
BIT 29 (1989), 23-36

A SYSTOLIC GENERATION OF COMBINATIONS

CHAU-JY LIN and JONG-CHUANG TSAY

Department of Applied Mathematics and Institute of Computer Engineering,
National Chiao Tung University, Hsinchu, Taiwan, Republic of China

Abstract.

A parallel algorithm for generating all combinations of m (m fixed) items out of any n given items
in lexicographic order is presented. The computational model is a linear systolic array consisting of

(m m identical processing elements. This algorithm requires time-steps for the combinations,
m

that is, one output at each time-step. Since all processing elements perform the same program, it is
suitable for VLSI implementation. Based on mathematical induction, such an algorithm is proved
to be correct.

CR categories: C.1, F.2.

Keywords and phrases : parallel algorithm, systolic array, combinations, algorithm verification.

I. Introduction.

Under the demand of faster and more powerful computers, there have been
many attempts to develop electronic devices and processors operating at high
speed. However, it is difficult to increase the speed of circuit components, because
the laws of physics impose limits on the computational speed, so use of a parallel
computer is a way to achieve higher computing speeds. The growing importance
of parallel computers and parallel algorithms is highlighted in [3, 6, 7, 9, 10].
Systolic arrays represents one of the parallel computation models, and many
examples of systolic array processors have been presented, e.g. in the fields of
image processing, matrix arithmetic, digital signal processing etc. [6, 11, 12].
HOwever, only a few systolic arrays are designed for combinatorial enumeration
problems.

Generating combinations is an important combinatorial enumeration problem.
It has received much attention, and various applications have been found. For
example, by generating the combinations of at most m out of n items, Sahni 1-13]
has presented an approximate algorithm for the 0/1-knapsack problem which
guarantees a relative error bound. Chen et al. [14] have shown that a number
of geometry problems can be solved by generating the combinations of two

Received December 1987. Revised May and August 1988.

24 CHAU-JY LIN AND JONG-CHUANG TSAY

out of n items. Several parallel algorithms [2,4,5] have been designed to

generate the (:) c o m b i n a t i o n s . However, these algorithms do not generate the

combinations in lexicographic order, or they are not systolic algorithms. In this
paper We present a parallel algorithm to .generate all combinations of m (m fixed)
out of any n given items in lexicographic order. The used computational model
is a linear systolic array consisting of m identical processing elements (PEs).
Each PE performs the same program, and hence it is suitable for VLSI imple-
mentation. The problem when m is not fixed is discussed in Section 6.

The remainder of this paper is organized as follows. In Section 2 an overview
of sequential and parallel algorithms for generating combinations is given. In
Section 3 we desdribe the computation model of the linear systolic array. The
parallel algorithm and the verification of the systolic array are presented in
Sections 4 and 5, respectively. Two modifications of our algorithm are considered
in Section 6. Some concluding remarks are offered in Section 7.

2. Some existing algorithms for generating combinations.

It is well known that the combinations in lexicographic order can be generated
sequentially in a straightforward way, see [1]. In [8], Semba presented a
sequential algorithm to generate all combinations of at most m out of n items
in lexicographic order. In [2], Chan and Akl presented a parallel algorithm
to generate the combinations in a single instruction multiple data (SIMD)
machine which allows data read simultaneously frbm a shared memory. It can be
seen that the assignment statements of their algorithm depend on the indexed
position of the executing PEs. In [4], Chen and Chern presented a parallel
algorithm to generate the permutations of at most m out of n items, but not in
lexicographic order. Their architecture for the algorithm consists of a linear array
with k PEs, say PE(i) for 1 < i _< k, and a selector which receives a value z
from PE(k), then sends a value y to PE(1) where y = z - k if z > k; otherwise
y = n + z - k. Each PE has a stack of size m to store the necessary data during
the execution of their algorithm. This algorithm can easily be modified to
generate combinations.

Contrasting with [1, 8], our algorithm is parallel. All these algorithms generate
the combinations in lexicographic order. Contrasting with [2, 4], our algorithm
is a systolic algorithm which can be run on a linear array consisting of m PEs.
In addition, these m PEs are not necessary to recognize their indexed positions
during the execution of our Mgorithm.

3. The computational model.

Without loss of generality, let 1, 2, 3 n denote the n given items under con-
sideration. Based on the algorithm in [1], a computational model is designed

A SYSTOLIC GENERATION OF COMBINATIONS 25

o l o2 03 °m

~ ~1 ~,~1 1 C I C C

d- , _ I I U ~ r l - '

Cou t -~c i n
T t

XOU t 4- ~ ~ Xi n

t in -~ t q ~ I -* eou t
d in -4 ~ dour

Fig. 1. The computational model and specification of PE(i).

consisting of m identical PEs to produce the (:) c o m b i n a t i o n s . Figure 1

indicates the layout of our computational model, where any individual PE is
referred to as PE(i) for 1 < i < m; c, e, d, x are four communication links; R is a
register; C is a flag; Q is a queue and oi is the output terminal. Each
individual PE(i) is responsible for generating the ith component of any
conbination. Each communication link has one delay (denoted by D).

For convenience, we consider the notations ci,, Co,t, xi, etc. of Figure 1 as the
names of variables within our algorithm. Each PE can perform the following tasks :

(1) receive input data from its input links,
(2) execute once the procedure that is defined by an algorithm,
(3) send output data to its output links.

We call the maximal time units to perform the above three tasks a time-step
in our algorithm. Moreover, since each communication link has a delay, it means
that if PE(i) sends its Co,, eo,, do,, xo,,, to c, e, d, x links respectively at time-step
t = to, then such a Co.~ is the ci, of PE(i), such eo,, do., are the ei,, di, of PE(i + 1)
respectively, and such an Xo.t is the xi, of PE(i - 1) at the time-step t = to + 1.
(We consider PE(0) and PE(m + t) being in the memory of the host computer.)

From the definition of lexicographic order, if A = {al, a2 am} is any com-
bination of m out of n, then we know that a ~ _ < n - m + i for all l_< i_<m.
Then n - m + i is called the limit value of the ith component of any combination,
and we denote it by Ri. We refer again to our computational model, and the
usage of these four communication links, register R, flag C, and queue Q in each
individual PE(i) for 1 _< i _< m is described as follows.

(1) The c-link transmits Co.t, i.e. the ith component of any combination, to
output terminal oi, and such a Co~, is the cg, of PE(i) at the next time-step in
order to produce the ith component of next combination.

26 CHAY-JY LIN AND JONG-CHUANG TSAY

(2) The x-link transmits a message to P E (i - 1) such that the message indicates
whether the Cout of PE(i) is its limit value, i.e. if Co,, = n - r e + i , then xou, = 1;
otherwise xou, = O.

(3) The d-link transmits the same data as co,t, i.e. do, t = Co,, for all time-steps.
(4) The e-link transmits elements to the Q of PE(i+ 1). If PE(i) has e~. :p 0,

then PE(i) sends eo,, = e~.+ 1. Or if the flag C = 1 in PE(i) is true, then PE(i)
sends Co,, = d i , + 3 to PE(i+ 1).

(5) The register R contains the limit value Ri = n - m + i .

(6) The flag C indicates that if the condition "co,t = R i - 1 and xi, = 1" is true,
then PE(i) sets C = 1; otherwise C = 0.

(7) Q stores the data fetching from e~. if e~, ~ 0; if C = 1 then Q stores the
element d~, + 2.

4. Parallel algorithm for generating combinations.

From the description of Section 3 we derive the parallel algorithm
C O M G E N (n , m) as shown in Algorithm 1, where F R O N T (Q) means that it
returns the front element of Q and removes it from Q; ADDQ(q) means that
it adds the element q to the rear of Q. During the execution of C O M G E N (n, m).

there is a combination coming out at each time-step, hence only (n, m) time-steps

, are required tot generate all the (n) combinations.

Since a systolic array processor is always attached to a host computer by an
interface system, the signal to stop the execution of C O M G E N (n, m) can be sent
by the host computer when the message Xo,, = 1 of PE(1) is recognized. An
other way to stop the execution of PEs is to detect whether the value of ei,
possesses a special symbol, e.g. as if ei, = - 1 then the algorithm stops its
execution. This consideration will be discussed in Section 6.

ALGORITHM t. C O M G E N (n , m):

[initialize.]

L I :

I f m < n - l , let ci, = i, xi , = 0 in PE(i) Jbr 1 <- i <- m - l , and ci, = m - l ,

xi , = 1 in PE(m).

L2." I f m = n - 1 or m = n, let cin = i - l , xi , = 1 in PE(i) Jbr t < i '<- m.

L3: Set R = n - r e + i , C = O, and let Q be empty in PE(i) jbr 1 <_ i < m.

L4: Set

L5: Set

[executive

beffm
L6:

L7:

L8:

L9:

din = O, ei, = 0 in PE(i) for 2 < i < m.

di, = 0, ein = 0 in PE(1) and xin = 1 in PE(m) at all time-steps.

body.]

r epea t /* do parallel Jor all PEs */

if ci. -< R - 1 then Co.t "= cin+xin else Cout := F R O N T (Q) ;

i f Co~, = R then xo.~ := 1 else Xo~, := O;

dour : = Cou t;

A SYSTOLIC GENERATION OF COMBINATIONS 27

if C = 1 t h e n / * beyinnin9 of propayatin9 work. */
betfm

LIO: ADDQ(d~.+2);
L l l : eo.t:=di,+3;
L12: C : = 0

end
else/* C = O, check whether PE(i) is within a propagatin9 work. */
beta

if ei, 4; 0 t h e n / * within a propagatin 9 work. */
be n

L13: ADDQ(ei.);
L14: e o . , : = e i , + l

end
L15: else eo,t : = 0 ; / * not in propagatin 9 work. */

end
L16: if xi, = 1 and eo.t = R - 1 then C: = 1 / * prepare for propagatin9 work. */

until host computer sends stop signal
end .

Note that in Algori thm 1, after receiving input data xi., c~,, the m PEs
generate simultaneously the m components of a combinat ion, then it detects

whether Cout reaches its limit value to determine the value of Xo,t, and so on,
In what follows, the symbol "L i" indicates that we are referring to the line
number i of COMGEN(n,m). First we observe the following four facts in

COMGEN(n, m).

(1) If m < n - 1 , "L 1, 5, 7" implies that the first combina t ion coming out is
{1, 2 m}. If m = n - 1 or m = n, "L 2, 5, 7" implies that the first combinat ion
is also { 1, 2 m}, That is, at time-step t = 1, the first combinat ion comes out

in lexicographic order.

(2) Suppose that the combinat ion A = {as, a2 am} comes out at a time-step
to, and there exists an integer e such that PE(~) has C = 1 (this C = 1 is set
via "L 16" at t = to -- 1), then at the following (m - e) + 1 time-steps (from to + 1

to to + (m - ct) + 1) PE(e) propagates the (m - e) + 1 values (say S, = {as- 1 + 2,

a~_~+3 a ~ _ l + (m - ~) + 2 }) to the (m - ~) + l Q's of PE(i) for c~<_i<m
respectively. This propagat ion works as follows.

(2a) At t = to + 1 : "L 10-12" implies that PE(cQ receives di, = a ,_ 1, assigns
di, + 2 = a ,_ 1 + 2 to its Q, sends dl, + 3 = a~_ 1 + 3 to eout, resets C = 0.

(2b) At t = t o + 2 : "L 13,14" implies that PE(c~+I) r ece ive s and assigns

ei, = a ,_ 1 + 3 to its Q, sends a~_ ~ + 4 to eou t.
(2c) In general at t = t o + j : "L 13, 14" implies that P E (c ~ + j - 1) receives and

assigns el, = a~-i + j + 1 to its Q, sends a~_~ + j + 2 to eout.

28 CHAU-JY LIN AND JONG-CHUANG TSAY

(2d) This goes on up to PE(m) which receives and assigns ei, = a,_r, + (m - a) + 2
into its Q. and sends a ,_ l + (m - a) + 3 to eo,t at t = t o + (m - a) + l .

We define PE(ct) to the leader of a propagatin9 work within the propagating

time interval I = [t o + l , t o + (m - e) + l] , and the (m - c 0 + l values in S~ are
called the propagin 9 values of PE(c~) within I.

(3) From "L 7" if ci, = Ri in PE(i) the front element of Q in PE(i) is
retrieved and assigned to the Co,,t of PE(i).

(4) "L 6" implies that C O M G E N (n , m) repeats its execution until xo,, = 1 in
PE(1) is recognized by the host computer, and then the host computer sends a
signal to stop the execution of C O M G E N (n , m) .

EXAMPLE 1: Table 1 is an example with n = 5, m = 3 for illustrating the results
of execution of C O M G E N (n , m) . The values of the variables have the corre-

sponding locations as shown in Figure 1, where the arrows are omitted and the
symbol ¢ denotes an empty set. Note that the maximal size of Q is 2 which
appears in PE(2) at time-step 9.

0

Table 1. An

I'E(1) i,~:(2) I i'E(3)

10 2 0 21

oO[
0 1 1 1 0 2 2 0 0 3 2 1

0 (0 3 o1@o
0 1 1 0 0 2 2 0 0 4 3 t

o 0 0 00 o
0 1 1 0 0 2 2 0 1 5 4 1
0 O0 0

1 1 4 5 0 0 0 3 2 1 0 ~ - ~ - , 1
0 0 0[101 -i1. 0 01, , loi

l t-- .~32~ "~4i

0 1 1 0 0 3 3 0 1 5 4 1
0 0 0[6

'I 3 3 5

illustrative example with n = 5, m = 3.

0 1 1 0
0 0

6 0 ~] 1

7

8

9

i10

1 4 3 1 1 5 5 1 '

0 2 1 1 0 3 4 1 0 4 V - ~ 5 li
0 O0 0 4 4°1* loi
0 2 2 0 0 3 3 0 1 5 4 1
0 3 0 5 0 6

) 2 2 0 1 4 3 1 1 5 5 1
3 4) 0 5 6

1 3 2 1 1 4 4 1 5 5 1

145

234

235

245

345

From the assumption of the previous fact (2) we have a modified assumption
as follows. "There exist two integers ~, fl and a time-step to such that the

combination {al, a2 a~-2, fl, R ~ - 1, R~+I - 1 R m - 1} comes out at t = to,

since fl is the co, t ofPE(ct - 1) and fl < R,_ 1 - 2". This assumption will be satisfied
many times during the execution C O M G E N (n , m) . (When ~ = 1, let fl = 0,

A SYSTOLIC GENERATION OF COMBINATIONS 29

R o = 2.) Recall that Ri is the limit value of PE(i). Let ACOM(n, m) be the set
of the combina t ions satisfying this modified assumption. The elements in
ACOM(n,m) are indexed by their emerging order dur ing the execution of
COMGEN(n, ra).

EXAMPLE 2: We refer to Example 1 again. There are three combina t ions in its
set A C O M (5 , 3) , namely {1,2,4}, {1,3,4}, {2,3,4} appear ing at t = 2 , 4 , 7 ,
respectively. The cor responding values of their indexes, t ime-steps, combinat ions ,
a, fl, and R, are listed in Table 2.

Table 2. The related values of ACOM(5, 3).

N to combination a fl Ra- 1

1 2 {1,2 ,4} 3 2 4

2 4 {1 ,3 ,4} 2 1 3

3 7 {2,3,4} 1 0 2

5. The correctness proof.

At the beginning of the execution of COMGEN(n,m), all PEs have empty
queues and C = 0 by "L 3". If m < n - 1, Algor i thm 1 increases the ruth com-
ponent by one at each t ime-step in order to generate a new combinat ion . After
n - rn t ime-steps, the combina t ion A :-- {1,2 m - 1,n - 1} comes out. "L 16"
implies that PE(m) sets its C = 1 because PE(m) has xin = 1 and Cou, = Rm - 1
= n - 1 . It means tha t the assumpt ion in Section 4 is satisfied for ~ = m,
fl = m - 1 a t t ime-step to = n - r e . We will discuss the behaviors of p ropaga t ing
work of PE(i), a < i < m when this a s sumpt ion is satisfied.

First we show that the a lgor i thm COMGEN(n,m) generatesthe(nm)cOm -

binat ions in lexicographic order. We give a sketch of proof. F r o m Example 2
in Section 4, we know that there repeatedly exist two integers ~, fl and a
t ime-step to such that a combina t ion of the form {a,,a2 a~-2, R~-I ,
R~+ 1 -- 1 Rm -- 1} comes out a t t = t o, where fl is the co, t of PE(c¢ - 1) such that
fl < R~_ 1 -- 2, all m queues are empty , and the C's o f PE(7). a _< 7 < m, are
set to 1 at t = to. Then after giving several Lemmas. Theorem 1 shows that if
X, Y are any two consecutive combina t ions belonging to ACOM(n,m), then all
the combina t ions between X and Y are generated by COMGEN(n,m) in
lexicographicai order. Using this result and mathemat ica l induct ion we show in

Theorem2thatCOMGEN(n,m) iscorrectforgeneratingall(n)combinations

in lexicographic order.

30 CHAU-JY LIN AND JONG-CHUANG TSAY

LEMMA 1: Suppose that there exists an integer ~ and a time-step to such that

at t = to all m queues are empty and the C's o f PE(i) Jot e <_ i <- m are set to 1.

Then Jor e <_ i <_ m we have

(a) PE(i) has Co.t = R i - 1 , and Xo.t = 0 at t = to.

(b) PE(i) begins its propagating work at time-step to + t.

PROOF. (a) By " L 16, 8". (b) By " L 10-12".

LEMMA 2: Under the assumption o f Lemma 1, suppose P E (e - 1) has Co,t = fl

so that fl <_ R ~ - l - 2 (if ct = 1 let fl = 0, Ro = 2). Then fo r integer j such that

1 _< j _< m - c t + 1, PE(ct) propagates f l + j + 1 into the Q o f P E (~ + j - 1) at time-

step to + j , and PE(~) resets C = 0 at t = t o + 1.

PROOF. By (b) of L e m m a 1 PE(e) begins its p ropaga t ing work at to + 1. This
l emma is proved by the descriptions (2a)-(2d) in Section 4. •

LEMMA 3: Under the assumption o f Lemma 1, Jor integer k, j such that

1 <_ k <_ m - ~ and 1 <_ j <_ m - ~ - k + 1, PE(~ + k) propagates R~ + k + j - 1 into the Q

of PE(e + k + j - 1) at time-step to + j , and PE(~ + k) resets C = 0 at to + 1.

PROOF. By L e m m a 1 and the fact (2) of Section 4. •

F r o m L e m m a s 2, 3, there exist (m - s) + 1 PEs (PE(i) for e < i < m) such that
they begin concurrent ly their p ropaga t ing work a t to + 1. We call such PE(e)
the leftmost leader a m o n g these (m - e) + l leaders PE(i), and notice tha t the
p ropaga t ing time interval with leader P E (i + 1) is a subset of the p ropaga t ing
t ime interval with leader PE(i). The behavior of Lemmas 2, 3 is illustrated by the
pa ths with a r rows in Figure 2, where the nodes are located in a xy-plane
coordinate system with x the variable of PE 's index, and y the time-step. Any
pa th in Figure 2 means a p ropaga t ing work of the leader P E (e + k) for
O < k < _ m - e . Note that during the t ime interval [t 0 + l , t o + (m - e) + l] ,
e < i < m, the last value to be inserted into the Q of PE(i) is the p ropaga t ing
value with the leftmost leader PE(cQ.

For simplicity, we write ItPE(i); cl, = 2, Xo., = 1 ; t = toll to denote the
s ta tement that PE(i) has ci, = 2, Xo., = 1 and so on at t ime-step t = to. The
symbol "S1 =~ $2" means that s ta tement S1 implies s ta tement $2.

Under the assumpt ion of L e m m a 2, since IIPE(i): co.t = R i - 1, xo.t = 0 ; t = toll
for all e < i < m, by " L 7, 8" we have

[IPE(m); eou, = R,,, - 1; t = toll
=~ II PE(m); ct. = R,. - 1; xi. = 1, Co,,t = R,,,, Xo.t = 1; t = to + 1 II
=~ [[PE(m - 1); cl, = Rm-1 - 1, x~. = 1, co,, = R m - l , Xo,, = 1; t = to + 211

]lPE(m - 2); ci, = R,,_ 2 - 1, xi, = 1, Co., = R, ,_ 2, xo,r = 1 ; t = to + 311

[tPE(~); ci . = R . - I, x i , = 1, Co., = R . , xo., = 1 ; t = to + (m - ~) + llj.

A S Y S T O L I C G E N E R A T I O N OF C O M B I N A T I O N S 31

t o

L0+I

tO+2

tO+(m-a)+l

a a+ l a*2 . m- I

0 0 0 0 0 0 0 0

A I|

o o

D o o o , o ,, o o , o C

III

O

TIME

Fig. 2. T h e i l lu s t r a t ion o f p r o p a g a t i n g w o r k .

During I = [t o + 1,to + (m - ct)+ 1] "L 7,10-14" implies that PE(Q) has
Cou, = RQ in the time interval [to + (m - Q) + 1, to + (m - ~) + 1] for ~ < Q < m.
In fact, if again we refer to Figure 2, where the four vertices A, B, C and D
have coordinates (~, t o + 1), (m, t o + 1), (m, t o + (m - ~) + 1), (~, to + (m - ~) + 1)

respectively, and E is the intersection of line-segments AC and BD, then for
any fixed PE(i), c~ < i < m, the number of elements in its Q is increased by 1
within or on the triangle ABC, and decreased by 1 within the triangle BCD

or on the segments BC, DC excluding B. That is, the number of elements in the
Q of a fixed PE(i) is increased by 1 within and on ABE, the same within AED,

BCE or on the segments ED, EC excluding E, and decreased by 1 within CDE

or on CD. We also notice that : (1) If the leader is not the leftmost leader, then
its propagating value being inserted into the Q of a related PE(i) is the limit
value Ri. (2) For a fixed i such that ~ < i < m, the propagating values of the
leader PE(i) are propagated to PE(i+k) , 0 < k < m - i at the time-step
t = to + k + 1 respectively, and these m - i + 1 propagating values of PE(i) are
used (retrieved from queues) simultaneously at time-step to + (m - i) + 2 . (3) The
combinations coming out within the time interval [to + 1, to + (m - c t)+ 1] are in
lexicographic order. Therefore, we have the following lemma.

LEMMA 4: Under the assumption o f Lemma 2, let

{al, a2 a~_2,fl, R ~ -- 1 R m -- 1}

be the combination coming out at to. Then we have the following five results.

32 CHAY-JY LIN AND JONG-CHUANG TSAY

(a) For any integer j such that 1 <_j < m -- ct + 1 we have IIPE(Q); cout = Ro;

t = to + jll for all m - j + l < Q < m.
(b) Within the propagating time intem~al I = [t o + 1, to + (m - ct) + 1] of the

teftmost leader PE(ct) all the combinations come out in lexicographic order.

(c) For all ~ <-i <- m, PE(i) has exact ly one element f l + (i - ~) + 2 in its Q

at t = t o + (m - c 0 + 1.
(d) The maximum value o f Q is L (m - ~)/2_] + 1 and it appears at PE(k) for

k = ct + L(m - ct)/2].

(e) The combination A -- (a l , a 2 a~_2, fl q- 1,fl q- 2 fl --k (m - ct) q- 2}
comes out at time-step to + (m - ct) + 2, and at this time-step all queues are

empty and all C = O.

EXAMPLE 3 : We illustrate the usage of the queue Q in each PE. Suppose that

at time step to, we have a combina t ion {*,6, 10, l l , 12, 13, 14} and all PE(7),
3 < 7 < 7, have Co,t = R ~ - I , C = 1, xo,~ = 0 and the m queues are empty. In
other words, the assumption of Lemma 2 is satisfied with n = 15, m = 7, ~ = 3,
and fl = 6. Table 3 shows such a situation, where * indicates a symbol that we
are not interested in. The contents of the queue are put into the first column of

each PE. The flag C and the PE's co~ are located in the second column. The
five paths in Table 3 denote the propagat ing work of the leaders PE(i) for
3 < i < 7. No te that the combinat ions coming out during time-steps [to, to + 6]

are in lexicographic order. The maximal size of Q is 3, appearing in PE(5) at

Table 3. The behavior of propagating work with n = 15, m = 7, ~ = 3, fl = 6.

Time
1
t o *

t o + l *

tO÷2 *

to+3 *

to+4 *

to+5 *

to+6 *

to+7 *

to÷8 *

1'I';(2) I'E(3) I 'E(4~ PE(5) 1'1';(6) I'E(7)

0 ~ 1 ,~ ' A 1 A
d~ 6 ,t" 10 "e 11 '¢ 12 v

- ' 2 13 1-4 o o o " - !2 o " ~ ! ~ o \ ~ . .

6 10 1t l 0 , 3

0 8 ° a u 1 0 u - ~ . .
* 6 l 0 ~ 12 13 l i

¢ o ~ o ~ 0 2 to o ,,

_ 14

3 15 0 15

I04~ 15 0 ,5

~ 1 5 0
15

15

104~ ,2 0 15
, 0 , o , 0 ¢o ° , o , o

12

¢o , o ¢o ¢o° ¢ o ¢o
13

1 , o , 0 ¢o *°o ¢°1 ¢14

A SYSTOLIC GENERATION OF COMBINATIONS 33

t = to + 3. Also notice that at time-step to + (n - 1) - fl = to + 8, the assumption
of L e m m a 2 is satisfied again with g = 7 and fl = 11.

F r o m the result (e) of Lemma 4, there are two cases to be considered

according to the value of ft.
(1) If f l < R ~ _ l - 2 , then we have IIPE(7); c o , , = f l + Y - c t + 2 < R r - 1 ;

t = to + (m - ~) + 211 for e - 1 _< ~, < m, so that the assumption o f L e m m a 2 is not
satisfied for any integer c~ such that c~ < m at this time-step. This implies that for

all 1 < i < m - 1 we have

NPE(m);c~, < Rm, xin = 1, co,t = c in+ l ; t = t o + (m - c Q + 3 t l and

tlPE(/); xln = O, cou, = c~; t = t o + (m - a) + 311.

That is, the Cout of PE(/) preserves its previous value, i.e. Cont = ci~, and the
Cout of PE(m) increases ci~ by one. Cont inue this process up to the case that we

have IIPE(m) ; Co~, = R m - 1 = n - 1 ; t = to + (n - 1) - fill. At this moment , the
assumption of Lemma 2 is again satisfied for the old values of to, c~, fl being

replaced by the new values t o + n - 1 - f l , m, and f l + (m - ~) + 1 respectively.
(2) If fl = R ~ - x - 2 , then for c ~ - I _< i < m we have llPE(i);eo~, = f l + i - ~ + 2

= R~ - 1;t = t o + (m - ct) + 211. Note that for ot < y < mwe have I[PE(y); Cout = Rr;

Xo~ = 1; t = to + (m - c0 + I I I . Hence for 0t - 1 _< i < m we have HPE(i);Cout =

R ~ - 1 ,x~ , - -1 , C = 1; t = to + (m - ~) + 211, implying that the assumption of
L e m m a 2 is satisfied when the old values of to, ~, fl are replaced by the new values

t o + (m - 0t) + 2, 0t - 1, and a~_ 2 respectively.
F rom the above discussion and the result (b) of Lemma 4, we have the

following theorem.

THEOREM l : Under the assumption o f Lemma 2, we have

(1): I f fl < R ~ - 1 - 2 , then all queues are empty and PE(m) sets its C = 1 at

t ime-step t = to + n - 1 - ft.

(2) : / f f l = R~-I - 2 , then all PEs hat'e empty queue and PE(i) , ~ - 1 <_ i < m,

sets its C = 1 at t = t o + (m - c Q + 2 .

(3): A ll combinations coming out between [to, to + n - t - fl] or [to, to + (m - ~) + 2]
are in lexicographic order.

Following the previous Lemmas and Theorem 1, we verify that C O M G E N (n , m)

generates (n) combinat ions in lexicographic order.

THEOREM 2 : Th e algorithm CO M G E N (n, m) generating combinations in lexico-

graphic order is correct.

3 4 CHAY-JY LIN AND JONG-CHUANG TSAY

PROOF. Let N be an ordinal number and AN the corresponding combina t ion of
the set ACOM(n, m). We shall prove that, for any N not larger than the maximal

ordinal number of ACOM(n, m), all combinat ions generated up to AN are in
lexicographic order. This can be done by mathematical induct ion on N.

(1): For N = 1.

(la) : If m < n - l , by "L 1", the initial values of ci, are {1,2 m-2, m-1,
m - 1} and xi. = 0 in PE(i) for all 1 _< i < m - 1 and xin = 1 in PE(m). Therefore,
"L 7" implies that the first generated combina t ion is { 1, 2 m}. "L 8" implies that
Xo,t = 0 for all PEs. At the next time-step, since PE(i), 1 < i _< m - 1, has xin = 0
and PE(m) has x~, = 1, "L 7" implies that co~t of PE(m) is incremented by one.
If Co,t of PE(m) equals R m - 1 , then the assumption of Lemma 2 is satisfied

with ~ = m, fl = m - 1, to = 2 because of m = n - 2 . Otherwise, since xin = 1
in PE(m) for all time-steps, its co~t is incremented up to R m - 1 at t = n - m ,
so that the assumption of Lemma 2 is also satisfied with a = m, fl = m - 1 and
to = n - m. This shows that N = 1 is true for m < n - 1.

(lb) : If m = n - 1, by "L 2, T', the first combinat ion is also { 1, 2 m} and the

assumption of Lemma 2 is satisfied with a = 1, fl = 0, to = 1. Hence N = 1 is
true for m = n - 1 .

(lc) : If m = n, "L 2, 7" implies that the first combinat ion is also {1,2 m}

and because PE(1) has arrived at its limit value R1 = 1, "L 8" implies that PE(1)
sends xo,t = 1 to the host computer . Hence COMGEN(n,m) stops its execution

and the theorem is proved.
(2): Suppose the theorem true for all N < k. Let A = {al ,a2 a,,} be the

combina t ion with the ordinal number k which satisfies the assumption of
Lemma 2 and A comes out at time-step t o. Then all combinat ions are generat-

ed correctly in lexicographic order at all time-steps t such that t < t o.
(3): For N = k + 1, from the result (b) or (a) of Theorem 1 the assumption of

Lemma 2 is again satisfied at either time-step t~=to+(m-oO+2 or
tl = to + (n - 1) - f t . In either case all combinat ions generated during time interval

[to, t l] are in lexicographic order by (c) of Theorem 1. Further, at time-step tl ,
the assumption of Lemma 2 is satisfied again. This shows the t ruth of the

theorem for N = k + 1.
By mathematical induction and L e m m a 4, the execution of COMGEN(n, m)

reaches a state where all PEs have Co~t = R~ and PE(1) sends xo~t = 1. In fact,
the last combinat ion {RI,R2 Rm} = {n - m + 1 , n - m + 2 n} comes out at

t imes t ep (n) 'andx°~ '=l inPE(1) i s r e c ° g n i z e d b y t h e h ° s t c ° m p u t e r a t t h e m

next time-step, so the algori thm COMGEN(n, m) stops its execution at the right

time-step. •

A SYSTOLIC GENERATION OF COMBINATIONS 35

6. Discussion.

In this section, we discuss two modifications of COMGEN(n,m) in order
to satisfy different requirements. First if m is not a fixed number, from the
results of Lemmas 2, 3, we know that within a propagating time interval
[to + 1, to + (m - ~) + 1], for an integer i such that a < i < m the last element being
inserted into the Q of PE(/) is the propagating value of the leftmost leader PE(a).
These (m - a) + 1 propagating values of PE(a) are used simultaneously at
t = t o + (m - a) + 2. The other propagating values inserted into the Q of PE(i)
are always the limit value R i. This observation implies that we can only store the
propagating values of the leftmost header PE(~) and disregard the propagating
values of the leader PE(k) for a + 1 < k < m, but we need a counter to indicate
the number of elements reserved for the Q of PE(i). Therefore, the queue Q in each
individual PE can be replaced by two registers, one a temporary storage T, the
other a counter K. Two operations of queue (ADDQ(q) and Cout := FRONT(Q))
will be replaced by some assignment statements under the initial values of T,
K being zero. There are three lines of COMGEN (n, m) to be replaced (denoted by ~),
namely:

(1) ~'L7" -~ ifcin < R - I then cout := ci,,+xi,, else
begin if K = 1 then cout := T else cou~ := R ; K := K - 1 end.

(2) "L t0" ~ T := d , , + 2 ; K := K + I .
(3) "L 13" -~ T := e~;K := K + I .

The second modification is that we can use the value of ci, to stop the
execution of COMGEN(n,m). When the last combination of ACOM(n,m), i.e.

/ k

{ R I - 1 R m - 1 } , c o m e s o u t a t t = (n) - m + 1. PE(1) i s the le f tmos t leader
\ - - /

of propagating work at this time-step. (PE(1) has one and only one time to
become a leader of propagating work.) Its propagating values {2, 3, 4 m + 1 }

/ X

are not usedbecause PE(1)has co,,t=R1 at t = (n) and then COMGEN(n,m)
\ /

stops its execution. Therefore, instead of the set {2, 3 m + 1} PE(1) sends a set
of signals, say { - 1, - 1 - 1}, to all m PEs, and then the condition ci~ = - 1
will stop the execution of COMGEN(n, m). For this purpose, there are some lines
of COMGEN(n,m) to be replaced, namely:

(1) "L6 ' '~- whileci~ > 0 do /* parallel for all PEs. */
(2) "L 10, 11" ~ if di~ > 0 then begin ADDQ(d~,, + 2); eo~t: = d~n + 3 end
(3) "L 13, 14" ~ if ei,, > 0 then begin ADDQ(ei,,); eo,,t := el,,+ 1 end

else begin ADDQ(- 1); eout := - 1 end.

This modified algorithm will work as the COMGEN(n,m) except that it

produces the set { - 1, - 1 , - 1} at t = (n) + 1, and then its execution stops
at the next time-step.

36

7. Conclusion.

CHAY-JY LIN AND JONG-CHUANG TSAY

In this paper we present a parallel algorithm to generate all combinations of m
items out of n given items, in lexicographic order. The computational model is
a linear systolic array consisting of m PEs. The algorithm is to be contrasted
to [2, 4, 5], where they are not systolic algorithms or they do not generate the
combinations in lexicographic order. Since the systolic array consists of identical
PEs, if m is not too large or the queue is replaced by two registers, then it is
suitable for VLSI implementation. Under some modifications of COMGEN(n, m)
a new parallel algorithm can be designed to generate all combinations of at
most m items out of n given items in lexicographic order, as the sequential
algorithm shown in [8]. Finally, there exist many other important combinatorial
enumeration problems for which efficient parallel algorithms are
yet to be developed. A representative one is to generate the permutations of m
out of n items. If the m ! permutations can be generated in a linear systolic array,
then this can be used in our combinations generating algorithm to produce all
the permutations of m out of n given items.

Acknowledgement.

The authors wish to thank an anonymous referee for a number of instructive
comments.

R E F E R E N C E S

1. E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall INC. Englewood Cliffs, New Jersey, 1977.

2. B. Chan and S. G. Akl, Generatin 9 combinations in parallel, BIT 26 (1986), pp. 2--6.
3. S. G. Akl, Parallel Sortin 9 Algorithms, Academic Press, Orlando, Florida, 1985.
4. G. H. Chen and M. S. Chern, Parallel qenerating of permutations and combinatiom, BIT 26

(1986), pp. 277-283.
5. C. Y. Tag, M. W. Du, and R. C. T. Lee, Parallel generation of combinations, in Proc. Int'l.

Comput. Syrup., Taipei, Taiwan, 1984, pp. 1006-I010.
6. H. T. Kung, The structure of parallel algorithms , in Advances in Computers, M. C. Yovits,

Ed. Academic Press, New York, 1980, pp. 65-112.
7. H. S. Stone, Parallel computers, in Introduction to Computer Architectures, 1980.
8. I. Semba, An efficient algorithm for generating all k-subsets (1 <_ k <_ m <_ n) of the set [1, 2,...,n}

in lexieographic order, Journal of Algorithms 5, 1984, pp. 281-283.
9. R. Sedgewick, Permutation generation methods, Computing Surveys, Vol. 9, No. 2. 1977,

pp. 137-164.
10. V. Zakharov, Parallelism and array processing IEEE Trans. on Computers, Vol. C-33, No. 1,

t984, pp. 45-78.
11. D. I. Moldovan, On the design of algorithms for VLSI systolic arrays, Proc. IEEE, Vol. 71,

No. 1, 1983, pp. 113-120.
12. D. I. Moldovan and J. A. B. Fortes, Partitionino and mappino algorithms intofixed size systolic

arrays, IEEE Trans. on Computers, Vol. C-35, No. 12.
13. S. Sahni, Approximate algorithms for the 0/1 knapsack problem, J. ACM, Vol. 22, No. t, 1975,

pp. 115-124.
14. G. H. Chen, M. S. Chern, and R. C. T. Lee, A new systolic architecture jbr convex hull and half-

plane intersection problems, BIT 27, 1987, pp. 141-147.

