CONTENTS

ABSTRACT (Chinese)	I
ABSTRACT (English)	III
ACKNOWLEDGEMEN	NT V
CONTENTS	VI
LIST OF TABLES	XI
LIST OF FIGURES	

CHAPT	TER 1 INTRODUCTION	
1.1	Background And Motivation	
1.2	Statement Of The Problems	
1.3	Research Project	
1.4	Objectives	11
1.5	Dissertation Layout	

2.1	Intro	luction	. 15
2.2	Moda	l-Based Damage Detection And Health Monitoring	. 15
	2.2.1	Methods for Detection of Structural Damage Location	. 17
	2.2.2	Methods for Estimation of Damage Extent	. 19
2.3	Neura	l-Networks-Based Approaches	. 20
	2.3.1	Neural Networks for System Identification	. 20
	2.3.2	Neural Networks for Structural Health Monitoring	. 22

CH	IAP	TER 3	ARTIFICIAL NEURAL NETWORKS	. 25
	3.1	Intro	luction	25
	3.2	Super	vised Neural Network With L-BFGS Learning Algorithm	27
		3.2.1	Backpropagation Network (BPN)	27
		3.2.2	L-BFGS Learning Algorithm	31
	3.3	Unsup	pervised Fuzzy Neural Network Reasoning Model	32
		3.3.1	Similarity Measurement	33
		3.3.2	Fuzzy Set Generation	35
		3.3.3	Solution Synthesis	35

CHAPTE	R 4	ANN APPROACH FOR SYSTEM	
		IDENTIFICATION OF STRUCTURES	37
4.1 In	trod	uction	. 37
4.2 Ge	enera	l View On Application Of ANN In System Identification	. 38
4.3 AN	NNSI	I Model For Modal Analysis	. 41
4.3	3.1	Construction of Modal Analysis Network (MAN) for a Linear	
		Dynamic System	. 42
4.3	3.2	Estimation of Modal Parameters	. 46

4.5	System	n Monitoring Networks	62
	4.4.2	Relationship between Strain and Displacement Modal Parameters	. 59
	4.4.1	Equation of Strain Motion of a system	57

 Global Monitoring Networks	4.5.1
 Decentralized Monitoring Networks	4.5.2

	4.5.3	Example 1 - Health Monitoring of a Five-Story Steel Frame
		Using Global Monitoring Networks
	4.5.4	Example 2 - Damage Detection of a Six-Story Steel Frame Using Decentralized Monitoring Networks
CHAP	IEK 5	VIA NEURAL NETWORKS
5.1	Introd	luction
5.2	Dama	ge Detection By Using The UFN Model
	5.2.1	Index for Damage Localization
	5.2.2	UFN for the Damage Detection of Structures
	5.2.3	Input-/Output Patterns for the Neural Network
	5.2.4	Example - Damage Detection of a Five-Story Steel Frame 87
5.3	Estim	ation Of Damage Extent
	5.3.1	Algorithms for the estimation of damage extent
	5.3.2	Example - Damage Extent Assessment of a Five-Story Shear
		Frame
CHAP	FER 6	SETUP FOR THE EXPERIMENTAL STUDY 117
6.1	Introd	luction
6.2	Shaki	ng Table And Experimental Specimen 120
	6.2.1	The Shaking Table in NCTU
	6.2.2	Four-Story Steel Test Model
6.3	Sensir	ng Instrumentations126
	6.3.1	Accelerometers
	6.3.2	FBG Sensors and RSGs130
6.4	Deteri	ioration Simulation

	6.4.1	Strengthening Column	
	6.4.2	Simulated Deterioration Cases	148
6.5	Exper	imental Scheme	148
6.6	Pre-A	nalysis Of The Measured Data	151
	6.6.1	Acceleration Records and Their Fourier Spectra	
	6.6.2	Measurements from the FBG Sensors and RSGs	

CHAPTER 7 HEALTH MONITORING ON THE TEST

FRAME175	5
7.1 Introduction17	5
7.2 Modal Analysis Using The ANNSI Model 17	6
7.2.1 Modal Data of the Specimen Extracted from the Acceleration Measurements	6
7.2.2 Modal Data of the Specimen Extracted from the RSGs Measurements	4
7.2.3 Modal Data of the Specimen Extracted from the FBG Sensors Measurements	3
7.3 Damage Detection With The Displacement-Based Modal Data 21	7
7.3.1 Damage Indicators from the Displacement-Based Modal Data	8
7.3.2 Monitoring of Degradation Development in Story Stiffness Based on the Modal Data	n 2
7.4 Damage Detection With The Strain-Based Modal Data	4
7.4.1 Extraction of the Damage Indicators	4
7.4.2 Damage Indicators Obtained from the RSGs Measurements 22	5
7.4.3 Damage Indicator Obtained from the FBG sensors Measurements	9
7.4.4 Further Discussions on the FBG Sensors and RSGs	4

	age Detection With The Monitoring Networks	7.5 Da
235	Health Monitoring Using Global Monitoring Networks	7.5
	Health Monitoring Using Decentralized Monitoring	7.5
	Networks	

CHAPTER 8	HEALTH MONITORING SYSTEM	
	FOR THE STRUCTURAL MONITORI	NG
	AND DAMAGE DIAGNOSIS	
8.1 Introdu	ction	251
8.2 An Integ	grated System For Structural Health Monitoring	

CHAPTE	ER 9 CONCLUDING REMARKS	259
9.1 Su	ummary	259
9.1	1.1 Analytical Study	259
9.2	.1.2 Experimental Study	263
9.2	.1.3 Integrated Structural Health Monitoring System	265
9.2 Re	ecommendations On Future Research	265

REFERENC	Е.	
APPENDIX	A	
VITA		

LIST OF TABLES

CHAPTER 4

Table 4.1	Identified modal parameters for 8% Kobe earthquake input	55
Table 4.2	Identified modal parameters for different inputs	56
Table 4.3	Damage cases under discussion	72
Table 4.4	The conditions of predicted output error for each network due to the occurrence of damage	74

Table 5.1	Characterizations of simulated damage cases
Table 5.2	Characterizations of the testing instances
Table 5.3	Diagnostic results via UFN (without noise)
Table 5.4	Diagnostic results via UFN (with various noise levels) 102
Table 5.5	Diagnostic results of using incomplete modal data via UFN 104
Table 5.6	Diagnostic results via BPN 106
Table 5.7	Estimation of the damage extent based on the localization results in Table 5.3
Table 5.8	Estimation of the damage extent based on the use of noise-polluted mode shapes and the localization results in Table 5.4 113
CHAPTER (6
Table 6.1	Specifications of the shaking table in NCTU 121
Table 6.2	The characterizations of the experimental specimen 123
Table 6.3	Analytic modal parameters of the test model in the transverse direction

Table 6.4	Specifications of the accelerometers	127
Table 6.5	Specifications of the FBG-SLI	136
Table 6.6	Center wavelength of the FBG sensors along Channel 1	139

Table 6.7	Center wavelength of the FBG sensors along Channel 2 139
Table 6.8	Dimension of the SCs
Table 6.9	Characterizations of the simulated deterioration cases 149
Table 6.10	Operation sequence of the shaking table test 150
Table 6.11	Statistical summaries of the acceleration records 153
Table 6.12	Statistical summaries of the strain records from the FBG sensors at BE
Table 6.13	Statistical summaries of the strain records from the FBG sensors at TE
Table 6.14	Statistical summaries of the strain records from the FBG sensors at BW
Table 6.15	Statistical summaries of the strain records from the RSGs 169
CILADTED /	
Table 7.1	Modal parameters of the test structure in healthy condition (AAA) 179
Table 7.2	Modal parameters of <i>Dcase_BAA</i>
Table 7.3	Modal parameters of <i>Dcase_NAA</i>
Table 7.4	Modal parameters of <i>Dcase_ABA</i>
Table 7.5	Modal parameters of <i>Dcase_ANA</i>
Table 7.6	Modal parameters of <i>Dcase_AAB</i>
Table 7.7	Modal parameters of <i>Dcase_AAN</i>
Table 7.8	Modal parameters of <i>Dcase_BBA</i>
Table 7.9	Modal parameters of <i>Dcase_BNA</i>
Table 7.10	Modal parameters of <i>Dcase_NBA</i>
Table 7.11	Modal parameters of <i>Dcase_NNA</i>
Table 7.12	Modal parameters of <i>Dcase_BAB</i>
Table 7.13	Modal parameters of <i>Dcase_BAN</i>
Table 7.14	Modal parameters of <i>Dcase_NAB</i>

Table 7.15	Modal parameters of <i>Dcase_NAN</i>
Table 7.16	Modal parameters of <i>Dcase_ABB</i>
Table 7.17	Modal parameters of <i>Dcase_ABN</i>
Table 7.18	Modal parameters of <i>Dcase_ANB</i>
Table 7.19	Modal parameters of <i>Dcase_ANN</i>
Table 7.20	Modal parameters of <i>Dcase_BBB</i>
Table 7.21	Modal parameters of <i>Dcase_BBN</i>
Table 7.22	Modal parameters of <i>Dcase_NBB</i>
Table 7.23	Modal parameters of <i>Dcase_BNN</i>
Table 7.24	Modal parameters of <i>Dcase_NNB</i> 189
Table 7.25	Modal parameters of <i>Dcase_NNN</i>
Table 7.26	Modal parameters of <i>Dcase_AAA</i> using RSGs measurements 195
Table 7.27	Modal parameters of <i>Dcase_BAA</i> using RSGs measurements 195
Table 7.28	Modal parameters of <i>Dcase_NAA</i> using RSGs measurements 195
Table 7.29	Modal parameters of <i>Dcase_ABA</i> using RSGs measurements 196
Table 7.30	Modal parameters of <i>Dcase_ANA</i> using RSGs measurements 196
Table 7.31	Modal parameters of <i>Dcase_AAB</i> using RSGs measurements 196
Table 7.32	Modal parameters of <i>Dcase_AAN</i> using RSGs measurements 197
Table 7.33	Modal parameters of <i>Dcase_BBA</i> using RSGs measurements 197
Table 7.34	Modal parameters of <i>Dcase_BNA</i> using RSGs measurements 197
Table 7.35	Modal parameters of <i>Dcase_NBA</i> using RSGs measurements 198
Table 7.36	Modal parameters of <i>Dcase_NNA</i> using RSGs measurements 198
Table 7.37	Modal parameters of <i>Dcase_BAB</i> using RSGs measurements 198
Table 7.38	Modal parameters of <i>Dcase_BAN</i> using RSGs measurements 199
Table 7.39	Modal parameters of <i>Dcase_NAB</i> using RSGs measurements 199
Table 7.40	Modal parameters of Dcase_NAN using RSGs measurements 199

Table 7.41	Modal parameters of <i>Dcase_ABB</i> using RSGs measurements 200
Table 7.42	Modal parameters of <i>Dcase_ABN</i> using RSGs measurements 200
Table 7.43	Modal parameters of <i>Dcase_ANB</i> using RSGs measurements 200
Table 7.44	Modal parameters of <i>Dcase_ANN</i> using RSGs measurements 201
Table 7.45	Modal parameters of <i>Dcase_BBB</i> using RSGs measurements 201
Table 7.46	Modal parameters of <i>Dcase_BBN</i> using RSGs measurements 201
Table 7.47	Modal parameters of <i>Dcase_NBB</i> using RSGs measurements 202
Table 7.48	Modal parameters of <i>Dcase_BNN</i> using RSGs measurements 202
Table 7.49	Modal parameters of <i>Dcase_NNB</i> using RSGs measurements 202
Table 7.50	Modal parameters of <i>Dcase_NNN</i> using RSGs measurements 203
Table 7.51	Modal parameters of <i>Dcase_AAA</i> using FBGs measurements 205
Table 7.52	Modal parameters of <i>Dcase_BAA</i> using FBGs measurements 205
Table 7.53	Modal parameters of <i>Dcase_NAA</i> using FBGs measurements 206
Table 7.54	Modal parameters of <i>Dcase_ABA</i> using FBGs measurements 206
Table 7.55	Modal parameters of <i>Dcase_ANA</i> using FBGs measurements 207
Table 7.56	Modal parameters of <i>Dcase_AAB</i> using FBGs measurements 207
Table 7.57	Modal parameters of <i>Dcase_AAN</i> using FBGs measurements 208
Table 7.58	Modal parameters of <i>Dcase_BBA</i> using FBGs measurements 208
Table 7.59	Modal parameters of <i>Dcase_BNA</i> using FBGs measurements 209
Table 7.60	Modal parameters of <i>Dcase_NBA</i> using FBGs measurements 209
Table 7.61	Modal parameters of <i>Dcase_NNA</i> using FBGs measurements 210
Table 7.62	Modal parameters of <i>Dcase_BAB</i> using FBGs measurements 210
Table 7.63	Modal parameters of <i>Dcase_BAN</i> using FBGs measurements 211
Table 7.64	Modal parameters of <i>Dcase_NAB</i> using FBGs measurements 211
Table 7.65	Modal parameters of <i>Dcase_NAN</i> using FBGs measurements 212
Table 7.66	Modal parameters of <i>Dcase_ABB</i> using FBGs measurements 212

Table 7.67	Modal parameters of <i>Dcase_ABN</i> using FBGs measurements 213
Table 7.68	Modal parameters of <i>Dcase_ANB</i> using FBGs measurements 213
Table 7.69	Modal parameters of <i>Dcase_ANN</i> using FBGs measurements 214
Table 7.70	Modal parameters of <i>Dcase_BBB</i> using FBGs measurements 214
Table 7.71	Modal parameters of <i>Dcase_BBN</i> using FBGs measurements 215
Table 7.72	Modal parameters of <i>Dcase_NBB</i> using FBGs measurements 215
Table 7.73	Modal parameters of <i>Dcase_BNN</i> using FBGs measurements 216
Table 7.74	Modal parameters of <i>Dcase_NNB</i> using FBGs measurements 216
Table 7.75	Modal parameters of <i>Dcase_NNN</i> using FBGs measurements 217
Table 7.76	Possible deterioration location identified by using the CSMS and with a threshold of -10% (RSG measurements)
Table 7.77	Possible deterioration location identified by using the CSMS and with a

LIST OF FIGURES

CHAPTER 1

Figure 1.1	Illustration of the relationship between system performance and health
	monitoring (including damage diagnosis) of a smart structure
Figure 1.2	Relationship between system identification and damage assessment
	techniques 5
Figure 1.3	The frame of the health monitoring system 12

CHAPTER 3

Figure 3.1	Diagram of a neuron	26
Figure 3.2	A typical three-layer neural network	. 28
Figure 3.3	Process of the UFN reasoning	36
	「東京教会会」	

CHAPTER	4
Figure 4.1	Identification network trained with feedback inputs 40
Figure 4.2	Identification network trained without feedback inputs
Figure 4.3	Topology of the modal analysis neural network
Figure 4.4	Operation procedure of the ANNSI model 48
Figure 4.5	A photo of the five-story steel frame in NCREE
Figure 4.6	Response histories for 8% Kobe earthquake input
Figure 4.7	Comparison between the measured (solid line) and predicted (dash line) responses for 8% Kobe earthquake input
Figure 4.8	Schematic diagram of health monitoring using neural networks 64
Figure 4.9	Relative mean absolute errors of predictions for the Kobe Earthquake inputs with various reduction levels
Figure 4.10	Model of a six-story shear frame structure
Figure 4.11	Topology of the neural network, <i>Net</i> ₁ 73
Figure 4.12	Predicted MAE for Case 175

Figure 4.13	Predicted MAE for Case 2	
Figure 4.14	Predicted MAE for Case 3	
Figure 4.15	Predicted MAE for Case 4	
Figure 4.16	Predicted MAE for Case 5	

Figure 5.1	Plots of the DLF for the Dam_k_1 class with 20% damage extent ((a) to (e) are the plots of the DLF which are obtained by dividing the changes in the modal vector to the changes in the 1st to 5th modal
	values, respectively)
Figure 5.2	Plots of the DLF for the Dam_k_1 class with 26% damage extent
	((a) to (e) are the plots of the DLF which are obtained by dividing the
	changes in the modal vector to the changes in the 1st to 5th modal
	values, respectively)
Figure 5.3	Plots of the DLF for the Dam_{k_2} class with 20% damage extent
	((a) to (e) are the plots of the DLF which are obtained by dividing the
	changes in the modal vector to the changes in the 1st to 5th modal
	values, respectively)
Figure 5.4	Plots of the DLF for the Dam_k_3 class with 20% damage extent
	((a) to (e) are the plots of the DLF which are obtained by dividing the
	changes in the modal vector to the changes in the 1st to 5th modal
	values, respectively)
Figure 5.5	Plots of the DLF for the $Dam_k_1 \& k_2$ class with 20% damage extent
	((a) to (e) are the plots of the DLF which are obtained by dividing the
	changes in the modal vector to the changes in the 1st to 5th modal
	values, respectively)
Figure 5.6	Plots of the DLF for the $Dam_k_1 \& k_3$ class with 20% damage extent
	((a) to (e) are the plots of the DLF which are obtained by dividing the
	changes in the modal vector to the changes in the 1st to 5th modal
	values, respectively)
Figure 5.7	Estimations of the damage extent using noise-free modal data 114
Figure 5.8	Estimations of the damage extent using noise-polluted modal data 115

Figure 6.1	Earthquake simulator- shaking table system in NCTU	. 121
Figure 6.2	Time-history and frequency spectrum of the 0.08g Kobe earthquake	122
Figure 6.3	Schematic diagrams of the four-story frame (unit: <i>mm</i>)	124
Figure 6.4	Member cross section of the test model (unit: <i>mm</i>)	. 125
Figure 6.5	A photo of the four-story clear frame	. 126
Figure 6.6	Displacement of the sensing instrumentations	. 128
Figure 6.7	Accelerometer at the 2nd floor of the test frame	. 129
Figure 6.8	Accelerometer at the base of the test frame	. 129
Figure 6.9	A schematic representation of a fiber Bragg grating (extracted from Othonos and Kalli, 1999)	131
Figure 6.10	Illustration of a fiber Bragg grating with strain effect	. 133
Figure 6.11	FBG data acquisition system	135
Figure 6.12	Block diagram of the optical layout (extracted from FBG-SLI Instruction Manual, Version 4.0)	137
Figure 6.13	Configurations of the FBG sensors	. 139
Figure 6.14	Transmission and reflection spectra of Channel 1	140
Figure 6.15	Transmission and reflection spectra of Channel 2	. 141
Figure 6.16	Locations of the FBG1 and RSG1	. 142
Figure 6.17	Location of the FBG2	. 142
Figure 6.18	Location of the FBG9	. 143
Figure 6.19	Schematic diagrams of the SC and its connection	. 146
Figure 6.20	Connection of the SC at the 1st story (left) and the 2nd floor (right)	147
Figure 6.21	A photo of the intact structure	. 147
Figure 6.22	Increments of maximum response for the single deteriorated site scenarios	155

Figure 6.23	Comparisons of the effectiveness between the SC-A and SC-B 156
Figure 6.24	Spectra of the AAA_acc record 157
Figure 6.25	Spectra of the deterioration class $Dclass_k_1$
Figure 6.26	Spectra of the deterioration class $Dclass_k_2$
Figure 6.27	Spectra of the deterioration class $Dclass_k_3$
Figure 6.28	Spectra of the deterioration class $Dclass_k_1 \& k_2$
Figure 6.29	Spectra of the deterioration class $Dclass_k_1 \& k_3$
Figure 6.30	Spectra of the deterioration class $Dclass_k_2 \& k_3$
Figure 6.31	Spectra of the deterioration class $Dclass_k_1 \& k_2 \& k_3$
Figure 6.32	Strain time-history responses of the FBG sensors at BW for AAA 171
Figure 6.33	Strain time-history responses of the RSGs at BW for AAA 172
Figure 6.34	Strain time-history responses of the FBG sensors at TE for AAA 173
Figure 6.35	Strain time-history responses of the FBG sensors at BW for AAA 174
CHAPTER	7
Figure 7.1	Response histories of the AAA_acc measurement
Figure 7.2	Comparison between the measured (solid line) and computed (dash line) responses for the AAA_acc measurement
Figure 7.3	Variations of natural frequency under different deteriorated cases 190
Figure 7.4	Variations of damping ratio under different deteriorated cases 191
Figure 7.5	Relative changes in natural frequencies
Figure 7.6	Relative changes in damping ratios 193
Figure 7.7	CMS for $Dclass_k_1$
Figure 7.8	CMS for $Dclass_k_2$
Figure 7.9	CMS for $Dclass_k_3$
Figure 7.10	CMS for $Dclass_k_1 \& k_2$
Figure 7.11	CMS for $Dclass_k_1 \& k_3$

Figure 7.12	CMS for $Dclass_k_2 \& k_3$	222
Figure 7.13	CMS for $Dclass_k_1 \& k_2 \& k_3$	222
Figure 7.14	Variations of the natural frequencies in the structure of degradation	223
Figure 7.15	CSMS for $Dclass_k_1$ (RSGs measurements)	227
Figure 7.16	CSMS for $Dclass_k_2$ (RSGs measurements)	227
Figure 7.17	CSMS for $Dclass_k_3$ (RSGs measurements)	227
Figure 7.18	CSMS for $Dclass_k_1 \& k_2$ (RSGs measurements)	228
Figure 7.19	CSMS for $Dclass_k_1 \& k_3$ (RSGs measurements)	228
Figure 7.20	CSMS for $Dclass_k_2 \& k_3$ (RSGs measurements)	228
Figure 7.21	CSMS for $Dclass_k_1 \& k_2 \& k_3$ (RSGs measurements)	229
Figure 7.22	CSMS for $Dclass_k_1$ (FBG sensors measurements)	230
Figure 7.23	CSMS for $Dclass_k_2$ (FBG sensors measurements)	230
Figure 7.24	CSMS for <i>Dclass_k</i> ₃ (FBG sensors measurements)	231
Figure 7.25	CSMS for $Dclass_k_1 \& k_2$ (FBG sensors measurements)	231
Figure 7.26	CSMS for $Dclass_k_1 \& k_3$ (FBG sensors measurements)	231
Figure 7.27	CSMS for $Dclass_k_2 \&k_3$ (FBG sensors measurements)	232
Figure 7.28	CSMS for $Dclass_k_1 \& k_2 \& k_3$ (FBG sensors measurements)	232
Figure 7.29	Relative increments in prediction error in all deterioration cases based on acceleration measurements	237
Figure 7.30	Relative increments in prediction error in the structure of degradation based on acceleration measurements	1 238
Figure 7.31	Relative increments in prediction error in all deterioration cases based on strain measurements (from FBG sensors)	239
Figure 7.32	Relative increments in prediction error in the structure of degradation based on strain measurements (from FBG sensors)	n 240
Figure 7.33	Relative increments in prediction error of each decentralized monitor network for $Dclass_k_1$ (using acceleration measurements)	ring 242

- Figure 7.36 Relative increments in prediction error of each decentralized monitoring network for $Dclass_k_1\&k_2$ (using acceleration measurements) 243
- Figure 7.37 Relative increments in prediction error of each decentralized monitoring network for $Dclass_k_1\&k_3$ (using acceleration measurements) 244
- Figure 7.38 Relative increments in prediction error of each decentralized monitoring network for $Dclass_k_2\&k_3$ (using acceleration measurements) 244
- Figure 7.39 Relative increments in prediction error of each decentralized monitoring network for $Dclass_k_1 \& k_2 \& k_3$ (using acceleration measurements) ... 245

Figure 8.1	Operation	of the integrated	health monitoring system	
------------	-----------	-------------------	--------------------------	--