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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

3.1 Introduction  

An artificial neural networks (ANNs) model is a functional abstraction of the 

biological neural structures of the central nervous system. They are composed of many 

simple and highly interconnected computational elements, also called neurons, that 

operate in parallel and are arranged in patterns similar to biological neural nets. Figure 

3.1 shows the typical diagram of a neuron. The neurons are connected by weighted 

links passing signals from one neuron to another. Each neuron receives a number of 

input signals through its connections. The output signal is transmitted through the 

neuron’s outgoing connection. The outgoing connection, in turn, splits into a number of 

branches that transmit the same signal. The outgoing branches terminate at the 

incoming connections of other neurons in the network.  

It is generally thought that a neural network is highly sophisticated nonlinear 

dynamic system. Although each neuron is primitive both in architecture and in function, 

a network comprising many neurons is intricate. In addition to its nonlinear nature, 

neural network is a signal processing system. The inherent dynamic process can be 

classified as a fast process and a slow process. The former is a numerical process to 

evolve to an equilibrium status with given inputs. The latter is a learning process where 

the values of the connective weights between neurons are adjusted according to the 
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environment. After learning, environmental information is stored on the connective 

weights. 

 

 

Figure 3.1  Diagram of a neuron 

 

In 1943, McCulloch, a neurobiologist, and Pitts, a statistician, published a seminal 

paper [75] which inspired the development of the modern digital computer. At 

approximately the same time, Rosenblatt [76] was also motivated by this paper to 

investigate the computation of the eye, which eventually led to the first generation of 

artificial neural networks, known as the perceptron. Since then, the theory and design 

of ANNs have advanced significantly.  

Over the last two decades, ANNs have found application in pattern recognition, 

signal process, intelligence control, system identification, optimization, etc. [48, 49, 77] 

because of their excellent learning capacity and their high tolerance to partially 

inaccurate data. They are suitable particularly for problems too complex to be modeled 

and solved by classical mathematics and traditional procedures. A good review article 

by Adeli [78] summarized the applications of the ANNs in civil engineering during the 
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20th century.  

Artificial neural networks are typically characterized by their computational 

elements, their network topology, and the learning algorithm used. According to the 

learning approaches adopted, ANNs can be classified into two major groups: 

supervised and unsupervised. A supervised network is given both inputs and desired 

outputs pairs for training or learning. The network adjusts its weights until the errors 

between its outputs and the desired reach a predefined bound. An unsupervised 

network is commonly used for classification or clustering. Its weights are adjusted 

using predefined criteria until the network has performed a classification. Since these 

two types of networks are both adopted for signal processing and/or damage detection 

in this work, they are sequentially introduced in the following sections. The first 

introduced network model is a supervised neural network with L-BFGS learning 

algorithm, and the second one is an unsupervised neural network with fuzzy reasoning 

algorithm. 

 

3.2 Supervised Neural Network With L-BFGS Learning Algorithm  

3.2.1 Backpropagation Network (BPN)  

Among the several different types of ANN, the feedforward, multilayered, 

supervised neural network with the error backpropagation algorithm, the 

backpropagation network (BPN) [79], is by far the most frequently applied neural 

network learning model, due to its simplicity. 

The architecture of BP networks, depicted in Figure 3.2, includes an input layer, 

one or more hidden layers, and an output layer. Five components exist in such a 



CHAPTER 3   ARTIFICIAL NEURAL NETWORKS 
 
 

 28 

network [48]: neuron (node); link; bias unit (threshold); weight; and transfer function. 

The nodes in each layer are connected to each node in the adjacent layer. Notably, 

Hecht-Nielsen [80] proved that one hidden layer of neurons suffices to model any 

solution surface of practical interest. Hence, a network with only one hidden layer is 

considered in this work.  

 

 

Figure 3.2 A typical three- layer neural network 
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Before an ANN can be used, it must be trained from an existing training set of 

pairs of input-output elements. The training of a supervised neural network using a BP 

learning algorithm normally involves three stages. The first stage is the data feed 

forward. The net input to a node (j) in hidden layer is 

vj

N

k
kjkj

i

xv θ+= ∑
=1

net                         (3.1) 

where jkv  is the connective weight between nodes in the input layer and those in 

hidden layer; kx  is the input of the kth node in input layer.; jνθ  is bias term 

associated with the hidden layer; and iN  is the number of nodes in input layers. 

Then the output to this node is  

)net( jj gO =                            (3.2) 

where g is the transfer function in the node. The transfer function can be linear or 

nonlinear according to the problems of interest. 

Similarly, the computed output of the ith node in output layer is defined as 

follows.   
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where ijw  is the connective weight between nodes in the hidden layer and those in 

the output layer; wiθ  is bias term associated with the output layer. Terms hN , and 

oN  are the number of nodes in hidden and output layers, respectively.  

The second stage is error back-propagation  through the network. During training, 
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a system error  function  is used to monitor the performance of the network. This 

function is often defined as follows. 
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where W represents the collection of the weight matrices and the bias terms associated 

to the current network; and iy~  is the desired (or measured) value of output node i. 

The final stage is the adjustment of the weights. The standard BP algorithm uses a 

gradient descent approach with a constant step length (learning ratio? to train the 

network. 
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where η is the constant, general learning ratio in the range, [0, 1]. The superscript 

index, (k), indicates the kth learning iteration.  

Backpropagation supervised neural network learning models, however, always 

take an extended period to learn. Moreover, the convergence of a BP neural network is 

strongly depends upon the use of a learning rate (η). Herein, a more effective adaptive 

L-BFGS learning algorithm [81], based on the limited memory 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi Newton second-order method [82] 

with an inexact line search algorithm, is employed. 
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3.2.2 L-BFGS Learning Algorithm 

In the conventional BFGS method, the approximation, Hk+1, to the inverse 

Hessian matrix of the error function, E, is updated by,  
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Rather than forming the matrix Hk in the BFGS method, the vectors sk and yk first 

define and then implicitly and dynamically update the Hessian approximation using 

information from the preceding few iterations. Therefore, the final stage of adjusting 

weights in a supervised ANN is modified as follows. 
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The search direction is given by,  
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The step length, αk, is mathematically adapted during the learning process, 

according to the inexact line search algorithm. This algorithm is used rather than a 

constant learning ratio in the L-BFGS learning algorithm. It is based on three 

sequential operations bracketing, sectioning, and interpolation. The bracketing 

operation brackets the potential step length, α, between two points, through a series of 

function evaluations. Sectioning then takes the two points of the bracket, for example 

α1 and α2, as the initial points, reduces the step size piecemeal, and determines the 

minimum between the points, to a desired degree of accuracy. Finally, quadratic 

interpolation approach takes the three points, α1, α2, and (α1+ α2)/2, to fit a parabola 

and thus determine the step length, αk. Accordingly, the step length, αk, must satisfy the 

following conditions in each iteration. 
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Hence, the problem of trial and error selection of a learning ratio in the 

conventional BP algorithm is avoided in the adaptive L-BFGS learning algorithm. 

 

3.3 Unsupervised Fuzzy Neural Network Reasoning Model  

The unsupervised fuzzy neural networks (UFN) reasoning model was proposed by 
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Hung and Jan [83]. This model had been successful applied to the problems of 

preliminary design [84, 85] and control of building structures [86], and is further 

applied to the damage detection of structures [87]. The UFN reasoning model consists 

of an unsupervised neural network with a fuzzy computing process. The basic concept 

of the proposed model is that, the solution of a new instance can be solved by retrieved 

the similar instances from a collection of solved instances, named as instance base, to 

a specified domain. The following is a brief review of the UFN reasoning model.  

The UFN reasoning model is implemented in the following steps (Figure 3.3):  

(i) measuring the similarities between new instance and existed instances;  

(ii) generating the fuzzy set of similar instances; and  

(iii) synthesizing the solution based on the fuzzy set of similar instances.  

The three steps are introduced in the following subsections. 

 

3.3.1 Similarity Measurement 

The first step involves searching for instances that similar to the new instance (Y) 

in the instance base (Uj) according to their inputs ( iY  and ijU , ). It is performed 

through a single-layered laterally-connected network with an unsupervised competing 

algorithm.  

The similarity measurement is implemented by calculating the degree of 

difference between two instances. The function of degree of difference is defined as 
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where Yjd  denotes the discrepancy between the inputs of the new instance Y and the 

jth instance Uj in the instance base; mα  denotes predefined weight which is used to 

represent the degree of importance for the mth decision variable in the input. 

After the values of Yjd  for all instances are calculated, the degree of similarity of 

instances Y and Uj can be derived by the following fuzzy membership function.  

min

maxmin

max

minmax

minminmax
minmax

1

)(

0

),,(
Rd

RdR
Rd

if
if
if

dRR

dRRR
RRdf

Yj

Yj

Yj

Yj

Yj
YjYj

≤
<<

≥











−

−
==µ  (3.13) 

The terms Rmax and Rmin define the upper and lower bounds of the degree of 

difference. In case the degree of difference is less than the upper bound Rmax, any two 

instances are treated as similar in some measure. Obviously, Equations (3.12) and (3.13) 

show that the smaller the discrepancy Yjd  is, the higher is the degree of similarity.  

It is seen from equation (3.13) that the upper bound Rmax heavily influences the 

measurement of similarity. A large Rmax implies a loose similar relationship between 

instances. Consequently, a large number of instances are considered as similar 

instances. Since the solution of the new instance is based on the similar instances been 

taken, a selection of large Rmax could result in inferior solution. On the other hand, a 

small Rmax indicates that a strict similar relationship is adopted. Accordingly, most of 

the instances in the instance base are sorted as dissimilar to the new instance, and the 

UFN reasoning model could generate no solution. Therefore, a linear correlation 

analysis is employed to systematically determine the appropriate value of Rmax. More 
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details about the correlation analysis process can be seen in Appendix A [85, 88].  

 

3.3.2 Fuzzy Set Generation 

The second step entails representing the fuzzy relationships among the new 

instance and its similar instances. The instances with the degree of difference smaller 

than Rmax (the fuzzy membership value larger than zero, in other words) are extracted 

from the instance base as similar instances. Subsequently, the fuzzy set of “similar to 

Y” is then formed with the similar instances and their corresponding fuzzy 

membership values and is expressed by 

{ }... ),( ..., ),( ),( 2211sup, ppY SSSS µµµ=               (3.14) 

where Sp is the pth similar instance to instance Y; and µp is the corresponding fuzzy 

membership value. 

 

3.3.3 Solution Synthesis  

Finally, the solution for instance Y is generated by synthesizing the outputs of 

similar instances according to their associated fuzzy membership value through the 

center of gravity (COG) method. As a result, the output Yo of instance Y via the COG 

method is defined as follows: 
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Figure 3.3 Process of the UFN reasoning 
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