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CHAPTER 4 

ANN APPROACH FOR SYSTEM 

IDENTIFICATION OF STRUCTURES 

4.1 Introduction  

System identification is an essential means of studying the dynamic 

characteristics of a structural system. In conventional ways, there have been a number 

of effective identification methods which can be found in lots of books [89, 90] or 

articles for a linear dynamic system. For a nonlinear dynamic system, in contrast, few 

effective methods are available. Some existing methods which require prior knowledge 

or rely on certain assumptions, may only work for specific types of nonlinearities. A 

main difficulty in dealing with a nonlinear system lies in finding a reliable 

mathematical model for it. Without a model, it is usually impossible to proceed with 

system identification. Neural network, however, does not rely on a preconceived 

mathematical model or even the number of parameters. Owing to its brilliant learning 

capability and its nonlinear nature, neural network is well suited for nonlinear system 

identification and was studied and applied to real-world problems [10, 12, 13, 52, 53, 

56, 91].  

The operation of neural networks in system identification for either a linear 

system or a nonlinear system is the same. The neural networks are trained from the 
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observed input-output data of the dynamic system to be identified. Thus, the trained 

network reflects the input-output characteristics of the system it intends to represent. If 

the input-output data is well formed and meaningful in physical way, a trained neural 

network has the capacity to stand for the structural system in dynamics. 

In the following sections, a general view on the application of neural networks in 

system identification is first introduced. Subsequently, the theoretical basis and 

operation of the developed system identification model (named as ANNSI model) 

which is based on the combination of the time-domain analysis method and an 

artificial neural network is presented. The ANNSI model can be used to obtain the 

modal parameters of structures from the structural acceleration or strain measurements. 

The global and decentralized system monitoring networks, which are used for health 

monitoring purposes, are also presented in turn. In addition, examples are also 

performed right after the models or methods are presented to exam the capabilities of 

each of them. 

 

4.2 General View On Application Of ANN In System Identification  

To find a network topology (or structure) that suitable for modeling the real 

structural system is the essence of using neural networks for system identification. As a 

result, with the same inputs, a trained neural network should produce similar outputs as 

the real system does within an acceptable error range. When using neural network for 

system identification of a structural system, the following general characteristics 

should be addressed.  

(1) There is no need to establish a mathematical model for the real dynamic 



CHAPTER 4   ANN APPROACH FOR 
SYSTEM IDENTIFICATION OF STRUCTURES 

 
 

 39 

system, since the operation of a neural network is basically treated as a 

‘black box’. This is particularly attractive for the nonlinear system 

identification because it is usually difficult to establish a mathematical 

model for such a system. The learning process of a neural network is 

implemented basing on the input-output data from a real system. Therefore, 

only the input-output relationship of such a system is studied. The dynamic 

characteristics or system parameters are reflected by the connective weights 

in the neural network.  

(2) Despite the advantages of using neural network in system identification, an 

inherent inconvenience is that the topology of the network (i.e. the numbers 

of layers and neurons, and the transfer function adopted) is usually searched 

by empirical and trial-and-error methods. The network topology is also 

selected based on the compromise between the identification accuracy and 

the complexity of the network. When simple network topology is employed 

(without or with only one hidden layer and linear transfer function is used, 

for example), lesser learning cost and lower identified accuracy is yielded. 

On the contrary, a complicated network topology (more than one hidden 

layer and nonlinear transfer function is involved, for example) leads to more 

burdensome learning time and higher accuracy. From this viewpoint, the 

selection of a suitable network topology for system identification seems a 

burden in some aspects. Fortunately, with more understanding about the 

behaviors of the system, the selection of the network topology would be 

easier and more appropriate. 

(3) The convergence rate of the identification network is overwhelmingly 
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dictated by the network topology, the learning algorithm, and the training 

information employed, but rarely depended on the dimension of the system. 

(4) Trained neural network as an identification model is a physical realization of 

a real system. It can be used for further related applications, such as on- line 

control, damage detection, and health monitoring of structural system. 

Two ways of learning, with and without feedback inputs, are commonly adopted 

for system identification using neural network. Figures 4.1 and 4.2 diagrammatically 

illustrate the principle of these two learning approaches, respectively. 

 

 

Figure 4.1  Identification network trained with feedback inputs 

 

As shown in Figure 4.1, the terms, )(tx , )(ty , and )(tν , are the generalized 

input, output, and noise of the dynamic system at time t, respectively. The term, )(ty p , 

is the predicted output from the network. The generalized input and output could be 
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any kind of structural responses, such as displacement, velocity, acceleration, and even 

strain. TDL stands for tapped delay line which provides a phase delay for a signal. In a 

training iteration, the connective weights of the network are adjusted based on the 

discrepancy, )(terr , between the predicted output ( )(ty p ) from the neural network 

and real output ( )(ty ) of the system. In addition, the predicted output is feedback to 

the input layer as a part of the training input data for the next training iteration.  

In the similar way, a neural network can be trained for system identification 

without feedback inputs (as shown in Figure 4.2). This way of learning is most adopted 

for its simplicity and fast convergence. Throughout this research, the neural networks 

are trained in this way.  

 

 

Figure 4.2  Identification network trained without feedback inputs 
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4.3 ANNSI Model For Modal Analysis  

The development of experimental modal analysis as a new technology is 

propelled by its ability to offer quick and effective solutions to practical engineering 

problems. Along with the development of modern computer technology, experimental 

modal analysis has become the main tool for solving complicated structural vibration 

problems. For an existing engineering structure, experimental modal analysis provides 

vital information on its dynamic behavior, thus permitting intelligent solutions to 

vibration problems the structure may be experiencing. 

This section presents a novel modal analysis approach, ANNSI model, for the 

identification of structural modal parameters (such as natural frequencies, modal 

damping ratio, and mode shapes) of structures. The dynamic characteristics are directly 

evaluated from the weighting matrices of the neural network trained by observed 

structural responses and input base excitations. This model is constructed based on a 

supervised neural network and a time series analysis method [13]. Theoretically, 

various kinds of structural responses can be used in this model. For the convenience of 

interpretation, however, the most measured response, acceleration, is employed to 

develop the formulation in the ANNSI model. 

 

4.3.1 Construction of Modal Analysis Network (MAN) for a Linear Dynamic 
System 

Acceleration responses are normally measured in monitoring the responses of a 

structure in an earthquake. Therefore, these measured data are used to train an ANN. 

Figure 4.3 illustrates the proposed structure of the ANN, where )( itf l − , with 
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ni L2, 1, ,0= , represents input base accelerations, corresponding to component l at 

)( it −  time step, while )( jtxk −&& , with mj L2, 1, ,0= , represents the observed 

acceleration responses of the kth degree of freedom (DOF) relative to the base at the 

)( jt −  time step. It is seen from Figure 4.3 that, the structural response at current 

moment is correlated with the structural response and system inputs at previous 

moments. As a result, this network model is similar to the time series ARX model.  

Herein, a nonlinear transfer function is used in the network and is defined as, 









−<−
≤≤−

>
=

11
11

11
)(

ywhen
ywheny

ywhen
yg                  (4.1) 

Notably, the values for nodes in the input layer are usually normalized to the range 

between 1 and –1 in training an ANN. Consequently, the argument of the transfer 

function is rarely larger than 1 or less than –1. 

Following the procedure for establishing a neural network and using the observed 

acceleration responses of the target structure in an earthquake, enables the connective 

weights and thresholds to be determined and an appropriate network topology to be 

established for the structural system.  
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Figure 4.3 Topology of the modal analysis neural network 
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Careful investigation of the ANN established according to Figure 4.3 reveals that 

the network yields a linear system if the transfer function is linear. The normalization 

of the values in the input nodes is such that the responses in the output layer are 

approximately related to the values of the input nodes by the following linear 

relationship. 

{ } }){}]{([]][[}{ wvWXVWY θθ ++=               (4.2.a) 

where  

{ } T
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The elements of [ ]W  and [ ]V are ijw  and ijv , respectively, and the elements of 

{ } { }v and θθw  are viwi θθ  and . Carefully expanding equation (4.2.a) yields, 

{ }C

jtf

jtf
jtf

itx

itx
itx

tx

tx
tx

l

n

j

j

k

m

i

i

k

+





















−

−
−

+





















−

−
−

=





















∑∑
==

)(

)(
)(

ˆ

)(

)(
)(

ˆ

)(

)(
)(

2

1

0

)(
2

2

1

1

)(
1

2

1

M
&&

M

&&
&&

&&
M

&&
&&

WW       (4.3.a) 

where  

[ ] [ ][ ]VW  ˆˆ
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{ } [ ]{ } { }wvWC θθ +=                       (4.3.c) 
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Equation (4.3.a) is similar to the time series model, ARX. The ARX model 

equates the equations of motion of a structural system. The dynamic characteristics of 

the system can be determined from the coefficient matrices of AR [92]. Note that, since 

the weight matrices of a trained ANN which has the topology shown in Figure 4.3 are 

later used for modal analysis, this kind of network was termed as modal analysis 

network (MAN for short) in the dissertation. 

 

4.3.2 Estimation of Modal Parameters  

After trained the MAN with the corresponding measurements, the modal 

parameters are extracted from the connective weights. Constructing the following 

transfer matrix,  
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enables the modal parameters to be determined from the eigenvalues and eigenvectors 

of it [93].  

Let kλ and { }kψ represent the kth eigenvalue and eigenvector of [ ]G , 

respectively. The eigenvalue, kλ , is normally a complex number, equal to kk iba + . 
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The corresponding natural frequency and modal damping of the structural system are 

given by,   

22~
kkk γσγ +=                       (4.5) 

kkk γσξ ~/−=                           (4.6) 

where kγ~  is the pseudo-undamped circular natural frequency; kξ  is the modal 

damping ratio;  
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and 
t∆

1
 is the sampling rate of measurement. 

The special composition of [ ]G  in equation (4.4) yields the following property of 

its eigenvectors. 
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where { }1kψ  is the complex modal shape of the system, corresponding to the natural 

frequency, kγ~ .  

 Notably, the formulation shown above is easily extended to cases with multiple 

hidden layers, by modifying only the definitions for )(
1

ˆ iW , )(
2

ˆ jW , and }{C in equation 

(4.3).  

Figure 4.4 give a summarized view on the operation procedure of the ANNSI 

model. 
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Figure 4.4  Operation procedure of the ANNSI model 

 

Various neural networks with the architecture given in Figure 4.3 (i.e. modal 

analysis networks, MANs), can be established, from the measured responses of a 

structure in earthquakes with various magnitudes. The modal parameters for the 

structure in different earthquakes can be determined from the established MANs, by 

the above approach. Considerable changes in modal parameters, corresponding to 

different MANs, indicate significant changes in the structural properties in different 

earthquakes.  
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4.3.3 Example－ Modal Analysis of a Five-Story Steel Frame in NCREE 

This example is a dynamic test of a five-story steel frame on the shaking table 

(Figure 4.5) conducted in National Center for Research on Earthquake Engineering 

(NCREE) in Taiwan. Shaking table tests are often performed in a laboratory to 

examine the behavior of structures in earthquakes. The NCREE in Taiwan undertook a 

series of shaking table tests on a 3 m long, 2 m wide, and 6.5 m high steel frame [94] 

to generate a set of earthquake response data for this benchmark model of a five-story 

steel structure. Lead blocks were piled on each floor such that the mass of each floor 

was approximately 3664 kg. The frames were subjected to the base excitation of the 

Kobe earthquake, weakened by various levels. The displacement, velocity, and 

acceleration response histories of each floor were recorded during the shaking table 

tests. Additionally, some strain gauges were also installed in one of the columns and 

near the first floor. The sampling rate of the raw data was 1000 Hz. These raw data 

were reproduced with a 200 Hz sampling rate by taking one data point out of every 

five raw data points to save computational time and to match to the typical sampling 

rate for real applications. 

Notably, it was reported [94] that the frame responded linearly when it subjected 

to 8%, 10%, 20%, 40%, and 52% of the strength of the Kobe earthquake. Measured 

strains and visual inspection revealed that 60% of the strength of the Kobe earthquake 

input caused the steel columns near the first floor to yield. In the following, only the 

responses and inputs in the long span direction are discussed. 
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Figure 4.5 A photo of the five-story steel frame in NCREE 

 

Figure 4.6 depicts time histories of the acceleration responses of each floor, when 

the steel frame was subjected to 8% of the strength of the Kobe earthquake. The steel 

frame responded linearly at this level. The large responses between 4.5 and 12.5 

seconds were used to train an ANN and thus, to some extent, reduce the noise effect.  

The architecture of the ANN is as shown in Figure 4.3, with k=5, l=1, m=n=30 and ten 
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nodes in the hidden layer. This architecture was used throughout this example. The 

acceleration responses of each floor relative to the base were used to train an MAN. 

Figure 4.7 shows the excellent correspondence between the observed responses and the 

computed responses from the trained MAN for all floors. It is noted that the computed 

responses in Figure 4.7 were obtained from the trained MAN by using the observed 

data as input of the MAN.  

 

Evaluation of the Correlation of Modal Shapes 

An index commonly used to evaluate the correlation of modal shapes is based on 

the modal assurance criterion (MAC) defined as [95], 

**

2*

 
),(

iC

T
iCiR

T
iR

iC
T
iR

iCiRMAC
ffff

ff
ff =                    (4.10) 

where * denotes the complex conjugate, iRf  and iCf  represent the ith complex 

mode shapes for the reference state and the current state to which it is to be compared, 

respectively. Apparently, two corresponding modes are highly correlated if the MAC 

value is close to one, and uncorrelated if it is near zero.  
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Figure 4.6 Response histories for 8% Kobe earthquake input 
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Figure 4.7 Comparison between the measured (solid line) and predicted (dash line) 

responses for 8% Kobe earthquake input. 
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As will show later, the MAC value is not very sensitive to the changes in modal 

shapes for the cases considered in the example. Thus, an index proposed by Trifunac 

[96] for modal shapes in a proportional damping system, is also used for evaluating the 

identification results. The index is defined as,  

2/1
*

*

)
)()(

(
iR

T
iR

iCiR
T

iCiR aa
e

ff
ffff −−

=                 (4.11) 

where the complex constant, a, is obtained by minimizing *)()( iCiR
T

iCiR aa ffff −− . 

Equation (4.11) reveals that e is close to zero when the two modal shapes are highly 

correlated.  

 

Identified Results and Discussions 

Table 4.1 lists the identified modal parameters obtained from the trained MAN, 

which excellently agree with those obtained by Huang and Lin [97] who used a 

subspace technique to process the same response data. This consistency confirms the 

correctness of the proposed procedure of determining the modal parameters from an 

ANN.  

The measured acceleration responses of the frame under the base excitations with 

various reduction levels of the Kobe earthquake, enables the corresponding ANNs to 

be established and the corresponding modal parameters to be determined. Table 4.2 

summarizes the results, in which the values, MAC and e, designate the correlation 

between the modal shapes for an input of 20% Kobe earthquake and those for inputs 

with other reduction levels. 
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Table 4.1  Identified modal parameters for 8% Kobe earthquake input. 

Method Mode 
Frequency 

(Hz) 
Damping 

(%) 
MAC  e (%) 

1 1.40 1.56 1.00 0.38 
2 4.53 0.17 1.00 0.15 
3 8.23 0.17 1.00 0.31 
4 12.39 0.13 1.00 0.47 

ANNSI 

5 15.99 0.11 1.00 0.47 

1 1.40 1.30 / / 
2 4.53 0.16 / / 
3 8.23 0.19 / / 
4 12.39 0.13 / / 

subspace 
[97] 

5 15.99 0.10 / / 

Note: / : no data available 

 

Table 4.2 reveals that the frequencies for each mode generally decrease as the 

excitation magnitude increases, but the changes in frequency are quite small. Generally, 

the modal damping values increase with excitation magnitude. The modal damping 

values for the 60% Kobe earthquake are much greater than those for the 10% Kobe. 

Interestingly, only the damping for the first mode exceeds 1% while the damping for 

the other modes is typically much less than 1%. The MAC values in Table 4.2 indicate 

that the modal shapes for the 20% Kobe earthquake are likely to correlate closely with 

those for other excitations. However, e values clearly show that the modal shapes of 

the higher modes (3rd to 5th) for the 60% Kobe earthquake notably differ from those 

for the 20% Kobe earthquake, since the corresponding e values exceed 10%. 

Apparently, the e values are more sensitive to the differences in modal shapes than the 
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MAC values. The damping and e values truly reflect the fact of possible damage of the 

frame under the 60% Kobe earthquake input.  

 

Table 4.2  Identified modal parameters fo r different inputs. 

Excitation Mode 
Frequency 

(Hz) 
Damping 

(%) 
MAC e (%) 

1 1.40 1.65 1.00 1.00 
2 4.53 0.18 1.00 0.59 
3 8.24 0.22 1.00 0.66 
4 12.38 0.16 1.00 0.79 

10% 
Kobe 

5 16.00 0.16 1.00 1.17 

1 1.39 1.73 / / 
2 4.53 0.25 / / 
3 8.23 0.28 / / 
4 12.37 0.18 / / 

20% 
Kobe 

5 15.97 0.15 / / 

1 1.38 2.42 1.00 0.65 
2 4.50 0.47 1.00 0.92 
3 8.18 0.19 1.00 2.26 
4 12.36 0.21 1.00 6.58 

40% 
Kobe 

5 15.93 0.07 1.00 4.54 

1 1.37 2.89 1.00 0.42 
2 4.49 0.69 1.00 1.13 
3 8.14 0.53 1.00 3.36 
4 12.33 0.15 1.00 5.48 

52% 
Kobe 

5 15.91 0.58 1.00 6.83 

1 1.35 3.73 1.00 2.21 
2 4.45 0.92 1.00 5.24 

3 8.07 0.84 0.99 11.52 
4 12.24 0.83 0.98 13.42 

60% 
Kobe 

5 15.88 0.26 0.98 13.13 

Note: / : no data available 
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4.4 Identification Of Strain Mode Shapes  

The theories as well as the practical applications of modal analysis using 

displacement, velocity, and acceleration information had been extensively developed. 

Moreover, most of the studies of experimental modal analysis employ displacement, 

velocity, and acceleration observations from a structural system for the purpose of 

system identification. However, seldom studies employ the strain information for 

modal analysis of the structures. As an important and sensitive feature in the damage 

detection of structures in this research, the structural strain responses are measured and 

analyzed to be a basis for monitoring the condition of structures. As well, the strain 

mode shapes are extracted from the strain measurements to be a suitable damage 

indicator for detecting the structural damage. 

Basing on the ANNSI model, the approach for obtaining the strain mode shapes 

is introduced in this section. Before that, the theoretical basis of the approach is first 

presented. 

 

4.4.1 Equation of Strain Motion of a System 

For a finite element, the displacement }{u  at any point within the element can 

be expressed by 

}{}{ xu N=                           (4.12) 

in which N is predefined shape function matrix and }{x  represents a listing of nodal 

displacements for a particular element. 

With displacements known at all points within the element the strains at any point 
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can be determined by the following relationship: 

}{}{ uS=ε                            (4.13) 

where S is a suitable linear operator. Substitute equation (4.12) for }{u , the above 

equation can be rewritten as  

}{}{}{ xx BSN ==ε                        (4.14) 

which makes  

}{}{ 1 ε−= Bx                           (4.15) 

where B is the strain-nodal displacement matrix of the element.  

When the finite elements of the dynamic system were assembled to the equation 

of motion which yields 

}{}{}{}{ fxxx =++ KCM &&&                    (4.16) 

in which M, C, and K are the system mass, damping, and stiffness matrices, 

respectively; the components in }{x  and }{ f  are the nodal displacements and 

external forces, respectively.   

Using equation (4.15), since B is independent of time the following relationships 

hold.  

}{}{ 1 ε&&&& −= Bx                        (4.17.a) 

}{}{ 1 ε&& −= Bx                        (4.17.b) 

Impose equations (4.15) and (4.17) on equation (4.16), the equation of motion 

using notations of strain is derived. 
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}{}{}{}{ f=++ εεε KCM &&&                    (4.18.a) 

with  

1−= MBM ;                       (4.18.b) 

 1−= CBC ; and                    (4.18.c) 

1−= KBK                         (4.18.d) 

It is evidently seen that, this equation has the same form to equation (4.16) except 

for the notation of acceleration was replaced by strain. Therefore, the ANNSI model 

can be applied to the strain measurements. Notably, the identified mode shapes are the 

strain mode shapes of the system. 

 

4.4.2 Relationship between Strain and Displacement Modal parameters  

As known, the eigenvalues and eigenvectors of equation (4.16) can be solved by  

nn φω ][ 2MK − =0                       (4.19) 

where 2
nω  and nφ  represent the nth natural frequency and displacement mode shape 

of the system. Expanding the above equation leads to  

   nnn φωφ MK 2=                         (4.20) 

Pre-multiplying it with 1−M  yields 

   nnn φωφ 21 =− KM                        (4.21) 

Likewise, the eigenvalues and eigenvectors of equation (4.18.a) can be solved by  
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   nn φω
~

][ 2MK − =0                       (4.22) 

where nφ
~

 represent the nth strain mode shape of the system. Expanding the above 

equation leads to  

   nnn φωφ
~~ 2 MK =                         (4.23) 

Pre-multiplying it with 1−M  yields 

   nnn φωφ
~~ 21 =− KM                        (4.24) 

Using equations (4.18.b) to (4.18.d), the above equation becomes  

   nnn φωφ
~~ 211 =−− KBBM                      (4.25) 

Further pre-multiplying it with 1−B  results in  

   nnn φωφ
~~ 1211 −−− = BKBM                     (4.26) 

Compare equation (4.26) with equation (4.21), the relationship between the 

displacement mode shape and strain mode shape can be found which is  

nn φφ =− ~1B  or nn φφ B=
~

                    (4.27) 

Subsequently, the relationship between the strain and displacement modal 

damping is investigated. Let the damping matrix C in equation (4.16) to be 

proportional damping which is  

KMC ba +=                         (4.28) 

where a and b are constants. Since the system matrices, M, C, and K can be 
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simultaneously diagonalized by equivalence transformation using the orthogonal 

eigenvector matrix, ]   [ 21 nφφφ L=Φ . Equation (4.28) is diagonalized in the following 

form: 

ΦΦ+ΦΦ=ΦΦ KMC TTT ba                  (4.29.a) 

with  

]2[][ nnnn
T MdiagCdiag ωξ==ΦΦ C              (4.29.b) 

][ n
T Mdiag=ΦΦ M                     (4.29.c) 

][][ 2
nnn

T MdiagKdiag ω==ΦΦ K               (4.29.d) 

where nC , nM , and nK  are the nth modal damping, modal mass, and modal 

stiffness, respectively. Then the displacement modal damping ratios for each mode are 

calculated from the decoupled equation. 

Since the system matrices in equation (4.18.a) lack any specific symmetry, the 

system which is described by equation (4.18.a) is termed as nonclassical dynamic 

system. The eigenvalue problem associated with this equation is  

0}){( 2 =++ qKCM λλ                      (4.30) 

where λ  is a complex number and }{q  is a constant column vector. Further rewrite 

this equation as  

0}){( 112 =++ −− qKMCMI λλ                   (4.31) 

which necessarily has the same eigenvalues as equation (4.30).  

If equation (4.28) is back-multiplied by 1−B , it becomes 
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KMC ba +=                          (4.32) 

According to this equation, the strain damping matrix C  remains proportional. 

Therefore, equation (4.31) can be transformed into a equivalent  symmetric system by 

an eigenvalue preserving transformation [98]. The transformations of the asymmetric 

matrices, CM 1−  and KM 1− , are  

1111 ))(( −−−− = BBCMBBCM TT                (4.33.a) 

1111 ))(( −−−− = BBKMBBKM TT                (4.33.b) 

More details about how the transformation is implemented can be seen in the reference 

[98]. This result provides a necessary and sufficient condition for the existence of a 

linear transformation that transforms equation (4.31) into an equivalent symmetric 

system. When this condition is satisfied by a given system, the dynamics of the system 

can be described in terms of the well-developed theory for the damped symmetric 

systems. Moreover, the damping of the system can be evaluated from the equivalent 

symmetric system. However, due to the unknown B matrix, the relationship between 

the strain and displacement modal damping ratios is not directly established herein. 

Since the strain modal damping ratio is not the key data that used for structural health 

monitoring, the idea of the relationship is only introduced. 

 

4.5 System Monitoring Networks  

In general, the system identification methods can be classified into two major 

categories, which are parametric and nonparametric, according to their identified 

results. Most ANN-based methods belong to the latter one owing to the feature of 
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‘black box’. Nevertheless, the ANNSI model is parametric since it can produce the 

physical parameters of a structural system. In addition to the parametric ANNSI model, 

the ways of nonparametric identification are investigated in this research and presented 

in this section. Two system-identification-based health monitoring networks are 

proposed herein. They are global monitoring networks and decentralized monitoring 

networks. 

 

4.5.1 Global Monitoring Networks 

Marsi et al. [11] proposed an important idea for the health monitoring of 

structural damage using neural networks. They presented an ANN-based approach for 

the detection of changes in the structural characteristics of unknown systems. The 

major contribution of their work is that the proposed approach does not need a priori 

information about the nature of the system which is usually difficult to obtain in 

real-world situations. The damage detection procedure of this methodology, which is 

depicted in Figure 4.8, is divided into two steps: (1) the training of the identification 

network and (2) the detection of structural damage using the trained network.  

In the training stage, as shown in the top of Figure 4.8, a neural network is trained 

by the vibration measurements obtained from a healthy structure. In the damage 

detection stage, as shown in the bottom of Figure 4.8, the trained network is fed with 

comparably vibration measurements from the same structure under different episodes 

of response in order to monitor the condition of the structure.  
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Figure 4.8  Schematic diagram of health monitoring using neural networks 

 

According to the input variables of the MAN (Figure 4.3), it is found that the 

network provide a global view on the target structure since it is trained by the system 

input excitation and the structural responses at most DOFs. Therefore, if the networks 

that similar to MAN are employed for the health monitoring of structures, they are 
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generally called global monitoring networks.  

 

4.5.2 Decentralized Monitoring Networks 

Nakamura et al. [12] further applied the methodology proposed by Marsi et al.  

[11] to the actual data obtained from ambient vibration measurements on a steel 

building structure that was damaged under strong seismic motion. In their study, an 

individual network was prepared for each story and each network represents a physical 

system corresponding to a specific story of the building. Obviously, such networks 

provide a local view on the structure; as a result, they are generally called 

decentralized monitoring networks.  

Although the presented methodology by Nakamura et al. had successfully 

identified the difference between the damaged and undamaged stories, the 

methodology is limited due to the data needed for training the neural networks. The 

formulation they proposed must adopt the velocity and displacement information while 

displacement is  usually difficult to be measured in practical situations. Furthermore, 

the instrumentation was selected to directly measure velocity. Since the acceleration 

and displacement data are needed, they were computed by differentiation or integration 

with respect to time. Therefore, errors arose in the computations of differentiation and 

integration. Furthermore, the interstory restoring force was extracted by cumulatively 

summing up the inertia force at each floor from the top of the building down to the 

basement. Accordingly, structural response at every story should be measured which is 

usually not possible for a large structure however.  

Accordingly, an approach based on the concept of decentralized monitoring 
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networks is presented herein. Only measured acceleration data are needed in this 

approach. 

For an n-DOFs dynamic system, the motion of equation is 

)(}{)}({)}({)}({ tutxtxtx g&&&&& 1MKCM −=++             (4.33) 

If the system is assumed to be a shear frame structure and the damping matrix is 

assumed to be proportional damping, the extended form of equation (4.33) is 
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Expanding equation (4.34.a) enables n equations to be obtained. For explanation, 

now take the first two equations to be considered and then transform them to the 

discrete forms.  

][][][)(][][][ 12212121211111 iumixkixkkixcixcixm g&&&&&& −=−++++      (4.35.a) 

][][][)(
][][][][][

233232

1232322212122

iumixkixkk
ixkixcixcixcixm

g&&

&&&&&

−=−++
−+++

     (4.35.b) 

where ][ix&& , ][ix& , and ][ix  are the structural acceleration, velocity, and displacement 

at the ith time step, respectively.  

Suppose the velocity and displacement at current time step are correlated with the 

previous input excitation and struc tural response information. The formulations of 

velocity and displacement can be defined as  

])[ , ],1[ ],[ ],[ , ],2[ ],1[(][ 21 piuiuiupixixixFix gggjjjjj −−−−−= &&K&&&&&&K&&&&&  (4.36.a) 

])[ , ],1[ ],[ ],[ , ],2[ ],1[(][ 21 qiuiuiuqixixixGix gggjjjjj −−−−−= &&K&&&&&&K&&&&  (4.36.b) 

where F and G represent the functional mappings; p and q are the number of previous 

time steps should be involved to calculate the velocity and displacement responses at 

the current time step. 

Imposing equation (4.36) on equation (4.35) by setting j equal to 1, 2, and 3, 

respectively, equation (4.35) becomes  

2212121211111 )(][ GkGkkFcFcixm a ++−−−=&&          (4.37.a) 

332321232322212122 )(][ GkGkkGkFcFcFckxm a ++−+−−−=&&   (4.37.b) 
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where ][][][ iuixix g
a &&&&&& +=  is the measured absolute acceleration. Likewise, the rest 

equations from expanding equation (4.34.a) can be derived to the similar form as 

equation (4.37). 

Equation (4.37) shows that the absolute acceleration response at current time is a 

function of the damping and stiffness which adjacent to the DOF of interest and the 

responses in previous time steps. Since neural networks can be used for system 

identification purposes, two neural networks, named Net1 and Net2, are employed to 

learn the relationships in equations (4.37.a) and (4.37.b), respectively. Again, one can 

use neural networks to identify each of the rest expanded equations of equation 

(4.34.a).  

For the damage detection purpose, the procedure shown in Figure 4.8 is utilized 

for each network Nets (s=1~n). Refer to equation (4.37), if the column at 1st story was 

damaged (i.e. k1 changed), the relationship where the term k1 existed in alter (i.e. 

equation (4.37.a)), which causes the increment in prediction error from Net1 but not 

from other networks. Likewise, if the column at 2nd story was damaged (i.e. k2 

changed), the prediction errors from Net1 and Net2 increase, but that from others don’t. 

For other damage cases, the networks of which the predicted output errors increase can 

be easily obtained in the same way. As a result, the performance of the network Nets 

exhibits the following properties: 

(1) If no damage occurs in any structural element, the predicted outputs from 

Nets will close to the measured responses. 

(2) If stiffness reduction occurred in ki, the predicted output errors from Net(i-1) 

and Net i will then increase, and the prediction errors from the rest networks 
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won’t. Restated, if the prediction error from Net i increase, that means ki or 

k(i+1) may be damaged. 

According to the aforementioned properties, the decentralized monitoring 

networks can be used to identify damage location in simple way.  

 

4.5.3 Example 1－ Health Monitoring of a Five-Story Steel Frame Using Global 
Monitoring Networks 

Following the example in section 4.3.3, this example employs the trained MAN as 

global monitoring network to monitor the structural response in different earthquake 

events. The MAN is expected to be able to predict accurately the current responses, 

from previously measured responses and inputs, if the structural system remains linear 

and the modal properties do not significantly change. However, when the structural 

system is damaged or has deteriorated, it will exhibit nonlinear behavior resulting in a 

large error in the responses of this damaged structure, predicted by the trained MAN 

for the healthy, linear structure. The indexes proposed by Masri et al. [66] can be used 

to quantify this error. However, for simplicity in this example, only the mean absolute 

error (MAE) between the output predicted by the trained ANN, and the measured 

acceleration responses is computed for each DOF, and is defined as, 

∑
=

−=
T

t
ipim tyty

T
iMAE

1

)()(
1

)(                   (4.38) 

where i represents the ith DOF, and yim and yip are the normalized measurements and 

the predicted responses for the ith DOF, respectively.  

The responses at a moderate reduction level (say, 20%) of the Kobe earthquake 
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input were selected to establish the MAN to predict the responses to other inputs (i.e. 

10%, 40%, 52%, and 60% Kobe earthquake). The MAE values of each floor for 

various reduction levels of the Kobe earthquake are divided by the MAE value for the 

20% Kobe earthquake and presented in Figure 4.9. The small changes in the modal 

parameters for the frame with different inputs, discussed in the section 4.3.3, cause the 

prediction errors to increase for the 10%, 40% and 52% Kobe earthquake inputs. The 

relative MAE values for the responses to the 60% Kobe earthquake input greatly 

exceed the other relative MAE values, confirming the reported nonlinear responses to 

the 60% Kobe earthquake input [94]. As mentioned, MAN provides a global view on 

the structure been monitored, therefore further investigation is required to determine 

whether the larger relative MAE values for the first and second floors in the 60% Kobe 

earthquake input follow from the yielding of the columns near the first floor. 
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Figure 4.9  Relative mean absolute errors of predictions for the Kobe Earthquake 
inputs with various reduction levels 
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4.5.4 Example 2－ Damage Detection of a Six-Story Steel Frame Using 
Decentralized Monitoring Networks 

A numerical example of a six-story shear frame structure is presented to 

investigate the capabilities of decentralized monitoring network. The model of the 

six-story building structure is shown in Figure 4.10. The structural acceleration 

response is calculated with the El-Centro earthquake inputs via the state space 

procedure. In this example, the damage scenarios are simulated by the reduction of 

story stiffness. Five damage cases which are shown in Table 4.3 are discussed. Notably,  

the symbols Dam_k i ( 3~1=i ) in Table 4.3 denote that the damage results in reduction 

of stiffness of ki in single site. Similarly, the symbols Dam_k i&kj ( ji ≠ ) mean that the 

damage results in reduction of stiffness of ki and kj in multiple sites. 

 

 

Figure 4.10  Model of a six-story shear frame structure 
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Table 4.3  Damage cases under discussion 

No Damage class Damage level  

Case 1 Dam_k1 20% 

Case 2 Dam_k2 20% 

Case 3 Dam_k3 20% 

Case 4 Dam_k1&k2 10%&10% 

Case 5 Dam_k1&k3 10%&10% 

 

Suppose the acceleration responses of all DOFs are measured and hence six 

decentralized monitoring networks (Net i, i=1~6) are trained based on the relationship 

of equation (4.37). For example, Net1 is used to monitor the 1st DOF of the structure 

using the relationship of equation (4.37.a). The topology of Net1 is shown in Figure 

4.11. The decentralized monitoring networks for monitoring other DOFs can be 

organized and trained in similar way.  
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Figure 4.11  Topology of the neural network, Net1 

 

After all decentralized monitoring networks are trained with the corresponding 

responses from a healthy structure the trained networks are then fed with the responses 

from the same structure under different damage cases listed in Table 4.3 to monitor the 

conditions of the structure. Moreover, basing on the  properties that exhibited by the 

network performance, the conditions of prediction error from each network due to the 

occurrence of damage are summarized in Table 4.4. Herein, the predicted output error 

is defined as the MAE (equation (4.38)) between the forecasting and the measured 

responses. 

]1[1 −ix&&  

]2[1 −ix&&  

]30[1 −ix&&  

]1[2 −ix&&  

]2[2 −ix&&  

]30[2 −ix&&  

][iug&&  

]1[ −iug&&  

]30[ −iug&&  

][1 ix a&&  



CHAPTER 4   ANN APPROACH FOR 
SYSTEM IDENTIFICATION OF STRUCTURES  
 
 

 74 

 

Table 4.4  The conditions of predicted output error for each network                

due to the occurrence of damage 

Damage condition 
Predicted output error 
increases in network 

Stiffness reduction in k1 Net1 

Stiffness reduction in k2 Net1 &Net2 

Stiffness reduction in k3 Net2 &Net3 

Stiffness reduction in k4 Net3 &Net4 

Stiffness reduction in k5 Net4 &Net5 

Stiffness reduction in k6 Net5 &Net6 

 

Figures 4.12 to 4.16 show the predicted results of the decentralized monitoring 

networks for each damage case. When look through the results shown in these figures, 

the identification of damage is consistent with the descriptions listed in Table 4.4 

except for the Case 1. Furthermore, the network with maximum MAE just indicates the 

damage location. For example, the damage locations for Case 2 and Case 3 are in the 

2nd and 3rd story, respectively, and the network with the maximum MAE for these two 

cases are just Net2 and Net3, respectively.  
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Figure 4.12  Predicted MAE for Case 1 
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Figure 4.13  Predicted MAE for Case 2 
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Figure 4.14  Predicted MAE for Case 3 
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Figure 4.15  Predicted MAE for Case 4 
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Figure 4.16  Predicted MAE for Case 5 
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