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CHAU-JY LIN and JONG-CHUANG TSAY 

Department of Applied Mathematics and Institute of Computer Engineering, 
National Chiao Tung University, Hsinchu, Taiwan, Republic of China 

Abstract. 

A parallel algorithm for generating all combinations of m (m fixed) items out of any n given items 
in lexicographic order is presented. The computational model is a linear systolic array consisting of 

(m m identical processing elements. This algorithm requires time-steps for the combinations, 
m 

that is, one output at each time-step. Since all processing elements perform the same program, it is 
suitable for VLSI implementation. Based on mathematical induction, such an algorithm is proved 
to be correct. 
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I. Introduction. 

Under the demand of faster and more powerful computers, there have been 
many attempts to develop electronic devices and processors operating at high 
speed. However, it is difficult to increase the speed of circuit components, because 
the laws of physics impose limits on the computational speed, so use of a parallel 
computer is a way to achieve higher computing speeds. The growing importance 
of parallel computers and parallel algorithms is highlighted in [3, 6, 7, 9, 10]. 
Systolic arrays represents one of the parallel computation models, and many 
examples of systolic array processors have been presented, e.g. in the fields of 
image processing, matrix arithmetic, digital signal processing etc. [6, 11, 12]. 
HOwever, only a few systolic arrays are designed for combinatorial enumeration 
problems. 

Generating combinations is an important combinatorial enumeration problem. 
It has received much attention, and various applications have been found. For 
example, by generating the combinations of at most m out of n items, Sahni 1-13] 
has presented an approximate algorithm for the 0/1-knapsack problem which 
guarantees a relative error bound. Chen et al. [14] have shown that a number 
of geometry problems can be solved by generating the combinations of two 
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out of n items. Several parallel algorithms [2,4,5] have been designed to 

generate the ( : ) c o m b i n a t i o n s .  However, these algorithms do not generate the 

combinations in lexicographic order, or they are not systolic algorithms. In this 
paper We present a parallel algorithm to .generate all combinations of m (m fixed) 
out of any n given items in lexicographic order. The used computational model 
is a linear systolic array consisting of m identical processing elements (PEs). 
Each PE performs the same program, and hence it is suitable for VLSI imple- 
mentation. The problem when m is not fixed is discussed in Section 6. 

The remainder of this paper is organized as follows. In Section 2 an overview 
of sequential and parallel algorithms for generating combinations is given. In 
Section 3 we desdribe the computation model of the linear systolic array. The 
parallel algorithm and the verification of the systolic array are presented in 
Sections 4 and 5, respectively. Two modifications of our algorithm are considered 
in Section 6. Some concluding remarks are offered in Section 7. 

2. Some existing algorithms for generating combinations. 

It is well known that the combinations in lexicographic order can be generated 
sequentially in a straightforward way, see [1]. In [8], Semba presented a 
sequential algorithm to generate all combinations of at most m out of n items 
in lexicographic order. In [2], Chan and Akl presented a parallel algorithm 
to generate the combinations in a single instruction multiple data (SIMD) 
machine which allows data read simultaneously frbm a shared memory. It can be 
seen that the assignment statements of their algorithm depend on the indexed 
position of the executing PEs. In [4], Chen and Chern presented a parallel 
algorithm to generate the permutations of at most m out of n items, but not in 
lexicographic order. Their architecture for the algorithm consists of a linear array 
with k PEs, say PE(i) for 1 < i _< k, and a selector which receives a value z 
from PE(k), then sends a value y to PE(1) where y = z - k if z > k; otherwise 
y = n + z - k. Each PE has a stack of size m to store the necessary data during 
the execution of their algorithm. This algorithm can easily be modified to 
generate combinations. 

Contrasting with [1, 8], our algorithm is parallel. All these algorithms generate 
the combinations in lexicographic order. Contrasting with [2, 4], our algorithm 
is a systolic algorithm which can be run on a linear array consisting of m PEs. 
In addition, these m PEs are not necessary to recognize their indexed positions 
during the execution of our Mgorithm. 

3. The computational model. 

Without loss of generality, let 1, 2, 3 . . . . .  n denote the n given items under con- 
sideration. Based on the algorithm in [1], a computational model is designed 
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Fig. 1. The computational model and specification of PE(i). 

consisting of m identical PEs to produce the ( : ) c o m b i n a t i o n s .  Figure 1 

indicates the layout of our computational model, where any individual PE is 
referred to as PE(i) for 1 < i < m; c, e, d, x are four communication links; R is a 
register; C is a flag; Q is a queue and oi is the output terminal. Each 
individual PE(i) is responsible for generating the ith component of any 
conbination. Each communication link has one delay (denoted by D). 

For  convenience, we consider the notations ci,, Co,t, xi, etc. of Figure 1 as the 
names of variables within our algorithm. Each PE can perform the following tasks : 

(1) receive input data from its input links, 
(2) execute once the procedure that is defined by an algorithm, 
(3) send output data to its output links. 

We call the maximal time units to perform the above three tasks a time-step 
in our algorithm. Moreover, since each communication link has a delay, it means 
that if PE(i) sends its Co,, eo,, do,, xo,,, to c, e, d, x links respectively at time-step 
t = to, then such a Co.~ is the ci, of PE(i), such eo,, do., are the ei,, di, of PE(i + 1) 
respectively, and such an Xo.t is the xi, of PE(i - 1) at the time-step t = to + 1. 
(We consider PE(0) and PE(m + t) being in the memory of the host computer.) 

From the definition of lexicographic order, if A = {al, a2 . . . . .  am} is any com- 
bination of m out of n, then we know that a ~ _ < n - m + i  for all l_< i_<m.  
Then n - m  + i is called the limit value of the ith component of any combination, 
and we denote it by Ri. We refer again to our computational model, and the 
usage of these four communication links, register R, flag C, and queue Q in each 
individual PE(i) for 1 _< i _< m is described as follows. 

(1) The c-link transmits Co.t, i.e. the ith component of any combination, to 
output terminal oi, and such a Co~, is the cg, of PE(i) at the next time-step in 
order to produce the ith component of next combination. 
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(2) The x-link transmits a message to P E ( i - 1 )  such that the message indicates 
whether the Cout of PE(i) is its limit value, i.e. if Co,, = n - r e + i ,  then xou, = 1; 
otherwise xou, = O. 

(3) The d-link transmits the same data as co,t, i.e. do, t = Co,, for all time-steps. 
(4) The e-link transmits elements to the Q of PE( i+  1). If PE(i) has e~. :p 0, 

then PE(i) sends eo,, = e~.+ 1. Or if the flag C = 1 in PE(i) is true, then PE(i) 
sends Co,, = d i , + 3  to PE( i+  1). 

(5) The register R contains the limit value Ri = n - m + i .  

(6) The flag C indicates that if the condition "co,t = R i -  1 and xi, = 1" is true, 
then PE(i) sets C = 1; otherwise C = 0. 

(7) Q stores the data fetching from e~. if e~, ~ 0; if C = 1 then Q stores the 
element d~, + 2. 

4. Parallel algorithm for generating combinations. 

From the description of Section 3 we derive the parallel algorithm 
C O M G E N ( n , m )  as shown in Algorithm 1, where F R O N T ( Q )  means that it 
returns the front element of Q and removes it from Q; ADDQ(q)  means that 
it adds the element q to the rear of Q. During the execution of C O M G E N  (n, m). 

there is a combination coming out at each time-step, hence only (n, m) time-steps 

, are required tot generate all the ( n )  combinations. 

Since a systolic array processor is always attached to a host computer by an 
interface system, the signal to stop the execution of C O M G E N  (n, m) can be sent 
by the host computer when the message Xo,, = 1 of PE(1) is recognized. An 
other way to stop the execution of PEs is to detect whether the value of ei, 
possesses a special symbol, e.g. as if ei, = -  1 then the algorithm stops its 
execution. This consideration will be discussed in Section 6. 

ALGORITHM t. C O M G E N ( n ,  m): 

[initialize.] 

L I :  

I f  m < n - l ,  let ci, = i, xi ,  = 0 in PE(i)  Jbr 1 <- i <- m - l ,  and ci, = m - l ,  

xi ,  = 1 in PE(m). 

L2." I f  m = n - 1  or m = n, let cin = i - l ,  xi ,  = 1 in PE(i)  Jbr t < i '<- m. 

L3: Set R = n - r e + i ,  C = O, and let Q be empty  in PE(i)  jbr  1 <_ i < m. 

L4: Set  

L5: Set  

[executive 

beffm 
L6: 

L7: 

L8: 

L9: 

din = O, ei, = 0 in PE(i)  for  2 < i < m. 

di, = 0, ein = 0 in PE(1) and xin = 1 in PE(m)  at all time-steps. 

body.] 

r epea t /*  do parallel Jor all PEs  */ 

if ci. -< R -  1 then Co.t "= cin+xin else Cout :=  F R O N T ( Q ) ;  

i f  Co~, = R then xo.~ :=  1 else Xo~, := O; 

dour : =  Cou t; 
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if C = 1 t h e n / *  beyinnin9 of propayatin9 work. */ 
betfm 

LIO: ADDQ(d~.+2); 
L l l :  eo.t:=di,+3; 
L12: C : =  0 

end 
else/* C = O, check whether PE(i) is within a propagatin9 work. */ 
beta 

if ei, 4; 0 t h e n / *  within a propagatin 9 work. */ 
be n 

L13: ADDQ(ei.); 
L14: e o . , : = e i , + l  

end 
L15: else eo,t : =  0 ; / *  not in propagatin 9 work. */ 

end 
L16: if xi, = 1 and eo.t = R - 1 then C: = 1 / *  prepare for propagatin9 work. */ 

until host computer sends stop signal 
end .  

Note  that  in Algori thm 1, after receiving input data  xi., c~,, the m PEs 
generate simultaneously the m components  of a combinat ion,  then it detects 

whether Cout reaches its limit value to determine the value of  Xo,t, and so on, 
In what  follows, the symbol "L  i" indicates that  we are referring to the line 
number  i of COMGEN(n,m). First we observe the following four facts in 

COMGEN(n, m). 

(1) If m < n - 1 ,  "L  1, 5, 7" implies that  the first combina t ion  coming out  is 
{1, 2 . . . . .  m}. If m = n - 1  or m = n, "L 2, 5, 7" implies that the first combinat ion  
is also { 1, 2 . . . . .  m}, That  is, at time-step t = 1, the first combinat ion  comes out  

in lexicographic order. 

(2) Suppose that  the combinat ion  A = {as, a2 . . . . .  am} comes out at a time-step 
to, and there exists an integer e such that PE(~) has C = 1 (this C = 1 is set 
via "L  16" at t = to -- 1), then at the following (m - e) + 1 time-steps (from to + 1 

to to + (m - ct) + 1) PE(e) propagates  the (m - e) + 1 values (say S, = {as- 1 + 2, 

a~_~+3  . . . . .  a ~ _ l + ( m - ~ ) + 2 } )  to the ( m - ~ ) + l  Q's of PE(i) for c~<_i<m 
respectively. This propagat ion  works as follows. 

(2a) At  t = to + 1 : "L 10-12" implies that  PE(cQ receives di, = a ,_ 1, assigns 
di, + 2 = a ,_  1 + 2 to its Q, sends dl, + 3 = a~_ 1 + 3 to eout, resets C = 0. 

(2b) At  t = t o + 2 :  "L 13,14" implies that  PE(c~+I ) r ece ive s  and assigns 

ei, = a ,_  1 + 3 to its Q, sends a~_ ~ + 4 to eou t. 
(2c) In general at t = t o + j :  "L 13, 14" implies that  P E ( c ~ + j - 1 )  receives and 

assigns el, = a~-i  + j +  1 to its Q, sends a~_~ + j + 2  to eout. 



28 CHAU-JY LIN AND JONG-CHUANG TSAY 

(2d) This goes on up to PE(m) which receives and assigns ei, = a,_r, + (m - a) + 2 
into its Q. and sends a ,_ l  + ( m - a ) + 3  to eo,t at t = t  o + ( m - a ) + l .  

We define PE(ct) to the leader of a propagatin9 work within the propagating 

time interval I = [ t o + l , t o + ( m - e ) + l ] ,  and the ( m - c 0 + l  values in S~ are 
called the propagin 9 values of PE(c~) within I. 

(3) From "L 7" if ci, = Ri in PE(i) the front element of Q in PE(i) is 
retrieved and assigned to the Co,,t of PE(i). 

(4) "L 6" implies that C O M G E N ( n ,  m) repeats its execution until xo,, = 1 in 
PE(1) is recognized by the host computer, and then the host computer sends a 
signal to stop the execution of C O M G E N ( n , m ) .  

EXAMPLE 1: Table 1 is an example with n = 5, m = 3 for illustrating the results 
of execution of C O M G E N ( n , m ) .  The values of the variables have the corre- 

sponding locations as shown in Figure 1, where the arrows are omitted and the 
symbol ¢ denotes an empty set. Note that the maximal size of Q is 2 which 
appears in PE(2) at time-step 9. 

0 

Table 1. An 
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From the assumption of the previous fact (2) we have a modified assumption 
as follows. "There  exist two integers ~, fl and a time-step to such that the 

combination {al, a2 . . . . .  a~-2, fl, R ~ -  1, R~+I - 1 . . . . . .  R m -  1} comes out at t = to, 

since fl is the co, t ofPE(ct - 1) and fl < R,_ 1 - 2". This assumption will be satisfied 
many times during the execution C O M G E N ( n , m ) .  (When ~ = 1, let fl = 0, 
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R o = 2.) Recall that  Ri is the limit value of  PE(i). Let ACOM(n, m) be the set 
of  the combina t ions  satisfying this modified assumption.  The elements in 
ACOM(n,m) are indexed by their emerging order  dur ing the execution of 
COMGEN(n, ra). 

EXAMPLE 2: We refer to Example  1 again. There are three combina t ions  in its 
set A C O M ( 5 , 3 ) ,  namely  {1,2,4}, {1,3,4}, {2,3,4} appear ing  at  t = 2 , 4 , 7 ,  
respectively. The  cor responding  values of  their indexes, t ime-steps,  combinat ions ,  
a, fl, and R,  are listed in Table  2. 

Table  2. The related values of ACOM(5, 3). 

N to  combination a fl Ra- 1 

1 2 {1,2 ,4}  3 2 4 

2 4 {1 ,3 ,4}  2 1 3 

3 7 {2,3,4} 1 0 2 

5. The correctness proof. 

At the beginning of the execution of  COMGEN(n,m), all PEs  have empty  
queues and C = 0 by "L  3". If m < n -  1, Algor i thm 1 increases the ruth com-  
ponent  by one at each t ime-step in order  to generate a new combinat ion .  After 
n - rn t ime-steps,  the combina t ion  A :-- {1,2 . . . . .  m - 1,n - 1} comes  out. "L  16" 
implies that  PE(m) sets its C = 1 because PE(m) has xin = 1 and Cou, = Rm - 1 
= n - 1 .  It  means  tha t  the assumpt ion  in Section 4 is satisfied for ~ = m, 
fl = m -  1 a t  t ime-step to = n - r e .  We will discuss the behaviors  of  p ropaga t ing  
work  of PE(i), a < i < m when this a s sumpt ion  is satisfied. 

First  we show that  the a lgor i thm COMGEN(n,m) generatesthe(nm)cOm - 

binat ions  in lexicographic order. We give a sketch of  proof.  F r o m  Example  2 
in Section 4, we know that  there repeatedly exist two integers ~, fl and a 
t ime-step to such that  a combina t ion  of the form {a,,a2 ..... a~-2, R~-I ,  
R~+ 1 -- 1 . . . . .  Rm -- 1} comes  out  a t  t = t o, where  fl is the co, t of  PE(c¢ - 1) such that  
fl < R~_ 1 -- 2, all m queues are empty ,  and the C's o f  PE(7 ). a _< 7 < m, are 
set to 1 at t = to. Then  after giving several Lemmas.  Theorem 1 shows that  if 
X,  Y are any  two consecutive combina t ions  belonging to ACOM(n,m), then all 
the combina t ions  between X and Y are generated by  COMGEN(n,m) in 
lexicographicai  order.  Using this result and mathemat ica l  induct ion we show in 

Theorem2thatCOMGEN(n,m) iscorrectforgeneratingall(n)combinations 

in lexicographic order.  
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LEMMA 1: Suppose that there exists an integer ~ and a time-step to such that 

at t = to all m queues are empty  and the C's o f  PE(i)  Jot  e <_ i <- m are set to 1. 

Then Jor e <_ i <_ m we have 

(a) PE(i)  has Co.t = R i - 1 ,  and Xo.t = 0 at t = to. 

(b) PE(i)  begins its propagating work at time-step to + t. 

PROOF. (a) By " L  16, 8". (b) By " L  10-12". 

LEMMA 2: Under the assumption o f  Lemma 1, suppose P E ( e - 1 )  has Co,t = fl 

so that fl <_ R ~ - l - 2  (if ct = 1 let fl = 0, Ro = 2). Then fo r  integer j such that 

1 _< j _< m - c t +  1, PE(ct) propagates f l + j +  1 into the Q o f  P E ( ~ + j - 1 )  at  time- 

step to + j ,  and PE(~) resets C = 0 at t = t o + 1. 

PROOF. By (b) of L e m m a  1 PE(e)  begins its p ropaga t ing  work  at to + 1. This 
l emma is proved by the descriptions (2a)-(2d) in Section 4. • 

LEMMA 3: Under the assumption o f  Lemma 1, Jor integer k, j such that 

1 <_ k <_ m - ~ and 1 <_ j <_ m - ~ - k + 1, PE(~ + k) propagates R~ + k + j -  1 into the Q 

of  PE(e  + k + j - 1 )  at time-step to + j ,  and PE(~ + k) resets C = 0 at to + 1. 

PROOF. By L e m m a  1 and the fact (2) of Section 4. • 

F r o m  L e m m a s  2, 3, there exist ( m - s ) +  1 PEs  (PE(i) for e < i < m) such that  
they begin concurrent ly  their p ropaga t ing  work  a t  to + 1. We call such PE(e)  
the leftmost leader a m o n g  these ( m - e ) + l  leaders PE(i), and notice tha t  the 
p ropaga t ing  time interval with leader P E ( i +  1) is a subset of  the p ropaga t ing  
t ime interval with leader PE(i). The  behavior  of Lemmas  2, 3 is illustrated by the 
pa ths  with a r rows  in Figure 2, where the nodes  are located in a xy-plane  
coordinate  system with x the variable of  PE 's  index, and y the time-step. Any 
pa th  in Figure 2 means  a p ropaga t ing  work  of the leader P E ( e + k )  for 
O < k < _ m - e .  Note  that  during the t ime interval [ t 0 + l ,  t o + ( m - e ) + l ] ,  
e < i < m, the last value to be inserted into the Q of PE(i)  is the p ropaga t ing  
value with the leftmost leader PE(cQ. 

For  simplicity, we write ItPE(i); cl, = 2, Xo., = 1 . . . . .  ; t  = toll to denote  the 
s ta tement  that  PE(i)  has ci, = 2, Xo., = 1 and so on at t ime-step t = to. The  
symbol  "S1 =~ $2" means  that  s ta tement  S1 implies s ta tement  $2. 

Under  the assumpt ion  of L e m m a  2, since IIPE(i): co.t = R i -  1, xo.t = 0 ; t = toll 
for all e < i < m, by " L  7, 8" we have 

[IPE(m); eou, = R,,, - 1; t = toll 
=~ II PE(m); ct. = R,. - 1; xi. = 1, Co,,t = R,,,, Xo.t = 1; t = to + 1 II 
=~ [[PE(m - 1); cl, = Rm-1 - 1, x~. = 1, co,, = R m - l ,  Xo,, = 1; t = to + 211 

]lPE(m - 2); ci, = R,,_ 2 - 1, xi,  = 1, Co., = R, ,_ 2, xo,r = 1 ; t = to + 311 

[ tPE(~);  ci .  = R . -  I, x i ,  = 1, Co., = R . ,  xo.,  = 1 ; t = to + ( m -  ~)  + llj. 
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Fig. 2. T h e  i l lu s t r a t ion  o f  p r o p a g a t i n g  w o r k .  

During I = [t o + 1,to + ( m -  ct)+ 1] "L 7,10-14" implies that PE(Q) has 
Cou, = RQ in the time interval [to + (m - Q) + 1, to + (m - ~) + 1] for ~ < Q < m. 
In fact, if again we refer to Figure 2, where the four vertices A, B, C and D 
have coordinates (~, t o + 1), (m, t o + 1), (m, t o + (m - ~) + 1), (~, to + (m - ~) + 1) 

respectively, and E is the intersection of line-segments AC and BD, then for 
any fixed PE(i), c~ < i < m, the number of elements in its Q is increased by 1 
within or on the triangle ABC, and decreased by 1 within the triangle BCD 

or on the segments BC, DC excluding B. That is, the number of elements in the 
Q of a fixed PE(i) is increased by 1 within and on ABE, the same within AED, 

BCE or on the segments ED, EC excluding E, and decreased by 1 within CDE 

or on CD. We also notice that : (1) If the leader is not the leftmost leader, then 
its propagating value being inserted into the Q of a related PE(i) is the limit 
value Ri. (2) For a fixed i such that ~ < i < m, the propagating values of the 
leader PE(i) are propagated to PE(i+k) ,  0 < k < m - i  at the time-step 
t = to + k +  1 respectively, and these m - i +  1 propagating values of PE(i) are 
used (retrieved from queues) simultaneously at time-step to + ( m - i ) + 2 .  (3) The 
combinations coming out within the time interval [to + 1, to + ( m - c  t )+ 1] are in 
lexicographic order. Therefore, we have the following lemma. 

LEMMA 4: Under the assumption o f  Lemma 2, let 

{al, a2 . . . . .  a~_2,fl, R ~ -- 1 . . . . .  R m -- 1} 

be the combination coming out at to. Then we have the following five results. 
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(a) For any integer j such that 1 <_j < m -- ct + 1 we have IIPE(Q); cout = Ro; 

t = to + jll for  all m - j +  l < Q < m. 
(b) Within the propagating time intem~al I = [t o + 1, to + ( m -  ct) + 1] of  the 

teftmost leader PE(ct) all the combinations come out in lexicographic order. 

(c) For all ~ <-i <- m, PE(i)  has exact ly  one element f l + ( i - ~ ) + 2  in its Q 

at t = t o + ( m - c 0 +  1. 
(d) The  maximum value o f  Q is L ( m -  ~)/2_] + 1 and it appears at PE(k)  for  

k = ct + L(m - ct)/2]. 

(e) The  combination A -- ( a l , a  2 . . . .  a~_2, fl q- 1,fl q- 2 . . . . .  fl --k (m - ct) q- 2} 
comes out at time-step to + (m - ct) + 2, and at this time-step all queues are 

empty and all C = O. 

EXAMPLE 3 : We illustrate the usage of  the queue Q in each PE. Suppose that  

at time step to, we have a combina t ion  {*,6, 10, l l ,  12, 13, 14} and all PE(7 ), 
3 < 7 < 7, have Co,t = R ~ - I ,  C = 1, xo,~ = 0 and the m queues are empty. In 
other words, the assumption of Lemma 2 is satisfied with n = 15, m = 7, ~ = 3, 
and fl = 6. Table 3 shows such a situation, where * indicates a symbol that  we 
are not  interested in. The contents of the queue are put  into the first column of  

each PE. The flag C and the PE's  co~ are located in the second column. The 
five paths in Table 3 denote the propagat ing work of the leaders PE(i) for 
3 < i < 7. No te  that  the combinat ions  coming out  during time-steps [to, to + 6] 

are in lexicographic order. The maximal  size of Q is 3, appearing in PE(5) at 

Table 3. The behavior of  propagating work with n = 15, m = 7, ~ = 3, fl = 6. 

Time 
1 
t o * 

t o + l  * 

tO÷2 * 

to+3 * 

to+4 * 

to+5 * 

to+6 * 

to+7 * 

to÷8 * 

1'I';(2) I'E(3) I 'E(4~ PE(5)  1'1';(6) I'E(7) 

0 ~ 1 ,~ ' A 1 A 
d~ 6 ,t" 10 "e 11 '¢ 12 v 

- ' 2  13 1-4 o o o " -  !2 o " ~ ! ~  o \ ~  . .  

6 10 1t l 0  , 3  

0 8 ° a u 1 0 u  - ~ . .  
* 6 l 0  ~ 12 13 l i  

¢ o ~ o ~ 0 2 to o ,, 

_ 14 

3 15 0 15 

I04~ 15 0 ,5 

~ 1 5  0 
15 

15 

104~ ,2 0 15 
, 0  , o  , 0  ¢o ° , o  , o  

12 

¢o , o  ¢o ¢o° ¢ o  ¢o  
13 

1 , o  , 0  ¢o *°o ¢°1 ¢14 
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t = to + 3. Also notice that  at time-step to + (n - 1) - fl = to + 8, the assumption 
of  L e m m a  2 is satisfied again with g = 7 and fl = 11. 

F r o m  the result (e) of Lemma 4, there are two cases to be considered 

according to the value of ft. 
(1) If  f l < R ~ _ l - 2 ,  then we have IIPE(7); c o , , = f l + Y - c t + 2 < R r - 1 ;  

t = to + (m - ~) + 211 for e - 1 _< ~, < m, so that  the assumption o f L e m m a  2 is not  
satisfied for any integer c~ such that  c~ < m at this time-step. This implies that  for 

all 1 < i  < m - 1  we have 

NPE(m);c~, < Rm, xin = 1, co,t = c in+ l  ; t  = t o + ( m - c Q + 3 t l  and 

tlPE(/); xln = O, cou, = c~; t = t o + (m - a) + 311. 

That  is, the Cout of PE(/) preserves its previous value, i.e. Cont = ci~, and the 
Cout of PE(m) increases ci~ by one. Cont inue this process up to the case that  we 

have IIPE(m) ; Co~, = R m -  1 = n -  1 ; t = to + (n - 1 ) -  fill. At this moment ,  the 
assumption of  Lemma 2 is again satisfied for the old values of  to, c~, fl being 

replaced by the new values t o + n - 1 - f l ,  m, and f l + ( m - ~ ) +  1 respectively. 
(2) If  fl = R ~ - x - 2 ,  then for c ~ - I  _< i < m we have llPE(i);eo~, = f l + i - ~ + 2  

= R~ - 1;t  = t o + (m - ct) + 211. Note  that for ot < y < mwe have I[PE(y); Cout = Rr; 

Xo~ = 1; t = to + (m - c0 + I I I .  Hence for 0t - 1 _< i < m we have HPE(i);Cout = 

R ~ -  1 ,x~ , - -1 ,  C = 1; t = to + ( m -  ~ ) +  211, implying that the assumption of 
L e m m a  2 is satisfied when the old values of  to, ~, fl are replaced by the new values 

t o + (m - 0t) + 2, 0t - 1, and a~_ 2 respectively. 
F rom the above discussion and the result (b) of Lemma 4, we have the 

following theorem. 

THEOREM l : Under the assumption o f  Lemma 2, we have 

(1): I f  fl < R ~ - 1 - 2 ,  then all queues are empty  and PE(m)  sets its C = 1 at 

t ime-step t = to + n - 1 - ft. 

( 2 ) : / f f l  = R~-I  - 2 ,  then all PEs  hat'e empty  queue and PE(i) ,  ~ - 1  <_ i < m, 

sets its C = 1 at t = t o + ( m - c Q + 2 .  

(3): A ll combinations coming out  between [to, to + n - t - fl] or [to, to + (m - ~) + 2] 
are in lexicographic order. 

Following the previous Lemmas  and Theorem 1, we verify that  C O M G E N ( n ,  m) 

generates ( n )  combinat ions  in lexicographic order. 

THEOREM 2 : Th e  algorithm CO M G E N  (n, m) generating combinations in lexico- 

graphic order is correct. 
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PROOF. Let N be an ordinal number  and AN the corresponding combina t ion  of  
the set ACOM(n, m). We shall prove that, for any N not  larger than the maximal  

ordinal number  of  ACOM(n, m), all combinat ions  generated up to AN are in 
lexicographic order. This can be done by mathematical  induct ion on N. 

(1): For  N = 1. 

( la) :  If m < n - l ,  by "L  1", the initial values of ci, are {1,2 . . . . .  m-2,  m-1,  
m -  1} and xi. = 0 in PE(i) for all 1 _< i < m -  1 and xin = 1 in PE(m). Therefore, 
"L  7" implies that the first generated combina t ion  is { 1, 2 . . . . .  m}. "L 8" implies that  
Xo,t = 0 for all PEs. At the next time-step, since PE(i), 1 < i _< m - 1, has xin = 0 
and PE(m) has x~, = 1, "L  7" implies that  co~t of PE(m) is incremented by one. 
If Co,t of PE(m) equals R m - 1 ,  then the assumption of  Lemma 2 is satisfied 

with ~ = m, fl = m -  1, to = 2 because of m = n - 2 .  Otherwise, since xin = 1 
in PE(m) for all time-steps, its co~t is incremented up to R m - 1  at t = n - m ,  
so that  the assumption of  Lemma 2 is also satisfied with a = m, fl = m - 1 and 
to = n -  m. This shows that  N = 1 is true for m < n -  1. 

( lb) :  If m = n - 1, by "L  2, T', the first combinat ion is also { 1, 2 . . . . .  m} and the 

assumption of  Lemma 2 is satisfied with a = 1, fl = 0, to = 1. Hence N = 1 is 
true for m = n - 1 .  

( lc) :  If m = n, "L  2, 7" implies that  the first combinat ion is also {1,2 . . . . .  m} 

and because PE(1) has arrived at its limit value R1 = 1, "L 8" implies that PE(1) 
sends xo,t = 1 to the host computer .  Hence COMGEN(n,m) stops its execution 

and the theorem is proved. 
(2): Suppose the theorem true for all N < k. Let A = {al ,a2 . . . . .  a,,} be the 

combina t ion  with the ordinal  number  k which satisfies the assumption of  
Lemma 2 and A comes out at time-step t o. Then all combinat ions  are generat- 

ed correctly in lexicographic order  at all time-steps t such that  t < t o. 
(3): For  N = k +  1, from the result (b) or  (a) of  Theorem 1 the assumption of  

Lemma 2 is again satisfied at either time-step t~=to+(m-oO+2 or 
tl = to + (n - 1 ) - f t .  In either case all combinat ions  generated during time interval 

[to, t l ]  are in lexicographic order by (c) of Theorem 1. Further,  at time-step tl ,  
the assumption of Lemma 2 is satisfied again. This shows the t ruth of  the 

theorem for N = k + 1. 
By mathematical  induction and L e m m a  4, the execution of  COMGEN(n, m) 

reaches a state where all PEs  have Co~t = R~ and PE(1) sends xo~t = 1. In  fact, 
the last combinat ion {RI,R2 . . . . .  Rm} = {n  - m + 1 , n  - m + 2 . . . . .  n}  comes out at 

t imes t ep (n )  'andx°~ '=l inPE(1)  i s r e c ° g n i z e d b y t h e h ° s t c ° m p u t e r a t t h e m  

next time-step, so the algori thm COMGEN(n, m) stops its execution at the right 

time-step. • 
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6. Discussion. 

In this section, we discuss two modifications of COMGEN(n,m) in order 
to satisfy different requirements. First if m is not a fixed number, from the 
results of Lemmas 2, 3, we know that within a propagating time interval 
[to + 1, to + ( m -  ~) + 1], for an integer i such that a < i < m the last element being 
inserted into the Q of PE(/) is the propagating value of the leftmost leader PE(a). 
These ( m -  a ) +  1 propagating values of PE(a) are used simultaneously at 
t = t o + (m - a) + 2. The other propagating values inserted into the Q of PE(i) 
are always the limit value R i. This observation implies that we can only store the 
propagating values of the leftmost header PE(~) and disregard the propagating 
values of the leader PE(k) for a +  1 < k < m, but we need a counter to indicate 
the number of elements reserved for the Q of PE(i). Therefore, the queue Q in each 
individual PE can be replaced by two registers, one a temporary storage T, the 
other a counter K. Two operations of queue (ADDQ(q) and Cout := FRONT(Q)) 
will be replaced by some assignment statements under the initial values of T, 
K being zero. There are three lines of COMGEN (n, m) to be replaced (denoted by ~), 
namely: 

(1) ~'L7" -~ ifcin < R - I  then cout := ci,,+xi,, else 
begin if K = 1 then cout :=  T else cou~ :=  R ; K :=  K -  1 end. 

(2) "L t0" ~ T := d , , + 2 ; K  := K + I .  
(3) "L 13" -~ T := e~;K := K + I .  

The second modification is that we can use the value of ci, to stop the 
execution of COMGEN(n,m). When the last combination of ACOM(n,m), i.e. 

/ k 

{ R I - 1  . . . . .  R m -  1 } , c o m e s o u t a t t = ( n ) - m +  1. PE(1) i s the le f tmos t leader  
\ - - /  

of propagating work at this time-step. (PE(1) has one and only one time to 
become a leader of propagating work.) Its propagating values {2, 3, 4 . . . . .  m +  1 } 

/ X 

are not usedbecause PE(1)has  co,,t=R1 at t = ( n )  and then COMGEN(n,m) 
\ /  

stops its execution. Therefore, instead of the set {2, 3 . . . . .  m + 1} PE(1) sends a set 
of signals, say { - 1, - 1 . . . . .  - 1}, to all m PEs, and then the condition ci~ = - 1 
will stop the execution of COMGEN(n, m). For this purpose, there are some lines 
of COMGEN(n,m) to be replaced, namely: 

(1) "L6  ' '~- whileci~ > 0 do /* parallel for all PEs. */ 
(2) "L 10, 11" ~ if di~ > 0 then begin ADDQ(d~,, + 2); eo~t: = d~n + 3 end 
(3) "L 13, 14" ~ if ei,, > 0 then begin ADDQ(ei,,); eo,,t := el,,+ 1 end 

else begin ADDQ(- 1); eout :=  - 1 end. 

This modified algorithm will work as the COMGEN(n,m) except that it 

produces the set { -  1, - 1 . . . .  , - 1} at t = ( n )  + 1, and then its execution stops 
at the next time-step. 
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7. Conclusion. 

CHAY-JY LIN AND JONG-CHUANG TSAY 

In this paper we present a parallel algorithm to generate all combinations of m 
items out of n given items, in lexicographic order. The computational model is 
a linear systolic array consisting of m PEs. The algorithm is to be contrasted 
to [2, 4, 5], where they are not systolic algorithms or they do not generate the 
combinations in lexicographic order. Since the systolic array consists of identical 
PEs, if m is not too large or the queue is replaced by two registers, then it is 
suitable for VLSI implementation. Under some modifications of COMGEN(n, m) 
a new parallel algorithm can be designed to generate all combinations of at 
most m items out of n given items in lexicographic order, as the sequential 
algorithm shown in [8]. Finally, there exist many other important combinatorial 
enumeration problems for which efficient parallel algorithms are 
yet to be developed. A representative one is to generate the permutations of m 
out of n items. If the m ! permutations can be generated in a linear systolic array, 
then this can be used in our combinations generating algorithm to produce all 
the permutations of m out of n given items. 
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