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 I

運用傳送功率分配於欠定多輸入多輸出系統達

到公平傳輸速率 
 

學生：溫振鵬 指導教授：李大嵩 博士 

 

Chinese Abstract 

國立交通大學電信工程研究所碩士班 

摘要 

在無線通訊系統中，多輸入多輸出技術不需額外頻寬及傳輸功率即能提高傳

輸速率及改善傳輸品質。然而，在多用戶多輸入多輸出上鏈系統的環境中，由於

部分用戶可能距離基地台較遠或被障礙物所阻擋，以致通道增益較小，導致傳輸

速率變差。在本篇論文中，吾人提出一個傳送功率分配法達到公平的傳輸速率。

吾人將一非線性最佳化問題轉換成適當形式，將之套用到現有的演算法中。此公

平化的機制可使得等效子通道增益較為均勻，因此等效通道矩陣會傾向於良置

（well-conditioned）。因為在欠定多輸入多輸出系統中，有效率的解碼器均基於

球體解碼器，因此通道矩陣有較小的條件數（condition number），可使得解碼的

複雜度降低。最後，吾人亦提出另一功用函數用於改善條件數，進一步降低運算

複雜度。模擬結果顯示吾人提出方法的有效性。 
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Achieving Fair Rate by Transmit Power Allocation 

for Underdetermined MIMO Systems 
 

Student: Chen-Peng Wen Advisor:  Dr. Ta-Sung Lee 

English Abstract 

Institute of Communication Engineering 

National Chiao Tung University 

 

Abstract 

In wireless communication systems, multiple-input multiple-output (MIMO) 

technology offers significant increases in data rate and link range without additional 

bandwidth and transmit power. However, in uplink multi-user MIMO systems, some 

users will suffer from small channel gains due to being far away from the base station  

or blocked by obstacles in practical environments. This result in poor data rates for 

those users. In this thesis, we propose a transmit power allocation scheme with fair 

rate allocation for all users. We reformulate a nonlinear optimization problem to a 

modified form which can be applied to the existing algorithms. The proposed fairness 

scheme also leads to uniform sub-channel gains. Thus the equivalent channel matrix 

will tend to be well-conditioned. Since efficient decoders of underdetermined MIMO 

systems are based on sphere decoders, the decoding complexity can be reduced with a 

smaller channel condition number. Finally, we also propose an alternative utility 

function to improve the condition number, to further reduce the decoding complexity. 

Simulation results confirm the effectiveness of the proposed methods. 
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Chapter 1  
 
Introduction 

Next generation wireless communication systems are expected to provide users 

with higher data rate services including video, audio, data and voice signals. The 

rapidly growing demand for these services drives the wireless communication 

technologies towards higher data rate, higher mobility and higher link quality. 

However, the time-selective and frequency-selective fading in wireless channel 

caused by multipath propagation, Doppler shifts and carrier frequency/phase drifts 

severely affect the quality and reliability of wireless communication. Besides, the 

available bandwidth and power are limited which makes the design of wireless 

communication systems extremely challenging. Hence, recently there are many 

innovative techniques that improve the reliability and the spectral efficiency of 

wireless communication links. Some popular examples include the coded 

multicarrirer modulation, smart antenna, in particular multiple-input multiple-output 

(MIMO) technology [1-4] and adaptive modulation [5], [6]. 

 MIMO technology involves the use of multiple antennas at the transmitter and 

receiver to improve communication performance. The technology offers some 

benefits that overcome the challenges posed by both the impairments in wireless 

channel as well as resource constraints. The two important benefits of MIMO 
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technology are the diversity gain and the spatial multiplexing gain. Diversity gain 

mitigates fading by providing the receiver with multiple (ideally independent) copies 

of the transmitted signal in space, time or frequency. Spatial multiplexing offers a 

linear increase in data rate by transmitting multiple independent data streams within 

the bandwidth of operation. 

There are many signal detection schemes for MIMO systems such as linear 

detection, successive interference cancellation (SIC) [7], [8] and the 

maximum-likelihood (ML) detection. Both linear detection and the SIC schemes are 

easy to be implemented but their detection performances are not optimal. The optimal 

detection scheme is ML detection; however, the complexity of the ML detection 

scheme grows exponentially with the size of the transmit symbol alphabet and the 

number of transmit antennas. To reduce the complexity of ML detection, the sphere 

decoding algorithm (SDA) is introduced in [9-12] to achieve the same performance as 

ML detection with reduced complexity. The basic idea of SDA is to search the nearest 

lattice point to the received signal vector within a given sphere radius. However, the 

typical SDA fails to decode in underdetermined MIMO systems. Thus several 

algorithms are proposed to decode the underdetermined MIMO systems, including 

Generalized Sphere Decoding (GSD) algorithm [13], Slab Sphere Decoding (SSD) 

algorithm [14-16], and Regularization Method [17]. 

 In uplink multi-user MIMO (MU-MIMO) systems, if the number of users is 

larger than the number of base station antennas, then it can be regarded as an 

underdetermined MIMO system. Considering in the practical environments, some 

users will suffer from small channel gains due to being far away from the base station 

or blocked by obstacles. This results in poor data rates for those users. The 

waterfilling power allocation algorithm in [18] can provide a maximum throughput of 

the systems, but the data rate for the user with small channel gain will be severely 
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degraded..  

 In this thesis, our major goal is to achieve fair data rates for all users. We propose 

a transmit power allocation to realize this. And we reformulate a nonlinear 

optimization problem into a modified form which can be applied to the existing 

algorithms. The proposed fairness scheme also leads to uniform sub-channel gains. 

Thus the equivalent channel matrix will tend to be well-conditioned. We further 

propose a determinant based utility function to improve the condition number. Thus 

the complexity of the SDA based decoder can be reduced. 

 The remainder of the thesis is organized as follows. In Chapter 2, The signal 

model of the MIMO systems is introduced first. Secondly, several algorithms for 

decoding underdetermined MIMO systems are presented. In Chapter 3, the proposed 

transmit power allocation scheme is developed. Discussion on the condition number  

and the determinant based utility function will be described in Chapter 4. Simulation 

results of the proposed methods are also illustrated in this chapter. Finally, we 

summarize the contributions of our works and give some potential future works in 

Chapter 5.  
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Chapter 2  
 
MIMO Systems 

In wireless communications, one can improve communication performance by 

using multiple-input and multiple-output (MIMO) technology. MIMO offers 

significant increases in data rate and link reliability without additional bandwidth or 

transmit power. In this chapter, we give a review of MIMO systems. We first introduce 

the MIMO system model in Section 2.1. Section 2.2 introduces the channel capacity. 

Then, the spatial diversity and the spatial multiplexing techniques are introduced in 

Section 2.3 and Section 2.4, respectively. The generalized sphere decoding (GSD) 

algorithms have been studied as a solution to the ML detection for underdetermined 

MIMO systems with reduced complexity. We will give an introduction of the GSD 

algorithms in Section 2.5. 

2.1 System Model 

Figure 2-1 shows the typical multiple-input-multiple-output (MIMO) system 

with tN  transmit antennas and rM  receive antennas. The frequency-flat fading 

channel matrix iH  can be written as 
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where the elements of iH  are i.i.d. complex Gaussian random variables with 

zero-mean and unit variance. The relation between the transmitted signal vector and 

received signal vector can be written as 

                             i= +y Hx n� � � , (2.2) 

where 1
1 2, , , r

Mr

My y y ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦
y� � � �" ^ and 1

1 2, , , t
Nt

Nx x x ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦x� � � �" ^  are the 

received signal vector and transmitted signal vector , respectively. 

1
1 2, , , r

Mr

Mn n n ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦n� � � �" ^  denotes the i.i.d. complex additive white Gaussian 

noise (AWGN) vector with zero-mean and covariance matrix 2σ I . When r tM N> , 

the system is called an overdetermined MIMO system. When r tM N< , it is called an 

underdetermined MIMO system. 

 

 

Fig. 2-1 MIMO system 

 

The complex MIMO system can be transformed into an equivalent real system. 

By using the real-value decomposition, (2.2) can be written as  
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Note that the dimension of H is M N×  where 2 rM M= ×  and 2 tN N= × . 

2.2 Channel Capacity 

Channel capacity is the highest rate in bits per channel use at which information 

can be transmitted with an arbitrary probability of error. We first introduce the 

single-input-single-output (SISO) channel capacity and then study the capacity of a 

MIMO channel. Note that single-input-multiple-output (SIMO) and multiple-input- 

single-output (MISO) channel are sub-sets of the MIMO case. The channel capacity is 

defined as [19] 

                           
( )

max I( ; ),
p x

C X Y=  (2.4) 

where 

                        I( ; ) H( ) H( | ),X Y Y Y X= −  (2.5) 

is the mutual information between X and Y, H( )Y andH( | )Y X are the differential 

entropy of Y and differential conditional entropy of Y with knowledge of X given, 

respectively. In (2.4), it states that the mutual information is maximized with respect 
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to all possible transmitter statistical distributions p(x). 

The ergodic capacity of a SISO system with a random complex channel gain h is 

given by [19] 

                  { } bits/sec/Hz2
2log (1 )    ,C E hγ= +              (2.6) 

where 2/Pγ σ=  is the average SNR at the receiver, P is the transmit power and 

E{x} is denotes the expectation over all channel realizations. For a MIMO system 

with N transmit antennas and M receive antennas, the capacity of a random MIMO 

channel is given by [1] 

         bits/sec/Hz2 2( )
max log det( )   ,

xx

H
M xx

tr N

P
C E

Nσ=

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪= +⎢ ⎥⎨ ⎬⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭R
I HR H   (2.7) 

where { }H
xx E=R xx  is the covariance matrix of the transmitted signal vector x . 

If the channel knowledge is unknown to the transmitter, the signals are chosen to be 

independent and equal power. The covariance matrix of the transmit signal vector is 

then given by xx M=R I . As a result, the ergodic capacity of a MIMO system can be 

written as [1] 

              bits/sec/Hz2 2log det( )    ,H
M xx

P
C E

Nσ

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪= +⎢ ⎥⎨ ⎬⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
I HR H  (2.8) 

By using the eigenvalue decomposition, the matrix product of HHH  can be 

decomposed as H H= ΛHH E E , where E is an M M×  matrix which consists of 

the eigenvectors satisfying H H
M= =EE E E I  and { }1 2diag , , , Mλ λ λΛ = …  is a 

diagonal matrix with the eigenvalues 0iλ ≥  on the main diagonal. Assuming that 

the eigenvalues iλ are ordered so that 1i iλ λ +≥ , we have 

                     
2 if 1,

      if 10,
i

i

i r

r i M

σ
λ

⎧ ≤ ≤⎪⎪⎪= ⎨⎪ + ≤ ≤⎪⎪⎩
, (2.9) 
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where 2
iσ  is the ith squared singular value of the channel matrix H and 

( ) { }rank min ,r N M= ≤H  is the rank of the channel matrix. Then the capacity of 

a MIMO channel can hence be rewritten as 

2 22 2

2 2
1

log det( ) log det( )

  log det(1 )    bits/sec/Hz

H
M M

r

i
i

P P
C E E

N N

P
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⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= + Λ = + Λ⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
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∑

I E E I
, (2.10) 

Note that the second equation holds due to the fact ( ) ( )det detm n+ = +I AB I BA  

for matrices m n×∈A ^  and m n×∈B ^  and H
M=E E I . (2.10) shows that the 

capacity of a MIMO channel is made up by sum of the capacities of r SISO 

sub-channels with power gain iλ for i=1,2,…,r and transmit power /P N  

individually. 

If the channel knowledge is known to the transmitter, the capacity of a MIMO 

channel is the sum of the capacities associated with the parallel SISO channels and is 

given by 

               bits/sec/Hz2 2
1

log det(1 )    
r

i i
i

P
C E

N
γ λ

σ=

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪= +⎢ ⎥⎨ ⎬⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
∑ ,      (2.11) 

where { }2
i iE xγ =  for i=1,2,…,r is the transmit power in the ith sub-channel and 

satisfy 
1

r

i
i

Nλ
=

=∑ . Since the transmitter can access the spatial sub-channels, we can 

allocate variable power across the sub-channels to maximize the mutual information. 

The optimal power allocation of the ith sub-channel is given by [1], [19] 

                    
2

opt    for 1,2, ,i
i

M
i r

P
σ

γ μ
λ

+

⎛ ⎞⎟⎜ ⎟= − =⎜ ⎟⎜ ⎟⎜⎝ ⎠
" ,          (2.12) 

where μ  is chosen to satisfy the constraint opt
1

r
ii Nγ= =∑  and ( )+⋅  denotes the 

operation that taking those terms which are positive. The optimal power allocation in 
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(2.12) is found iteratively through the water-filling algorithm [1], [19].  

2.3 MIMO Diversity 

Diversity techniques are widely used in MIMO systems to improve the reliability 

of transmission without increasing the transmit power or sacrificing the bandwidth. 

There are many diversity techniques such as time diversity, frequency diversity and 

space diversity. In this section we focus on the space diversity that is so called antenna 

diversity. 

2.3.1 Receive Diversity  
Receive diversity involves the use of multiple antennas at the receiver. At the 

receiver, multiple copies of the transmitted signal are received, which can be efficiently 

combined with an appropriate signal processing algorithm. There are four main types of 

combining techniques, include selection combing, switch combining, equal-gain 

combining (EGC) and the maximum ratio combining (MRC). In the selection 

combining, the received signal with the best quality is chosen and the choosing 

criterion is based on SNR. Switch diversity switches the received signal path to an 

alternative antenna when the current received signal level falls below a given threshold. 

EGC is a simple method since it does not require estimation of the channel. The 

receiver simply combines the received signals from different receive antennas with 

weights set to be equal. MRC forms the output signal by a linear combination of all the 

received signals and is the optimal combination technique which achieves the 

maximum value of the output SNR. 
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2.3.2 Transmit Diversity  
Transmit diversity techniques which provide diversity benefits at the receiver with 

multiple transmit antennas, has received much attention, especially in wireless cellular 

systems. There are two broad categories of transmit diversity: the open loop schemes 

and the closed loop schemes. In the open loop schemes, the transmitter transmits 

signals without feedback information from receiver. Space-time code (STC) 

is an open loop scheme which jointly designs of channel coding and modulation to 

improve system performance by providing both transmit diversity and coding gain. 

STC can be classified into two categories, the space-time block code (STBC) and the 

space-time trellis code (STTC).  

2.4 Spatial Multiplexing 

Spatial multiplexing is a transmission technique of MIMO wireless 

communication systems which increases the transmission data rate without additional 

bandwidth or power consumption. In the spatial multiplexing systems, N different data 

streams are transmitted from different transmit antennas simultaneously or sequentially 

and these data streams are separated and demutiplexed to yield the original transmitted 

signals according to their unique spatial signatures at the receiver, as illustrated in Fig. 

2-2. The separation of data streams at the receiver can be done possibly by the fact that 

rich scattering multi-paths contribute to lower correlations between MIMO channel 

coefficients and hence create a channel matrix with full rank and low condition number 

to N unknowns from a linear system of M equations. In the following, two typical 

spatial multiplexing schemes, D-BLAST [4] and V-BLAST [20] are introduced. 
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Fig. 2-2 Spatial multiplexing system 

 
(1) Diagonal Bell Laboratories Layered Space-Time (D-BLAST) 

The concept of layered space-time processing was introduced by Foschini at Bell 

Laboratories [4]. D-BLAST uses multiple antennas at both the transmitter and the 

receiver, and an elegant diagonally-layered coding sequence in which code blocks are 

dispersed across the diagonals in space-time. The high-rate information bit stream is 

first demultiplexed into N substreams, and each substream is encoded by a conventional 

1-D constituent code. The encoders apply these coded symbols to the input to form a 

semi-infinite matrixX of N rows to be transmitted. The encoding procedure is shown in 

Fig. 2-3. 

 

(2) Vertical Bell Laboratories Layered Space-Time (V-BLAST) 

The D-BLAST algorithm suffers from certain implementation complexities which 

is not suitable for practical implementation. Therefore, a simplified version of the 

BLAST algorithm is known as V-BLAST. It is capable of achieving high spectral 

efficiency while being relatively simple to be implemented. The coding procedure of 

the V-BLAST can be viewed as there is an encoder on each transmit antenna. The 

output coded symbols of each encoder are transmitted directly from the corresponding 

antenna which is shown in Fig. 2-4. 
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Fig. 2-3 Encoding procedure of D-BLAST (n=3) 

 

 

 

 

 

 

Fig. 2-4 Encoding procedure of V-BLAST (n=3) 

2.5 Underdetermined MIMO Decoder 

Maximum-likelihood (ML) detection complexity increases exponentially 

depending on the number of transmit antennas and the constellation size. Hence, it is a 

serious issue in designing the receiver in recent years. In order to reduce the 

complexity of ML detection, the sphere decoding algorithms (SDA) [9-12] are 

proposed to solve the problem and achieve the ML performance. But the SDA fails in 

the underdetermined MIMO systems. There are several algorithms that can solve the 

underdetermined problem, such as Generalized Sphere Decoding (GSD) [13]  

algorithm, Slab Sphere Decoding (SSD) [14-16] algorithm, and Regularization 
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Method [17]. We introduce these algorithms in this section. 

2.5.1 GSD algorithm 
Consider a MIMO system with tN  transmit antennas and rM  receive antennas. 

The received real signal can be written as (2.3):  

 .= +y Hx n   

The ML estimator x�  of x  is obtained by minimizing the Euclidean distance of y 

from the legal lattice points can be represented as 

 ( ) 22argmin argmin .
N N

ρ
∈ ∈

= − = −
x x

x y Hx R x
] ]

�  (2.13) 

where { }1, 3, , (2 -1)k= ± ± ±] "  is the 4-QAM, 16-QAM, 64-QAM constellations 

for 1,2, 3k = , respectively. ( ) 1T Tρ
−

= H HH y , Q is an M M×  orthogonal 

matrix, and R is an M N×  upper triangular matrix corresponding to the 

QR-decomposition of H, i.e. =H QR . The matrix R can be represented as 

[ ]1 2,=R R R , where 1
M M×∈R \  is an upper triangular and 2

M N M× −∈R \ . 

Similarly, x  can be represented as ,
T

G G
⎡ ⎤= ⎣ ⎦x x x , where G and G  are the indices 

corresponding to the first M and the last M -N elements of the x . The minimum 

distance corresponding to the ML estimator in (2.13) can be rewritten as 

 

( )

[ ]

2

2
1 2 2 1

2
1

     argmin

min min ,

min min ,

N

N M M
GG

N M M
GG

GG

G

ρ

ρ

ρ

−

−

∈

∈ ∈

∈ ∈

−

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜ ⎟⎝ ⎠
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠

x

x x

x x

R x

R R R x R x

R x

]

] ]

] ]
�

 (2.14) 

where [ ]1 2 2, Gρ ρ= −R R R x� . 
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The GSD checks all legal constellation points in a sphere with radiusC . That 

means we set the squared Euclidean distance in (2.14) to be smaller than a positive 

number 2C . The problem can be solved by exhaustive search over Gx  and 

employing the SDA to compute the last equation in (2.14). The SDA algorithm finds 

the valid candidates if the squared minimum distance is less than 2C . Otherwise, a 

failure of the SDA for the given Gx  is declared and then the Gx  will be discarded. 

If a candidate constellation point ( Gx , Gx ) is found within the sphere, the value 

of 2C  is updated and the algorithm continues to search the remaining points for Gx . 

If no candidate constellation point is found within the sphere, then the entire 

algorithm is repeated with a value larger than the original radius C . The GSD is 

based on the exhaustive search over Gx  and each searched point should follow the 

SDA. Because of the exhaustive search over Gx , its complexity will exponentially 

increase depending on the size of N−M. 

2.5.2 Slab Sphere Decoding (SSD) Algorithm 
To perform (2.13) efficiently, an algorithm is proposed in [9], [20] to solve a 

search problem that finds all the lattice points satisfying 

2 2C− ≤y Hx                      (2.15) 

for given a radius C (>0). Apparently, the point that is the closest to center of the 

hypersphere y , is the ML decision point. By decomposing the channel using 

QR-decomposition, (2.15) can be rewritten as 

2' 2,C− ≤y Rx             (2.16) 
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where ' T=y Q y . If N > M , we will have  

              '
, , ,M M M M M N NC y r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦"            (2.17) 

at the Mth layer. (2.17) involves N-M+1 dimensions for detection. (2.17) is similar to a 

detection problem of a real-valued MISO system. First, we want to find the 

constellation points falling inside this slab. There are two algorithms that can help us 

find those constellation points, i.e., Plane Decoding Algorithm and Slab Decoding 

Algorithm. 

 

Plane Decoding Algorithm 

For a MISO system with k transmitted antennas where the inputs are independent 

symbols, the received signal can be written as 

  1 1 ,k ky h x h x η= + + +"                    (2.18) 

where kx ∈ ] , nh  is the channel response and 2(0, )CNη σ∼  stands for AWGN. 

ML estimation of the transmitted vector [ ]1, , kx x=x "  can be written as 

  
( )

( )
1

2
1 1

, ,
arg min ,

k
k

ML k k
x x

y h x h x
∈

= − + +x
" ]

"       (2.19) 

the estimator means to find the point k∈x ]  which is the closest to the hyperplane P 

given as 

                        1 1: .k kP h x h x y+ + ="                    (2.20) 

First, define X, VX , PDX  as the sets of the points to be visited, the points that have 

been visited, and the points that are close to P in all dimensions, respectively. Then, 

initialize them with X= VX = ( ){ }1x  where the (1) stands for the order of the vector in 

a set and j = 1.  
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The main idea of the PDA is to find those candidates ( PDX ) which are close to P 

in all dimensions. The procedures of the PDA are summarized as follows: 

Step 1: If X is empty, go to Step 5. Otherwise, we calculate 

 { }: min  s.t. j B
x

a x x x x
∈

= >
]

�  

 { }: max  s.t. ,j B
x

a x x x x
∈

= <
]

�  

where  

 [ ]
( )( )1

1
B j

j

y
x x

h

Δ
= −

x
 

 ( )( ) [ ] [ ] [ ]1 1 11
1 21 2 k ky h x h x h x yΔ = + + + −x "  

Step 2: If { } { }k ka a≠ Φ ∧ = Φ� �  is not true, go to Step 3. Otherwise, we have the 

point ( )1=x x�  except that j jx a=� �  where x�  is close to P in 

dimension-j. Then, if ( )1
j jx x=� and then the point ( )1x  is close to P in 

dimension-1,2,…,j and do: 

 If j < k, update j = j + 1. Go to Step 1. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

Else, if ( )1
j jx a≠� , then discard ( )1x  from the set X and reset j = 1. Go 

back to Step 1. 

Step 3: If { } { }k ka a= Φ ∧ ≠ Φ� �  is not true, go to Step 4. Otherwise, we have the 

point ( )1=x x�  except that j jx a=� �  where x�  is close to P in 
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dimension-j. Then, if ( )1
j jx x=� and then the point ( )1x  is close to P in 

dimension-1,2,…,j and do: 

 If j < k, update j = j + 1. Go to Step 1. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

Else, if ( )1
j jx a≠� , then discard ( )1x  from the set X and reset j = 1. Go 

back to Step 1. 

Step 4: If { } { }k ka a≠ Φ ∧ ≠ Φ� �  is not true, go to Step 5. Otherwise, we have two 

points ( )1=x x�  except that j jx a=� �  and ( )1=x x�  except that j jx a=� �  

where x�  and x�  are close to P in dimension-j. Then, if ( )1
j jx x=� and 

then the point ( )1x  is close to P in dimension-1,2,…,j and do: 

 If j < k, update j = j + 1 and if VX∉x�  then update { },X X= x�  and 

{ },V VX X= x� . Go to Step 1. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

If ( )1
j jx x=�  and then do: 

 If j < k, update j = j + 1 and if VX∉x�  then update { },X X= x�  and 

{ },V VX X= x� . Go to Step 2. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 
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PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

Else, if ( )1 ,j jjx a a≠ � � , then discard ( )1x  from the set X and reset j = 1. Go 

back to Step 1. 

Step 5: Each point x in PDX , update  

    if 0.k k kx x k h=− ∀ <  

 

The PDA guarantees to achieve the ML solution only for the MISO systems. For 

MIMO systems, we will need to find those points that fall inside the slab 

                  [ ]1 1 ,k kC y h x h x C− ≤ − + + ≤"                (2.21) 

The following algorithm is designed to accomplish this.   

      

Slab Decoding Algorithm 

Obviously, although the PDX  does not contain all the lattice points that fall inside 

the slab in (2.21), the PDX  provides a useful starting point for slab detection. 

The procedures of SDA are summarized as follows: 

Step 1: Sorting the points of PDX  according to their Euclidean distances. 
Therefore, 

 ( ) ( ) ( ){ }1 2 3sort , , ,...PD PD PD PDX = x x x  

where ( )( ) ( )( )2 2 ji
PD PDy yΔ ≤ Δx x  if i j≤ . 

Step 2: For a given C, find the set 

 ( ){ }2
sort

; :PDPD CX X C y C≤ = ∈ − ≤ Δ ≤x x  

Step 3: For each point 2;PD CX ≤∈x , move away along each direction for 
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finding other points which ( )2 2y CΔ ≤x . These newly found points 

are then added to 2;PD CX ≤ . It is done by the following loop. 

a. Initialize n = 1, and j = 1. Pick the nth point ( )
2;

n
PD CX ≤∈u . 

b. Compute 

 ( )

0 min ,max ,n
j

s
u u d s

∈

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎝ ⎠]
 

        where d stands for the separation of every adjacent constellation. 

         If ( )

0
n
ju u≠  and then do the following. 

 Set ( )

0
n
ju u= . 

 If ( )( )2 2ny CΔ ≤u , then ( ){ }2 2; ; , .n
PD C PD CX X≤ ≤= u  

c. Compute 

 ( )

0 max ,min .n
j

s
u u d s

∈

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎝ ⎠]
 

      If ( )

0
n
ju u≠  and then do the following. 

 Set ( )

0
n
ju u= . 

 If ( )( )2 2ny CΔ ≤u , then ( ){ }2 2; ; , .n
PD C PD CX X≤ ≤= u  

d. If j < k, then update j = j + 1 and go back to b. 

e. If j = k, then update n = n + 1 and j = 1. Then, go back to b. 

f. If 2;PD Cn X ≤= , then all lattice points that fall inside the slab are    

  found.  

The two algorithms can find all the lattice points satisfying (2.21) for a given C. 

Each point of the set can be substituted into the original problem in (2.16), to obtain 

                       2 2
1G G C− ≤y R x                        (2.22) 
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where 1M
G

−∈y \ , 1 1
1

M M− × −∈R \  corresponds to the first 1M −  columns and 

rows of the R and [ ] 1
1 2 1, , , M

G Mx x x −
−= ∈x " \ . Since 1R  is an upper triangular 

matrix with full rank, we can solve the problem by SDA directly. After the substitution 

of all points, the ML solution can be found. 

2.5.3 Regularization Method 
Regularization method intends to transfer the underdetermined MIMO systems 

to overdetermined MIMO systems. By doing this transformation, one can directly use 

the SDA in a simple way. It first considers a constant modulus constellation, and 

derives the algorithm. Then it shows how MIMO systems with non-constant modulus 

constellations can be adapted so that the algorithm is applicable. The ML detection is 

equivalent to 

( ) 22min min
N N

ρ
∈ ∈

− = −
x x

y Hx R x
] ]

,       (2.23) 

where R  is an upper triangular matrix such that T T=R R H H . In the 

overdetermined MIMO systems, i.e. M N> , TH H  is full rank. The SDA is 

applicable due to the non-zero diagonal terms of R . However, for the 

underdetermined MIMO systems, i.e.M N< , the Cholesky factor R  of HH H  is 

rank-deficient and only the first M rows of R  are non-zero. Because the elements of 

x  are of constant modulus, that means the product Tαx x  is a constant. We can get 

an equivalent minimization problem as 

( )
( )

2 2min

min

S

H H H H H H
N

S

α

α

∈

∈

− +

⎡ ⎤= − − + +⎢ ⎥⎣ ⎦

x

x

y Hx x

y y y Hx x H y x H H I x
.   (2.24) 

Thus the matrix H
Nα= +G H H I  is full rank. It can be Cholesky factorized as 



 21

T=G D D , and D is an upper triangular matrix. By defining 1 H−= G H yλ , (2.24) 

is equivalent to 

                        ( ) 2min
S∈x
D Xλ− .                         (2.25) 

(2.25) is an overdetermined case, thus can directly use SDA. If the constellation is not 

constant modulus, the non-constant modulus constellation can be represented as 

combination of constant modulus constellations. For example, q-QAM ( 2kq = ) can 

be represented as a weighted sum of /2k  QPSK constellations when k is an even 

number. That is, for w ∈q-QAM and iw ∈QPSK, 0 /2i k≤ < , we have 

1
2

0

2
2 ( )

2

k

i
i

i
z z

−

=
= ∑ . 

2.6 Summary 

In this chapter, we give a review of the MIMO communication systems. 

Exploiting multi-path scattering, MIMO systems deliver significant performance 

enhancements in terms of data rate and link quality. Spatial diversity is one of the 

MIMO techniques which mitigates fading and is realized by providing the receiver 

with multiple copies of the transmitted signal in space or time. MIMO systems offer a 

linear increase in data rate through spatial multiplexing by transmitting multiple and 

independent data streams without requiring additional bandwidth or transmit power. 

The underdetermined MIMO systems can be solved by several algorithms. GSD 

algorithm has to perform exhaustive search over (N−M) dimensions. The SSD 

checks all the points in a geometrical slab. The regularization method transfer the 

underdetermined case to overdetermined one by adding a constant term. 
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Chapter 3  
 
Proposed Transmit Power Allocation 

 In this chapter, we introduce the proposed transmit power allocation for 

MU-MIMO systems. We aim to find a power allocation matrix such that all user data 

rate will be close to each other. We choose the sum of logarithmic average user rates 

as our utility function. We reformulate this nonlinear optimization problem to a 

suitable form, thus the Interior-point method can be applied. The proposed method 

can also be applied to single user MIMO (SU-MIMO) systems. The simulation results 

shows that the proposed method provides fair data rate for all users. The Chapter is 

organized as follows. In Section 3.1, we introduce that the special uplink MU-MIMO 

can be regarded as the underdetermined MIMO system. The proposed transmit power 

allocation is introduced in Section 3.2. The reformulation of the nonlinear 

optimization problem and Interior-point algorithm are described in Section 3.3. 

Section 3.4 contains the numerical results of the proposed method, and Section 3.5 

summarizes this chapter.  

 

 

 



 23

3.1 Uplink MU-MIMO System 

In the uplink scenario, if there are N users transmit the signal simultaneously, and 

each user is equipped with one antenna. The base station has M antennas. When the 

number of base station antennas M is larger than the number of users N, it can be 

viewed as an underdetermined MIMO system. Therefore, the existing algorithms can 

be used to decode the received signals. Fig. 3.1 is a practical example in uplink 

MU-MIMO system. User 6 is blocked by a high building and User 11 is far away 

from the base station. The channel gains are depending on the shadowing and distance 

between the transmitter and receiver. In general, these two users will suffer from 

small channel gains. Hence, User 6 and 11 will have lower data rates than the other 

users. We aim to use a power allocation to let all users have fair rates. Thus User 6 

and User 11 will achieve higher data rates. 

 

 

Fig. 3-1 Example of uplink MU-MIMO system.  

11 
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3.2 Proposed Transmit Power Allocation for 

Fair Rates 

In the uplink MU-MIMO systems, the users are independent and separated. They 

cannot exchange the information to each other. Thus precoding techniques at the 

transmitter cannot be applied in this case. However, we can use power allocation to 

improve the performance. The transmit power allocation is proposed to allocate power 

to different users. We incorporate the power allocation matrix 

( )1 2, , , Ndiag P P P=P "  into our system model, where iP  is the power 

transmitted by the ith user. Thus, the received signal in (2.3) becomes 

        = +y HPx n ,                          (3.1) 

and maxi iP P≤  is the power constraint for the ith user. The matrix HP  in (3.1) 

can be regarded as the equivalent channel matrix. It can also be considered as matrix 

P provides different gains to different columns of H . Assuming that the receiver has 

the perfect channel state information (CSI). The maximum achievable rate for the ith 

user is 

     2log (1 SINR )i iR = + ,     1,2, ,i N= "                (3.2) 

where 
( )

( )
2 2 2

1 2

2 2 22
1 2

SINR
i i Mi i

i

j j Mj j
j i

h h h P

M h h h Pσ
≠

+ + +
=

+ + + +∑

"

"
 and 2σ  is the noise 

power. Here we treat the other users as interference at the receiver. By the concept of   

[21], we choose the utility function ( )1 2, , , NU R R R"  as   

( ) ( ) ( ) ( )F 1 2 1 2, , , ln ln lnN NU R R R R R R= + + +" " .         (3.3) 

We want to find the matrix ∗P  which maximizes the utility function. This lead to the 
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following optimization problem:  

( )max F 1 2 , , , NU R R R"      subject to maxi iP P≤   1,2, ,i N= "    (3.4) 

We choose the logarithm function in (3.3) because it provides better fairness for the 

rate iR of each user. For logarithm function, the larger input, the more suppressed 

output. This means that the different rates will be closer to each other. If we choose 

the utility function as ( )1 2 1 2, , , N NU R R R R R R= + + +" "sum , i.e., maximizing 

the total sum rate, then the water filling algorithm [18] will be the solution.  

The utility function in (3.3) can also be applied to SU-MIMO system. The 

difference between SU-MIMO and MU-MIMO systems is the power constraint. 

When the transmitter has N antennas and receiver has M antennas, the received signal 

can be written as same as (3.1). The optimization problem in (3.4) becomes  

( )max F 1 2 , , , NU R R R"       subject to       1
N

ii P P= ≤∑ max . 

where iP  is the transmitted power of the ith antenna and Pmax  is the maximum 

transmit power. The achievable data rate will become fair for all users with the 

proposed power allocation applied.  

 In [26] we know that the optimization problem in (3.4) cannot be solve 

mathematically as a closed form. The reason is that the utility function is a very 

complicated nonlinear function. Thus we need to reformulate the problem to a 

suitable form which can be solved by the existing algorithms. Here we choose the 

interior-point method [23], [24] to solve the optimization problem, since it is more 

efficient and applicable to both linear and nonlinear problems. 
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3.3 Interior Point Algorithm 

In this Section, we reformulate the optimization problem in (3.4) to apply the 

existing algorithms. We start from transforming our optimization problem to a 

suitable form for the Interior-point method, and then give a brief algorithm of the 

Interior-point method. We can regard (3.4) as the constrained nonlinear optimization 

problem: 

  ( )min  f x     subject to  ( ) 0jc ≥x , 1,2, ,j N= "  

where ( ) ( )F 1 2, , , Nf U R R R= −x "  and ( ) maxj j jc P P= − +x  are continuous and 

have continuous second partial derivatives. By introducing the slack variable 

[ ]1 2, , , Ny y y=y " , the problem can be converted to      

 ( )min  f x     subject to  ( ) 0− =c x y , ≥y 0  

where ( ) ( ) ( )[ ]1 2( ) , , , T
Nc c c=c x x x x" . The inequality constraint ≥y 0  can be 

incorporated into the objective function by adding a logarithmic barrier function. This 

yields the minimization problem : 

( ) ( )min
1

  ln
N

i
i

f f yτ τ
=

= − ∑x x  subject to  ( ) 0− =c x y    (3.5) 

where 0τ >  is the barrier parameter. Hence all the constraints are equalities. The 

term 
1
ln

N

i
i

yτ
=

− ∑  in (3.5) acts like a barrier that prevents any component iy  from 

becoming negative, since the logarithm function has no definition on the negative 

values. We solve the problem (3.5), and obtain the optimal solution to the original 

problem as 0τ → . The Lagrangian for the problem in (3.5) is 

( ) ( )[ ]
1

L( , , , ) ln
N

T
i

i
f yτ τ

=
= − − −∑x y x c x yλ λ            (3.6) 

and the KKT conditions for the problem in (3.4) are given by 
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( ) ( )L 0T
x f∇ = ∇ − =x A x λ , 

1L 0y τ −∇ = − + =Y e λ , 

( )L 0∇ = − =c x yλ , 

where  

( ) ( ) ( ) ( )[ ]1 2, , , T
Nc c c= ∇ ∇ ∇A x x x x"  

{ }1 2diag , , , Ny y y=Y "  

[ ]1,1, ,1T=e " . 

Once we reformulate the optimization problem in (3.4) to the form of (3.5), the 

problem can be applied to Interior-point algorithm by using the Lagrangian function 

in (3.6).  

The interior-point algorithm can be briefly summarized as follows. 

 

Step 1. Input an initial set { }0, ,0 0x y λ  with 0>0y , 0 0>λ , and an intitial  

barrier parameter 0τ . Set 0l = , { } { }0 0 0 0, , , ,∗ ∗ ∗ = 0 0x y x yλ λ , and 

initialize the outer-loop tolerance outerε . 

Step 2. Set 0k = , lτ τ= , and initialize the inner-loop tolerance innerε . 

Step 3. Using the first and second derivatives to evaluate { }k, ,k kΔ Δ Δx y λ  

and kα  such that  
1

1

k+1 k k

k k k k

k k k k

k

α

α

α

+

+

⎧⎪ = + Δ⎪⎪⎪⎪ = + Δ⎨⎪⎪⎪ = + Δ⎪⎪⎩

x x x

y y y

λ λ λ

 will get a descent 

direction for the objective function. 

Step 4. If k innerk k k k kα α α εΔ + Δ + Δ <x y λ , 

set{ } { }1 1 1 1 1 1, , , ,l l l k k k
∗ ∗ ∗
+ + + + + +=x y x yλ λ  and continue to Step 5; 

otherwise, set 1k k= +  and repeat from step 3.  
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Step 5. If 1 1 1 outerl l l l l l ε∗ ∗ ∗ ∗ ∗ ∗
+ + +− + − + <x x y y λ −λ , output 

{ } { }, , , ,l l l
∗ ∗ ∗ ∗ ∗ ∗=x y x yλ λ  and stop; otherwise, calculate 1lτ + , set 

{ } { }0, , , ,l l l
∗ ∗ ∗=0 0x y x yλ λ , 1l l= + , and repeat from Step 2. 

 

The Interior-point algorithm is described by two loops. The two loops can prevent 

finding the local minimum. This algorithm will be convergent by choosing 

appropriate error tolerances.  
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Fig. 3-2 CDF of the number of iterations for interior-point algorithm 

 

Fig. 3-2 is the CDF as a function of the number of iterations when the interior-point 

algorithm is applied to solve our optimization problem. There are 1000 channel 

realizations and 4M = , 6N = . We choose the error tolerances to be 0.1. Fig. 3-2 

shows that the range of the number of iterations is between 15 and 22. After solving 

the optimization problem in (3.3), we obtain the optimal ∗P  such that the different 

rates iR  will be closer to each other.  



 29

3.4 Computer Simulations 

In this section, we simulate the proposed power allocation for MU-MIMO 

systems. All the simulations are measured and averaged over 1000 independent 

channels. Here 4M =  and 6N = . Fig. 3-3 shows the PDF of the ratio of 

minimum rate to maximum rate. We can see that the ratio tend to approach to 1. That 

also means the proposed power allocation will tend to uniform data rates.  

Fig. 3-4 simulates the minimum user data rates versus the reciprocal of channel 

gains in 1000 channel realizations. It compares the three schemes: waterfilling power 

allocation, no power allocation, and the proposed fairness power allocation. Since the 

channel gain  
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Fig. 3-3 The PDF of the ratio of minimum rate to maximum rate 
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is inversely proportional to the square of distance between the transmitter and receiver, 

the horizontal axis can be regarded as the user’s distance from the base station. In the 

waterfilling power allocation scheme, the user may be turned off when the distance is 

large enough. If we choose the fairness power allocation scheme, the smallest user 

rate will be larger than the other two schemes. Fig. 3-5 simulates the maximum user 

rates versus the reciprocal of channel gains in 1000 channel realizations. In the 

waterfilling power allocation scheme, the user with best channel gain will be allocated 

with the largest power, thus the achieved rates will be higher than the other schemes. 

In the fairness power allocation scheme, we sacrifice the rate of the best user and 

obtain more fair rates. 
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Fig. 3-4 Minimum rates versus reciprocal of channel gains  
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Fig. 3-6 compares the sum rate of four users with different schemes. In the 

waterfilling power allocation scheme, the utility function is chosen to maximize the 

sum rate of all users. Thus, the sum rate of the waterfilling scheme is always higher 

than the other schemes. Although the sum rate of the proposed fairness scheme is 

lower than the scheme without power allocation, it could obtain fair rates for all users. 
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  Fig. 3-5 Maximum rates versus reciprocal of channel gains  
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Fig. 3-6 Sum rate comparison for fairness scheme 

 

3.5 Summary 

In this chapter we give a detailed description of the proposed transmit power 

allocation. We reformulate the nonlinear optimization problem, and apply the 

Interior-point method to solve it. In both SU-MIMO and MU-MIMO systems, after 

the proposed transmit power allocation, all users will tend to have fair transmission 

rates. This means that it can prevent the users with small channel gains from suffering 

poor data rates. We compare the sum rate of the waterfilling power allocation and the 

scheme without power allocation with the proposed power allocation. It’s a trade-off 

between the maximum average throughput and user fairness.  
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Chapter 4  
 
Condition Number Discussion  

 In Chapter 3, we have introduced the proposed transmit power allocation with 

proportional fairness rates. This means that the sub-channel gains will be close to each 

other with the proposed power allocation applied. And the equivalent channel matrix 

will tend to be a well-conditioned channel matrix. In this chapter, we state that the 

condition number of the equivalent channel matrix is statistically smaller by 

observing the simulation results. If an underdetermined MIMO system is 

well-conditioned, the decoding complexity of the executed SDA will be reduced.  

Motivated by the fairness scheme, we propose a determinant based power allocation 

to further reduce the condition number of the equivalent matrix. Thus the decoding 

complexity of the underdetermined systems can be reduced with the proposed power 

allocation applied. In Section 4.1, we explain why the decoding complexity can be 

reduced with a smaller condition number. The determinant based utility function is 

provided in Section 4.2. Section 4.3 shows the simulation results. Section 4.4 

summarizes this chapter. 
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4.1 Condition Number Effect 

Although SDA can reduce the decoding complexity of ML detection from 

exponentially increasing to polynomially increasing, its complexity still grows heavily 

when the condition number of the channel matrix is large. The condition number is  

traditionally and calculated by taking the ratio of the maximum to minimum singular 

values of the channel matrix. For MIMO systems, the channel condition number is 

calculated from the instantaneous channel matrix without the need for stochastic 

averaging. Small values for the condition number imply a well-conditioned channel 

matrix while large values indicate an ill-conditioned channel matrix.  

Consider an overdetermined MIMO systems with N  transmit antennas and 

M receive antennas. The idea of SDA is to check all the points in a hyper-sphere with 

radius d . It finds the nearest point from the received signal to be the estimated signal. 

That is, 

2 2 2argmin argmin
N N

d
∈ ∈

= − = − <
x x

x y Hx y Rx
] ]

� ,           (4.1)       

where =H QR , T=y Q y , and R  is the upper triangular matrix. Without loss of 

generality, we let N M= . We can rewrite (4.1) as a summation form 

( )2 2
1

M N
i ij ji j iy r x d= =− <∑ ∑ , start from the last equation and work backward. We 

expand the last equation as  

N N
N

NN NN

y d y d
x

r r

− +
< < .                    (4.2) 

It means that all the constellation points satisfy (4.2) could be the candidate of 
N

x . 

The ith element of x  will be bounded by  



 35

 
 

Fig. 4-1 Tree search example for 4-PAM showing sphere radius, tree levels and 

detection layers 

 

1 1
N N

ij j ij ji ij i j i
i

ii ii

y d r x y d r x
x
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∑ ∑

.        (4.3) 

From (4.2) and (4.3), we know that SDA is a tree search. Fig. 4-1 is a tree search 

example for the 4-PAM constellation. We can search from Level 1 to Level N, and the 

distance for all levels should be less than the radius d . Because SDA decodes the 

transmit signal from the last layer Nx , the boundary of Nx  should be as small as 

possible. This will reduce the number of searching points, as well as the decoding 

complexity.  

In [22], we know that the NNr  of R  depends on the condition number of the 

channel matrix H . The lower the condition number is, the larger the NNr  is. Thus, 

we can obtain a lower decoding complexity when the system is well-conditioned. Fig. 

4-2 shows the CDF of 55r  for a 5 5×  matrix with different condition numbers.  

We can see that when the condition number is less than 10, the value of 55r  will tend 
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to be larger. Fig. 4-3 shows the FLOPS (Floating Point Operation Per Second) of the  
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Fig. 4-2 CDF of 55r  for a 5 5× matrix with different condition numbers 

 

SDA versus condition number. The transmitter and receiver are both equipped with 

four antennas, and the transmitter uses the QPSK modulation. We can see that when 

the condition number is larger than 5 the complexity increase rapidly. Fig. 4-4 shows 

the CDF (Cumulative Density Function) of the condition number with different 

channel correlation. Assuming that there are 1000 channel realizations in a 2 2×  

MIMO system. Let hhR  be the correlation matrix of H . A useful measure of the 

degradation in performance due to channel correlation, for a system with K diversity 

branches, is provided by the Kth root of the determinant of the channel correlation 

matrix, ( )1/det K
hhR [24]. If ( )1/det K

hhR is smaller than 0.5, it can be regarded as 

high correlation. If ( )1/det K
hhR is larger than 0.5, it can be regarded as low 

correlation. Typically, we consider it to be an ill-conditioned channel when the 
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condition number is larger than 10 dB. Fig. 4-4 shows that both channels with low 

and high correlation are probable to be ill-conditioned channels. It also shows that a 

MIMO system is more likely to have a lower condition number when the channel has 

low correlation. 
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Fig. 4-3 Complexity as a function of condition number 
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Fig. 4-4 CDF of condition number with different channel correlations 

4.2 Proposed Utility Function for Condition 

Number 

In Chapter 3, we know that the proposed transmit power allocation results in 

proportional fairness data rates. That means that the data rate for each user 

2log (1 SINR )i iR = +  will be close to each other. The SINR in the log function will 

also be close to each other. When the data is transmitted from the ith user, the SINR at 

the receiver can be written as 
2

2SINR
Noise

i i
i

j j
j i

P

P
≠

=
+ ∑

h

h
. ih  is the column 

vector of the channel matrix H . At the high SNR, the data rate will be 

interference-limited. The sub-channel gain will be close to each other with the 
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proposed power allocation applied. That is,     

2 2 2
1 1 2 2 N NP P P≈ ≈ ≈h h h" . 

Thus the equivalent channel matrix will tend to be a well-conditioned channel matrix.  

From the above concepts, we want to check if the condition number will be 

smaller with the proposed power allocation applied by computer simulations. We 

simulate the proposed transmit power allocation in the underdetermined SU-MIMO 

and MU-MIMO systems. Fig. 4-5 and Fig. 4-6 are the CDF as a function of the 

condition number. We simulate 1000 channel realizations, and the number of transmit 

and receive antennas are 6 and 4, respectively. Both SU-MIMO and MU-MIMO 

systems can obtain a smaller condition number with the proposed power allocation 

applied. By observing the simulation results, we can state that the condition number 

of the equivalent channel matrix is statistically smaller with the proposed power 

allocation applied.  
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Fig. 4-5 CDF of the condition number for SU-MIMO 
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   Fig. 4-6 CDF of the condition number for MU-MIMO 

 

Motivated by the fairness scheme, we want to make the condition number of the 

equivalent channel matrix smaller. Thus the decoding complexity of the 

underdetermined MIMO systems can be reduced. From the linear algebra, we know 

that the determinant of a matrix is the products of all eigenvalues. For example, given 

a full rank 5 5×  matrix A , and 1 2 5, , ,λ λ λ" are the eigenvalues of matrix A . 

Then ( ) 1 2 5det λ λ λ=A "  and ( ) 1 2 5trace λ λ λ= + + +A " . Thus we propose a 

power allocation utility function based on the determinant to make the eigenvalues of 

the equivalent channel matrix close to each other. That will lead to smaller condition 

number. The optimization problem can be written as  

max ( )( )( )log det HHP HP      subject to   ( )( )trace constantHHP HP = . 

We use the techniques we’ve used in chapter 3 to reformulate the optimization 
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problem. And then we can apply the interior point algorithm to solve this. Fig. 4-7 is 

the comparison of condition number for fairness scheme and determinant based 

scheme. We simulate 1000 channel realizations, and the number of transmit and 

receive antennas are 6 and 5, respectively. It shows that both schemes can reduce the 

condition number statistically. The determinant based power allocation scheme leads 

to smaller condition number than the fairness scheme.  

 

  

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition Number

C
D

F

1000 Channel, (6,5)

 

 

CN_det

CN_fair

CN

 

Fig. 4-7 Comparisons of condition number for fairness scheme and determinant based 

scheme 
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4.3 Computer Simulations 

In this section, we simulate the decoding complexity of the SSD decoder and 

regularization decoder for underdetermined MIMO systems with the proposed power 

allocation applied. We also apply the proposed power allocation with the determinant 

based utility function to simulate the decoding complexity. Here the complexity 

weights of different operations is determined according to [16]. The numerical results 

are measured and averaged over 1000 independent channels for various average 

signal-to-noise ratio (SNR).  
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Fig. 4-8  Decoding complexity comparison using SSD at receiver. Transmitter has 

four antennas, and receiver has three antennas. 
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Fig. 4-8 shows the decoding complexity improvement with the proposed power 

allocations applied. In this simulation, we use 16-QAM modulation. The transmitter 

has four antennas and the receiver has three antennas. We choose the geometrical SSD 

to decode the underdetermined MIMO system. The SSD first finds the candidates in a 

slab and each candidate is followed by an SDA. Therefore, when the channel 

condition number is small, the decoding complexity can be reduced. Since the number 

of candidates in the slab depends on the noise, the larger the noise is, the more the 

candidate is. The SSD needs to activate more times of SDA at low SNR, thus the 

decoding complexity can be reduced more than at high SNR.  
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Fig. 4-9 Decoding complexity comparison using SSD at receiver. Transmitter has six 

antennas, and receiver has five antennas. 
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Fig. 4-9 shows another simulation of decoding complexity. The transmitter has 

six antennas, and receiver has five antennas. The other simulation parameters are the 

same as Fig. 4-8. Because the transmitter and receiver have more antennas, the sizes 

of the channel matrix become larger. Thus the decoding complexity will increase. The 

applied SDA in SSD will become a more important role. We can observe that the 

decoding complexity of SSD can also be reduced by applying the determinant based 

power allocation at low SNR.  
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Fig. 4-10 Decoding complexity comparison using regularization method at receiver. 

Transmitter has four antennas, and receiver has three antennas. 

 

Fig. 4-10 shows the simulation of decoding complexity of the regularization 

method. We use 16-QAM modulation in 1000 channel realizations. The transmitter 

has four antennas, and receiver has three antennas. The regularization method 

transforms the underdetermined problem into an overdetermined problem. Thus the 
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existing SDA could to applied on the decoding process. Fig. 4-10 shows that the 

decoding complexity can be reduced with the proposed power allocations applied. Fig. 

4-11 shows that the decoding complexity of the regularization method with six 

transmit antennas and five receive antennas. The other parameters are the same as Fig. 

4-10. The numerical result shows that the decoding complexity can also be reduced 

for a large antenna size with the proposed power allocation applied. 
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Fig. 4-11 Decoding complexity comparison using regularization method at receiver. 

Transmitter has six antennas, and receiver has five antennas. 

 

Fig. 4-12 compares the sum rate of four users with different schemes. In the 

waterfilling power allocation scheme, the utility function is chosen to maximize the 

sum rate of all users. Thus, the sum rate of the waterfilling scheme is always higher 

than the other schemes. Although the sum rate of the proposed fairness scheme is 
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lower than the scheme without power allocation, it could obtain fair rates for all users. 

With the determinant based power allocation, the condition number of the equivalent 

channel matrix can be reduced, but the sum rate will be smaller than the sum rate 

without power allocation. 

 

 

 

Fig. 4-12 Sum rate comparison for determinant based schemes 

 

4.4 Summary 

The condition number of the channel matrix is a critical factor for decoder design 

in underdetermined MIMO systems. Most efficient decoding algorithms of 



 47

underdetermined MIMO systems work with SDA, and thus are sensitive to the 

condition number. Simulation results show that the fairness power allocation can 

reduce the condition number of the equivalent channel matrix. Motivated by the 

fairness scheme, we propose a determinant based utility function to make the 

eigenvalues close to each other. Thus it can reduce the condition number effectively. 

Simulations show that the decoding complexity of underdetermined MIMO systems 

can be reduced with a smaller condition number. Although the decoding complexity 

can be reduced in underdetermined MIMO systems, the sum rate will be smaller as a 

price.   
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Chapter 5  
 
Conclusions and Future Works 

 In the beginning, this thesis reviews the development of MIMO systems, and 

the channel capacity of the MIMO systems is introduced. Spatial diversity and spatial 

multiplexing are two main techniques used in MIMO systems, and can improve the 

system performance. Several decoding algorithms are proposed for underdetermined 

MIMO systems. These decoders are developed based on the SDA. Considering uplink 

MU-MIMO systems, the channel gains will be small when the users are far away 

from the base station or blocked by obstacles in practical environments. This results in 

poor data rates for those users. Our goal is to achieve the fair rates for all users.  

Since linear precoding techniques cannot be used in the uplink MU-MIMO, we 

propose a transmit power allocation scheme to achieve the goal. In Chapter 3, we give 

a detailed description of the proposed transmit power allocation in the MU-MIMO 

systems. The nonlinear optimization problem is reformulated into a modified form. 

Thus we can apply the Interior-point algorithm to solve it. The proposed power 

allocation can also be applied in the SU-MIMO systems. Simulation results show that 

the fairness based power allocation could provide a higher data rate to the worst 

condition user than the waterfilling power allocation. This demonstrates a trade-off 

between the maximum sum rate and user fairness. 
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The discussion of condition number and the determinant based utility function 

are given in Chapter 4. If we use the SDA at the receiver, the decoding complexity 

can be reduced with a smaller condition number. The numerical results show that the 

fairness scheme tends to obtain a smaller condition number of the equivalent channel 

matrix. Thus the decoding complexity of the underdetermined MIMO systems could 

be reduced with the proposed power allocation applied. Motivated by the fairness 

scheme, we propose a determinant based utility function to reduce the condition 

number, further reducing the decoding complexity. 

The main contributions of this thesis are as follows. We propose a transmit 

power allocation scheme which provides fair data rates. It improves the poor data 

rates for users in unfavorable situations. By reformulating the nonlinear optimization 

problem into a modified form, we can apply the typical Interior-point algorithm to 

solve it. We observe that the fairness scheme could lead to a small condition number 

of the equivalent channel matrix, and propose a determinant based utility function 

trying to equalize the eigenvalues. The decoding complexity of the SDA based 

decoder for underdetermined MIMO systems can thus be reduced with the proposed 

power allocation applied. 

 There are still some issues remaining to be discussed in this work. First, how to 

find the mathematical relation between the fairness scheme and condition numbers is 

a concern. Also, how to tackle with imperfect CSI at the receiver is an interesting 

topic. Furthermore, finding a precoding matrix to minimize the channel condition 

number is an important subject worthy of investigation. 
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