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ABSTRACT

Because of its accuracy, pattern matching is considered an important technique
in anti-virus/worm applications. Among some famous pattern matching algorithms,
the Aho-Corasick (AC) can match multiple patterns simultaneously and guarantee
deterministic performance under all circumstances. However, the AC algorithm was
developed for strings while virus/worm. signatures-could be specified by simple
regular expressions. In this.paper,_ we enhance the AC algorithm to systematically
construct a signature matching system which can indicate the ending position in a
finite input string for the oceurrence of virus/worm signatures that are specified by
strings or simple regular expressions. The regular expressions studied are those
adopted in ClamAV for signature specification.~Our proposed signature matching
system consists of a pre-filter and a verification'module. The purpose of pre-filter is
to quickly exclude the parts of input string which obviously do not contain signatures
and find the starting positions of suspicious sub-strings which may result in match of
some signatures. The verification module is an extension of the AC algorithm that
consists of multiple levels of goto graphs. Goto graphs in the same level are
connected by a novel fork function. Those in different levels could be traversed
concurrently. Experimental results show that, compared with ClamAvV
implementation and its enhancement and the extended finite automaton (XFA), our
proposed system yields better throughput performance with acceptable memory
requirement.
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Data structures of ClamAYV implementation.

XFA recognizing (a) RE,, (b) RE,, (c)RE,, and (d) RE;, and RE,.
Some less important transitions are not shown.

The goto graphs for RE, =abc, RE,=ab*cd*e, RE,=Dbc*ad*e,
RE, = pgr*vs, and RE; = pa{2, 4}qrgs{3,5}tu*vw*x{2, 6}y .
The stateful pre-filter architecture for m =6and k =3.

Performance comparison of ClamAV implementation and our proposed
signature matching system for clean files of various sizes.

Performance comparison of ClamAV implementation and our proposed
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file.

(a) goto function, (b) failure function, and (c)-output function for Y = {he,
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Chapter 1.

Introduction

Because of the rapid advances of computer and network technologies, modern
computer viruses/worms can spread at a speed much faster than human-mediated
responses. Various viruses/worms such as Code Red [3], Nimda [4], and Slammer [5]
that were detected in recent years infected hundreds of thousands of computers on
the Internet in a very short period of time and caused huge economic loss to our
society. Fast and effective detection of viruses/worms as they are spreading is,
therefore, necessary to prevent the majority of vulnerable systems from being

infected and minimize the damage.

Behavior anomaly and signature matching ‘are two major techniques for
virus/worm detection. Behavior anomaly can be used to detect and prevent the
outbreak of an attack because an.infected host is likely'to behave differently from a
normal host. For example, a host infected by some virus/worm may try to infect
other vulnerable hosts on the Internet with-port/address scanning. Therefore, one
can detect an infected host with the observation‘of high new connection attempt
rate or high failure ratio of new connection-attempts [6]. Behavior anomaly can be
used to detect the so-called “zero-day” attacks. However, it tends to create false
positives if the normal behavior cannot be precisely specified. The idea of signature
matching is to look for specific patterns in the payload of a packet or across packets.
The patterns are derived from the strings of malicious codes contained in
viruses/worms. Although it is limited to known viruses/worms with identified
patterns, the signature matching technique is quite valuable because of its accuracy.
Fortunately, the signature of a new virus/worm can often be quickly derived

nowadays once it occurs.

There are some well-known pattern matching algorithms such as
Knuth-Morris-Pratt (KMP) [7], Boyer-Moore (BM) [8], and Aho-Corasick (AC) [9].
The KMP and BM algorithms are efficient for single pattern matching but are not
scalable for multiple patterns. The AC algorithm pre-processes the patterns and
builds a finite automaton which can match multiple patterns simultaneously.

Another advantage of the AC algorithm is that it guarantees deterministic



performance under all circumstances. As a consequence, the AC algorithm is widely
adopted in various systems. In fact, both ClamAV [1], an open source for
virus/worm detection, and Snort [2], another open source for intrusion detection,

adopt the AC algorithm for string matching.

As security attacks become sophisticated, regular expressions which are much
more expressive than plain strings were used to specify their signatures. It is well
known that a regular expression can be recognized with a non-deterministic finite
automaton (NFA), which is equivalent to a deterministic finite automaton (DFA).
There are some famous algorithms [11], [12] to construct an NFA recognizing a given
regular expression. However, NFA-based solutions are often inefficient on a
processor with limited parallelism. Hardware accelerators were proposed to
achieve high performance [13]-[22]. As an example, a high-performance
space-efficient FPGA-based implementation of NFA was presented in [14]. In this
design, the NFA is directly converted into logic gates and registers. Using powerful
Graphics Processing Units (GPUs) is another alternative to achieve high performance
[25]. GPUs are specialized _for ‘computationally-intensive and highly parallel
operations. DFA-based implementations result in fast signature matching but may
require a huge amount of ‘'memory space. <In [26], @ Delayed Input DFA (D2FA)
which uses default transitions, an idea similar to the failure transition of the AC
algorithm, was proposed toreduce the number-of state transitions and hence the
space requirement of a DFA. A reduction of statetransitions for more than 95% was
achieved with different sets of regular expressions used in real products. Although
the idea works for selected sets of regular expressions, it still has the risk of resulting
in a huge number of states. Two signature rewrite rules were suggested in [23] to
reduce the number of states in a DFA. A grouping algorithm was also provided to

reduce the number of DFAs for a given set of regular expressions.

Fortunately, the regular expressions used to specify virus/worm signatures are
often simple ones. For example, the signatures defined in ClamAV allow only plain
strings and three operators:  * (match any number of symbols), ? (match any
symbol), and {min, max} (match minimum of min, maximum of max symbols). The
AC algorithm was generalized to match such simple regular expressions in [24].
Unfortunately, the memory space requirement grows exponentially in the number of
* operators, which makes the generalized AC algorithm infeasible for virus/worm
scanning. The ClamAV implementation requires a small memory space. However,
its throughput performance is unacceptable for a large pattern set. Besides, it may

result in false negatives. A variation of the ClamAV implementation, called variable



height trie, was proposed to improve throughput performance [16]. It only
increases the speed of string matching and does not remove the possibility of false
negatives. The extended finite automata (XFA) proposed in [28] is a possible
solution for matching simple regular expressions. The XFA augment finite state
automata with finite scratch memory and instructions to manipulate this memory.
The ClamAV implementation and its variation and the XFA are related to our work

and, therefore, will be reviewed and compared with our design.

The purpose of this paper is to present a high-performance, reasonable memory
requirement signature matching system for plain strings and simple regular
expressions that can be efficiently implemented on general-purpose processors. It
can be directly applied to anti-virus/worm applications for matching exploit
signatures or used as a matcher primitive for matching vulnerability signatures [29].
The proposed signature matching system consists of a pre-filter and a verification
module. It has space complexity comparable to NFA-based solutions. Compared
with the ClamAV implementation, the proposed signature matching system can
significantly improve system throughput performance. Compared with the variable
height trie and the XFA, our proposed system yields better throughput performance

with much less memory space requirement.

The rest of this paper-is organized as follows. “Section Il contains problem
definition. Related works are reviewed in Section'lll. Our proposed signature
matching system is presented in Section IV. = Section V contains an efficient
compression scheme to reduce memory space requirement. Experimental results
are provided and discussed in Section VI. Finally, we draw conclusion in Section VII.

For completeness, the AC algorithm is briefly described in the Appendix.



Chapter 2.

Problem Definition

We address in this paper the problem of detecting occurrence of a group of
plain strings and simple regular expressions in a given input string. The studied
regular expressions can only contain strings and three operators: *, ?, and
{min,max}. It is assumed that every symbol is a byte. We only consider * and
{min,max} operators because consecutive ? operators can be replaced with a
{min,max} operator.

We shall construct a signature matching system that can indicate the ending
position in a finite input string T for.the occurrence of signature(s). Note that it is
possible for multiple signatures to be'matched simultaneously. As in the AC pattern
matching machine, we need‘the goto function g, the failure function f, and the
output function output for the constructed signature matching system. Moreover,
to handle {min,max} operators, we shall define an additional fork function F .



Chapter 3.

Related Works

The ClamAV implementation (and its enhancement) and the XFA are related to
our work and are reviewed separately below. For ease of description, we consider
three regular expressions RE =ab*cd, RE,=e€f*gh, and RE,= pg{2,4}rs as

examples for this section.

A. ClamAV Implementation and Its Enhancement

In ClamAYV implementation, a regular expression is segmented into strings by the
three *, ?, and {min, max} operators. An AC automaton is constructed for the first
two bytes of all strings. As a result, strings .are grouped based on their first two
bytes. When the first two bytes of some group.are. matched, a sequential search is
performed for all strings in that group. For RE, RE,, and RE,, there are six

strings ab, cd, e , gh, pg,.and rs, eachof them forms a group. Figure 1(a)
shows the corresponding AC automaton.” Note that the next move function (see
Appendix) is used for non-leaf states while-the-failure function (shown as dashed
lines) is required for leaf states. = The failure function'is consulted when no match is
found after searching sequentially the-strings attached to a leaf state. The
information stored under a string includes its length, which regular expression it
belongs to, and the segment number of the string in the regular expression. Figure
1(b) illustrates the data structure used to represent regular expressions. For each
regular expression, we need to store the number of operators and the type of each

operator.

During scanning, a data structure is maintained to indicate up to which segment
a regular expression had been matched and the position in the text of the last
matched segment. Consider a regular expression which consists of k segments.
Assume that the first e segments had been matched and the €" segment ends at
the i™ position of the text. Assume further that another segment is matched at
the " position. This newly matched segment is discarded if it is not the (e+1)"

segment or i and j do not satisfy the condition specified by the operator which

separates the €" and the (e+1)th segments. Consider RE;, as an example.



Assume that the first segment pg was matched for the first time after the i"
symbol is processed. If a segment is further matched at the jth position, then the
new match is discarded if it is not the second segment. Assume that it is the second
segment. A match of RE; isfoundif 4<j—i<6. Otherwise, the new match is
discarded. Figure 1(c) shows the data structure used during scanning for our
example.

Obviously, the memory space requirement of the ClamAV implementation is
small because the depth of the trie is only two. However, since all strings attached
to a leaf state are searched sequentially when the state is visited, the throughput
performance of ClamAV implementation degrades significantly when there are a

large number of signatures. Moreover, it is possible to generate false negatives.
For example, if the first segment of RE, is matched for the second time at the jth

position and the second segment is matched at the k™ position such that k—j =6,
then the match of RE; is not detected.

Py ~
lol1]..]a]..[p]...[25455 ’/.’.'.'. [0]1]..]q].. 2540255 ,’/
v ! v ‘,,"/
Leaf state | Fail Leaf state Fail
patterns patterns
ap Pg
A A 4
| RE # | Segment # [Length] | RE # | Segment # [Length]

(a)

regular expressions | number of operators types of operators

RE, 1 *
RE, 1 *
RE, 1 2,4}

(b)



regular expressions matched segment position
RE, X P
RE, i, P,
RE, I3 Ps

Figure 1. Data structures of ClamAV implementation.

A variable height trie was proposed to improve throughput performance of
ClamAV implementation [16]. The basic idea of the variable height trie is to build
the trie as deep as possible, subject to a maximum height constraint. By doing so,
the leaf states will be visited fewer. times than the original ClamAV implementation.
Moreover, the number of strings ‘under_a_leaf state can be significantly reduced.
Therefore, the time spent on'sequential search is largely reduced. The tradeoff is
larger memory space requirement. It was found that a-maximum height of 3 yields
good throughput performance with acceptable memory.requirement.

B. XFA

The idea of XFA is to use a finite/scratch memory to remember various types of
information relevant to the progress of signature matching. One bit is augmented
for a * operator and a counter is added for a {min, max} operator. Figures 2(a)-2(c)
show the XFA recognizing RE, RE, , and RE,, respectively. As in [29], for
simplicity, some less important transitions are not shown in the XFA. For example,
the transition from state 2 to state 1 labeled with symbol a is omitted in Figure 2(a).
Note that a bit is augmented for (the * operator of) RE, because one has to know
whether or not string ab was found before to determine if there is a match when
string cd is found. As shown in Figure 2(a), bit b augmented for RE, is set if
state O is entered from state 1, meaning that ab occurs in input string. A match of
RE, is found if the XFA enters state 3 with bit b =1. Similarly, the bit b,
augmented for RE, is set if state O in Figure 2(b) is entered from state 1 and a
match of RE, is found if the XFA enters state 3 with bit b, =1. In Figure 2(c), the
transition from state 1 to state 2 activates a counter (augmented for RE;) with
initial value zero. When the XFA is in state 2, the counter is incremented by one for
each processed input symbol. The counter stays at five if more than four input



symbols are processed. A match of RE, is found if state 4 is visited and the
counter value is greater than one and smaller than five. Figure 2(d) shows the
combined XFA recognizing RE, and RE,. For convenience, a state is called a final
state if a match of some signature is found when it is entered, as long as all

conditions for the match are satisfied. For example, state 3 of Fig. 2(a) is a final
state because RE, is matched if it is entered and the condition b =1 is true.

XFA tries to combine the advantages of deterministic and non-deterministic
matching. The number of states for the combined XFA is roughly equal to the total
number of symbols in all signatures. This is an advantage of XFA. The tradeoff is

higher complexity during scanning.

A potential problem of XFA is that it may result in false positives if there is no
mechanism to remember which sub-string sets an augmented bit. As an example, if
RE = ab* bc, then a false match will be detected for input string abc because the
first two bytes set the augmented bit.and the, last two bytes make XFA enter a final
state with the augmented bit set. = The reason-for'such a problem is that a pattern
can occur starting from any position of the input string and, therefore, the start state
of XFA has to be always an active state. . A second potential problem of XFA is that it
may have to maintain multiple counters for a {min,/max} operator in order to avoid
false negatives. For example, if RE =ab{4, 6}cd, then up to three counters have
to be maintained. If only one counter is maintained for the first occurrence of ab,
then ababababecd will not be detected.  One can similarly show that false
negative is possible if up to two counters are maintained. Obviously, the situation

becomes worse if max is a large value.

bit=true if(bit)
{accept RE,}




1f(bit)
{accept RE)}

if (counter=6)
{counter++}

1f(4 = counter =6)
{accept RE;}

(©)
bitl=true if(bit 1)
V 1 {accept RE,}
["aceg] 4
c d
0 2 3
2
flie h
O @itheo 5 6
) A

if(bit 2)
(d) {accept RE,}

Figure 2. XFA recognizing (a) RE,, (b) RE,, (c) RE;, and (d) RE; and RE,.

Some less important transitions are not shown.



Chapter 4.

The Proposed Signature Matching System

Our proposed signature matching system is an extension of the generalized AC
algorithm presented in a paper previously published by one of the authors [26].
The idea of the generalized AC algorithm is similar to that of XFA. A counter is
augmented for a {min, max} operator. However, no bit is augmented for any *
operator. Instead, multiple goto graphs are constructed so that information
relevant to the progress of signature matching is implicitly remembered by traversing

different goto graphs.

The proposed signature matching system consists of a pre-filter and a
verification module which are described separately below. With a pre-filter, the
space complexity is largely ‘reduced: and the throughput performance can be
significantly improved, as compared with the generalized AC algorithm. For better
comprehension, we shall first describe verification module, then pre-filter, followed

by signature matching machine.

A. Verification Module

The verification module is an enhancement of the AC algorithm. Before
describing the construction procedures for the four functions, i.e., goto, failure,
output, and fork, of the verification module, we define some terms which will be

used in this section.

A regular expression is fragmented by * operators. For example, RE =

S{min, max}S{min,,max,}S, * §,* § {min,,max;} S, contains three fragments,
i.e., the first fragment S{min,max}S{min,,max,}S,, the second fragment S,,

and the third (or the last) fragment S{min,,max;}S,. A plain string is considered
to contain exactly one fragment. Let M denote the maximum number of *

operators in any regular expression. As a result, there are at most M +1
fragments for each regular expression. Let Y,, 0<i <M, be the set that contains

the i™ fragments of all regular expressions. All plain strings are included in Y, -

We need to construct the three functions for every Y,. We shall only describe the

10



construction procedure for Y, since it can be applied to other Y, 1<i<M .
Without loss of generality, assume that Y, contains n plain strings R, R,, ..,
and R, and m regular expressions R ., R.,, .., and R, which have only
{min,max} operators. Moreover, among the n plain strings, the first n, are
complete signatures and the last n,=n-n, are the first fragments of signatures

specified with regular expressions. Similarly, R, R, .., and R,  are

complete signatures and R, .., R,..,, -, and R, are simply the first

fragments of multi-fragment signatures.

A.1 The goto function

let Z, = {R, R, .. R,, .1y Tpy o I} Where 1., is the first string of
R.c, 1<k<l. As an example, if R, =S{min,max}S{min,, max}S;, then we
have r,, =S. A goto graph, denoted by G, is constructed with algorithm AC1
(see Appendix) for Z,. Note that_theyself-loop at the start state, if exists, is
removed. More goto graphs are constructed for the remaining parts of R,
1<k<l. Let R, -1, be the-remaining part'of R, . For example, if
R..c= S{min, max}S,{min,;max,}S;, then we-have R, , -1, = S,{min,max;}s;.
The same procedure is performed recursively to. construct the goto graphs for
R.« — I« assuming that Y;={R., —ly}=~The ‘only difference is that the
self-loop at the start states of goto.graphs constructed for the remaining part of R,
remain intact. For the previous example-where R, —r .= S{min,,max}S,, two
more goto graphs are constructed for {S,} and {S}. For differentiation, a goto
graph constructed for the remaining part of some R, 1<k<lI, is called a
T graph. The construction of goto graphs for Y, is completed after all the
remaining partsof R ,,, 1<k<lI,are handled.

Obviously, there are a total of M +1 G graphs, one for each Y,. The G
graph constructed for Y, is called the Level i G graph and denoted by G;.
Similarly, the T graphs constructed for Y, are called the Level i T graphs.
The number of Level i T graphs is equal to the number of {min,max} operators
contained in Y,. Figure 3 shows the goto graphs for RE, =abc, RE,=ab*cd*e,
RE,=bc*ad*e, RE,=par*vs,and RE = pg24}args3,5tu*w* x{2,6}y.

11
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Figure 3. The goto graphs for RE, =abc, RE,=ab*cd*e, RE,=bc*ad*e,
RE, = par *vs, and RE; = pa{2,4}qras(3,5Htu* w* x{ 2,6}y .

A.2 The failure function
As the procedure described above, there are two kinds of goto graphs: G graph

and T graph. However, not all goto graphs need failure function. For every Level i
graph G;, since it is constructed by the first substring of the i™ fragment of all

signatures. If any failure occurs,.it means that no.substring is matched. Thus, there is
no failure function for G,.

Besides, no failure function.is needed for.the case-of T graphs with the value
of the min is equal to the max, take RE=ab{4,4}cd for example. Since RE is
matched only if expected number of symbols; that is, four symbols are apart from
substring ab with cd. If anyfailure occurs, RE -is failed to match.

However, for the case of T “graphs with the value of the min is not equal to
the max, we construct goto function and failure function according to AC algorithm
with the substring followed by {min,max} operator.

A.3 The output function

Consider the goto graph G,. For every state P on graph G,, let
output(P) = . If state P is represented by some R, 1<i<n, then modify
output(P) as output(P) = output(P) w{i}. For every state P on a T graph
we assign output(P)=9. Let r/

n+k

constructed for R, -, be the last string

n+k’
of R, —r,.. |If goto graph T is constructed with {r ,} for some k,
1<k<m, then output(P) is modified as output(P) = output(P) u{n+k} if state

P on graph T is represented by r’

n+k *

In this paper, a state with non-empty

output will be referred to as a final state.

A.4 The fork function
The fork function of state P, denoted by F(P), is either empty or gives a

13



value min, another value max, and forked _state, the start state of some goto
graph T. Again, consider the goto graph G,. For every state P on graph G,
we set the fork function F(P)=O. Ifstate P is represented by the first string of
.., then F(P) is changed to min=min, max=max, and forked _state= the
start state of the goto graph constructed with the second string of r ., . Here,
min and max are, respectively, the minimum and maximum values of the
{min,max} operator which separates the first and the second strings of r_, . As
an example, assume that r,, =S{min,max}S{min,, max,}S, and state P is
represented by string S. In this case, F(P) gives min=min, max=max, and
forked _state= the start state of the goto graph constructed with {S,}. For a goto

graph T constructed for R, —r,,,, we set F(P)=C for every state P on

n+k 7

graph T . Assume that R, -r,, contains i {min,max} operators.
Consequently, there are i+1 T graphs, called T, T,, .., and T,,,, constructed

for R, —Tl.- Let T, be constructed with {S,;} and the minimum and

maximum values of the {min,max} operator which separates S, and S, are

min, and max; , respectively. —We: change F(P) to give min=min

j j+1 7

max =max;,,, and forked _state= thestart state of goto graph T, , if state P s

on graph Tj for some |<i.and is represented by Sj. For example, if

R — = S{min,,max,}S,, thentherearetwo T graphs T, and T, such that
T, is constructed with {S,} and T, is constructed with {S;}. The fork function
of state P on graph T, which is represented by S, gives min=min,,
max=max, , and forked _state = the start state of goto graph T,. For

convenience, a state with non-empty fork function is called a fork state.

B. Pre-filter

The pre-filter adopted in this paper is an extension of the stateful design
proposed previously by the authors [Lee and Huang]. Some strings are extracted
from signatures to build two pre-filters, called Pre-Filter 1 and Pre-Filter 2. We call
a string that is used to build Pre-Filter i a Pre-Filter i pattern. A string is a
Pre-Filter 1 pattern iff it is the first string of some element in Y;. A string that is
the first string of any element in Y forsome i, 1<i <M, is a Pre-Filter 2 pattern.
We describe the construction of Pre-Filter 1 because Pre-Filter 2 can be constructed

similarly.

14



The m-byte prefix of every Pre-Filter 1 pattern is used to construct Pre-Filter
1. A parameter k (<m), caled block size, is selected. Given block size k,
m-k+1 membership query modules, denoted by MQ,, MQ,, ...,and MQ, ., ae

built for Pre-Filter 1. Let a’a’..a™" bethe m-byte prefix of Pre-Filter 1 pattern

j+k-1

A. The sub-string a'a'™...a is a member of MQ,, 0<j<m-k. Each

MQ is implemented with a bitmap. A hash function HASH is used to build the

membership query modules. The h™ bit of MQ, issetto 1iff there exists pattern

A such that h = HASH(a'a'"..a"™*"). Consequently, a membership query

module reportsa 1 if the query result is positive or O otherwise.

Note that, depending on pre-filter patterns, the lengths of prefix and block sizes used
to construct Pre-Filter 1 and Pre-Filter 2 can be different. We use m and k to

represent, respectively, the length of prefix.and block size adopted for Pre-Filter i.

The membership query modules built for Pre-Filter i are denoted by MQ,,

MQ, ...,and MQ, , where .w = m <k

C. The signature matching machine

During scanning, a set of goto graphs called Active_Graphs is maintained.
Only G graphs can be contained in Active_Graphs . Initially, we have
Active_Graphs={G,} . Depending on the content of Active_Graphs, the
operation of pre-filters has two modes, i.e., Mode 1 and Mode 2. It is operated in
Mode 1 if Active_Graphs={G,} or Mode 2 otherwise. Initialy, we have
Active_Graphs={G_,} and, therefore, the operationisin Mode 1. A master bitmap
MB, of size w,+1 is used in Mode 1 operation. In Mode 2 operation, an
additional master bitmap MB, of size w,+1 is required. The purpose of using
master bitmaps is to accumulate results obtained from previous queries to improve
throughput performance. To simplify the operation, we choose the same block size
for both prefilters, i.e, k =k,=k. We describe the pre-filter operation for
m >m,. Thisisthe casein our experiments. The operation for the case m, > m
issimilar. Thereisonly Mode 2 operationif m =m,.

15



In Mode 1 operation, only Pre-Filter 1isneeded. Theinitial content of MB, is

set as 1™, where b* means bit b repeats x times. A search window W of
length m isused to scan the input text string.  Fig. 5 shows the architecture of the

Pre-Filter 1 for m= 6 and k= 3. Initialy, the symbols contained in the search

window is tt,..t, , where t; isthe i" symbol of input text string. Let tt ..t

i+17" " i+my
be the symbols of input text string contained in search window W. The sub-string

t is used to query MQ;, MQ}, ...,and MQ, . Let gb bethe

i+m_—k+1ti+rq—k+2 " 'ti+rq

report of MQ' and QB = qbgb..gh, . Further, let MB, = migmby..mhy, .

After the query result QB is obtained, we perform MB, = MB, ® QB, where ®
is the bitwise AND operation. A suspicious sub-string is found and the verification

module is invoked if rr’iqi,l = 1. The search window W is advanced by w +1

positions if mb'= 0 for al i, O<i<w —-1,-or‘w, —r positions if mb = 1 and

mh = 0 for al i, r<i<w. -In other words, the window advancement is
determined by the rightmost-1 of mb, 0<i<w -1, if-at |least one of them is a 1.

If W isadvanced by g positions; MB, isupdated as MB, =1° | MB, >> g, where
“I" represents concatenation “and.. MB, >> x.~means master bitmap MB, is
right-shifted by x bits. Assume that r’r‘hﬁﬁ = 1 and the verification module is
invoked. If no match is found, then the window advancement g isequal to w, +1
if mg'=0foral i, O<i<w -1, or w—r if mb =21and mh =0 for dl i,

r<i<w -1. Assume that a match is found. If a complete signature is matched,
then the scanning process ends.  Otherwise, the match is only the first fragment of a
multi-fragment signature.  In this case, goto graph G, isaddedto Active_Graphs,
the information of the matched fragment (including the signature it belongs to and the
ending position in input text string) are recorded, search window is advanced as if no
match is found, and the scanning process continues according to Mode 2 operation.
Let t° be the symbol of input text string which is the first symbol contained in
search window, after advancement. For simplicity, the above rule of window
advancement will be referred to as window advancement according to the content of
(updated) MB,.
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Figure. 4. The stateful pre-filter architecturefor m =6and k =3.

In Mode 2 operation, both Pre-Filter 1 and Pre-Filter 2 areused. The content of

the second master bitmap MB, is set as 1%™ initidly. Another search window
W' of length m, is adopted for scanning input-text string, starting from symbol t".

Let tt.,..4,,, bethesymbolsof input text string contained in search window W'.

The sub-string t, t £, isused to query MQ', 0<i<w, and MQ',

1+my—k+15+my—k+2 """ i+m,

0<i<w,. Let QB and QB, be the query results reported by Pre-Filter 1 and
Pre-Filter 2, respectively. Note that, since the length of W' is m,, only the results

reported by MQ', 0<i<w,, can be utilized to check if a suspicious sub-string

which potentially matches the first fragment of some signature is found. In other
words, Pre-Filter 1 has to be used as if its membership query modules were built with
m, —byte prefixes of al Pre-Filter 1 patterns. Therefore, after QB, and QB,are
obtained, we perffoom MB, = MB, ® QB , MB =1""|MB >>w -w,, and

MB,=MB, ® QB,. For convenience, we shall use R=MB, ® MB, to represent a
bitmap of length w, +1 which is obtained by bitwise ORing the rightmost w, +1
bitsof MB, with MB,. Therearefour possible cases.
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Casel mby, =0and mb; =0.

If mtﬁ,l =0 and mqfV2 = 0, then no suspicious sub-string is found.  The window
advancement g is determined according to the content of R. The scanning

process continues after performing MB, =1° |MB, >>g and MB, =1°|MB, >>g.

Case2. mh, =1land mb} =0.

The situation is the same as Mode 1 operation if mbj, =1and mb} =0. The

difference is that window advancement g is determined according to the content of
R. If no signature is matched, then the scanning process continues after performing

MB, =19 [MB,>>g and MB,=1°|MB,>>g.
Case3. mby, =0and mb} =1.

If mtﬁ,l = 0 and mbvzVZ = 1, then @l the .goto graphs contained in

Active_Graphs, except G, are traversed-concurrently. Assume that goto graph
G, (i>1)iscontained in Active. Graphs and.amatch is found in traversing G,.

The scanning process ends if a complete signature is matched. Otherwise, only the

i" fragment of some signature, say R, , is matched. In this case, we check if the

(i-)™ fragment of R, was matched. If it is true, then the matched fragment is

recorded and the traversal on graph G, ends. If no complete signature is matched
for al concurrent traversals, then the scanning process continues after performing

MB =1°|MB,>>g and MB,=1°|MB,>>g , where g is the window
advancement determined according to the content of R.

Cased. mh, =land mb} =1

The operation for thecase mhj, =1and mh} = 1isthe same asthat for Case 3,

except that goto graph G, is included in concurrent traversals. The scanning
process ends if a complete signature is matched. Assume that only a fragment of
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some signature is matched. In this case, we check if the preceding fragment of the
same signature was matched. If it is true, then the newly matched fragment is
recorded. In case no complete signature is matched, the window advancement g is
determined according to the content of R and the scanning process continues after

performing MB, =1° [MB, >>g and MB,=1°|MB,>>g.

Note that the pre-filters can work correctly without master bitmaps. However,
with master bitmaps, the search window can be advanced by more positions,
compared with the implementation without it. Consider for example Pre-Filter 1
with m = 8 and k = 3. Assume that the results of the first and the second
queries (both in Mode 1) are 101010 and 001010, respectively. Without master
bitmap MB,, W is advanced by one position after each query. On the other hand,
with MB,, it is advanced by one position after the first query and six positions after
the second query. Initially, the master bitmap MB, = 111111. It becomes
110101 after the first query. Since:the results of the second query is 001010, the
content of MB, becomes 000000, after the bitwise AND operation. Therefore, the
search window W is advanced by six positions and the content of master bitmap is
updated as 111111. It was proved that the implementation with master bitmap is
optimal in the sense that it is'equivalent to using all previous query results.

Now we describe the operation of verification module. Assume that the
pre-filters find a suspicious sub-string.-and the verification module is invoked.
Consider Mode 1 operation or Case 2 of Mode 2 operation. For these two cases,
only goto graph G, is traversed. The traversal on graph G, ends if a complete
signature is matched or the failure function is consulted. If a fork state is visited,
the fork function will give the start state of some T graph. At this moment, a
process is forked to concurrently traverse the T graph, from its start state. (New
Example Is Needed. As an example, consider the goto graphs shown in figure. 4.
A process is forked to traverse graph T, if state 9 is visited. ~As another example, a
process is forked to traverse graph T, if state 4 of T, is visited.) If a state whose
representing string matches the first fragment of R, for some k, n +1<k<n,is
visited, then goto graph G, is putin Active_Graphs so that it will be traversed if
succeeding suspicious sub-strings which falls in Case 3 or Case 4 of Mode 2 operation
is found by the pre-filters. In this case, the information of the matched fragment,
including the signature it belongs to and the ending position in input text string, are
recorded.
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Traversal on a goto graph T is as follows. Let min and max be,
respectively, the minimum and the maximum values given by the fork function of the
state visited that causes a forked process to traverse graph T. A counter ctr is
maintained when traversing graph T. The content of ctr is initialized to min
and the next min symbols are skipped. The counter is increased by one if the
current state is the start state of T and it returns to the same state after an input
symbol is processed. Assume that the failure function is consulted in state P. Let
S” denote the string representing state P and |S| be the length of string S.
The content of ctr is updated as ctr = ctr +increment, where increment=|S" |
- |S"™ . The traversal ends if a match of signature is found or ctr >max. If a
fork state is visited, then one more process is forked to traverse another T graph,
from its start state given by the fork function. Assume that graph T s
constructed with {S}, where S is the last string of the first fragment of R, for
some k, |,+1<k<I. If the state represented by string S is visited, meaning
that the first fragment of R, is matched, the information of the matched fragment

is recorded.

It is possible that no complete signature is matched when traversals end. In
this case, the pre-filters resume their execution-according to Mode 2 operation.

The operations for Case 3 and Case 4 of Mode'2 are similar. Traversal on goto
graph G, is exactly the same as that described above. Traversal on Level i

(i1>2) graphs are similar to those on Level O graphs. The difference is that we

need to check whether or not it is‘a true-match when a match of the i"™ fragment of
some signature is found. Assume that the i" fragment of R ,, |, +1<k<l,is
matched when traversing some Level | graph. It is a true match only if the

(i-1)™ fragment of R..« was matched previously and the starting position of the

newly matched i"™ fragment is greater than the ending position of the previously
matched (i—1)" fragment. If it is a true match, then the information of the "
fragment of R ,, is recorded and goto graph G,,; is added to Active_Graphs if
R... hasmorethan i fragments.
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Chapter 5.

Compression of Goto Graph

The G graphs, especially G,, are likely to have a large number of states for a
large signature set. Therefore, a straightforward implementation using a
two-dimensional table requires a huge amount of memory space. In this section,
we present a compression scheme which can significantly reduce the memory space

requirement.

Consider graph G, . (The other G graphs can be compressed similarly.) In our
proposed compression scheme, states are classified according to the number of child
states. State P is said to be a branch state, a single-child state, or a leaf state, if it
has at least two child states, exactly one child state, or no child state, respectively.
A single-child state P is a first'single-child state if its parent state is a branch state.
Finally, state P is said to be an explicit state.if it is the start state, a branch state, a
first single-child state, a final state, a fork state, or a fragment-end state, i.e., a state
represented by R for some i, ‘nj+1<i<n.., We store all strings in Z;, and
some data structures for the explicit states. Note that every final state, fork state,

and fragment-end state has to be a.branch-state, a single-child state, or a leaf state.

The strings in Z, are stored contiguously in a compacted _G, _strings file.
For example, if Z,={he, she, his, hers} , then the compacted _G, _strings file is
simply heshehishers. Similar to the AC—bnfa scheme adopted by Snort, branch
states are further classified into Branch_2, Branch_3, Branch_4, Branch_ 5, and
Branch_256 states. State P is a Branch i (2<i<5) state if it has exactly I
children states. For such a state, we store i pairs of (symbol, next state). If
state P has more than five children states, it is classified as a branch_256 state and
we store sequentially 256 next states corresponding to 256 possible input symbols.
Note that the next state could be the END state for some input symbols. Our
experimental results show that there are only a small number of branch_256 states
and the number of children states is much larger than five for most branch-256 states.
By storing all the 256 next states, we waste a little memory space but achieve

high-speed look-up for state transition. Assume that state P is a single-child state

with representing string S°.  Let A be the first string in Z, which contains
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S® as a prefix. For state P, we store (position, distance), where position is
the position of the |S”[" byte of A in the compacted G, _strings file and

distance is the number of bytes from state P to its nearest descendent explicit
state, i.e., the explicit state whose representing string is the shortest one which
contains S° as a proper prefix.

Finally, for each leaf state, we basically store nothing but an identifier to indicate
that it is a leaf state. Of course, every explicit state needs flags to indicate whether
or not it is a final state, a fork state, and/or a fragment-end state. For a final state,
we need to store the identification of the matched signature(s). For a fork state, the
minimum and the maximum values as well as the starting state of some T graph to
be traversed are stored. Note that the number of states on the compressed G,
graph is equal to the number of explicit states, which normally is much smaller than
the number of states in the original G, graph constructed with algorithm AC1. As
a result, the memory requirement is significantly reduced.

Since every T graph is constructed with a single string, the memory space
requirement is small. Precisely:speaking, we don’t create states for T graphs
actually, since there is no explicit state during transition in T graphs. All we need to
store is an array of input symbols, failure function, and-counter increment when the

failure function is consulted.
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Chapter 6.

Experimental Result

In this section, we compare the performance of our proposed signature
matching system with that of the ClamAV implementation and its enhancement [?].
Both throughput performance and memory requirement are compared. Programs
are coded in C++ and the experiments are conducted on a PC with an Intel Pentium 4
CPU operated at 2.02GHz with 1.75GB of RAM.

We traced the ClamAV implementation, extracted the ideas, and re-wrote the
codes for our experiments. In the ClamAV implementation, a trie of height two is
constructed for the first two bytes of all patterns based on AC pattern matching
machine. Effectively, patterns are grouped based on their first two bytes. The
failure function for non-leaf states is eliminated-because the next move function ¢
is adopted. The next move function ¢ is defined as o(P,0)=9g(P,0) if
g(P,o0) # fail or 6(P,o0)=06(f(P),0) otherwise. When the first two bytes of
some group are matched, a sequential search is performed for all patterns in the
group. Different from our proposed scheme;-a-regular expression is fragmented by
the three *, ?, and {min, max} operators. A data structure is maintained to indicate
up to which fragment a regular expression-had been matched and the position in the
text of the last matched fragment. Consider a regular expression which consists of k
fragments. Assume that the first e fragments had been matched and the €"
fragment ends at the i" position of the text. Assume further that another
fragment is matched at the jth position.  This newly matched fragment is
discarded if it is not the (e+1)th fragment or i and j do not satisfy the condition
specified by the operator which separates the €" and the (e+1)th fragments. As
an example, consider a regular expression RE = srg ? Sre, {2,4} sre, {3,5} sre, .
Assume that the first fragment srg was matched at the i" position of the text.
If the second fragment sre, is matched at the (i+|sre, |+1)" position, then the
data structure will be updated to indicate that the first two fragments are matched
and the position of the second fragment is matched at the (i+|sre, |[+1)" position.

Assume that a fragment is further found at the jth position, then the data
structure is further updated only if it is the third fragment sre; and j satisfies
2<j-i-| sre, |-| sre; |-1<4. Otherwise, the newly matched fragment is discarded

and the data structure remains intact.
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Note that, strictly speaking, the ClamAV implementation may result in false
negatives. For example, consider the same regular expression
RE= srg ? sre, {2,4} sre, {3,5} sre, and assume that the input text s

sesrgasreabcsreabedsre,.  There is obviously a match starting at the (srg +1)"

position. However, the Clam AV implementation does not detect the match
because the second sre will be discarded when it is found.

The performance of ClamAV implementation can be improved by using variable
height trie [Avfs]. The variable height trie requires more memory space for larger
maximum heights. It was found that a trie with maximum height three is a good
tradeoff between throughput performance and space requirement. Therefore, we

shall compare our proposed system with tries of maximum height two and three.
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Figure 5. Performance comparison of ClamAV implementation and our proposed
signature matching system for clean files of various sizes.

Figure 5 shows the comparison of CPU execution time for randomly generated
files of various sizes without any signature occurrence. It can be seen that the CPU
execution time is proportional to file size. The CPU time required by the ClamAV

implementation is about 20 times of that required by our proposed system. Figure
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6 illustrates similar comparison with a string SabcdeS inserted into a randomly
generated file of size slightly larger than 2M bytes to match a signature (W32.Gop) of
the form RE=S*S. Again, the CPU execution time required by the ClamAV
implementation is about 20 times of that required by our proposed system. We
also conducted simulations with a string SabcdeS inserted at various positions to
match a signature (DOS.Bg-2) of the form RE=S{16}S . The results are similar.
We expect the performance improvement to become larger as the number of
signatures increases. The reason is that, in ClamAV implementation, the number of
strings in a group with identical first two bytes increases as the number of signatures
increases. Since the ClamAV implementation performs sequential search for strings
in the same group, it consumes more CPU time to find the match in a larger group.

As for memory requirement, ClamAV implementation uses 362K bytes and our
proposed system uses about 1.94M bytes. The pre-filter requires 128K bytes and
the verification module needs 1.8M bytes. There are 2,486 final states and,
therefore, the output function takes about 5K bytes. (In our implementation, we
use two bytes for signature ID.) We believeithe amount of memory required by our

proposed signature matching system-is acceptable for practical systems.
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Figure 6. Performance comparison of ClamAV implementation and our proposed
signature matching system with a string  SabcdeS' in various place of file.
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Chapter 7.

Conclusion

We have presented in this paper a systematic approach to construct a signature
matching system for simple regular expressions which are used to define virus/worm
signatures in ClamAV. Like the Aho-Corasick algorithm, the verification module of
our proposed system is dictated by three functions, namely, the goto, failure, and
output functions. Experimental results using ClamAV signatures show that,
compared with the ClamAV implementation and its enhancement, our proposed
system achieves much better throughput performance while requiring an acceptable

amount of memory.

Our work presented in this ‘paper provides some guidelines for writing
signatures. For example, the non-overlapping condition is very important in
reducing the space complexity.In case the non-overlapping condition is to be
violated, one should minimize the number of *'operators in those overlapped
signatures. As another example, the throughput performance can be largely
improved for long pre-filter patterns. Extension ©of our work to other types of

signatures is an interesting and useful further research topic.
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Appendix: TheAho-Corasick Algorithm
The Aho-Corasick (AC) algorithm is dictated by three functions: a goto function g, a
failure function f, and an output function output. Fig. A.1 shows the three

functions for the pattern set Y = {he, she, his, hers} [9].

(b)

R output(R)
2 {he}

5 {she, he}
7 {his}

9 {hers}
()

Fig. A.1. (a) goto function, (b) failure function, and (c) output function for Y = {he, she,
his, hers}.

Some definitions are needed. Let SS, represent concatenation of strings § and
S,. Wesay § isa prefixand S, is a suffix of the string SS,. Moreover, §
is a proper prefix if S, is not empty. Likewise, S, is a proper suffix if § is not
empty. One state, numbered 0, is designated as the start state. String S° is said
to represent state P on a goto graph if the shortest path from the start state to state

P spells out S”. For example, string her represents state 8 in Fig. 1. The start
state is represented by the empty string ¢. The length of string S is represented by
|SI.

Note that there might be a self-loop at the start state of a goto graph. However, it
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becomes a tree after removing the self-loop, if exists. In the following definitions,
we ignore the self-loop. We call state P, the parent of state P, andstate P, the
child of state B, if there exists a symbol o such that g(R,o)=P,. State P, is

said to be a descendent of state P and state P, an ancestor of state P, if S% is

a proper prefix S%. The tree which consists of state P and all its descendant states
is called the sub-tree of P.

The goto function g maps a pair (state, input symbol) into a state or the message fail.
For the example shown in Fig. A.1, we have g(0, h) =1 and g(1, o) = fail if o is not
e ori. State O is a special state which never results in the fail message. With this

property, one input symbol is processed by the AC algorithm in every operation cycle.

The failure function f maps a state into a state and is consulted when the outcome of

the goto function is the fail message. We have f(F) =P, if and only if (iff) S s

the longest proper suffix of S%<that is also a prefix of some pattern. The output
function maps a state into a‘set (could be empty) of patterns. The set output(P)

contains a pattern if the pattern is-a suffix of ~S”.

Let P, be the current state and o the currentinput symbol. Also, let T denote
the input string. Initially, the start state is assignedas the current state and the first
symbol of T isthe current input'symbol.~~Anoperation cycle of the AC algorithm is
defined as follows.

1. If g(R,o)=P,, the algorithm makes a state transition such that state P,
becomes the current state and the next symbol in T becomes the current
input symbol. If output(R,) =<, the algorithm emits the set output(P,).
The operation cycle is complete.

2. If g(R,o)= fail, the algorithm makes a failure transition by consulting the
failure function f. Assume that f(P)=P,. The algorithm repeats the

cycle with P, asthe current state and o as the current input symbol.

It can be shown that the maximum number of state transitions is 2n—1 for
scanning if |T |En. This number can be reduced to n if the next move function
0 is adopted. The next move function is defined as o(P, o)=g(P, o) if
g(P, o) # fail or 6(P, o)=56(f(P), o) otherwise.

The procedures to construct the goto, failure, and output functions are described in
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Algorithms AC1 and AC2 below [9]. The goto function and the failure function are
constructed, respectively, in Algorithms AC1 and AC2. The output function is

partially constructed in Algorithm AC1 and completed in Algorithm AC2.

Algorithm AC1. Construction of the goto function.

Input. Set of keywords Y ={Vy,,¥,,..., i} -

Output. Goto function g and a partially computed output function output.

Method. We assume output(P)= when state P is first created, and g(P, o) = fail if
o is undefined or if g(P o) has not yet been defined. The procedure enter(y)
inserts into the goto graph a path that spells out y.

begin
newstate & 0
fori < 1until kdo enter(y,)

forall o suchthatg(0,0)=faildo g(0,0) < 0
end
procedure enter(aa,..a,):

begin
state € 0;j < 1

while g(state a;) = fail do
begin
state ¢ g(state, ;)

j&<j+l
end
for p € juntil mdo
begin

newstate & newstate + 1

g(state,a,) < newstate

state & newstate
end

output(state) ¢ {aa,..a,}
end

Algorithm AC2. Construction of the failure function.

Input. Goto function g and output function output from Algorithm 1.
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Output. Failure function f and output function output.
Method.

begin
queue <& empty
foreach o suchthatg(0,0)=P#0do
begin
queue <—queue U P}
flP) &0
end
while queue # empty do
begin
let R be the next state in queue
gueue € queue - {R}
foreach o suchthat g(R,o) =P # fail do
begin
queue <-queue U P}
state < [f(R)
while g (state, 6 ) = fail do state ¢ f(state)
flP) & g(state, o)
output(P) &output(P) L output(f(P))
end
end
end
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