriate signals

from the slave that is involved in the transfer.

 Figure 4-2 illustrates the structure required to implement an AMBA AHB design with

three masters and four slaves.

Master
#1

Master
#3

Master
#2

Slave
#1

Slave
#2

Slave
#3

Slave
#4

Arbiter

Decoder

Address and
Control MUX

Write data
MUX

Read data
MUX

HADDR

HADDR

HADDR

HWDATA

HWDATA

HWDATA

HADDR

HADDR

HADDR

HADDR

HWDATA

HWDATA

HWDATA

HWDATA

HRDATA

HRDATA

HRDATA

HRDATA

HRDATA

HRDATA

HRDATA

Figure 4-2 Multiplexer interconnection

 47

4-2.5 Overview of AMBA AHB operation

 Before an AMBA AHB transfer can commence the bus master must be granted access to

the bus. This process is started by the master asserting a request signal to the arbiter. Then the

arbiter indicates when the master will be granted use of the bus.

 A granted bus master starts an AMBA AHB transfer by driving the address and control

signals. These signals provide information on the address, direction and width of the transfer,

as well as an indication if the transfer forms part of a burst. Two different forms of burst

transfers are allowed:

 Incrementing bursts, which do not wrap at address boundaries

 Wrapping bursts, which wrap at particular address boundaries

A write data bus is used to move data from the master to a slave, while a read data bus is

used to move data from a slave to the master.

Every transfer consists of:

 An address and control cycle

 One or more cycles for the data

The address cannot be extended and therefore all slaves must sample the address during

this time. The data, however, can be extended using the HREADY signal. When LOW this

signal causes wait states to be inserted into the transfer and allows extra time for the slave to

provide or sample data.

During a transfer the slave shows the status using the response signals, HRESP [1:0]:

 OKAY The OKAY response is used to indicate that the transfer is progressing

normally and when HREADY goes HIGH this shows the transfer has completed

successfully.

 ERROR The ERROR response indicates that a transfer error has occurred and the

transfer has been unsuccessful.

 48

 RETRY and SPLIT Both the RETRY and SPLIT transfer responses indicate that the

transfer cannot complete immediately, but the bus master should continue to attempt

the transfer.

In normal operation a master is allowed to complete all the transfers in a particular burst

before the arbiter grants another master access to the bus. However, in order to avoid

excessive arbitration latencies it is possible for the arbiter to break up a burst and in such

cases the master must re-arbitrate for the bus in order to complete the remaining transfers

in the burst.

4-3 Timing Analysis

 Before defining the overall system architecture, it is better to analyze the timings of all

components. Because the ram (SSRAM) in the Logic Module is the single port ram, ARM

CPU, QDWT and system controller will access the ram in the coding procedure. So we have

to find out the best way to organize them to achieve good performance. The tile size we define

is 128 x 128; QDWT will code two layers, so there are five QCB coding time units.

First of all, the coprocessor has to wait until the ARM CPU move one tile image to

SSRAM, the SSRAM bus belongs to the ARM CPU at this time. Then the memory bus hands

to the QDWT. After QDWT finishes coding the QCB1, the coded data are stored in the CBM1

(one of the ping-pong buffers). When entropy coder starts coding the data outputted from

QCB1 (CBM1), we let the QDWT to code the QCB2 and the coded data are stored in the

CBM2 (the other one of ping-pong buffers). When QDWT is coding QCB2, the memory bus

still belongs to QDWT, so the system controller can’t write the compressed image data

outputted from the entropy coder back to SSRAM. So two FIFO are setup to store the output

data and address from the system controller. When the system controller gains the memory

bus, it will read the data and address from two FIFO and write data back to the SSRAM

according to the corresponding address. After ping-pong buffers are full, QDWT will hand the

 49

memory bus to the system controller. The system controller will hand the memory bus back to

the QDWT when one buffer of ping-pong buffers is empty and the QDWT does no finish

coding all QCBs. If the QDWT has finished a tile coding, and entropy coder has finished

either, after the system controller write all compressed data back to SSRAM, the memory bus

will hand to ARM CPU to prepare the next tile image.

The timing analysis is illustrated as below:

ARM

DWT

EBCOT+AC+SIPO

SD2SS:P1

QCB1

CBM1

QCB2 QCB3

CBM2 CBM1

QCB4

CBM2

QCB5

CBM1 LL RAM

Figure 4-3 JPEG2000 Coprocessor timing analysis

4-4 AHB JPEG2000 Coprocessor Block Diagram

AHB Master

A
H

B
 A

rc
hi

te
ct

ur
e

JPEG 2000 coprocessor

 ZBT SSRAM

JPEG2000
Coprocessor ControllerSystem Controller

AHB Slave
SSRAM Controller

AHB Slave
Registe FIles

Encoded
Data FIFO LPM CBM

3K+384 Bytes

SDRAM

LL Band
LPM 4KB

ARM CPU

Tile Image &
Compressed Data

EBCOT
AC

QCB DWT

Figure 4-4 AHB-based JPEG2000 Coprocessor block diagram

 In the integrator, the JPEG2000 coprocessor is an AHB slave device. ARM CPU can

 50

control the JPEG2000 coprocessor in AHB timing. The modules in the FPGA are introduced

as below:

 JEPG2000 Coprocessor: this is the JPEG2000 coprocessor we introduced in the

chapter 2.

 System Controller: this is the overall system controller. It controls the work flow of

all system. We will explain its control flow in the following section.

 Encoded Data FIFO: the compressed image data will be stored in the FIFO

temporarily until the system gains the memory bus.

 AHB Slave Register Files: the register definition is in section 4-5. We wrap this

module in AHB salve interface because ARM CPU will access this module.

 AHB Slave SSRAM Controller: this is the ram controller for SSRAM in the logic

module. we wrap it in AHB slave interface because ARM CPU will access SSRAM,

too.

Some others modules are not appeared in the above block diagram, but it is

necessary for AHB architecture.

 AHB Decoder: it decodes the address from AHB master (ARM CPU) and tells which

AHB slave is selected by AHB master.

 AHBMuxS2M : this is the multiplexer to multiplex the read data bus from AHB

slaves.

 AHBAPBSys: there are several modules included in this component. This is AHB to

APB bridge and APB to control the switches and the LEDs in the logic module. We

show the system status in the LED.

 51

4-5 Register Definition

 For image configuration, we use two registers to store the image information. One

status/command register is setup, in write mode, it is a command register, in read mode, it is a

status register to show the overall system current status. The registers are defines in the

following address:

Table 4-1 Register Definition

Address Register Name Description

0xC4000000 Status/Command

[31:0]

Status=0x80: ARM CPU owns the system bus

Status=0x40: JPEG2000 coprocessor owns the system bus

Ststus=other value: JPEG2000 coprocessor stays in idle

Command=0x40 : Enable the JPEG2000 Coprocessor

Command=0x80 : hand over the system bus to ARM CPU

Command=other value: ARM CPU still owns the system bus

0xC4000004 SSRAM_Addr

[31:0]

Tell the JPEG2000 coprocessor the beginning address where

the compressed data should be stored in

0xC4000008 Image_Information

[31:0]

For image configuration

[31:23] number of tiles

[22:15] width of the tile

[14:7] length of the tile

[6 :5]number of layers

 52

4-6 Work Flow

This is the work flow of ARM CPU.

 Capture an image by a camera first and then do the pre-operation for the source image.

The pre-operation contains to separate the image to the tiles (tile size is 128x128) and to do

the normalization for every pixel and to reorder the coding order for tiles. Then, ARM CPU

will send the image configuration information to the JPEG2000 coprocessor. Up to now, just

finish the image initialization operation. After the image initialization, ARM CPU starts to

move a tile data to the SSRAM on the LM (Logic Module) and then write command register

in 0x40 to enable the JPEG2000 coprocessor. When the JPEG2000 coprocessor is coding the

tile, ARM CPU keeps on polling the status register until status=0x80. If status is equal to 0x80,

it means the JEPG2000 coprocessor has coded the tile. ARM CPU will check if all tiles has

been coded, if not, it will move the next tile to the SSRAM and enable the coprocessor again;

if it does, ARM CPU will capture a new image and run the overall procedure from the

beginning.

Capture an
image by camera

Do the pre-operation
to input image

Send the image
configuration information to

JPEG2000 coprocessor

Move a tile to the
SSRAM

Write command=0x40 to
enable JPEG2000

coprocessor Polling the status until
the status=0x80

If all tiles are
encoded?

Yes

No

Yes

No

JP2K Coprocessor is
encoding ...CPU moves tiles of a image

 to the SRAM

Image Initialization

Figure 4-5 Overall system work flow

 53

4-7 System Controller Design

 The system controller is designed according the timing analysis mentioned in section 4-3.

The following two figures are the system controller flow chart and its state machine.

 Figure 4-6 is the flow chart of the system controller to control the system work flow.

 After power on, the system controller will enter IDLE state. Wait until the status register

is equal to 0x40, it will enter the Image-Configuration state and receive the image information.

Then, the controller will do the image initialization for the JPEG2000 coprocessor. After the

image initialization, the controller enables the coprocessor to encode a tile and then the

memory bus will be transferred to the DWT. DWT reads data from the SSRAM and generates

coefficients to the ping-pong buffers. When buffers are full, the controller will transfer the

memory bus to the AC, hence, AC could move the compressed data back to the SSRAM.

When all compressed data are moved back, the controller will check if the tile is finished

coding, if not, the memory bus will be transferred back to the DWT; if it does, the controller

will set the status register to 0x80 to ask ARM CPU to move the next tile. Then, the controller

will check if all tiles are encoded, if not, the controller will wait until the status register is

equal to 0x40, it means the next tile is ready and the controller will enable the coprocessor

again. If all tiles are coded, the controller will go back to the IDLE state.

 54

Idle

Status[31:24] ==
0x40 ?

Image InitialImage Configuration Tile Enable

DWT read ssram

Is buffer full ?

AC write ssram

Are all data
written ?

Write statusTile_count == 0 ?

Wait tile image

Status[31:24] ==
0x40?

Yes

Yes

No

No

No

No

No

Tile_Done=1?Yes

No

Yes

Yes

Figure 4-6 System controller flow chart

 55

 We setup a state machine for the system controller (See Figure 4-7).

Idle

Read_Arg

Image
Initial

Read
Ssram

Write
Ssram

LL_Band
Wait
FIFO

Write
Status

Wait Tile
Image

Status=0x40

Status/=0x40

Image_ini_ack=1

QDWT_req=1 and
Fifo1_empty=0

LLBandMove_ini=1

Tile_Done=0 and
Fifo1_empty=1

Tile_Done=1 and
Fifo1_empty=1

Tile_Done=1 and
Fifo1_empty=1

Tile_Done=1 and
Fifo1_empty=0

Wait_cnt=15

Tile_cnt=0

Status=0x40

Figure 4-7 System controller state machine

＊ IDLE: do nothing in this state, stay until status register is equal to 0x40.

＊ READ_ARG: receive the image information.

＊ IMAGE_INITIAL: do the image initialization for the JPEG2000 coprocessor.

＊ READ_SSRAM: DWT is reading the SSRAM.

＊ WRITE_SSRAM: AC is writing the SSRAM.

＊ WRITE_STATUS: set the status register to 0x80.

＊ LL_BAND: DWT is reading LL_BAND LPM.

＊ WAIT_FIFO: wait until FIFO becomes empty.

＊ WAIT_TILE_IMAGE: wait until the next tile image is ready.

 56

4-8 Pin Definition

 According to the definition of the AHB Slave interface, we defines the AHB-based

JPEG2000 coprocessor chip I/O as in Table 4-2.

Table 4-2 AHB-based JPEG2000 chip pin definition

Name Source Direction Width Description

HCLK

Bus clock

Clock

source

Input 1 This clock times all bus transfers. All signal timings are

related to the rising edge of HCLK

HRESETn

Reset

Reset

controller

Input 1 The bus reset signal is active LOW and is used to reset the

system and the bus.

HSIZE

Transfer size

Master Input 2 Indicate the size of the data transfer, which is typically with

the length of byte (8-bit), halfword (16-bit) or word (32-bit).

The protocol allows for larger transfer sizes, up to a

maximum of 1024 bits.

HTRANS

Transfer type

Master Input 2 Indicate the type of the current transfer, which can be

NONSEQ, SEQ, IDLE or Busy.

HWRITE

Transfer

direction

Master Input 5 When HIGH this signal indicates a write transfer and when

LOW a read transfer.

HADDR

Address bus

Master Input 32 The 32-bit system address bus

HREADY

Transfer done

Slave Inout 1 When HIGH the HREADY signal indicates that a transfer

has finished on the bus. This signal may be driven LOW to

extend a transfer.

NOTE: Slaves on the bus require HREADY as both an input

 57

and an output signal.

HDATA

Data bus

Mater or

Slave

Inout 32 This bidirectional bus contains write data bus and read data

bus. The write data bus is used to transfer data from the

master to the bus slaves during write operation. The read

data bus is used to transfer data from the bus slaves to the

bus master during read operation.

HRESP

Transfer

response

Slave Output 2 The transfer response provides additional information on the

status of the transfer. Four different responses are provided,

OKAY, ERROR, RETRY, SPLIT.

HBUSREQ

Bus request

Master Output 1 A signal from bus master x to the bus arbiter which indicates

that the bus master requires the bus.

HLOCK

locked

transfer

Master Output 1 When HIGH this signal indicates that the master requires

locked access to the bus and no other master should be

granted the bus until this signal is LOW.

SCLK

SRAM clock

FPGA Output 1 Clock signal of SSRAM

SDATA

 data bus

FPGA Inout 32 Bidirectional data bus of SSRAM

SADDR

Address bus

FPGA Output 19 Address bus of SSRAM

SnOE FPGA Output SSRAM output enable

SnCE FPGA Output SSRAM chip enable

SnWR FPGA Output SSRAM write enable

SnCKE FPGA Output 3 SSRAM clock enable

 58

4-9 Memory Distribution

 This is the memory distribution of the SSRAM for JPEG2000 coprocessor.

 0xC2000000 ~ 0xC200FFFF : input tile image for QDWT

 0xC2010000 ~ 0xC2028000: the compressed image data from entropy coder. They are

in bit plane order and pass order. We allocate 256 bytes for every bit plane pass in a

code block.

 0xC2028000 ~ 0xC2029000: for rate and distortion and header information. It is

allocated 256 bytes for every rate and distortion. The header information only uses 4

bytes and is located in the fixed address predefined.
1st Tile for D

W
T

2nd Tile for D
W

T

8 x 256B (P1)

8 x 256B (P2)

8 x 256B (P3)

Rate P3

Dis P3

Rate P3

Rate P2

Rate P1

Dis P3

0x C2000000

0x C2010000

0x C2010800

0x C2011000

0x C2011800

0x C2028000

0x C2028100

0x C2029000

1 code block

Another 15 code blocks

Header Information

1 code block
rate information

Another 15 code block
rate information

Figure 4-8 Memory distribution for JPEG2000 Coprocessor

 59

Chapter 5

Achievements and Perspectives

5-1 Achievements

＊ FPGA-based (Hardware Only)

The performance of the JPEG2000 coprocessor we achieve in the FPGA level is list in

Table 5-1

Table 5-1 the performance of the JPEG2000 coprocessor on FPGA

Operation Frequency 25 MHz

Throughput 4 Mpixels/s

Compression Format Lossless

256 x256 YCbCr 20 FPS Frame Rate

512 x512 Grey 10 FPS

 We have developed a version of JPEG2000 encoder previously and the architecture of

the hardware is different from the present version. The comparison between these two

versions and the comparison of operation time between the software and the hardware for

individual version are listed in Table 5-2.

 60

Table 5-2 the comparison between software and hardware

Events Seconds (New) Seconds (Old)

ARM moves one tile to SSRAM (Software) 4.228 0.17

The operation time of JPEG2000 coprocessor compression (Hardware) 0.007371 0.63

The operation time of packet header functions (Software) 1.225 0.02

Operation frequency of ARM CPU 100 120

Operation frequency of FPGA 20 25

 The operation time in Table 5-2 is calculated by ARM CPU at the run time. We can see

the software part is the bottle neck for the present version; on the contrary, the hardware is the

bottle neck for the previous version. So, for the hardware of the JPEG2000 only, we do

decrease 98.83% computing time. The frame rate of the JPEG2000 coprocessor can reach 135

tiles/sec while the clock frequency is 20 MHz. The throughput of the hardware is 2.21

Mpixels/sec at the operation frequency 20 MHz. The performance is enhanced greatly.

＊ ASIC-based

The specification of the JPEG2000 coprocessor chip is list in Table 5-3. We can compare

our performance with those introduced in Section 5-2.

Table 5-3 JPEG2000 coprocessor chip specification

Technology TSMC 0.25 um

Package 208-pin CQFP

Core size 3.15mm x 3.15mm

Die size 3.95mm x 3.95mm

Operation frequency 41 MHz

Internal rams 8.25 KB

Throughput 9.37 MB/s

Power consumption 740 mW

 61

5-2 JPEG2000 Codec in the Market

 “Analog Devices Inc., a global leader in high-performance semiconductors for signal

processing applications, today (June 12, 2003) announced that NHK, a major national

Japanese broadcast company, has incorporated ADI’s JPEG2000 image compression chip into

its latest Hi-Vision high-definition television (HDTV) advancement. This May (2003), NHK

Science & Technical Research Laboratories (STRL) announced the development of the

world’s first single, real-time encoder/decoder board based on the JPEG2000 standard,

enabled by ADI’s JPEG2000 chip.” The information is referred to Reference [8].

We find out that there are three companies have developed JPEG2000 ASIC, ADI,

AMPHION, and TECHSOFT.

＊ TECHSOFT (Javelin530) [7]

The Javelin530 JPEG2000 codec is a high-performance application specific solution

enabling leading edge image, video, and audio compression/ decompression/

transmission applications. The core is compliant with the ISO/IEC 15444-1 JPEG 2000

Image Coding Core System Standard for both lossy and lossless

compression/decompression of images.

Table 5-4 Preliminary IC specification

Package 208-pin LQFP

Fabrication technology 0.25 u

Fabrication foundry TSMC

Internal memory 15 KB

Clock 166 MHz

External SDRAM required 256K x 32 x 2 (VCD)

 62

 512K x 32 x 2 (VCD)

Input format (Audio) I2S compatible

Input format (Video) YCbCr (4:2:2)

Gate count 100K

Power consumption 150 mW

SRAM interface ARM

Video bit rate 2.0~50.0 Mbits/s

720 x 480x 29.97 fps

Cost per chip $10.00

Die area 5mm x 5mm

＊ ANALOG DEVICES, Inc (ADV202) [6]

The ADV202 is a single-chip JPEG2000 CODEC targeted at video and high bandwidth

image compression applications that will benefit by the enhanced quality and feature set

provided by the JPEG2000 (J2K) -ISO/IEC 15444-1 image compression standard. The

features are listed below

 Complete single-chip JPEG2000 compression/decompression solution for video and
still images.

 Patented SURF (Spatial Ultra-efficient Recursive Filtering) technology enables low
power and low cost wavelet based compression

 Supports both 9/7 and 5/3 wavelet transform with up to 6 levels of transform

 Programmable tile/image size with widths up to 2048 pixels in three-component
4:2:2 interleaved mode, and up to 4096 pixels in single-component mode.
Maximum tile/image height is 4096 pixels.

 Input rate of 65 Msamples/sec for irreversible mode or 40 Msamples/sec for
 63

reversible mode.

 12mm x 12mm 121-ball fpBGA, speed grade 115 MHz, price $35.18

 13mm x 13mm 144 fpBGA, speed grade 150 MHz, price $47.06

＊ AMPHION (CS6590 JPEG2000 Codec)[9]

The CS6590 JPEG2000 codec is a high performance application specific solution

enabling leading edge image compression, decompression and transmission applications.

The core is compliant with ISO/IEC 15444-1 JPEG2000 Image Coding System Standard

and makes possible both lossless and lossy compression and decompression of image

data at ratios of up to 50:1.

Table 5-5 CS6590 ASIC Cores

Fabrication technology 0.18 u

Fabrication foundry TSMC

Memory 59 KB

Clock 150 MHz

Gate count 210K

Compression ratios 50:1

Throughput

(Msamples/s)

Encoding : 60

Decoding : 20

 64

5-3 Improvement in the future

 To compare our chip with others in the market, our chip may still not so powerful. But

we believe our chip has great potential to be developed as a high performance JPEG2000

codec because our memory usage is saving and we have known where the bottle neck is.

 In the following, we will explain how to improve the performance in the future.

＊ For Arithmetic Entropy Coder (AC)

 If the previous stage, EBCOT Tier-1, is in pass serial mode, the AC we design can

provide good performance, the area of AC is almost the same with EBCOT and it can

deal with the output of EBCOT every clock cycle. But if the EBCOT is in pass parallel

mode, using three ACs we design to deal with three passes from EBCOT will cause the

area too large, so it is better to improve the AC.

 If we hope the AC could deal with three passes from EBCOT at the same time and the

area is small, we may do it in two way:

 Analyze the distribution of context label for three passes

CX1：0~13 CX2：14, 15, 16 CX3：0 ~ 18

The context labels are in the range 0 to 18. We set up a table with 19 integer

elements to save these labels. Pass 3 needs an individual table because every

context label may happen. Pass 1 and Pass 2 can share one table because the range

of the context label for pass 1 and pass 2 are different. In this way, we can reduce

the area of one table.

 Only remove one table can not reduce much area. Because the situation, that AC

has to receive CX-D pairs every clock cycle in three passes, will not happen

frequently, we can reduce the area efficiently by reducing the throughput and this

reduction will not affect the overall system throughput but can reduce the overall

system area.

 65

 It is essential to develop the AC codec which can be applied in the JPEG2000 codec.

＊ For AHB-based JPEG2000 encoder, it needs AHB-based DMA controller to enhance its

system performance. Right now, it is ARM CPU to move the tile image from SDRAM in

the core module to SSRAM in the logic module. On one hand, it wastes much CPU time

to move the tile image, if there were a DMA controller, CPU can do other calculation

when DMA is moving the tile image. On the other hand, CPU uses more than 10 clock

cycles to move one word of a tile image. If there were a DMA controller, it only uses one

clock cycle to move one word. That’s why DMA controller can enhance much

performance.

In the ARM/Integrator platform, if we want to add the DMA controller in the JPEG2000

coprocessor, the role of the JPEG2000 coprocessor in the ARM/Integrator has to be a

AHB Master.

＊ The QDWT only supports the image size of a multiple of 128. If it can support any

image size, this JPEG2000 coprocessor will be more valuable.

＊ The memory allocation for compressed image data now is not good enough to achieve

the best performance because we separate the compressed data pass by pass. In this way,

we need 96KB memory space, so we have to use the off-chip memory, SSRAM, in the

logic module to store the compressed data. Another disadvantage is the memory bus of

the SSRAM will be very busy and it is hard to pipeline the work of the components. If

we can rearrange the compressed data from three passes, the extra 2.25 KB FIFO will be

needed but the memory space for the compressed data only need 16 KB for tile size

128x128. So, 70 % of memory space is reduced and we don’t need to store the

compressed data in the off-chip memory but in the internal memory inside the FPGA.

The internal ram size of this FPGA is 40KB, so the space is enough. On the other hand,

we can avoid the situation that the memory bus is too busy to pipeline the work. We

think this can enhance much system performance in FPGA application.

 66

＊ In the future, if it is planed to develop an AHB-based JPEG2000 coprocessor chip, the

power consumption has to be concerned and the chip area can’t be too big. So, we had

better not to use too much internal ram.

 Although the JPEG2000 is not popular in the consumer electronics now because of its

area and cost, it is still valuable to develop JPEG2000 ASIC. For medical image, the cost is

not the most important part for people, the high image quality and high resolution can help

doctors to make sure if our body is healthy. For a criminal case, the image quality is also

much concerned. The high image quality and resolution can help police to recognize the

criminal or easily find out the clue to break the criminal case.

 So, we believe that JPEG2000 still has a region belonged to it to yield unusually brilliant

results. That’s why we do our best to finish this system and we know it worth.

 67

Reference

[1] F. Jelinek, Probabilistic Information Theory, McGraw-Hill, New York, 1986

[2] ISO/IEC, ISO/IEC 15444-1, Information Technology-JPEG2000 image coding system,

2000.

[3] JPEG 2000 影像壓縮技術, 吳炳飛 胡益強 瞿忠正 蘇崇彥, 全華科技圖書股份有

限公司, 92 年 4 月

[4] http://www.arm.com

[5] http://www.eedesign.com.tw/article/document/dc965.htm#3

[6] http://www.analog.com/index.html

[7] http://www.techsoft.com.tw/Chinese/intro.htm

[8] http://www.analog.com/Analog_Root/sitePage/pressReleaseHome/0,2145,ContentID%2

53D22292%2526aind%253D%2526resourceWebLawID%253D,00.html

[9] http://www.amphion.com/

[10] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee, Chein-Wei Jen, “High-speed

memory-saving architecture for the embedded block coding in JPEG2000,” Circuits and

Systems, 2002. ISCAS 2002. IEEE International Symposium on , Volume: 5 , 2002, pp.

133 -136

[11] JPEG2000 戴顯權/陳政一 紳藍出版社 p165-p172 2002 年 11 月

[12] http://www.jpeg.org/jpeg2000/index.html

[13] Pei-Chun Chen, “Design of an efficient Pass-Parallel Context Formation Codec for

JPEG2000”, National Chiao Tung University, July 2004

[14] B.F. Wu and C.F. Lin, “Analysis and architecture design for high performance JPEG2000

coprocessor,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 2, pp.

 68

http://www.arm.com/
http://www.analog.com/index.html
http://www.techsoft.com.tw/Chinese/intro.htm
http://www.analog.com/Analog_Root/sitePage/pressReleaseHome/0,2145,ContentID%253D22292%2526aind%253D%2526resourceWebLawID%253D,00.html
http://www.analog.com/Analog_Root/sitePage/pressReleaseHome/0,2145,ContentID%253D22292%2526aind%253D%2526resourceWebLawID%253D,00.html
http://www.amphion.com/
http://www.jpeg.org/jpeg2000/index.html

225-228, May, 2004.

[15] Advanced Microcontroller Bus Architecture Specification Rev2.0, ©copyright ARM

Limited 1999.

[16] 王經楷, A High-throughput and Low-Power Arithmetic CODEC Design for Multiple

Image Compression Standards, Departments of Electronics Engineering, National Chiao

Tung University, June 2002

[17] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and Chein-Wei Jen, HIGH-SPEED

MEMORY-SAVING ARCHITECTURE FOR THE EMBEDDED BLOCK CODING IN

JPEG2000, Departments of Electronics Engineering, National Chiao Tung University,

IEEE 2002.

[18] Ping-Hsun Wu, The Research on Chip Implementation of JPEG2000 Tier-1 Encoder,

Department of Electrical Engineering, National Tsing Hua University, June 2002.

 69

Appendix

A-1 Development Flow

＊ We use the C language to develop the firmware for the JPEG2000 coprocessor. For

ARM/Integrator platform, we can use ADS (ARM Developer Suite) to develop, build,

and debug C, C++ or ARM assembly language programs.

＊ How to write Synplify Pro and Quartus II script files

Because we use Synplify Pro to do the synthesis and use Quartus II to do the Place &

Route, we’ll explain how to write the script files below:

 Synplyfy Pro

 At the DOS command prompt:

% synplify_pro –batch Tcl_script_name.tcl

The example of the Synplify script file:

===

Project –new D:/Test/proj.prj

Project –save

device options

Set_option –technology APEX20KE

 70

Set_option –part EP20K1000E

Set_option –package FC672

Set_option –speed_grade -2

add_file options

Add_file –vhdl D:/Test/bp_table.vhd

Add_file –vhdl D:/Test/CBM.vhd

compilation/mapping options

Set_option symbolic_fsm_compiler false

map options

Set_option –frequency 100.0

Set_option –result_file “CBM.vqm”

Project –run

Exit

 Quartus II 3.0

For the first time to create a new project, it is recommended to use GUI to do the settings

we require. Then, we can use the function provided by Quartus II, “Generate Tcl Files for

Project”. This function will generate the tcl file which contains all settings of this project.

For the second time to run the implementation in the Quartus II, we can run it in the

batch mode.

 71

 At the DOS command prompt:

a. change the directory to where the script file is saved

% c:/quartus/bin/quartus_sh -s

b. Create or load the project

% source Tcl_file_name.tcl

% exit

c. Compile with project.csf

% c:/quartus/bin/quartus_cmd project_name –c project_name.csf

A-2 Verification Environment

＊ Pre-simulation and Post-simulation in ModelSim

Before we synthesize the RTL code, we do the pre-simulation in ModelSim to make sure

the function of the hardware we designed is right. Modify the RTL codes until

pre-simulation is pass, we do the post-simulation after the hardware is implemented by

Quartus II. If the result of the post-simulation is the same as the result of the

pre-simulation, it means the percentage of the hardware is workable is 90% above.

＊ To make sure that the hardware is workable, we will read out the data stored in the

memory and write to a text file through the AXD (ARM Debugger for Windows). Then,

we will compare this file with the expected file.

＊ After the hardware is correct, the firmware will packet the compressed data in JPEG2000

header, then, we can decode it by JPEG2000 decoder. The JPEG2000 decoder is

developed by BCB.

 72

A-3 Pin Map Table for JPEG2000 Coprocessor In

Test Mode

＊ DWT Pin Map Table

Table A- 1 DWT Pin Map Table

Test_out pins Pin Map Description

Output ports for test mode

Test_out(67:52) dual_ram_1_dataout_test (Com_Sel=0000000)

dual_ram_2_dataout_test (Com_Sel=0000001)

//dual ram_1output port

//dual ram_2output port

Test_out(99:68) ram_1_out_test (Com_Sel=0000010)

ram_2_out_test (Com_Sel=0000011)

//single ram_1 output port

//single ram_2 output port

Test_out(100) out_valid_row (Com_Sel=0000100)

out_valid_sync (Com_Sel=0000101)

out_valid_col (Com_Sel=0000110)

//row output valid

//sync output valid

//column output valid

Test_Out(116: 101) data_out_row (Com_Sel=0000100)

data_out_sync (Com_Sel=0000101)

data_out_col (Com_Sel=0000110)

//row output

//sync output

//column output

Input ports for test mode

Test_In(2) dual_ram_1_cena_test (Com_Sel=0000000)

dual_ram_2_cena_test (Com_Sel=0000001)

ram_1_cen_test (Com_Sel=0000010)

ram_2_cen_test (Com_Sel=0000011)

//dual ram_1 enable write port

//dual ram_2 enable write port

//single ram_1 enable port

//single ram_2 enable port

Test_In(3) dual_ram_1_wena_test (Com_Sel=0000000)

dual_ram_2_wena_test (Com_Sel=0000001)

//dual ram_1 write port

//dual ram_2 write port

 73

ram_1_wen_test (Com_Sel=0000010)

ram_2_wen_test (Com_Sel=0000011)

//single ram_1 r/w port

//single ram_2 r/w port

Test_In(9 :4) dual_ram_1_write_add_test (Com_Sel=0000000)

dual_ram_2_write_add_test(Com_Sel=0000001)

ram_1_add_test (Com_Sel=0000010)

ram_2_add_test (Com_Sel=0000011)

//dual ram_1 write address port

//dual ram_2 write address port

//single ram_1 address port

//single ram_2 address port

Test_In(10) dual_ram_1_cenb_test (Com_Sel=0000000)

dual_ram_2_cenb_test (Com_Sel=0000001)

//dual ram_1 enable read port

//dual ram_2 enable read port

Test_In(11) dual_ram_1_wenb_test (Com_Sel=0000000)

dual_ram_2_wenb_test (Com_Sel=0000001)

//dual ram_1 read port

//dual ram_2 read port

Test_In(17:12) dual_ram_1_read_add_test (Com_Sel=0000000)

dual_ram_2_read_add_test (Com_Sel=0000001)

//dual ram_1 read address port

//dual ram_2 read address port

Test_In(33:18) dual_ram_1_datain_test (Com_Sel=0000000)

dual_ram_2_datain_test (Com_Sel=0000001)

//dual ram_1 datain port

//dual ram_2 datain port

Test_In(41: 10) ram_1_datain_test (Com_Sel=0000010)

ram_2_datain_test (Com_Sel=0000011)

//single ram_1 datain port

//single ram_2 datain port

＊ EBCOT Tier-1 Pin Map Table

Table A- 2 EBCOT Pin Map Table

 Test_mode ‘100 Test_mode ‘101

 Test_mode

 Ecx_Sel

Test_0 CLK

Test_1 nReset

INPUT

 74

 Tier1_ini

 Tier1Start

 orient

 Height

 Width

 Weighting

 Numbitplane

 data_CB

 FIFO1

 FIFO2

 FIFO3

Test_2 Test_CENA

Test_3 Test_WENA

Test_4…13 Test_AA

Test_14…15 Test_DA

Test_16 Test_CENB

Test_17…26 Test_AB

OUTPUT

 Tier1_ini_ack

 Tier1Ready

 rdAdd_CB

 CX1

 D1

 EnDataEN

 TerminalAC1

 75

 CX2

 D2

 EnDataEN2

 TerminalAC2

 CX3

 D3

 EnDataEN3

 TerminalAC3

 RD3

 Dot3

 RDOUT

Test_52…53 Test_QB

Test_54 Tier1_ini_ack

Test_55 Tier1Ready

Test_56…65 rdAdd_CB

Test_66…69 te_CX1

Test_70 te_D1

Test_71 te_EnDateEN

Test_72 TerminalAC1

Test_73…74 te_CX2

Test_75 te_D2

Test_76 te_EnDataEN2

Test_77 TerminalAC2

Test_78…81 te_CX3

Test_82 D3

 76

Test_83 EnDataEN3

Test_84 TerminalAC3

Test_85 RDout

Test_86…89 DCState

Test_90…92 Tier1State

Test_93 te_buf1_full

Test_94 te_buf2_full

Test_95 te_buf1_empty

Test_96 te_buf2_empty

Test_97…100 te_NBC_B

Test_101 te_rlc

Test_102…105 te_Reg_change_A

Test_106…115 te_AddrE

Test_116…120 te_Rsig1E

Test_121…125 te_Rsig2E

Test_126…130 te_RsignE

Test_131…134 te_RMagE

Test_135 te_PS12S

Test_136 te_PS1E

Test_137 te_PS2E

Test_138 te_PS3S

Test_139 te_PS3E

Test_140 te_WDS

Test_141 te_WDE

Test_142 te_RDS

 77

Test_143…145 te_bitplane

＊ FSM Controller Pin Map Table

Table A- 3 FSM Controller Pin Map Table

Test_out port Pin Map Description

FSM for test mode (Com_Sel = 1000000)

Test_out(55 : 52) FSM_insert //FSM

Test_out(56) Reset //async. Reset

Test_out(57) tile_num_valid

Test_out(58) EC_INIT_ACK

Test_out(59) EC_QCB_ACK

Test_out(60) EC_QCB_Done

Test_out(64 : 61) QCB_counter

Test_out(65) Tier1ready

Output ports for test mode (Com_Sel = 1000000)

Test_out(71 : 66) CB_Y //code block size_Y

Test_out(77 :72) CB_X //code block size_X

Test_out(78) tile_num_valid // tile_num_valid

Test_out(79) Tile_INIT_OK // EC_Tile_INIT

Test_out(80) EC_QCB_INIT_temp // EC_QCB_INIT

Test_out(81) EC_QCB_Done_ACK_reg // EC_QCB_Done_ACK

Test_out(82) Tier1_nReset_reg // Tier1_nReset

//reset for EBCOT

Test_out(83) Tier1Start_t // Tier1Start

//start EBCOT when wait_r state

 78

Test_out(84) reset_all_t // reset_all_t

Test_out(90: 85) tile_numY // tile_num_Y

Test_out(96:91) tile_numX // tile_num_X

Output ports for test mode (Com_Sel = 100000x)

Test_out(109: 97) CB_HL_rd (Com_Sel=1000000)

CB_HL_cd_cp1 (Com_Sel=1000001)

CB_LH_cd_cp1 (Com_Sel=1000010)

CB_HH_cd_cp1 (Com_Sel=others)

//rd starting address

//AC starting address

Test_out(122: 110) CB_LH_rd (Com_Sel=1000000)

CB_HL_cd_cp2 (Com_Sel=1000001)

CB_LH_cd_cp2 (Com_Sel=1000010)

CB_HH_cd_cp2 (Com_Sel=1000011)

//rd starting address

//AC starting address

Test_out(135 :123) CB_HH_rd (Com_Sel=1000000)

CB_HL_cd_cp3 (Com_Sel=1000001)

CB_LH_cd_cp3 (Com_Sel=1000010)

CB_HH_cd_cp3 (Com_Sel=1000011)

//rd starting address

//AC starting address

＊ AC Pin Map Table

Table A- 4 AC Pin Map Table

Test_out port Pin Map

Test_out(52) tEnDone1

Test_out(53) tEnCD_EN1

Test_out(54) AC_busy1

Test_out(62:55) tEnCD1

Test_out(70:63) tCD_length1

 79

Test_out(73:71) tState1

＊ CBM Pin Map Table

Table A- 5 CBM Pin Map Table

Test_out port Pin Map

For CBM Controller in Test Mode

Test_out(52) tbuf1_full

Test_out(53) tbuf2_full

Test_out(56:54) B1_P_state

Test_out(59:57) B2_P_state

Test_out(62:60) obit_plane

Test_out(63) tCBM_INIT_ACK;

Test_out(64) tCBM_Done

Test_out(73:65) tEBCOT_Data_out

Test_out(74) oNCP_valid_CB

Test_out(79:75) oNCP_CB

Test_out(80) oNZB_valid_CB

Test_out(83:81) oNZB_CB

For CBM Buffers in Test Mode

Test_in (2) B1_CLK

Test_in (3) B2_CLK

Test_in (4) M1_CEN

Test_in (5) M2_CEN

Test_in (15:6) M1_Addr

Test_in (25:16) M2_Addr

 80

Test_in (34:26) M1_D

Test_in (43:35) M2_D

Test_in (44) M1_WEN

Test_in (45) M2_WEN

Test_out(60:52) M1_Q

Test_out(69:61) M2_Q

＊ SIPO&FIFO Pin Map Table

Table A- 6 FIFO&SIPO Pin Map Table

Test_out port Pin Map

For FIFO in Test Mode

Test_out(52) tP1_Empty

Test_out(53) P1_Full

Test_out(69:54) tP1_DataOut(15: 0)

Test_out(70) tP2_Empty

Test_out(71) P2_Full

Test_out(87:72) tP2_DataOut(15: 0)

Test_out(88) tP3_Empty

Test_out(89) P3_Full

Test_out(105:90) tP3_DataOut(15: 0)

For SIPO in Test Mode

Test_out(52) P1_A_EN

Test_out(53) P1_done

Test_out(69:54) Pass1_Out(15: 0)

Test_out(70) P2_A_EN

Test_out(71) P2_done

 81

Test_out(87:72) Pass2_Out(15: 0)

Test_out(88) P3_A_EN

Test_out(89) P3_done

Test_out(105:90) Pass3_Out(15: 0)

＊ JPEG2000 Chip Pin Map Table

Table A- 7 JP2K Top Pin Map Table

Test_out port Pin Map

For JPEG2000 in Normal Mode

Test_in(14:2) Img_size_Y

Test_in(27:15) Img_size_X

Test_in(29:28) Tile_size_YX

Test_in(45:30) Dwt_in_Ext

Test_in(61:46) data_in_TILE_B

Test_out(52) CEN_Ext

Test_out(53) WEN_Ext

Test_out(66:54) address_in_Ext

Test_out(67) CEN_TILE_A

Test_out(68) WEN_TILE_A

Test_out(74:69) address_in_TILE_A

Test_out(90:75) data_in_TILE_A

Test_out(91) CEN_TILE_B

Test_out(92) WEN_TILE_B

Test_out(98:93) address_in_TILE_B

Test_out(111:99) Address

Test_out(143:112) OutBus

 82

Test_out(144) RAM_EN

Test_out(145) RAM_WEN

 83

	System Overview
	1-1 Introduction
	1-2 ARM Integrator Platform
	1-3 System Block Diagram
	1-3.1 Motherboard (Integrator/AP)
	1-3.2 Core Module (Integrator/CM920T)
	1-3.3 Logic Module (Integator/LM-EP20K600E+)

	JPEG2000 Coprocessor Hardware Design
	2-1 Introduction
	2-2 Main Module Introduction
	2-2.1 QDWT (Quad Discrete Wavelet Transform)
	2-2.2 Pass Parallel EBCOT Tier-1 and Arithmetic entropy Codi

	2-3 JPEG2000 Coprocessor Architecture
	2-3.1 Analysis the overall system timing
	2-3.2 Define the module interface I/O and timing properly

	2-4 Operation Flow Chart
	2-5 Coprocessor Controller
	2-5.1 the Control of QDWT
	2-5.2 The Control of EBCOT

	2-6 Test Circuit Design
	2-7 Achievement

	Arithmetic Entropy Coding
	3-1 Introduction
	3-2 AC Operations
	3-2.1 Recursive interval subdivision
	3-2.2 Coding conventions and approximation

	3-3 Description of the Arithmetic Encoder
	3-3.1 Encoder code register convention
	3-3.2 Encoding a decision (ENCODE)
	3-3.3 Encoding a 1 or a 0
	3-3.4 Encoding an MPS or LPS (CODEMPS and CODELPS)
	3-3.5 Probability estimation
	3-3.6 Renormalization in the encoder (RENORME)
	3-3.7 Compressed image data output (BYTEOUT)
	3-3.8 Initialization of the encoder (INITENC)
	3-3.9 Termination of coding (FLUSH)

	3-4 Method for Enhance Performance
	3-5 State Machine
	3-6 Pin Definition
	3-7 Timing Diagram
	3-8 Achievements & Comparison
	3-8.1 Achievements
	3-8.2 Comparison

	AHB Wrapper Design
	4-1 Introduction
	4-2 Work Theory
	4-2.1 Objectives of the AMBA specification
	4-2.2 A typical AMBA-based microcontroller
	4-2.3 AMBA AHB
	4-2.4 Bus interconnection
	4-2.5 Overview of AMBA AHB operation

	4-3 Timing Analysis
	4-4 AHB JPEG2000 Coprocessor Block Diagram
	4-5 Register Definition
	4-6 Work Flow
	4-7 System Controller Design
	4-8 Pin Definition
	4-9 Memory Distribution

	Achievements and Perspectives
	5-1 Achievements
	5-2 JPEG2000 Codec in the Market
	5-3 Improvement in the future

	Reference
	A-1 Development Flow
	A-2 Verification Environment
	A-3 Pin Map Table for JPEG2000 Coprocessor In Test Mode

