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Abstract

In wireless communication systems, multiple-input multiple-output (MIMO)
technology offers significant increases in data rate and link range without additional
bandwidth and transmit power. However, in-uplink-multi-user MIMO systems, some
users will suffer from small channel gains due to being far away from the base station
or blocked by obstacles in practical environments. This result in poor data rates for
those users. In this thesis, we propose a transmit power allocation scheme with fair
rate allocation for all users. We reformulate a nonlinear optimization problem to a
modified form which can be applied to the existing algorithms. The proposed fairness
scheme also leads to uniform sub-channel gains. Thus the equivalent channel matrix
will tend to be well-conditioned. Since efficient decoders of underdetermined MIMO
systems are based on sphere decoders, the decoding complexity can be reduced with a
smaller channel condition number. Finally, we also propose an alternative utility
function to improve the condition number, to further reduce the decoding complexity.

Simulation results confirm the effectiveness of the proposed methods.
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Chapter 1

Introduction

Next generation wireless communication systems are expected to provide users
with higher data rate services including video, audio, data and voice signals. The
rapidly growing demand for these services drives the wireless communication
technologies towards higher. data rate, "higher mohility and higher link quality.
However, the time-selective and frequency-selective fading in wireless channel
caused by multipath propagation, Doppler shifts and carrier frequency/phase drifts
severely affect the quality and reliability of wireless communication. Besides, the
available bandwidth and power are limited which makes the design of wireless
communication systems extremely challenging. Hence, recently there are many
innovative techniques that improve the reliability and the spectral efficiency of
wireless communication links. Some popular examples include the coded
multicarrirer modulation, smart antenna, in particular multiple-input multiple-output
(MIMO) technology [1-4] and adaptive modulation [5], [6].

MIMO technology involves the use of multiple antennas at the transmitter and
receiver to improve communication performance. The technology offers some
benefits that overcome the challenges posed by both the impairments in wireless

channel as well as resource constraints. The two important benefits of MIMO



technology are the diversity gain and the spatial multiplexing gain. Diversity gain
mitigates fading by providing the receiver with multiple (ideally independent) copies
of the transmitted signal in space, time or frequency. Spatial multiplexing offers a
linear increase in data rate by transmitting multiple independent data streams within
the bandwidth of operation.

There are many signal detection schemes for MIMO systems such as linear
detection, successive interference cancellation (SIC) [7], [8] and the
maximume-likelihood (ML) detection. Both linear detection and the SIC schemes are
easy to be implemented but their detection performances are not optimal. The optimal
detection scheme is ML detection; however, the complexity of the ML detection
scheme grows exponentially with the size of ‘the transmit symbol alphabet and the
number of transmit antennas. .To reduce the complexity of ML detection, the sphere
decoding algorithm (SDA) is.introduced in [9-12] to achieve the same performance as
ML detection with reduced complexity. The basic idea of SDA is to search the nearest
lattice point to the received signal vector within a‘given sphere radius. However, the
typical SDA fails to decode in underdetermined MIMO systems. Thus several
algorithms are proposed to decode the underdetermined MIMO systems, including
Generalized Sphere Decoding (GSD) algorithm [13], Slab Sphere Decoding (SSD)
algorithm [14-16], and Regularization Method [17].

In uplink multi-user MIMO (MU-MIMO) systems, if the number of users is
larger than the number of base station antennas, then it can be regarded as an
underdetermined MIMO system. Considering in the practical environments, some
users will suffer from small channel gains due to being far away from the base station
or blocked by obstacles. This results in poor data rates for those users. The
waterfilling power allocation algorithm in [18] can provide a maximum throughput of

the systems, but the data rate for the user with small channel gain will be severely
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degraded..

In this thesis, our major goal is to achieve fair data rates for all users. We propose
a transmit power allocation to realize this. And we reformulate a nonlinear
optimization problem into a modified form which can be applied to the existing
algorithms. The proposed fairness scheme also leads to uniform sub-channel gains.
Thus the equivalent channel matrix will tend to be well-conditioned. We further
propose a determinant based utility function to improve the condition number. Thus
the complexity of the SDA based decoder can be reduced.

The remainder of the thesis is organized as follows. In Chapter 2, The signal
model of the MIMO systems is introduced first. Secondly, several algorithms for
decoding underdetermined MIMO systems.are presented. In Chapter 3, the proposed
transmit power allocation scheme is-developed. Discussion on the condition number
and the determinant based utility function will be described in Chapter 4. Simulation
results of the proposed methods are also illustrated.in this chapter. Finally, we
summarize the contributions of-our. works and give some potential future works in

Chapter 5.



Chapter 2

MIMO Systems

In wireless communications, one can improve communication performance by
using multiple-input and multiple-output (MIMO) technology. MIMO offers
significant increases in data rate and link-relability without additional bandwidth or
transmit power. In this chapter, we give a review of MIMO systems. We first introduce
the MIMO system model in Section 2.1. Section 2.2 introduces the channel capacity.
Then, the spatial diversity and the spatial multiplexing techniques are introduced in
Section 2.3 and Section 2.4, respectively. The-generalized sphere decoding (GSD)
algorithms have been studied as a solution to the ML detection for underdetermined
MIMO systems with reduced complexity. We will give an introduction of the GSD

algorithms in Section 2.5.

2.1 System Model

Figure 2-1 shows the typical multiple-input-multiple-output (MIMQO) system

with N, transmit antennas and M, receive antennas. The frequency-flat fading

channel matrix H can be written as



hii  hi2 hin,

N ho1  hee -+ hon

A=| o e Mo (2.1)
hvi huo - hunw,

where the elements of H are i.i.d. complex Gaussian random variables with
zero-mean and unit variance. The relation between the transmitted signal vector and
received signal vector can be written as

y=Hx+n, (2.2)

where y:[yl,g”/Q,m,y eCY and % =|@1,d2,,7,, |€CV! are the

")

received signal vector and transmitted signal vector , respectively.

n :[m,ﬁz,---,ﬁMr]e CM denotes .the risi.d. complex additive white Gaussian
noise (AWGN) vector with zero-mean-and covariance'matrix o°I. When M, > N,

the system is called an overdetermined MIMO system. When M, < N, , itis called an

underdetermined MIMO system.

Fig. 2-1 MIMO system

The complex MIMO system can be transformed into an equivalent real system.

By using the real-value decomposition, (2.2) can be written as



y=Hx+n, (2.3)

where
y = [Re{y}" Im{3}'] e RY,
x = [Re{x}] Im{x}7] e RY,
n =[Re{a}! Im{a}?] e RY,
and

) Re{H}' —Im{H}" e
m{H)"  Re{H)’ |

Note that the dimensionof His M x N where M =2x M, and N =2xN,.

2.2 Channel Capacity

Channel capacity is the-highest rate in bits per channel use at which information
can be transmitted with an-arbitrary probability of error. We first introduce the
single-input-single-output (SISO) channel capacity and then study the capacity of a
MIMO channel. Note that single-input-multiple-output (SIMO) and multiple-input-
single-output (MISO) channel are sub-sets of the MIMO case. The channel capacity is

defined as [19]

C = max I[(X;Y), (2.4)
p(z)
where
I(X;Y)=H()-H({Y | X), (2.5)

is the mutual information between X and Y, H(Y)andH(Y | X)are the differential

entropy of Y and differential conditional entropy of Y with knowledge of X given,

respectively. In (2.4), it states that the mutual information is maximized with respect



to all possible transmitter statistical distributions p(z).

The ergodic capacity of a SISO system with a random complex channel gain A is
given by [19]

C = E{log2(1 + 7|h|2)} bits/sec/Hz, (2.6)

where v = P /o’ is the average SNR at the receiver, P is the transmit power and
E{x} is denotes the expectation over all channel realizations. For a MIMO system
with N transmit antennas and M receive antennas, the capacity of a random MIMO

channel is given by [1]

det (Iyz +iNHRmHH )” bits/sec/Hz, (2.7)

2
o

C = 1
e |

where R, = E{xxH } is the covariance matrix of the transmitted signal vector x.

If the channel knowledge is-unknown to the transmitter,-the signals are chosen to be
independent and equal power. The covariance -matrix of the transmit signal vector is

then given by R, = I;,. As a result;-the ergodic capacity of a MIMO system can be

written as [1]

det(I,, + ——HR, H)
oc°N

} bits/sec/Hz, (2.8)

By using the eigenvalue decomposition, the matrix product of HH? can be

decomposed as HH = EAE? | where E is an M x M matrix which consists of

the eigenvectors satisfying EE” = EE =1, and A = diag{\,\y,..., N/} is a
diagonal matrix with the eigenvalues A\, > 0 on the main diagonal. Assuming that
the eigenvalues )\, are ordered so that A, > )\, ;, we have

0'1,2, 1f1§2§7"

- 2.
A 0, ifr+1<i<M’ (2.9)



where af is the dth squared singular value of the channel matrix H and

r = rank (H) < min{N,M} is the rank of the channel matrix. Then the capacity of

a MIMO channel can hence be rewritten as

) ¢ p . (2.10)
=> FE {logQ det(1 + 2—)\1)” bits/sec/Hz
i=1 o°N

Note that the second equation holds due to the fact det(I,, + AB) = det(I, + BA)

for matrices A € C™" and B e C™" and E”E=1,,. (2.10) shows that the
capacity of a MIMO channel is made up by sum of the capacities of r SISO

sub-channels with power gain_<\; for i=12;...,r and transmit power P /N

individually.
If the channel knowledge is known to the transmitter, the capacity of a MIMO
channel is the sum of the capacities associated-with the-parallel SISO channels and is

given by

C = ZE{logQ

1=1

det(1+ ~, QL)\Z.)” bits/sec/Hz, (2.12)
o°N
where v, = E{|a;b|2} for i=1,2,...,r is the transmit power in the sth sub-channel and

,
satisfy >\, = N . Since the transmitter can access the spatial sub-channels, we can
=1

allocate variable power across the sub-channels to maximize the mutual information.

The optimal power allocation of the ith sub-channel is given by [1], [19]

2
opt :[M_M“ for i = 1,21, (2.12)

Yi P,

+

where 1 is chosen to satisfy the constraint >/ +*" = N and (), denotes the

operation that taking those terms which are positive. The optimal power allocation in

8



(2.12) is found iteratively through the water-filling algorithm [1], [19].

2.3 MIMO Diversity

Diversity techniques are widely used in MIMO systems to improve the reliability
of transmission without increasing the transmit power or sacrificing the bandwidth.
There are many diversity techniques such as time diversity, frequency diversity and
space diversity. In this section we focus on the space diversity that is so called antenna

diversity.

2.3.1 Receive Diversity

Receive diversity involves the use of multiple antennas at the receiver. At the
receiver, multiple copies of the transmitted signal are received, which can be efficiently
combined with an appropriate signal processing algorithm. There are four main types of
combining techniques, include selection comhbing, switch combining, equal-gain
combining (EGC) and the maximum ratio combining (MRC). In the selection
combining, the received signal with the best quality is chosen and the choosing
criterion is based on SNR. Switch diversity switches the received signal path to an
alternative antenna when the current received signal level falls below a given threshold.
EGC is a simple method since it does not require estimation of the channel. The
receiver simply combines the received signals from different receive antennas with
weights set to be equal. MRC forms the output signal by a linear combination of all the
received signals and is the optimal combination technique which achieves the

maximum value of the output SNR.



2.3.2 Transmit Diversity

Transmit diversity techniques which provide diversity benefits at the receiver with
multiple transmit antennas, has received much attention, especially in wireless cellular
systems. There are two broad categories of transmit diversity: the open loop schemes
and the closed loop schemes. In the open loop schemes, the transmitter transmits
signals without feedback information from receiver. Space-time code (STC)
is an open loop scheme which jointly designs of channel coding and modulation to
improve system performance by providing both transmit diversity and coding gain.
STC can be classified into two categories, the space-time block code (STBC) and the

space-time trellis code (STTC).

2.4 Spatial Multiplexing

Spatial multiplexing is a. transmission technique of MIMO wireless
communication systems which increases-the-transmission data rate without additional
bandwidth or power consumption. In the spatial multiplexing systems, N different data
streams are transmitted from different transmit antennas simultaneously or sequentially
and these data streams are separated and demutiplexed to yield the original transmitted
signals according to their unique spatial signatures at the receiver, as illustrated in Fig.
2-2. The separation of data streams at the receiver can be done possibly by the fact that
rich scattering multi-paths contribute to lower correlations between MIMO channel
coefficients and hence create a channel matrix with full rank and low condition number
to N unknowns from a linear system of M equations. In the following, two typical

spatial multiplexing schemes, D-BLAST [4] and V-BLAST [20] are introduced.

10
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Fig. 2-2 Spatial multiplexing system

(1) Diagonal Bell Laboratories Layered Space-Time (D-BLAST)

The concept of layered space-time processing was introduced by Foschini at Bell
Laboratories [4]. D-BLAST uses multiple antennas at both the transmitter and the
receiver, and an elegant diagonally-layered coding sequence in which code blocks are
dispersed across the diagonals in space-time. The high-rate information bit stream is
first demultiplexed into N substreams, and each substreamis encoded by a conventional
1-D constituent code. The encoders apply these coded symbols to the input to form a
semi-infinite matrix X of N rows to be transmitted. The encoding procedure is shown in

Fig. 2-3.

(2) Vertical Bell Laboratories Layered Space-Time (V-BLAST)

The D-BLAST algorithm suffers from certain implementation complexities which
is not suitable for practical implementation. Therefore, a simplified version of the
BLAST algorithm is known as V-BLAST. It is capable of achieving high spectral
efficiency while being relatively simple to be implemented. The coding procedure of
the V-BLAST can be viewed as there is an encoder on each transmit antenna. The
output coded symbols of each encoder are transmitted directly from the corresponding

antenna which is shown in Fig. 2-4.

11
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Fig. 2-3 Encoding procedure of D-BLAST (n=3)

Time

v

Layer

Encoder o Antenna

Fig. 2-4 Encoding procedure of V-BLAST (n=3)

2.5 Underdetermined MIMO Decoder

Maximume-likelihood (ML) detection complexity increases exponentially
depending on the number of transmit antennas and the constellation size. Hence, it is a
serious issue in designing the receiver in recent years. In order to reduce the
complexity of ML detection, the sphere decoding algorithms (SDA) [9-12] are
proposed to solve the problem and achieve the ML performance. But the SDA fails in
the underdetermined MIMO systems. There are several algorithms that can solve the
underdetermined problem, such as Generalized Sphere Decoding (GSD) [13]

algorithm, Slab Sphere Decoding (SSD) [14-16] algorithm, and Regularization

12



Method [17]. We introduce these algorithms in this section.

2.5.1 GSD algorithm

Consider a MIMO system with N, transmit antennas and A/, receive antennas.

The received real signal can be written as (2.3):

y = Hx + n.

The ML estimator x of x is obtained by minimizing the Euclidean distance of y

from the legal lattice points can be represented as

X = argmin|y — H:x||2 = argmin ||R(p - X)”2 . (2.13)
xez xezZN

where 7Z = {il,i?),---, + (2"3-1)} is the 4-QAM; 16-QAM, 64-QAM constellations
for k =1,2,3 , respectively.~p = H- (HHT)_ly, Q is an M x M orthogonal
matrix, and R is an M N upper-triangular 'matrix corresponding to the
QR-decomposition of H, i.e. H=QR . The matrix R can be represented as
R = [R,,R,|, where R, ¢ R*™ is an upper triangular and R, € R*N~

. T — o
Similarly, x can be represented as x = [x,x5| , where Gand G are the indices

corresponding to the first M and the last M -N elements of the x. The minimum

distance corresponding to the ML estimator in (2.13) can be rewritten as

argmin ||R (p— X)”2

xezZ"
. . 2
= min | min H[RlaR2]P — Roxz — RleH (2.14)
xgeZ" M xqgezM
= min min_|p — R1XG”2 ,
XEGZNfM xGEZM

Where ﬁ = [RDRQ]IO — RQX@ .

13



The GSD checks all legal constellation points in a sphere with radiusC . That

means we set the squared Euclidean distance in (2.14) to be smaller than a positive

number C?. The problem can be solved by exhaustive search over x5 and

employing the SDA to compute the last equation in (2.14). The SDA algorithm finds
the valid candidates if the squared minimum distance is less than C?. Otherwise, a

failure of the SDA for the given x; is declared and then the xz will be discarded.
If a candidate constellation point (x. ,x; ) is found within the sphere, the value

of C? isupdated and the algorithm continues to search the remaining points for Xz

If no candidate constellation point is found within the sphere, then the entire

algorithm is repeated with a value larger than the.original radius C'. The GSD is

based on the exhaustive search over-x; -and each searched point should follow the

SDA. Because of the exhaustive search over x, its complexity will exponentially

increase depending on the size of N= .

2.5.2 Slab Sphere Decoding (SSD) Algorithm

To perform (2.13) efficiently, an algorithm is proposed in [9], [20] to solve a

search problem that finds all the lattice points satisfying

|y - Hx|” < C? (2.15)

for given a radius C' (>0). Apparently, the point that is the closest to center of the

hypersphere y , is the ML decision point. By decomposing the channel using

QR-decomposition, (2.15) can be rewritten as

ly —Rs| <2, (2.16)

14



where y = Q”y. If N > M, we will have
—ngljw— TM,M37M +"'+7’M7N.’17N]§C, (217)

at the Mth layer. (2.17) involves N-M+1 dimensions for detection. (2.17) is similar to a

detection problem of a real-valued MISO system. First, we want to find the
constellation points falling inside this slab. There are two algorithms that can help us
find those constellation points, i.e., Plane Decoding Algorithm and Slab Decoding

Algorithm.

Plane Decoding Algorithm

For a MISO system with £ transmitted antennas where the inputs are independent

symbols, the received signal can be written as

where z, € Z, h, is the channel response and. 7 ~CN(0,0°) stands for AWGN.

ML estimation of the transmitted vector x = [x;,:-,z;.| can be written as

Xy =arg  min (y =z + -+ hka:k)2, (2.19)

(:L‘l,-~~,1‘k)€Z

the estimator means to find the point x € Z* which is the closest to the hyperplane P

given as

P:hx + -+ ha, =y. (2.20)

First, define X, X, Xpp as the sets of the points to be visited, the points that have
been visited, and the points that are close to P in all dimensions, respectively. Then,

initialize them with X=X, = {x(l)} where the (1) stands for the order of the vector in

asetand j = 1.

15



The main idea of the PDA is to find those candidates (X p, ) which are close to P
in all dimensions. The procedures of the PDA are summarized as follows:

Step 1: If X is empty, go to Step 5. Otherwise, we calculate

aj = {x cminz s.t. z > :EB}
TEL

a; = {:17 :maxz s.t. x < IEB},

TEZ
where
Ay x
Tp = :1:71] _ ‘}(l]‘ )

Ay(x0) = |2l + ol 4o+ [ 2~y

Step 2: If {ax = @} A {ax =@} isnot true, go to Step 3. Otherwise, we have the

A~

point % = x - except that 7;=a; where % is close to P in

dimension-j. Then, if ‘z; = xg-l) and-then the point x1 is close to P in

dimension-1,2,...,jand do:
® |Ifj < k update j = j+ 1. Goto Step 1.
® If j =k the point x" is close to P in all dimensions and is stored in
Xpp. Next, discard x from the set X and reset j = 1. Go back to
Step 1 to check a new point in X.
1)

Else, if z; = ag- , then discard x" from the set X and reset j = 1. Go

back to Step 1.

Step 3: If {ax = @} A {ar = @} isnottrue, go to Step 4. Otherwise, we have the

point % =x except that z; =a; where x is close to P in

16



dimension-j. Then, if z; = xg;) and then the point x is close to P in
dimension-1,2,...,7and do:
® |fj < k update j = j+ 1. Go to Step 1.
® |f j = £k, the point x is close to P in all dimensions and is stored in
Xpp . Next, discard x) from the set X and reset j = 1. Go back to
Step 1 to check a new point in X.

Else, if z; = ag-l), then discard x() from the set X and reset j = 1. Go
back to Step 1.
Step4: If {ar = @} A {ar = P} isnottrue,go to Step 5. Otherwise, we have two

1)

points % = x\!) ‘exceptthat ;= a; and % = x exceptthat i; = a,

where x and x are close'to’ P in dimension-j. Then, if z; = =M and

J
then the point x“is close to Pin dimension-1,2,...,5and do:
® Ifj< kupdatej=j+ landif x ¢ X}, thenupdate X = {X x} and
Xy = {Xy,x}. Goto Step 1.

® |f j = £k, the point x is close to P in all dimensions and is stored in
Xpp . Next, discard x) from the set X and reset j = 1. Go back to
Step 1 to check a new point in X.

g;) and then do:

If 2, ==z
® Ifj< kupdatej=j+ landif x ¢ X, thenupdate X = {X,x} and
Xy ={Xy,x}. Go to Step 2.

® |f j = £k, the point x is close to P in all dimensions and is stored in
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Xpp . Next, discard x) from the set X and reset j = 1. Go back to
Step 1 to check a new point in X.

Else, if a:g-l) = aj,a;, then discard x from the set X and reset j = 1. Go

back to Step 1.

Step 5: Each pointx in Xpp), update

The PDA guarantees to achieve the ML solution only for the MISO systems. For
MIMO systems, we will need to find those points that fall inside the slab

The following algorithm is designed-to-accomplish this.

Slab Decoding Algorithm

Obviously, although the X5 does not containall the lattice points that fall inside
the slab in (2.21), the Xpp, provides a useful starting point for slab detection.

The procedures of SDA are summarized as follows:

Step 1: Sorting the points of Xpp according to their Euclidean distances.
Therefore,
sor 1 2 3
x5 = iy
where Ag? (xi,) < Ay? (x)) if i<,
Step 2: For a given C, find the set

X

et = {x € X5t —C < Ayo < C}

Step 3: For each point x € X

pp<c? Move away along each direction for
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finding other points which Ay? (x) < C*. These newly found points

are then added to XPD;SOQ . It is done by the following loop.

itiali — - i ; (n)
a. Initialize n = 1, and 5 = 1. Pick the nth point u™’ € XPD;SCQ.

b. Compute

;-”) + d,max s
SEZ

Y

Uy = min [u
where d stands for the separation of every adjacent constellation.

If " = u, and then do the following.

n)y __

o |f Ay2 (u(m) < C? then XPD;SCQ = {XPD;SCQ,U.(”)}.

c. Compute

(n)

s d,mins].

Uy = max [u
SEZ

If " =uy, andthen do the following.

n)y =

o If Ay2 (u(m) < C’2, then XPD;SCQ = {XPDSCQ,u(”)}.
d. If j < k, then update j = j + 1 and go back to b.
e. If j = k, then update n = n 4+ 1 and j = 1. Then, go back to b.

f.If n= ‘X , then all lattice points that fall inside the slab are

PD:<(C?

found.
The two algorithms can find all the lattice points satisfying (2.21) for a given C.

Each point of the set can be substituted into the original problem in (2.16), to obtain

lye — Rixe[ < € (2.22)
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€ RM—lxM—l

where y; e RY ™, R, corresponds to the first A/ —1 columns and

rows of the R and x¢ = [2,29,-, 2,1} € RM 1. Since R, is an upper triangular

matrix with full rank, we can solve the problem by SDA directly. After the substitution

of all points, the ML solution can be found.

2.5.3 Regularization Method

Regularization method intends to transfer the underdetermined MIMO systems
to overdetermined MIMO systems. By doing this transformation, one can directly use
the SDA in a simple way. It first considers a constant modulus constellation, and
derives the algorithm. Then it shows how MIMO systems with non-constant modulus
constellations can be adapted so that-the algorithm is applicable. The ML detection is

equivalent to

min [y BY = min R 2| (2.23)

where R is an upper triangular matrix-such that R'R=H'H . In the
overdetermined MIMO systems, i.e. M >N, H'H is full rank. The SDA is

applicable due to the non-zero diagonal terms of R . However, for the

underdetermined MIMO systems, i.e. M < N , the Cholesky factor R of H7H is

rank-deficient and only the first M rows of R are non-zero. Because the elements of

T

x are of constant modulus, that means the product ax” x is a constant. We can get

an equivalent minimization problem as

min (||y —Hx|’ +a IIXII2)
xes (2.24)
= min[yHy — yHHX — XHHHy +xf (HHH + aIN)X}

xes

Thus the matrix G = H”H + oI, is full rank. It can be Cholesky factorized as
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G =D'D, and Dis an upper triangular matrix. By defining A = G 'Hy, (2.24)

is equivalent to

min|[D(A —X)[. (2.25)

xES

(2.25) is an overdetermined case, thus can directly use SDA. If the constellation is not

constant modulus, the non-constant modulus constellation can be represented as

combination of constant modulus constellations. For example, q-QAM (¢ = 2’“) can

be represented as a weighted sum of % /2 QPSK constellations when k is an even

number. That is, for w €g-QAM and w; € QPSK, 0 <i <k /2, we have

L

2 .
-2,

1=0

2.6 Summary

In this chapter, we give‘a review of the MIMO communication systems.
Exploiting multi-path scattering, MIMO systems deliver significant performance
enhancements in terms of data rate and link quality. Spatial diversity is one of the
MIMO techniques which mitigates fading and is realized by providing the receiver
with multiple copies of the transmitted signal in space or time. MIMO systems offer a
linear increase in data rate through spatial multiplexing by transmitting multiple and
independent data streams without requiring additional bandwidth or transmit power.
The underdetermined MIMO systems can be solved by several algorithms. GSD
algorithm has to perform exhaustive search over (N— M) dimensions. The SSD
checks all the points in a geometrical slab. The regularization method transfer the

underdetermined case to overdetermined one by adding a constant term.
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Chapter 3

Proposed Transmit Power Allocation

In this chapter, we introduce the proposed transmit power allocation for
MU-MIMO systems. We aim to find a power allocation matrix such that all user data
rate will be close to each other. We'choose the sum of logarithmic average user rates
as our utility function. We reformulate .this nonlinear optimization problem to a
suitable form, thus the Interior-point method can be applied. The proposed method
can also be applied to single user MIMO (SU-MIMO) systems. The simulation results
shows that the proposed method provides fair.data rate for all users. The Chapter is
organized as follows. In Section 3.1, we introduce that the special uplink MU-MIMO
can be regarded as the underdetermined MIMO system. The proposed transmit power
allocation is introduced in Section 3.2. The reformulation of the nonlinear
optimization problem and Interior-point algorithm are described in Section 3.3.
Section 3.4 contains the numerical results of the proposed method, and Section 3.5

summarizes this chapter.
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3.1 Uplink MU-MIMO System

In the uplink scenario, if there are N users transmit the signal simultaneously, and
each user is equipped with one antenna. The base station has M antennas. When the
number of base station antennas M is larger than the number of users N, it can be
viewed as an underdetermined MIMO system. Therefore, the existing algorithms can
be used to decode the received signals. Fig. 3.1 is a practical example in uplink
MU-MIMO system. User 6 is blocked by a high building and User 11 is far away
from the base station. The channel gains are depending on the shadowing and distance
between the transmitter and receiver. In general, these two users will suffer from
small channel gains. Hence, User 6 and 11 will-have lower data rates than the other
users. We aim to use a power.allocation to let all users have fair rates. Thus User 6

and User 11 will achieve higher data rates.

7\

Y 2
-
0N
Y 4 v
8 v Y 11
10
0

Fig. 3-1 Example of uplink MU-MIMO system.
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3.2 Proposed Transmit Power Allocation for

Fair Rates

In the uplink MU-MIMO systems, the users are independent and separated. They
cannot exchange the information to each other. Thus precoding techniques at the
transmitter cannot be applied in this case. However, we can use power allocation to
improve the performance. The transmit power allocation is proposed to allocate power

to different users. We incorporate the power allocation  matrix

P = diag(\/P,\/B,~+,y/Py ) into our system model, where P, is the power

transmitted by the ith user. Thus, the received:signal in (2.3) becomes

y =HPx+n, (3.1)

and P, <P,

max ¢

is the power constraint for the ith-user. The matrix HP in (3.1)
can be regarded as the equivalent channel matrix. It can also be considered as matrix

P provides different gains to different columns of “H'. Assuming that the receiver has
the perfect channel state information (CSI). The maximum achievable rate for the ith
user is

(|h17;|2 t [ + - +|hM72|2)Pi

Mo* + Z(‘hmf + ‘h’Zj‘Q toet ‘hMJ‘Q)PJ

J=t

2

where SINR,; = and o“ is the noise

power. Here we treat the other users as interference at the receiver. By the concept of

[21], we choose the utility function U (R, R,,---,Ry) as

Up (R, Ry, Ry ) =In(R;)+ In(Ry) + -+ In(Ry). (3.3)
We want to find the matrix P*™ which maximizes the utility function. This lead to the
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following optimization problem:

max Uy (R, Ry, -, Ry) subject to P, < P, i=12--N (3.4)

ax?
We choose the logarithm function in (3.3) because it provides better fairness for the
rate R, of each user. For logarithm function, the larger input, the more suppressed

output. This means that the different rates will be closer to each other. If we choose
the utility function as Ugyy (R;, Ry,, Ry ) = Ry + Ry + -+ + Ry, i.e., maximizing

the total sum rate, then the water filling algorithm [18] will be the solution.

The utility function in (3.3) can also be applied to SU-MIMO system. The
difference between SU-MIMO and MU-MIMO systems is the power constraint.
When the transmitter has N antennas and receiver has M antennas, the received signal

can be written as same as (3.1). The optimization problem in (3.4) becomes

max Up (Ry, Ry, Ry ) subject to SN P < Prax.

where P, is the transmitted power of the sth-antenna and £, is the maximum

transmit power. The achievable” data-rate will become fair for all users with the
proposed power allocation applied.

In [26] we know that the optimization problem in (3.4) cannot be solve
mathematically as a closed form. The reason is that the utility function is a very
complicated nonlinear function. Thus we need to reformulate the problem to a
suitable form which can be solved by the existing algorithms. Here we choose the
interior-point method [23], [24] to solve the optimization problem, since it is more

efficient and applicable to both linear and nonlinear problems.
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3.3 Interior Point Algorithm

In this Section, we reformulate the optimization problem in (3.4) to apply the
existing algorithms. We start from transforming our optimization problem to a
suitable form for the Interior-point method, and then give a brief algorithm of the
Interior-point method. We can regard (3.4) as the constrained nonlinear optimization

problem:

min fx) subjectto  ¢;x) >0, j=12N

where fx) = —Ug (R, Ry,---,Ry) and c¢;(x) = —P; + P, ; are continuous and

axj
have continuous second partial derivatives. By introducing the slack variable
¥ = [y1, 92+, yn |, the problem.can‘be converted to

min f(x) subjectto - c(x)—y=0, y>0
where ¢(x) = [¢ (X), ¢y (%), ¢y (x)]T. The inequality constraint y >0 can be

incorporated into the objective function by adding-a logarithmic barrier function. This

yields the minimization problem :
N
min f.(x)=f& —7>_ Iny; subjectto cx)—y=0 (3.5)
i=1
where 7 > 0 is the barrier parameter. Hence all the constraints are equalities. The

N
term —7> Iny; in (3.5) acts like a barrier that prevents any component y; from
i=1

becoming negative, since the logarithm function has no definition on the negative
values. We solve the problem (3.5), and obtain the optimal solution to the original

problemas 7 — 0. The Lagrangian for the problem in (3.5) is
N
Lxy,A7)=fx —7>_ Iny, — A e —y] (3.6)
i=1

and the KKT conditions for the problem in (3.4) are given by
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V,L=Vfx-AT®A=0,

V,L=—Ye+A=0,
Vab=cx)—y=0,
where

A =V 0,Ve @, Vey ]

Y = diag {y1, %, yn }

Once we reformulate the optimization problem in (3.4) to the form of (3.5), the
problem can be applied to Interior-point algorithm by using the Lagrangian function
in (3.6).

The interior-point algorithm can be briefly-summarized as follows.

Step 1. Input an initial set {x,.¥g,Ag} “With' yg >0, A, > 0, and an intitial
barrier parameter 7. Set—-=10 {x;,y5, A} = {X0.¥0, Ao} . and

initialize the outer-loop tolerance &, -

Step 2. Set k=0, 7= 7;,and initialize the inner-loop tolerance «;,,., -

Step 3. Using the first and second derivatives to evaluate {Ax;, Ay, AN}

Xpy1 = Xy + o Axy
and o, suchthat 1y,.; =y, + oAy, will getadescent
>\k+1 = )‘k + OékAAk

direction for the objective function.

Step 4, If ||OékAXk || + ||OékAyk|| + ”O%AAk” < Einner
set{x) 1, ¥/ LN 1} = {Xe 1 ¥k A1 ) and continue to Step 5;
otherwise, set k£ =k + 1 and repeat from step 3.
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Step 5.1f ”X? - X7+1|| + ||Y?< o y}kJrl” + ”Al* - )‘l*+1|| < Eouter » output
{x*,y*, A"} = {x/,y/, A} and stop; otherwise, calculate ., set

{x0,y0: M0} = {x/,¥/. A}, 1 =1+1,and repeat from Step 2.

The Interior-point algorithm is described by two loops. The two loops can prevent
finding the local minimum. This algorithm will be convergent by choosing

appropriate error tolerances.

1000 Channels, (6,4)

1 T T \4,—1
0o L KMy, ]

0.8+ B

0.7+ B

0.5 4

CDF

0.4F .

0.3+ B

0.2 4

0.1r f

0 L | 1 1 1 1

14 16 18 20 22 24
Number of iterations

Fig. 3-2 CDF of the number of iterations for interior-point algorithm

Fig. 3-2 is the CDF as a function of the number of iterations when the interior-point
algorithm is applied to solve our optimization problem. There are 1000 channel
realizations and M =4, N = 6. We choose the error tolerances to be 0.1. Fig. 3-2
shows that the range of the number of iterations is between 15 and 22. After solving
the optimization problem in (3.3), we obtain the optimal P* such that the different
rates R; will be closer to each other.
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3.4 Computer Simulations

In this section, we simulate the proposed power allocation for MU-MIMO
systems. All the simulations are measured and averaged over 1000 independent
channels. Here M =4 and N =6. Fig. 3-3 shows the PDF of the ratio of
minimum rate to maximum rate. We can see that the ratio tend to approach to 1. That
also means the proposed power allocation will tend to uniform data rates.

Fig. 3-4 simulates the minimum user data rates versus the reciprocal of channel
gains in 1000 channel realizations. It compares the three schemes: waterfilling power
allocation, no power allocation, and the proposed fairness power allocation. Since the

channel gain

1000 Channels, (6,5)
12F | | ‘ 1

Fairness scheme ]

10 L i

PDF
¢

07 075 08 0.85 0.9 0.95
Min (R) / Max (R)

Fig. 3-3 The PDF of the ratio of minimum rate to maximum rate
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is inversely proportional to the square of distance between the transmitter and receiver,
the horizontal axis can be regarded as the user’s distance from the base station. In the
waterfilling power allocation scheme, the user may be turned off when the distance is
large enough. If we choose the fairness power allocation scheme, the smallest user
rate will be larger than the other two schemes. Fig. 3-5 simulates the maximum user
rates versus the reciprocal of channel gains in 1000 channel realizations. In the
waterfilling power allocation scheme, the user with best channel gain will be allocated
with the largest power, thus the achieved rates will be higher than the other schemes.
In the fairness power allocation scheme, we sacrifice the rate of the best user and

obtain more fair rates.

Min user rate; 1000 channels, (6,4)
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Fig. 3-4 Minimum rates versus reciprocal of channel gains
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Fig. 3-6 compares the sum rate of four users with different schemes. In the
waterfilling power allocation scheme, the utility function is chosen to maximize the
sum rate of all users. Thus, the sum rate of the waterfilling scheme is always higher
than the other schemes. Although the sum rate of the proposed fairness scheme is

lower than the scheme without power allocation, it could obtain fair rates for all users.

Max user rate, 1000 channels, (6,4)
I I

| |

,,,,,,,,,,,,,,,,,,,,,,,,,,,, =nmnn \Waterfilling scheme | |
=== \O power control
ffffffff == w= = Cairness scheme =

Rate
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1/gain

Fig. 3-5 Maximum rates versus reciprocal of channel gains
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Fig. 3-6 Sum rate comparison for fairness scheme

3.5 Summary

In this chapter we give a detailed description of the proposed transmit power
allocation. We reformulate the nonlinear optimization problem, and apply the
Interior-point method to solve it. In both SU-MIMO and MU-MIMO systems, after
the proposed transmit power allocation, all users will tend to have fair transmission
rates. This means that it can prevent the users with small channel gains from suffering
poor data rates. We compare the sum rate of the waterfilling power allocation and the
scheme without power allocation with the proposed power allocation. It’s a trade-off

between the maximum average throughput and user fairness.
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Chapter 4

Condition Number Discussion

In Chapter 3, we have introduced the proposed transmit power allocation with
proportional fairness rates. This means that the sub-channel gains will be close to each
other with the proposed power allocation-applied. And the equivalent channel matrix
will tend to be a well-conditioned ' channel matrix. In this chapter, we state that the
condition number of the equivalent channel matrix is statistically smaller by
observing the simulation ‘results.” If -anunderdetermined MIMO system is
well-conditioned, the decoding complexity of-the executed SDA will be reduced.
Motivated by the fairness scheme, we propose a determinant based power allocation
to further reduce the condition number of the equivalent matrix. Thus the decoding
complexity of the underdetermined systems can be reduced with the proposed power
allocation applied. In Section 4.1, we explain why the decoding complexity can be
reduced with a smaller condition number. The determinant based utility function is
provided in Section 4.2. Section 4.3 shows the simulation results. Section 4.4

summarizes this chapter.
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4.1 Condition Number Effect

Although SDA can reduce the decoding complexity of ML detection from
exponentially increasing to polynomially increasing, its complexity still grows heavily
when the condition number of the channel matrix is large. The condition number is
traditionally and calculated by taking the ratio of the maximum to minimum singular
values of the channel matrix. For MIMO systems, the channel condition number is
calculated from the instantaneous channel matrix without the need for stochastic
averaging. Small values for the condition number imply a well-conditioned channel
matrix while large values indicate an ill-conditioned channel matrix.

Consider an overdetermined MIMO systems with N transmit antennas and
M receive antennas. The idea of SDA. is to check all the points in a hyper-sphere with
radius d . It finds the nearest point from the received signal to be the estimated signal.
That is,

X = argmin|y = Hx||2 = argmin|[y — RX”2 < d?, (4.1)
xezN x€ZY

where H=QR, y = QTy, and R is the upper triangular matrix. Without loss of
generality, we let N =M . We can rewrite (4.1) as a summation form

2
Zf‘i 1(?7@' - Z;V:mjﬂﬂj) < d?, start from the last equation and work backward. We

expand the last equation as

y, —d y, Td

<:L°N<

T r
NN NN

(4.2)

It means that all the constellation points satisfy (4.2) could be the candidate of .

The ith element of x will be bounded by
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Fig. 4-1 Tree search example for 4-PAM showing sphere radius, tree levels and

detection layers

_ N r N
yi_d_zj:¢+17%j$j<x <yi+d_2j:i+lﬁjxj.

i

(4.3)

7".

11 T

1
From (4.2) and (4.3), we know that SDA is a tree search. Fig. 4-1 is a tree search
example for the 4-PAM constellation. We can search from Level 1 to Level N, and the
distance for all levels should be less than the radius d . Because SDA decodes the
transmit signal from the last layer x,, the boundary of x, should be as small as
possible. This will reduce the number of searching points, as well as the decoding
complexity.

In [22], we know that the r,, of R depends on the condition number of the
channel matrix H. The lower the condition number is, the larger the r, is. Thus,
we can obtain a lower decoding complexity when the system is well-conditioned. Fig.

4-2 shows the CDF of r, for a 5x5 matrix with different condition numbers.

We can see that when the condition number is less than 10, the value of r, will tend

35



to be larger. Fig. 4-3 shows the FLOPS (Floating Point Operation Per Second) of the

1000 data, (5,5)

wann
.........

CDF

Fig. 4-2 CDF of r,, fora 5x5matrix with different condition numbers

SDA versus condition number. The transmitter and receiver are both equipped with
four antennas, and the transmitter uses the QPSK modulation. We can see that when
the condition number is larger than 5 the complexity increase rapidly. Fig. 4-4 shows
the CDF (Cumulative Density Function) of the condition number with different
channel correlation. Assuming that there are 1000 channel realizations in a 2 x 2
MIMO system. Let R,, be the correlation matrix of H. A useful measure of the
degradation in performance due to channel correlation, for a system with K diversity

branches, is provided by the Kth root of the determinant of the channel correlation

1/K

matrix, det(Ry, )" " [24]. If det(R,,)" " is smaller than 0.5, it can be regarded as

high correlation. If det(th)l/Kis larger than 0.5, it can be regarded as low

correlation. Typically, we consider it to be an ill-conditioned channel when the
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condition number is larger than 10 dB. Fig. 4-4 shows that both channels with low

and high correlation are probable to be ill-conditioned channels. It also shows that a

MIMO system is more likely to have a lower condition number when the channel has

low correlation.

QPSK, (4,4)

X 104

Condition Number

Fig. 4-3 Complexity as a function of condition number
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1000 Channels, (2,2)
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Fig. 4-4 CDF of condition number with different.channel correlations

4.2 Proposed Utility Function for Condition

Number

In Chapter 3, we know that the proposed transmit power allocation results in
proportional fairness data rates. That means that the data rate for each user

R, =log,(1+ SINR,;) will be close to each other. The SINR in the log function will

also be close to each other. When the data is transmitted from the ith user, the SINR at
2
Y
] 2
Noise + HhJH P;

7=

. h;

1

the receiver can be written as SINR,; = is the column

vector of the channel matrix H . At the high SNR, the data rate will be

interference-limited. The sub-channel gain will be close to each other with the
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proposed power allocation applied. That is,
[ 7 =~ | B =~ - = [y [ Py

Thus the equivalent channel matrix will tend to be a well-conditioned channel matrix.

From the above concepts, we want to check if the condition number will be
smaller with the proposed power allocation applied by computer simulations. We
simulate the proposed transmit power allocation in the underdetermined SU-MIMO
and MU-MIMO systems. Fig. 4-5 and Fig. 4-6 are the CDF as a function of the
condition number. We simulate 1000 channel realizations, and the number of transmit
and receive antennas are 6 and 4, respectively. Both SU-MIMO and MU-MIMO
systems can obtain a smaller condition number with the proposed power allocation
applied. By observing the simulation results, we'can state that the condition number
of the equivalent channel matrix is-statistically .smaller with the proposed power

allocation applied.

CDF

Condition Number

Fig. 4-5 CDF of the condition number for SU-MIMO
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Fig. 4-6 CDF of the condition number for MU-MIMO

Motivated by the fairness scheme, we want to make the condition number of the
equivalent channel matrix smaller. Thus the decoding complexity of the
underdetermined MIMO systems can be reduced. From the linear algebra, we know
that the determinant of a matrix is the products of all eigenvalues. For example, given
a full rank 5x5 matrix A, and A\,N,---,\sare the eigenvalues of matrix A .
Then det(A) =M\ --- A5 and trace(A) =)\ + A + -+ A5. Thus we propose a
power allocation utility function based on the determinant to make the eigenvalues of
the equivalent channel matrix close to each other. That will lead to smaller condition

number. The optimization problem can be written as

max log (det(HP (HP)H)) subjectto  trace (HP (HP)H) = constant .

We use the techniques we’ve used in chapter 3 to reformulate the optimization
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problem. And then we can apply the interior point algorithm to solve this. Fig. 4-7 is
the comparison of condition number for fairness scheme and determinant based
scheme. We simulate 1000 channel realizations, and the number of transmit and
receive antennas are 6 and 5, respectively. It shows that both schemes can reduce the
condition number statistically. The determinant based power allocation scheme leads

to smaller condition number than the fairness scheme.

1000 Channel, (6,5)

—e— CN_det |___ |
seeeenes CN_fair

CDF

Condition Number

Fig. 4-7 Comparisons of condition number for fairness scheme and determinant based

scheme
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4.3 Computer Simulations

In this section, we simulate the decoding complexity of the SSD decoder and
regularization decoder for underdetermined MIMO systems with the proposed power
allocation applied. We also apply the proposed power allocation with the determinant
based utility function to simulate the decoding complexity. Here the complexity
weights of different operations is determined according to [16]. The numerical results
are measured and averaged over 1000 independent channels for various average

signal-to-noise ratio (SNR).
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Fig. 4-8 Decoding complexity comparison using SSD at receiver. Transmitter has

four antennas, and receiver has three antennas.
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Fig. 4-8 shows the decoding complexity improvement with the proposed power
allocations applied. In this simulation, we use 16-QAM modulation. The transmitter
has four antennas and the receiver has three antennas. We choose the geometrical SSD
to decode the underdetermined MIMO system. The SSD first finds the candidates in a
slab and each candidate is followed by an SDA. Therefore, when the channel
condition number is small, the decoding complexity can be reduced. Since the number
of candidates in the slab depends on the noise, the larger the noise is, the more the
candidate is. The SSD needs to activate more times of SDA at low SNR, thus the

decoding complexity can be reduced more than at high SNR.
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Fig. 4-9 Decoding complexity comparison using SSD at receiver. Transmitter has six

antennas, and receiver has five antennas.
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Fig. 4-9 shows another simulation of decoding complexity. The transmitter has
six antennas, and receiver has five antennas. The other simulation parameters are the
same as Fig. 4-8. Because the transmitter and receiver have more antennas, the sizes
of the channel matrix become larger. Thus the decoding complexity will increase. The
applied SDA in SSD will become a more important role. We can observe that the
decoding complexity of SSD can also be reduced by applying the determinant based

power allocation at low SNR.
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Fig. 4-10 Decoding complexity comparison using regularization method at receiver.

Transmitter has four antennas, and receiver has three antennas.

Fig. 4-10 shows the simulation of decoding complexity of the regularization
method. We use 16-QAM modulation in 1000 channel realizations. The transmitter
has four antennas, and receiver has three antennas. The regularization method

transforms the underdetermined problem into an overdetermined problem. Thus the
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existing SDA could to applied on the decoding process. Fig. 4-10 shows that the
decoding complexity can be reduced with the proposed power allocations applied. Fig.
4-11 shows that the decoding complexity of the regularization method with six
transmit antennas and five receive antennas. The other parameters are the same as Fig.
4-10. The numerical result shows that the decoding complexity can also be reduced

for a large antenna size with the proposed power allocation applied.
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Fig. 4-11 Decoding complexity comparison using regularization method at receiver.

Transmitter has six antennas, and receiver has five antennas.

Fig. 4-12 compares the sum rate of four users with different schemes. In the
waterfilling power allocation scheme, the utility function is chosen to maximize the
sum rate of all users. Thus, the sum rate of the waterfilling scheme is always higher

than the other schemes. Although the sum rate of the proposed fairness scheme is
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lower than the scheme without power allocation, it could obtain fair rates for all users.
With the determinant based power allocation, the condition number of the equivalent
channel matrix can be reduced, but the sum rate will be smaller than the sum rate

without power allocation.
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Fig. 4-12 Sum rate comparison for determinant based schemes

4.4 Summary

The condition number of the channel matrix is a critical factor for decoder design

in underdetermined MIMO systems. Most efficient decoding algorithms of
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underdetermined MIMO systems work with SDA, and thus are sensitive to the
condition number. Simulation results show that the fairness power allocation can
reduce the condition number of the equivalent channel matrix. Motivated by the
fairness scheme, we propose a determinant based utility function to make the
eigenvalues close to each other. Thus it can reduce the condition number effectively.
Simulations show that the decoding complexity of underdetermined MIMO systems
can be reduced with a smaller condition number. Although the decoding complexity
can be reduced in underdetermined MIMO systems, the sum rate will be smaller as a

price.
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Chapter 5

Conclusions and Future Works

In the beginning, this thesis reviews the development of MIMO systems, and
the channel capacity of the MIMO systems is introduced. Spatial diversity and spatial
multiplexing are two main techniques used-in MIMO systems, and can improve the
system performance. Several .decoding algorithms are proposed for underdetermined
MIMO systems. These decoders are developed based on'the SDA. Considering uplink
MU-MIMO systems, the channel gains will be-small when the users are far away
from the base station or blocked by obstacles in-practical environments. This results in
poor data rates for those users. Our goal is to achieve the fair rates for all users.

Since linear precoding techniques cannot be used in the uplink MU-MIMO, we
propose a transmit power allocation scheme to achieve the goal. In Chapter 3, we give
a detailed description of the proposed transmit power allocation in the MU-MIMO
systems. The nonlinear optimization problem is reformulated into a modified form.
Thus we can apply the Interior-point algorithm to solve it. The proposed power
allocation can also be applied in the SU-MIMO systems. Simulation results show that
the fairness based power allocation could provide a higher data rate to the worst
condition user than the waterfilling power allocation. This demonstrates a trade-off

between the maximum sum rate and user fairness.
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The discussion of condition number and the determinant based utility function
are given in Chapter 4. If we use the SDA at the receiver, the decoding complexity
can be reduced with a smaller condition number. The numerical results show that the
fairness scheme tends to obtain a smaller condition number of the equivalent channel
matrix. Thus the decoding complexity of the underdetermined MIMO systems could
be reduced with the proposed power allocation applied. Motivated by the fairness
scheme, we propose a determinant based utility function to reduce the condition
number, further reducing the decoding complexity.

The main contributions of this thesis are as follows. We propose a transmit
power allocation scheme which provides fair data rates. It improves the poor data
rates for users in unfavorable situations. By reformulating the nonlinear optimization
problem into a modified form, we. can apply the typical Interior-point algorithm to
solve it. We observe that the fairness scheme could lead.to a small condition number
of the equivalent channel matrix, and propose a determinant based utility function
trying to equalize the eigenvalues. The decoding complexity of the SDA based
decoder for underdetermined MIMO systems can thus be reduced with the proposed
power allocation applied.

There are still some issues remaining to be discussed in this work. First, how to
find the mathematical relation between the fairness scheme and condition numbers is
a concern. Also, how to tackle with imperfect CSI at the receiver is an interesting
topic. Furthermore, finding a precoding matrix to minimize the channel condition

number is an important subject worthy of investigation.
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