
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

針對簡單正規表示式之字串比對演算法

An Algorithm for simple regular expression

matching

研究生 ：林建碩

指導教授：李程輝 教授

中華民國九十九年六月

i

針對簡單正規表示式之字串比對演算法

學生: 林建碩 指導教授：李程輝教授

國立交通大學

電信工程學系碩士班

摘要

 字串比對的技術，由於能準確地偵測出關鍵字，是現今在防毒/防蟲技術上

的重要應用。在眾多有名的字串比對演算法中，Aho-Corasick (AC)演算法，是一

個能夠同時比對多重字串，並且在各種環境之下都能夠保證穩定的輸出表現的演

算法。然而 AC 演算法是根據純粹字串的比對來設計的，如此對於以正規表示式

來表示的病毒/蠕蟲卻無法直接應用。

 在本篇論文中，我們使用有系統的演算法，來建構一個字串比對系統，並針

對有限長度且可用簡單正規表示式之字串。所提出之系統包含預先過濾器及驗證

模組。經由預先過濾器，系統可快速的略過明顯不含字串的文件範圍，且在掃瞄

到可疑字串之起始位置時回報給驗證模組；驗證模組為 AC 演算法的延伸，其中

包含了多階層的狀態轉移圖，以及和階層的狀態轉移圖相關的分岔函數。在掃描

的過程，可同步處理不同階層的狀態轉移圖。

 實驗結果顯示，我們所提出的演算法跟 ClamAV、及加強之 ClamAV、延伸

有限自動狀態機(XFA)比較，我們的系統具有較佳的處理效能並且擁有滿意之記

憶體占用大小。

ii

An Algorithm for simple regular
expression matching

Student: Chien-Shuo Lin Advisor: Prof. Tsern-Huei Lee

Department of Communication Engineering

National Chiao Tung University

ABSTRACT

 Because of its accuracy, pattern matching is considered an important technique

in anti-virus/worm applications. Among some famous pattern matching algorithms,

the Aho-Corasick (AC) can match multiple patterns simultaneously and guarantee

deterministic performance under all circumstances. However, the AC algorithm was

developed for strings while virus/worm signatures could be specified by simple

regular expressions. In this paper, we enhance the AC algorithm to systematically

construct a signature matching system which can indicate the ending position in a

finite input string for the occurrence of virus/worm signatures that are specified by

strings or simple regular expressions. The regular expressions studied are those

adopted in ClamAV for signature specification. Our proposed signature matching

system consists of a pre-filter and a verification module. The purpose of pre-filter is

to quickly exclude the parts of input string which obviously do not contain signatures

and find the starting positions of suspicious sub-strings which may result in match of

some signatures. The verification module is an extension of the AC algorithm that

consists of multiple levels of goto graphs. Goto graphs in the same level are

connected by a novel fork function. Those in different levels could be traversed

concurrently. Experimental results show that, compared with ClamAV

implementation and its enhancement and the extended finite automaton (XFA), our

proposed system yields better throughput performance with acceptable memory

requirement.

iii

誌 謝

感謝交通大學電信工程學系 NTL 實驗室的各位，郁文學長、景融學

長、迺倫學姐、曉薇、韋儒、奕璉、永昌、永祥，學弟妹國書、煜傑、

順閔、謙和、建男、運良、晴嬅、承潔，還有已經畢業的俊德學長、

松晏學長、鈞傑學長，感謝你們陪我度過我的研究所，以及在這之間

所提供給我的任何意見跟想法。

特別感謝我的指導教授 李 程輝 博士，在我的學業、研究方面的指

導讓我在研究所兩年中獲益匪淺。與迺倫學姐、韋儒同學與奕璉同學

在研究方面的相互討論更是讓我的研究能夠順利進行的一大助力。

最後感謝我的家人對我的付出與支持我才能走到今天。

謹將此論文獻給所有幫助過我的人

 2010/06

iv

目 錄

中文摘要

 i

英文摘要 ii

誌謝 iii

目錄 iv

圖目錄 v

一、 Introduction 1

二、 Problem Definition 4

三、 Related Works 5

四、 The Proposed Signature Matching System 10

四.A Verification Module 10

四.A.1 The goto function 11

四.A.2 The failure function 13

四.A.3 The output function 13

四.A.4 The fork function 13

四.B Pre-filter 14

四.C The signature matching machine 15

五、 Compression of Goto Graph 21

六、 Experimental Result 23

七、 Conclusion 26

附錄 The Aho-Corasick Algorithm 27

參考文獻 31

v

圖 目 錄

Figure 1 Data structures of ClamAV implementation. 6

Figure 2 XFA recognizing (a) 1RE , (b) 2RE , (c) 3RE , and (d) 1RE and 2RE .
Some less important transitions are not shown.

9

Figure 3 The goto graphs for 1RE abc= , 2 * *RE ab cd e= , 3 * *RE bc ad e= ,

4 *RE pqr vs= , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y= .

13

Figure 4 The stateful pre-filter architecture for m = 6 and k = 3. 17

Figure 5 Performance comparison of ClamAV implementation and our proposed
signature matching system for clean files of various sizes.

24

Figure 6 Performance comparison of ClamAV implementation and our proposed
signature matching system with a string 1 1S abcdeS ′ in various place of

file.

25

Figure A.1. (a) goto function, (b) failure function, and (c) output function for Y = {he,

she, his, hers}.
27

1

Chapter 1.

Introduction

 Because of the rapid advances of computer and network technologies, modern

computer viruses/worms can spread at a speed much faster than human-mediated

responses. Various viruses/worms such as Code Red [3], Nimda [4], and Slammer [5]

that were detected in recent years infected hundreds of thousands of computers on

the Internet in a very short period of time and caused huge economic loss to our

society. Fast and effective detection of viruses/worms as they are spreading is,

therefore, necessary to prevent the majority of vulnerable systems from being

infected and minimize the damage.

 Behavior anomaly and signature matching are two major techniques for

virus/worm detection. Behavior anomaly can be used to detect and prevent the

outbreak of an attack because an infected host is likely to behave differently from a

normal host. For example, a host infected by some virus/worm may try to infect

other vulnerable hosts on the Internet with port/address scanning. Therefore, one

can detect an infected host with the observation of high new connection attempt

rate or high failure ratio of new connection attempts [6]. Behavior anomaly can be

used to detect the so-called “zero-day” attacks. However, it tends to create false

positives if the normal behavior cannot be precisely specified. The idea of signature

matching is to look for specific patterns in the payload of a packet or across packets.

The patterns are derived from the strings of malicious codes contained in

viruses/worms. Although it is limited to known viruses/worms with identified

patterns, the signature matching technique is quite valuable because of its accuracy.

Fortunately, the signature of a new virus/worm can often be quickly derived

nowadays once it occurs.

 There are some well-known pattern matching algorithms such as

Knuth-Morris-Pratt (KMP) [7], Boyer-Moore (BM) [8], and Aho-Corasick (AC) [9].

The KMP and BM algorithms are efficient for single pattern matching but are not

scalable for multiple patterns. The AC algorithm pre-processes the patterns and

builds a finite automaton which can match multiple patterns simultaneously.

Another advantage of the AC algorithm is that it guarantees deterministic

2

performance under all circumstances. As a consequence, the AC algorithm is widely

adopted in various systems. In fact, both ClamAV [1], an open source for

virus/worm detection, and Snort [2], another open source for intrusion detection,

adopt the AC algorithm for string matching.

 As security attacks become sophisticated, regular expressions which are much

more expressive than plain strings were used to specify their signatures. It is well

known that a regular expression can be recognized with a non-deterministic finite

automaton (NFA), which is equivalent to a deterministic finite automaton (DFA).

There are some famous algorithms [11], [12] to construct an NFA recognizing a given

regular expression. However, NFA-based solutions are often inefficient on a

processor with limited parallelism. Hardware accelerators were proposed to

achieve high performance [13]-[22]. As an example, a high-performance

space-efficient FPGA-based implementation of NFA was presented in [14]. In this

design, the NFA is directly converted into logic gates and registers. Using powerful

Graphics Processing Units (GPUs) is another alternative to achieve high performance

[25]. GPUs are specialized for computationally-intensive and highly parallel

operations. DFA-based implementations result in fast signature matching but may

require a huge amount of memory space. In [26], a Delayed Input DFA (D2FA)
which uses default transitions, an idea similar to the failure transition of the AC

algorithm, was proposed to reduce the number of state transitions and hence the

space requirement of a DFA. A reduction of state transitions for more than 95% was

achieved with different sets of regular expressions used in real products. Although

the idea works for selected sets of regular expressions, it still has the risk of resulting

in a huge number of states. Two signature rewrite rules were suggested in [23] to

reduce the number of states in a DFA. A grouping algorithm was also provided to

reduce the number of DFAs for a given set of regular expressions.

 Fortunately, the regular expressions used to specify virus/worm signatures are

often simple ones. For example, the signatures defined in ClamAV allow only plain

strings and three operators: * (match any number of symbols), ? (match any

symbol), and {min, max} (match minimum of min, maximum of max symbols). The

AC algorithm was generalized to match such simple regular expressions in [24].

Unfortunately, the memory space requirement grows exponentially in the number of

* operators, which makes the generalized AC algorithm infeasible for virus/worm

scanning. The ClamAV implementation requires a small memory space. However,

its throughput performance is unacceptable for a large pattern set. Besides, it may

result in false negatives. A variation of the ClamAV implementation, called variable

3

height trie, was proposed to improve throughput performance [16]. It only

increases the speed of string matching and does not remove the possibility of false

negatives. The extended finite automata (XFA) proposed in [28] is a possible

solution for matching simple regular expressions. The XFA augment finite state

automata with finite scratch memory and instructions to manipulate this memory.

The ClamAV implementation and its variation and the XFA are related to our work

and, therefore, will be reviewed and compared with our design.

 The purpose of this paper is to present a high-performance, reasonable memory

requirement signature matching system for plain strings and simple regular

expressions that can be efficiently implemented on general-purpose processors. It

can be directly applied to anti-virus/worm applications for matching exploit

signatures or used as a matcher primitive for matching vulnerability signatures [29].

The proposed signature matching system consists of a pre-filter and a verification

module. It has space complexity comparable to NFA-based solutions. Compared

with the ClamAV implementation, the proposed signature matching system can

significantly improve system throughput performance. Compared with the variable

height trie and the XFA, our proposed system yields better throughput performance

with much less memory space requirement.

 The rest of this paper is organized as follows. Section II contains problem

definition. Related works are reviewed in Section III. Our proposed signature

matching system is presented in Section IV. Section V contains an efficient

compression scheme to reduce memory space requirement. Experimental results

are provided and discussed in Section VI. Finally, we draw conclusion in Section VII.

For completeness, the AC algorithm is briefly described in the Appendix.

4

Chapter 2.

Problem Definition

 We address in this paper the problem of detecting occurrence of a group of

plain strings and simple regular expressions in a given input string. The studied

regular expressions can only contain strings and three operators: *, ?, and

{ , }min max . It is assumed that every symbol is a byte. We only consider * and

{ , }min max operators because consecutive ? operators can be replaced with a

{ , }min max operator.

 We shall construct a signature matching system that can indicate the ending

position in a finite input string T for the occurrence of signature(s). Note that it is

possible for multiple signatures to be matched simultaneously. As in the AC pattern

matching machine, we need the goto function g, the failure function f, and the

output function output for the constructed signature matching system. Moreover,
to handle { , }min max operators, we shall define an additional fork function F .

5

Chapter 3.

Related Works

 The ClamAV implementation (and its enhancement) and the XFA are related to

our work and are reviewed separately below. For ease of description, we consider
three regular expressions 1RE = *ab cd , 2RE = *ef gh , and 3RE = {2,4}pq rs as

examples for this section.

A. ClamAV Implementation and Its Enhancement

 In ClamAV implementation, a regular expression is segmented into strings by the

three *, ?, and {min, max} operators. An AC automaton is constructed for the first

two bytes of all strings. As a result, strings are grouped based on their first two

bytes. When the first two bytes of some group are matched, a sequential search is
performed for all strings in that group. For 1RE , 2RE , and 3RE , there are six

strings ab , cd , ef , gh , pq , and rs , each of them forms a group. Figure 1(a)

shows the corresponding AC automaton. Note that the next move function (see

Appendix) is used for non-leaf states while the failure function (shown as dashed

lines) is required for leaf states. The failure function is consulted when no match is

found after searching sequentially the strings attached to a leaf state. The

information stored under a string includes its length, which regular expression it

belongs to, and the segment number of the string in the regular expression. Figure

1(b) illustrates the data structure used to represent regular expressions. For each

regular expression, we need to store the number of operators and the type of each

operator.

 During scanning, a data structure is maintained to indicate up to which segment

a regular expression had been matched and the position in the text of the last

matched segment. Consider a regular expression which consists of k segments.

Assume that the first e segments had been matched and the the segment ends at

the thi position of the text. Assume further that another segment is matched at
the thj position. This newly matched segment is discarded if it is not the (1)the +

segment or i and j do not satisfy the condition specified by the operator which

separates the the and the (1)the + segments. Consider 3RE as an example.

6

Assume that the first segment pq was matched for the first time after the thi

symbol is processed. If a segment is further matched at the thj position, then the

new match is discarded if it is not the second segment. Assume that it is the second
segment. A match of 3RE is found if 4 6j i≤ − ≤ . Otherwise, the new match is

discarded. Figure 1(c) shows the data structure used during scanning for our

example.

 Obviously, the memory space requirement of the ClamAV implementation is

small because the depth of the trie is only two. However, since all strings attached

to a leaf state are searched sequentially when the state is visited, the throughput

performance of ClamAV implementation degrades significantly when there are a

large number of signatures. Moreover, it is possible to generate false negatives.

For example, if the first segment of 3RE is matched for the second time at the thj

position and the second segment is matched at the thk position such that 6k j− = ,
then the match of 3RE is not detected.

255254…p…a…10

255254…p…a…10 255254…q…10

Leaf state Leaf state

ap pq

patterns patterns

Fail Fail

Segment #RE # Length Segment #RE # Length

255254…p…a…10

255254…p…a…10 255254…q…10

Leaf state Leaf state

ap pq

patterns patterns

Fail Fail

Segment #RE # Length Segment #RE # Length

(a)

regular expressions number of operators types of operators

1RE 1 *

2RE 1 *

3RE 1 {2, 4}

(b)

7

regular expressions matched segment position

1RE 1i 1p

2RE 2i 2p

3RE 3i 3p

(c)

Figure 1. Data structures of ClamAV implementation.

 A variable height trie was proposed to improve throughput performance of

ClamAV implementation [16]. The basic idea of the variable height trie is to build

the trie as deep as possible, subject to a maximum height constraint. By doing so,

the leaf states will be visited fewer times than the original ClamAV implementation.

Moreover, the number of strings under a leaf state can be significantly reduced.

Therefore, the time spent on sequential search is largely reduced. The tradeoff is

larger memory space requirement. It was found that a maximum height of 3 yields

good throughput performance with acceptable memory requirement.

B. XFA

 The idea of XFA is to use a finite scratch memory to remember various types of

information relevant to the progress of signature matching. One bit is augmented

for a * operator and a counter is added for a {min, max} operator. Figures 2(a)-2(c)
show the XFA recognizing 1RE , 2RE , and 3RE , respectively. As in [29], for

simplicity, some less important transitions are not shown in the XFA. For example,

the transition from state 2 to state 1 labeled with symbol a is omitted in Figure 2(a).
Note that a bit is augmented for (the * operator of) 1RE because one has to know

whether or not string ab was found before to determine if there is a match when
string cd is found. As shown in Figure 2(a), bit 1b augmented for 1RE is set if

state 0 is entered from state 1, meaning that ab occurs in input string. A match of

1RE is found if the XFA enters state 3 with bit 1 1b = . Similarly, the bit 2b

augmented for 2RE is set if state 0 in Figure 2(b) is entered from state 1 and a

match of 2RE is found if the XFA enters state 3 with bit 2 1b = . In Figure 2(c), the

transition from state 1 to state 2 activates a counter (augmented for 3RE) with

initial value zero. When the XFA is in state 2, the counter is incremented by one for

each processed input symbol. The counter stays at five if more than four input

8

symbols are processed. A match of 3RE is found if state 4 is visited and the

counter value is greater than one and smaller than five. Figure 2(d) shows the
combined XFA recognizing 1RE and 2RE . For convenience, a state is called a final

state if a match of some signature is found when it is entered, as long as all

conditions for the match are satisfied. For example, state 3 of Fig. 2(a) is a final
state because 1RE is matched if it is entered and the condition 1 1b = is true.

 XFA tries to combine the advantages of deterministic and non-deterministic

matching. The number of states for the combined XFA is roughly equal to the total

number of symbols in all signatures. This is an advantage of XFA. The tradeoff is

higher complexity during scanning.

 A potential problem of XFA is that it may result in false positives if there is no

mechanism to remember which sub-string sets an augmented bit. As an example, if

*RE ab bc= , then a false match will be detected for input string abc because the

first two bytes set the augmented bit and the last two bytes make XFA enter a final

state with the augmented bit set. The reason for such a problem is that a pattern

can occur starting from any position of the input string and, therefore, the start state

of XFA has to be always an active state. A second potential problem of XFA is that it
may have to maintain multiple counters for a { , }min max operator in order to avoid

false negatives. For example, if {4, 6}RE ab cd= , then up to three counters have

to be maintained. If only one counter is maintained for the first occurrence of ab ,

then ababababecd will not be detected. One can similarly show that false

negative is possible if up to two counters are maintained. Obviously, the situation

becomes worse if max is a large value.

0 2 3
c d

1

ab

bit=true

[^a]

if(bit)
{accept }1RE

(a)

9

0 2 3
g h

1

ef

bit=true if(bit)
{accept }2RE

(b)

[^e]

0 1 2

3 4

p q

s

[^p]

(c)

∑

if (counter≦6)
{counter++}

if(4≦counter≦6)
{accept }3RE

r
counter=0

0 2 3
c d

1

ab

bit1=true

[^aceg]

if(bit 1)
{accept }

(d)

1RE

5 6

4

f e

bit 2 = true

h

if(bit 2)
{accept }

g

2RE

Figure 2. XFA recognizing (a) 1RE , (b) 2RE , (c) 3RE , and (d) 1RE and 2RE .

Some less important transitions are not shown.

10

Chapter 4.

The Proposed Signature Matching System

 Our proposed signature matching system is an extension of the generalized AC

algorithm presented in a paper previously published by one of the authors [26].

The idea of the generalized AC algorithm is similar to that of XFA. A counter is
augmented for a { , }min max operator. However, no bit is augmented for any *

operator. Instead, multiple goto graphs are constructed so that information

relevant to the progress of signature matching is implicitly remembered by traversing

different goto graphs.

 The proposed signature matching system consists of a pre-filter and a

verification module which are described separately below. With a pre-filter, the

space complexity is largely reduced and the throughput performance can be

significantly improved, as compared with the generalized AC algorithm. For better

comprehension, we shall first describe verification module, then pre-filter, followed

by signature matching machine.

A. Verification Module

 The verification module is an enhancement of the AC algorithm. Before

describing the construction procedures for the four functions, i.e., goto, failure,

output, and fork, of the verification module, we define some terms which will be

used in this section.

 A regular expression is fragmented by * operators. For example, RE =

1 1 1 2 2 2 3{ , } { , }S min max S min max S * 4 5*S S 3 3{ , }min max 6S contains three fragments,

i.e., the first fragment 1 1 1 2 2 2 3{ , } { , }S min max S min max S , the second fragment 4S ,

and the third (or the last) fragment 5 3 3 6{ , }S min max S . A plain string is considered

to contain exactly one fragment. Let M denote the maximum number of *

operators in any regular expression. As a result, there are at most 1M +
fragments for each regular expression. Let iY , 0 i M≤ ≤ , be the set that contains

the thi fragments of all regular expressions. All plain strings are included in 0Y .

We need to construct the three functions for every iY . We shall only describe the

11

construction procedure for 0Y since it can be applied to other iY , 1 i M≤ ≤ .

Without loss of generality, assume that 0Y contains n plain strings 1R , 2R , …,

and nR and m regular expressions 1nR + , 2nR + , …, and n mR + which have only

{ , }min max operators. Moreover, among the n plain strings, the first 1n are

complete signatures and the last 2 1n n n= − are the first fragments of signatures

specified with regular expressions. Similarly, 1nR + , 2nR + , …, and
1n mR + are

complete signatures and
1 1n mR + + ,

1 2n mR + + , …, and n mR + are simply the first

fragments of multi-fragment signatures.

A.1 The goto function
 Let 0Z = 1 2 1 2{ , , , , , }n n n n lR R ..., R r r ..., r+ + + where n kr + is the first string of

n kR + , 1 k l≤ ≤ . As an example, if n kR + = 1 1 1 2 2 2 3{ , } { , }S min max S min max S , then we

have n kr + = 1S . A goto graph, denoted by 0G , is constructed with algorithm AC1

(see Appendix) for 0Z . Note that the self-loop at the start state, if exists, is

removed. More goto graphs are constructed for the remaining parts of n kR + ,

1 k l≤ ≤ . Let n k n kR r+ +− be the remaining part of n kR + . For example, if

n kR + = 1 1 1 2 2 2 3{ , } { , }S min max S min max S , then we have n k n kR r+ +− = 2 2 2 3{ , }S min max S .

The same procedure is performed recursively to construct the goto graphs for

n k n kR r+ +− assuming that 0 { }n k n kY R r+ += − . The only difference is that the

self-loop at the start states of goto graphs constructed for the remaining part of n kR +

remain intact. For the previous example where n k n kR r+ +− = 2 2 2 3{ , }S min max S , two

more goto graphs are constructed for 2{ }S and 3{ }S . For differentiation, a goto

graph constructed for the remaining part of some n kR + , 1 k l≤ ≤ , is called a

T graph. The construction of goto graphs for 0Y is completed after all the

remaining parts of n kR + , 1 k l≤ ≤ , are handled.

 Obviously, there are a total of 1M + G graphs, one for each iY . The G

graph constructed for iY is called the Level i G graph and denoted by iG .

Similarly, the T graphs constructed for iY are called the Level i T graphs.

The number of Level i T graphs is equal to the number of { , }min max operators

contained in iY . Figure 3 shows the goto graphs for 1RE abc= , 2 * *RE ab cd e= ,

3 * *RE bc ad e= , 4 *RE pqr vs= , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y= .

12

0 1

6 7 8
p q

a

r

2

b
3

c

4 5
b c

{2, 4}

G0

9 10 11 12 13

q r q s
{3, 5}

T0

[^q]

14 15 16

t u

T1

[^t]

17 18

c
19

d

20 21
a d

22
v

23
s

24
w

G1

25 26

e

27
x

{2, 6}

G2

13

28 29

y

T2

[^y]

Figure 3. The goto graphs for 1RE abc= , 2 * *RE ab cd e= , 3 * *RE bc ad e= ,

4 *RE pqr vs= , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y= .

A.2 The failure function

 As the procedure described above, there are two kinds of goto graphs: G graph

and T graph. However, not all goto graphs need failure function. For every Level i

graph iG , since it is constructed by the first substring of the thi fragment of all

signatures. If any failure occurs, it means that no substring is matched. Thus, there is
no failure function for iG .

 Besides, no failure function is needed for the case of T graphs with the value
of the min is equal to the max, take {4,4}RE ab cd= for example. Since RE is

matched only if expected number of symbols, that is, four symbols are apart from

substring ab with cd . If any failure occurs, RE is failed to match.

 However, for the case of T graphs with the value of the min is not equal to

the max , we construct goto function and failure function according to AC algorithm
with the substring followed by { , }min max operator.

A.3 The output function
 Consider the goto graph 0G . For every state P on graph 0G , let

()output P =∅ . If state P is represented by some iR , 11 i n≤ ≤ , then modify

()output P as () () { }output P output P i= ∪ . For every state P on a T graph

constructed for n k n kR r+ +− , we assign ()output P =∅ . Let n kr +′ be the last string

of n k n kR r+ +− . If goto graph T is constructed with { }n kr +′ for some k ,

11 k m≤ ≤ , then ()output P is modified as () () { }output P output P n k= ∪ + if state

P on graph T is represented by n kr +′ . In this paper, a state with non-empty

output will be referred to as a final state.

A.4 The fork function
 The fork function of state P , denoted by ()F P , is either empty or gives a

14

value min , another value max , and _forked state , the start state of some goto

graph T . Again, consider the goto graph 0G . For every state P on graph 0G ,

we set the fork function ()F P =∅ . If state P is represented by the first string of

n kr + , then ()F P is changed to minmin = , max = max , and _forked state = the

start state of the goto graph constructed with the second string of n kr + . Here,

min and max are, respectively, the minimum and maximum values of the
{ , }min max operator which separates the first and the second strings of n kr + . As

an example, assume that n kr + = 1 1 1 2 2 2 3{ , } { , }S min max S min max S and state P is

represented by string 1S . In this case, ()F P gives 1min min= , 1max max= and

_forked state = the start state of the goto graph constructed with 2{ }S . For a goto

graph T constructed for n k n kR r+ +− , we set ()F P =∅ for every state P on

graph T . Assume that n k n kR r+ +− contains i { , }min max operators.

Consequently, there are 1i + T graphs, called 1T , 2T , …, and i +1T , constructed

for n k n kR r+ +− . Let jT be constructed with 1{ }jS + and the minimum and

maximum values of the { , }min max operator which separates jS and 1jS + are

jmin and jmax , respectively. We change ()F P to give 1jmin min += ,

1jmax max += , and _forked state = the start state of goto graph 1+jT if state P is

on graph jT for some j i≤ and is represented by jS . For example, if

n k n kR r+ +− = 2 2 2 3{ , }S min max S , then there are two T graphs 1T and 2T such that

1T is constructed with 2{ }S and 2T is constructed with 3{ }S . The fork function

of state P on graph 1T which is represented by 2S gives 2min min= ,

2max max= , and _forked state = the start state of goto graph 2T . For

convenience, a state with non-empty fork function is called a fork state.

B. Pre-filter

 The pre-filter adopted in this paper is an extension of the stateful design

proposed previously by the authors [Lee and Huang]. Some strings are extracted

from signatures to build two pre-filters, called Pre-Filter 1 and Pre-Filter 2. We call

a string that is used to build Pre-Filter i a Pre-Filter i pattern. A string is a
Pre-Filter 1 pattern iff it is the first string of some element in 0Y . A string that is

the first string of any element in iY for some i , 1 i M≤ ≤ , is a Pre-Filter 2 pattern.

We describe the construction of Pre-Filter 1 because Pre-Filter 2 can be constructed

similarly.

15

 The bytem − prefix of every Pre-Filter 1 pattern is used to construct Pre-Filter
1. A parameter k ()m< , called block size, is selected. Given block size k ,

1m k− + membership query modules, denoted by 0MQ , 1MQ , …, and m kMQ − , are

built for Pre-Filter 1. Let 0 1 1... m
i i ia a a − be the bytem − prefix of Pre-Filter 1 pattern

iA . The sub-string 1 1...j j j k
i i ia a a+ + − is a member of jMQ , 0 j m k≤ ≤ − . Each

iMQ is implemented with a bitmap. A hash function HASH is used to build the

membership query modules. The thh bit of jMQ is set to 1 iff there exists pattern

iA such that h = 1 1(...)j j j k
i i iHASH a a a+ + − . Consequently, a membership query

module reports a 1 if the query result is positive or 0 otherwise.

Note that, depending on pre-filter patterns, the lengths of prefix and block sizes used
to construct Pre-Filter 1 and Pre-Filter 2 can be different. We use im and ik to

represent, respectively, the length of prefix and block size adopted for Pre-Filter i .

The membership query modules built for Pre-Filter i are denoted by 0
iMQ ,

1
iMQ , …, and

i

i
wMQ , where i i iw m k= − .

C. The signature matching machine

 During scanning, a set of goto graphs called _Active Graphs is maintained.
Only G graphs can be contained in _Active Graphs . Initially, we have

0_ {G }Active Graphs = . Depending on the content of _Active Graphs , the

operation of pre-filters has two modes, i.e., Mode 1 and Mode 2. It is operated in
Mode 1 if 0_ {G }Active Graphs = or Mode 2 otherwise. Initially, we have

0_ {G }Active Graphs = and, therefore, the operation is in Mode 1. A master bitmap

1MB of size 1 1w + is used in Mode 1 operation. In Mode 2 operation, an
additional master bitmap 2MB of size 2 1w + is required. The purpose of using

master bitmaps is to accumulate results obtained from previous queries to improve
throughput performance. To simplify the operation, we choose the same block size
for both pre-filters, i.e., 1 2k k k= = . We describe the pre-filter operation for

1 2m m> . This is the case in our experiments. The operation for the case 2 1m m>
is similar. There is only Mode 2 operation if 1 2m m= .

16

 In Mode 1 operation, only Pre-Filter 1 is needed. The initial content of 1MB is

set as 1 11w + , where xb means bit b repeats x times. A search window W of
length 1m is used to scan the input text string. Fig. 5 shows the architecture of the

Pre-Filter 1 for m = 6 and k = 3. Initially, the symbols contained in the search

window is
11 2... mt t t , where it is the thi symbol of input text string. Let

11...i i i mt t t+ +

be the symbols of input text string contained in search window W . The sub-string

1 1 11 2...i m k i m k i mt t t+ − + + − + + is used to query 1
0MQ , 1

1MQ , …, and
1

1
wMQ . Let iqb be the

report of 1
iMQ and QB =

10 1... wqb qb qb . Further, let 1MB =
1

1 1 1
0 1 ... wmb mb mb .

After the query result QB is obtained, we perform 1MB = 1MB ⊗ QB , where ⊗

is the bitwise AND operation. A suspicious sub-string is found and the verification

module is invoked if
1

1
wmb = 1. The search window W is advanced by 1 1w +

positions if 1
imb = 0 for all i , 10 1i w≤ ≤ − , or 1w r− positions if rmb = 1 and

imb = 0 for all i , 1r i w< ≤ . In other words, the window advancement is
determined by the rightmost 1 of imb , 10 1i w≤ ≤ − , if at least one of them is a 1.

If W is advanced by g positions, 1MB is updated as 1 11 |gMB MB g= >> , where

“|” represents concatenation and 1MB x>> means master bitmap 1MB is

right-shifted by x bits. Assume that
1

1
wmb = 1 and the verification module is

invoked. If no match is found, then the window advancement g is equal to 1 1w +

if 1
imb = 0 for all i , 10 1i w≤ ≤ − , or 1w r− if rmb = 1 and imb = 0 for all i ,

1 1r i w< ≤ − . Assume that a match is found. If a complete signature is matched,

then the scanning process ends. Otherwise, the match is only the first fragment of a
multi-fragment signature. In this case, goto graph 1G is added to _Active Graphs ,

the information of the matched fragment (including the signature it belongs to and the
ending position in input text string) are recorded, search window is advanced as if no
match is found, and the scanning process continues according to Mode 2 operation.
Let *t be the symbol of input text string which is the first symbol contained in
search window, after advancement. For simplicity, the above rule of window
advancement will be referred to as window advancement according to the content of
(updated) 1MB .

17

ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7… …T=

1
0MQ 1

0mb 1
1MQ 1

1mb 1
2MQ 1

2mb 1
3MQ 1

3mb

AND AND AND AND

Rightmost 1 detector Verification
moduler

(window advancement g=w1-r)

1
1 1 1 1
0 1 2 3

Master bitmap MB
mb mb mb mb=

W

1

ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7… …T=

1
0MQ 1

0mb 1
1MQ 1

1mb 1
2MQ 1

2mb 1
3MQ 1

3mb

AND AND AND AND

Rightmost 1 detector Verification
moduler

(window advancement g=w1-r)

1
1 1 1 1
0 1 2 3

Master bitmap MB
mb mb mb mb=

W

1

Figure. 4. The stateful pre-filter architecture for m = 6 and k = 3.

 In Mode 2 operation, both Pre-Filter 1 and Pre-Filter 2 are used. The content of

the second master bitmap 2MB is set as 2 11w + initially. Another search window

W ′ of length 2m is adopted for scanning input text string, starting from symbol *t .

Let
21...i i i mt t t+ + be the symbols of input text string contained in search window W ′ .

The sub-string
2 2 21 2...i m k i m k i mt t t+ − + + − + + is used to query 1

iMQ , 10 i w≤ ≤ , and 1
iMQ ,

20 i w≤ ≤ . Let 1QB and 2QB be the query results reported by Pre-Filter 1 and
Pre-Filter 2, respectively. Note that, since the length of W ′ is 2m , only the results

reported by 1
iMQ , 20 i w≤ ≤ , can be utilized to check if a suspicious sub-string

which potentially matches the first fragment of some signature is found. In other
words, Pre-Filter 1 has to be used as if its membership query modules were built with

2 bytem − prefixes of all Pre-Filter 1 patterns. Therefore, after 1QB and 2QB are

obtained, we perform 1MB = 1MB ⊗ 1QB , 1 2
1 1 1 21 |w wMB MB w w−= >> − , and

2MB = 2MB ⊗ 2QB . For convenience, we shall use 1 2R MB MB= ⊕ to represent a
bitmap of length 2 1w + which is obtained by bitwise ORing the rightmost 2 1w +
bits of 1MB with 2MB . There are four possible cases.

18

Case 1.
1

1
wmb = 0 and

2

2
wmb = 0.

 If
1

1
wmb = 0 and

2

2
wmb = 0, then no suspicious sub-string is found. The window

advancement g is determined according to the content of R . The scanning

process continues after performing 1 11 |gMB MB g= >> and 2 21 |gMB MB g= >> .

Case 2.
1

1
wmb = 1 and

2

2
wmb = 0.

 The situation is the same as Mode 1 operation if
1

1
wmb = 1 and

2

2
wmb = 0. The

difference is that window advancement g is determined according to the content of

R . If no signature is matched, then the scanning process continues after performing

1 11 |gMB MB g= >> and 2 21 |gMB MB g= >> .

Case 3.
1

1
wmb = 0 and

2

2
wmb = 1.

 If
1

1
wmb = 0 and

2

2
wmb = 1, then all the goto graphs contained in

_Active Graphs , except 0G , are traversed concurrently. Assume that goto graph

iG (1i ≥) is contained in _Active Graphs and a match is found in traversing iG .

The scanning process ends if a complete signature is matched. Otherwise, only the

thi fragment of some signature, say n kR + , is matched. In this case, we check if the

(1)thi − fragment of n kR + was matched. If it is true, then the matched fragment is

recorded and the traversal on graph iG ends. If no complete signature is matched

for all concurrent traversals, then the scanning process continues after performing

1 11 |gMB MB g= >> and 2 21 |gMB MB g= >> , where g is the window

advancement determined according to the content of R .

Case 4.
1

1
wmb = 1 and

2

2
wmb = 1.

 The operation for the case
1

1
wmb = 1 and

2

2
wmb = 1 is the same as that for Case 3,

except that goto graph 0G is included in concurrent traversals. The scanning

process ends if a complete signature is matched. Assume that only a fragment of

19

some signature is matched. In this case, we check if the preceding fragment of the
same signature was matched. If it is true, then the newly matched fragment is
recorded. In case no complete signature is matched, the window advancement g is

determined according to the content of R and the scanning process continues after

performing 1 11 |gMB MB g= >> and 2 21 |gMB MB g= >> .

 Note that the pre-filters can work correctly without master bitmaps. However,

with master bitmaps, the search window can be advanced by more positions,

compared with the implementation without it. Consider for example Pre-Filter 1
with 1m = 8 and 1k = 3. Assume that the results of the first and the second

queries (both in Mode 1) are 101010 and 001010, respectively. Without master
bitmap 1MB , W is advanced by one position after each query. On the other hand,

with 1MB , it is advanced by one position after the first query and six positions after

the second query. Initially, the master bitmap 1MB = 111111. It becomes

110101 after the first query. Since the results of the second query is 001010, the
content of 1MB becomes 000000, after the bitwise AND operation. Therefore, the

search window W is advanced by six positions and the content of master bitmap is

updated as 111111. It was proved that the implementation with master bitmap is

optimal in the sense that it is equivalent to using all previous query results.

 Now we describe the operation of verification module. Assume that the

pre-filters find a suspicious sub-string and the verification module is invoked.

Consider Mode 1 operation or Case 2 of Mode 2 operation. For these two cases,
only goto graph 0G is traversed. The traversal on graph 0G ends if a complete

signature is matched or the failure function is consulted. If a fork state is visited,

the fork function will give the start state of some T graph. At this moment, a

process is forked to concurrently traverse the T graph, from its start state. (New

Example Is Needed. As an example, consider the goto graphs shown in figure. 4.
A process is forked to traverse graph 0T if state 9 is visited. As another example, a

process is forked to traverse graph 1T if state 4 of 0T is visited.) If a state whose

representing string matches the first fragment of kR for some k , 1 1n k n+ ≤ ≤ , is

visited, then goto graph 1G is put in _Active Graphs so that it will be traversed if

succeeding suspicious sub-strings which falls in Case 3 or Case 4 of Mode 2 operation

is found by the pre-filters. In this case, the information of the matched fragment,

including the signature it belongs to and the ending position in input text string, are

recorded.

20

 Traversal on a goto graph T is as follows. Let min and max be,

respectively, the minimum and the maximum values given by the fork function of the

state visited that causes a forked process to traverse graph T . A counter ctr is

maintained when traversing graph T . The content of ctr is initialized to min

and the next min symbols are skipped. The counter is increased by one if the

current state is the start state of T and it returns to the same state after an input

symbol is processed. Assume that the failure function is consulted in state P. Let
PS denote the string representing state P and | |S be the length of string S .

The content of ctr is updated as ctr = ctr + increment , where increment = | |PS

- ()| |f PS . The traversal ends if a match of signature is found or ctr > max . If a

fork state is visited, then one more process is forked to traverse another T graph,

from its start state given by the fork function. Assume that graph T is
constructed with { }S , where S is the last string of the first fragment of n kR + for

some k , 1 1l k l+ ≤ ≤ . If the state represented by string S is visited, meaning

that the first fragment of n kR + is matched, the information of the matched fragment

is recorded.

 It is possible that no complete signature is matched when traversals end. In

this case, the pre-filters resume their execution according to Mode 2 operation.

 The operations for Case 3 and Case 4 of Mode 2 are similar. Traversal on goto
graph 0G is exactly the same as that described above. Traversal on Level i

(1)i ≥ graphs are similar to those on Level 0 graphs. The difference is that we

need to check whether or not it is a true match when a match of the thi fragment of

some signature is found. Assume that the thi fragment of n kR + , 1 1l k l+ ≤ ≤ , is

matched when traversing some Level i graph. It is a true match only if the

(1)thi − fragment of n kR + was matched previously and the starting position of the

newly matched thi fragment is greater than the ending position of the previously
matched (1)thi − fragment. If it is a true match, then the information of the thi
fragment of n kR + is recorded and goto graph i +1G is added to _Active Graphs if

n kR + has more than i fragments.

21

Chapter 5.

Compression of Goto Graph

 The G graphs, especially 0G , are likely to have a large number of states for a

large signature set. Therefore, a straightforward implementation using a

two-dimensional table requires a huge amount of memory space. In this section,

we present a compression scheme which can significantly reduce the memory space

requirement.

 Consider graph 0G . (The other G graphs can be compressed similarly.) In our

proposed compression scheme, states are classified according to the number of child

states. State P is said to be a branch state, a single-child state, or a leaf state, if it

has at least two child states, exactly one child state, or no child state, respectively.

A single-child state P is a first single-child state if its parent state is a branch state.

Finally, state P is said to be an explicit state if it is the start state, a branch state, a

first single-child state, a final state, a fork state, or a fragment-end state, i.e., a state
represented by iR for some i , 1 1n i n+ ≤ ≤ . We store all strings in 0Z and

some data structures for the explicit states. Note that every final state, fork state,

and fragment-end state has to be a branch state, a single-child state, or a leaf state.

 The strings in 0Z are stored contiguously in a 0_ _compacted G strings file.

For example, if 0Z ={ , , , } he she his hers , then the 0_ _compacted G strings file is

simply heshehishers . Similar to the AC bnfa− scheme adopted by Snort, branch

states are further classified into Branch_2, Branch_3, Branch_4, Branch_5, and

Branch_256 states. State P is a Branch_i (2 5i≤ ≤) state if it has exactly i
children states. For such a state, we store i pairs of (,)symbol next state . If

state P has more than five children states, it is classified as a branch_256 state and

we store sequentially 256 next states corresponding to 256 possible input symbols.

Note that the next state could be the END state for some input symbols. Our

experimental results show that there are only a small number of branch_256 states

and the number of children states is much larger than five for most branch-256 states.

By storing all the 256 next states, we waste a little memory space but achieve

high-speed look-up for state transition. Assume that state P is a single-child state

with representing string PS . Let iA be the first string in 0Z which contains

22

PS as a prefix. For state P , we store (,)position distance , where position is

the position of the | |P thS byte of iA in the 0_ _compacted G strings file and

distance is the number of bytes from state P to its nearest descendent explicit

state, i.e., the explicit state whose representing string is the shortest one which

contains PS as a proper prefix.
 Finally, for each leaf state, we basically store nothing but an identifier to indicate

that it is a leaf state. Of course, every explicit state needs flags to indicate whether

or not it is a final state, a fork state, and/or a fragment-end state. For a final state,

we need to store the identification of the matched signature(s). For a fork state, the

minimum and the maximum values as well as the starting state of some T graph to
be traversed are stored. Note that the number of states on the compressed 0G

graph is equal to the number of explicit states, which normally is much smaller than
the number of states in the original 0G graph constructed with algorithm AC1. As

a result, the memory requirement is significantly reduced.

 Since every T graph is constructed with a single string, the memory space

requirement is small. Precisely speaking, we don’t create states for T graphs

actually, since there is no explicit state during transition in T graphs. All we need to

store is an array of input symbols, failure function, and counter increment when the

failure function is consulted.

23

Chapter 6.

Experimental Result

 In this section, we compare the performance of our proposed signature

matching system with that of the ClamAV implementation and its enhancement [?].

Both throughput performance and memory requirement are compared. Programs

are coded in C++ and the experiments are conducted on a PC with an Intel Pentium 4

CPU operated at 2.02GHz with 1.75GB of RAM.

 We traced the ClamAV implementation, extracted the ideas, and re-wrote the

codes for our experiments. In the ClamAV implementation, a trie of height two is

constructed for the first two bytes of all patterns based on AC pattern matching

machine. Effectively, patterns are grouped based on their first two bytes. The

failure function for non-leaf states is eliminated because the next move function δ
is adopted. The next move function δ is defined as (,) (,)P g Pδ σ σ= if

(,)g P failσ ≠ or (,) ((),)P f Pδ σ δ σ= otherwise. When the first two bytes of

some group are matched, a sequential search is performed for all patterns in the

group. Different from our proposed scheme, a regular expression is fragmented by

the three *, ?, and {min, max} operators. A data structure is maintained to indicate

up to which fragment a regular expression had been matched and the position in the

text of the last matched fragment. Consider a regular expression which consists of k

fragments. Assume that the first e fragments had been matched and the the

fragment ends at the thi position of the text. Assume further that another
fragment is matched at the thj position. This newly matched fragment is

discarded if it is not the (1)the + fragment or i and j do not satisfy the condition

specified by the operator which separates the the and the (1)the + fragments. As
an example, consider a regular expression RE = 1sre ? 2sre {2,4} 3sre {3,5} 4sre .

Assume that the first fragment 1sre was matched at the thi position of the text.

If the second fragment 2sre is matched at the 2(| | 1)thi sre+ + position, then the

data structure will be updated to indicate that the first two fragments are matched

and the position of the second fragment is matched at the 2(| | 1)thi sre+ + position.

 Assume that a fragment is further found at the thj position, then the data
structure is further updated only if it is the third fragment 3sre and j satisfies

2≤ j-i-| 2sre |-| 3sre |-1≤4. Otherwise, the newly matched fragment is discarded

and the data structure remains intact.

24

 Note that, strictly speaking, the ClamAV implementation may result in false

negatives. For example, consider the same regular expression
RE= 1sre ? 2sre {2,4} 3sre {3,5} 4sre and assume that the input text is

1 1 2 3 4sre sre asre abcsre abcdsre . There is obviously a match starting at the 1(1)thsre +

position. However, the Clam AV implementation does not detect the match

because the second 1sre will be discarded when it is found.

 The performance of ClamAV implementation can be improved by using variable

height trie [Avfs]. The variable height trie requires more memory space for larger

maximum heights. It was found that a trie with maximum height three is a good

tradeoff between throughput performance and space requirement. Therefore, we

shall compare our proposed system with tries of maximum height two and three.

Figure 5. Performance comparison of ClamAV implementation and our proposed
signature matching system for clean files of various sizes.

 Figure 5 shows the comparison of CPU execution time for randomly generated

files of various sizes without any signature occurrence. It can be seen that the CPU

execution time is proportional to file size. The CPU time required by the ClamAV

implementation is about 20 times of that required by our proposed system. Figure

25

6 illustrates similar comparison with a string 1 1S abcdeS ′ inserted into a randomly

generated file of size slightly larger than 2M bytes to match a signature (W32.Gop) of
the form RE = 1 1*S S ′ . Again, the CPU execution time required by the ClamAV

implementation is about 20 times of that required by our proposed system. We
also conducted simulations with a string 1 1S abcdeS ′ inserted at various positions to

match a signature (DOS.Bg-2) of the form RE = 1 1{1,6}S S ′ . The results are similar.

We expect the performance improvement to become larger as the number of

signatures increases. The reason is that, in ClamAV implementation, the number of

strings in a group with identical first two bytes increases as the number of signatures

increases. Since the ClamAV implementation performs sequential search for strings

in the same group, it consumes more CPU time to find the match in a larger group.

 As for memory requirement, ClamAV implementation uses 362K bytes and our

proposed system uses about 1.94M bytes. The pre-filter requires 128K bytes and

the verification module needs 1.8M bytes. There are 2,486 final states and,

therefore, the output function takes about 5K bytes. (In our implementation, we

use two bytes for signature ID.) We believe the amount of memory required by our

proposed signature matching system is acceptable for practical systems.

Figure 6. Performance comparison of ClamAV implementation and our proposed
signature matching system with a string 1 1S abcdeS ′ in various place of file.

26

Chapter 7.

Conclusion

 We have presented in this paper a systematic approach to construct a signature

matching system for simple regular expressions which are used to define virus/worm

signatures in ClamAV. Like the Aho-Corasick algorithm, the verification module of

our proposed system is dictated by three functions, namely, the goto, failure, and

output functions. Experimental results using ClamAV signatures show that,

compared with the ClamAV implementation and its enhancement, our proposed

system achieves much better throughput performance while requiring an acceptable

amount of memory.

 Our work presented in this paper provides some guidelines for writing

signatures. For example, the non-overlapping condition is very important in

reducing the space complexity. In case the non-overlapping condition is to be

violated, one should minimize the number of * operators in those overlapped

signatures. As another example, the throughput performance can be largely

improved for long pre-filter patterns. Extension of our work to other types of

signatures is an interesting and useful further research topic.

27

Appendix: The Aho-Corasick Algorithm
The Aho-Corasick (AC) algorithm is dictated by three functions: a goto function g, a

failure function f, and an output function output. Fig. A.1 shows the three

functions for the pattern set Y = {he, she, his, hers} [9].

0 1 2 8 9
h e r s

7

3 4
h

6
fsi

s
5

e

[^hs]

(a)

R 1 2 3 4 5 6 7 8 9

f(R) 0 0 0 1 2 0 3 0 3

(b)

R output(R)

2 {he}

5 {she, he}

7 {his}

9 {hers}

(c)

Fig. A.1. (a) goto function, (b) failure function, and (c) output function for Y = {he, she,

his, hers}.

Some definitions are needed. Let 1 2S S represent concatenation of strings 1S and

2S . We say 1S is a prefix and 2S is a suffix of the string 1 2S S . Moreover, 1S

is a proper prefix if 2S is not empty. Likewise, 2S is a proper suffix if 1S is not

empty. One state, numbered 0, is designated as the start state. String PS is said
to represent state P on a goto graph if the shortest path from the start state to state

P spells out PS . For example, string her represents state 8 in Fig. 1. The start
state is represented by the empty string ε . The length of string S is represented by

| |S .

Note that there might be a self-loop at the start state of a goto graph. However, it

28

becomes a tree after removing the self-loop, if exists. In the following definitions,
we ignore the self-loop. We call state 1P the parent of state 2P and state 2P the

child of state 1P if there exists a symbol σ such that 1 2(,)g P Pσ = . State 2P is

said to be a descendent of state 1P and state 1P an ancestor of state 2P if 1PS is

a proper prefix 2PS . The tree which consists of state P and all its descendant states
is called the sub-tree of P.

The goto function g maps a pair (state, input symbol) into a state or the message fail.

For the example shown in Fig. A.1, we have g(0, h) = 1 and g(1,σ) = fail if σ is not

e or i. State 0 is a special state which never results in the fail message. With this

property, one input symbol is processed by the AC algorithm in every operation cycle.

The failure function f maps a state into a state and is consulted when the outcome of

the goto function is the fail message. We have 1 2()f P P= if and only if (iff) 2PS is

the longest proper suffix of 1PS that is also a prefix of some pattern. The output
function maps a state into a set (could be empty) of patterns. The set output(P)

contains a pattern if the pattern is a suffix of PS .

Let 1P be the current state and σ the current input symbol. Also, let T denote

the input string. Initially, the start state is assigned as the current state and the first

symbol of T is the current input symbol. An operation cycle of the AC algorithm is

defined as follows.
1. If 1 2(,)g P Pσ = , the algorithm makes a state transition such that state 2P

becomes the current state and the next symbol in T becomes the current
input symbol. If 2()output P ≠ ∅ , the algorithm emits the set 2()output P .

The operation cycle is complete.
2. If 1(,)g P failσ = , the algorithm makes a failure transition by consulting the

failure function f. Assume that 1 2()f P P= . The algorithm repeats the

cycle with 2P as the current state and σ as the current input symbol.

It can be shown that the maximum number of state transitions is 2 1n − for
scanning if | |T n= . This number can be reduced to n if the next move function

δ is adopted. The next move function is defined as (,) (,)P g Pδ σ σ= if

(,)g P failσ ≠ or (,) ((),)P f Pδ σ δ σ= otherwise.

The procedures to construct the goto, failure, and output functions are described in

29

Algorithms AC1 and AC2 below [9]. The goto function and the failure function are

constructed, respectively, in Algorithms AC1 and AC2. The output function is

partially constructed in Algorithm AC1 and completed in Algorithm AC2.

Algorithm AC1. Construction of the goto function.
Input. Set of keywords 1 2{ , ,..., }kY y y y= .

Output. Goto function g and a partially computed output function output.

Method. We assume output(P)=∅ when state P is first created, and g(P, σ) = fail if

σ is undefined or if g(P,σ) has not yet been defined. The procedure enter(y)

inserts into the goto graph a path that spells out y.

begin

 newstate ← 0
 for i ← 1 until k do ()ienter y

 for all σ such that g(0,σ) = fail do g(0,σ) ← 0

end
procedure 1 2(...)menter a a a :

 begin

 state ← 0; j ← 1

 while (,)jg state a fail≠ do

 begin

 state ← (,)jg state a

 j ← j + l

 end

 for p ← j until m do

 begin

 newstate ← newstate + 1

 (,)pg state a ← newstate

 state ← newstate

 end
 output(state) ← 1 2{ ... }ma a a

 end

Algorithm AC2. Construction of the failure function.

Input. Goto function g and output function output from Algorithm 1.

30

Output. Failure function f and output function output.

Method.

 begin

 queue ← empty

 for each σ such that g(0,σ) = P ≠ 0 do

 begin

 queue ← queue∪{P}

 f(P) ← 0

 end

while queue ≠ empty do

 begin

 let R be the next state in queue

 queue ← queue - {R}

 for each σ such that g(R,σ) = P ≠ fail do

 begin

 queue ← queue∪{P}

 state ← f(R)

 while g (state,σ) = fail do state ← f(state)

 f(P) ← g(state,σ)

 output(P) ←output(P)∪output(f(P))

 end

 end

 end

31

References

[1] Clam anti virus signature database, www.clamav.net.

[2] SNORT system, www.snort.org.

[3] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the spread

and victims of an Internet worm,” in Proc. ACM/USENIX Internet Measurement

Workshop, France, Nov. 2002.

[4] CAIDA. Dynamic graphs of the Nimda worm.

http://www.caida.org/dynamic/analysis/security/nimda.

[5] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “Inside

the Slammer worm,” IEEE Security and Privacy, 1(4): 33-39, July 2003.

[6] S. E. Schechter, J. Jung, and A. W. Berger, "Fast detection of scanning worm

infections," 7th International Symposium on Recent Advances in Intrusion

Detection (RAID), French Riviera, September 2004.

[7] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,” TR

CS-74-440, Stanford University, Stanford, California, 1974.

[8] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, Vol. 20, October 1977, pp. 762-772.

[9] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, Vol. 18, June 1975, pp. 333-340.

[10] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Technical

Report, May 1994.

[11] K. Thompson, “Programming techniques: Regular expression search algorithm,”

Commun. ACM, 11(6):419-422, 1968.

[12] V. M. Glushkov, “The abstract theory of automata,” Russian Mathematical

Surveys, 16:1-53, 1961.

[13] R. W. Floyd and J. D. Ullman, “The compilation of regular expression into

integrated circuits,” Journal of ACM, vol. 29, no. 3, pp. 603-622, July 1982.

[14] R. Sidhu and V. Prasanna, “Fast regular expression matching using FPGAs,” in

Field-Programmable Custom Cuomputing Machines (FCCM), April 2001.

[15] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuit for

matching complex network intrusion detection patterns,” Proceedings of 13th

International Conference on Field Programmable Logic and Applications, 2003.

[16] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok, “Avfs: An on-access anti-virus file

system,” USENIX Security Symposium, 2004.

[17] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and

high-speed NIDS pattern matching,” IEEE Symposium on Field Programmable

Custom Computing Machines, Napa, CA, 2004.

[18] P. Sutton, “Partial character decoding for improved regular expression matching

http://www.clamav.net/�
http://www.snort.org/�

32

in FPGAs,” in IEEE International Conference on Field Programmable Technology

(FPT), Dec. 2004.

[19] S. Yusuf and W. Luk, “Bitwise optimized CAM for network intrusion detection

systems,” Proceedings of 15th International Conference on Field Programmable

Logic and Applications, 2005.

[20] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for

high-throughput regular-expression pattern matching,” ISCA, 2006.

[21] C. H. Lin, C. T. Huang, and S. C. Chang, “Optimization of regular expression

pattern matching circuits on FPGA,” in Proc. Of Conference on Design,

Automation and Test in Europe, 2006.

[22] J. Moscola, Y. H. Cho, and J. W. Lockwood, “A scalable hybrid regular expression

pattern matcher,” in Field-Programmable Custom Computing Machines (FCCM),

2006.

[23] J. C. Bispo, I. Sourdis, J. M. Cardoso, and S. Vassiliadis, “Regular expression

matching for reconfigurable packet inspection,” in IEEE International

Conference on Field Programmable Technology (FPT), Dec. 2006.

[24] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspection,” in

Proc. of Architectures for Networking and Communications Systems (ANCS), pp.

93-102, 2006.

[25] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High speed pattern matching

for network IDS/IPS,” IEEE International Conference on Network Protocols,

2006.

[26] T. H. Lee, “Generalized Aho-Corasick algorithm for signature based anti-virus

applications,” IEEE ICCCN 2007.

[27] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Joannidis,

“Gnort: High performance network intrusion detection using graphics

processors,” In Recent Advances in Intrusion Detection (RAID), 2008.

[28] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, ”Algorithms to

accelerate multiple regular expressions matching for deep packet inspection,”

ACM SIGCOMM 2006.

[29] J. Rejeb and M. Srinivasan, “Extension of Aho-Corasick algorithm to detect

injection attacks,” SCSS (1) 2007.

[30] R. Smith, C. Estan, and S. Jha, “XFA: Fast signature matching with extended

automata,” In IEEE Symposium on Security and Privacy, May 2008.

[31] T. H. Lee and N. L. Huang, 2008, “An efficient and scalable pattern matching

scheme for network security applications,” IEEE ICCCN Workshop, 2008.

[32] N. Schear, D. Albrecht, and N. Borisov, “High-speed matching of vulnerability

http://www.informatik.uni-trier.de/~ley/db/conf/cisse/scss2007-1.html#RejebS07�

33

signatures,” In Recent Advances in Intrusion Detection (RAID), 2008.

[33] M. Norton, “Optimizing pattern matching for intrusion

detection,” http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf,

July 2004.

[34] J. E. Hopcroft and J. D. Ullman, “Introduction to automata theory, languages,

and computation,” 2nd edition, Addison-Wesley, 2001.

http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf�

	封面
	論文目錄(建碩)
	論文初稿(建碩)
	Appendix: The Aho-Corasick Algorithm

