
CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 25

CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

An artificial neural networks (ANNs) model is a functional abstraction of the

biological neural structures of the central nervous system. They are composed of many

simple and highly interconnected computational elements, also called neurons, that

operate in parallel and are arranged in patterns similar to biological neural nets. Figure

3.1 shows the typical diagram of a neuron. The neurons are connected by weighted

links passing signals from one neuron to another. Each neuron receives a number of

input signals through its connections. The output signal is transmitted through the

neuron’s outgoing connection. The outgoing connection, in turn, splits into a number of

branches that transmit the same signal. The outgoing branches terminate at the

incoming connections of other neurons in the network.

It is generally thought that a neural network is highly sophisticated nonlinear

dynamic system. Although each neuron is primitive both in architecture and in function,

a network comprising many neurons is intricate. In addition to its nonlinear nature,

neural network is a signal processing system. The inherent dynamic process can be

classified as a fast process and a slow process. The former is a numerical process to

evolve to an equilibrium status with given inputs. The latter is a learning process where

the values of the connective weights between neurons are adjusted according to the

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 26

environment. After learning, environmental information is stored on the connective

weights.

Figure 3.1 Diagram of a neuron

In 1943, McCulloch, a neurobiologist, and Pitts, a statistician, published a seminal

paper [75] which inspired the development of the modern digital computer. At

approximately the same time, Rosenblatt [76] was also motivated by this paper to

investigate the computation of the eye, which eventually led to the first generation of

artificial neural networks, known as the perceptron. Since then, the theory and design

of ANNs have advanced significantly.

Over the last two decades, ANNs have found application in pattern recognition,

signal process, intelligence control, system identification, optimization, etc. [48, 49, 77]

because of their excellent learning capacity and their high tolerance to partially

inaccurate data. They are suitable particularly for problems too complex to be modeled

and solved by classical mathematics and traditional procedures. A good review article

by Adeli [78] summarized the applications of the ANNs in civil engineering during the

Neuron

Input signals

1x

2x

nx

Weights

W1

W2

Wn

Output signals

y
y2

ym

y1

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 27

20th century.

Artificial neural networks are typically characterized by their computational

elements, their network topology, and the learning algorithm used. According to the

learning approaches adopted, ANNs can be classified into two major groups:

supervised and unsupervised. A supervised network is given both inputs and desired

outputs pairs for training or learning. The network adjusts its weights until the errors

between its outputs and the desired reach a predefined bound. An unsupervised

network is commonly used for classification or clustering. Its weights are adjusted

using predefined criteria until the network has performed a classification. Since these

two types of networks are both adopted for signal processing and/or damage detection

in this work, they are sequentially introduced in the following sections. The first

introduced network model is a supervised neural network with L-BFGS learning

algorithm, and the second one is an unsupervised neural network with fuzzy reasoning

algorithm.

3.2 Supervised Neural Network With L-BFGS Learning Algorithm

3.2.1 Backpropagation Network (BPN)

Among the several different types of ANN, the feedforward, multilayered,

supervised neural network with the error backpropagation algorithm, the

backpropagation network (BPN) [79], is by far the most frequently applied neural

network learning model, due to its simplicity.

The architecture of BP networks, depicted in Figure 3.2, includes an input layer,

one or more hidden layers, and an output layer. Five components exist in such a

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 28

network [48]: neuron (node); link; bias unit (threshold); weight; and transfer function.

The nodes in each layer are connected to each node in the adjacent layer. Notably,

Hecht-Nielsen [80] proved that one hidden layer of neurons suffices to model any

solution surface of practical interest. Hence, a network with only one hidden layer is

considered in this work.

Figure 3.2 A typical three- layer neural network

Hidden layer

1y 1

2

1x

Input layer Output layer

2x

iNx

2y

oNy

vjk wij

k
kx iy

vθ wθ

iN

1

2

j

hN
oN

i

1

2

: neuron (node)

: bias unit

Input signals

Error signal

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 29

Before an ANN can be used, it must be trained from an existing training set of

pairs of input-output elements. The training of a supervised neural network using a BP

learning algorithm normally involves three stages. The first stage is the data feed

forward. The net input to a node (j) in hidden layer is

vj

N

k
kjkj

i

xv θ+= ∑
=1

net (3.1)

where jkv is the connective weight between nodes in the input layer and those in

hidden layer; kx is the input of the kth node in input layer.; jνθ is bias term

associated with the hidden layer; and iN is the number of nodes in input layers.

Then the output to this node is

)net(jj gO = (3.2)

where g is the transfer function in the node. The transfer function can be linear or

nonlinear according to the problems of interest.

Similarly, the computed output of the ith node in output layer is defined as

follows.

)))(((
11

wijk

N

k
jk

N

j
iji xvgwgy

ih
θθν ++= ∑∑

==
, o ,2 ,1 Ni L= (3.3)

where ijw is the connective weight between nodes in the hidden layer and those in

the output layer; wiθ is bias term associated with the output layer. Terms hN , and

oN are the number of nodes in hidden and output layers, respectively.

The second stage is error back-propagation through the network. During training,

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 30

a system error function is used to monitor the performance of the network. This

function is often defined as follows.

T
ppp

P

p
pP

E)
~

)(
~

(
2
1

)(
1

YYYYW −−= ∑
=

 (3.4.a)

)y~ ~ ~ ~(
~

o21 Niyyy LL=Y (3.4.b)

)y (21 oNiyyy LL=Y (3.4.c)

where W represents the collection of the weight matrices and the bias terms associated

to the current network; and iy~ is the desired (or measured) value of output node i.

The final stage is the adjustment of the weights. The standard BP algorithm uses a

gradient descent approach with a constant step length (learning ratio? to train the

network.

)()()1(kkk WWW ∆+=+ (3.5)

)(
)(

k
k E

W
W

∂
∂

−=∆ η (3.6)

where η is the constant, general learning ratio in the range, [0, 1]. The superscript

index, (k), indicates the kth learning iteration.

Backpropagation supervised neural network learning models, however, always

take an extended period to learn. Moreover, the convergence of a BP neural network is

strongly depends upon the use of a learning rate (η). Herein, a more effective adaptive

L-BFGS learning algorithm [81], based on the limited memory

Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi Newton second-order method [82]

with an inexact line search algorithm, is employed.

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 31

3.2.2 L-BFGS Learning Algorithm

In the conventional BFGS method, the approximation, Hk+1, to the inverse

Hessian matrix of the error function, E, is updated by,

T
kkkkk

T
k

T
kkk

T
kkkk

T
kkkk

ss?VHV

ss?sz?IHzs?IH

+≡

+−−=+)()(1
 (3.7.a)

where

k
T
kk sz? /1= (3.7.b)

T
kkkk sz?IV −= (3.7.c)

)()1(kk
k WWs −= + (3.7.d)

kkk ggz −= +1 (3.7.e)

)(kk
E

W
g

∂
∂

= (3.7.f)

Rather than forming the matrix Hk in the BFGS method, the vectors sk and yk first

define and then implicitly and dynamically update the Hessian approximation using

information from the preceding few iterations. Therefore, the final stage of adjusting

weights in a supervised ANN is modified as follows.

kk
kk dWW α+=+)()1((3.8)

The search direction is given by,

1−+−= kkkkk dgHd β (3.9)

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 32

)1()1(

)1()1()1(

−−

−−−=
k

T
k

kk
T
k

k
dz

gHz
β (3.10)

The step length, αk, is mathematically adapted during the learning process,

according to the inexact line search algorithm. This algorithm is used rather than a

constant learning ratio in the L-BFGS learning algorithm. It is based on three

sequential operations bracketing, sectioning, and interpolation. The bracketing

operation brackets the potential step length, α, between two points, through a series of

function evaluations. Sectioning then takes the two points of the bracket, for example

α1 and α2, as the initial points, reduces the step size piecemeal, and determines the

minimum between the points, to a desired degree of accuracy. Finally, quadratic

interpolation approach takes the three points, α1, α2, and (α1+ α2)/2, to fit a parabola

and thus determine the step length, αk. Accordingly, the step length, αk, must satisfy the

following conditions in each iteration.

0)1,0())(()()()()()(>∈∇+≤+ kk
Tk

k
k

kk
k andEEE αββαα dWWdW (3.11.a)

0)1,()(()()()(>∈∇≥+∇ kk
Tk

k
T

kk
k andEE αβθθα dWddW (3.11.b)

0)()1(
)(<+∇ +k

T
kk

kE ddW α (3.11.c)

Hence, the problem of trial and error selection of a learning ratio in the

conventional BP algorithm is avoided in the adaptive L-BFGS learning algorithm.

3.3 Unsupervised Fuzzy Neural Network Reasoning Model

The unsupervised fuzzy neural networks (UFN) reasoning model was proposed by

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 33

Hung and Jan [83]. This model had been successful applied to the problems of

preliminary design [84, 85] and control of building structures [86], and is further

applied to the damage detection of structures [87]. The UFN reasoning model consists

of an unsupervised neural network with a fuzzy computing process. The basic concept

of the proposed model is that, the solution of a new instance can be solved by retrieved

the similar instances from a collection of solved instances, named as instance base, to

a specified domain. The following is a brief review of the UFN reasoning model.

The UFN reasoning model is implemented in the following steps (Figure 3.3):

(i) measuring the similarities between new instance and existed instances;

(ii) generating the fuzzy set of similar instances; and

(iii) synthesizing the solution based on the fuzzy set of similar instances.

The three steps are introduced in the following subsections.

3.3.1 Similarity Measurement

The first step involves searching for instances that similar to the new instance (Y)

in the instance base (Uj) according to their inputs (iY and ijU ,). It is performed

through a single-layered laterally-connected network with an unsupervised competing

algorithm.

The similarity measurement is implemented by calculating the degree of

difference between two instances. The function of degree of difference is defined as

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 34

2

1
,)()(m

j
m

M

m
mjiiYj uxUYdiffd −== ∑

=

α (3.12)

where Yjd denotes the discrepancy between the inputs of the new instance Y and the

jth instance Uj in the instance base; mα denotes predefined weight which is used to

represent the degree of importance for the mth decision variable in the input.

After the values of Yjd for all instances are calculated, the degree of similarity of

instances Y and Uj can be derived by the following fuzzy membership function.

min

maxmin

max

minmax

minminmax
minmax

1

)(

0

),,(
Rd

RdR
Rd

if
if
if

dRR

dRRR
RRdf

Yj

Yj

Yj

Yj

Yj
YjYj

≤
<<

≥

−

−
==µ (3.13)

The terms Rmax and Rmin define the upper and lower bounds of the degree of

difference. In case the degree of difference is less than the upper bound Rmax, any two

instances are treated as similar in some measure. Obviously, Equations (3.12) and (3.13)

show that the smaller the discrepancy Yjd is, the higher is the degree of similarity.

It is seen from equation (3.13) that the upper bound Rmax heavily influences the

measurement of similarity. A large Rmax implies a loose similar relationship between

instances. Consequently, a large number of instances are considered as similar

instances. Since the solution of the new instance is based on the similar instances been

taken, a selection of large Rmax could result in inferior solution. On the other hand, a

small Rmax indicates that a strict similar relationship is adopted. Accordingly, most of

the instances in the instance base are sorted as dissimilar to the new instance, and the

UFN reasoning model could generate no solution. Therefore, a linear correlation

analysis is employed to systematically determine the appropriate value of Rmax. More

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 35

details about the correlation analysis process can be seen in Appendix A [85, 88].

3.3.2 Fuzzy Set Generation

The second step entails representing the fuzzy relationships among the new

instance and its similar instances. The instances with the degree of difference smaller

than Rmax (the fuzzy membership value larger than zero, in other words) are extracted

from the instance base as similar instances. Subsequently, the fuzzy set of “similar to

Y” is then formed with the similar instances and their corresponding fuzzy

membership values and is expressed by

{ }...),(...,),(),(2211sup, ppY SSSS µµµ= (3.14)

where Sp is the pth similar instance to instance Y; and µp is the corresponding fuzzy

membership value.

3.3.3 Solution Synthesis

Finally, the solution for instance Y is generated by synthesizing the outputs of

similar instances according to their associated fuzzy membership value through the

center of gravity (COG) method. As a result, the output Yo of instance Y via the COG

method is defined as follows:

∑
∑

=

== p

k k

p

k okk
o

S
Y

1

1 ,

µ

µ
 (3.15)

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS

 36

Figure 3.3 Process of the UFN reasoning

New instance Y

?

U1

Instance base U

…

µ

Rmin dYj Rmax

d

1.0

µj

µ

Rmin dYj Rmax

d

1.0

µj

U2

UN

…

dY1

dY2

dYN

Find any
dYj<Rmax S1 (µ1) S2 (µ2) Sp (µp)…S1 (µ1) S2 (µ2)S2 (µ2) Sp (µp)Sp (µp)…

Fuzzy set of similar instances

COG method:

∑
∑

=

== p

k k

p

k okk
o

S
Y

1

1 ,

µ

µ
 ? =Yo

Measuring the similarities between new instance and existed instances

Generating the fuzzy set of similar instances

Synthesizing the solution based on the fuzzy set

 Solution for new instance:

