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時頻上的平滑聽覺頻譜之語者辨識 

 

學生：林廷翰         指導教授：冀泰石 博士 

 

國立交通大學電信工程研究所 

 

 

中文摘要 

 

   傳統使用的語者辨識系統，辨識率很容易受到加成性雜訊及摺積性雜訊干

擾，這是由於傳統上使用的特徵參數只有表達出語句最低層的線索，而較高層的

線索被證實出對雜訊較具有抗雜性。本篇論文利用聽覺模型抽取出的語音特徵參

數，和時域-頻域調變特性來處理並補捉較高層的線索，最後應用於雜訊下的語

者辨識。本論文使用文句不限定及封閉集合語者辨識系統，使用 TIMIT 和 GRID

語料庫進行測試，而實驗結果顯示所提出的參數在各個 SNR 環境下，辨識率比傳

統的 MFCC 參數大大提升；而時域-頻域調變濾波器與最近提出的 ANTCC 相比，在

低 SNR 下有優異的表現。 
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English Abstract 
 

The performance of conventional speaker recognition systems is severely 

compromised by interference, such as additive or convolutional noises. High-level 

information of the speaker is considered more robust cues for recognizing speakers. 

This paper proposes an auditory-model based spectral features, auditory cepstral 

coefficients (ACCs), and a spectro-temporal modulation filtering (STMF) process to 

capture high-level information for robust speaker recognition. Text-independent 

closed-set speaker recognition experiments are conducted on TIMIT and GRID 

corpora to evaluate the robustness of ACCs and benefits of the STMF process. 

Experimental results show ACCs’ significant improvement over conventional MFCCs 

in all SNR conditions. The superior performance of STMF to newly developed 

ANTCCs is also demonstrated in low SNR conditions. 



iii 
 

誌  謝 
  

 能夠完成這篇論文，首先感謝兩年來諄諄教誨的冀泰石教授，老師就像一個

寶庫，我念碩士的這兩年，從老師身上學到許多的知識寶藏，老師不僅在學業研

究上耐心指導，也會在做人處事、個性態度上給我們建議，把我們每個學生從裡

到外磨成一塊玉，讓我能脫胎換骨，很開心能夠成為您的學生☺。 

感謝實驗室的學長們大師、阿郎及 NICK 在課業上及研究上的指點；同屆的

藍霙、勝哥、大樹及禮偉一起研究奮鬥，一同玩樂與磨練；學弟妹華山、雞排、

文中及靖雯給實驗室帶來新的歡樂；IT LAB 很 nice 的小玄子、谷嶸及 nino；語

音 LAB 的學長們江振宇、楊智合及黃信德，很親切地幫了許多忙。也謝謝許多的

同學們及朋友們的幫助。  

    另外謝謝女朋友 pico，在我最煩躁乏味時陪伴我，用開心的笑容給我鼓舞

為我打氣。最後感謝我的父母一直默默的在背後當我的後盾，才能順利的走到今

天的成就，爸媽我愛你們，也感謝小妹的陪伴，讓宅宅的老哥開心地過這兩年。 

謝謝大家陪伴我這兩年來，生命因你們更添光亮。 

 

 

廷翰 

 2010 年夏



 iv

Contents 
Chinese Abstract .................................................................................................. i 

English Abstract ................................................................................................. ii 

Acknowledgement ........................................................................................... iii 

Contents .................................................................................................................. iv 

List of Figures ..................................................................................................... vi 

List of Tables ....................................................................................................... vii 

 
 

Chapter 1 Introduction .................................................................................. 1 

1.1 Introduction ................................................................................................. 1 
1.2 Motivation .................................................................................................... 3 
1.3 Outline of this thesis .................................................................................. 6 

 

Chapter 2 Speaker Recognition Systems ............................................ 7 

2.1 Introduction to Speaker Recognition Systems .................................... 7 
2.2 Gaussian Mixture Models ........................................................................ 9 
2.3 Maximum A Posteriori Adapted Gaussian Mixture Models ......... 14 

 

Chapter 3 Auditory Model and Features .......................................... 17 

3.1 The Motivated Use of Auditory Model .............................................. 17 
3.2 Cochlear Module and Auditory cepstral coefficients ...................... 19 
3.3 Cortical Module and Spectro-temporal Modulation Filtering ...... 23 

 

Chapter 4 Evaluation .................................................................................... 30 

4.1 Database and Evaluation Measurements ............................................ 30 
4.2 Results ......................................................................................................... 32 



 v

4.2.1 Results in GMM .................................................................................. 32 
4.2.2 Results in MAP-GMM ........................................................................ 38 

4.3 Discussions ................................................................................................ 44 

Chapter 5 Conclusion and Future Works ......................................... 46 

REFERENCES .................................................................................................. 47 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

List of Figures 
FIGURE 1-1 Structure of Speaker Recognition System. ............................................... 2 
FIGURE 1-2 A summary of features from viewpoint of their physical interpretation. 3 
 
FIGURE 2-1 Speaker recognition systems. ................................................................... 8 
FIGURE 2-2 LBG algorithms. ..................................................................................... 11 
 
FIGURE 3-1 Hearing pathway. .................................................................................... 18 
FIGURE 3-2 The anatomy of the ear. .......................................................................... 19 
FIGURE 3-3 The basilar membrane diagram and the characteristic frequency at the 
basilar membrane. ........................................................................................................ 20 
FIGURE 3-4 The firing rate of auditory neuron. ......................................................... 20 
FIGURE 3-5 Stages of the early cochlear. ................................................................... 21 
FIGURE 3-6 An example of moving ripple stimulus.  ............................................... 24 
FIGURE 3-7 The response for 8 modeled neurons in the cortex. ................................ 25 
FIGURE 3-8 Rate-scale representation from the A1 module. ..................................... 26 
FIGURE 3-9 Auditory spectrograms and Rate-scale representations of cleen speech 
and white noise. ........................................................................................................... 27 
FIGURE 3-10 Noise suppression by STMF. ............................................................... 29 
 
FIGURE 4-1 The 6 characters in GRID corpus. .......................................................... 31 
FIGURE 4-2 Average 0~15dB recognition rates (in %) for GRID corpus.. ................ 32 
FIGURE 4-3 Average recognition rates (in %) of 70 people in TIMIT corpus. .......... 35 
FIGURE 4-4 Average recognition rates (in %) of GRID corpus. ................................ 37 
FIGURE 4-5 Different mixture UBM. ......................................................................... 39 
FIGURE 4-6 Different training sentence. .................................................................... 39 
FIGURE 4-7 Average recognition rates with various adaptations (in %) . .................. 40 
FIGURE 4-8 Average recognition rates (in %) of 70 people. ...................................... 43 
FIGURE 4-9 Average recognition rates (in %) of GRID corpus. ................................ 43 
 
 
 
 
 
 
 
 



 vii

List of Tables 
Table 1 Correct recognition rates (in %) with different STMF (δ, α) parameters under 
various SNRs of the pink noise. ................................................................................... 33 
Table 2 Correct recognition rates (in %) of 70 people in TIMIT corpus. .................... 34 
Table 3 Correct recognition rates (in %) of GRID corpus. .......................................... 36 
Table 4 Correct recognition rates (in %) of 70 people in TIMIT corpus. (UBM stands 
for MAP-GMM)........................................................................................................... 41 
Table 5 Correct recognition rates (in %) of GRID corpus. .......................................... 42 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 1

Chapter 1  Introduction 
 

1.1  Introduction 
In modern lives, identification authentication technologies are commonly used in 

entrance security systems as well as in portable electronic devices by entering the 

password or having the magnetic/ID cards scanned to confirm the personal 

identification. With progresses of the science and technology, any unique 

characteristic of the human body, such as fingerprints, retinas, facial figures, the 

voices and so on, is studied and used in advanced identification authentication 

systems. These biometric verification/recognition technologies are very powerful 

against intruders who steal passwords or ID cards from authenticated users.  

In daily lives, people usually have no problem in recognizing the caller only 

from his/her voice through communication channels. This is a perfect example of a 

naive speaker recognition task that people perform everyday. Speaker recognition 

algorithms have been developed over the last few decades. The basic block diagram 

of the speaker recognition system is shown in Figure 1-1. Such system consists of 

three main modules: the feature extraction, speaker models and the recognizer. 

Basically, feature parameters extracted from input speech are compared with stored 

models, which are built during training processes, of registered speakers. The 

recognition decision is made according to certain similarity measures. 

Since the characteristics of voice and speaking style are different among people, 

speaker recognition systems are constructed to recognize speakers by using these 

features. Conventional approaches adopt short-time spectral features such as 

Mel-frequency cepstral coefficients (MFCCs), linear predictive cepstral coefficients 

(LPCCs) and perceptual linear predictive (PLP) coefficients to model each speaker. 
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These features basically capture smoothed spectral profiles, which reflect vocal tract 

information of speakers, and usually yield high recognition rates in clean or matched 

test conditions [1]. However, the recognition performance is often significantly 

degraded in mismatched testing conditions where speech is deteriorated by either 

convolutional or additive noises. Therefore, the robustness of speaker recognition 

systems has drawn a lot attention from researchers. Just like in Nokia’s slogan: 

technology always stems from human nature, the most natural way for humans to 

verify the identity of a person is by using their sensory inputs, such as from vision 

(face recognition) and/or hearing (speaker recognition). Our purpose is to develop a 

robust speaker recognition system, which mimics what humans do, and hopefully to 

make the world more convenient. 

  

 

 
 

FIGURE 1-1 Structure of Speaker Recognition System 
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1.2 Motivation 
Speech is roughly characterized into low-level information and high-level 

information from the viewpoint of its physical exposition, as shown in Figure 1-2. 

The low-level information corresponds to characteristics of individual’s vocal   

system, while the high-level information corresponds to characteristics of individual’s   

vocabulary from his cultural or schooling experiences. It is clear that conventional 

MFCCs or LPCCs only catch the low-level vocal-tract information. On the other hand, 

the language-dependent speaking rate is considered as a high-level feature. High-level 

features are believed to be more robust, but less discriminative among speakers in   

clean environments [2]. It has been shown in [3] that the speaker recognition accuracy 

can be improved by fusing high- and low-level features.    

 

 

FIGURE 1-2 A summary of features from viewpoint  

  of their physical interpretation. (ACLCLP-vol. 15, no. 5) 
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Automatic speaker recognition is a tough problem due to the mismatch between 

handsets and/or channels (convolutional noises) and environmental noises (additive 

noises), which are two of the most prominent factors to the recognition rate [4]. It has 

been shown that almost perfect recognition is achievable for clean and well-matched 

speech. Therefore, researchers have focused on the problems of transducer 

mismatches and robustness over past years. 

To deal with the handset/channel mismatch, linear and nonlinear compensation 

techniques have been proposed, with applications to feature, model and score domains 

[5]. The feature compensation is to remove the handset/channel effect on the feature, 

such as the cepstral mean subtraction (CMS) [6], RASTA [7], discriminative feature 

design [8], feature mapping [9], and various feature transformation methods such as 

feature warping [10] and short-time Gaussianization [11]. The score-domain 

compensation aims to remove handset-dependent biases from the likelihood ratio 

scores. The most prevalent compensations include the H-norm [12], Z-norm [13], and 

T-norm [14]. The model-domain compensation is to adapt model parameters to match 

different handsets/channels. It involves modifying the speaker model parameters 

instead of the feature vectors. Examples of the model-domain compensation methods 

include the speaker model synthesis [15], maximum a posteriori (MAP) [16], 

combination of MLLR and PDBNN [17]. 

To tackle the environmental noise robustness problem, many speech 

enhancement techniques have been proposed, for example, spectral subtraction [18], 

Kalman filtering [19]. They are all based on forming a statistical estimate for 

removing additive noise. However, noise estimates are never perfect, which may 

result in removing not only the noise but also speaker-dependent components of the 

original speech. Other techniques focus on noise compensation, such as 

model-domain spectral subtraction [20], missing feature theory [5] and parallel model 
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combination [21]. 

Lippmann demonstrated that human hearing is very robust against any noises in 

any recognition tests [22]. Presumably, human hearing analyzes every aspect of 

sounds (low- and high-level) to reduce the noise impact upon the accuracy of 

recognition tasks. Therefore, it is natural to include psycho-acoustical and 

neuro-physiological findings about human hearing in the development of speech 

processing systems to enhance their performance. Recently, several novel features 

based on human hearing have been proposed and utilized in speaker recognition 

systems [23]–[25]. 

In this study, we investigate auditory spectral features and combining with    

spectro-temporal features for speaker recognition tasks in additive noise environments. 

The spectral features are referred to as the auditory cepstral coefficients (ACCs), 

which are derived from the auditory spectrum in a way similar to MFCCs. In addition, 

high-level constraints are enforced by a spectro-temporal modulation filtering (STMF) 

process embedded in the auditory model. The two-stage auditory model produces a 

two-dimensional auditory spectrogram for any input speech, and then analyzes 

spectro-temporal amplitude modulations of the auditory spectrogram [26]. While 

low-level spectral features are well preserved in the auditory spectrogram, certain 

high-level features, such as the speaking rate, are embedded in the spectro-temporal 

modulations of the speech. Therefore, adopting spectro-temporal modulation features 

extracted by the auditory model shall enhance the robustness of a speaker recognizer, 

hopefully, like people have.  

    

 

 



 6

1.3 Outline of this thesis 
The remainder of this thesis is organized as follows. Chapter 2 describes the 

auditory perceptual model and speaker recognition systems. Our proposed method 

would be presented in Chapter 3. Simulation results by using proposed features in 

noisy conditions are demonstrated in Chapter 4. We end in Chapter 5 with conclusions 

and future works. 
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Chapter 2  Speaker Recognition Systems 
 
In this chapter, we briefly review the speaker recognition systems. The most 

commonly used approaches in speaker recognition systems are the Gaussian Mixture 

Model (GMM) [1] as well as the Maximum A posteriori Adapted Gaussian Mixture 

Model (MAP-GMM) [27]. We introduce these two models in section 2.2 and 2.3. 

 

2.1 Introduction to Speaker recognition systems 
As human beings, we are able to recognize someone just by hearing his or her 

voice. Usually, a few seconds of speech are sufficient for humans to identify a 

familiar voice. Similarly, the automatic speaker recognition systems employ 

computational algorithms to recognize humans by their voices.  

Speaker recognition systems can be divided into two different tasks: speaker 

identification and speaker verification tasks, as shown in Figure 2-1. Speaker 

verification, or speaker authentication, is the computational task of deciding whether a 

speech utterance is delivered by a claimed speaker or not. More formally, it is the task 

of deciding, given a speech signal x and a hypothesized speaker S, whether x was 

spoken by S. This is referred to as the one-to-one decision. On the other hand, there is 

no a priori identity claim in the speaker identification task. Speech from an unknown 

speaker is compared against trained speech models of N known speakers, and the best 

matching speaker is reported as the recognition decision. This is referred to as 

one-to-N decision. 

Speaker recognition tasks can be further categorized into text-dependent and 

text-independent tasks. The difference between these two tasks is whether using the 

same utterance in training and testing procedures. In the text-dependent task, the 
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utterance is known to the recognition systems beforehand. Undoubtedly, the 

text-independent task is more flexible. Furthermore, speaker identification task can 

include closed- and open-set tasks. In the former case, the identification system 

chooses the best matching speaker from trained models - no matter how poor this 

match is. In the latter case, a predefined tolerance level is considered to prevent the 

wrong recognition. 

 

Speech Feature 
Extraction

Speaker 
Model 1

Speaker 
Model 2

Speaker 
Model M

Select 
Max

Identified 
Speaker

(a) Identification System.

Speech Feature 
Extraction

Target 
Speaker
Model

Background 
Model 

∑
+

-
L

rejectL
acceptL

,
,

Θ<
Θ≥

(b) Verification System.
 

FIGURE 2-1 Speaker recognition systems. 
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In this thesis, we tackle the text-independent closed-set speaker identification 

problem. The state-of-the-art closed-set speaker modeling methods are the Gaussian 

Mixture Model (GMM) and the Maximum A posteriori Adapted Gaussian Mixture 

Model (MAP-GMM) (which is also named Gaussian Mixture Model Universal 

Background Model (GMM-UBM)). In the following section, we introduce two 

commonly used statistical modeling methods for estimating parameters of the GMM. 

 

2.2 Gaussian Mixture Model 

 The Gaussian Mixture Model (GMM) is a stochastic model, which is composed 

of a finite number of mixtures of multivariate Gaussian components, to fit an 

observed probability density function (PDF). Since the GMM can fit arbitrary shapes 

of PDF of features from speaker’s voice and its training is simple, fast and giving 

good performances, it has become the default reference method in any speaker 

recognition systems. 

A GMM, denoted byλ , is characterized by its probability density function:  

1
( ) ( , )

M

i i ii
i

p x w N xλ μ
=

= Σ∑                     (2-1) 

where x is D-dimensional feature vector; M is the number of Gaussian mixtures; iw  

is the prior probability (mixtures weight) of the i-th mixture with constrain 
1

1
M

i
i

w
=

=∑ ; 

and 1
, 1/ 2/ 2

1 1( ) exp ( ) ( )
2(2 )

T
i i ii i iM

i

N x x xμ μ μ
π

−⎧ ⎫Σ = − − Σ −⎨ ⎬
⎭Σ ⎩

, i =1...M, is the i-th 

Gaussian density function with D×1 mean vector iμ  and D×D covariance matrix 

iΣ . For numerical and computational reasons, we use only diagonal covariance 

matrices in this thesis. In general, estimating parameters of a full-covariance GMM 
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requires much more training data and is computationally expensive. And empirical 

evidence shows that diagonal matrix GMMs can perform equally well or out-perform 

the full matrix GMMs [27]. 

Training a GMM is to estimate the parameters { }, 1
,

M
i i i i

wλ μ
=

= Σ  from a given 

collection of training vectors. The basic approach uses Vector Quantization (VQ) to 

get the initial parameters, and then the maximum likelihood (ML) model parameters 

are estimated via the expectation-maximization (EM) algorithm. 

    Vector Quantization (VQ) is one of the most efficient and useful methods in 

source-coding techniques. The disorderly speech feature vector distribution can be 

classified into codewords by VQ. The following states the LBG algorithm [28] which 

is commonly used in VQ. 

 

LBG algorithm 

• 1. Set M (number of mixtures) =1. Find the centroid of all feature vectors. 

• 2. Split M into 2M partitions. As shown in equation (2-2), where δ =0.01. 

(1 )

(1 )

i i

i i

μ μ δ

μ μ δ

+

−

= +

= −
                            (2-2) 

• 3. Use K-means iterative algorithm to re-classify feature vectors and find the 

new centroid of each partition until old centroids equal to new centroids. 

• 4. Repeat step 2 and 3 until meet the desired total number of mixtures. 

• 5. Calculate variance 2
iσ  and weight iw . As shown in equation (2-3), where n 

is the total feature number; ni is the feature number in the i-th partition; 2
ikσ  is 

the variance in the i-th partition and j-th dimension. 
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2

2
( )jk ik

j
ik

i

i
i

x

n
nw
n

μ

σ

−

=

=

∑
, calculated jkx  which belongs to the centroid ikμ  

(2-3) 

Find  
centroid 

m=1

Split each 
centroid 
m=2*m

Classify 
vectors

Find 
centroids

New cetroid=Old centroid 

m<M NO

YES

YES STOP

 

FIGURE 2-2 LBG algorithms. 

 

Although VQ can classify the speech feature vectors by centroids, it can’t 

describe the size and spatial shape of the speech feature vector distribution of each 

partition. As a result, the ML estimation via the EM algorithm for model parameters is 

used after VQ. For a set of i.i.d. feature vectors 1 2{ , ,..., }Tx x x=x , the ML estimate 

of parameters of a GMM, is:  
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( ) ( )
arg max ( ) arg max

( )
      arg max ( )

ML
p x p

p x
p x

p x

λ λ
λ λ

λ

= =

=

       (2-4) 

Therefore, the ML estimation is to find the best λ  to achieve the highest probability. 

The ML parameter estimation can be accomplished iteratively via the EM algorithm. 

The basic idea of the EM algorithm is, beginning with initial 

parameters { }, 1
,

M
i i i i

wλ μ
=

= Σ  obtained from VQ, to estimate a new model λ̂  

provided ˆ( ) ( )p x p xλ λ≥ . The new model λ̂  then becomes the initial model for 

the next iteration and the process is repeated until some convergence criterion is met. 

Generally speaking, five to ten iterations are sufficient for parameters convergence. 

1. E-Step: ( ) [log ( ) , ]k kQ E p x yλ λ λ λ=  

2. M-Step: arg max ( )kQ
λ

λ λ  

Given a training feature vector set 1 2{ , ,..., }Tx x x=x , the following re-estimation 

formulae, which guarantee a monotonic converge to a local maximum, are used in 

each EM iteration: 

Posteriori probability:  

 

1

( )
( , ) ,   i=1...M

( )

ti i
t M

j t j
j

w N x
p i x

w N x

λ
λ

λ
=

=

∑
           (2-5) 

Weight: 

1

1ˆ ( , )
T

ti
t

w p i x
T

λ
=

= ∑                               (2-6) 
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Mean: 

1

1

( , )
ˆ

( , )

T
t t

t
i T

t
t

p i x x

p i x

λ
μ

λ

=

=

⋅
=
∑

∑
                            (2-7) 

Variance: 

2

2 21

1

( , )
ˆ ˆ

( , )

T
t t

t
i iT

t
t

p i x x

p i x

λ
σ μ

λ

=

=

⋅
= −
∑

∑
                     (2-8) 

 

To avoid the variance converging to zero, a variance floor of 0.000001 is adopted. 

After estimating each speaker’s model parameters 1 2{ , ,..., }Sλ λ λ , the speaker 

identification decision is made according to the probability measures as follows: 

 

1
speaker ID arg max ( )

      

k
k S

p x λ
≤ ≤

=
                     (2-9) 
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2.3 Maximum A Posteriori Adapted Gaussian Mixture Model 

 Conventional GMMs trained by the EM algorithm as depicted in Section 2.2 

perform well when a large amount of training data is available to characterize 

speakers. In other words, training a GMM model for a particular speaker needs data 

from all his possible pronunciation. However, in the real world, this condition is 

somehow not feasible. Adaptations of the acoustic models have been studied for 

solving this problem. One successful adaptation approach, namely the Universal 

background model-maximum a posteriori (UBM-MAP) approach, has been widely 

used in text-independent speaker verification tasks in recent years.  

The UBM is a large GMM which is usually set with 256~2048 mixtures 

depending on the size of the training data. Lower order mixtures are often used in 

applications with constrained speech (such as digits or a fixed vocabulary), while 

2048 mixtures are used with unconstrained speech (such as the conversational speech). 

This approach firstly pools a huge amount of speech data gathered from a large 

number of background speakers to train a universal background model (UBM) by the 

LBG and EM algorithm. Unlike the standard approach of maximum likelihood 

training of a model for a particular speaker, independently with the UBM, this 

adaptation approach is to derive the speaker’s model by adapting the well-trained 

UBM parameters to a speaker model λ  using this speaker’s training speech via the 

MAP estimation technique. For a UBM and training vectors from the hypothesized 

speaker, 1 2{ , ,..., }Tx x x=x , the MAP estimate of parameters of the speaker GMM is:  

( ) ( )
arg max ( ) arg max

( )
         arg max ( ) ( )

MAP
p x p

p x
p x

p x p

λ λ
λ λ

λ λ

= =

=

        (2-10) 
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Like the EM algorithm, the adaptation is a two step of the EM algorithm. The 

specifics of the adaptation are as follows. Given training vectors from target speaker 

1 2{ , ,..., }Tx x x=x  and a UBM { }, 1
,

M
UBM i i i i

wλ μ
=

= Σ , we first compute the posteriori 

probability ( , )t UBMp i x λ  for the mixture i in the UBM: 

Posteriori probability:  

1

( )
( , ) ,   i=1...M

( )

ti i
Mt

j t j
j

w N x
p i x

w N x

λ
λ

λ
=

=

∑
           (2-11) 

We then use ( , )t UBMp i x λ  and tx  to compute the sufficient statistics for the 

mixture weight, mean, and second moment parameters: 

 

Weight: 

1
( , )

T
ti

t
n p i x λ

=
=∑                                  (2-12) 

Mean: 

1

1( ) ( , )
T

t t ti
i t

E x p i x x
w

λ
=

= ⋅∑                       (2-13) 

Second moment: 

22

1

1( ) ( , )
T

t t ti
i t

E x p i x x
w

λ
=

= ⋅∑                     (2-14) 
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This is the same as the expectation step in the EM algorithm. Finally, these new 

statistics from the training data are used to update the old UBM statistics for mixture i 

to create the adapted parameters for mixture i with the equations: 

2 2 2 22

ˆ [ / (1 ) ]

ˆ ( ) (1 )

? ( ) (1 )( )

i i i i i

ti i i i i

ti i i i i i i

w n T w

E x

E x

α α γ

μ α α μ

σ α α σ μ μ

= + −

= + −

= + − + −

        (2-15) 

where the scale factor γ  is computed over all adapted mixture weights to ensure 

their summation equals unity and the adaptation coefficients iα  controlling the 

balance between the old and new estimates. It is defined as: 

i
i

i

n
n r

α =
+

                                        (2-16) 

where r is a fixed relevance factor which can be viewed as an adaptation coefficient. 

If r is large, adaptation is slow and if r is small, adaptation is fast. We set r = 16 in this 

thesis. In [27], only adapting the means shows the best performance in simulations. 

The performance of adapting the means and variances is similar to the performance of 

adapting the means only. After adaptation, the mixture components of the adapted 

GMM for each speaker retain a correspondence with the mixtures of the original 

UBM. 
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Chapter 3  Auditory Model and Features 
 

The speaker recognition system is described in Chapter 2. This chapter provides a 

brief review of the auditory model, which contains an early cochlear (ear) and a 

central auditory cortex (A1) module, proposed by Shamma et al. [26]. The auditory 

spectral features are extracted from the early cochlear module and used in the speaker 

recognition simulations. The Spectro-Temporal Modulation Filtering (STMF) is 

performed by the cortical module and produces cleaned spectral features. This 

approach was first investigated by Hung [29] in digit recognition tasks.  

 

3.1 The Motivated Use of Auditory Model 
In recent years, there is an increasing interest in adopting properties of human 

hearing perception for speech-related applications to overcome various types of 

distortion such as additive noises, convolutional noises and degradations from channel 

mismatch. It has been shown that human hearing is very robust against any noises in 

any recognition tests [22]. 

For instance, perceptual linear predictive (PLP) coefficients [30], which are one 

of the most used coefficients, embed two hearing perception properties: the equal 

loudness pre-emphasis and the intensity-loudness conversion. To compensate the fact 

that humans have non-equal hearing thresholds at different frequencies, the speech 

power spectra are multiplied by the magnitude response of an equal loudness 

pre-emphasis filter. The intensity–loudness conversion addresses the non-linear 

relation between the intensity of the sound level and the perceived loudness. And it 

has been shown that PLP is more robust to noise than the LPCC (linear predictive 

cepstral coefficients). 
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Here, we evaluate the performance of a noise suppression algorithm, which 

works on the internal perceptual representation of an auditory model, in 

text-independent speaker identification tasks and compare its robustness to other 

features or algorithms. The auditory model is inspired by psycho-acoustical and 

neuro-physiological findings along the mammal’s hearing pathway: the cochlea and 

the cortex. Figure 3-1 shows a schematic plot of the auditory pathway. In the 

following sections, we introduce these two stages (cochlear and cortical stages) and 

related functions in the auditory model. 

 

 

 

FIGURE 3-1 Hearing pathway. 
(http://brainconnection.positscience.com/topics/?main=anat/auditory-anat2) 
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3.2 Cochlear Module and Auditory cepstral coefficients 

 

 
FIGURE 3-2 The anatomy of the ear. 

(http://www.advcoch.com/I2_Hearing_Physiology.htm) 

 

The ear can be divided into three parts – the outer ear, middle ear and inner ear, 

which are shown in Figure 3-2. The inner ear consists of the cochlea, which is 

composed of three chambers with full lymph, as shown in the top left panel of Figure 

3-3. The basilar membrane (BM) dividing the scala media and the scala tympani plays 

a significant role in hearing. After the mechanical vibration reaches the oval window, 

a traveling wave is generated and propagates along the basilar membrane. Different 

locations of the BM achieve the maximum responses with respect to traveling waves 

with different frequencies. The right panel of Figure 3-3 shows the responsive 

frequencies along the basilar membrane. The inhibitions between neighboring 

frequencies produced by the traveling wave might be the main cause of the 

well-known “frequency masking” phenomenon in audition. 

The traveling wave generates displacement along the BM, and then the hair cells 

residing along the basilar membrane transform the displacement to sensory nerve 

action potentials. There are two different hair cells: inner hair cells and outer hair cells. 

Most of the transformation from mechanical vibrations to electrical potentials is done 
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by inner hair cells, which connects with the auditory nerve. Due to the fact that a 

relaxation time is needed between consecutive firings of neurons, firing rates can not 

keep up with high frequency inputs, as demonstrated in Figure 3-4. The firing rate of 

the auditory nerve is bounded by 4-5k Hz and the rate of the midbrain is bounded by 

about 1k Hz. 

 

 
FIGURE 3-3 The basilar membrane diagram (left) and the characteristic frequency 
at the basilar membrane (right). (Hearing Physiology Handout, AAIP) 

 

 

 
FIGURE 3-4 The firing rate of auditory nerve correspond to the 
monotone audio input. (Hearing Physiology Handout, AAIP) 
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Figure 3-5 depicts the early cochlear module and the derivation of auditory 

cepstral coefficients (ACCs). The speech signal is first filtered by a set of 128 

overlapping asymmetric constant-Q filters whose magnitude responses can be 

expressed as: 

       
( )( ) ,  0( )

0,                        

hf f
h h

h

f f e f fH f
f f

βα − −⎧ − ≤ ≤⎪= ⎨
>⎪⎩

        (3-1) 

where hf  is the cut-off frequency (in log-frequency axis) and α=0.3 and β=8. These 

cochlear filters evenly distribute over 5.3 octaves with 24 filter/octave frequency 

resolution. The cochlea filters represent the selectivity of the basilar membrane to 

different frequencies. 

The output of each filter is then passed through a lateral inhibitory network 

(LIN), a half-wave rectifier and a lowpass filter. The LIN is implemented by a first 

order differentiator along the log-frequency axis to roughly account for the frequency 

masking effect between neighboring neurons. It equivalently sharpens the frequency 

response of each cochlear filter. The half-wave rectifier combined with the following 

lowpass filter extract the envelope of filtered speech in each cochlear band. 

 

 
 
 
 
 
 
 
 
 
 

FIGURE 3-5 Stages of the early cochlear module. 
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Outputs at various stages can be stated as follow:  

1( , ) ( ) ( ; )i t iy t f s t h t f= ∗                                      (3-2) 

 2 1 1 1 1( , ) ( , ) ( , ) ( , )i f i i iy t f y t f y t f y t f −= ∂ = −         (3-3) 

 3 2( , ) max( ( , ),0)i iy t f y t f=                         (3-4) 

  4 3( , ) ( , ) ( ; )i i ty t f y t f tμ τ= ∗                        (3-5) 

where ( ; )ih t f is the impulse response of the i-th constant-Q filter with center 

frequency if , i=1…128 ; t∗ is the convolution in the time domain; and the 

integration window /( ; ) ( )tt e u tτμ τ −= ⋅  models the current leakage along the neural 

pathway to the auditory cortex.  

The output 4( , )iy t f is referred to as an auditory spectrogram which captures 

spectro-temporal envelopes of input speech along the log-frequency and the time axes. 

Similar to the derivation of conventional MFCCs, the Auditory Cepstral Coefficients 

(ACCs) are obtained by the discrete cosine transform (DCT) on the logarithm 

amplitude of the auditory spectrum at any time instant. The ACCs A(k,t) k=0…N-1, 

can be written as: 

 4
1

2( , ) ln ( , ) cos( ( 0.5))
N

i
i

kA k t y t f i
N N

π

=
= −∑      (3-6) 

Intuitively, ACCs represent smoothed auditory spectra, which reflect vocal tract 

information of the speaker, along human’s hearing pathway. 

 

 
 
 
 



 23

3.3 Cortical Module and Spectro-temporal Modulation 

Filtering 
The second cortical module is inspired from neural activities of the auditory 

cortex (A1) to different spectro-temporal variations. Such spectro-temporal variations 

are encoded in two parameters: rate and scale. The rate (or velocity) parameter ω  in 

Hz depicts how fast the signal’s energy varies along the temporal axis. The scale (or 

density) parameter Ω  in cycle/octave characterizes how broad the signal’s energy 

distributed along the log-frequency axis. In addition, cortical neurons also show 

different selectivity of FM sweeping directions (upward and downward), which is 

represented in this module by the sign of the rate parameter (positive/negative for 

downward/upward sweeping direction).  

To derive the spectro-temporal impulse responses of neurons in A1, moving 

ripple stimuli, the basis functions in the two-dimensional spectro-temporal domain, 

are used to drive the cortex. Figure 3-6 shows one example of the moving ripple 

stimulus of rate=+4 Hz and scale=0.5 cycle/octave. Therefore, each neuron in A1 has 

its own impulse response, which represents its preference on the spectro-temporal 

pattern shown in the input spectrogram, and is modeled by a 2D filter. To sum up, the 

first cochlear module of the auditory model produces a two-dimensional auditory 

spectrogram full of spectro-temporal amplitude modulations. The second cortical 

module then analyzes the auditory spectrogram by a bank of two-dimensional filters 

which are tuned to different spectro-temporal modulation parameters. Figure 3-7 

demonstrates eight 2D cortical filtering of A1 on a sample spectrogram. The small top 

panels in each subplot are the impulse responses of different typical neurons tuned to 

slow/fast rates and coarse/fine scales. The bottom panels are envelopes (local energies) 

of outcomes of these 2D spectro-temporal filters. 
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Therefore, a four-dimensional output ( , , , )r t f ω Ω  of this module can be 

formulated as: 

4( , , , ) ( , ) ( , ; , )tfr t f y t f STIR t fω ωΩ = ∗ Ω           (3-7) 

where ( , ; , )STIR t f ω Ω is the spectro-temporal impulse response of the 

two-dimensional filter tuned to ω  and Ω ; and tf∗ is the two-dimensional 

convolution in the time and log-frequency axes. 

 

 

FIGURE 3-6 An example of moving ripple stimulus. 

( Auditory Model Handout, AAIP) 
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FIGURE 3-7 The response for 8 modeled neurons in the cortex. (Auditory 

Model Handout, AAIP) 

 

The local energy of the four-dimensional output is then computed as:  

 [ ]( , , , ) ( , , , ) ( , , , )  E t f r t f jH r t fω ω ωΩ = Ω + Ω      (3-8) 

where [ ]H ⋅  is the Hilbert transform along the log-frequency axis. Therefore, for any 

fixed t-f point in the auditory spectrogram, ( , ; , )E t fω Ω , which is referred to as the  

rate-scale representation, records energies of local modulations at different 

combinations of rate, scale and directionality. As shown in Figure 3-8, the left panel 

demonstrates an auditory spectrogram and right panels are corresponding rate-scale 

representations of those two points indicated by ‘x’ in the spectrogram. As seen in the 

figure, those two ‘x’ points have local modulations dominated at (8 Hz, 4 cycle/octave, 

upward) and (8~16 Hz, 2~4 cycle/octave, downward) respectively.  

In summary, the early cochlear module estimates a two-dimensional auditory 
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spectrogram from a one-dimensional acoustic signal. The second cortical module 

analyzes amplitude modulations of the 2D auditory spectrogram in the 

rate-scale-directionality parameter space. Much more extensive details of the 

description, mathematic formulation and output examples of these two modules can 

be found in [26]. 
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FIGURE 3-8 Rate-scale representation from the A1 module. 

 

It is known that human hearing analyzes not only spectral contents but also 

temporal behaviors of the sound. In our auditory model, such ability is well 

characterized by the joint spectro-temporal modulation analysis performed by the 

second cortical module. In addition to spectral contents estimated in the first cochlear 

module, certain high-level features, such as speaking rate and FM sweeping directions, 

are well caught by the second cortical module. It has been shown that joint 

spectro-temporal modulations below 16 Hz and 8 cycle/octave well preserve the 

intelligibility of speech [31]. Not surprisingly, as shown in [32], the long-term 

averaged rate-scale energy pattern of speech falls roughly within these ranges. On the 
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other hand, rate-scale patterns of noises would differ from those of speech, indicating 

different high-level information between speech and noises. For example, Figure 3-9 

shows auditory spectrograms ((a), (b)) and rate-scale energy representations ((c), (d)) 

of clean speech and white noise. This figure demonstrates that most of the 

spectro-temporal modulations of speech are within the range of rate=2-16 Hz and 

scale=0.5-8 cycle/octave, while the white noise has spectro-temporal modulations 

dominated at high rates and high scales. 
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 FIGURE 3-9 Auditory spectrograms of (a) clean speech, and (b) white noise. 

Rate-scale representations (with rate and scale in x- and y- axis) of (c) clean speech, 

and (d) white noise. 
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Accordingly, a noise suppression algorithm by the joint spectro-temporal 

modulation filtering (STMF) is proposed in [29]. For an input noisy speech, 

spectro-temporal modulations only within 2~32 Hz and 0.5~8 cycle/octave are kept in 

the STMF process and a cleaner spectrogram is generated: 

5 1
2 32,0.5 8

( , ) ( , , , ) ( , ; , )tfy t f r t f STIR t f
ω

ω ω∗

± ≤ ≤± ≤Ω≤
= Ω ∗ − − Ω∑    

(3-9) 

where 1 ( , ; , )STIR t f ω Ω is the normalization of ( , ; , )STIR t f ω Ω . 

Figure 3-10 demonstrates procedures of our STMF noise suppression algorithm. 

The noisy auditory spectrogram is passed through the STMF process. Then, a simple 

threshold δ  (a certain percentile of the maximum value of the cleaned spectrogram) 

is used to determine the speech versus non-speech regions in the cleaned spectrogram. 

The threshold δ  bears the trade-off between effects of speech distortion and noise 

suppression. Finally, a α― 1 template (α for non-speech regions and 1 for speech 

regions) is generated and multiplied with the original noisy spectrogram to produce a 

noise-suppressed spectrogram. ACCs are then derived from the noise-suppressed 

spectrogram for our speaker recognition simulations. 
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FIGURE 3-10 Noise suppression by STMF. 
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Chapter 4  Evaluation 
 

The robustness of ACCs before and after the STMF process is evaluated in 

text-independent closed-set speaker identification simulations. Experimental settings 

follow the ones in [25] and results are compared to results from Auditory-based 

Nonnegative Tensor Cepstral Coefficients (ANTCCs) proposed in [25] as well. 

Speech samples from TIMIT and GRID [33] corpora are tested. Note that these 

corpora do not consider session variability. In this chapter, we first introduce the 

TIMIT and GRID database and the evaluation measurements used in this thesis. Then, 

simulation results will be shown in Section 4.2. Finally, discussions for these 

evaluations will be given in Section 4.3. 

 

4.1 Database and Evaluation Measurements  
Speech samples in TIMIT corpus were recorded at Texas Instruments (TI) and 

transcribed at Massachusetts Institute of Technology (MIT). Thus, it is called 

“TIMIT”. TIMIT was designed to provide speech data for the acquisition of 

acoustic-phonetic knowledge and for the development and evaluation of automatic 

speech and speaker recognition systems. The TIMIT corpus is with high quality 

speech, which is ideal for testing a technique without the interference of noise and 

channel variations. It contains a total of 6300 clear sentences, sampled at 16 kHz, 10 

sentences uttered by each of the 630 speakers (438 males and 192 females) from 8 

major dialect regions in the United States. In this thesis, the first 8 utterances (two sa 

sentences, three si sentences and two sx sentences) and the remaining 2 utterances per 

speaker are used as the training and testing sets, respectively. The training data for 

each speaker is approximately 24 seconds. 
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The GRID is an audio-visual corpus for the speech separation and recognition 

tasks. It is also with high quality speech from 34 speakers (18 males and 16 females), 

each saying 1000 three-second phrases. Each phrase consists of a sequence of 6 

characters shown in figure 4-1 and is sampled at 24 kHz. As in [25], for the GRID 

testing, speech samples are downsampled to 8 kHz and 50/60 utterances per speaker 

are randomly chosen for training/testing purposes. 

 

FIGURE 4-1 The 6 characters in GRID corpus. 

 

Four different types of noises (factory, pink, white and F-16) are extracted from 

Noisex-92 [34] and mixed with the clean speech in a wide range of SNRs (0, 5, 10, 

15dB and Clean). 30-coefficient feature vectors (excluding the 0th coefficient) of 

conventional MFCCs and ACCs are calculated from a 25 ms window with 10 ms 

frame increment. As in [35], each speaker is modeled by a 32-mixture GMM derived 

from the EM algorithm in the training process. The K-means is used to initialize the 

EM algorithm. Additionally, a simple technique — cepstral mean substraction (CMS) 

[6], which has been used in speaker recognition, is also considered in our works. Note, 

no VAD is used in this study.  
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4.2 Results 

 4.2.1 Results in GMM 

To implement our STMF based speaker identification system, we first determine 

the parameters, the threshold δ and the template α, used in the STMF process. Figure 

4-2 and Table 1 shows the identification performance of a GMM based recognizer on 

the GRID corpus with different STMF parameter sets. Clearly, the best average 

recognition rate can be obtained by δ= 0.05 and α= 0.01. However, Table 1 further 

shows that using δ= 0.02 & α= e-1 outperforms the parameter set of δ= 0.05 & α= 

0.01 in high SNR conditions. Not surprisingly, it demonstrates the threshold δ  bears 

the trade-off between effects of speech distortion and noise suppression. And these 

two effects are desired contradictorily in high and low SNR conditions. Therefore, we 

adopt two parameter sets (A:δ= 0.02 &α= e-1 , B: δ= 0.05 &α= 0.01) in following 

simulations. 
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FIGURE 4-2 Average recognition rates (in %) over 0~15dB of the STMF process 
with different parameters. 
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Table 1. Correct recognition rates (in %) with different STMF (δ, α) parameters under 
various SNRs of the pink noise. 
 δ= 0.01   δ= 0.02     

  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
α= 0.5 90.83 82.21 54.80 24.95 90.88 81.23 58.97 22.75
α= exp(-1) 85.88 74.61 57.25 31.86 90.54 81.49 60.64 19.71
α= 0.1 90.20 80.39 30.20 6.86 89.61 83.82 63.68 17.40
α= 0.01 88.04 77.99 23.87 3.43 90.10 83.53 66.32 9.36 

α= 0.001 80.49 66.57 22.50 4.36 86.23 79.61 56.37 4.90 

 δ= 0.05   δ= 0.1     

  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
α= 0.5 85.74 74.17 54.61 13.43 85.88 74.07 52.01 28.97
α= exp(-1) 85.88 74.61 57.25 31.86 85.88 74.61 57.25 31.86
α= 0.1 85.44 78.28 67.50 41.72 84.95 72.99 58.48 42.30
α= 0.01 85.54 81.57 75.83 52.01 83.28 73.68 62.94 52.79
α= 0.001 83.58 79.12 71.13 38.77 80.54 74.46 64.22 55.20

 

Correct recognition rates of the MFCC baseline, our proposed features ACCs 

before and after STMF, and ANTCCs from [25] are presented in Table 2 and Figure 

4-3. The 70-speaker population is randomly chosen from the TIMIT corpus and all 

speech samples are with 16 kHz sampling frequency. Without CMS, our features and 

ANTCCs clearly achieve much higher recognition rates than the MFCCs under noisy 

conditions. Under all tested SNR conditions, ACCs outperform MFCCs by a wide 

margin. In addition, the ACCs after STMF also outperform ANTCCs in almost all 

conditions (except in the condition of 15dB F16 noise).  

It can be observed that our ACCs perform poorer in the white and F16 noises 

than in the pink and factory noises, especially in high SNR conditions. One possible 

reason for that is the white and F16 noises both possess higher energies in 

high-frequency regions than the pink and factory noises. The 128 constant-Q cochlear 

filters possess constant frequency resolution and are normalized to have an almost flat 
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overall frequency response along the log-frequency axis. For the white and F16 noises, 

high energies within high-frequency regions would repetitively appear in several 

high-frequency cochlear channels due to their wide bandwidth. This phenomenon 

produces more severe mismatch between ACCs from noisy speech and from clean 

speech by high-frequency noises than by low-frequency noises. 

 

Table 2. Correct recognition rates (in %) of 70 people in TIMIT corpus. 

 Factory1   Pink      

  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC 66.43 34.29 10.71 5.71 47.86 22.86 8.57 2.86 

MFCC-CMS 65.00 32.86 11.43 2.86 46.43 21.43 5.00 2.86 

ACC 93.57 80.00 37.86 12.86 87.86 62.14 25.00 9.29 

ACC-CMS 82.14 52.86 27.86 6.43 73.57 42.14 18.57 4.29 

STMF (A) 94.29 86.43 51.43 10.00 90.71 70.00 41.43 7.86 

STMF-CMS (A) 85.00 75.00 57.14 11.43 80.00 64.29 45.00 12.14
STMF (B) 85.00 78.57 62.86 21.43 84.29 76.43 64.29 29.29
STMF-CMS (B) 84.29 75.00 66.43 31.43 80.71 72.14 65.00 38.57
ANTCC 78.1 49.52 12.86 2.43 78.57 50.95 13.81 2.43 

 
 White   F16      

  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC 30.00 15.71 7.86 4.29 45.71 16.43 3.57 2.14 

MFCC-CMS 36.43 18.57 10.00 2.86 58.57 28.57 7.86 2.86 

ACC 51.43 17.14 10.00 4.29 56.43 28.57 11.43 5.00 

ACC-CMS 51.43 34.29 20.71 11.43 73.57 56.43 20.00 4.29 

STMF (A) 71.43 45.00 16.43 5.00 69.29 38.57 18.57 4.29 

STMF-CMS (A) 67.86 51.43 37.86 12.14 82.14 68.57 55.00 10.71
STMF (B) 72.14 60.71 48.57 16.43 67.86 53.57 36.43 10.71
STMF-CMS (B) 76.43 66.43 60.00 28.57 78.57 73.57 63.57 29.29
ANTCC 64.29 29.52 3.81 2.9 77.62 47.14 15.24 2.9 

 
 MFCC MFCC-CMS ACC ACC-CMS ANTCC 

Clean 100 100 100 98.57 97.62 
 STMF (A) STMF-CMS(A) STMF (B) STMF-CMS(B)  

Clean 98.57 98.57 97.14 95.71  
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Evaluation Result

0

10

20

30

40

50

60

70

80

90

100

clean 15dB 10dB 5dB 0dB
SNR(dB)

R
ec

og
. R

at
e(

%
)

MFCC
MFCC-CMS
ACC
ACC-CMS
STMF (B)
STMF-CMS (B)
ANTCC

FIGURE 4-3 Average recognition rates (in %) of 70 people in TIMIT corpus. 

 

On the other hand, the CMS helps the recognition rates of ACCs before and after 

STMF in low SNR conditions (0~10 dB) as shown in Figure 4-3. However, the CMS 

could not only mitigate the noise effect, but also reduce the speaker variability. The 

recognition rates, therefore, might be diminished in high SNR conditions as the clean 

condition in Table 2 or Figure 4-3. 

Evaluation results of the GRID corpus are presented in Table 3 and Figure 4-4. 

First, we consider results without CMS normalization. Similar to TIMIT results, 

ACCs outperform MFCCs in all noises (all SNR conditions) and the STMF process 

enhances recognition rates further. Compared with ANTCCs, STMF perform 25.3% 

better (average recognition rate) in low SNR conditions (5 and 0 dB), but 10.24% (in 

average) worse in high SNR conditions (15 and 10 dB). Note, not identical training 
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and testing sets are used in this study and in [25] for both TIMIT and GRID corpora 

evaluations shown in Table 2 and Table 3. Clearly, our features perform slightly worse 

against the white and F16 noises than against the pink and factory noises in both 

TIMIT and GRID corpora evaluations. 

     

Table 3. Correct recognition rates (in %) of GRID corpus. 

 Factory1   Pink      

  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC 79.46 60.78 34.26 13.97 75.98 51.91 26.27 7.99 

MFCC-CMS 73.28 51.72 24.46 5.69 69.12 47.99 22.55 5.83 

ACC 87.84 75.29 55.49 31.81 87.79 72.40 49.17 23.14
ACC-CMS 86.32 73.63 52.35 20.34 83.92 70.83 47.94 22.45
STMF (A) 90.39 81.91 58.58 20.39 90.54 80.49 60.64 19.71
STMF-CMS (A) 89.71 84.46 55.78 12.30 88.73 83.24 57.79 11.52
STMF (B) 85.78 81.32 75.00 41.47 85.54 81.57 75.83 52.01
STMF-CMS (B) 81.62 80.00 74.71 46.86 80.15 78.73 75.15 51.32
ANTCC 97.55 87.75 44.61 8.82 95.59 87.75 45.1 9.31 

 
 White   F16      

  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC 55.74 38.97 27.16 14.61 69.07 46.76 27.06 15.05
MFCC-CMS 52.16 38.58 27.50 8.92 71.18 50.83 22.99 5.78 

ACC 76.47 55.29 30.69 14.66 65.69 44.36 20.93 10.10
ACC-CMS 72.25 55.54 40.20 32.06 83.09 68.43 44.90 19.17
STMF (A) 83.28 72.65 45.83 19.71 88.14 82.65 52.55 8.04 

STMF-CMS(A) 88.87 84.61 74.61 46.18 90.88 87.65 78.68 36.42
STMF (B) 82.30 77.01 67.06 30.49 66.76 55.83 39.26 14.90
STMF-CMS (B) 78.09 76.81 71.91 45.54 80.83 79.41 72.01 36.86
ANTCC 95.59 69.61 38.24 10.29 95.1 69.12 27.49 9.8 

 
 MFCC MFCC-CMS ACC ACC-CMS ANTCC 

Clean 99.56 96.62 99.26 95.69 100 
 STMF (A) STMF-CMS(A) STMF (B) STMF-CMS(B)  

Clean 98.28 94.07 95.25 86.37  
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FIGURE 4-4 Average recognition rates (in %) of GRID corpus. 

 

The CMS normalization yields similar trends for ACCs and STMF features in 

both corpora evaluations as shown in Figure 4-3 and 4-4. That is, the CMS enhances 

average recognition rates in low SNR conditions but degrades the performance in the 

15dB and clean condition. However, the CMS produces worse average performance 

for MFCCs. It is interesting to note that all features (MFCCs, ACCs and STMF) for 

both corpora (TIMIT and GRID) benefit from the CMS normalization in the F16 

noise as shown in Table 2 and Table 3. We could conclude that the CMS 

normalization is particularly effective against the F16 noise. 
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4.2.2 Results in MAP-GMM 

    In this section, we further adopt the MAP-GMM method to boost the 

performance of the STMF-CMS feature. In implementing the MAP-GMM in the 

speaker identification system, we first determine the number of mixtures used in the 

UBM (Universal Background Model). Effects from different numbers of mixtures are 

investigated by building different UBMs from the sa1 sentence of all 630 speakers in 

the TIMIT corpus. In order to match testing samples from the GRID corpus with 8 

kHz sampling frequency, the training sa1 sentences are downsampled to 8 kHz. Then, 

each speaker’s model is built from his training speech and the UBM by adapting the 

mean and variance via the MAP-GMM approach as shown in Section 2.3. 

Recognition rates in testing the GRID corpus using a 256-, 512- and 1024-mixture 

UBM are listed in Figure 4-5. Since higher-mixture UBMs only slightly improve the 

performance but with much heavier computational loads, the 256-mixture UBM is 

used in this thesis. Figure 4-6 shows the effects of building the 256-mixture UBM by 

different training data sets. The UBM is built either on 630 sa1 sentences only or 

combined with 630 sa2 sentences. As shown in Figure 4-6, the recognition rates of 

two different training sets are very close. Therefore, the 256-mixture UBM trained 

from sa1 sentences is used in succeeding tests. 
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    The 256-mixture UBM is utilized to evaluate performance by adaptations of 

parameters (mean, mean and variance, mean variance and weight) with and without 

the CMS normalization. Figure 4-7 indicates that the best overall performance is from 

adapting only the mean vectors with the CMS normalization. Thus, simulations in 

following sections are done in the scenario of a 256-mixture UBM with mean 

adaptation and the CMS normalization. Two UBMs built from 8 kHz and 16 kHz 

sampling frequency training sa1 sentences are used to match different sampling 

frequencies of GRID and TIMIT corpora. 
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Table 4. Correct recognition rates (in %) of 70 people in TIMIT corpus.     

 Factory1   Pink      
  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC-GMM-CMS 65.00 32.86 11.43 2.86 46.43 21.43 5.00 2.86 

MFCC-UBM-CMS 53.57 33.57 10.00 3.57 42.14 22.86 7.86 3.57 

ACC-GMM-CMS 82.14 52.86 27.86 6.43 73.57 42.14 18.57 4.29 

ACC-UBM-CMS 91.43 72.86 45.71 16.43 86.43 60.71 29.29 6.43 

STMF-GMM-CMS (A) 85.00 75.00 57.14 11.43 80.00 64.29 45.00 12.14
STMF-UBM-CMS (A) 92.14 85.00 62.14 16.43 88.57 78.57 56.43 10.00
STMF-UBM-CMS (B) 84.29 75.00 66.43 31.43 80.71 72.14 65.00 38.57
STMF-GMM-CMS (B) 77.14 71.43 62.86 33.57 75.71 65.71 51.43 41.43

 

 White   F16      
  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC-GMM-CMS 36.43 18.57 10.00 2.86 58.57 28.57 7.86 2.86 

MFCC-UBM-CMS 39.29 27.86 19.29 7.14 54.29 30.71 10.71 2.86 

ACC-GMM-CMS 51.43 34.29 20.71 11.43 73.57 56.43 20.00 4.29 

ACC-UBM-CMS 68.57 42.14 22.14 12.14 76.43 60.00 33.57 10.00
STMF-GMM-CMS (A) 67.86 51.43 37.86 12.14 82.14 68.57 55.00 10.71
STMF-UBM-CMS (A) 83.57 68.57 52.14 15.00 82.14 72.86 54.29 15.00
STMF-UBM-CMS (B) 76.43 66.43 60.00 28.57 78.57 73.57 63.57 29.29
STMF-GMM-CMS (B) 69.29 55.00 48.57 35.71 70.71 63.57 57.14 25.71

 

 MFCC-GMM-CMS MFCC-UBM-CMS ACC-GMM-CMS ACC-UBM-CMS 

Clean 100 100 98.57 98.57 
 STMF-GMM-CMS  

(A) 
STMF-UBM-CMS 

(A) 
STMF-GMM-CMS 

(B) 
STMF-UBM-CMS 

(B) 
Clean 98.57 98.57 95.71 92.86 

 

Table 4 and Figure 4-8 show recognition rates of six approaches (three features 

with CMS; GMM or MAP-GMM) for the TIMIT corpus. Table 5 and Figure 4-9 show 

the comparison for the GRID corpus. Based on these results, the MAP-GMM clearly 

has the superior performance to the GMM for all features (MFCCs, ACCs and STMF). 

Compared with GMM, MFCCs, ACCs and STMF via the MAP-GMM approach 
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perform 9.9%, 12.46% and 13.92% better (average recognition rate in 5dB and 10dB 

SNR condition) in TIMIT corpus, and perform better 14.97%, 15.15% and 16.48% in 

GRID corpus. Therefore, the computational complexity, which is not addressed here, 

will be the only issue in choosing GMM versus MAP-GMM for a practical system. 

 

Table 5. Correct recognition rates (in %) of GRID corpus. 

 Factory1   Pink      
  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC-GMM-CMS 73.28 51.72 24.46 5.69 69.12 47.99 22.55 5.83 

MFCC-UBM-CMS 75.44 62.25 44.51 15.25 72.94 59.36 42.11 12.06
ACC-GMM-CMS 86.32 73.63 52.35 20.34 83.92 70.83 47.94 22.45
ACC-UBM-CMS 89.71 83.92 69.22 39.80 88.53 81.52 66.96 39.85
STMF-GMM-CMS (A) 89.71 84.46 55.78 12.30 88.73 83.24 57.79 11.52
STMF-UBM-CMS (A) 92.75 90.25 80.64 45.69 92.75 89.41 80.93 42.01
STMF-UBM-CMS (B) 81.62 80.00 74.71 46.86 80.15 78.73 75.15 51.32
STMF-GMM-CMS (B) 80.93 78.09 71.81 36.52 79.41 78.14 73.19 49.80

 

 White   F16      
  15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB
MFCC-GMM-CMS 52.16 38.58 27.50 8.92 71.18 50.83 22.99 5.78 

MFCC-UBM-CMS 66.08 54.95 44.61 25.64 74.61 58.68 39.90 9.75 

ACC-GMM-CMS 72.25 55.54 40.20 32.06 83.09 68.43 44.90 19.17
ACC-UBM-CMS 83.53 73.19 59.31 47.11 85.64 77.30 63.58 35.39
STMF-GMM-CMS (A) 83.28 72.65 45.83 19.71 88.14 82.65 52.55 8.04 

STMF-UBM-CMS (A) 88.87 84.61 74.61 46.18 90.88 87.65 78.68 36.42
STMF-UBM-CMS (B) 78.09 76.81 71.91 45.54 80.83 79.41 72.01 36.86
STMF-GMM-CMS (B) 77.06 74.90 70.49 47.50 80.44 79.75 68.28 26.91

 

 MFCC-GMM-CMS MFCC-UBM-CMS ACC-GMM-CMS ACC-UBM-CMS 

Clean 100 96.52 95.69 95.78 
 STMF-GMM-CMS  

(A) 
STMF-UBM-CMS 

(A) 
STMF-GMM-CMS 

(B) 
STMF-UBM-CMS 

(B) 
Clean 94.07 94.95 86.37 84.41 
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FIGURE 4-8 Average recognition rates (in %) of 70 people in TIMIT corpus. 
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4.3 Discussions 
From the experiment results in the previous section, it is clearly that ACCs are 

more robust than MFCCs. In addition, the STMF process could further enhance the 

performance of ACCs. Here are some reasons for these phenomenons.  

The ACCs are derived from the auditory spectrum which represents speech 

energy along the log-frequency axis with the 24 cochlear filters per octave frequency 

resolution. This constant frequency resolution is high enough to characterize the 

1/3~1/6 octave critical bandwidth measured in human hearing. In addition, the lateral 

inhibitory network in the first cochlear module sharpens the cochlear filters to have 

narrower bandwidth. On the other hand, the MFCCs use FFT to transform a time 

domain signal into the frequency domain. Such conventional approach has the 

trade-off between the time and frequency resolution. This 

constant-frequency-resolution versus time-frequency-resolution-trade-off might be the 

main reason for why hearing based features usually perform better than conventional 

FFT-based features. 

The STMF process comprises several significant concepts. First, it works on 

joint spectro-temporal modulations not spectral or temporal modulations separately. 

Thus, we can extract more high-level features, such as the speaking rate (by temporal 

modulations) and FM sweeping directions (by joint spectro-temporal modulations). 

Secondly, the 10-2 - 1 mask (10-2 for non-speech regions and 1 for speech regions) is 

intuitively similar to the conventional VAD approach. The major difference is that the 

VAD masks the non-speech regions on a frame-by-frame basis in the time domain 

while the STMF process masks the non-speech t-f units in the joint spectro-temporal 

domain.  

As shown in Table 2 and Table 3, the parameter set STMF(B) performs better 
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within 0~10dB than the parameter set STMF(A), but worse in clean and 15dB 

conditions with the GMM based recognizer. It is not surprisingly since adopting the 

higher threshold would inevitably degrade the intelligibility of the clean speech such 

that the recognition rates decrease in high SNR conditions. On the other hand, the 

parameter set of STMF(A) produces better results than the parameter set of STMF(B) 

in the MAP-GMM based recognizer as shown in Table 4 and Table 5. The reason for 

that is the UBM is trained by the clean speech through the STMF process. The 

MAP-GMM is then to derive the speaker’s model by adapting the well trained UBM. 

As mentioned above, the parameter set of STMF(B) performs worse in clean 

conditions, therefore, to construct a worse UBM. Thus, MAP-GMM speaker models 

adapted from this UBM would have worse performance due to the worse of speaker 

variability of this UBM. Consequently, the parameter set of the STMF(B) is suitable 

for GMM based recognizers while the parameter set of the STMF(A) is more 

favorable for MAP-GMM based recognizers. 
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Chapter 5   
Conclusion and Future Works 
 

In this thesis, we propose auditory spectral features (ACCs) further enhanced by 

the spectro-temporal modulation filtering (STMF) process for speaker recognition 

tasks in additive noises and demonstrate their superior performance of robustness to 

conventional MFCCs. Performance comparisons are also done between our proposed 

features and newly developed ANTCCs reported in [7]. For a randomly drawn 

70-people testing set from TIMIT corpus, our STMF features are more robust than 

ANTCCs. For GRID corpus, ANTCCs and our STMF features achieve higher 

recognition rates in high SNR (15 and 10 dB) and low SNR (5 and 0 dB) conditions, 

respectively. We also demonstrate the MAP-GMM can further improve performance 

of proposed features provided the amount of training data is considered insufficient. 

However, the down side of the MAP-GMM is its computational complexity which 

makes the real-time implementation infeasible for now. 

The STMF process produces joint spectro-temporal smoothed spectrogram, 

which highlights certain high-level information of the speaker. Such high-level 

information appears to be less variable than low-level information (for example, the 

static spectrum or MFCCs) in presences of noises. In the future, we will inspect the 

benefit of STMF process in presences of convolutional noises (such as channels or 

handsets mismatch). 
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