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無線感測網路之合作式定位研究 

 

學生:王瑋萱             指導教授:謝世福 

 

國立交通大學電信工程研究所 

 

中文摘要 

  定位的應用非常廣泛，如:追蹤目標、航海定位和救援…等。在定位系統中，

藉由感測器對待測目標的量測資料(角度或距離)估計待測目標的位置。當網路中

多個待測目標可相互通訊時，合作式定位被提出:藉由待測目標之間(合作)的量

測資料可以有效的提升定位精準度。在合作式定位中，最佳的演算法為最大概似

法，其方程式為非線性方程式，可使用聯合牛頓法來實現。但是當待測目標數目

增加時，運算量會變的相當大。因此我們提出兩種降低運算量的方式：第一種方

式是藉由過去非合作線性化的經驗，我們成功推導出聯合泰勒展開演算法。第二

種方法，我們提出分割疊代演算法來降低運算複雜度，疊代可提升定位準確性。

也將原本的非線性方程式做雙曲線、新增變數和泰勒展開三種線性化處理。在效

能評估中，我們討論三種非合作線性演算法的定位效能，進一步在分割演算法

裡，針對泰勒展開線性化方法，設定在兩個待測目標情況下，推導其收斂的 MSE

理論值。另外，合作式的 Cramer-Rao Lower Bound (CRLB) 藉由 Fisher 

Information Matrix (FIM) 的反矩陣求得，然而矩陣的大小隨著待測目標增加

而變大，導致求反矩陣的運算非常的複雜。因此我們提出遞迴方塊反矩陣的特

性，推導一個運算簡單的近似等 FIM，並且利用近似結果，進一步去推導近似的

合作 CRLB。最後，利用電腦模擬驗證推導的結果。  
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Abstract 

     There are a lot of applications of localization including tracking, search, 

navigation and rescue. We can estimate position of mobile (object) by measurements 

(angles or distances) in sensor network. When mobiles can communicate to each other, 

cooperative localization has been proposed to improve the localization accuracy. In 

cooperative localization, the optimal ML estimator is nonlinear. It can be solved by 

Newton’s method, but the cost of computation increases when the number of mobiles 

increases. Therefore, we propose two methods to reduce the computation cost, joint 

Taylor-series expansion algorithm and divide-and-conquer algorithm. In 

divide-and-conquer algorithm, we use recursive method to enhance localization 

accuracy and simplify the nonlinear function by three linearization methods. Next, we 

compare the MSE performance of three linearized algorithms and derive the 

theoretical converged mean-square-error for divided Taylor-series expansion 

algorithm. Besides, cooperative Cramer-Rao Lower Bound (CRLB) is derived by 

Fisher Information Matrix (FIM) inverse, but the size of matrix increases when the 

number of mobiles increases. Then, we propose recursive block matrix inversion to 

derive a simple Approximated Equivalent FIM (AEFIM) and we further utilize the 

result to derive the Approximate Cooperative CRLB (AC-CRLB). Simulations are 

performed to support the theoretical results. 
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Chapter 1 
Introduction 
 

In recent years there has been interest in wireless sensor networks for variety of 

applications [2, 3 ,4]. Among those are health, commercial, environmental, public 

safety, home applications. In literature there are many methods to provide the 

localization estimation for wireless sensor network. Classify these localization 

methods as the deterministic [1, 12, 27] and probabilistic approached [22, 23]. Typical 

positioning parameters include time-of-arrival (TOA) [29, 45], time-difference-of 

arrival (TDOA) [5, 6], angle-of-arrival (AOA) [7] and received signal strength (RSS) 

[8, 9], and hybrid TDOA/AOA of mixture method [10, 11]. In this thesis, we only 

consider the TOA localization algorithms. However, in cooperative localization 

system, cooperative connection or Ad Hoc short-range communication among the 

terminals will be supported [41, 42]. Because they consider small-scale information 

between unknown positions can improve the localization accuracy. Therefore they 

focus on the data fusion of large-scale and small-scale. Cooperative Localization with 

Optimum Quality of Estimate (CLOQ) is proposed in [26] which takes advantage of 

the behavior of the channel to provide accurate indoor positioning. But, the estimated 

positions are fixed when they are estimated. Therefore, [15] devised an error 

propagation aware algorithm to update the unknown positions. Note that cooperative 

localization is not a well solved problem because the distance measurements between 

any pairs of unknown positions are utilized to aid in the location estimation. Then, [12] 

devised three novel subspace methods to solve that problem. Assuming the range 

measurements error are Gaussian distributed, the ML estimator [42] is another 

localization method and it is a nonlinear least squares problem [30]. It can be solved 
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by joint Newton’s algorithm, but the computation cost becomes more complex when 

the numbers of unknown positions increases. The algorithm of [15] tracks the extent 

of the uncertain virtual position error, but this algorithm has trade-off between 

computation cost and localization accuracy. Then, we propose two methods to reduce 

the computation cost, joint Taylor-series expansion (TS) algorithm and 

divided-and-conquer method. However divided Newton’s algorithm is a nonlinear 

function. Based on previous research of uncooperative linearized algorithms, we 

further use three algorithms, Taylor-series expansion (TS) algorithm [35] , 

distance-augmented (DA) algorithm [46] and hyperbolic-canceled (HC) algorithm [22] 

to perform divided-and-conquer method. One of the most important problems is the 

source of errors, including non-line-of-sight (NLOS) [16, 17] and multipath 

propagation [29, 37]. Then, tracking [20, 21] a moving unknown position is another 

important issue in sensor network localization. While the mobile is moving, the main 

concern is to estimate its trajectory. Kalman filter[18, 19] has been widely applied in 

trajectory estimation of a moving object. 

However, we know that the variance of the estimate is bounded by the 

Cramer-Rao Lower Bound (CRLB) [25]. It reveals the full Fisher Information Matrix 

(FIM). In cooperative localization, the full cooperative FIM is too complex to see the 

benefits of cooperation. Therefore, [31] proposed an eigenvalue view of Equivalent 

FIM (EFIM) to provide some insight in cooperative localization information for only 

two unknown positions. If there are more than two unknown positions, it still can not 

see the effect of cooperative. Therefore, we propose a recursive block matrix 

inversion based on eigenvalue view to derive the Approximation of EFIM (AEFIM). 

We can see that the more cooperative positions, the better localization accuracy. Then, 

we further utilize the result to derive the Approximation of Cooperative CRLB 

(AC-CRLB) and we find that some parameters, variance of measurement error, 
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numbers of known positions, numbers of unknown positions and cooperative angles 

can influence the localization accuracy. 

This thesis is organized as follows. We introduce basic localization system in 

Chapter 2 and proposed two low-cost cooperative localization methods, joint 

Taylor-series expansion algorithm (joint TS) and divided-and-conquer method 

(divided algorithms) based on TOA in Chapter 3. In Chapter 4, we derive AC-CRLB 

and theoretical converged Mean-Square-Error (MSE) of divided TS for two unknown 

positions. Computer simulations will evaluate the computation cost and MSE for 

proposed cooperative algorithms and compare the cooperative CRLB from full 

cooperative FIM, AEFIM and AC-CRLB in Chapter 5. Finally, we give a conclusion 

of our work in Chapter 6. 
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Chapter 2  
Basic Localization System 
 

Figure 1 shows a basic localization system. There are N known positions of 

sensors and M unknown positions of mobiles. Mobiles transmit information to all 

sensors by wireless networks. ( ),i ix y  and ( ),j jx y  are coordinates of mobile i and 

sensor j, respectively. 

 

Sensor_1

…

Sensor_2 Sensor_3

Sensor_N

Mobile_1

2 2( , )x y
Mobile_2

2 2( , )x y
Mobile_2

1 1( , )x y

( , )M Mx y
Mobile_M
( , )M Mx y

Mobile_M
1 1( , )x y

2 2( , )x y
3 3( , )x y

( , )N Nx y

 
 

Figure 2.1 A basic localization system in wireless sensor network. 

 

In order to estimate positions of mobiles, we have to use the measurements 

between the sensors and mobiles. However, the positioning accuracy is degraded in 

the NLOS environment when large NLOS error is imposed on the TOA, TDOA, RSS 

or AOA measurement. There are some algorithms to estimate the positions of mobiles 
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based on these measurement. Mathematically, assuming that the range of 

measurement errors are Gaussian distributed, the maximum likelihood (ML) methods 

for localization correspond to the nonlinear least squares problem [30], but the ML 

approach cannot guarantee global convergence. In order to ensure a global solution, 

semi-definite programming (SDP) [1, 32] and classical multidimensional scaling 

(MDS) [33, 34] have been proposed. These unknown positions of mobiles will be 

estimated by four common measurements. Then, these measurements are introduced 

in Section 2.1. Then, the basic localization algorithm based on TOA measurement is 

discussed in Section 2.2. 

 

2.1 Measurement Characterization 

In a localization system, we utilize the measurements between sensors and mobile 

to estimate the position of mobile. The major measurements are time of arrival (TOA), 

time different of arrival (TDOA), angle of arrival (AOA) and received signal strength 

(RSS). In the following, we recommend these four type measurements and model it in 

Figure 2.1. 

 

1. TOA [45, 46]: Measuring propagation time from mobile to sensors, the delay time 

 i jt  between transmission at mobile i and sensor j. Thus, the distance  i jd  between 

mobile i and sensor j can be calculated by multiplying the propagation time of the 

signal propagation speed. The cornerstone of time-based techniques is the receiver’s 

ability to accurately estimate the arrival time of the lone-of-sight (LOS) signal. This 

estimation is likely to suffer both additive noise and multipath signals. The model of 

TOA is 
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i j
i j i j

c

r
t w

v
= +     (2.1) 

where  i jr  is real distance between mobile i and sensor j and i jw  is measurement 

noise modeled as AWGN (additive white Gaussian noise), denoted as ( )2
 0, i jN δ . Then 

we have the measurement distance by multiplying the propagation speed cv , 

  i j i j i jd r n= +    (2.2) 

where ( )2
  ~ 0,i j i jn N σ  is AWGN as well. The position of mobile i is hided in real 

distance because of ( ) ( )2 2

 i j i ji jr x x y y= − + − . In this thesis, we only consider the 

TOA measurement. 

 

2. TDOA [5, 6] : Measuring propagation time difference from different sensors, then 

we can calculate the measurement distance difference between different sensors to the 

same mobile. With the cross-correlation of different sensors, the unknown time can be 

differentiated. The model is given by 

( ) ( ) ( ) 
  

i j ik
i j i jik ik

c

r r
t t w w

v

−
− = + −    (2.3) 

The measurement difference distance is 

( ) ( ) ( )   i j i j i jik ik ikd d r r n n− = − + −    (2.4) 

The position of mobile is hided on real distance i jr  and ikr  for mobile i. 

 

3. RSS [8, 9] : The power on transmitter (sensors or mobile) are known on the system. 

Measuring the power difference between sensors and mobile to estimate the distance 

between them. It is can easy to perform by cheap equipment. A model that solely 

depends on the relative is the so-called Okumura-Hata model [14], 
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( )  10 logloss i j i jP K r wα= − +    (2.5) 

But in the literature, it shows that RSS is not accurate enough because multi-path, 

noise, humidity, temperature can affect the RSS measurement [36]. As TOA 

measurement, the position of mobile is hided on i jr . 

 

4. AOA [7] : The use of directionally sensitive and complex antenna array to estimate 

the angle of arrival from mobile to sensors. But AOA is disturbed by many factors. 

For instance, multipath [40], NLOS and so on. The model is 

  i j i j i jwα β= +    (2.6) 

where  i jα  is measurement angle from mobile i to sensor j, i jβ  is real angle and 

 i jw  is AWGN as well. Every sensors extend the angle to form a intersection which is 

( ),i ix y . 

TOA is a good candidate in terms of accuracy, and then we utilize TOA to discuss 

the localization algorithm in following section. 

 

2.2 TOA Localization Algorithm 

Figure 2.2 shows an uncooperative localization system with TOA measurements. 

We can estimate mobiles i and j locations by individual TOA measurements from all 

sensors. Without loss of generality, we focus on the position of mobile i.  i jr  and 

 i jd  are real distance and measurement distance between mobile i and sensor j.  
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Figure 2.2 A basic localization scenario with TOA measurement. 

 

The TOA from sensors j to mobile i can be modeled as follows, 

    ,    1, 2,...i ji j i j i j i jd n r n j M= − + = + =x x    (2.7) 

where [ ]Ti i ix y=x  is the coordinate vector of mobile i, 
T

j j jx y⎡ ⎤= ⎣ ⎦x  is 

coordinate vector of sensor j and i jn  is Gaussian noise ( )20, i jN σ .  

We want to utilize these measurements to estimate the position of mobile i. In 

previous section, there are different algorithms can be solve the problem. We 

recommend a nonlinear Maximum Likelihood (ML) estimator in Section 2.2.1 and 

other linear estimators are discussed in Section 2.2.2. 

 

2.2.1 ML Estimator  

According to the model of range error, the probability density function (PDF) of 

the measurement distance of mobile i is 
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( ) ( )2

  
 22

  

1| exp
22

ii j j
ii j

i ji j

d
p d

σπσ

⎛ ⎞− −⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

x x
x    (2.8) 

Assume the range errors are independent between sensors. The uncooperative 

likelihood function [25] can be denoted as 

( ) ( ) ( )2

 2
11  

 
1

1| | exp
22

N N i i j
i i ii j NN jj i j

i j
j

d
p p d

σπ σ ==

=

⎛ ⎞− −⎜ ⎟= = −⎜ ⎟⎜ ⎟
⎝ ⎠
∑∏

∏

x x
d x x    (2.9) 

where 1 2,i iNi id d d= ⎡ ⎤⎣ ⎦d  is the measurement set from mobile i. 

The ML criterion searches a ˆ ix  which maximizes the likelihood function (2.9), 

( )2

 

1  
 

1

1max exp
22i

N i ji j

NN j i j
i j

j

d

σπ σ =

=

⎧ ⎫
⎛ ⎞⎪ ⎪− −⎪ ⎪⎜ ⎟−⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

∑
∏

x

x x
   (2.10) 

In (2.10), it is equivalent to minimization of the summation term. The solution can be 

rewritten as follows,  

( )2

 

2
1  

min
2i

N i ji j

j i j

d

σ=

⎧ ⎫− −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑x

x x
   (2.11) 

(2.11) is an optimal solution of ML estimator [25], it is also a weighted least-squares 

(WLS) solution [38]. Ignoring the weight of variance 2
i jσ  on (2.11), it can be written 

as follows 

( )2

 
1

min
i

N

i ji j
j

d
=

⎧ ⎫
− −⎨ ⎬

⎩ ⎭
∑x

x x    (2.12) 

In (2.12), it is simpler because we ignore the statistical characteristic of range error; it 

is least-squares estimation (LSE) [39]. 

The above algorithm we mention is a nonlinear functions, it can be solved by 

iterated Nonlinear Least Square Solution [40], but it has to afford high computation 

cost, then, three linearization algorithms will be introduced in Section 2.2.2. 
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2.2.2 Linearization of Least-Squares Estimator 

There are three common linearization methods, Taylor-series expansion algorithm 

(TS), distance-augmented algorithm (DA) and hyperbolic-canceled algorithm (HC). 

We will introduce these algorithms in Section 2.2.2a, Section 2.2.2b and Section 

2.2.2c respectively. In Section 2.2.2d, we compare the localization accuracy of three 

linearization methods. 

 

2.2.2a Taylor-series Expansion  

Our aim is to linearize the nonlinear term, real distance function in (2.7),  

( ) ( ) ( )2 2
,i i i j i j i jjf x y x x y y= − = − + −x x .   (2.13) 

Applying Taylor-Series expansion [35] to (2.13) gives 

( ) ( ) ( )0 0 0 0 _  , , ,T
i i i i i ij j j T i jf x y f x y f x y n⎡ ⎤= + ∇ Δ +⎣ ⎦    (2.14) 

where ( )0 0,i ix y  is the reference point of mobile i and the gradient vector  

( ) ( ) ( )
( ) ( )

0 0 0 0 0 0
0 0

0 0 0 0

, ,
,

, ,
i i i ij j i j i jT

i ij
i i i i i ij j

f x y f x y x x y y
f x y

x y f x y f x y
⎡ ⎤∂ ∂⎡ ⎤ − −

∇ = = ⎢ ⎥⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 , 

0

0

i i

i i

x x
y y
−⎡ ⎤

Δ = ⎢ ⎥−⎣ ⎦
 

and _  T i jn  denotes the higher order truncation error of the Taylor approximation for 

the distance  i jr . 

Rewriting (2.14) as 

( ) ( ) ( )0 0
0 00, _  

0, 0,

, i j i j
i i i i i ij i j T i j

i j i j

x x y y
f x y r x x y y n

r r
− −

= + − + − +    (2.15) 

where ( )0 00, ,i ii j jr f x y=  is the distance between reference point i and sensor j.  

The measurement model in (2.7) can be written as follows  
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( ) ( )0 0
0 0 0, _   

0, 0,

i j i j
i i i ii j i j T i j i j

i j i j

x x y y
d r x x y y n n

r r
− −

= + − + − + +    (2.16) 

which is a linear function and can be made into a matrix form as  

_ _ _i TS i i TS i TS= +H x b n    (2.17) 

where  

0 1 0 1

0,1 0,1
0,1 0,1

0 2 0 2
0,2 0,2

0,2 0,2_

0, 0,
0 0

0, 0,

cos sin

cos sin

cos sin

i i

i i
i i

i i
i i

i ii TS

i N i N
i N i N

i N i N

x x y y
r r

x x y y
r r

x x y y
r r

θ θ

θ θ

θ θ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥− − ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥
⎢ ⎥
⎣ ⎦

H ,   (2.18) 

1 0,1

2 0,2
_

0,

i i

i i
i TS

iN i N

d r

d r

d r

−⎡ ⎤
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

b ,   (2.19) 

_ 1 1

_ 2 2
_

_

T i i

T i i
i TS

T iN iN

n n

n n

n n

+⎡ ⎤
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

n    (2.20) 

and  

0 0
0 00, 0,

0, 0,

i j i j
i ii j i j

i j i j

x x y y
r r x y

r r
⎛ ⎞ ⎛ ⎞− −

= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

_i TSH  is an angle matrix and _i TSn  is a TS error vector which includes measurement 

error and higher-order error term due to inaccurate reference position. 

We can apply weighted least-squares(WLS) solution [38] to get the uncooperative TS 

estimator _ˆ i WTSx  
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( ) 1

_ _ _ _ _ _ _ˆ T T
i WTS i TS i TS i TS i TS i TS i TS

−
=x H W H H W b    (2.21) 

where the uncooperative TS weighting is covariance inverse of the TS error vector 

( ) 1

_ _ _
T

i TS i TS i TSE
−

⎡ ⎤= ⎣ ⎦W n n    (2.22) 

The element of _ _
T

i TS i TSE ⎡ ⎤⎣ ⎦n n   is a diagonal matrix  

On-diagonal: 2 2
_ _ _

T
i TS i TS T ip ippp

E σ σ⎡ ⎤ = +⎣ ⎦n n    (2.23) 

Off-diagonal: _ _ 0T
i TS i TS pq

E ⎡ ⎤ =⎣ ⎦n n    (2.24) 

The resulting covariance matrix of uncooperative TS estimator _ _ˆi WTS i WTS= −e x x  is  

( ) ( ) 1

_ _ _ _cov T
i WTS i TS i TS i TS

−
=e H W H    (2.25) 

The Mean-Square-Error (MSE) of the estimator is 

( ) 12
_ _ _ _

T
i WTS i TS i TS i TStraceσ

−⎡ ⎤= ⎢ ⎥⎣ ⎦
H W H    (2.26) 

As before if we ignore the statistics _i TSW , the solution in (2.21) can be further 

simplified as 

( ) 1

_ _ _ _ _ˆ T T
i TS i TS i TS i TS i TS

−
=x H H H b    (2.27) 

and the MSE becomes as 

( ) ( )1 12 1
_ _ _ _ _ _ _ _trace T T T

i TS i TS i TS i TS i TS i TS i TS i TSσ
− −−⎡ ⎤= ⎢ ⎥⎣ ⎦

H H H W H H H    (2.28) 

TS algorithm can calculate a quite accurate solution with a very good reference 

point and avoid the high cost of nonlinear iteration. In fact, we can get the better 

reference point by updating the reference point in (2.21).  

( ) 1

_ _ _ _ _ _ _ˆ ( 1) ( ) ( ) ( ) ( ) ( ) ( )T T
i WTS i TS i TS i TS i TS i TS i TSk k k k k k k

−
+ =x H W H H W b    (2.29) 

where  
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0 1 0 1

0,1 0,1
0,1 0,1

0 2 0 2
0,2 0,2

0,2 0,2_

0, 0,
0 0

0, 0,

( ) ( )
( ) ( )

cos ( ) sin ( )
( ) ( )

cos ( ) sin ( )
( ) ( )( )

cos ( ) sin ( )
( ) ( )

( ) ( )

i i

i i
i i

i i
i i

i ii TS

i N i N
i N i N

i N i N

x k x y k y
r k r k

k k
x k x y k y

k k
r k r kk

k k
x k x y k y

r k r k

− −⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡
⎢ ⎥− −
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥

⎣− −⎢ ⎥
⎢ ⎥
⎣ ⎦

H

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

,   (2.30) 

2 2
_ 1 1

2 2
_ 2 2_

2 2
_

1 0 0
( )

10 0
( )( )
0 0

10 0
( )

T i i

T i ii TS

T iN iN

k

kk

k

σ σ

σ σ

σ σ

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥

+= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

W ,   (2.31) 

1 0,1

0,22
_

0,

( )

( )
( )

( )

i i

ii
i TS

iN i N

d r k

d r k
k

d r k

−⎡ ⎤
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

b ,   (2.32) 

and k is the iteration index. 

The reference point is replaced by the TS estimator at global index k, 

( ) ( )( )0 0 _ˆ, ( )i i i WTSx k y k k= x . In (2.26) and (2.28), we know the angle matrix _i TSH  

and uncooperative TS weighting matrix _i TSW  can affect the localization accuracy. 

We will compare it with other two linearized algorithms in Section 2.2.2d. 

However, we know this method has sensitive reference point. If we have a good 

point, the localization is quite accurate. Then, we can use some very simple method to 

find a not-too-bad point based on measurement distances. For example, in a 20m x 

20m room, we have four known sensor locations on the four corners. According to 

four measurement distances, we can use proportion to find a simple reference point.   
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2.2.2b Distance-Canceled  

The other linear algorithm is distance-canceled (DA) algorithm [46], we 

summarize it as follows. First squaring up (2.7) gives 

22 2
   2i j i ji j i j i jd n n= − + − +x x x x    (2.33) 

(2.13) is a vector form, we use a scalar form to indicate 

( ) ( )2 22 2
   2i j i ji j i j i j i jd x x y y r n n= − + − + +    (2.34) 

Expansion of (2.34) gives 

2 2 2 2 2 2
    2 2 2i i j j i j i ji j i j i j i jd x y x y x x y y r n n= + + + − − + +    (2.35) 

we know the nonlinear term is 2 2
i ix y+ . We augment a squared distance variable 

2 2
i i iR x y= +    (2.36) 

then (2.35) can be rewritten as follows 

2 2
   2 2 2i j i j i j i j i j i j i jx x y y R g d r n n+ − = − + + .   (2.37) 

Rewrite (2.37) in a matrix form as follows 

_ _DA i i DA i DA= +H x b n    (2.38) 

where  

1 1

2 2

2 2 1
2 2 1

2 2 1

DA

N N

x y
x y

x y

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

H ,   (2.39) 

i T
i

i i
i

i

x
y

R
R

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

x
x ,   (2.40) 
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2
1 1

2
2 2

_

2

i

i
i DA

N iN

g d
g d

g d

⎡ ⎤−
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

b ,   (2.41) 

and 

2
1 1 1

2
2 2 2

_

2

2
2

2

i i i

i i i
i DA

iN iN iN

r n n
r n n

r n n

⎡ ⎤+
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

n .   (2.42) 

DAH  is a coordinate matrix and _i DAn  is a DA error vector. Here, the solution vector 

ix  (2.34) is different from other two linearized method’s ix  because we augment a 

variable iR . In (2.38) we do not know the DA error vector, the matrix function we 

meet 

_DA i i DA≈H x b    (2.43) 

As before, we can apply WLS solution to get uncooperative DA estimator 

( ) 1

_ _ _ _
ˆ T T

i WDA DA i DA DA DA i DA i DA

−
=x H W H H W b    (2.44) 

where the uncooperative DA weighting _i DAW  is the covariance inverse of the DA 

error vector 

( ) 1

_ _ _
T

i DA i DA i DAE
−

⎡ ⎤= ⎣ ⎦W n n    (2.45) 

and _ _
T

i DA i DAE ⎡ ⎤⎣ ⎦n n  is a diagonal matrix as well  

On-diagonal: 2 2 2
_ _ 4 3T

i DA i DA ip ip ippp
E r σ σ⎡ ⎤ = +⎣ ⎦n n    (2.46) 

Off-diagonal: _ _ 0T
i DA i DA pq

E ⎡ ⎤ =⎣ ⎦n n    (2.47) 

and the resulting covariance matrix of uncooperative DA estimator error 

_ _ˆi WDA i WDA= −e x x  is  
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( ) ( ) 1

_ _cov T
i WDA DA i DA DA

−
=e H W H    (2.48) 

The size of covariance matrix is 3x3 and it is different from other two linearized 

methods. Then, the MSE of the estimator is 

( ) 12
_ _

2 2

T
i WDA DA i DA DAtraceσ

−

×

⎡ ⎤= ⎢ ⎥⎣ ⎦
H W H    (2.49) 

As before, if we ignore the statistics _i DAW , the solution in (2.44) can be further 

simplified as 

( ) 1

_ _
ˆ T T

i DA DA DA DA i DA

−
=x H H H b   (2.50) 

and the MSE becomes as 

( ) ( )1 12 1
_ _

2 2
trace T T T

i DA DA DA DA i DA DA DA DAσ
− −−

×

⎡ ⎤= ⎢ ⎥⎣ ⎦
H H H W H H H    (2.51) 

From (2.49) and (2.51), we know that coordinate matrix DAH  and DA weighting 

matrix _i DAW  can affect the localization accuracy. DA algorithm is very easy to 

operate but it also suffers from new variable iR . However, iR  is not independent on 

the variable of position mobile i in WLS solution. The accuracy might be the worst . 

 

2.2.2c Hyperbolic-Canceled  

Now, we introduce the HC algorithm [22]. In (2.35) we know that 

2 2
i ix y+  is nonlinear term. Then, we choice the sensor k as a reference sensor. The 

reference equation is 

2 2 2 2 2 22 2 2i i k k i k i kik ik ik ikd x y x y x x y y r n n= + + + − − + +    (2.52) 

In order to cancel the nonlinear term, subtraction of (2.35) from (2.52) gives 

( ) ( ) 2 2 2 2
    2 2 2 2 ,   i j k i j k j ki j i j i j i jik ik ik ikx x x y y y d d g g r n r n n n j k− + − = − + − + − + − ≠    

(2.53) 
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where 2 2
k k kg x y= + , 2 2

j j jg x y= +  

Without loss of generality, let k=1. (2.53) is a linear function, we can rewrite (2.53) as 

a matrix form  

_ _HC i i HC i HC= +H x b n    (2.54) 

where  

( ) ( )
( ) ( )

( ) ( )

2 1 2 1

3 1 3 1

1 1

,HC

N N

x x y y
x x y y

x x y y

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

H    (2.55) 

2 2
2 11 2

2 2
3 11 3

_

2 2
11

1 ,
2

i i

i i
i HC

NiNi

d d g g
d d g g

d d g g

⎡ ⎤− + −
⎢ ⎥− + −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− + −⎢ ⎥⎣ ⎦

b    (2.56) 

and 

( )

( )

( )

2 2
2 2 1 1 2 1

2 2
3 3 1 1 3 1

2 2
1 1 1

1
2
1
2

1
2

i i i i i i

i i i i i i
i HC

iN iN iNi i i

r n r n n n

r n r n n n

r n r n n n

−

⎡ ⎤− + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥

− + +⎢ ⎥⎣ ⎦

n .   (2.57) 

HCH  is a coordinate-difference matrix and _i HCn  is a HC error vector for estimated 

mobile i. 

In fact, we do not know the HC error vector in (2.54). The matrix equation we meet 

_HC i i HC≈H x b    (2.58) 

We can apply WLS solution to get the uncooperative HC estimator 

( ) 1

_ _ _ _ˆ T T
i WHC HC i HC HC HC i HC i HC

−
=x H W H H W b    (2.59) 
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where the uncooperative HC weighting matrix _i HCW  is the covariance inverse of 

the HC error vector 

( ) 1

_ _ _
T

i HC i HC i HCE
−

⎡ ⎤= ⎣ ⎦W n n    (2.60) 

Then, the covariance of _ _
T

i HC i HCE ⎡ ⎤⎣ ⎦n n  is 

On-diagonal: 2 2 2 2 2 2
_ _ 1 1 1

3 ( )
4

T
i HC i HC ip ip ipi i ipp

E r rσ σ σ σ⎡ ⎤ = + + −⎣ ⎦n n    (2.61)  

Off-diagonal: 2 2 2
_ _ 1 1 1

3
4

T
i HC i HC i i ipq

E r σ σ⎡ ⎤ = +⎣ ⎦n n    (2.62) 

It is not diagonal matrix anymore. The resulting covariance matrix of the 

uncooperative HC estimator error _ _ˆi WHC i WHC= −e x x  is  

( ) ( ) 1

_ _cov T
i WHC HC i HC HC

−
=e H W H    (2.63) 

We can further get the MSE of the estimator 

( ) 12
_ _

T
i WHC HC i HC HCtraceσ

−⎡ ⎤= ⎢ ⎥⎣ ⎦
H W H    (2.64) 

If we ignore the statistic _i HCW , the solution in (2.59) can be further simplified as 

( ) 1

_ _ˆ T T
i HC HC HC HC i HC

−
=x H H H b    (2.65) 

and the MSE becomes as 

( ) ( )1 12 1
_ _trace T T T

i HC HC HC HC i HC HC HC HCσ
− −−⎡ ⎤= ⎢ ⎥⎣ ⎦

H H H W H H H    (2.66) 

From (2.51) and (2.53), we know that coordinate-difference matrix HCH  and 

uncooperative HC weighting matrix _i HCW  can affect the localization accuracy. 

Then, we will compare algorithmH and algorithmW  of three linearized algorithms in 

Section 2.2.2d. 
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2.2.2d Summary of Three Linearization Algorithms 

We know three linearization algorithms have similar matrix equation as 

= +Hx b n . Now, we compare H, x, and n. Now, we can see the H for TS is angle 

matrix in (2.18) 

0 1 0 1

0,1 0,1
0,1 0,1

0 2 0 2
0,2 0,2

0,2 0,2_

0, 0,
0 0

0, 0,

cos sin

cos sin

cos sin

i i

i i
i i

i i
i i

i ii TS

i N i N
i N i N

i N i N

x x y y
r r

x x y y
r r

x x y y
r r

θ θ

θ θ

θ θ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥− − ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥
⎢ ⎥
⎣ ⎦

H    (2.18) 

which consists of angles from sensors. Then, H for DA is coordinate matrix in (2.39) 

1 1

2 2

2 2 1
2 2 1

2 2 1

DA

N N

x y
x y

x y

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

H    (2.39) 

It is made up of coordinates for all sensors. The last H of HC is 

coordinate-difference matrix in (2.55) 

( ) ( )
( ) ( )

( ) ( )

2 1 2 1

3 1 3 1

1 1

,HC

N N

x x y y
x x y y

x x y y

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

H    (2.55) 

It is made up of differences of coordinates based on reference mobile 1. However, 

only the variable [ ]x y R=x of DA is different from other linearized methods’ 

[ ]x y=x . Finally, we discuss n from three parts, noise source, algorithm weighting 

and covariance matrix of estimator error as follows. 

(1) Noise Source:  

Noise source can affect the theoretical MSE. In HC algorithm, after linearization 
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operation, the HC error term is ( )2 2
   1 1 1

1
2i j i j i ji i ir n r n n n− + −  which is involved in the 

effect of real distance  i jr  and 1ir . The effect amplifies the measurement error and 

destroys the theoretical MSE. However, in TS algorithm, after linearization operation, 

the TS error term is _   T i j i jn n+ . If the reference position is perfectly ideal, TS error 

term only involves the measurement error i jn . Then, in DA algorithm, after 

linearization operation, the DA error term is 2
  2 i j i j i jr n n+  which is also involved in 

real distance effect. In addition, it has a new variable iR . In fact, the new variable is 

not independent on position of mobile in WLS solution (2.44). Therefore, it has the 

worst MSE performance. After the comparison of noise source, we will compare the 

weighting matrix for these linearized algorithms. 

 

(2) Weighting Matrix:  

First, We assume variances of measurement errors are the same as 2σ . We know the 

weighting matrix is gotten from noise source covariance. Then, the uncooperative HC 

weighting matrix is 

1
2 2 2 2
2 1 1 1

2 2 2 2
1 3 1 1

_ 2
2 2
1 1

2 2 2 2
1 1 1

3 3 3
2 4 4

3 3 3
1 4 2 4

3 3
4 4

3 3 3
4 4 2

i i i i

i i i i

i Hyper

i i

iNi i i

r r r r

r r r r

r r

r r r r

σ

−
⎡ ⎤+ + + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + + +⎢ ⎥

= ⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥

+ + + +⎢ ⎥
⎣ ⎦

W    (2.67) 

In (2.53), uncooperative HC weighting matrix compensates the HC error term with 

real distance effect. In fact, it is related with the reference point mobile i.  

Next, in TS algorithm, we assume the reference position is very good _  0T i jn ≈ . 
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Therefore, the uncooperative TS weighting matrix is 

_ 2

1
i TS N Nσ ×≈W I    (2.68) 

In (2.70), TS weighting compensates Taylor error term 1in  which is also 

measurement error. Finally, in DA algorithm, the uncooperative DA weighting can be 

rewritten as follow as 

2
1

2
2_ 2

2

1 0 0
4 3

10 01 4 3
0 0

10 0
4 3

i

ii DA

iN

r

r

r

σ

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥+= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

W    (2.69) 

In (2.71), DA weighting compensates the error term with real distance effect. 

However, before the compensation of weighting matrix, the best MSE performance is 

uncooperative TS estimator and the best is the DA estimator. After the compensation 

of weighted, their have similar theoretical MSE. The computer simulation result for 

theoretical MSE of three linearized algorithms will show in Figures 5.2 and 5.3. 

 

(3) Covariance Matrix of Estimator Error 

The covariance matrix includes matrix algorithmH  and weighting matrix algorithmW  

because of ( ) ( ) 1

algorithm algorithm algorithm algorithm algorithmcov T T −
=e e H W H . Then, the HC 

algorithm’s is difficult to calculate because it’s covariance of HC error vector is not a 

diagonal matrix in (2.61) and (2.62). Therefore, we discuss TS algorithm and DA 

algorithm. However, in TS algorithm, the covariance matrix of estimator error in 

(2.26) included angle matrix _i TSH  and its weighting matrix _i TSW  is given by 
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( )

( ) ( )( )

( )( ) ( )

12

0 0 0
2 2
0, 0,

_ 2 2
1

0 0 0
2 2
0, 0,

1cov

i j i j i j

N
i j i j

i WTS
j

i j i j i j

i j i j

x x x x y y
r r

x x y y y y
r r

σ

−

=

⎧ ⎫⎡ ⎤− − −⎪ ⎪⎢ ⎥
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∑e    (2.70) 

If the reference point ( )0 0,i ix y  is very close to true point ( ),i ix y , (2.70) can be 

approximated as follows 
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⎪ ⎪⎢ ⎥⎪ ⎪≈ ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪− − −
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑e    (2.71) 

In fact, the right hand side of (2.71) is the full uncooperative Fisher Information 

Matrix (FIM) (4.4) inverse and is proportion to the noise variance 2σ . Therefore, the 

theoretical MSE of TS estimator is very close to uncooperative CRLB. As before, the 

covariance of estimator error for DA algorithm can be formed as 
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∑e    (2.72) 

The covariance matrix is proportion to the noise variance 2σ  as well. If 2 3jir , 

(2.53) can be simplified as follows 
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∑e    (2.73) 

There are negative numbers in (2.73), it can reduce the covariance matrix. Then, the 

theoretical MSE of DA estimator is larger than TS estimator’s. Finally, the noise 

source of HC algorithm is similar to DA algorithm’s expect the new augmented 

variable. Therefore, the two methods have similar theoretical MSE. Simulation results 

demonstrate the effectiveness of these algorithms in Section 5.1. 
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Chapter 3  
Cooperative Localization Algorithm 
 

In cooperative system, cooperative relay or Ad Hoc short-rang communication 

among the terminals will be supported [41, 42]. They consider the short-range has 

lower measurement error interference, therefore it can enhance the location estimation 

accuracy. Then, they investigate the data fusion of large-scale and small-scale. [26] 

proposed Cooperative Localization with Optimum Quality of Estimate (CLOQ) which 

takes advantage of the behavior of the channel to provide accurate indoor positioning. 

This algorithm uses the quality of ranging and positioning estimates to provide 

practical and accurate results. More importantly, it reduces error propagation 

substantially. If Non-Line-Of-Sight (NLOS) exists, cooperative group localization 

(CGL) scheme is proposed in [13] based on rigid graph theory.  

However, cooperative localization is not a well solved problem because the 

distance measurement between any pairs of unknown positions (mobiles) are utilized 

to assist in the location estimation. This is much more challenging than the traditional 

localization where only distance measurements between unknown position (one 

mobile) and known positions (sensors) are employed for localization. Therefore, [12] 

devised subspace approach to solve that problem and which can outperform the 

classical MDS algorithm. The other chooses is cooperative ML estimator which can 

be solved by joint Newton’s algorithm. But the computation cost is quite high because 

it is nonlinear iterated solution. Base on the linearized algorithm of uncooperative 

localization, we propose joint Taylor-series expansion algorithm to reduce the cost. 

But other linear operation can not linearize the cooperative TOA measurement to 

form joint algorithms. Therefore, we devise divided-and-conquer method to overcome 
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that problem and it can also reduce computation cost from joint Newton’s algorithm. 

In divided-and-conquer method, we need uncertain virtual sensors to achieve the 

method. [15] proposed an error propagation aware algorithm to track the extent of the 

uncertain virtual position error. It sets threshold to decide which virtual can be involve 

in localization. By recursive position estimation, the more estimated locations are 

selected as virtual sensor locations until all estimated positions are virtual sensor 

locations. In fact, some bad virtual sensor positions still provide the information to 

localization and the selection of threshold has trade-off between computation cost and 

localization accuracy. Therefore, our proposed algorithm consider all virtual sensors 

to help by global iteration and we also discuss the computation cost. 

Figure 3.1 indicates the cooperative localization system. As before, there are N 

known positions of sensors and M unknown positions of mobiles. The two individual 

localization system for mobile i and mobile j are cooperated by cooperative TOA 

measurement,  i jd . Then,  i jr  is real cooperative distance from mobiles i and  j.  

 

 

Figure 3.1 Cooperative localization system with cooperative TOA measurement. 
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The dot line distance denotes cooperative distance that connects two mobiles. All 

measurements of cooperative localization are illustrated as follows 

The uncooperative measurement between mobile i and sensor j is denoted as 

   ,    1 ~ ,    1 ~i j i j i jd r n i M j N= + = =     (3.1)  

and the cooperative measurement between mobile i and mobile j is denoted as 

,    ,    , 1 ~ij ij ijd r n i j i j M= + < =    (3.2) 

where  i jn  and i jn  is uncooperative and cooperative measurement error belong to 

AWGN ( )2
  ~ 0,i j i jn N σ  and ( )2

 ~ 0,i j i jn N σ  

There are M positions of mobile will be estimated, the cooperative likelihood function 

(ML) [42] is similar to uncooperative likelihood function in (2,9) and it is written as 

follows 

( )
( ) ( )2 2

 

2 22 2
1 1 , 1  

, |

1 1exp exp
2 22 2

Uncoop Coop

M N Mi j ij i ji j

i j i j iji j iji j j i

Uncooperation Cooperation

p

d d

σ σσ σ= = =
>

=

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟− ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏∏ ∏

d d x

x x x x    

(3.3) 

where cooperative observation set _i Uncoopd  is like id  in (2.9), cooperative 

observation set 12 13 1 23 24 2 1,, , , , , , ,Coop M M M Md d d d d d d −⎡ ⎤= ⎣ ⎦d  and all positions of 

mobiles [ ]1 2
T

M=x x x x . 

The cooperative ML criterion searches a x̂  which maximizes likelihood function 

(3.3), 

( ) ( )2 2

 2 2ˆ
1 1 1 

1 1min
2 2

M N M

i j ij i ji j
i j i iji j

j i
Noncooperation

Cooperation

d d
σ σ= = =

>

⎧ ⎫
⎪ ⎪
⎪ ⎪− − + − −⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

∑∑ ∑x
x x x x   (3.4) 
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where [ ]1 2ˆ ˆ ˆ ˆ T
M=x x x x  is the cooperative ML estimator. 

We will introduce a common joint Newton’s method to solve it. However, joint 

Newton’s method is nonlinear function and it computation cost is quite high. 

Therefore we propose two new methods to reduce it, joint Taylor-series expansion 

algorithm (joint TS) and divide-and-conquer method (divided algorithms). The 

structure of the rest of this section is as follows. Section 3.1 discusses joint 

cooperative algorithms. The divide-and-conquer method is proposed in Section 3.2. In 

Section 3.3, discusses the issue of divide-and-conquer method, compensation of 

uncertain virtual sensor.  

 

3.1 Joint Cooperative Algorithm 

According to cooperative algorithms, we will introduce a common nonlinear joint 

Newton’s method to solved (3.4) in 3.1.1 and we propose a joint TS in Section 3.1.2. 

In 3.1.3, we will illustrate why the other linearized methods can’t form joint 

algorithms.  

 

3.1.1 Newton’s Method  

In order to minimize the object function in (3.4), we can set its gradient function 

to zero and to get the estimated positions. Let the object function be denoted as 

( ) ( )2 2

 2 2
1 1 1 

1 1( )
2 2

M N M

i j ij i ji j
i j i iji j

j i

G d d
σ σ= = =

>

= − − + − −∑∑ ∑x x x x x    (3.5) 

and  

1 1 2 2

( ) ( ) ( ) ( ) ( )( )T

M

G G G G GG
x y x y y

⎡ ⎤∂ ∂ ∂ ∂ ∂
∇ = =⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

x
x x x x xx 0    (3.6) 

We can use Newton’s method [26] to solve (3.6) and it is donated as follows 
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( ) ( ) ( )( ) ( )( )1
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×
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where k is the iteration index, 
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   (3.8) 

is the Jacobian matrix [23] whose element is 

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )

2 2
2

2 3 2
1

2 2
1

2 3 2
1

2 2

2 3 2

ˆ( ) 1

1            

1            

N
p jpj pj pj pjp j

jp p pj pj pj pj

p
ip ip i p i p ip ip

i ip ip ip ip
i p

pi ip p i p i pi

ip pi pi

d r x x d rx xG
x x r r r

d r x x x x d r
r r r

d r x x x x d r
r r

σ

σ

σ

=

−

=
<

⎡ ⎤− − −−∂ ⎢ ⎥= + −
⎢ ⎥∂ ∂
⎣ ⎦
⎡ ⎤− − − −
⎢ ⎥+ + + −
⎢ ⎥
⎣ ⎦

− − − −
+ + + −

∑

∑

x

( )
1

M
pi

i p pi
i p

r= +
>

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

 

( )( )( ) ( )( )

( )( )( ) ( )( )

( )( )( ) ( )( )

2

2 3 2
1

1

2 3 2
1

2 3 2

ˆ( ) 1

1            

1            

N
p j p jpj pj p j p j

jp p pj pj pj

p
ip ip i p i p i p i p

i ip ip ip
i p

pi pi p i p i p i p i

pi pi pi

d r x x y y x x y yG
x y r r

d r x x y y x x y y
r r

d r x x y y x x y y
r r

σ

σ

σ

=

−

=
<

⎡ ⎤− − − − −∂ ⎢ ⎥= +
∂ ∂ ⎢ ⎥⎣ ⎦

⎡ ⎤− − − − −
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ − − − − −
+ + +⎢

⎢⎣

∑

∑

x

1

M

i p
i p
= +
>

⎤
⎥
⎥⎦

∑

 

( )( ) ( ) ( )2 2
2

2 3 2

ˆ( ) 1 pq pq p q p q pq pq

p q pq pq pq pq

d r x x x x d rG
x x r r rσ

⎡ ⎤− − − −∂ ⎢ ⎥= − + −
⎢ ⎥∂ ∂
⎣ ⎦

x  



 29

( )( )( ) ( )( )2

2 3 2

ˆ( ) 1 pq pq p q p q p q p q

p q pq pq pq

d r x x y y x x y yG
x y r rσ

⎡ ⎤− − − − −∂
= − +⎢ ⎥

∂ ∂ ⎢ ⎥⎣ ⎦

x  

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

2 2
2

2 3 2
1

2 2
1

2 3 2
1

2 2

2 3 2

ˆ( ) 1

1            

1            

N
p jpj pj pj pjp j

jp p pj pj pj pj

p
ip ip i p i p ip ip

i ip ip ip ip
i p

pi ip p i p i pi pi

ip pi pi

d r y y d ry yG
y y r r r

d r y y y y d r
r r r

d r y y y y d r
r r

σ

σ

σ

=

−

=
<

⎡ ⎤− − −−∂ ⎢ ⎥= + −
⎢ ⎥∂ ∂
⎣ ⎦
⎡ ⎤− − − −
⎢ ⎥+ + −
⎢ ⎥
⎣ ⎦

− − − −
+ + −

∑

∑

x

1

M

i p pi
i p

r= +
>

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

 

( )( ) ( ) ( )2 2
2

2 3 2

ˆ( ) 1 pq pq p q p q pq pq

p q pq pq pq pq

d r y y y y d rG
y y r r rσ

⎡ ⎤− − − −∂ ⎢ ⎥= − + −
⎢ ⎥∂ ∂
⎣ ⎦

x  

Actually, the Jacobian matrix inverse part 

( )( ) ( )( )1

Joint_Newton Joint_Newton2 2
ˆ ˆT

M M
G k G k

−

×
⎡ ⎤∇ ∇ ∇⎣ ⎦x x xx x  in (3.7) can be achieved 

by ( )( ) ( )( )Joint_Newtonˆ ˆ\T G k G k∇ ∇ ∇x x xx x of Gaussian elimination method in MATLAB 

function. Even if the Gaussian elimination method replaces that part, but the size of 

Jacobian matrix is quite large and the elements have to calculate a lot of summations 

when it exists multitudinous mobiles. We assume one global iteration in (3.7) needs 

2 2M MF ×  flops. G global iterations are needed to converge in (3.7). Then, the total 

computation cost is given by 

Joint Newton computation cost = 2 2 jointM MF G× ×  flops.   (3.9) 

Then, we derive linearized method, joint TS to reduce the calculation complexity 

2 2M MF ×  for Gaussian elimination method of large matrix in following section.  

 

3.1.2 Taylor-Series Expansion Algorithm  

Now we use Taylor-series approximation method to linearize cooperative 

nonlinear function. According to (2.17) in Section 2.2.2a, we have M uncooperative 
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TS matrix equation as follows  

_ _ _   1, 2,...,i TS i i TS i TS i M= + =H x b n    (3.10)   

Now, the remaining task for us is to linearize cooperative distances ijr  among 

mobiles. We know the relationship of real distance from mobile i to mobile j is 

2 2( ) ( ) ( , )ij i j i j ij ij ijr x x y y f x y= − + − = Δ Δ    (3.11)   

Because there are four variables in a cooperative real distance (includes two positions 

of mobiles), we can regard the difference variable as a new variable, 

difference-variable ijxΔ  and ijyΔ . 

i j ij

i j ij

x x x
y y y
− Δ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥− Δ⎣ ⎦ ⎣ ⎦
   (3.12)    

later we will convert these difference-variable ,ij ijx yΔ Δ  back to four original 

variable ix , iy , jx , jy . 

Apply Taylor-series expansion to (3.11) as follows. 

0 0 0 0 _( , ) ( , ) ( , )T
ij ij ij ij ij ij ij ij ij T ijf x y f x y f x y n⎡ ⎤Δ Δ = Δ Δ + ∇ Δ Δ Δ +⎣ ⎦    (3.13)   

where 0 0( , )ij ijx yΔ Δ  is the difference reference point , _T ijn  is the higher order 

truncation error of the Taylor-series expansion for the distance ijr ,  

0 0 0 0 0 0
0 0

0 0 0 0

( , ) ( , )
( , )    

( , ) ( , )
ij ij ij ij ij ij ij ijT

ij ij ij
ij ij ij ij ij ij ij ij

f x y f x y x y
f x y

x y f x y f x y
⎡ ⎤ ⎡ ⎤∂ Δ Δ ∂ Δ Δ Δ Δ

∇ Δ Δ = =⎢ ⎥ ⎢ ⎥
∂Δ ∂Δ Δ Δ Δ Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

and 

 0

0

ij ij

ij ij

x x
y y

Δ −Δ⎡ ⎤
Δ = ⎢ ⎥Δ − Δ⎣ ⎦

. 

Now the cooperative measurement model (3.2) becomes 
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( ) ( )0 0
0 0 0

0 0

+ij ij
ij ij ij ij ij ij ij ij Tij ij

ij ij

x y
d r n r x x x x n n

r r
Δ Δ

= + = + Δ −Δ + Δ −Δ +    (3.14)  

where  0 0 0( , )ij ij ij ijr f x y= Δ Δ . 

Knowing that (3.14) is a linear function of difference-variable 0 0( , )ij ijx yΔ Δ , we may 

form a cooperative TS equation 

0 0
0 _

0 0

( ) ( )ij ij
ij ij ij ij T ij ij

ij ij

x y
x y d r n n

r r
Δ Δ

Δ + Δ = − + +    (3.15) 
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0 0 0 0

0 0

ij ij
ij ij ij ij

ij ij

x y
r r x y

r r
⎛ ⎞ ⎛ ⎞Δ Δ

= − Δ − Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   

The cooperative TS equation in (3.15), distance-variable ( ),
T

ij ijx yΔ Δ  is different 

form the variables of uncooperative matrixes equation in (2.17) for mobile i and 

mobile j with original variables ix  and jx . Consequently we convert the 

difference-variable back to original variable. (3.15) can be written as follow 

0 0 0 0
0 _

0 0 0 0

( ) ( ) ( ) ( )ij ij ij ij
i j ij ij T ij ij

ij ij ij ij

x y x y
d r n n

r r r r
⎡ ⎤ ⎡ ⎤Δ Δ Δ Δ

− = − + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x    (3.16)    

The cooperative TS equation (3.14) has the original variable ( ),
T

i jx x  which is like 

uncooperative TS matrix equation’s for mobile i and mobile j. Therefore, we can 

combine two equations to form a joint TS matrix equaiton. In case of M=4, the joint 

TS cooperative matrix equation is given by 
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   (3.17) 

Where 

0 0
0 0 0

0 0

cos sin
T

Tij ij
ij ij ij

ij ij

x y
r r

θ θ
⎡ ⎤Δ Δ

⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

h .  

is a cooperative angle vector between two reference points ( )0 0,i ix y  and ( )0 0,j jx y . 

Here, there are ( ), 2 6C M =  pairs cooperative measurements between mobiles. We 

note a angle vector in (3.17) for one pair is 0 0ij ij⎡ ⎤−⎣ ⎦h h  because of the 

difference-variable in (3.12). In addition, (3,17) can be simplified as  

Joint_TS Joint_TS Joint_TS= +H x b n    (3.18) 

where Joint_TSH  is joint TS angle matrix. 

As before, the joint TS estimator is given by 

( ) 1

Joint_TS Joint_TS Joint_TS Joint_TS Joint_TS Joint_TS Joint_TSˆ T T−
=x H W H H W b    (3.19)   

where the joint TS weighting matrix,
1

Joint_TS Joint_TS Joint_TS
TE

−
⎡ ⎤= ⎣ ⎦W n n . 

It is like (2.29). We also can get the better reference point set by updating the 

reference point set from joint TS estimator in (3.19).  

( ) 1

Joint_TS Joint_TS Joint_TS Joint_TS Joint_TS Joint_TS Joint_TSˆ ( 1) ( ) ( ) ( ) ( ) ( ) ( )T Tk k k k k k k
−

+ =x H W H H W b

(3.20) 
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In the same reason, the solution (3.20) can be solved by Gaussian elimination method 

in MATLAB function, Joint_TS Joint_TS Joint_TS Joint_TS Joint_TSˆ \=x W H W b . Even if the 

mobiles more, the size of joint TS angle matrix larger, but it doesn’t do a lot of 

summations. However, it can reduce the computation cost of joint Newton’s method. 

Simulations are presented in terms of the MSE, convergence rate and computation 

cost for two joint algorithms in Section 5.2. Alternatively, we also propose a 

divide-and-conquer method the reduce the cost of calculation complexly (3.7) in 

Section 3.2   

 

3.1.3 Other Joint Linearization Algorithms  

We will brief illustrate that distance-augmented method and hyperbolic-canceled 

method can not achieve joint algorithms. We know the new challenge to form joint 

algorithm is to linearize the cooperative real distance 2 2( ) ( )ij i j i jr x x y y= − + − . 

However, in DA method, we square the measurement model before linearized 

operation. Therefore, (3.7) can be operated as follows, 

2 2 2 2( ) ( ) 2ij i j i j ij ij ijd x x y y r n n= − + − + +  

22 2 2i j i j i j ij ij ijR R x x y y r n n= + − − + +    (3.21) 

In (3.21) even if we augment the new variable iR  and jR , it still exist the nonlinear 

term i jx x  and i jy y . Therefore, DA method can not achieve joint algorithm. Of 

course, HC method has the same problem because it has to do square operation. 

Therefore, we do not have joint DA and joint HC algorithms. However, if ( ),j jx y  

are known, (3.21) can be linearized. Therefore, we proposed divide-and-conquer to 

solve that problem. 
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3.2 Divide-and-Conquer Method 

We know that cooperative localization is involved unknown positions connection. 

It is more difficult than uncooperative localization. Therefore, we can simplify it by 

divide-and-conquer method. We illustrate the method Figures 3.2 to 3.4. 

 

Figure 3.2 The joint localization method. 

If the mobile j location is know as ( )ˆ ˆ,j jx y , we have a individual localization in 

Figure 3.3. 

 

Figure 3.3 A part of divide-and-conquer method. 
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As before, if mobile j location is known, we have another part of divide-and-conquer 

method in Figure 3.4. 

 
Figure 3.4 Another part of divide-and-conquer method. 

 

However, divide-and-conquer method can reduce the computation cost in (3.7). 

the system model is described in follows. At first, every position of mobiles can be 

estimated from uncooperative ML estimator. Then, we have initial virtual sensors.  

( )
,0

2

 2
1

1min , 1 ~
2i

N

i ji j
j ij

Noncooperation

d i M
σ=

⎧ ⎫
⎪ ⎪⎪ ⎪− − =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑
x

x x    (3.22) 

From (3.22), we have M initial virtual sensors 1,0 2,0 ,0ˆ ˆ ˆ, , , Mx x x . Next, we divide M 

virtual ML functions to estimate M positions of mobiles again. Every function can be 

achieved by other M-1 positions of virtual sensors and it can be updated until their 

locations are converged, we call global iteration. According to the sequential of virtual 

sensors location updating, there are two type sequential, Jacobi method and 

Gauss-Seidel method. The detail of divide-and-conquer method and sequential of 

virtual sensors updating are discuss in Section 3.2.1. A joint Newton’s algorithm and 

three joint linearized algorithms perform the proposed method are discussed in 



 36

Section 3.2.2. 

 

3.2.1 Two Category of Update Sequence 

We will introduce Jacobi method and Gauss-Seidel method for 

divide-and-conquer method in Section 3.2.1a and Section 3.2.1b. 

3.2.1a Jacobi Method 

Now, we describe the divide-and-conquer method for Jacobi method [23]. After 

we have initial virtual sensors from uncooperative algorithm, we start form mobile 1. 

Then, the positions of virtual sensor 2 to virtual sensor M will be helped to estimate 

the position of mobile 1 at 1st global iteration. The divided ML estimator for the 

mobile 1 is given by  

( ) ( )
1,1

2 2

1 1 1 ,01 2 2
1 2 ˆ1 1

1 1 ˆmin
2 2

N M

j l lj
j lj l

d d
σ σ= =

⎧ ⎫
⎪ ⎪− − + − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑x

x x x x  

(3.23)      

It is similar uncooperative ML estimator (2.11) because its only includes one 

unknown position 1x  of mobile 1, while virtual sensors locations 

,0ˆ ,  2,3,..., ,l l M=x  are already known. After estimating position of mobile 1, do the 

same step to get virtual sensor positions 2,1 3,1 ,1ˆ ˆ ˆ, ,..., Mx x x  from mobile 2 to mobile M. 

This procedure is called a global iteration, as shown in the right-hand-side of Figure 

3.5. Next, this global iteration can be repeated to update positions from 

1, 2, ,ˆ ˆ ˆ, ,...,n n M nx x x  to 1, 1 2, 1 , 1ˆ ˆ ˆ, ,...,n n M n+ + +x x x . The divided ML estimator for mobile i at 

nth is given by 

( ) ( )
, 1

2 2

,i 2 2
1 1 ˆ

1 1 ˆmin , 1,2,...,
2 2i n

N M

i j il i l nj
j lij ill i

d d i M
σ σ+ = =

≠

⎧ ⎫
⎪ ⎪− − + − − =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑x

x x x x    (3.24) 
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where ,ˆ i nx  denotes position of virtual sensor i at the nth global iteration. This 

divide-and-conquer method in (3.24) stops until all positions of virtual sensors are 

converged. 

 

1,0

2,0

,0

ˆ
ˆ

ˆ M

x
x

x

1, 1

2, 1

, 1
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ˆ
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, 1
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+
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Localization 
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Virtual algorithm 1
by virtual sensors

(Initial positions of virtual sensors)

2, 3, ,ˆ ˆ ˆ, ,n n M nx x x

Virtual algorithm 2
by virtual sensors

1, 3, 4, ,ˆ ˆ ˆ ˆ, ,n n n M nx x x x

Virtual algorithm 
M by virtual 
sensors

1, 3, 4, 1,ˆ ˆ ˆ ˆ, ,n n n M n−x x x x

…

 
Figure 3.5 The Jacobi method diagram for divide-and-conquer method.   

 

3.2.1b Gauss-Seidel Method  

The only difference between Gauss-Seidel method [23] and Jacobi method is that 

in the former, the most recently update step. First, we start from mobile 1, the 

positions of initial virtual sensors 2,0 3,0 ,0ˆ ˆ ˆ, , , Mx x x  and positions of sensors 

1 2, , , Nx x x  estimate position of mobile 1 to get virtual sensor 1, 1,1x̂ at 1st global 

iteration. Next, we estimate mobile 2 by position virtual sensors 1,1 3,0 ,0ˆ ˆ ˆ, , , Mx x x . We 

can see the position of virtual sensor 1, 1,1x̂  had been updated in virtual sensors 

locations. In Jacobi method, it uses 1,0 3,0 ,0ˆ ˆ ˆ, , , Mx x x  to estimate position of mobile 2. 

The divided ML of Gauss-Seidel method is given by 
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( )

( ) ( ), 1

2

, 1 2
1  

ˆ 2 2

, 1 , 1 , 1 ,2 2
ˆ ˆ, 1 ,

1
2

min , 1 ~
1 1ˆ ˆ

2 2
i n

N

i n ji j
j i j

il i n l n il i n l n
l i l iil n il n

d

i M
d d

σ

σ σ
+

+
=

+ + +
< >+

⎧ ⎫
− −⎪ ⎪

⎪ ⎪ =⎨ ⎬
⎪ ⎪+ − − + − −
⎪ ⎪⎩ ⎭

∑

∑ ∑
x

x x

x x x x
  

(3.25) 

Usually, the convergence rate of Gauss-Seidel method is faster than Jacobi method if 

the method is convergent.  

We know that the virtual sensors locations can destroy the localization accuracy 

because their positions are uncertain. Therefore, we have to compensate the weighted 

2
ˆ1 2

il
σ  in the virtual sensor terms ( )22

ˆ ,
1

ˆ1 2
M

il i l nil
l
l i

dσ
=
≠

− −∑ x x . We will derive the 

compensation in Section 3.3.  

 

3.2.2 Divided individual localization: Newton’s Algorithm and Three 

Linearization Algorithms 

For easy to describe, we use Newton’s method and three divided linearization 

algorithms to perform divided-and-conquer method under Jacobi method. The divided 

ML estimator in (3.24) can be achieved by these algorithms, because it is similar with 

the uncooperative ML estimator in (2.11). Therefore, the Divided Newton’s algorithm 

is described in Section 3.2.2a, three divided linearization algorithms in Sections 

3.2.2b, 3.2.2c and 3.2.2d. 

 

3.2.2a Newton’s Algorithm  

In divided ML estimator (3.24), it can be solved by Newton’s method. As before, 

the solution of Newton’s method for mobile i at (n+1)th global iteration can be written 

as   
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( ) ( ) ( )( ) ( )( )1

, 1 , 1 , , 1 , , 12 2
ˆ ˆ ˆ ˆ1

i i i

T T
i n i n i n i n i n i nk k G k G k

−

+ + + +×
⎡ ⎤+ = − ∇ ∇ ∇⎣ ⎦x x xx x x x    (3.26)    

( ) ( ) ( )2 2

, , 1 , 1 , 1 , 2 2
1 1 ˆ,

1 1 ˆ
2 2

N M

i n i n i n j il i n l ni j
j lij il nl i

G d d
σ σ+ + +

= =
≠

= − − + − −∑ ∑x x x x x , 

( )
( ) ( )

( ) ( )

2 2

, 2 2

ˆ ˆ

ˆ
ˆ ˆi i

i i

i i i iT
i n i

i i

i i i i

G G
x x x y

G
G G
x y y y

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥∇ ∇ = ⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

x x

x x

x
x x

 

is Jacobian matrix with size 2 × 2 and the elements of matrix are 

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( )

2 2
2

2 3 2
1

2 2
1

ˆ ˆ ˆ ˆ
2 3 2

1 ˆ ˆ ˆ ˆ

2

ˆ ˆ
2 3

ˆ

ˆ( ) 1

ˆ ˆ1            

ˆ ˆ1            

N
p jpj pj pj pjp j

jp p pj pj pj pj

p
ip ip i p i p ip ip

i ip ip ip ip
i p

pi pi p i

ip pi

d r x x d rx xG
x x r r r

d r x x x x d r
r r r

d r x x x
r

σ

σ

σ

=

−

=
<

⎡ ⎤− − −−∂ ⎢ ⎥= + −
⎢ ⎥∂ ∂
⎣ ⎦
⎡ ⎤− − − −
⎢ ⎥+ + + −
⎢ ⎥
⎣ ⎦

− −
+ + +

∑

∑

x

( ) ( )2

ˆ ˆ
2

1 ˆ ˆ

M
p i pi pi

i p pi pi
i p

x d r
r r= +

>

⎡ ⎤− −
⎢ ⎥−
⎢ ⎥
⎣ ⎦

∑

 

( )( )( ) ( )( )

( )( )( ) ( )( )

( )( )( )

2

2 3 2
1

1
ˆ ˆ

2 3 2
1 ˆ ˆ

ˆ ˆ
2 3

ˆ

ˆ( ) 1

ˆ ˆ ˆ ˆ1            

ˆ ˆ ˆ1            

N
p j p jpj pj p j p j

jp p pj pj pj

p
ip ip i p i p i p i p

i ip ip ip
i p

pi pi p i p i p

pi pi

d r x x y y x x y yG
x y r r

d r x x y y x x y y
r r

d r x x y y x x
r

σ

σ

σ

=

−

=
<

⎡ ⎤− − − − −∂ ⎢ ⎥= +
∂ ∂ ⎢ ⎥⎣ ⎦

⎡ ⎤− − − − −
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦

− − − −
+ + +

∑

∑

x

( )( )
2

1 ˆ

ˆM
i p i

i p pi
i p

y y
r= +

>

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

 

2 2ˆ ˆ( ) ( )

p p
p p p p x y

G G
y y x x

=

∂ ∂
=

∂ ∂ ∂ ∂
x x  

As before, the solution of matrix inverse 

( )( ) ( )( )1

, , 1 , , 12 2
ˆ ˆ

i i i

T T
i n i n i n i nG k G k

−

+ +×
⎡ ⎤∇ ∇ ∇⎣ ⎦x x xx x can be replaced Gaussian elimination 

method, ( )( ) ( )( ), , 1 , , 1ˆ ˆ\
i i i

T T
i n i n i n i nG k G k+ +∇ ∇ ∇x x xx x  by MATLAB function. Even if the 

Jacobian matrix will calculate a lot of summations, but the solution is only calculated 
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2 2×  matrix Gaussian elimination method. It really reduces the large Jacobian matrix 

Gaussian elimination method (3.8) of joint Newton’s method calculation complexity. 

However, joint Newton’s algorithm has to count M times. Then, we assume one local 

iteration for one single mobile in (3.26) needs 2 2F ×  flops. L local iterations are 

needed for each mobile to converge in (3.24). Once global iteration for all M mobiles 

needs 2 2F L M× × × flops. It needs G global iterations to converge all the positions of 

mobile. Then, the total computation cost is given by 

Divided Newton computation cost= 2 2 devidedF L M G× × × ×  flops.   (3.27) 

Contrast with joint Newton’s computation cost (3.9) which is larger than the divided 

Newton computation cost in (3.27) when M is large. Computer simulations will 

demonstrate it in Section 5.3. 

 

3.2.2b Taylor-Series Expansion  

Actually, divided ML estimator in (3.24) is similar to ML estimator of traditional 

localization (2.11). In case of cooperative system, the matrix form of divided TS 

matrix for mobile i at nth global iteration time is 

_ , _ , 1 _ , _ , i DTS n i DTS n i DTS n i DTS n+ = +H x b n    (3.28)    

where  

_
_ ,

_ ,

,i TS
i DTS n

i VTS n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H
H

H
   (3.29) 

_
_ ,

_ ,

,i TS
i DTS n

i VTS n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b
b

b
  (3.30) 

and 

_
_ ,

_ ,

i TS
i DTS n

i VTS n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

n
n

n
.   (3.31) 
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_ ,i DTS nH  is a divided angle matrix and _ ,i DTS nn  is a divided TS error vector. In case 

of uncooperative angle matrix _i TSH  is like (2.17). Without loss of generality, let 

i=1, the virtual TS matrix for mobile 1 is 

10 2, 10 2,

ˆ ˆ10,2, 10,2,
ˆ ˆ10,2, 10,2,

ˆ10 3, 10 3,
ˆ ˆ10,3, 10,3,

ˆ ˆ1_ , 10,3, 10,3,

ˆ10, ,
ˆ ˆ10 10, ,

ˆ ˆ10, , 10, ,

ˆ ˆ
 

cos sin
ˆ ˆ

 cos sin

cos s
ˆ ˆ

 

n n

n n
n n

n n
n n

VTS n n n

M n
M n M n

M n M n

x x y y
r r

x x y y
r r

x x y y
r r

θ θ

θ θ

θ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

H

ˆ10,2,

ˆ10,3,

ˆ ˆ10, , 10,3,
in

T
n

T
n

T
M n n

θ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

a

a

a

,   (3.32) 

ˆ12 10,2,

ˆ13 10,3,
1_ ,

ˆ1 10, ,

n

n
VTS n

M M n

d r

d r

d r

−⎡ ⎤
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

b ,   (3.33) 

and 

12 _12 2_ ,

13 _13 3_ ,
1_ ,

1 _1 _ ,

ˆ
ˆ

ˆ

T VTS n

T VTS n
VTS n

M T M M VTS n

n n e
n n e

n n e

+ +⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥
⎢ ⎥+ +⎢ ⎥⎣ ⎦

n    (3.34) 

 

where 1_ ,VTS nH  is virtual angle matrix, 1_ ,VTS nn  is virtual TS error vector, ( ), ,ˆ ˆ,j n j nx y  

is position of virtual sensor j at nth global iteration, ˆ10, ,j nr  is the distance between 

reference point of mobile 1 and virtual sensor j location at nth global iteration, _ ,ˆ j VTS ne  

is the error of virtual sensor j location,  

10 , 10 ,
ˆ1 ,

ˆ ˆ10, , 10, ,

ˆ ˆ
 j n j nT

j n
j n j n

x x y y
r r

⎡ ⎤− −
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a    (3.35) 

is a virtual angle vector and 
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10 10
ˆ ˆ 10 1010, 10,

ˆ ˆ10, 10,

ˆ ˆj j
j j

j j

x x y y
r r x y

r r

⎛ ⎞ ⎛ ⎞− −
= − −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

In (3.28), we utilize positions of virtual sensors ( )2, 3, ,ˆ ˆ ˆ, , , ,n n M nx x x at nth global to get 

the solution of n+1th for mobile 1. As before, the divided TS estimator in (3.26) is 

given by 

( ) 1

1_ , 1 1_ , 1_ , 1_ , 1_ , 1_ , 1_ ,ˆ T T
DWTS n DTS n DTS n DTS n DTS n DTS n DTS n

−

+ =x H W H H W b    (3.36)   

Assume the reference point ( )10 10,x y  is very close to true position ( )1 1,x y  and all 

variances of measurement noises are the same as 2σ ,  

where  

( )-1 1_
1_ , 1_ , 1_ ,

1_ ,

0
=

0
TST

DWTS n DTS n DTS n
VTS n

E
⎡ ⎤

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎣ ⎦

W
W n n

W
,   (3.37) 

1_ ,DTS nW  is divided TS weighting includes the 1_TSW  is uncooperative TS weighting 

in (2.22) and The element of virtual TS weighting 1_ ,VTS nW  which is gotten from the 

covariance inverse of virtual TS error vector, 1_ , 1_ ,
T

VTS n VTS nE ⎡ ⎤⎣ ⎦n n  whose element is 

On-diagonal: 2 2
1_ , 1_ , _ ,ˆ+T

VTS n VTS n j VTS njj
E σ σ⎡ ⎤ =⎣ ⎦n n  

As before, if we ignore the statistics 1_ ,DTS nW , the solution in (3.36) can be further 

simplified as 

( ) 1

1_ , 1 1_ , 1_ , 1_ , 1_ ,ˆ T T
DTS n DTS n DTS n DTS n DTS n

−

+ =x H H H b    (3.38) 

The compensation of TS weighting ( ) 12 2
_ ,ˆ+ j VTS nσ σ

−
 is gotten by the error of virtual 

sensor j, _ ,ˆ j VTS ne  which will be discussed clearly in Section 3.3 

3.2.2c Distance-Augmented  

The divided DA matrix form in divided ML (3.24) for mobile i at nth global 
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iteration can be denoted as follows 

_ , _ , 1 _ , _ , i DDA n i DDA n i DDA n i DDA n+ = +H x b n    (3.39)    

where  

_ ,
_ ,

,DA
i DDA n

i VDA n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H
H

H
   (3.40) 

_
_ ,

_ ,

,i DA
i DDA n

i VDA n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b
b

b
   (3.41) 

and 

_
_ ,

_ ,

i DA
i DDA n

i VDA n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

n
n

n
   (3.42) 

_ ,i DDA nH  is divided coordinate matrix, _ ,i DDA nn  is divided DA error vector and 

uncooperative coordinate matrix DAH  is like (2.38). Without loss of generality, let 

i=1, the virtual DA matrix for mobile 1 is 

2, 2,

3, 3,
1_ ,

, ,

ˆ ˆ2 2 1
ˆ ˆ2 2 1

ˆ ˆ2 2 1

n n

n n
VDA n

M n M n

x y
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x y

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦
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_ , 1

1

i

i DDA n i
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x
y
R

+

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x , 

2
2, 12

2
3, 13

1_ ,

2
, 1

ˆ
ˆ

ˆ

n

n
VDA n

M n M

g d
g d

g d

⎡ ⎤−
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

b , 

and 
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( ) ( )
( ) ( )

( ) ( )

2

12 12 2, 12 2,

2
13 13 3, 13 3,

1_ ,

2
1 1 , 1 ,

ˆ ˆ2

ˆ ˆ2

ˆ ˆ2

n n

n n
VDA n

M M M n M M n

r n e n e

r n e n e

r n e n e

⎡ ⎤+ + +
⎢ ⎥
⎢ ⎥+ + +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

n  

where 1_ ,VDA nH  is virtual coordinate matrix, 1_ ,VDA nn  is virtual DA error vector and 

2 2
, , ,ˆ ˆ ˆj n j n j ng x y= + . 

As before, the divided DA estimator is given by 

( ) 1

1_ , 1 1_ , 1_ , 1_ , 1_ , 1_ , 1_ ,
ˆ T T

DDA n DDA n DDA n DDA n DDA n DDA n DDA n

−

+ =x H W H H W b    (3.43)    

Assume all variances of measurement noises are the same as 2σ ,  

 

where  

( )-1 1_
1_ , 1_ , 1_ ,

1_ ,

0
= =

0
DAT

DDA n DDA n DDA n
VDA n

E
⎡ ⎤

⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

W
W n n

W
,   (3.44) 

the 1_ DAW  is uncooperative DA weighting matrix in (2.45) and the element of 

1_ ,VDA nW  is gotten from the covariance inverse of virtual DA error vector, 

1_ , 1_ ,
T

VDA n VDA nE ⎡ ⎤⎣ ⎦n n  whose element is   

On-diagonal: ( ) ( )2 2 2 2 2
ˆ1_ 1_ , ,1

ˆ ˆ4 3T
DA DA j n j njjj

E r σ σ σ σ⎡ ⎤ = + + +⎣ ⎦n n    (3.45) 

 

3.2.2d Hyperbolic-Canceled  

The divided HC matrix equation for mobile i at nth global iteration can be denoted 

as follows 

_ , _ , 1 _ , _ , i DHC n i DCH n i DHC n i DHC n+ = +H x b n    (3.46)    

where  
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_ ,
_ ,

,HC
i DHC n

i VHC n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H
H

H
   (3.47) 

_ ,
_ ,

,HC
i DHC n

i VHC n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b
b

b
   (3.48) 

_ ,
_ ,

HC
i DHC n

i VHC n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

n
n

n
   (3.49) 

where _ ,i DHC nH  is divided coordinate-difference matrix, _ ,i DHC nn  is divided HC 

error vector, uncooperative coordinate-difference matrix HCH  is like (2.45). Without 

loss of generality, let i=1, and sensor 1 is reference sensor, then the virtual HC matrix 

for mobile 1 is, 

( ) ( )
( ) ( )

( ) ( )

2 1 2 1

3 1 3 1
1_ ,

1 1

ˆ ˆ
ˆ ˆ

ˆ ˆ

VHC n

M M

x x y y
x x y y

x x y y

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

H , 

2 2
12 2 111

2 2
13 3 111

1_ ,

2 2
1 111

ˆ
ˆ1

2
ˆ

VHC n

M M

d d g g
d d g g

d d g g

⎡ ⎤− + −
⎢ ⎥− + −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− + −⎢ ⎥⎣ ⎦

b , 

and 

( ) ( )( )
( ) ( )( )

( ) ( )( )

2 2
12 12 2, 12 2,11 11 11

2 2
13 13 3, 13 3,11 11 11

1_ ,

2 2
1 1 , 1 ,11 11 11

1ˆ ˆ
2
1ˆ ˆ

 2

1ˆ ˆ
2

                                              

n n

n n
VHC n

M M M n M M n

r n e r n n e n

r n e r n n e n

r n e r n n e n

⎡ ⎤+ − + + −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − + + −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ − + + −⎢ ⎥⎣ ⎦

n  

where 1_ ,VHC nH  is virtual coordinate-difference matrix and 1_ ,VHC nn  is virtual HC 

error vector. As before, the divided HC estimator is given by 
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( ) 1

1_ , 1 1_ , 1_ , 1_ , 1_ , 1_ , 1_ ,ˆ T T
DHC n DHC n DHC n DHC n DHC n DHC n DHC n

−

+ =x H W H H W b    (3.50)  

where  

( )-1

1_ , 1_ , 1_ ,= T
DHC n DHC n DHC nE ⎡ ⎤⎣ ⎦W n n ,   (3.51) 

1_ ,DHC nW  is divided HC weighting matrix. Then 1_ , 1_ ,
T

VHC n VHC nE ⎡ ⎤⎣ ⎦n n  whose element 

is  

On-diagonal: ( )2 2 2 2 2 2 2 2
1_ , 1_ , , ,1 11 11 11

3ˆ ˆ( )
4

T
VHC n VHC n j n j njjj

E r rσ σ σ σ σ σ⎡ ⎤ = + + + + −⎣ ⎦n n  

Off-diagonal: 2 2 2
1_ , 1_ , 11

3
4

T
VHC n VHC n jk

E r σ σ⎡ ⎤ = +⎣ ⎦n n   

Because 1_ , 1_ ,
T

VHC n VHC nE ⎡ ⎤⎣ ⎦n n  is not a diagonal matrix, the divided HC weighting 

matrix will becomes more complex.  

 

3.3 Compensation of Uncertain Virtual Sensor  

Actually, if there is a uncertain sensor which will help to estimate mobile locaiton, 

its variance of uncertain location error had been derived [43] as follow,  

The cooperative measurement TOA model between mobile i and mobile j is given by, 

2|| || +ij i j ijd n= −x x ,  (3.52)    

Now, we have a uncertain virtual sensor j location, ˆ jx  which is surround noise by 

jx , then (3.31) can be written as follow 

( ) 2ˆˆ|| || +ij i j j ijd n= − −x x e    (3.53)    

where ˆˆ j j j+ =x e x  and ˆ ˆ ˆ
T

j jx jye e⎡ ⎤= ⎣ ⎦e  are x-plane and y-plane error of virtual 

coordinate. Here, the coordinate error ˆ je  dependents on the traditional localization 

algorithm in Section 2.2. For example,  
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( ) ( )2
_ _ ˆcov covj WTS j WTS jtrace traceσ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦e e  

in (2.26) if the uncooperative TS algorithm is used. In (3.53), using virtual sensor ˆ jx  

instead of true sensor jx , the virtual coordinate error will involve inside of norm, 

then we want it get out from the norm. Therefore, apply Taylor-series expansion to 

(3.53) as follows 

ˆ2 ˆˆ|| || higher order terms 
j

T
ij i j j ijd n= − −∇ + +ex x e    (3.54) 

The uncertain error is out of norm in (3.54). Assume the initial is very closed the true 

position, the higher order terms can be omitted, (3.54) can be written as follows  

ˆ2 ˆˆ|| ||
j

T
ij i j j ijd n≈ − −∇ +ex x e    (3.55)   

The total error including measurement noise ijn  and virtual sensor error ˆ ˆ
j

T
j∇e e . 

Therefore, the variance of total error is  

( )2
2
ˆ ˆ ˆ

j

T
j ijij E nσ ⎡ ⎤= −∇ +⎢ ⎥⎣ ⎦e e    (3.56) 

We assume the measurement noise and virtual sensor error are independent, and the 

x-plane and y-plane of virtual sensor location error are i,i,d. Then, (3.56) can be 

written as 

2 2 2
ˆ ˆ j ijijσ σ σ= +    (3.57)    

We have the error variance of virtual sensor j location , 2
ˆijσ  in (3.57). Previous 

research has derived (3.57) by considering an uncertain sensor. In the 

divide-and-conquer method, we can apply these virtual weightings 

compensation _ ,i VTS nW , _ ,i VDA nW  and _ ,i VHC nW  to all virtual sensors to enhance 

localization accuracy by global iteration. Then, the error variance of virtual sensor 

j, 2
ˆ,ij nσ  will become smaller and smaller after global iteration. On the other hand, the 
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position of virtual sensor j becomes more accuracy. The computer simulation will 

improvement the compensation in Section 5.4.2. [15] proposes an error propagation 

aware algorithm to track the extent of the uncertain virtual position error by 

compensation in (3.57), but this algorithm doesn’t updated it with global iteration. 

Therefore, in our divided method, we update the compensation by iterating 

estimation. 
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Chapter 4  
Theoretical Analysis of Mean Square 
Error  
 

Recently, the determination of position accuracy for geolocation is a fundamental 

issue in wireless sensor networks. The Cramer-Rao bound (CRLB) provides a useful 

means for the analysis of the limits of localization accuracy. Based on different types 

of measurements, the CRLB result for cooperative localization can be found in [3] . 

However, the CRLB for TOA-based cooperative localization is gotten from Fisher 

Information Matrix (FIM) [3, 44]. But the matrix becomes more complexity when the 

number of mobiles increases. Therefore, the eigenvalue view of EFIM is proposed in 

[44]. Hence, we use the eigenvalue view to propose recursive block matrix inversion 

to derive a simple approximated EFIM (AEFIM). Then, we can see the more mobiles, 

the better MSE performance. Next, we further simplify the matrix to get the 

approximation of cooperative CRLB (AC-CRLB). Besides, we try to analyze the 

theoretical converged MSE of divided algorithms, but it only success in divided TS 

algorithm in special case of two mobiles. The rest of the section is organized as 

follows. In Section 4.1, we present the approximated cooperative CRLB. The 

theoretical converged MSE for divided algorithms are shown in Section 4.2.   

 

4.1 Approximated Cooperative Cramer-Rao Bound 

First, we will present the uncooperative CRLB in Section 4.1.1. In Section 4.1.2, 

the cooperative CRLB will be illustrated. Next, an eigenvalue view [44] on 

cooperative EFIM for two mobiles is shown in Section 4.1.3. Then, we use the 



 50

character to derive a approximated EFIM in Section 4.1.4. Finally, the approximation 

of cooperative CRLB is derived in Section 4.1.5. 

 

4.1.1 Basic Localization CRLB 

In Basic localization system (Figure 2.2), we estimated mobile i through its 

uncooperative measurement. Then let ˆ ix  denote an estimate of mobile i, ix  and 

measurement set id : 

1 2,i iNi id d d= ⎡ ⎤⎣ ⎦d    (4.1) 

The error covariance matrix of ˆ ˆi i i= −e x x  satisfies Information Inequality [25] 

( ) 1ˆ ˆ ˆcov
i

T
i i iE −⎡ ⎤= ≥⎣ ⎦ xe e e J    (4.2) 

where 
ixJ  is the full uncooperative Fisher Information Matrix (FIM) [25] for mobile 

i, ix   

( ) ( )ln | ln |
i

T

i i i i
i i

E f f
⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂⎪ ⎪
⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

xJ d x d x
x x

   (4.3) 

where ( )|i if d x  is the likelihood function in (2.9). Expanding (4.3) to get 

2

2 2
  

2 2
1  

2 2
  

( ) ( )( )

1
( )( ) ( )i

i j i j i j

N
i j i j

j i j i j i j i j

i j i j

x x x x y y
r r

x x y y y y
r r

σ=

⎡ ⎤− − −
⎢ ⎥
⎢ ⎥= ⎢ ⎥− − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑xJ    

2
  
22

1     

cos cos sin1
cos sin sin

N
i j i j i j

j i j i j i ji j

θ θ θ
θ θ θσ=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (4.4) 

trace of inverse of 
ixJ  in (4.4) is defined as the lower bound for MSE. Therefore, 

Basic localization CRLB is given by 

1
UncooperativeCRLB trace

i

−⎡ ⎤= ⎣ ⎦xJ    (4.5) 
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The size of full uncooperative FIM is 2×2 for mobile i. Then, we have multiple 

uncooperative CRLB from mobile 1 to mobile M in (4.5). However, in cooperative 

system, the size of cooperative full FIM is complex. Therefore, we derive a simple 

Approximated Equivalent-FIM(AEFIM) and further demonstrate approximation of 

cooperative CRLB (AC-CRLB) in following section.  

 

4.1.2 Cooperative Localization CRLB 

As before, the full cooperative FIM is given by cooperative likelihood function 

(3.3). We rewrite the cooperative likelihood function as follows  

( )
( ) ( )2 2

 

2 22 2
1 1 1 

Uncooperation Cooperation

, |

1 1exp exp
2 22 2

Uncoop Coop

M N Mi j ij i ji j

i j i ijij iji j j i

p

d d

σ σσ σ= = =
>

=

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟− ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏∏ ∏

d d x

x x x x    (3.3) 

According to (4.3), the full cooperative FIX [3, 25] can be written as follows 

1

2

1 12 1
1
1

12 2 2
1

Coop, ( ) 2

1 2
1

2 2

M

M

i M
i
i

M

i M
i

M i

M

M M Mi
i
i M M M

=
≠

=
≠

=
≠ ×

⎡ ⎤
+ − −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥− + −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − +⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

∑

x

x

x

x

J C C C

C J C C
J

C C J C

   (4.6) 

where 
ixJ  is the full uncooperative FIM in (4.4) for mobile i and ijC  is cooperative 

information matrix between mobile i and mobile j which is denoted as  

2

22 2

cos cos sin1 1
cos sin sinij ij

ij ij ijT
ij

ij ij ijij ij
θ θ

θ θ θ
θ θ θσ σ

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
C Q Q    (4.7) 

Then, the cooperative CRLB for mobile i is 

1
mobile 1 Coop, ( )CRLB trace upper-left 2 2  submatrix of M

−⎡ ⎤= ×⎣ ⎦xJ     (4.8) 
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Obviously, the size of full cooperative Fisher information matrix (4.6) becomes larger 

and complexity when the numbers of mobiles increases. It is difficult to obtain 

cooperative CRLB in (4.8). We will derive a simple AEFIM. Therefore, we can get 

cooperative easily. Next, we introduce the eigenvalue view on full cooperative FIM 

for two mobiles in following section. 

 

4.1.3 Cooperative Fisher Information for Two Mobiles based on 

Eigen Decomposition  

First, we briefly cite the definition of Equivalent Fisher Information Matrix (EFIM) 

[44]. Let the original FIM and its inverse be 

Coop, ( ) ,M T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x

A B
J

B C
 and 2 21

Coop, ( )
2 2

M
M M

×−

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x

T K
J

K L
,   (4.9) 

The cooperative CRLB for mobile 1 is given by  

( )mobile 1 2 2CRLB trace ×= T    (4.10) 

Let 
1

1
2 2=−
×eJ T , hence eJ  is an EFIM of Coop, ( )MxJ  for mobile 1. Now, we use 

eigenvalue decomposition [44] to analysis the CRLB of cooperative localization. We 

summarize the sight as follows 

For M=2, the structure of full cooperative FIM is 

1

2

1,2 1,2

Coop, (2)
1,2 1,2

4 4×

⎡ ⎤+ −
⎢ ⎥=

− +⎢ ⎥⎣ ⎦

x

x
x

J C C
J

C J C
   (4.11) 

Eigen-value decomposition on full uncooperative FIM
1xJ , 

2xJ  and cooperative 

information matrix 1,2C  from mobile 1 and mobile 2 as follows 

0
,  1, 2

0i i i

iT

i

iβ β

λ
μ

⎡ ⎤
=⎢ ⎥

⎣ ⎦
xJ U U    (4.12) 
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where iλ  and iμ  are the eigenvalues of 
ixJ  , and 

cos sin
=

sin cosi

i i

i i
β

β β
β β

⎡ ⎤
⎢ ⎥−⎣ ⎦

U  is 

rotation matrix of an angle iβ , and the cooperative information matrix can be written 

as 

, ,

,
,

0
,  1, 2

0 0i j i j

i jT
i j

v
i jθ θ

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
C U U     (4.13) 

where we define ,i jv  as the strength of the cooperative information between mobile i 

and mobile j. From (4.4) and (4.12), we can know that 

2
1

1N

i i
j ij

λ μ
σ=

+ =∑  and , 2

1
i j

ij

v
σ

=    (4.14) 

  Actually, because uncooperative FIM is related with the angles from sensor, 

therefore the eigenvalues is also related with the angle from sensors to mobile. The 

feature will show in Section 4.1.4. We get cooperative CRLB from the full 

cooperative FIM inverse. By the following matrix inverse lemma on (4.11) [24] 

( )
( )

1 1 2

2 1 2

11 1
1,2 1,21

Coop, (2) 11 1
1,2 1,2 4 4

−− −

−

−− −

×

⎡ ⎤− +⎢ ⎥= ⎢ ⎥
− +⎢ ⎥⎣ ⎦

e e x

x

e x e

J J C J C
J

J C J C J
   (4.15) 

We obtain the EFIM for mobile 1 

( )1 1 2

1

1,2 1,2 1,2 1,2

−
= + − +e x xJ J C C J C C    (4.16) 

After applying eigenvalue decomposition, (4.17) and (4.18) can be shown [44]  

1 1 1,2 1,2e χ= +xJ J C     (4.17) 

where the uncertain weighting of mobile 2 to mobile 1 is given by 

1,2 2

1,2
1,2 ,

1
1 v θ β

χ =
+ Δ

   (4.18) 

and  

( ) ( )
1,2 2

2 2
, 2 1,2 2 1,2

2 2

1 1cos sinθ β β θ β θ
λ μ

Δ = − + − .  (4.19) 
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(4.17) means the EFIM of mobile 1 includes its own full uncooperative FIM, 
1xJ  

and cooperative information matrix C1,2 from mobile 2. Because the exact location of 

mobile 2 is uncertain, C1,2 is de-weighted by the 1,2χ <1. We can see the uncertain 

cooperative part as follows 

( )
1,2 2

1,2
1,2 1,2 1,2 1,2

1,2 ,1ij ij ij ij

T Tv
v

vθ θ θ θ
θ β

χ χ= ⋅ =
+ Δ

C Q Q Q Q    (4.20) 

If bigger 1,2v , we have better cooperative localization CRLB. The EFIM for mobile 2 

can be obtained similarly. Therefore, we can get simple cooperative CRLB from 

(4.16) 

1

1
mobile 1 2 2

CRLB trace −

×
⎡ ⎤= ⎣ ⎦eJ    (4.21) 

Now, we make a lemma to derive the approximate EFIM. First, the relationship of 

(4.16) can be written as follow as 

( ) ( ) ( )
( ) ( ) ( )

1 1 2

2 1 2

1 1 1

1,2 1,2 1,2 1,2 1,2 1,21
Coop, (2) 1 1 1

2,1 1,2 1,2 1,2 2,1 1,2

χ χ

χ χ

− − −

−

− − −

⎡ ⎤+ − + +⎢ ⎥= ⎢ ⎥
− + + +⎢ ⎥⎣ ⎦

x x x

x

x x x

J C J C C J C
J

J C C J C J C
   

(4.22) 

From (4.16) to (4.17), we propose a block matrix inversion lemma as follows, 

First, we assume iJ  is large. Therefore, the Block matrix inversion lemma 1:  

( )( ) ( )

( ) ( )( )

1 11 11
,

11 11
,

A B e A BA

B
e B A B A

− −− −−

−− −−

⎡ ⎤+ − + ++ −⎡ ⎤ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎢ ⎥+ + − +
⎣ ⎦

J C C J C C J C J CJ C C
C J C J C J C J C C J C C

 

( ) ( ) ( )
( ) ( ) ( )

11 1

, ,

11 1
, ,

A B C A B C B

B A C A B A C

χ χ

χ χ

−− −

−− −

⎡ ⎤+ + +
⎢ ⎥=
⎢ ⎥+ + +⎢ ⎥⎣ ⎦

J C J C C J C

J C C J C J C
   

( )
( )

1
,

1
,

A B C

B A C

χ

χ

−

−

⎡ ⎤+
⎢ ⎥≈
⎢ ⎥+⎣ ⎦

J C 0

0 J C
   (4.23) 

Because iJ  is large, cause off-diagonal block matrixes to approach zero, 
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( ) ( ) 11
, 0A B C Bχ

−−
+ + ≈J C C J C  and ( ) ( ) 11

, 0B A C Aχ
−−

+ + ≈J C C J C . For example, 

assume 2 2
1 1 120,  3,  30 ,  2 ,N Nσ β λ μ σ= = = ° = =  we have uncooperative full 

FIM of mobile 2 

1

16.6667 0
0 16.6667

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

xJ ,   (4.24) 

2 2 245 ,  : 3 :1,β λ μ= ° =  we have uncooperative full FIM of mobile 2 

2

16.6667 8.3333
8.3333 16.6667

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

xJ ,    

12 90θ = ° , we have cooperative information matrix  

1,2

0 0
0 0.3333
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C    (4.25) 

and 1,2 0.9615χ = . Then the on-diagonal block matrix is 

( )1

1

1,2 1,2

0.6 0
0 0.0589

χ
− ⎡ ⎤

+ = ⎢ ⎥
⎣ ⎦

xJ C    (4.26) 

and the off-diagonal block matrix is  

( ) ( )1 2

1 1

1,2 1,2 1,2 1,2

0 0
0.0008 0.0015

χ
− − ⎡ ⎤

+ + = ⎢ ⎥−⎣ ⎦
x xJ C C J C    (4.27) 

Compare (4.26) and (4.27), the off-diagonal block matrix is relatively smaller than 

on-diagonal block matrix. Then, we will use lemma 1 to simplify the EFIM in 

following section. 

 

4.1.4 Approximation of Equivalent-FIM (AEFIM) Based on 

Recursive Block Matrix Inversion 

Now we will extend from two cooperative mobiles in Section 4.1.2 to multiple 

mobiles. Exact close form is difficult to obtain. By lemma 1 and eigenvalue view, 

AEFIM formula is derived for full cooperative FIM.  
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Case a: Three Mobiles 

The full cooperative FIM for three mobiles is given by 

1

2

3

1,2 1,3 1,2 1,3

, (3) 1,2 1,2 2,3 2,3

1,3 2,3 1,3 2,3 6 6

+ + - -

- + + -

- - + +
Coop

×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

x

x x

x

J C C C C

J C J C C C

C C J C C

    (4.28) 

We note that mobile 3 has provided additional information matrix 1,3C and 2,3C . 

We use matrix inverse lemma in (4.22) by partitioning into two groups of mobile 1 

and mobiles 2,3. The full cooperative FIM inverse is given by 

1

1
2 41

, (3)
4 4 6 6

e
Coop T

−
×−

× ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

x

J K
J

K L
   (4.29) 

Then, the EFIM of mobile 1 is given by 

( ) 2

1 1

3

-1

1,2 2,3 2,3 1,2
1,2 1,3 1,2 1,3

1,32,3 1,3 2,3

+ +
= + +

+ +e

⎡ ⎤− ⎡ ⎤
⎡ ⎤− ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥ ⎣ ⎦⎣ ⎦

x
x

x

J C C C C
J J C C C C

CC J C C
    (4.30) 

Obviously, it becomes more difficult because of two cooperative block matrix 

2

3

-1

1,2 2,3 2,3

2,3 1,3 2,3

+ +

+ +

⎡ ⎤−
⎢ ⎥

−⎢ ⎥⎣ ⎦

x

x

J C C C

C J C C
   (4.31) 

We call (4.31) two block matrix. Now, we apply the matrix inverse lemma 1 again to 

(4.31),  

2

3

-1

1,2 2,3 2,3

2,3 1,2 2,3

+ +

+ +

⎡ ⎤−
⎢ ⎥

−⎢ ⎥⎣ ⎦

x

x

J C C C

C J C C
 

( ) ( ) ( )
( ) ( ) ( )

2 2 3

3 2 3

11 1

1,2 2,3 2,3 1,2 2,3 2,3 2,3 2,3

1 11

1,2 3,2 2,3 2,3 1,2 2,3 1,2 3,2 2,3

+ + +

+ + +

χ χ

χ χ

−− −

− −−

⎡ ⎤+ − +⎢ ⎥= ⎢ ⎥
− + + +⎢ ⎥⎣ ⎦

x x x

x x x

J C C J C C C J C

J C C C J C C J C C

( )
( )

2

3

1

1,2 2,3 2,3

1

1,2 3,2 2,3

+ 0

0 +

χ

χ

−

−

⎡ ⎤+⎢ ⎥≈ ⎢ ⎥
+⎢ ⎥⎣ ⎦

x

x

J C C

J C C
   (4.32) 

This simplified block-diagonal matrix becomes a sum of full uncooperative FIM for 
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ixJ  and ,i jχ  weighted combination of ,i jC . However, the uncertain weighting of 

mobile 3 to mobile 2, 2,3χ  is replaced by 2,3χ  because the J on the lemma 1 is 

2 1,2+xJ C . Therefore, 2,3χ  is involved in the eigen-parameter of 
2 1,2+xJ C . Then, 

(4.30) can be written as 

( )
( )

( )
2

1 1

3

1

1,2 2,3 2,3 1,2
1,2 1,3 1,2 1,3 1

1,3
1,2 3,2 2,3

+ 0
+ +

0 +
e

χ

χ

−

−

⎡ ⎤+ ⎡ ⎤⎢ ⎥⎡ ⎤≈ − ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦+⎢ ⎥⎣ ⎦

x

x

x

J C C C
J J C C C C

CJ C C

   (4.33) 

 ( ) ( )1 2 3

11

1,2 1,3 1,2 1,2 2,3 2,3 1,2 1,3 1,2 3,2 2,3 1,3= + + + +χ χ
−−

− + − +x x xJ C C C J C C C C J C C C    

(4.34) 

( ) ( )1 2 3

11

1,2 1,2 1,2 2,3 2,3 1,2 1,3 1,3 1,2 3,2 2,3 1,3= + + + +χ χ
−−

− + − +x x xJ C C J C C C C C J C C C    

(4.35) 

1 1,2 1,2 1,3 1,3+ +χ χ= xJ C C    (4.36) 

As before, the cause of uncertain weighting 1,2χ  and 1,3χ  is that the J on the lemma 

1 are 
2 2,3 2,3+χxJ C  and 

3 3,2 2,3+χxJ C , respectively. In fact, we know 1,2 1,2χ χ>  and 

1,3 1,3χ χ>  because 1,2χ  and 1,3χ  have the help from 2,3 2,3χ C . But the help is weak. 

Then, we can see the approximated uncertain weighting as follows 

1,2 1,2χ χ≈    (4.37) 

1,3 1,3χ χ≈    (4.38) 

Therefore, we derive the approximated EFIM (AEFIM) for mobile 1 

1 1 1,2 1,2 1,3 1,3+ +e χ χ≈ xJ J C C    (4.39) 

We can see that the AEFIM of mobile 1 includes full uncooperative FIM of mobile 1 

add cooperative fisher information from mobile 2 and mobile 3 with their uncertain 
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weighting 1,2χ  and 1,3χ . 

Case b: Four Mobiles 

The full cooperative FIM for four mobiles is given by 

1

2

3

4

1,2 1,3 1,4 1,2 1,3 1,4

1,2 1,2 2,3 2,4 2,3 2,4
, (4)

1,3 2,3 1,3 2,3 3,4 3,4

1,4 2,4 3,4 1,4 2,4 3,4 8 8

+ + +

+ + + -
=

+ + +

+ + +

Coop

×

⎡ ⎤− − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

x

x
x

x

x

J C C C C C C

C J C C C C C
J

C C J C C C C

C C C J C C C

(4.40) 

The EFIM of mobile 1 can be donated as 

1

1 1 2

3

-1

1,2 2,3 2,4 2,3 2,4 1,2

1,2 1,3 1,4 1,2 1,3 1,4 2,3 1,3 2,3 3,4 3,4 1,3

1,42,4 3,4 1,4 2,4 3,4

+ + +

= + + + + + +

+ + +
e

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤− − −⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

x

x x

x

J C C C C C C
J J C C C C C C C J C C C C C

CC C J C C C

 

(4.41) 

As before, the difficult part in (4.34) is three cooperative block matrix 

1

,2 1,2 2,3 2,4 2,3 2,4

2,3 ,3 1,3 2,3 3,4 3,4

2,4 3,4 ,4 1,4 2,4 3,4

+ + +
+ + +

+ + +

A

A

A

−
⎡ ⎤− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

J C C C C C
C J C C C C
C C J C C C

 

(4.42) 

Apply the lemma 1 on (4.42) 

1

1,2 1,2 2,3 2,4 2,3 2,4
1 2

12,3 ,3 1,3 2,3 3,4 3,4
2 3

2,4 3,4 ,4 1,4 2,4 3,4

+ + +
+ + +

+ + +

A

TA

A

−

−

−

⎡ ⎤− −
⎡ ⎤⎢ ⎥− − = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥− −⎣ ⎦

J C C C C C
A A

C J C C C C
A A

C C J C C C
   

(4.43) 

As before, 1A  and 2A  can be written as 

21 1,2 2,3 2,3 2,4 2,4+ + +χ χ= xA J C C C    (4.44)  

[ ]2 ≈A 0 0    (4.45) 
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Next, we have 3A  

( )3

2

4

-11,3 2,3 3,4 3,4 2,3
3 1,2 2,3 2,4 2,3 2,4

2,43,4 1,4 2,4 3,4

+ + +
+ + +

+ + +

⎡ ⎤− ⎡ ⎤
⎡ ⎤= −⎢ ⎥ ⎢ ⎥ ⎣ ⎦−⎢ ⎥ ⎣ ⎦⎣ ⎦

x
x

x

J C C C C C
A J C C C C C

CC J C C C
 

( )
( )

3 2

2 4

-1

1,3 2,3 2,3 3,4 3,4 2,3 1,2 2,3 2,4 2,4

-1

3,4 2,4 1,2 2,3 2,4 2,3 1,4 2,4 2,4 3,4

+ + + + + +
=

+ + + + + +

χ

χ

⎡ ⎤− −⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

x x

x x

J C C C C C J C C C C

C C J C C C C J C C C
 

( )
( )

23

4
2

-1

2,3 1,2 2,3 2,4 2,41,3 2,3 2,3 3,4 3,4

-1
3,4 1,4 2,4 2,4 3,4 2,4 1,2 2,3 2,4 2,3

0 + + ++ + +

+ + + + + + 0

χ

χ

⎡ ⎤−⎡ ⎤− ⎢ ⎥= +⎢ ⎥ ⎢ ⎥−⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

xx

x x

C J C C C CJ C C C C

C J C C C C J C C C C

 

3

4

1,3 2,3 2,3 3,4 3,4

3,4 1,4 2,4 2,4 3,4

+ + +

+ + +

χ

χ

⎡ ⎤−
≈ ⎢ ⎥

−⎢ ⎥⎣ ⎦

x

x

J C C C C

C J C C C
 

(4.46) 

As before, apply lemma 1 on (4.46) to obtain 1
3
−A  

( )
( )

3

4

-1

1,3 2,3 2,3 3,4 3,41
3 -1

1,4 2,4 2,4 3,4 3,4

+ + +

+ + +

χ χ

χ χ

−

⎡ ⎤
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥⎣ ⎦

x

x

J C C C 0
A

0 J C C C
 

 

Summarize 1A , 2A  and 3A , the three cooperative block matrix in (4.43) can be 

simplify as   

1

,2 1,2 2,3 2,4 2,3 2,4

2,3 ,3 1,3 2,3 3,4 3,4

2,4 3,4 ,4 1,4 2,4 3,4

+ + +
+ + +

+ + +

A

A

A

−
⎡ ⎤− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

J C C C C C
C J C C C C
C C J C C C

 

( )
( )

( )

2

3

4

1

1,2 2,3 2,3 2,4 2,4

-1

1,3 2,3 2,3 3,4 3,4

-1

1,4 2,4 2,4 3,4 3,4

+ + + 0 0

+ + + 0

0 0 + + +

χ χ

χ χ

χ χ

−⎡ ⎤
⎢ ⎥
⎢ ⎥

≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x

x

x

J C C C

J C C C

J C C C

(4.47) 

From (4.43) to (4.47) we use recursive block matrix inversion on lemma 1.It is also a 

simplified block-diagonal matrix. The EFIM of mobile 1 in (4.41) can be written as 
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follows 

( )
( )

( )

-1

,2 1,2 2,3 2,3 2,4 2,4
1,2

-1

1 ,1 1,2 1,3 1,4 1,2 1,3 1,4 ,3 1,3 2,3 2,3 3,4 3,4 1,3

-1 1,4
,4 1,4 2,4 2,4 3,4 3,4

+ + + 0 0

+ + + - 0 + + + 0

0 0 + + +

A

A A

A

χ χ

χ χ

χ χ

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤≈ ⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

J C C C C
J J C C C C C C J C C C C

CJ C C C

1 1,2 1,2 1,3 1,3 1,4 1,4+ + +χ χ χ= xJ C C C    (4.48) 

As before, the AEFIM of mobile 1 is given by 

1 ,1 1,2 1,2 1,3 1,3 1,4 1,4+ + +A χ χ χ≈J J C C C .    (4.49) 

From (4.43) to (4.47) we use recursive block matrix inversion on lemma 1 to get the 

simply formulation. In fact, there are two main assumptions: (1) The off-diagonal 

block matrix are zero after inverse operation (lemma 1). (2) The approximated 

uncertain weighting (4.37) and (4.38). We summarize the AEFIM for M mobiles in 

following case. 

 

Case c: M Mobiles 

Summarize, the full cooperative FIM becomes for M mobiles 

2

1,2 1, 1,2 1,

1,2 1,2 2, 2,
, ( )

1, 2, 1, 1, 2 2

i

M

M M

M M
Coop M

M M M M M M M− ×

⎡ ⎤+ + − −
⎢ ⎥

− + + −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− + +⎣ ⎦

x

x
x

x

J C C C C

C J C C C
J

C C J C C

 

(4.50) 

The EFIM for mobile 1 is denoted as 

2

1 1

-1 1,2
1,2 2, 2,

1,3
1,2 1, 1,2 1,3 1,

2, 1, 1,
1,

= -

M

M M

e M M

M M M M
M

−

⎡ ⎤⎡ ⎤+ + − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤+ + ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥+ + ⎢ ⎥⎣ ⎦ ⎣ ⎦

x

x

x

CJ C C C
C

J J C C C C C
C J C C

C

 

(4.51) 

As before, by recursive block matrix inversion, (2 2) (2 2)M M− × −  block matrix in 
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(4.46) can be partitioned into upper-left single block 2 2× and lower-right 

(2 4) (2 4)M M− × −  block matrices, and (2 4) (2 4)M M− × −  block matrix can be 

further partitioned into upper-left single block and lower-right (2 6) (2 6)M M− × −  

block matrices, and so on. Therefore, (4.46) can be simplified as 

( )

( )
1

-1-1
1,2

,2 1,2 2, 2,
1,3

.1 1,2 1, 1,2 1,3 1,
-1

. 1, 1, 1, 1,

0

-

0

A M M

e A M M

A M M M M M M M

χ

χ − −

⎡ ⎤⎡ ⎤+ + ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤≈ + + ⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

CJ C C
C

J J C C C C C

J C C C

(4.52) 

1 1,2 1,2 1 1,M Mχ χ= xJ + C + + C     (4.53) 

1 1,2 1,2 1 1,M Mχ χ≈ xJ + C + + C    (4.54) 

From the AEFIM of mobile 1 for M mobiles , 
1e

J  (4.49), it is a linear combination of 

an full uncooperative FIM 
1xJ  and other cooperative information matrixes from 

mobile 2 to mobile M, 1,2C , 1,3C …, 1,MC  with their approximated uncertain weighting, 

1,2χ , 1,3χ …, 1,Mχ . We can see that the more mobiles, the better localization accuracy. 

Therefore, the cooperative CRLB for M>2 mobiles can be obtain easily 

1

1
mobile 1 2 2

CRLB trace −

×
⎡ ⎤≈ ⎣ ⎦eJ    (4.55) 

 
4.1.5 Approximated Cooperative CRLB in Case of a Central Mobile 

The research utilizes the eigenvalue view to observe the cooperative FIM, but it 

can see the cooperation benefit only for two mobiles and do not derive a close from of 

cooperative CRLB. Then, we discuss cooperative CRLB for special case, a central 

mobile. Figure 4.1 shows the central mobile 1 in a localization system. All sensor 

locations are uniformly located around mobile 1 
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12θ 1 1θ

14θ

Sensor_2
2 2( , )x y

Sensor_2
2 2( , )x y

Sensor_3
3 3( , )x y

Sensor_3
3 3( , )x y

Sensor_1
1 1( , )x y

Sensor_1
1 1( , )x y

Sensor_4
4 4( , )x y

Sensor_4
4 4( , )x y

Mobile_1
1 1( , )x y

Mobile_1
1 1( , )x y

Mobile_1
1 1( , )x y

1 3θ

 

Figure 4.1 The angle relationship between sensors and mobile 1. 

 

Apply the AEFIM result, the cooperative CRLB (4.55) can be simplified as  

( )1

1
mobile CRLB tracei e

−⎡ ⎤≈ ⎣ ⎦J    (4.55) 

where 
1 1 1,2 1,2 1 1,e M Mχ χ≈ xJ J + C + + C  is given in (4.54). 

Here we make some assumptions as follows 

Assumptions: 1. i.i.d. noise. 

           2. Because Mobile 1 is located near the center of all sensors. Therefore, 

the eigenvalues of uncooperative EFIM of mobile 1 are the 

same, 1 1λ μ= . Therefore,  

1

2
1 1 1 

1 122 2
1 1 1 1 

cos cos sin1 ,  and 
cos sin sin 2

N
j j j

j j j j

Nθ θ θ
λ λ

θ θ θσ σ=

⎡ ⎤
= = =⎢ ⎥

⎢ ⎥⎣ ⎦
∑xJ I .   (4.56) 

Form figure 4.2, we can see the on-diagonal are 2
1 

2
cos

M

j
j

θ
=
∑  and 2

1 
2
sin

M

j
j

θ
=
∑  which 

have similar value in uniform angle situation. Then, the off-diagonal is 

1 1 1 
2 2
cos sin 1 2 sin 2 0

M M

j j j
j j

θ θ θ
= =

= ≈∑ ∑ . 

Finally, we have AEFIM of mobile as be written as 
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1 1,2 1,2 1 1,22e M M
N χ χ
σ

≈J I + C + + C    (4.57) 

We separate two cases to discuss. 

Case 1: Same uncertain weighting, 1,2 1,3 1, =Mχ χ χ χ= = = . 

( )
1 1,2 1,22e M

N χ
σ

≈J I + C + + C    (4.58) 

As before, we do eigenvalue composition on ( )1,2 1,MC + + C  

( )
1 11,2 1,

0
0

T
M φ φ

α
β

⎡ ⎤
⎢ ⎥
⎣ ⎦

C + + C U U    (4.59) 

where 2

1  Mα β
σ
−

+ = .  

The AEFIM of mobile 1 can be written as follows 

1 1 1

2

2

0
2

0
2

T
e

N

Nφ φ

χα
σ

χβ
σ

⎡ ⎤+⎢ ⎥
≈ ⎢ ⎥

⎢ ⎥+⎢ ⎥⎣ ⎦

J U U    (4.60) 

The cooperative CRLB is given by 

mobile 1

2 2

1 1AC-CRLB

2 2
N Nχα χβ
σ σ

= +
+ +

   (4.61) 

From (4.61), we have maximum and minimum value as follows 

( )
2

mobile 12

1 4Omni direction :   AC-CRLB   
2 1

M
N M

σα β
σ χ
−

= = ⇒ =
+ −

   (4.62) 

( )
2 2

mobile 12

1 2 2Beam :  ,  0 AC-CRLB  
2 1

M
N M N

σ σα β
σ χ
−

= = ⇒ = +
+ −

   (4.63) 

From (4.62) and (4.63) we can know the Omni direction is better than beam at same 

uncertain mobiles help. Figures 4.2 and 4.3 show that omni-direction and beam of 

cooperative mobiles with the same cooperative reliable positions. 
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Figure 4.2 Omni-direction type with same reliable cooperative positions. 

 

 
Figure 4.3 Beam type with same reliable cooperative positions. 

Case 2: Difference uncertain weighting, 1,2 1,3 1,Mχ χ χ≠ ≠ ≠ . 

Assume beam type of cooperative mobiles. Figure 4.4 show that. 

 

 
Figure 4.4 Beam type with difference reliable cooperative positions. 
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The AEFIM of mobile 1 is given by 

1 1,2
22

M

e j
j

N χ
σ =

≈ ∑J I + C    (4.64) 

2
1,2

2

1 0
2 0 0

M
T

j
j

N
θ θχ σ

σ =

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

∑I U U  

1,2 2
2

2

1 0
2

0
2

M

j
jT

N

N
θ θ

χ
σ σ

σ

=

⎡ ⎤
+⎢ ⎥

⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
U U  

The cooperative CRLB of mobile 1 can be denoted as 

2

mobile 1

1,
2

2 1AC-CRLB  1
1

2

M

j
j

NN
σ

χ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
   (4.65) 

From the results of situations (4.62), (4.63) and (4.65), these parameters, numbers of 

mobiles and sensors, noise variance and uncertain weighting 1, jχ  can affect 

localization accuracy. 

We derive AC-CRLB successfully and find some factors which can improve the 

cooperative localization accuracy. The AC-CRLB is shown in computer simulation, in 

terms of noise variance, numbers of mobiles and cooperative angles. We also compare 

the difference between cooperative CRLB from full cooperative FIM, AEFIM and 

AC-CRLB.  

 

4.2 Converged Theoretical Mean Square Error for Divided 

Linearized Algorithms   

Previously, we proposed the divide-and-conquer method for cooperative 

localization system. It can perform low computation cost and available MSE 

performance. Now, we try to analyze the converged MSE for Divided linearized 
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algorithms. However, the most analysis of these algorithms is quite hard but we still 

try to confess the converged theoretical MSE for divided TS, DA and HC. Especially, 

we derive it successfully for divided TS in special case M=2. Simulation results 

demonstrate the converged theoretical MSE.  

The rest of the section is organized as follows. Convergence analysis of 

theoretical MSE will be described for three linearized divide-and-conquer algorithms: 

Taylor-series expansion algorithm in Section 4.2.1, distance-augmented algorithm in 

Section 4.2.2, Hyperbolic-canceled algorithm in Section 4.2.3. 

 

4.2.1 Taylor-Series Expansion Algorithm  

First, we assume all variance of measurement error are the same as 2σ  and the 

reference points are quite close to true points, ( ) ( )10 10 1 1, ,x y x y≈ , 

( ) ( )20 20 2 2, ,x y x y≈ , …, ( ) ( )0 0, ,M M M Mx y x y≈ . Consider two estimations from 

divided TS, weighted estimation, _ , 1ˆ i DWTS n+x  in (3.36) and unweighted estimation, 

_ , 1ˆ i DTS n+x  (3.38) for mobile i at n+1th iteration. Now, we derive the convergence 

analysis of MSE. Without loss of generality, let i=1. The covariance matrix of 

weighted estimation, 1_ , 1 1_ , 1 1ˆDWTS n DWTS n+ += −e x x , conditioned on position of virtual 

sensors 2 to M, 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x  is denoted as, 

( ) ( ) 1

1_ , 1 2, 3, , 1_ , 1_ , 1_ ,

-1

ˆ ˆ1_ 1_2 2 2 10, , 10, ,
2 _ ,

ˆ ˆ ˆcov | , , ,

1 1 = +
ˆ+

T
DWTS n n n M n DTS n DTS n DTS n

M
T T

TS TS j n j n
j j VTS nσ σ σ

−

+

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

e x x x H W H

H H a a
    (4.66) 

where ˆ ˆ ˆ1_ , 1_ , 10, ,10,2, 10,3,
T T

DTS n TS n M nn n
⎡ ⎤= ⎣ ⎦H H a a a  is divided angle matrix in 

(3.29) and _ ,i DTS nW  is divided TS weighting in (3.37). 
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After unconditioning 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x , the MSE of mobile i at n+1th iteration is  

( ){ }{ }2
_ , 1 1_ , 1 2 _ , 3_ , _ ,ˆ ˆ ˆ ˆ=trace cov | , , ,i DWTS n DWTS n VTS n VTS n M VTS nEσ + +e x x x    (4.67) 

Then, the another error covariance of unweighted estimation 1_ , 1 1_ , 1 1ˆDTS n DTS n+ += −e x x  

conditioned on position of virtual sensors 2 to M, 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x  is given by 

( )1_ , 1 2, 3, ,ˆ ˆ ˆcov | , , ,DTS n n n M n+e x x x  

( ) ( )1 11
1_ , 1_ , 1_ , 1_ , 1_ , 1_ , 1_ ,

T T T
DTS n DTS n DTS n DTS n DTS n DTS n DTS n

− −−= H H H W H H H  

n n n= A B A    (4.68) 

Where 
1

ˆ ˆ1_ 1_ 10, , 10, ,
2

= +
M

T T
n TS TS j n j n

j

−

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑A H H a a ,  

( )2 2 2
ˆ ˆ ˆ1_ 1_ _ , 10, , 10, ,

2
+

M
T T

n TS TS j VTS n j n j n
j

σ σ σ
=

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

∑B H H a a  

Then the MSE is 

( ){ }{ }2
1_ , 1 1_ , 1 2, 3, ,ˆ ˆ ˆ ˆ=trace cov | , , ,DTS n DTS n n n M nEσ + +e x x x    (4.69) 

It is very hard to analyze (4.67) and (4.69) because the virtual sensors locations 

have complex statistic. In order to simplify our analysis, we will consider the special 

case of M=2 in Section 4.2.1a and Section 4.2.1b, respectively.  

  

 

4.2.1a Weighted Estimation for Two Mobiles 

In case of M=2 mobiles, the error covariance of weighted estimation 1_ , 1DWTS n+e   

for mobile 1 at 1st global iteration in (4.67) becomes a rank-one update of an inverse 

matrix, 
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1

ˆ ˆ1_ ,1 2,0 1_ 1_2 2 2 10,2,0 10,2,0
2_ ,0

1 1ˆcov | = +
ˆ+

T T
DWTS TS TS

VTSσ σ σ

−
⎡ ⎤

⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

e x H H a a     

(4.70) 

In (4.70), we can see ( ) ( )12
1_ 1_ 1_1 covT

TS TS WTSσ
−
=H H e is theoretical error 

covariance of uncooperative TS estimation in (2.63). Therefore, the virtual sensor 2 

must provides benefits for localization accuracy. Now, we use the eigenvalue 

decomposition on 1_ 1_
T

TS TSH H ,  

10 10

10
1_ 1_

10

0
0

T T
TS TS β β

λ
μ

⎡ ⎤
⎢ ⎥
⎣ ⎦

H H U U    (4.71) 

Based on (4.71), (4.70) can be written as follows, 

1_ ,1 2,0ˆcov |DWTS⎡ ⎤⎣ ⎦e x  

10 10

1

10
ˆ ˆ2 2 2 10,2,0 10,2,0

10 2 _ ,0

01 1= +
ˆ0 +

T T

VTS
β β

λ
μσ σ σ

−
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

U U a a (4.72) 

10 10 10 10 10 10

1

10
ˆ ˆ2 2 2 10,2,0 10,2,0

10 2 _ ,0

01 1= +
ˆ0 +

T T T T

VTS
β β β β β β

λ
μσ σ σ

−
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

U U U U a a U U    (4.73) 

10 1010 10

1

10
ˆ ˆ2 2 2 ,2,0 ,2,0

10 2 _ ,0

01 1=
ˆ0 +

T T

VTS
β ββ β

λ
μσ σ σ

−
⎛ ⎞⎡ ⎤

+⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
U C C U    (4.74) 

Where 
1010

ˆ ˆ,2,0 10,2,0
= ββ

C U a , and 
10 10

ˆ ˆ,2,0 ,2,0
=T

β β
C C I . 

In order to simplify (4.74), we assume the mobile 1 is located at the center around all 

sensors. As before, 10 10λ μ= . (4.74) can be simplified as. 

10 1010 10

1

10
ˆ ˆ1_ ,1 2,0 2 2 2 ,2,0 ,2,0

2 _ ,0

1ˆcov | =
ˆ+

T T
DWTS

VTS
β ββ β

λ
σ σ σ

−
⎛ ⎞

⎡ ⎤ +⎜ ⎟⎣ ⎦ ⎜ ⎟
⎝ ⎠

e x U I C C U    (4.75) 

Apply matrix inverse lemma [24] on inverse term on (4.75) 

matrix inverse lemma: ( ) ( )1 11 1 1 1T T Ta a a
− −− − − −+ = − +A CC A A C I C A C C A  
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we have 

10 10

1

10
ˆ ˆ2 2 2 ,2,0 ,2,0

2_ ,0

1
ˆ+

T

VTS
β β

λ
σ σ σ

−
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

I C C  

( ) ( )10 10 10 10

1
2 4 2

ˆ ˆ ˆ ˆ,2,0 ,2,0 ,2,0 ,2,02 2 2 2 2
10 10 2 _ ,0 10 2 _ ,0ˆ ˆ+ +

T T

VTS VTS
β β β β

σ σ σ
λ λ σ σ λ σ σ

−
⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

I C I C C C

(4.76) 

( ) ( )10 10

1
2 4 2

ˆ ˆ,2,0 ,2,02 2 2 2 2
10 10 2 _ ,0 10 2 _ ,0ˆ ˆ+ +

T

VTS VTS
β β

σ σ σ
λ λ σ σ λ σ σ

−
⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

I C I I C    (4.77) 

( )
( )

( )10 10

12 2 22 4
10 2 _ ,0

ˆ ˆ,2,0 ,2,02 2 2 2 2
10 10 2 _ ,0 10 2 _ ,0

ˆ+

ˆ ˆ+ +
VTS T

VTS VTS
β β

σ λ σ σσ σ
λ λ σ σ λ σ σ

−
⎛ ⎞+
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

I C C    (4.78) 

( )
( )
( )10 10

2 22 4
10 2 _ ,0

ˆ ˆ,2,0 ,2,02 2 2 2 2 2
10 10 2 _ ,0 10 2 _ ,0

ˆ+

ˆ ˆ+ +
VTS T

VTS VTS
β β

λ σ σσ σ
λ λ σ σ σ λ σ σ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+⎝ ⎠

I C C    (4.79) 

( ) 10 10

2 4

ˆ ˆ,2,0 ,2,02 2 2
10 10 10 2 _ ,0ˆ+

T

VTS
β β

σ σ
λ λ σ λ σ σ

= −
⎡ ⎤+⎣ ⎦

I C C    (4.80) 

Then, the error covariance can be written as follows 

( )10 1010 10

2 4

ˆ ˆ1_ ,1 2,0 ,2,0 ,2,02 2 2
10 10 10 2_ ,0

ˆcov | =
ˆ+

T T
DWTS

VTS
β ββ β

σ σ
λ λ σ λ σ σ

⎛ ⎞
⎜ ⎟⎡ ⎤ −⎣ ⎦ ⎜ ⎟⎡ ⎤+⎣ ⎦⎝ ⎠

e x U I C C U    

(4.81) 

Next, the variance of weighted divided TS estimator is 

{ }2
1_ ,1 1_ ,1 2,0ˆ=trace cov |DWTS DWTSEσ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦e x    (4.82) 

{ }1_ ,1 2,0ˆ= trace cov |DWTSE ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦e x    (4.83) 

(4.82) and (4.83) have same consequence. The we use (4.83) on (4.81), (4.82) can be 

written as 

( )10 1010 10

2 4
2

ˆ ˆ1_ ,1 ,2,0 ,2,02 2 2
10 10 10 2_ ,0

trace
ˆ+

T T
DWTS

VTS

E β ββ β

σ σσ
λ λ σ λ σ σ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟= −⎨ ⎬⎢ ⎥⎜ ⎟⎡ ⎤+⎪ ⎪⎣ ⎦⎝ ⎠⎣ ⎦⎩ ⎭

U I C C U    
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(4.84) 

( )
2 4

ˆ ˆ10,2,0 10,2,02 2 2
10 10 10 2_ ,0

trace
ˆ+

T

VTS

E σ σ
λ λ σ λ σ σ

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟⎡ ⎤+⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

I a a    (4.85) 

( )
2 4

ˆ ˆ10,2,0 10,2,02 2 2
10 10 10 2_ ,0

trace trace
ˆ+

T

VTS

E σ σ
λ λ σ λ σ σ

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟ ⎜ ⎟⎡ ⎤+⎝ ⎠⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

I a a    (4.86) 

( )
2 4

ˆ ˆ10,2,0 10,2,02 2 2
10 10 10 2_ ,0

trace trace
ˆ+

T

VTS

Eσ σ
λ λ σ λ σ σ

⎧ ⎫⎛ ⎞⎛ ⎞ ⎪ ⎪⎜ ⎟= − ⎨ ⎬⎜ ⎟ ⎜ ⎟⎡ ⎤+⎝ ⎠ ⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

I a a    (4.87) 

( )
2 4

2 2 2
10 10 10 2 _ ,0

2 trace
ˆ+ VTS

Eσ σ
λ λ σ λ σ σ

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= − ⎨ ⎬⎜ ⎟⎡ ⎤+⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

I    (4.88) 

( )
2 4

2 2 2
10 10 10 2 _ ,0

2
ˆ+ VTS

σ σ
λ λ σ λ σ σ

= −
⎡ ⎤+⎣ ⎦

   (4.89) 

2 4

2
2 210 10

2_ ,0
10

2 1
1 ˆ1+ + VTS

σ σ
λ λ σ σλ

= − ⋅
⎛ ⎞⎜ ⎟
⎝ ⎠

   (4.90) 

Actually, we know 2 2 2
10 1_ 1_ ,0ˆ2 WTS VTSσ λ σ σ= =  in (4.90) which is error variance of 

uncooperative weighted TS estimation and is also the initial value in global iteration. 

Then, (4.90) can be written as follows 

4
2 2
1_ ,1 1_ 2

2 210
2_

10

1
11+ +

DWTS WTS

WTS

σσ σ
λ σ σλ

= − ⋅
⎛ ⎞⎜ ⎟
⎝ ⎠

   (4.91) 

The MSE of divided TS for mobile 2 can be obtained similarly, 

4
2 2
2_ ,1 2_ 2

2 220
1_

20

1
11+ +

DWTS WTS

WTS

σσ σ
λ σ σλ

= − ⋅
⎛ ⎞⎜ ⎟
⎝ ⎠

   (4.92) 

We know that the MSE of error estimations is also the variance of uncertain virtual 

sensors, 2 2
1_ ,1 1_ ,1ˆDWTS VTSσ σ=  and 2 2

2_ ,1 2 _ ,1ˆDWTS VTSσ σ= . Therefore, the MSE at 2nd global 

iteration for mobile 1can be written as  
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4
2 2
1_ ,2 1_ 2

2 210
2_ ,1

10

1
1 ˆ1+ +

DWTS WTS

VTS

σσ σ
λ σ σλ

= − ⋅
⎛ ⎞⎜ ⎟
⎝ ⎠

   (4.93) 

4
2
1_ 42

2 210
2 _ 2

2 210 20
1_

20

1
111+ +

11+ +

WTS

WTS

WTS

σσ
σλ σ σλ λ σ σλ

= − ⋅
⎛ ⎞ − ⋅⎜ ⎟
⎝ ⎠ ⎛ ⎞⎜ ⎟

⎝ ⎠

   (4.94) 

At 3rd global iteration, 

4
2 2
1_ ,3 1_ 2

2 210
2_ ,2

10

1
1 ˆ1+ +

DWTS WTS

VTS

σσ σ
λ σ σλ

= − ⋅
⎛ ⎞⎜ ⎟
⎝ ⎠

   (4.95) 

4
2
1_ 42

2 210
2 _ 42

10 2 220
1_ 2

2 220 10
2 _

10

1
111+ +

111+ +
11+ +

WTS

WTS

WTS

WTS

σσ
σλ σ σλ σλ σ σλ λ σ σλ

= − ⋅
⎛ ⎞ − ⋅⎜ ⎟
⎝ ⎠ ⎛ ⎞ − ⋅⎜ ⎟

⎝ ⎠ ⎛ ⎞⎜ ⎟
⎝ ⎠

   

(4.96) 

The iteration formulation can written as  

4
2 2
1_ , 1 1_ 2

2 210
2_ ,

10

1
1 ˆ1+ +

DWTS n WTS

VTS n

σσ σ
λ σ σλ

+ = − ⋅
⎛ ⎞⎜ ⎟
⎝ ⎠

   (4.97) 

The MSE of mobile 2 has the similar result. We can see that the variance of uncertain 

virtual sensor location, 2
2 _ ,ˆ VTS nσ  becomes smaller by global iteration. Therefore, the 

MSE will become smaller, 2
1_ , 1DWTS nσ +  when the variance of uncertain location is 

tending downward. 

The theoretical formulation has no closed form. In the simulation, it can be 

converged by only three times global iteration later. 

 

4.2.1b Unweighted Estimation for Two Mobiles 

In case of M=2 mobiles, the error covariance of unweighted divided TS 

estimation 1_ , 1DTS n+e  in for mobile 1 at 1st global iteration in (4.68) becomes  
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( )1_ ,1 2,0ˆcov |DTSe x  

( ) ( )1 11
1_ ,0 1_ ,0 1_ ,0 1_ ,0 1_ ,0 1_ ,0 1_ ,0

T T T
DTS DTS DTS DTS DTS DTS DTS

− −−= H H H W H H H  

( )1 12 2 2
ˆ ˆ ˆ ˆ ˆ ˆ1_ 1_ 1_ 1_ 2 _ ,0 1_ 1_10,2,0 10,2,0 10,2,0 10,2,0 10,2,0 10,2,0

ˆ+ + +T T T T T T
TS TS TS TS VTS TS TSσ σ σ

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦H H a a H H a a H H a a

   (4.98) 

As before, assume 1_ 1_ 10
T

TS TS λ=H H I . Then the error covariance in (4.93) can be 

written as 

( )1_ ,1 2,0ˆcov |DTSe x  

( )1 12 2 2
ˆ ˆ ˆ ˆ ˆ ˆ10 10 2 _ ,0 1010,2,0 10,2,0 10,2,0 10,2,0 10,2,0 10,2,0

ˆ+ + +T T T
VTSλ σ λ σ σ λ

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦I a a I a a I a a    (4.99) 

Apply matrix inverse lemma on inverse term in (4.99), we have 

( )
1 ˆ ˆ10,2,0 10,2,0

ˆ ˆ10 210,2,0 10,2,0
10 10 10

1+
1

T
Tλ

λ λ λ
−

⎡ ⎤ = −⎣ ⎦ +

a a
I a a I    (4.100) 

Expansion of (4.99) by (4.100), the covariance matrix is given by 

( )1_ ,1 2,0ˆcov |DTSe x  

( ) ( ) ( )
ˆ ˆ ˆ ˆ10,2,0 10,2,0 10,2,0 10,2,02 2 2

ˆ ˆ10 2_ ,02 210,2,0 10,2,0
10 10 10 10 10 10

1 1ˆ+
1 1

T T
T

VTSσ λ σ σ
λ λ λ λ λ λ

⎛ ⎞ ⎛ ⎞
⎡ ⎤= − + −⎜ ⎟ ⎜ ⎟⎣ ⎦⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

a a a a
I I a a I    (4.101) 

( )
( )

( )
( ) ( )

2 2 2 22
ˆ ˆ2_ ,0 2_ ,0 10,2,0 10,2,02

ˆ ˆ 210,2,0 10,2,0
10 10 10 10 10 10

ˆ ˆ 1
1 1 1

T
VTS VTS T

σ σ σ σσσ
λ λ λ λ λ λ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
⎢ ⎥⎜ ⎟= + − − −⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

a a
I a a I    

(4.102) 

( )( ) ( )
( ) ( )

2 2 2 2 2
ˆ ˆ10 2 _ ,0 10 2_ ,0 10,2,0 10,2,02

ˆ ˆ 210,2,0 10,2,0
10 10 10 10 10

ˆ ˆ1 1
1 1

T
VTS VTS T

λ σ σ λ σ σ σ
σ

λ λ λ λ λ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − − +
⎢ ⎥⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

a a
I a a I    

(4.103) 

( ) ( )

2
ˆ ˆ2_ ,0 10,2,0 10,2,02

ˆ ˆ 210,2,0 10,2,0
10 10 10 10

ˆ 1
1 1

T
VTS Tσ

σ
λ λ λ λ

⎛ ⎞⎡ ⎤
= + −⎜ ⎟⎢ ⎥ ⎜ ⎟+ +⎢ ⎥⎣ ⎦ ⎝ ⎠

a a
I a a I    (4.104) 



 73

( ) ( ) ( )

2 22 2
2_ ,0 2_ ,0

ˆ ˆ2 10,2,0 10,2,0
10 10 10 10 10 10 10

ˆ ˆ
1 1 1

VTS VTS Tσ σσ σ
λ λ λ λ λ λ λ

⎛ ⎞
− − +⎜ ⎟
⎜ ⎟+ + +⎝ ⎠

I a a    (4.105) 

( )
( )

2 22
10 10 2_ ,0

ˆ ˆ2 10,2,0 10,2,0
10 10 10

ˆ1

1
VTS Tσ λ λ σσ

λ λ λ

⎛ ⎞+ −
−⎜ ⎟
⎜ ⎟+⎝ ⎠

I a a    (4.106) 

Next, the MSE at 1st global iteration is 

{ }2
1_ ,1 1_ ,1 2,0ˆ=trace cov |DTS DTSEσ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦e x    (4.107) 

{ }1_ ,1 2,0ˆ= trace cov |DTSE ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦e x    (4.108) 

Then, the MSE of estimation for mobile 1 based on (4.108) can be written as follows 

( )
( )

2 22
10 10 2_ ,02

ˆ ˆ1_ ,1 2 10,2,0 10,2,0
10 10 10

ˆ1
trace

1
VTS T

DTS E
σ λ λ σσσ

λ λ λ

⎧ ⎫⎡ ⎤⎛ ⎞+ −⎪ ⎪⎢ ⎥= − ⎜ ⎟⎨ ⎬⎜ ⎟+⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
I a a    (4.109) 

( )
( )

2 22
10 10 2 _ ,0

ˆ ˆ2 10,2,0 10,2,0
10 10 10

ˆ1
trace trace

1
VTS TE

σ λ λ σσ
λ λ λ

⎧ ⎫⎡ ⎤⎛ ⎞+ −⎛ ⎞⎪ ⎪⎢ ⎥= − ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟+⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
I a a    (4.110) 

( )
( )

2 22
10 10 2 _ ,0

ˆ ˆ2 10,2,0 10,2,0
10 10 10

ˆ1
trace trace

1
VTS TE

σ λ λ σσ
λ λ λ

⎧ ⎫⎛ ⎞+ −⎛ ⎞ ⎪ ⎪⎡ ⎤= − ⎜ ⎟⎨ ⎬⎜ ⎟ ⎣ ⎦⎜ ⎟+⎝ ⎠ ⎪ ⎪⎝ ⎠⎩ ⎭
I a a    (4.111) 

( )
( )

2 22
10 10 2_ ,0

2
10 10 10

ˆ12
1

VTSσ λ λ σσ
λ λ λ

⎛ ⎞+ −
= − ⎜ ⎟

⎜ ⎟+⎝ ⎠
   (4.112) 

( ) ( )

22 2
2_ ,0

2
10 10 10 10

ˆ2
1 1

VTSσσ σ
λ λ λ λ

= − +
+ +

   (4.113) 

The MSE of estimation for mobile 2 has the similar result 

( ) ( )

22 2
1_ ,02

2_ ,1 2
20 20 20 20

ˆ2
1 1

VTS
DTS

σσ σσ
λ λ λ λ

= − +
+ +

   (4.114) 

As before, 2 2 2
10 1_ ,0 1_ˆ2 VTS TSσ λ σ σ= =  and 2 2 2

20 2 _ ,0 2_ˆ2 VTS TSσ λ σ σ= = , they are the 

uncooperative MSE. Therefore, the MSE at 2nd global iteration is denoted as 

( ) ( )

22
2 _ ,12 2

1_ ,2 1_ 2
10 10 10

ˆ
1 1

VTS
DTS TS

σσσ σ
λ λ λ

= − +
+ +

  (4.115) 
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( ) ( ) ( ) ( )

22 2
1_2 2

1_ 2 _2 2
10 10 20 2010 20

1
1 11 1

TS
TS TS

σσ σσ σ
λ λ λ λλ λ

⎛ ⎞
= − + − +⎜ ⎟

⎜ ⎟+ ++ +⎝ ⎠
   (4.116) 

( ) ( )

22
2_2

1_ 2
10 10 10

1 1
TS

TS

σσσ
λ λ λ

= − +
+ +

 

        
( ) ( ) ( )

22
1_

2 2
20 2010 20

1
11 1

TSσσ
λ λλ λ

⎛ ⎞
+ − +⎜ ⎟

⎜ ⎟++ +⎝ ⎠
   (4.117) 

and the MSE at 3rd global iteration is 

( ) ( )

22
2_ ,22 2

1_ ,3 1_ 2
10 10 10

ˆ
1 1

VTS
DTS TS

σσσ σ
λ λ λ

= − +
+ +

   (4.118) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 22 2 2 2
1_ 2 _2

1_ 2 2 2 2
10 10 20 20 20 10 1010 20 20 10

1 2 1
1 1 11 1 1 1

TS TS
TS

σ σσ σ σ σσ
λ λ λ λ λ λ λλ λ λ λ

⎛ ⎞⎛ ⎞
⎜ ⎟= − + − + + − +⎜ ⎟

⎜ ⎟⎜ ⎟+ + ++ + + +⎝ ⎠⎝ ⎠

   

(4.119) 

( ) ( )

22
2 _2

1_ 2
10 10 10

1 1
TS

TS

σσσ
λ λ λ

= − +
+ +

 

         
( ) ( ) ( )

22
1_

2 2
20 2010 20

1
11 1

TSσσ
λ λλ λ

⎛ ⎞
+ − +⎜ ⎟

⎜ ⎟++ +⎝ ⎠
 

                 
( ) ( ) ( )

22
2 _

4 2
10 1020 10

1
11 1

TSσσ
λ λλ λ

⎛ ⎞
+ − +⎜ ⎟

⎜ ⎟++ +⎝ ⎠
   (4.120) 

We have cooperative benefit of mobile 1 is 
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Then, the converged MSE closed form of mobile 1 is denoted as 

( ) ( ) ( ) ( )
2 2 10 20
1_ , 1_ 2 1 2 1

1 120 101 1

n n

DTS n TS k k
k k
k odd k even

b bσ σ
λ λ− −

= =
= =

= + +
+ +

∑ ∑    (4.123) 



 75

Then, the converged MSE of unweighted divided TS estimator is calculated as 

( )2
202 2 10

1_ 1_ 10 20
20 10

1 1
2 2DTS TS b b
λ λσ σ
λ λ

+ +
= + +

+ +
   (4.124) 

The converged MSE for mobile 2 can be obtained similarly. 

The computer simulation will shown the derivation result in Section 5.4 

 

4.2.2 Distance-Augmented Method 

In this section, we discuss that the converged MSE for estimation of divided 

distance-augmented (DDA) algorithm in (3.43). As previous assumption, all 

measurement error variance are the same as 2σ . Without loss of generality, let i=1, 

the error covariance of DDA estimation, 1_ , 1 1_ , 1 1ˆDDA n DDA n+ += −e x x  for mobile 1 at 1st 

global iteration, conditioned on positions of virtual sensors 2 to M, 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x  

is denoted as, 

( ) ( ) 1

1_ , 1 2, 3, , 1_ , 1_ , 1_ ,ˆ ˆ ˆcov | , , , T
DDA n n n M n DDA n DDA n DDA n

−

+ =e x x x H W H    (4.125) 
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−

=
×

⎡ ⎤
⎢ ⎥+

+ + +⎢ ⎥⎣ ⎦
∑H W H c c    (4.126) 

where 1_ ,DDA nH  is divided coordinate matrix in (3.43), 1_ ,DDA nW  is divided DA 

weighting in (3.45), 1_ 1_ 1_
T

DA DA DAH W H  is error covariance matrix inverse of 

uncooperative weighted DA estimation in (2.48) and , , ,ˆ ˆ ˆ2 2 1
T

j n j n j nx y⎡ ⎤= −⎣ ⎦c is a 

virtual coordinate vector. After unconditioning 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x , the theoretical MSE 

for mobile 1 at n+1th global iteration is given by 

( ){ }2
_ , 1 1_ , 1 2, 3, ,

2 2
ˆ ˆ ˆ ˆ=trace cov | , , ,i DDA n DDA n n n M nEσ + +

×
⎡ ⎤⎣ ⎦e x x x    (4.127) 

(4.127) is quite difficult to analyze. The main course is that the error covariance 
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matrix of divided DA estimation is 3 3× , however the MSE is obtain by take trace on 

error covariance with size 2 2× . As before, another reason is that the statistic of 

virtual coordinate vector is very complex. 

 

4.2.3 Hyperbolic Positioning Algorithm 

As before, we discuss the error covariance of divided HC estimation, 

1_ , 1 1_ , 1 1ˆDHC n DHC n+ += −e x x  for mobile 1 at 1st global iteration, conditioned on positions 

of virtual sensors 2 to M, 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x  is denoted as, 

( ) ( ) 1

1_ , 1 2, 3, , 1_ , 1_ , 1_ ,ˆ ˆ ˆcov | , , , T
DHC n n n M n DHC n DHC n DHC n

−

+ =e x x x H W H    (4.128) 

where _ ,i DHC nH  is divided difference-coordinate matrix in (3.29) and _ ,i DHC nW  

is divided CH weighting matrix in (3.37). 

After unconditioning 2, 3, ,ˆ ˆ ˆ, , ,n n M nx x x , the theoretical MSE for mobile 1 at n+1th 

global iteration is given by 

( ){ }2
_ , 1 1_ , 1 2, 3, ,ˆ ˆ ˆ ˆ=trace cov | , , ,i DHC n DHC n n n M nEσ + +

⎡ ⎤⎣ ⎦e x x x    (4.129) 

We know that the divided CH weighting matrix is not a diagonal anymore, then the 

error covariance is very to analyze. 

 

From AEFIM, we can discover that more mobiles will enhance the localization 

accuracy. Then, we further derive AC-CRLB. The numbers of sensors, of mobiles, 

measurement error variance, and cooperative angle will affect the theoretical 

cooperative MSE performance. Next, we try to analyze the converged MSE of divided 

linearized algorithm estimations. However, most of them are very harsh to evaluate 

the theoretical MSE but we still demonstrate the converged MSE of divided TS 

estimation successfully for special case M=2. Although we have on the theoretical 
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MSE of some divided algorithms, we still use computer simulation to show their MSE 

performance. 
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Chapter 5  
Computer Simulations 
 

Now, in uncooperative localization system, we will study the theoretical MSE 

performance of three linearized algorithms. Numerical examples are presented in 

Section 5.1 to evaluate the performance of these algorithms by comparing 

nonlinearized algorithm and CRLB. However, in unweighted linearized algorithms, 

TS has the best MSE performance and DA has the worst MSE. After the 

compensation of weighting, the MSE performance of DA and HC will be close to TS. 

That means the weighting matrix can improve the localization accuracy. 

Next, in cooperative system, the ML estimator can be solved by joint Newton’s 

algorithm (3.7). But it cost too much when many mobiles exist. Therefore, we 

propose joint TS (3.20) and divided-and-conquer method to reduce the computer cost. 

However, besides divided Newton’s algorithm (3.26), we also can utilize TS, DA and 

HC to perform divide-and-conquer method (3.36), (3.43) and (3.50). In Sections 5.2 

and 5.3, the computer simulation will show these two new algorithms can reduce the 

computer cost and the MSE performances are still very good. Beside, we know that 

the CRLB provides a useful means for the analysis of the limits of localization 

accuracy. But it is obtained by full cooperative FIM (4.6). However, the cooperative 

FIM is quite complicate. Therefore, we derive AEFIM (4.54) and AC-CRLB (4.64). 

From AC-CRLB, we can see that the number of mobiles and cooperative angles can 

affect the MSE performance. Computer simulations are included to contrast the 

performance of the derivations with true CRLB. Finially, we also evaluate the 

theoretical converged MSE of divided TS algorithm for tow mobiles. 
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5.1 The Theoretical MSE of Three Uncooperative Linearized 

Algorithms 

We compare the theoretical MSE of three uncooperative linearized algorithms to 

traditional CRLB. Note that for an uncooperative localization system, the additive 

noises { } i jn  are zero-mean white Gaussian processes and their variance are the 

same 2σ . There are 15 unknown positions of mobiles. We focus on the localization 

performance at central mobile (10, 10) and other mobiles are uniformly located in a 

20m × 20m area with 4 known positions of sensors (0,0)m, (0,20), (20,0)m and 

(20,20)m. The localization system is shown in Figure 5.1. All simulation results are 

averages of 100 independent runs. 
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Figure 5.1 Positions of the sensors and mobiles. 
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Figure 5.2 The theoretical MSE versus noise variance for three unweighted linearized 
methods. 

 

The the theoretical MSE of three unweighted liearized methods and CRLB are 

plotted in Figure 5.2. It can be observed that distance-augmented method has the 

worst MSE performance because its noise source is expanded by real distance and the 

augmented distance variable is not independent on true position. The MSE of 

hyperbolic-canceled method is better than distance-augmented method but worse than 

Taylor-series expansion method because it is only involve in noise source effect 

which is like distance-augmented method’s. However, Taylor-series expansion 

method has the best theoretical MSE because its noise source is not expanded by real 

distance and it is very close to CRLB.  
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Figure 5.3 The theoretical MSE versus noise variance for three weighted linearized 
methods and CRLB. 

 

The the theoretical MSE of three weighted liearized methods and CRLB are 

plotted in Figure 5.3. After being weighted, the MSE performance of 

hyperbolic-canceled method and distance-augmented method are improved but still 

worse than Taylor-series expansion method. Then, Taylor-series expansion’s MSE 

maintain the same because we assume the noise variance are the same and the 

Taylor-series weighting becomes _ 2

1
j TS N Nσ ×=W I . However, the localization error 

covariance for weighted matrix and unweighted matrix are the same. 
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The simulation will demonstrate the theoretical MSE in Figure 5.4. 
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Figure 5.4 The simulated MSE versus noise variance for three weighted linearized 

methods and nonlinear algorithm in MATLAB. 

 

The simulated MSE of three uncooperative liearized methods and one nonlinear 

algorithm MATLAB function to solve ML estimator (2.11) are plotted in Figure 5.4. 

As theoretical MSE, the simulated MSE performance of distance-augmented method 

and hyperbolic-canceled method are very close but worse than Taylor-series 

expansion. However, the nonlinear function in MATLAB is fminunc () and the 

Taylor-series expansion’s simulated MSE is quit close to each other. 
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Figure 5.5 The theoretical MSE of Taylor-series expansion method for different 

position of mobile. 

 

The theoretical MSE of Taylor-series expansion method for different position of 

mobile is plotted in Figure 5.5. The noise variance is 8 dB. However, the center has 

the best MSE performance and the four corners have the worst performance. 
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Figure 5.6 The theoretical MSE of weighted distance-augmented algorithm for 

different position of mobile. 

 

The theoretical MSE of weighted distance-augmented method for different 

position of mobile is shown in Figure 5.6. It has the same result which is like the MSE 

of Taylor-series expansion method. Moreover, the all MSE of any place are worse 

than Taylor-series expansion method. 
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Figure 5.7 The theoretical MSE of weighted hyperbolic-canceled method for different 

position of mobile. 

 

The theoretical MSE of weighted hyperbolic-canceled method for different 

position of mobile is shown in Figure 5.7. The MSE is similar to distance-augmented 

method’s. 

 

 

 

 

 

 



 88

5.2 Comparison of Joint Newton’s Algorithm and Joint 

Taylor-Series Expansion Algorithm 

 

The simulation scenario and assumption of noise are designed such as Figure 5.1 

In this section, we present some simulations for two joint algorithms; joint 

Taylor-series expansion algorithm and joint Newton’s algorithm which are described 

in the previous section. We consider the convergence rate, computation cost and MSE 

performance between two joint algorithms. 
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Figure 5.8 The MSE vs. convergence rate for joint Newton’s method and joint TS 

with good initial guess set. 

 

Figure 5.8 shows the MSE vs. convergence rate for joint Newton’s method in (3.7) 

and joint TS in (3.20) with good initial guess set. ( 2
initial_guess 3σ = ). We can see that 

joint TS convergence rate is faster than joint Newton’s method. Joint TS needs an 

average of three iterations to converge but joint Newton’s method needs more than 

about twenty global iterations to converge. In our simulations, Newton’s method may 

not converge and oscillation can happen occasionally. In the end of the iteration, these 

two methods have about the same MSE performance. 
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Figure 5.9 The MSE vs. convergence rate for joint Newton’s method and joint TS 

with bad initial guess set. 

 

The MSE vs. convergence rate for joint Newton’s method and joint TS with bad 

initial guess set. is plotted in Figure 5.9. Obviously, the convergence rate of joint TS 

is still faster than joint Newton. Unfortunately, the joint Newton’s method have 

oscillation happened. Therefore, the joint Newton’s method is no guarantee of global 

solution.  
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Figure 5.10 The converged MSE vs. The variance of noise.  

 

Figure 5.10 shows the converged MSE vs. the variance of noise for joint TS and 

joint Newton’s method and cooperative CRLB. Under low variance of noise, the 

convergence MSE of Joint TS and joint Newton’s method are closed to cooperative 

CRLB (is obtained form (4.6)). But in higher variance of noise (up to about 15 dB), 

the MSE performance of joint TS is the worst but joint Newton’s method is still close 

to cooperative CRLB. 
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Figure 5.11 MSE vs. the number of mobile for joint Newton’s and TS. 

 

MSE vs. the number of mobile for joint Newton’s and TS are plotted in Figure 

5.11. We can see the localization accuracy of joint Newton’s method is better than 

joint TS. However, the MSE of joint TS is still quite good. 
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Figure 5.12 The computation cost vs. the number of mobile for joint TS and joint 

Newton on once global iteration. 

 

Figure 5.12 shows the computation cost vs. number of mobile for joint TS and 

joint Newton. The computer equivalent we use as follows, 

System: Microsoft Windows XP Professional Version 2002 Service Pack 3.  

Hardware: AMD phenom (tm) II X3 710 Processor 2.61 GHz, 3.25 GB RAM. 

Software: MATLAB Version 7.5.0.342 (R2007b). 

We compare the cost time of computer at 1st global iteration between joint Newton’s 

method (3.7) and joint Newton’s method (3.20). However, the computation of matrix 

inverses (3.7) and (3.20) are replaced Gaussian elimination method, ( ) 1
 T −

H H Hb is 

replaced by \  H b in MATLAB function. Obviously, the joint TS spends less 
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computation cost than joint Newton’s method. Summarize the joint TS from figures 

5.8 to 5.11, it can perform a quite good MSE and low computation cost. Therefore, 

joint TS is a very good algorithm for cooperative localization.  

 

5.3 Comparison of Joint Algorithms and Divide-and-Conquer 

Algorithms 

We compare the MSE performance and cost for joint and divided Newton’s 

method in Section 5.3.1. Then, the comparisons of joint and divided Taylor-series 

expansion are shown in Section 5.3.2. 
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5.3.1 Newton’s Method  

 

 
Figure 5.13 The MSE vs. noise variance for joint and divided Newton’s algorithm.  

 

Figure 5.13 Shows the MSE of joint and divide Newton’s algorithm. The 

simulated MSE of joint Newton’s algorithm in (3.7) and divided Newton’s algorithm 

(3.26) are very close to each other and also close to CRLB. The CRLB is calculated 

from full cooperative FIM (4.7). 
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Figure 5.14 The MSE vs. number of mobile for joint Newton’s algorithm, divided 

Newton’s algorithm and cooperative CRLB. 

 

The MSE vs. number of mobile for joint Newton’s algorithm, divided Newton’s 

algorithm and cooperative CRLB are plotted in Figure 5.14. We can see the more 

mobiles, the better MSE performance. Then, in few mobiles situation, the MSE 

performance of divided Newton’s algorithm is better than joint Newton’s. However, 

in more mobiles situation, the MSE performance has opposite result, but the both 

MSE performances are quiet close to cooperative CRLB. 
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Figure 5.15 CDF comparison of joint and divided Newton’s algorithm. 

 

The CDF comparison of joint and divided Newton’s algorithm is plotted in Figure 

5.15. We can see the localization accuracy of joint Newton’s algorithm is a little 

better than divided Newton’s algorithm.  
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Figure 5.16 The computation time cost vs. the number of mobile for joint and 

divided Newton’s algorithm on once global iteration. 

 

Figure 5.16 shows the computation cost vs. number of mobile for joint and 

divided Newton’s algorithm on once global iteration. We can see the computer time 

cost of joint Newton’s algorithm 2 2 jointM MF G× ×  (3.9) is higher than divided 

Newton’s algorithm’s cost 2 2 devidedF L M G× × × ×  (3.27) when joint devidedG G= =1. 

Obviously, the divided Newton’s algorithm reduces the computer time cost. Based on 

experience, the divided algorithm has only three times of global iteration to get 

converged, 3devidedG =  and the joint algorithm has at least eight times of global 

iteration, joint_two mobiles 8G =  to get converged on two mobiles. Therefore, the cost time 

of divided Newton’s algorithm, 2 2 devidedF L M G× × × ×  is smaller cost time of joint 
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Newton’s algorithm, 2 2 jointM MF G× × . 

 

5.3.2 Taylor-Series Expansion Method 

 

 

Figure 5.17 The MSE vs. noise variance for divided TS, joint TS and cooperative 

CRLB.  

 

Figure 5.17 shows the MSE vs. noise variance for divided TS, joint TS and 

cooperative CRLB. In low noise variance, the MSE performance of joint TS is better 

than divided TS. However, in high noise variance, joint TS has worse MSE 

performance. 
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Figure 5.18 The CDF comparison of joint and divided TS algorithms. 

 

The CDF comparison of joint and divided TS algorithms is plotted in Figure 5.18. 

The divided TS has the better localization accuracy. The result is similar to the 

comparison of joint and divided Newton’s algorithm in Fig. 15. 
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5.4 Comparison of Divide-and-Conquer Algorithms 

We have one divided nonlinear algorithm; divided Newton’s algorithm and three 

divided linear algorithms; divided TS, AD and HC. Because we don’t have the 

theoretical converged MSE of them, we use computer simulation to show the MSE 

performance and the convergence rate of Jacobi method and Gauss-Seidel method in 

following section. Previous description, we showed we can use compensation of 

uncertain virtual sensor to enhance the localization accuracy. However, divided 

Newton’s algorithm can not achieve it because we don’t have the theoretical MSE 

(3.26). On the contrary, the other three divided linear algorithms can accomplish the 

compensation. Therefore, we show the computer simulation to show the result by 

divided TS. The other divided linear algorithms have same outcome. 

The rest of the paper is organized as follows. The convergence MSE and rate of 

divided Newton’s algorithm, TS, DA and HC are shown in Section 5.4.1, 5.4.2, 5.4.3 

and 5.4.4. 
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5.4.1 Newton’s Method 

 

 

Figure 5.19 The MSE vs. Global iteration for Compare Jacobi and Gauss-Seidel.  

 

Figure 5.19 shows the convergence rate for two update schemes, Jacobi method 

(3.24) and Gauss-Seidel method (3.25). Obviously, the convergence rate of 

Gauss-Seidel method is faster than Jacobi method. 
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5.4.2 Taylor-Series Expansion Algorithm 

 

 

Figure 5.20 The MSE vs. global iteration for divided TS. 

 

Figure 5.20 shows the MSE vs. global iteration for divided TS. The compensation 

of uncertain virtual sensor (3.17) can improve the MSE performance.  
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Figure 5.21 The error and MSE vs. global iteration for divided TS. 

 

The error and MSE vs. number of mobile for divided TS is plotted in Figure 5.21. 

The iteration can improve the MSE performance. In most of time, it has stable 

situation. Sometime, the 1st iteration has the worst localization accuracy. However, it 

exists that cooperation can not improve localization. But all of them are converged. 
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Figure 5.22 The CDF comparison of divided TS and uncooperative TS. 

 

The CDF comparison of joint and divided TS and uncooperative TS is plotted in 

Figure 5.22. The localization accuracy of divided TS is better than uncooperative TS. 
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5.4.3 Distance-Augmented Algorithm   

 

 
Figure 5.23 The error and MSE vs. global iteration for divided DA. 

 

Figure 5.23 shows the error and MSE vs. number of mobile for divided DA. As 

divided TS algorithm, in most of time, it is stable. But it could be diverged. 

 

. 
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Figure 5.24 The CDF comparison of divided DA and uncooperative DA. 

 

The CDF comparison of joint and divided DA and uncooperative DA is plotted in 

Figure 5.24. As before, the localization accuracy of divided DA is better than 

uncooperative DA. 
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5.4.4 Hyperbolic-Canceled Algorithm 

 

 
Figure 5.25 The error and MSE vs. global iteration for divided HC. 

 

Figure 5.25 shows the error and MSE vs. number of mobile for divided HC. As 

divided TS, in most of time, it has acceptable localization result. 
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Figure 5.26 The CDF comparison of divided HC and uncooperative HC. 

 

The CDF comparison of joint and divided HC and uncooperative HC is plotted in 

Figure 5.26. As before, the localization accuracy of divided HC is better than 

uncooperative HC. 
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Figure 5.27 The MSE vs. global iteration for three divided linearized algorithms. 

 

The MSE vs. global iteration for three divided linearized algorithms are plotted in 

Figure 5.27. we can see TS has the best MSE performance and DA’s performance is 

the worst one. 

 

 

 

 

 

 

 

 



 111

 

 

Figure 5.28 The MSE vs. noise variance for three linearized divided algorithms. 

 

The MSE vs. noise variance for three linearized divided algorithms are plotted in 

Figure 5.28. We can see that the divided TS has the best MSE performance and 

divided DA has the worse one. We can expect that from the MSE performance of 

uncooperative linearized algorithms in Figures 5.3 to 5.7.  
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Figure 5.29 The MSE vs. number of mobile for three divided linearized algorithms. 

 

The MSE vs. number of mobile for three divided linearized algorithms are plotted 

in Figure 5.29. We can see that the more mobiles, the better MSE performance. 

However, divided TS has the best performance and divided DA has the worst. No 

matter witch on algorithm, the more mobiles, and the farter from cooperative CRLB. 
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Figure 5.30 The MSE vs. number of mobile for three divided linearized algorithms 

with fixed 14 mobiles. 

 

The MSE vs. number of mobile for three divided linearized algorithms with fixed 

14 mobiles are plotted in figure 5.30. we can see that if we fix 14 mobiles at (15, 5)m, 

(5, 15)m, (10, 15)m, (15, 6)m, (7, 13)m, (2, 15)m, (5, 10)m, (17, 3)m, (10, 3)m, (1, 

3)m, (3, 1)m, (18, 15)m, (5, 18)m and (6, 19)m, it can not ensure that more mobiles 

can provide localization benefit. 
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5.5 Theoretical Analysis of Mean-Square-Error 

Previous description, we know the cooperative CRLB from full cooperation FIM 

(4.7) is very difficult and complex when the number of mobile increases. Therefore, 

we first derive AEFIM (4.54). We can see that if there are more mobiles, the MSE 

performance will be improved. Then, we derive AC-CRLB (4.64) by AEFIM. We can 

discover that the cooperative angles and number of mobile can influence the MSE 

performance. Computer simulation will compare the true cooperative CRLB and 

approximation (cooperative CRLB from AEFIM and AC-CRLB), and show factors 

how to effect the MSE performance in Section 5.5.1. However, we also derive the 

converged MSE for divided TS in special case M=2. Therefore, we utilize computer 

simulation to show the result in Section 5.5.2. 
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5.5.1 Approximation of CRLB 

 

 

Figure 5.31 The MSE vs. number of mobile for difference value of 
ixJ . 

 

The MSE vs. number of mobile for difference value of 
ixJ  are plotted in Figure 

5.31. it sets omni-direction cooperative mobiles. We can see that if the 
ixJ is larger, 

the CRLB of AEFIM (4.54) is closer to cooperative CRLB (4.8). The reason is that 

Block matrix inversion lemma 1 is proposed under larger 
ixJ . Even if 

ixJ is smaller, 

the CRLB of AEFIM is not far from cooperative CRLB. 
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Figure 5.32 The MSE vs. cooperative angles (alpha) for AC-CRLB and joint TS. 

 

The MSE vs. cooperative angles (alpha) for AC-CRLB and joint TS are plotted in 

Figure 5.32. We set M=4, 0.5χ =  in (4.64). The eigenvalue α  in (4.64) means a 

trend of the cooperative angles. If the value of alpha has minimum zero and maximum 

( ) 21 /M σ− , that means these cooperative angles tend to one direction. Therefore,  

AC-CRLB will has the maximum value. However, if ( ) 21 / 2Mα σ= − , AC-CRLB 

has the best MSE performance. The MSE performance of joint TS can show that 

effect of cooperation angles. We can see the omni-direction is better than beam. 
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5.5.2 Divided Taylor-series Expansion for Twins Mobiles 

 

 
Figure 5.33 The MSE vs. global iteration of divided TS for two mobiles. 

 

Figure 5.33 shows the MSE vs. global iteration of divided TS for two mobiles.  

We can see the that no matter theoretical MSE or simulated MSE, the performance of 

weighted TS is better than unweithted TS. Even if the simulated results are not really 

close to theoretical MSE, but the trend are very similar. 
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Chapter 6  
Conclusions and Future Works 

 

Joint TS algorithm and three linearized divided algorithms based on distance 

measurement have been devised for cooperative localization system. Alternative 

realizations with smaller computational complexity are also proposed. In addition, 

theoretical performance measure, namely, biases and mean square error of the sensor 

position estimates are derived and verified by computer simulation. It is shown that 

the proposed positioning methods have lower computation cost and available MSE 

performance. Besides, we investigate the fundamental limits of cooperative 

localization system with ranging capability. We then applied the notion of equivalent 

Fisher information matrix (EFIM) to derive and simplify the full cooperative FIM, 

approximation of EFIM (AEFIM). We can see the more cooperative mobiles, the 

better of MSE performance. Than, we further utilize AEFIM to simplify the 

cooperative Cramer-Roa Lower Bound (CRLB), named approximation of cooperative 

CRLB (AC-CRLB). From AC-CRLB, we know that the measurement error variance, 

numbers of sensors, numbers of mobiles and cooperative angles can affect the 

localization accuracy. We also derive the theoretical converged MSE of divided TS for 

two mobiles. The simulation has been shown that these approximations are reliable.  

Therefore, the derivation of theoretical MSE performance for divided linearized 

algorithms is also an interesting research topic and a good starting point is to 

investigate that sensors placement and cooperative mobiles in wireless sensor 

networks.   
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