
國 立 交 通 大 學 

 
電 信 工 程 學 系 碩 士 班 

碩 士 論 文 

 

 

針對簡單正規表示式之字串比對演算法 

 

An Algorithm for simple regular expression 

matching 

 

 

研究生  ：林建碩 

指導教授：李程輝 教授 

 

 

中華民國九十九年六月 



i 
 

針對簡單正規表示式之字串比對演算法 
 

學生: 林建碩            指導教授：李程輝教授 

 
國立交通大學 

電信工程學系碩士班 

摘要 

 字串比對的技術，由於能準確地偵測出關鍵字，是現今在防毒/防蟲技術上

的重要應用。在眾多有名的字串比對演算法中，Aho-Corasick (AC)演算法，是一

個能夠同時比對多重字串，並且在各種環境之下都能夠保證穩定的輸出表現的演

算法。然而 AC 演算法是根據純粹字串的比對來設計的，如此對於以正規表示式

來表示的病毒/蠕蟲卻無法直接應用。 

 在本篇論文中，我們使用有系統的演算法，來建構一個字串比對系統，並針

對有限長度且可用簡單正規表示式之字串。所提出之系統包含預先過濾器及驗證

模組。經由預先過濾器，系統可快速的略過明顯不含字串的文件範圍，且在掃瞄

到可疑字串之起始位置時回報給驗證模組；驗證模組為 AC 演算法的延伸，其中

包含了多階層的狀態轉移圖，以及和階層的狀態轉移圖相關的分岔函數。在掃描

的過程，可同步處理不同階層的狀態轉移圖。 

 實驗結果顯示，我們所提出的演算法跟 ClamAV、及加強之 ClamAV、延伸

有限自動狀態機(XFA)比較，我們的系統具有較佳的處理效能並且擁有滿意之記

憶體占用大小。 
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ABSTRACT 

 Because of its accuracy, pattern matching is considered an important technique 

in anti-virus/worm applications.  Among some famous pattern matching algorithms, 

the Aho-Corasick (AC) can match multiple patterns simultaneously and guarantee 

deterministic performance under all circumstances.  However, the AC algorithm was 

developed for strings while virus/worm signatures could be specified by simple 

regular expressions.  In this paper, we enhance the AC algorithm to systematically 

construct a signature matching system which can indicate the ending position in a 

finite input string for the occurrence of virus/worm signatures that are specified by 

strings or simple regular expressions.  The regular expressions studied are those 

adopted in ClamAV for signature specification.  Our proposed signature matching 

system consists of a pre-filter and a verification module.  The purpose of pre-filter is 

to quickly exclude the parts of input string which obviously do not contain signatures 

and find the starting positions of suspicious sub-strings which may result in match of 

some signatures.  The verification module is an extension of the AC algorithm that 

consists of multiple levels of goto graphs.  Goto graphs in the same level are 

connected by a novel fork function.  Those in different levels could be traversed 

concurrently.  Experimental results show that, compared with ClamAV 

implementation and its enhancement and the extended finite automaton (XFA), our 

proposed system yields better throughput performance with acceptable memory 

requirement. 
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Chapter 1.  
 

Introduction 

 
 Because of the rapid advances of computer and network technologies, modern 

computer viruses/worms can spread at a speed much faster than human-mediated 

responses.  Various viruses/worms such as Code Red [3], Nimda [4], and Slammer [5] 

that were detected in recent years infected hundreds of thousands of computers on 

the Internet in a very short period of time and caused huge economic loss to our 

society.  Fast and effective detection of viruses/worms as they are spreading is, 

therefore, necessary to prevent the majority of vulnerable systems from being 

infected and minimize the damage. 

 

 Behavior anomaly and signature matching are two major techniques for 

virus/worm detection.  Behavior anomaly can be used to detect and prevent the 

outbreak of an attack because an infected host is likely to behave differently from a 

normal host.  For example, a host infected by some virus/worm may try to infect 

other vulnerable hosts on the Internet with port/address scanning.  Therefore, one 

can detect an infected host with the observation of high new connection attempt 

rate or high failure ratio of new connection attempts [6].  Behavior anomaly can be 

used to detect the so-called “zero-day” attacks.  However, it tends to create false 

positives if the normal behavior cannot be precisely specified.  The idea of signature 

matching is to look for specific patterns in the payload of a packet or across packets.  

The patterns are derived from the strings of malicious codes contained in 

viruses/worms.  Although it is limited to known viruses/worms with identified 

patterns, the signature matching technique is quite valuable because of its accuracy.  

Fortunately, the signature of a new virus/worm can often be quickly derived 

nowadays once it occurs. 

 

 There are some well-known pattern matching algorithms such as 

Knuth-Morris-Pratt (KMP) [7], Boyer-Moore (BM) [8], and Aho-Corasick (AC) [9].  

The KMP and BM algorithms are efficient for single pattern matching but are not 

scalable for multiple patterns.  The AC algorithm pre-processes the patterns and 

builds a finite automaton which can match multiple patterns simultaneously.  

Another advantage of the AC algorithm is that it guarantees deterministic 
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performance under all circumstances.  As a consequence, the AC algorithm is widely 

adopted in various systems.  In fact, both ClamAV [1], an open source for 

virus/worm detection, and Snort [2], another open source for intrusion detection, 

adopt the AC algorithm for string matching. 

 

 As security attacks become sophisticated, regular expressions which are much 

more expressive than plain strings were used to specify their signatures.  It is well 

known that a regular expression can be recognized with a non-deterministic finite 

automaton (NFA), which is equivalent to a deterministic finite automaton (DFA).  

There are some famous algorithms [11], [12] to construct an NFA recognizing a given 

regular expression.  However, NFA-based solutions are often inefficient on a 

processor with limited parallelism.  Hardware accelerators were proposed to 

achieve high performance [13]-[22].  As an example, a high-performance 

space-efficient FPGA-based implementation of NFA was presented in [14].  In this 

design, the NFA is directly converted into logic gates and registers.  Using powerful 

Graphics Processing Units (GPUs) is another alternative to achieve high performance 

[25].  GPUs are specialized for computationally-intensive and highly parallel 

operations.  DFA-based implementations result in fast signature matching but may 

require a huge amount of memory space.  In [26], a Delayed Input DFA (D2FA) 
which uses default transitions, an idea similar to the failure transition of the AC 

algorithm, was proposed to reduce the number of state transitions and hence the 

space requirement of a DFA.  A reduction of state transitions for more than 95% was 

achieved with different sets of regular expressions used in real products.  Although 

the idea works for selected sets of regular expressions, it still has the risk of resulting 

in a huge number of states.  Two signature rewrite rules were suggested in [23] to 

reduce the number of states in a DFA.  A grouping algorithm was also provided to 

reduce the number of DFAs for a given set of regular expressions. 

 

 Fortunately, the regular expressions used to specify virus/worm signatures are 

often simple ones.  For example, the signatures defined in ClamAV allow only plain 

strings and three operators:   * (match any number of symbols), ? (match any 

symbol), and {min, max} (match minimum of min, maximum of max symbols).  The 

AC algorithm was generalized to match such simple regular expressions in [24].  

Unfortunately, the memory space requirement grows exponentially in the number of 

* operators, which makes the generalized AC algorithm infeasible for virus/worm 

scanning.  The ClamAV implementation requires a small memory space.  However, 

its throughput performance is unacceptable for a large pattern set.  Besides, it may 

result in false negatives.  A variation of the ClamAV implementation, called variable 
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height trie, was proposed to improve throughput performance [16].  It only 

increases the speed of string matching and does not remove the possibility of false 

negatives.  The extended finite automata (XFA) proposed in [28] is a possible 

solution for matching simple regular expressions.  The XFA augment finite state 

automata with finite scratch memory and instructions to manipulate this memory.  

The ClamAV implementation and its variation and the XFA are related to our work 

and, therefore, will be reviewed and compared with our design. 

 

 The purpose of this paper is to present a high-performance, reasonable memory 

requirement signature matching system for plain strings and simple regular 

expressions that can be efficiently implemented on general-purpose processors.  It 

can be directly applied to anti-virus/worm applications for matching exploit 

signatures or used as a matcher primitive for matching vulnerability signatures [29].  

The proposed signature matching system consists of a pre-filter and a verification 

module.  It has space complexity comparable to NFA-based solutions.  Compared 

with the ClamAV implementation, the proposed signature matching system can 

significantly improve system throughput performance.  Compared with the variable 

height trie and the XFA, our proposed system yields better throughput performance 

with much less memory space requirement. 

 

 The rest of this paper is organized as follows.  Section II contains problem 

definition.  Related works are reviewed in Section III.  Our proposed signature 

matching system is presented in Section IV.  Section V contains an efficient 

compression scheme to reduce memory space requirement.  Experimental results 

are provided and discussed in Section VI.  Finally, we draw conclusion in Section VII.  

For completeness, the AC algorithm is briefly described in the Appendix. 
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Chapter 2.  
 

Problem Definition 

 
 We address in this paper the problem of detecting occurrence of a group of 

plain strings and simple regular expressions in a given input string.  The studied 

regular expressions can only contain strings and three operators: *, ?, and 

{ , }min max .  It is assumed that every symbol is a byte.  We only consider * and 

{ , }min max  operators because consecutive ? operators can be replaced with a 

{ , }min max  operator. 

 

 We shall construct a signature matching system that can indicate the ending 

position in a finite input string T  for the occurrence of signature(s).  Note that it is 

possible for multiple signatures to be matched simultaneously.  As in the AC pattern 

matching machine, we need the goto function g, the failure function f, and the 

output function output for the constructed signature matching system.  Moreover, 
to handle { , }min max  operators, we shall define an additional fork function F . 
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Chapter 3.  
 

Related Works 

 
 The ClamAV implementation (and its enhancement) and the XFA are related to 

our work and are reviewed separately below.  For ease of description, we consider 
three regular expressions 1RE = *ab cd , 2RE = *ef gh , and 3RE = {2,4}pq rs  as 

examples for this section. 

 

A. ClamAV Implementation and Its Enhancement 

 In ClamAV implementation, a regular expression is segmented into strings by the 

three *, ?, and {min, max} operators.  An AC automaton is constructed for the first 

two bytes of all strings.  As a result, strings are grouped based on their first two 

bytes.  When the first two bytes of some group are matched, a sequential search is 
performed for all strings in that group.  For 1RE , 2RE , and 3RE , there are six 

strings ab , cd , ef , gh , pq , and rs , each of them forms a group.  Figure 1(a) 

shows the corresponding AC automaton.  Note that the next move function (see 

Appendix) is used for non-leaf states while the failure function (shown as dashed 

lines) is required for leaf states.  The failure function is consulted when no match is 

found after searching sequentially the strings attached to a leaf state.  The 

information stored under a string includes its length, which regular expression it 

belongs to, and the segment number of the string in the regular expression.  Figure 

1(b) illustrates the data structure used to represent regular expressions.  For each 

regular expression, we need to store the number of operators and the type of each 

operator. 

 

 During scanning, a data structure is maintained to indicate up to which segment 

a regular expression had been matched and the position in the text of the last 

matched segment.  Consider a regular expression which consists of k segments.  

Assume that the first e segments had been matched and the the  segment ends at 

the thi  position of the text.  Assume further that another segment is matched at 
the thj  position.  This newly matched segment is discarded if it is not the ( 1)the +  

segment or i and j do not satisfy the condition specified by the operator which 

separates the the  and the ( 1)the +  segments.  Consider 3RE  as an example.  
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Assume that the first segment pq  was matched for the first time after the thi  

symbol is processed.  If a segment is further matched at the thj  position, then the 

new match is discarded if it is not the second segment.  Assume that it is the second 
segment.  A match of 3RE  is found if 4 6j i≤ − ≤ .  Otherwise, the new match is 

discarded.  Figure 1(c) shows the data structure used during scanning for our 

example. 

 

 Obviously, the memory space requirement of the ClamAV implementation is 

small because the depth of the trie is only two.  However, since all strings attached 

to a leaf state are searched sequentially when the state is visited, the throughput 

performance of ClamAV implementation degrades significantly when there are a 

large number of signatures.  Moreover, it is possible to generate false negatives.  

For example, if the first segment of 3RE  is matched for the second time at the thj  

position and the second segment is matched at the thk  position such that 6k j− = , 
then the match of 3RE  is not detected. 

 

255254…p…a…10

255254…p…a…10 255254…q…10

Leaf state Leaf state

ap pq

patterns patterns

Fail Fail

Segment #RE # Length Segment #RE # Length

255254…p…a…10

255254…p…a…10 255254…q…10

Leaf state Leaf state

ap pq

patterns patterns

Fail Fail

Segment #RE # Length Segment #RE # Length  

(a) 

regular expressions number of operators types of operators 

1RE  1 * 

2RE  1 * 

3RE  1 {2, 4} 

(b) 
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regular expressions matched segment position 

1RE  1i  1p  

2RE  2i  2p  

3RE  3i  3p  

(c) 

Figure 1. Data structures of ClamAV implementation. 

 
 

 A variable height trie was proposed to improve throughput performance of 

ClamAV implementation [16].  The basic idea of the variable height trie is to build 

the trie as deep as possible, subject to a maximum height constraint.  By doing so, 

the leaf states will be visited fewer times than the original ClamAV implementation.  

Moreover, the number of strings under a leaf state can be significantly reduced.   

Therefore, the time spent on sequential search is largely reduced.  The tradeoff is 

larger memory space requirement.  It was found that a maximum height of 3 yields 

good throughput performance with acceptable memory requirement. 

 

B. XFA 

 The idea of XFA is to use a finite scratch memory to remember various types of 

information relevant to the progress of signature matching.  One bit is augmented 

for a * operator and a counter is added for a {min, max} operator.  Figures 2(a)-2(c) 
show the XFA recognizing 1RE , 2RE  , and 3RE , respectively.  As in [29], for 

simplicity, some less important transitions are not shown in the XFA.  For example, 

the transition from state 2 to state 1 labeled with symbol a  is omitted in Figure 2(a).  
Note that a bit is augmented for (the * operator of) 1RE  because one has to know 

whether or not string ab  was found before to determine if there is a match when 
string cd  is found.  As shown in Figure 2(a), bit 1b  augmented for 1RE  is set if 

state 0 is entered from state 1, meaning that ab  occurs in input string.  A match of 

1RE  is found if the XFA enters state 3 with bit 1 1b = .  Similarly, the bit 2b  

augmented for 2RE  is set if state 0 in Figure 2(b) is entered from state 1 and a 

match of 2RE  is found if the XFA enters state 3 with bit 2 1b = .  In Figure 2(c), the 

transition from state 1 to state 2 activates a counter (augmented for 3RE ) with 

initial value zero.  When the XFA is in state 2, the counter is incremented by one for 

each processed input symbol.  The counter stays at five if more than four input 
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symbols are processed.  A match of 3RE  is found if state 4 is visited and the 

counter value is greater than one and smaller than five.  Figure 2(d) shows the 
combined XFA recognizing 1RE  and 2RE .  For convenience, a state is called a final 

state if a match of some signature is found when it is entered, as long as all 

conditions for the match are satisfied.  For example, state 3 of Fig. 2(a) is a final 
state because 1RE  is matched if it is entered and the condition 1 1b =  is true. 

 

 XFA tries to combine the advantages of deterministic and non-deterministic 

matching.  The number of states for the combined XFA is roughly equal to the total 

number of symbols in all signatures.  This is an advantage of XFA.  The tradeoff is 

higher complexity during scanning. 

 

 A potential problem of XFA is that it may result in false positives if there is no 

mechanism to remember which sub-string sets an augmented bit.  As an example, if 

*RE ab bc= , then a false match will be detected for input string abc  because the 

first two bytes set the augmented bit and the last two bytes make XFA enter a final 

state with the augmented bit set.  The reason for such a problem is that a pattern 

can occur starting from any position of the input string and, therefore, the start state 

of XFA has to be always an active state.  A second potential problem of XFA is that it 
may have to maintain multiple counters for a { ,  }min max  operator in order to avoid 

false negatives.  For example, if {4,  6}RE ab cd= , then up to three counters have 

to be maintained.  If only one counter is maintained for the first occurrence of ab , 

then ababababecd  will not be detected.  One can similarly show that false 

negative is possible if up to two counters are maintained.  Obviously, the situation 

becomes worse if max  is a large value. 

 

0 2 3
c d

1

ab

bit=true

[^a]

if(bit)
{accept      }1RE

(a)
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0 2 3
g h

1

ef

bit=true if(bit)
{accept      }2RE

(b)

[^e]

 

0 1 2

3 4

p q

s

[^p]

(c)

∑

if (counter≦6)
{counter++}

if(4≦counter≦6)
{accept       }3RE

r
counter=0

 

0 2 3
c d

1

ab

bit1=true

[^aceg]

if(bit 1)
{accept      }

(d)

1RE

5 6

4

f e

bit 2 = true

h

if(bit 2)
{accept      }

g

2RE
 

Figure 2. XFA recognizing (a) 1RE , (b) 2RE , (c) 3RE , and (d) 1RE  and 2RE .   

Some less important transitions are not shown. 
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Chapter 4.  
 

The Proposed Signature Matching System 

 
 Our proposed signature matching system is an extension of the generalized AC 

algorithm presented in a paper previously published by one of the authors [26].  

The idea of the generalized AC algorithm is similar to that of XFA.  A counter is 
augmented for a { ,  }min max  operator.  However, no bit is augmented for any * 

operator.  Instead, multiple goto graphs are constructed so that information 

relevant to the progress of signature matching is implicitly remembered by traversing 

different goto graphs.   

 

 The proposed signature matching system consists of a pre-filter and a 

verification module which are described separately below.  With a pre-filter, the 

space complexity is largely reduced and the throughput performance can be 

significantly improved, as compared with the generalized AC algorithm.  For better 

comprehension, we shall first describe verification module, then pre-filter, followed 

by signature matching machine. 

 

A. Verification Module 

 The verification module is an enhancement of the AC algorithm.  Before 

describing the construction procedures for the four functions, i.e., goto, failure, 

output, and fork, of the verification module, we define some terms which will be 

used in this section. 

 

 A regular expression is fragmented by * operators.  For example, RE = 

1 1 1 2 2 2 3{ , } { , }S min max S min max S * 4 5*S S 3 3{ , }min max 6S  contains three fragments, 

i.e., the first fragment 1 1 1 2 2 2 3{ , } { , }S min max S min max S , the second fragment 4S , 

and the third (or the last) fragment 5 3 3 6{ , }S min max S .  A plain string is considered 

to contain exactly one fragment.  Let M  denote the maximum number of * 

operators in any regular expression.  As a result, there are at most 1M +  
fragments for each regular expression.  Let iY , 0 i M≤ ≤ , be the set that contains 

the thi  fragments of all regular expressions.  All plain strings are included in 0Y .  

We need to construct the three functions for every iY .  We shall only describe the 
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construction procedure for 0Y  since it can be applied to other iY , 1 i M≤ ≤ .  

Without loss of generality, assume that 0Y  contains n  plain strings 1R , 2R , …, 

and nR  and m  regular expressions 1nR + , 2nR + , …, and n mR +  which have only 

{ , }min max  operators.  Moreover, among the n  plain strings, the first 1n  are 

complete signatures and the last 2 1n n n= −  are the first fragments of signatures 

specified with regular expressions.  Similarly, 1nR + , 2nR + , …, and 
1n mR +  are 

complete signatures and 
1 1n mR + + , 

1 2n mR + + , …, and n mR +  are simply the first 

fragments of multi-fragment signatures. 

 

A.1 The goto function  
 Let 0Z  = 1 2 1 2{ , , , , , }n n n n lR  R  ..., R  r  r  ..., r+ + +  where n kr +  is the first string of 

n kR + , 1 k l≤ ≤ .  As an example, if n kR + = 1 1 1 2 2 2 3{ , } { , }S min max S min max S , then we 

have n kr + = 1S .  A goto graph, denoted by 0G , is constructed with algorithm AC1 

(see Appendix) for 0Z .  Note that the self-loop at the start state, if exists, is 

removed.  More goto graphs are constructed for the remaining parts of n kR + , 

1 k l≤ ≤ .  Let n k n kR r+ +−  be the remaining part of n kR + .  For example, if 

n kR + = 1 1 1 2 2 2 3{ , } { , }S min max S min max S , then we have n k n kR r+ +− = 2 2 2 3{ , }S min max S .  

The same procedure is performed recursively to construct the goto graphs for 

n k n kR r+ +−  assuming that 0 { }n k n kY R r+ += − .  The only difference is that the 

self-loop at the start states of goto graphs constructed for the remaining part of n kR +  

remain intact.  For the previous example where n k n kR r+ +− = 2 2 2 3{ , }S min max S , two 

more goto graphs are constructed for 2{ }S  and 3{ }S .  For differentiation, a goto 

graph constructed for the remaining part of some n kR + , 1 k l≤ ≤ , is called a 

T graph.  The construction of goto graphs for 0Y  is completed after all the 

remaining parts of n kR + , 1 k l≤ ≤ , are handled. 

 
 Obviously, there are a total of 1M +  G  graphs, one for each iY .  The G  

graph constructed for iY  is called the Level i  G  graph and denoted by iG .  

Similarly, the T  graphs constructed for iY  are called the Level i  T  graphs.  

The number of Level i  T  graphs is equal to the number of { , }min max  operators 

contained in iY .  Figure 3 shows the goto graphs for 1RE abc= , 2 * *RE ab cd e= , 

3 * *RE bc ad e= , 4 *RE pqr vs= , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y= . 
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Figure 3. The goto graphs for 1RE abc= , 2 * *RE ab cd e= , 3 * *RE bc ad e= , 

4 *RE pqr vs= , and 5 {2,4} {3,5} * * {2,6}RE pq qrqs tu vw x y= . 

 

 

A.2 The failure function 

 As the procedure described above, there are two kinds of goto graphs: G graph 

and T graph. However, not all goto graphs need failure function. For every Level i  

graph iG , since it is constructed by the first substring of the thi  fragment of all 

signatures. If any failure occurs, it means that no substring is matched. Thus, there is 
no failure function for iG . 

 Besides, no failure function is needed for the case of T  graphs with the value 
of the min is equal to the max, take {4,4}RE ab cd=  for example. Since RE  is 

matched only if expected number of symbols, that is, four symbols are apart from 

substring ab  with cd . If any failure occurs, RE  is failed to match. 

 However, for the case of T  graphs with the value of the min  is not equal to 

the max , we construct goto function and failure function according to AC algorithm 
with the substring followed by { , }min max  operator.  

  

A.3 The output function 
 Consider the goto graph 0G .  For every state P  on graph 0G , let 

( )output P =∅ . If state P  is represented by some iR , 11 i n≤ ≤ , then modify 

( )output P   as ( ) ( ) { }output P output P i= ∪ .   For every state P  on a T  graph 

constructed for n k n kR r+ +− , we assign ( )output P =∅ .  Let n kr +′  be the last string 

of n k n kR r+ +− .  If goto graph T  is constructed with { }n kr +′  for some k , 

11 k m≤ ≤ , then ( )output P  is modified as ( ) ( ) { }output P output P n k= ∪ +  if state 

P  on graph T  is represented by n kr +′ .  In this paper, a state with non-empty 

output will be referred to as a final state. 

 

A.4 The fork function 
 The fork function of state P , denoted by ( )F P , is either empty or gives a 
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value min , another value max , and _forked state , the start state of some goto 

graph T .  Again, consider the goto graph 0G .  For every state P  on graph 0G , 

we set the fork function ( )F P =∅ .  If state P  is represented by the first string of 

n kr + , then  ( )F P  is changed to minmin = , max = max , and _forked state = the 

start state of the goto graph constructed with the second string of n kr + .  Here, 

min  and max  are, respectively, the minimum and maximum values of the 
{ , }min max  operator which separates the first and the second strings of n kr + .  As 

an example, assume that n kr + = 1 1 1 2 2 2 3{ , } { , }S min max S min max S  and state P  is 

represented by string 1S .  In this case, ( )F P  gives 1min min= , 1max max=  and 

_forked state = the start state of the goto graph constructed with 2{ }S .  For a goto 

graph T  constructed for n k n kR r+ +− , we set ( )F P =∅  for every state P  on 

graph T .  Assume that n k n kR r+ +−  contains i  { , }min max  operators.  

Consequently, there are 1i +  T  graphs, called 1T , 2T , …, and i +1T , constructed 

for n k n kR r+ +− .  Let jT  be constructed with 1{ }jS +  and the minimum and 

maximum values of the { , }min max  operator which separates jS  and 1jS +  are 

jmin  and jmax , respectively.  We change ( )F P  to give 1jmin min += , 

1jmax max += , and _forked state = the start state of goto graph 1+jT  if state P  is 

on graph jT  for some j i≤  and is represented by jS .  For example, if 

n k n kR r+ +− = 2 2 2 3{ , }S min max S , then there are two T  graphs 1T  and 2T  such that 

1T  is constructed with 2{ }S  and 2T  is constructed with 3{ }S .  The fork function 

of state P  on graph 1T  which is represented by 2S  gives 2min min= , 

2max max= , and _forked state = the start state of goto graph 2T .  For 

convenience, a state with non-empty fork function is called a fork state.  

 

B. Pre-filter 

 The pre-filter adopted in this paper is an extension of the stateful design 

proposed previously by the authors [Lee and Huang].  Some strings are extracted 

from signatures to build two pre-filters, called Pre-Filter 1 and Pre-Filter 2.  We call 

a string that is used to build Pre-Filter i  a Pre-Filter i  pattern.  A string is a 
Pre-Filter 1 pattern iff it is the first string of some element in 0Y .  A string that is 

the first string of any element in iY  for some i , 1 i M≤ ≤ , is a Pre-Filter 2 pattern.  

We describe the construction of Pre-Filter 1 because Pre-Filter 2 can be constructed 

similarly. 
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 The bytem −  prefix of every Pre-Filter 1 pattern is used to construct Pre-Filter 
1. A parameter k  ( )m< , called block size, is selected.  Given block size k , 

1m k− +  membership query modules, denoted by 0MQ , 1MQ , …, and m kMQ − , are 

built for Pre-Filter 1.  Let 0 1 1... m
i i ia a a −  be the bytem −  prefix of Pre-Filter 1 pattern 

iA .  The sub-string 1 1...j j j k
i i ia a a+ + −  is a member of jMQ , 0 j m k≤ ≤ − .  Each 

iMQ  is implemented with a bitmap.  A hash function HASH  is used to build the 

membership query modules.  The thh  bit of jMQ  is set to 1 iff there exists pattern 

iA  such that h  = 1 1( ... )j j j k
i i iHASH a a a+ + − .  Consequently, a membership query 

module reports a 1 if the query result is positive or 0 otherwise. 
 
Note that, depending on pre-filter patterns, the lengths of prefix and block sizes used 
to construct Pre-Filter 1 and Pre-Filter 2 can be different.  We use im  and ik  to 

represent, respectively, the length of prefix and block size adopted for Pre-Filter i .  

The membership query modules built for Pre-Filter i  are denoted by 0
iMQ , 

1
iMQ , …, and 

i

i
wMQ , where i i iw m k= − . 

 
C. The signature matching machine 

 During scanning, a set of goto graphs called _Active Graphs  is maintained.  
Only G  graphs can be contained in _Active Graphs .  Initially, we have 

0_ {G }Active Graphs = .  Depending on the content of _Active Graphs , the 

operation of pre-filters has two modes, i.e., Mode 1 and Mode 2.  It is operated in 
Mode 1 if 0_ {G }Active Graphs =  or Mode 2 otherwise.  Initially, we have 

0_ {G }Active Graphs =  and, therefore, the operation is in Mode 1.  A master bitmap 

1MB  of size 1 1w +  is used in Mode 1 operation.  In Mode 2 operation, an 
additional master bitmap 2MB  of size 2 1w +  is required.  The purpose of using 

master bitmaps is to accumulate results obtained from previous queries to improve 
throughput performance.  To simplify the operation, we choose the same block size 
for both pre-filters, i.e., 1 2k k k= = .  We describe the pre-filter operation for 

1 2m m> .  This is the case in our experiments.  The operation for the case 2 1m m>  
is similar.  There is only Mode 2 operation if 1 2m m= . 
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 In Mode 1 operation, only Pre-Filter 1 is needed.  The initial content of 1MB  is 

set as 1 11w + , where xb  means bit b  repeats x  times.  A search window W  of 
length 1m  is used to scan the input text string.  Fig. 5 shows the architecture of the 

Pre-Filter 1 for m = 6 and k = 3.  Initially, the symbols contained in the search 

window is 
11 2... mt t t , where it  is the thi  symbol of input text string.  Let 

11...i i i mt t t+ +  

be the symbols of input text string contained in search window W .  The sub-string 

1 1 11 2...i m k i m k i mt t t+ − + + − + +  is used to query 1
0MQ , 1

1MQ , …, and 
1

1
wMQ .  Let iqb  be the 

report of 1
iMQ  and QB  = 

10 1... wqb qb qb .  Further, let 1MB  = 
1

1 1 1
0 1 ... wmb mb mb .  

After the query result QB  is obtained, we perform 1MB  = 1MB ⊗ QB , where ⊗  

is the bitwise AND operation.  A suspicious sub-string is found and the verification 

module is invoked if 
1

1
wmb  = 1.  The search window W  is advanced by 1 1w +  

positions if 1
imb = 0 for all i , 10 1i w≤ ≤ − , or 1w r−  positions if rmb  = 1 and 

imb  = 0 for all i , 1r i w< ≤ .  In other words, the window advancement is 
determined by the rightmost 1 of imb , 10 1i w≤ ≤ − , if at least one of them is a 1.  

If W  is advanced by g  positions, 1MB  is updated as 1 11 |gMB MB g= >> , where 

“|” represents concatenation and 1MB x>>  means master bitmap 1MB  is 

right-shifted by x  bits.  Assume that 
1

1
wmb  = 1 and the verification module is 

invoked.  If no match is found, then the window advancement g  is equal to 1 1w +  

if 1
imb = 0 for all i , 10 1i w≤ ≤ − , or 1w r−  if rmb  = 1 and imb  = 0 for all i , 

1 1r i w< ≤ − .  Assume that a match is found.  If a complete signature is matched, 

then the scanning process ends.  Otherwise, the match is only the first fragment of a 
multi-fragment signature.  In this case, goto graph 1G  is added to _Active Graphs , 

the information of the matched fragment (including the signature it belongs to and the 
ending position in input text string) are recorded, search window is advanced as if no 
match is found, and the scanning process continues according to Mode 2 operation.  
Let *t  be the symbol of input text string which is the first symbol contained in 
search window, after advancement.  For simplicity, the above rule of window 
advancement will be referred to as window advancement according to the content of 
(updated) 1MB . 
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Figure. 4. The stateful pre-filter architecture for m  = 6 and k  = 3.   
 
 In Mode 2 operation, both Pre-Filter 1 and Pre-Filter 2 are used.  The content of 

the second master bitmap 2MB  is set as 2 11w +  initially.  Another search window 

W ′  of length 2m  is adopted for scanning input text string, starting from symbol *t .  

Let 
21...i i i mt t t+ +  be the symbols of input text string contained in search window W ′ .  

The sub-string 
2 2 21 2...i m k i m k i mt t t+ − + + − + +  is used to query 1

iMQ , 10 i w≤ ≤ , and 1
iMQ , 

20 i w≤ ≤ .  Let 1QB  and 2QB  be the query results reported by Pre-Filter 1 and 
Pre-Filter 2, respectively.  Note that, since the length of W ′  is 2m , only the results 

reported by 1
iMQ , 20 i w≤ ≤ , can be utilized to check if a suspicious sub-string 

which potentially matches the first fragment of some signature is found.  In other 
words, Pre-Filter 1 has to be used as if its membership query modules were built with 

2 bytem −  prefixes of all Pre-Filter 1 patterns.  Therefore, after 1QB  and 2QB are 

obtained, we perform 1MB  = 1MB ⊗ 1QB , 1 2
1 1 1 21 |w wMB MB w w−= >> − , and 

2MB = 2MB ⊗ 2QB .  For convenience, we shall use 1 2R MB MB= ⊕  to represent a 
bitmap of length 2 1w +  which is obtained by bitwise ORing the rightmost 2 1w +  
bits of 1MB  with 2MB .  There are four possible cases. 
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Case 1. 
1

1
wmb  = 0 and 

2

2
wmb = 0. 

 If 
1

1
wmb = 0 and 

2

2
wmb = 0, then no suspicious sub-string is found.  The window 

advancement g  is determined according to the content of R .  The scanning 

process continues after performing 1 11 |gMB MB g= >>  and 2 21 |gMB MB g= >> . 

 

Case 2. 
1

1
wmb  = 1 and 

2

2
wmb = 0. 

 The situation is the same as Mode 1 operation if 
1

1
wmb  = 1 and 

2

2
wmb = 0.  The 

difference is that window advancement g  is determined according to the content of 

R .  If no signature is matched, then the scanning process continues after performing 

1 11 |gMB MB g= >>  and 2 21 |gMB MB g= >> . 

Case 3. 
1

1
wmb  = 0 and 

2

2
wmb = 1. 

 If 
1

1
wmb  = 0 and 

2

2
wmb = 1, then all the goto graphs contained in 

_Active Graphs , except 0G , are traversed concurrently.  Assume that goto graph 

iG  ( 1i ≥ ) is contained in _Active Graphs  and a match is found in traversing iG .  

The scanning process ends if a complete signature is matched.  Otherwise, only the 

thi  fragment of some signature, say n kR + , is matched.  In this case, we check if the 

( 1)thi −  fragment of n kR +  was matched.  If it is true, then the matched fragment is 

recorded and the traversal on graph iG  ends.  If no complete signature is matched 

for all concurrent traversals, then the scanning process continues after performing 

1 11 |gMB MB g= >>  and 2 21 |gMB MB g= >> , where g  is the window 

advancement determined according to the content of R . 

Case 4. 
1

1
wmb  = 1 and 

2

2
wmb = 1. 

 The operation for the case 
1

1
wmb  = 1 and 

2

2
wmb = 1 is the same as that for Case 3, 

except that goto graph 0G  is included in concurrent traversals.  The scanning 

process ends if a complete signature is matched.  Assume that only a fragment of 
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some signature is matched.  In this case, we check if the preceding fragment of the 
same signature was matched.  If it is true, then the newly matched fragment is 
recorded.  In case no complete signature is matched, the window advancement g  is 

determined according to the content of R  and the scanning process continues after 

performing 1 11 |gMB MB g= >>  and 2 21 |gMB MB g= >> . 

 
 Note that the pre-filters can work correctly without master bitmaps.  However, 

with master bitmaps, the search window can be advanced by more positions, 

compared with the implementation without it.  Consider for example Pre-Filter 1 
with 1m  = 8 and 1k  = 3.  Assume that the results of the first and the second 

queries (both in Mode 1) are 101010 and 001010, respectively.  Without master 
bitmap 1MB , W  is advanced by one position after each query.  On the other hand, 

with 1MB , it is advanced by one position after the first query and six positions after 

the second query.  Initially, the master bitmap 1MB  = 111111.  It becomes 

110101 after the first query.  Since the results of the second query is 001010, the 
content of 1MB  becomes 000000, after the bitwise AND operation.  Therefore, the 

search window W  is advanced by six positions and the content of master bitmap is 

updated as 111111.  It was proved that the implementation with master bitmap is 

optimal in the sense that it is equivalent to using all previous query results. 

 

 Now we describe the operation of verification module.  Assume that the 

pre-filters find a suspicious sub-string and the verification module is invoked.  

Consider Mode 1 operation or Case 2 of Mode 2 operation.  For these two cases, 
only goto graph 0G  is traversed.  The traversal on graph 0G  ends if a complete 

signature is matched or the failure function is consulted.  If a fork state is visited, 

the fork function will give the start state of some T  graph.  At this moment, a 

process is forked to concurrently traverse the T  graph, from its start state.  (New 

Example Is Needed.  As an example, consider the goto graphs shown in figure. 4.  
A process is forked to traverse graph 0T  if state 9 is visited.  As another example, a 

process is forked to traverse graph 1T  if state 4 of 0T  is visited.)  If a state whose 

representing string matches the first fragment of kR  for some k , 1 1n k n+ ≤ ≤ , is 

visited, then goto graph 1G  is put in _Active Graphs  so that it will be traversed if 

succeeding suspicious sub-strings which falls in Case 3 or Case 4 of Mode 2 operation 

is found by the pre-filters.  In this case, the information of the matched fragment, 

including the signature it belongs to and the ending position in input text string, are 

recorded. 
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 Traversal on a goto graph T  is as follows.  Let min  and max  be, 

respectively, the minimum and the maximum values given by the fork function of the 

state visited that causes a forked process to traverse graph T .  A counter ctr  is 

maintained when traversing graph T .  The content of ctr  is initialized to min  

and the next min  symbols are skipped.  The counter is increased by one if the 

current state is the start state of T  and it returns to the same state after an input 

symbol is processed.  Assume that the failure function is consulted in state P.  Let 
PS  denote the string representing state P  and | |S  be the length of string S .  

The content of ctr  is updated as ctr  = ctr + increment , where increment = | |PS  

- ( )| |f PS .  The traversal ends if a match of signature is found or ctr > max .  If a 

fork state is visited, then one more process is forked to traverse another T  graph, 

from its start state given by the fork function.  Assume that graph T  is 
constructed with { }S , where S  is the last string of the first fragment of n kR +  for 

some k , 1 1l k l+ ≤ ≤ .  If the state represented by string S  is visited, meaning 

that the first fragment of n kR +  is matched, the information of the matched fragment 

is recorded. 

 

 It is possible that no complete signature is matched when traversals end.  In 

this case, the pre-filters resume their execution according to Mode 2 operation. 

 The operations for Case 3 and Case 4 of Mode 2 are similar.  Traversal on goto 
graph 0G  is exactly the same as that described above.  Traversal on Level i  

( 1)i ≥  graphs are similar to those on Level 0 graphs.  The difference is that we 

need to check whether or not it is a true match when a match of the thi  fragment of 

some signature is found.  Assume that the thi  fragment of n kR + , 1 1l k l+ ≤ ≤ , is 

matched when traversing some Level i  graph.  It is a true match only if the 

( 1)thi −  fragment of n kR +  was matched previously and the starting position of the 

newly matched thi  fragment is greater than the ending position of the previously 
matched ( 1)thi −  fragment.  If it is a true match, then the information of the thi  
fragment of n kR +  is recorded and goto graph i +1G  is added to _Active Graphs  if 

n kR +  has more than i  fragments. 
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Chapter 5.  
 

Compression of Goto Graph 

 
 The G  graphs, especially 0G , are likely to have a large number of states for a 

large signature set.  Therefore, a straightforward implementation using a 

two-dimensional table requires a huge amount of memory space.  In this section, 

we present a compression scheme which can significantly reduce the memory space 

requirement. 

 
 Consider graph 0G . (The other G  graphs can be compressed similarly.) In our 

proposed compression scheme, states are classified according to the number of child 

states.  State P is said to be a branch state, a single-child state, or a leaf state, if it 

has at least two child states, exactly one child state, or no child state, respectively.  

A single-child state P is a first single-child state if its parent state is a branch state.  

Finally, state P  is said to be an explicit state if it is the start state, a branch state, a 

first single-child state, a final state, a fork state, or a fragment-end state, i.e., a state 
represented by iR  for some i , 1 1n i n+ ≤ ≤ .  We store all strings in 0Z  and 

some data structures for the explicit states.  Note that every final state, fork state, 

and fragment-end state has to be a branch state, a single-child state, or a leaf state. 

 
 The strings in 0Z  are stored contiguously in a 0_ _compacted G strings  file.  

For example, if 0Z ={ ,  ,  ,  } he she his hers , then the 0_ _compacted G strings  file is 

simply heshehishers .  Similar to the AC bnfa−  scheme adopted by Snort, branch 

states are further classified into Branch_2, Branch_3, Branch_4, Branch_5, and 

Branch_256 states.  State P  is a Branch_i ( 2 5i≤ ≤ ) state if it has exactly i  
children states.  For such a state, we store i  pairs of ( ,   )symbol next state .  If 

state P  has more than five children states, it is classified as a branch_256 state and 

we store sequentially 256 next states corresponding to 256 possible input symbols.  

Note that the next state could be the END  state for some input symbols.  Our 

experimental results show that there are only a small number of branch_256 states 

and the number of children states is much larger than five for most branch-256 states.  

By storing all the 256 next states, we waste a little memory space but achieve 

high-speed look-up for state transition.  Assume that state P  is a single-child state 

with representing string PS .   Let iA  be the first string in 0Z  which contains 
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PS  as a prefix.  For state P , we store ( ,  )position distance , where position  is 

the position of the | |P thS  byte of iA  in the 0_ _compacted G strings  file and 

distance  is the number of bytes from state P  to its nearest descendent explicit 

state, i.e., the explicit state whose representing string is the shortest one which 

contains PS  as a proper prefix.  
 Finally, for each leaf state, we basically store nothing but an identifier to indicate 

that it is a leaf state.  Of course, every explicit state needs flags to indicate whether 

or not it is a final state, a fork state, and/or a fragment-end state.  For a final state, 

we need to store the identification of the matched signature(s).  For a fork state, the 

minimum and the maximum values as well as the starting state of some T  graph to 
be traversed are stored.  Note that the number of states on the compressed 0G  

graph is equal to the number of explicit states, which normally is much smaller than 
the number of states in the original 0G  graph constructed with algorithm AC1.  As 

a result, the memory requirement is significantly reduced. 

 Since every T  graph is constructed with a single string, the memory space 

requirement is small. Precisely speaking, we don’t create states for T  graphs 

actually, since there is no explicit state during transition in T  graphs. All we need to 

store is an array of input symbols, failure function, and counter increment when the 

failure function is consulted. 
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Chapter 6.  
 

Experimental Result 

 
 In this section, we compare the performance of our proposed signature 

matching system with that of the ClamAV implementation and its enhancement [?].  

Both throughput performance and memory requirement are compared.  Programs 

are coded in C++ and the experiments are conducted on a PC with an Intel Pentium 4 

CPU operated at 2.02GHz with 1.75GB of RAM. 

 We traced the ClamAV implementation, extracted the ideas, and re-wrote the 

codes for our experiments.  In the ClamAV implementation, a trie of height two is 

constructed for the first two bytes of all patterns based on AC pattern matching 

machine.  Effectively, patterns are grouped based on their first two bytes.  The 

failure function for non-leaf states is eliminated because the next move function δ  
is adopted.  The next move function δ  is defined as ( , ) ( , )P g Pδ σ σ=  if 

( , )g P failσ ≠  or ( , ) ( ( ), )P f Pδ σ δ σ=  otherwise.  When the first two bytes of 

some group are matched, a sequential search is performed for all patterns in the 

group.  Different from our proposed scheme, a regular expression is fragmented by 

the three *, ?, and {min, max} operators.  A data structure is maintained to indicate 

up to which fragment a regular expression had been matched and the position in the 

text of the last matched fragment.  Consider a regular expression which consists of k 

fragments.  Assume that the first e fragments had been matched and the the  

fragment ends at the thi  position of the text.  Assume further that another 
fragment is matched at the thj  position.  This newly matched fragment is 

discarded if it is not the ( 1)the +  fragment or i and j do not satisfy the condition 

specified by the operator which separates the the  and the ( 1)the +  fragments.  As 
an example, consider a regular expression RE = 1sre ? 2sre {2,4} 3sre {3,5} 4sre .  

Assume that the first fragment 1sre  was matched at the thi  position of the text.  

If the second fragment 2sre  is matched at the 2( | | 1)thi sre+ +  position, then the 

data structure will be updated to indicate that the first two fragments are matched 

and the position of the second fragment is matched at the 2( | | 1)thi sre+ +  position.  

 Assume that a fragment is further found at the thj  position, then the data 
structure is further updated only if it is the third fragment 3sre  and j satisfies 

2≤ j-i-| 2sre |-| 3sre |-1≤4.  Otherwise, the newly matched fragment is discarded 

and the data structure remains intact. 
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 Note that, strictly speaking, the ClamAV implementation may result in false 

negatives.  For example, consider the same regular expression 
RE= 1sre ? 2sre {2,4} 3sre {3,5} 4sre  and assume that the input text is 

1 1 2 3 4sre sre asre abcsre abcdsre .  There is obviously a match starting at the 1( 1)thsre +  

position.  However, the Clam AV implementation does not detect the match 

because the second 1sre  will be discarded when it is found. 

 

 The performance of ClamAV implementation can be improved by using variable 

height trie [Avfs].  The variable height trie requires more memory space for larger 

maximum heights.  It was found that a trie with maximum height three is a good 

tradeoff between throughput performance and space requirement.  Therefore, we 

shall compare our proposed system with tries of maximum height two and three. 

 

Figure 5. Performance comparison of ClamAV implementation and our proposed 
signature matching system for clean files of various sizes. 

 

 Figure 5 shows the comparison of CPU execution time for randomly generated 

files of various sizes without any signature occurrence.  It can be seen that the CPU 

execution time is proportional to file size.  The CPU time required by the ClamAV 

implementation is about 20 times of that required by our proposed system.  Figure 
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6 illustrates similar comparison with a string 1 1S abcdeS ′  inserted into a randomly 

generated file of size slightly larger than 2M bytes to match a signature (W32.Gop) of 
the form RE = 1 1*S S ′ .  Again, the CPU execution time required by the ClamAV 

implementation is about 20 times of that required by our proposed system.  We 
also conducted simulations with a string 1 1S abcdeS ′  inserted at various positions to 

match a signature (DOS.Bg-2) of the form RE = 1 1{1,6}S S ′ .  The results are similar.  

We expect the performance improvement to become larger as the number of 

signatures increases.  The reason is that, in ClamAV implementation, the number of 

strings in a group with identical first two bytes increases as the number of signatures 

increases.  Since the ClamAV implementation performs sequential search for strings 

in the same group, it consumes more CPU time to find the match in a larger group. 

 As for memory requirement, ClamAV implementation uses 362K bytes and our 

proposed system uses about 1.94M bytes.  The pre-filter requires 128K bytes and 

the verification module needs 1.8M bytes.  There are 2,486 final states and, 

therefore, the output function takes about 5K bytes.  (In our implementation, we 

use two bytes for signature ID.)  We believe the amount of memory required by our 

proposed signature matching system is acceptable for practical systems. 

 

 

Figure 6. Performance comparison of ClamAV implementation and our proposed 
signature matching system with a string 1 1S abcdeS ′  in various place of file. 
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Chapter 7.  
 

Conclusion 

 
 We have presented in this paper a systematic approach to construct a signature 

matching system for simple regular expressions which are used to define virus/worm 

signatures in ClamAV.  Like the Aho-Corasick algorithm, the verification module of 

our proposed system is dictated by three functions, namely, the goto, failure, and 

output functions.  Experimental results using ClamAV signatures show that, 

compared with the ClamAV implementation and its enhancement, our proposed 

system achieves much better throughput performance while requiring an acceptable 

amount of memory. 

 

 Our work presented in this paper provides some guidelines for writing 

signatures.  For example, the non-overlapping condition is very important in 

reducing the space complexity.  In case the non-overlapping condition is to be 

violated, one should minimize the number of * operators in those overlapped 

signatures.  As another example, the throughput performance can be largely 

improved for long pre-filter patterns.  Extension of our work to other types of 

signatures is an interesting and useful further research topic. 
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Appendix: The Aho-Corasick Algorithm 
The Aho-Corasick (AC) algorithm is dictated by three functions: a goto function g, a 

failure function f, and an output function output.  Fig. A.1 shows the three 

functions for the pattern set Y = {he, she, his, hers} [9]. 

0 1 2 8 9
h e r s

7

3 4
h

6
fsi

s
5

e

[^hs]

 
(a)  

 

R 1 2 3 4 5 6 7 8 9 

f(R) 0 0 0 1 2 0 3 0 3 

(b)  

 

R output(R) 

2 {he} 

5 {she, he} 

7 {his} 

9 {hers} 

(c)  

 

Fig. A.1. (a) goto function, (b) failure function, and (c) output function for Y = {he, she, 

his, hers}. 

 
Some definitions are needed.  Let 1 2S S  represent concatenation of strings 1S  and 

2S .  We say 1S  is a prefix and 2S  is a suffix of the string 1 2S S .  Moreover, 1S  

is a proper prefix if 2S  is not empty.  Likewise, 2S  is a proper suffix if 1S  is not 

empty.  One state, numbered 0, is designated as the start state.  String PS  is said 
to represent state P on a goto graph if the shortest path from the start state to state 

P spells out PS .  For example, string her represents state 8 in Fig. 1.  The start 
state is represented by the empty string ε .  The length of string S is represented by 

| |S . 

 

Note that there might be a self-loop at the start state of a goto graph.  However, it 
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becomes a tree after removing the self-loop, if exists.  In the following definitions, 
we ignore the self-loop.  We call state 1P  the parent of state 2P  and state 2P  the 

child of state 1P  if there exists a symbol σ  such that 1 2( , )g P Pσ = .  State 2P  is 

said to be a descendent of state 1P  and state 1P  an ancestor of state 2P  if 1PS  is 

a proper prefix 2PS .  The tree which consists of state P and all its descendant states 
is called the sub-tree of P. 

 

The goto function g maps a pair (state, input symbol) into a state or the message fail.  

For the example shown in Fig. A.1, we have g(0, h) = 1 and g(1,σ ) = fail if σ  is not 

e or i.  State 0 is a special state which never results in the fail message.  With this 

property, one input symbol is processed by the AC algorithm in every operation cycle. 

 

The failure function f maps a state into a state and is consulted when the outcome of 

the goto function is the fail message.  We have 1 2( )f P P=  if and only if (iff) 2PS  is 

the longest proper suffix of 1PS  that is also a prefix of some pattern.  The output 
function maps a state into a set (could be empty) of patterns.  The set output(P) 

contains a pattern if the pattern is a suffix of PS . 
 

Let 1P  be the current state and σ  the current input symbol.  Also, let T  denote 

the input string.  Initially, the start state is assigned as the current state and the first 

symbol of T  is the current input symbol.  An operation cycle of the AC algorithm is 

defined as follows. 
1. If 1 2( , )g P Pσ = , the algorithm makes a state transition such that state 2P  

becomes the current state and the next symbol in T  becomes the current 
input symbol.  If 2( )output P ≠ ∅ , the algorithm emits the set 2( )output P .  

The operation cycle is complete. 
2. If 1( , )g P failσ = , the algorithm makes a failure transition by consulting the 

failure function f.  Assume that 1 2( )f P P= .  The algorithm repeats the 

cycle with 2P  as the current state and σ  as the current input symbol. 

 

It can be shown that the maximum number of state transitions is 2 1n −  for 
scanning if | |T n= .  This number can be reduced to n  if the next move function 

δ  is adopted.  The next move function is defined as ( ,  ) ( ,  )P g Pδ σ σ=  if 

( ,  )g P failσ ≠  or ( ,  ) ( ( ),  )P f Pδ σ δ σ=  otherwise. 

 

The procedures to construct the goto, failure, and output functions are described in 
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Algorithms AC1 and AC2 below [9].  The goto function and the failure function are 

constructed, respectively, in Algorithms AC1 and AC2.  The output function is 

partially constructed in Algorithm AC1 and completed in Algorithm AC2. 

 

Algorithm AC1. Construction of the goto function. 
Input. Set of keywords 1 2{ , ,..., }kY y y y= . 

Output. Goto function g and a partially computed output function output. 

Method. We assume output(P)=∅  when state P is first created, and g(P, σ ) = fail if 

σ  is undefined or if g(P,σ ) has not yet been defined.  The procedure enter(y) 

inserts into the goto graph a path that spells out y. 

 

begin 

  newstate ← 0 
  for i ← 1 until k do ( )ienter y  

  for all σ  such that g(0,σ ) = fail do g(0,σ ) ← 0 

end 
procedure 1 2( ... )menter a a a : 

 begin 

   state ← 0; j ← 1 

   while ( , )jg state a fail≠  do 

     begin 

       state ← ( , )jg state a  

       j ← j + l 

     end 

   for p ← j until m do 

     begin 

       newstate ← newstate + 1 

       ( , )pg state a  ← newstate 

       state ← newstate 

     end 
   output(state) ← 1 2{ ... }ma a a  

 end 

 

Algorithm AC2. Construction of the failure function. 

Input. Goto function g and output function output from Algorithm 1. 
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Output. Failure function f and output function output. 

Method. 

 

 begin 

   queue ← empty 

   for each σ  such that g(0,σ ) = P ≠ 0 do 

     begin 

       queue ← queue∪{P} 

       f(P) ← 0 

     end    

while queue ≠ empty do 

     begin 

       let R be the next state in queue 

       queue ← queue - {R} 

       for each σ  such that g(R,σ ) = P ≠ fail do 

         begin 

           queue ← queue∪{P} 

           state ← f(R) 

           while g (state,σ ) = fail do state ← f(state) 

           f(P) ← g(state,σ ) 

           output(P) ←output(P)∪output(f(P)) 

         end 

     end 

 end 
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