AERR PR AT AT
Cooperative Localization in Wireless
Sensor Networks

B e R

o g\[gl,i’.l.,t =3 I B

L



RAR AR L FR LT

Cooperative Localization in Wireless Sensor

Networks
Moyod i ImE Student : W.S. Wang
iR B AR Advisor : S. F. Hsieh

A Thesis
Submitted to Department of Electrical Engineering
Institute of Communications Engineering
National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

In

Communication Engineering

Hsinchu 2010

Hsinchu, Taiwan, Republic of China

SEAFL e



F¥4:3%% I F BB AR

1 A8F2F T

|4
<
2

A
+%
=H
LI

PR
L 2B B A don i B AR dud T o e o T kY
R R E R DR R R (R R SRR BRI E R D R g o R
PF R P W AR AL o § TSN REAR MiiRd FRIE IR R (£ (F)ahE
BIFALT M ke 2 TR RER o B AAFNEEY B G ayE B 5 Bt i
ERIE -l I It P C R IR R - R B (AR e S
B R @R S cFRLAPRASFEREL R NS N F - S
Fade- ”%—‘r} WA LA TFRML o sk s AP i me %Eﬁfé BFrE o=
Ao AR PR IR IR R MEDAFRR AT RS LR .
4%&i%%@ﬁ%ﬁﬁ&%ﬁ@‘%%%&%%ﬁ&%iﬁﬁﬁ“&ﬁoEﬁ
B Y 0 APz L (FRMF Y B Tt 0 - A BFE 2
A2 > f‘l"a‘?‘f%& BEBARML R T A BFRDEFRT > mEH Jzach MSE
Wk o ¥4 & 1758 a7 (ramer-fo Lower Found (CRLB) %ﬁ“ d Fisher
Information Aatrix (FIM) ek fB*E $48 > Rm Bl ot | S F Fp) 13 4
fORA s BRRF ELE B A S o Flut AR ik 2 R AR gt
Mojef- PEEBHE T EFIM 22 fI% i7iu % > 8- 43 w7

£ £ CRLB » & 15 » 1% T o ipB B H g % -



Cooperative Localization in Wireless

Sensor Networks
Student: W. S. Wang Advisor : S. F. Hsieh

Department of Communication Engineering
National Chiao Tung University

Abstract

There are a lot of applications of localization including tracking, search,
navigation and rescue. \We can estimate position of mabile (object) by measurements
(angles or distances) in sensor network. When mobiles can communicate to each other,
cooperative localization has been proposed to improve the localization accuracy. In
cooperative localization, the optimal ML estimator.is nonlinear. It can be solved by
Newton’s method, but the cost of computation increases when the number of mobiles
increases. Therefore, we propose two methods to reduce the computation cost, joint
Taylor-series expansion algorithm and divide-and-conquer algorithm. In
divide-and-conquer algorithm, we use recursive method to enhance localization
accuracy and simplify the nonlinear function by three linearization methods. Next, we
compare the MSE performance of three linearized algorithms and derive the
theoretical converged mean-square-error for divided Taylor-series expansion
algorithm. Besides, cooperative Cramer-Rao Lower Bound (CRLB) is derived by
Fisher Information Matrix (FIM) inverse, but the size of matrix increases when the
number of mobiles increases. Then, we propose recursive block matrix inversion to
derive a simple Approximated Equivalent FIM (AEFIM) and we further utilize the
result to derive the Approximate Cooperative CRLB (AC-CRLB). Simulations are

performed to support the theoretical results.
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Chapter 1
Introduction

In recent years there has been interest in wireless sensor networks for variety of
applications [2, 3 ,4]. Among those are health, commercial, environmental, public
safety, home applications. In literature there are many methods to provide the
localization estimation for wireless sensor network. Classify these localization
methods as the deterministic [1, 12, 27] and probabilistic approached [22, 23]. Typical
positioning parameters include time-of-arrival (TOA) [29, 45], time-difference-of
arrival (TDOA) [5, 6], angle-of-arrival (AOA) [7] and received signal strength (RSS)
[8, 9], and hybrid TDOA/AOAof mixture-method [10, 11]. In this thesis, we only
consider the TOA localization algorithms. However, in cooperative localization
system, cooperative connection or Ad Hoc short-range communication.among the
terminals will be supported [41, 42]. Because they consider small-scale.information
between unknown positions can improve the localization accuracy. Therefore they
focus on the data fusion of large-scale and small-scale. Cooperative Localization with
Optimum Quality of Estimate (CLOQ) is proposed-in [26] which takes advantage of
the behavior of the channel to provide accurate indoor positioning. But, the estimated
positions are fixed when they are estimated. Therefore, [15] devised an error
propagation aware algorithm to update the unknown positions. Note that cooperative
localization is not a well solved problem because the distance measurements between
any pairs of unknown positions are utilized to aid in the location estimation. Then, [12]
devised three novel subspace methods to solve that problem. Assuming the range
measurements error are Gaussian distributed, the ML estimator [42] is another

localization method and it is a nonlinear least squares problem [30]. It can be solved



by joint Newton’s algorithm, but the computation cost becomes more complex when
the numbers of unknown positions increases. The algorithm of [15] tracks the extent
of the uncertain virtual position error, but this algorithm has trade-off between
computation cost and localization accuracy. Then, we propose two methods to reduce
the computation cost, joint Taylor-series expansion (TS) algorithm and
divided-and-conquer method. However divided Newton’s algorithm is a nonlinear
function. Based on previous research of uncooperative linearized algorithms, we
further use three algorithms, Taylor-series expansion (TS) algorithm [35] ,
distance-augmented (DA).algorithm [46] and hyperbolic-canceled (HC) algorithm [22]
to perform divided-and-conquer method. One of the most important problems is the
source of errors, including non-line-of-sight (NLOS) [16, 17] and multipath
propagation [29, 37]. Then, tracking [20, 21] a moving unknown position is another
important issue in sensor network localization. While the mobile is moving, the main
concern is to estimate its trajectory. Kalman filter[18, 19] has been widely applied in
trajectory estimation of a moving object.

However, we know that the variance of the estimate is bounded by the
Cramer-Rao Lower Bound (CRLB) [25]. It reveals the full-Fisher Information Matrix
(FIM). In cooperative localization, the full cooperative FIM is too complex to see the
benefits of cooperation. Therefore, [31] proposed an eigenvalue view of Equivalent
FIM (EFIM) to provide some insight in cooperative localization information for only
two unknown positions. If there are more than two unknown positions, it still can not
see the effect of cooperative. Therefore, we propose a recursive block matrix
inversion based on eigenvalue view to derive the Approximation of EFIM (AEFIM).
We can see that the more cooperative positions, the better localization accuracy. Then,
we further utilize the result to derive the Approximation of Cooperative CRLB

(AC-CRLB) and we find that some parameters, variance of measurement error,



numbers of known positions, numbers of unknown positions and cooperative angles
can influence the localization accuracy.

This thesis is organized as follows. We introduce basic localization system in
Chapter 2 and proposed two low-cost cooperative localization methods, joint
Taylor-series expansion algorithm (joint TS) and divided-and-conquer method
(divided algorithms) based on TOA in Chapter 3. In Chapter 4, we derive AC-CRLB
and theoretical converged Mean-Square-Error (MSE) of divided TS for two unknown
positions. Computer simulations will evaluate the computation cost and MSE for
proposed cooperative algorithms and compare the cooperative CRLB from full
cooperative FIM, AEFIM and AC-CRLB in Chapter 5. Finally; we give a conclusion

of our work in Chapter 6.



Chapter 2
Basic Localization System

Figure 1 shows a basic localization system. There are N known positions of

sensors and M unknown positions of mobiles. Mobiles transmit information to all

sensors by wireless networks. (xi, y;) and (Yj , Vj) are coordinates of mobile i and

sensor j, respectively.
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Figure 2.1 A basic localization system in wireless sensor network.

In order to estimate positions of mobiles, we have to use the measurements
between the sensors and mobiles. However, the positioning accuracy is degraded in
the NLOS environment when large NLOS error is imposed on the TOA, TDOA, RSS

or AOA measurement. There are some algorithms to estimate the positions of mobiles



based on these measurement. Mathematically, assuming that the range of
measurement errors are Gaussian distributed, the maximum likelihood (ML) methods
for localization correspond to the nonlinear least squares problem [30], but the ML
approach cannot guarantee global convergence. In order to ensure a global solution,
semi-definite programming (SDP) [1, 32] and classical multidimensional scaling
(MDS) [33, 34] have been proposed. These unknown positions of mobiles will be
estimated by four common measurements. Then, these measurements are introduced
in Section 2.1. Then, the basic localization algorithm based on TOA measurement is

discussed in Section 2.2.

2.1 Measurement Characterization

In a localization system, we utilize the measurements between sensors and mobile
to estimate the position of mobile. The major measurements are time of arrival (TOA),
time different of arrival (TDOA), angle of arrival (AOA) and received signal strength
(RSS). In the following, we recommend these four type measurements and model it in

Figure 2.1.

1. TOA [45, 46]: Measuring propagation time from mobile to sensors, the delay time

t;; between transmission at mobile i and sensor j. Thus, the distance d,; between

mobile i and sensor j can be calculated by multiplying the propagation time of the

signal propagation speed. The cornerstone of time-based techniques is the receiver’s
ability to accurately estimate the arrival time of the lone-of-sight (LOS) signal. This
estimation is likely to suffer both additive noise and multipath signals. The model of

TOA is



(2.1)
where 5 is real distance between mobile i and sensor jand w;; is measurement

noise modeled as AWGN (additive white Gaussian noise), denoted as N (O, 5&) Then
we have the measurement distance by multiplying the propagation speed v.,

(2.2)

where n;; ~N (O, O-izT) is AWGN as well. The position of mobile i is hided in real

distance because of r.; = \/( X =X, )2 +(y,= 7, )2 ~In this thesis, we only consider the

TOA measurement.

2. TDOA [5, 6] : Measuring propagation time difference from different sensors, then
we can calculate the measurement distance difference between different sensors to the
same mobile. With the cross-correlation of different sensors, the unknown time can be

differentiated. The model is given by

The measurement difference distance is
(diy —di)=(rs =t )+ (ns-ng) @4

The position of mobile is hided on real distance r; and r; for mobile i.

3. RSS [8, 9] : The power on transmitter (sensors or mobile) are known on the system.
Measuring the power difference between sensors and mobile to estimate the distance
between them. It is can easy to perform by cheap equipment. A model that solely

depends on the relative is the so-called Okumura-Hata model [14],



P

loss

=K -10,log(r,; )+w;  (25)

1]
But in the literature, it shows that RSS is not accurate enough because multi-path,

noise, humidity, temperature can affect the RSS measurement [36]. As TOA

measurement, the position of mobile is hided onr;; .

4. AOA [7] : The use of directionally sensitive and complex antenna array to estimate
the angle of arrival from mobile to sensors. But AOA is disturbed by many factors.

For instance, multipath [40], NLOS and so on. The model is

where ¢« is measurement angle from mobile i tosensorj, A isreal angle and

W is AWGNas well. Every sensors extend the angle to form a intersection which is

(% i)

TOA is a good candidate in terms of accuracy, and then we utilize TOA to discuss

the localization algorithm in following section.

2.2 TOA Localization Algorithm

Figure 2.2 shows an uncooperative localization system with TOA measurements.

We can estimate mobiles i and j locations by individual TOA measurements from all

sensors. Without loss of generality, we focus on the position of mobile i. r; and

d;; are real distance and measurement distance between mobile i and sensor j.
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Figure 2:2 A basic localization scenario with TOA measurement.

The TOA from sensors;j to-mobile-i can be modeled as follows,

diT:HXi—XJ.H+niT—r +n+ J=12,.M (2.7)

g
where X, =[x y;] is the coordinate vector.of mobile;i, X; =[X; ¥, ]T is
coordinate vector of sensor j and n;; is Gaussian noise N (O,JfT) :

We want to utilize these measurements to estimate the position of mobile i. In
previous section, there are different algorithms can be solve the problem. We
recommend a nonlinear Maximum Likelihood (ML) estimator in Section 2.2.1 and

other linear estimators are discussed in Section 2.2.2.

2.2.1 ML Estimator
According to the model of range error, the probability density function (PDF) of

the measurement distance of mobile i is



(ahem ),

ex
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1
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Assume the range errors are independent between sensors. The uncooperative

likelihood function [25] can be denoted as

! 1 e (0 -x )
d1x)=]]p(d;Ix)=——5—exp| -
P )= Tp(ds 1) O
j=1

(2.9)

where d, =[d,d;,---dy ] isthe measurement set from mobile i.

The ML criterion searches a' X, which maximizes the likelihood function (2.9),

w (d= =)
1 iT % T A
maxy ———=———exp —z o (2.10)

N2r Haﬁ = i

In (2.10), it is.equivalent to minimization of the summation term. The solution can be

rewritten as follows,

min i (diT _Hxi _ij H)z (2 11)
X; = ZO-iZI :

(2.11) is an optimal solution of ML estimator [25], it is also.a weighted least-squares

(WLYS) solution [38]. Ignoring the weight of variance afT on (2.11), it can be written

as follows

min| (a5} @12

In (2.12), it is simpler because we ignore the statistical characteristic of range error; it
is least-squares estimation (LSE) [39].

The above algorithm we mention is a nonlinear functions, it can be solved by
iterated Nonlinear Least Square Solution [40], but it has to afford high computation

cost, then, three linearization algorithms will be introduced in Section 2.2.2.



2.2.2 Linearization of Least-Squares Estimator

There are three common linearization methods, Taylor-series expansion algorithm
(TS), distance-augmented algorithm (DA) and hyperbolic-canceled algorithm (HC).
We will introduce these algorithms in Section 2.2.2a, Section 2.2.2b and Section
2.2.2c respectively. In Section 2.2.2d, we compare the localization accuracy of three

linearization methods.

2.2.2a Taylor-series Expansion

Our aim is to linearize the nonlinear term, real distance function in (2.7),

X, ¥, )= Hxi —X; H 3 \/(xi =X, )2 +(y -V )2 . (2.13)
Applying Taylor-Series expansion.[35] to(2.13).gives
(6. y,)= fJT(xiO,yiO)+[VT fj(xio,yiO)JA+nT_iT (2.14)

where (X, yio) IS the reference point of mobile i and the gradient vector

j \7or Jio ’
j X, o o (X Vo) s (X0 Vio)
A=|:Xi_xl()_

Yi = Yio

and n; ;; denotes the higher order truncation error of the Taylor approximation for

the distancer;; .

Rewriting (2.14) as

%0~ _Xio)+@(yi ~Vio)+Ny 5 (2.15)
i0,7

fT(Xi’ yi): fog +
Fio.7

where 1. = f; (X, ;) is the distance between reference point i and sensor j.
The measurement model in (2.7) can be written as follows

10



-X. Yio— Vi
J(Xi_Xio)+#(yi_yi0)+nT_iT+niT (2.16)

fio7 fio.7

which is a linear function and can be made into a matrix form as

H, s X = bi_TS +0Ni 15 (2.17)

where
I XIO _71 y|0 71 ]
r. - r - _ _
i0,1 i0,1 COSQOI Sin ‘201
X, —X =V, ' ] ’
) |or 2 yl(;’ Y2 | COSQO,z sin ‘9io,§
Hi s =| foz 02 |= : : . (2.18)
3 = cosb, ; sind, &
Xio =Xy Yio — Yn - N o
| Tion fon |
i i1 I7i0,1 \
d. -7 5
b= © . %], (219
_diN y ~|o N |
_nT_II + |T_
4N
Miws = nT_IZ. N (2.20)
L iv iy
and
o Xio = X Yio —Y;
o7 =lio7 — Xio — Yio
J : ( fio.7 } { Fo.g

H, ;s isanangle matrixand n; ;5 isa TS error vector which includes measurement

error and higher-order error term due to inaccurate reference position.

We can apply weighted least-squares(WLS) solution [38] to get the uncooperative TS

estimator X; s

11



A

-1
Xi_wrs =(Hi_TSTVVi_TSHi_TS) Hi_TSTVVi_TSbi_TS (2.21)

where the uncooperative TS weighting is covariance inverse of the TS error vector
-1
W, 15 :(El:ni_TSni_TST :') (2.22)
The element of E [ni_TSni_TST] is a diagonal matrix

On-diagonal: E [ni_TSni_TST ] =07 y+o,  (223)

pp

Off-diagonal: E[n n T]pq:o (2.24)

i_Ts'li_Ts

The resulting covariance matrix of uncooperative TS estimator €, ;o =X; s —X IS

-1
Cov(ei_WTS ) = (Hi_TSTVVi_TS Hi_TS ) (2-25)
The Mean-Square=Error (MSE).of the estimator.is

O-Zi_WTS =1trace |:(Hi_TSTVVi_TSHi_TS )1:| (2:26)

As before if we ignore the statistics W.

‘15, the solution in (2.21) can be further

simplified as

-1

A

Kias=(His Hi o) His'b o (2.27)
and the MSE becomes as
0?1 =trace| (H,_"H, 1) H W, (H TH ) | 229)
TS algorithm can calculate a quite accurate solution with a very good reference

point and avoid the high cost of nonlinear iteration. In fact, we can get the better

reference point by updating the reference point in (2.21).
~ -1
%, wrs (K+1) =(H, 5" (W, 15 (K)H, 1 (K)) H, 1" (KW, 5 (K)b, 15 (k) (2.29)

where

12



Xio(k) B X1 yio(k)_yl ]
0 o0 |
Xno(k)_72 yio(k)_yz
Hos(0=| 1o rg00 =]
oK) %y Vo) -3y | L
o (K) Fo.i (K)
_ 1 )
o7 1 (K)+oy;
0 1
VVi_TS (k)= O-Tz_ii(k) + O-izi
0
0
iy =T 5 (k) |
b- (k) _ i2 ﬁo,g (k)
Oig = Foi (K) |

and k is the iteration index.

o) sin (0
i0:,2(k) Siniogz(k) 230
o (K) - sing g (k) |
. -
,  (2.31)
0
N\ ¢ 2
O-Tz_im(k)"'o'iz,q_
. (2.32)

The reference point.is replaced by the TS estimator at global index kK,

(X“’ (k) Yo (k)) - Xi—WTS(k). In (2:26) and (2.28), we know the angle matrix H;

and uncooperative TS weighting matrix

W.

s Can affect the localization accuracy.

We will compare it with other two linearized algorithms in Section 2.2.2d.

However, we know this method has sensitive reference point. If we have a good

point, the localization is quite accurate. Then, we can use some very simple method to

find a not-too-bad point based on measurement distances. For example, in a 20m x

20m room, we have four known sensor locations on the four corners. According to

four measurement distances, we can use proportion to find a simple reference point.
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2.2.2b Distance-Canceled
The other linear algorithm is distance-canceled (DA) algorithm [46], we
summarize it as follows. First squaring up (2.7) gives
d? =[x % +2fx -%[n; +n;2 (239)
(2.13) is a vector form, we use a scalar form to indicate

dy” =(% - X )2 +(yi -, )2 +26:n;+n; (2.34)

1]

Expansion of (2.34) gives

d.-

=X Y X Y 2K, =2y, + 260 00 (2.35)

i3]

we know the nonlinear termis x>+ y,>. We augment-a squared distance variable
R=x%+y? (2.36)

then (2.35) can be rewritten as follows

2x X, +2y,y, - R =@, =<0, °426.:n; +n;*. " (2.37)

Rewrite (2.37) in a matrix form as follows

where
2%, 2y, -1
I 2:72 Tl (239)
2%, 2§N -1
X.
% = yI, _{XiT] (2.40)
R i

14



b on=| 2|, (241)

and

2
20N + N

_ 2ri§ni§+ni§2 ) (242)

2
26N + N
H,, isa coordinate matrix.and n; o, is'a DA‘error vector. Here, the solution vector

X. (2.34) is different from other two linearized method’s X. because we augment a

variable R, . In (2.38) we do not-know the DA error vector, the matrix function we
meet

HpXi =b; oy (2.43)
As before, weican apply WLS solution to get uncooperative DA estimator

~ -1
Xi_wpa :(HDATVVi_DAHDA) HDATVVi_DAbi_DA (2.44)

where the uncooperative DA weighting W, ,, is the eovariance inverse of the DA

error vector
VVi_DA :(E[ni_DAni_DAT ])_1 (2-45)

and E[ni oal; DAT] is a diagonal matrix as well

2

On-diagonal: E[n; pN; 5, ]pp =4rlcl +307  (2.46)
Off-diagonal: E[ni_DAni_DATLq =0 (247)
and the resulting covariance matrix of uncooperative DA estimator error
=X won —X IS

€ woa i
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Cov(ei_WDA) :(HDATVVi_DAHDA)_l (2'48)

The size of covariance matrix is 3x3 and it is different from other two linearized

methods. Then, the MSE of the estimator is
-1
GZi_WDA :trace[(HDATVVi_DAHDA) l , (2.49)

As before, if we ignore the statistics W,

oa» the solution in (2.44) can be further

simplified as

-1

)?i_DA:(HDATHDA) HDATbi_DA (2-50)

and the MSE becomes as
-1 _ -1
Gzi_DA :trace[(HDATHDA) HDATVVi_DA 1HDA(HDATHDA) :|2 ) (2.51)

From (2.49) and (2.51), we know-that coordinate matrix +Hp, and DA weighting
matrix W, ,,=can affect the localization accuracy. DA algorithm is very easy to

operate but it also suffers from new variable R, . However, R,

Is not independent on

the variable of position mobile i in WLS solution. The accuracy might be the worst .

2.2.2¢ Hyperbolic-Canceled

Now, we introduce the HC algorithm [22]. In (2.35) we know that

x?+y. is nonlinear term. Then, we choice the sensor k as a reference sensor. The
reference equation is
d.’ =x>+y + X +V-2xX —2y,Y +2r.n.+n?  (2.52)
In order to cancel the nonlinear term, subtraction of (2.35) from (2.52) gives
2% (X, =% )+ 2y, (V; - Vi ) =d* = di* + T, = G, +25;n; —2rn +n;°=n%, j=k

ijiij

(2.53)
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where g, =X’>+¥’, T,=X’+7,
Without loss of generality, let k=1. (2.53) is a linear function, we can rewrite (2.53) as

a matrix form

where
(YZ_Yl) (72_71)
Hyc = (6-%) (%-%)) (2.55)
(YN _71) (VN_VI)
dizi_dizé"‘gz g,
2 42 = =
b; 1o %d” 42+ 8:-0, ., (2.56)
dizi_diil+gN g,
and
oz — Mg + (ni2§+n.21)
2
A e = FiaMis —haMig + (nig"'n.z) 257)
T v = hiaMia +_(ni2N + n.21>

H,. is a coordinate-difference matrix and n, ,,. isa HC error vector for estimated

mobile i.

In fact, we do not know the HC error vector in (2.54). The matrix equation we meet
HucX =0 e (258)

We can apply WLS solution to get the uncooperative HC estimator

A -1
Xi_wHc :(HHCTVVi_HCHHC) HHCTVVi_HCbi_HC (2.59)

17



where the uncooperative HC weighting matrix W, .. is the covariance inverse of

the HC error vector

VVi_HC :(E[ni_HCni_HCT]) (2.60)

Then, the covariance of E [ni_HCni_HCT} IS

On-diagonal: E[N; N, ' | =Kop+1io) +%(0'; ~o%)  (261)

pp
ff H I T 2 _2 3 2

Off-diagonal: E[n; ey ' | = ot 4 on  (262)

It is not diagonal matrix anymaore. The resulting covariance matrix of the

uncooperative HC estimator efror e, . =X yuc —X 18

-1
Cov(ei_WHC)=(HHCTVVi_HCHHC) (2.63)
We can further get the . MSE of the estimator

GZi_WHC =trace |:(HHCTVVi_HCHHC )_1j| (2.64)

If we ignore thestatistic W, ;. , the solution in (2.59) can be further simplified as

-1

A

Xi_He :(HHCTHHC) HHCTbi_HC (2:65)

and the MSE becomes as
-1 A -1
O-Zi_HC = trace[(HHcT HHC) HHCTVVi_HC H HC (HHCT HHC) } (2.66)
From (2.51) and (2.53), we know that coordinate-difference matrix H,. and

uncooperative HC weighting matrix W,

ue can affect the localization accuracy.

and W

algorithm

Then, we will compare H of three linearized algorithms in

algorithm

Section 2.2.2d.
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2.2.2d Summary of Three Linearization Algorithms
We know three linearization algorithms have similar matrix equation as

Hx =b+n. Now, we compare H, X, and n. Now, we can see the H for TS is angle

matrix in (2.18)

XIO X1 yiO yl
fio.1 lio1 - : q
« (117 o Cosf,; sING ;
0=% Yoo ) cosf,, sind,
Hi s =| Toz oz |= - - (2.18)
. . 1C0S 0, sind,,

Xio — Xy Yio = VN
r‘i

| o Fon |

which consists of angles from sensors. Then, H for DA is coordinate matrix in (2.39)

2%, "2y, -1
2%, w2y, 1

Ho=| 2 2 (239
2%, 2y, -1

It is made up.of coordinates for all sensors. The last H of HC is

coordinate-difference matrix.in (2.55)

(%e-5) (Fu-7.)

<

It is made up of differences of coordinates based on reference mobile 1. However,

only the variable x=[x y R]of DA is different from other linearized methods’

x=[x y]. Finally, we discuss n from three parts, noise source, algorithm weighting

and covariance matrix of estimator error as follows.

(1) Noise Source:

Noise source can affect the theoretical MSE. In HC algorithm, after linearization
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: , 1 o :
operation, the HC error term is r,;n;; — ;N +§(n”2 - niiz) which is involved in the

effect of real distance r; and r;. The effect amplifies the measurement error and

destroys the theoretical MSE. However, in TS algorithm, after linearization operation,

the TS error term is n; ;; +n;;. If the reference position is perfectly ideal, TS error

T_ij i
term only involves the measurement error n;;. Then, in DA algorithm, after

linearization operation, the DA error term is  2r,;n;; + nijf which is also involved in
real distance effect. In addition; it has a new variable (R, . In fact, the new variable is
not independent on position of mobile in WLS solution'(2.44). Therefore, it has the

worst MSE performance. After.the.comparison of noise source, we will compare the

weighting matrix for these linearized algorithms.

(2) Weighting Matrix:
First, We assume Vvariances 0f measurement errors are the same as 'o*. We know the
weighting matrix_is gotten from noise source covariance. Then, the uncooperative HC

weighting matrix is

- -1

r.§+rii+§ ni+% ni+%
1 ni+§ ré+r.i+§ ni+§ :
W = 2.67
i_ Hyper J2 ) , 3 ) , 3 ( )
i+ it
4 4
3 3 3
Tty g T

In (2.53), uncooperative HC weighting matrix compensates the HC error term with

real distance effect. In fact, it is related with the reference point mobile i.

Next, in TS algorithm, we assume the reference position is very good n; ;; ~0.

20



Therefore, the uncooperative TS weighting matrix is

1
W, 15 z?INxN (2.68)

In (2.70), TS weighting compensates Taylor error term n which is also
measurement error. Finally, in DA algorithm, the uncooperative DA weighting can be

rewritten as follow as

1

; 0
4r: +3
1 0 . 0 :
Wi op == 4r2+3 ' (2.69)
' o .0
0 1
I A3

In (2.71), DA weighting compensates the error term with real distance effect.
However, before the compensation of weighting matrix, the best MSE performance is
uncooperative TS estimator and the best is the DA estimator. After the compensation
of weighted, their have similar theoretical MSE. The computer simulation result for

theoretical MSE of three linearized algorithms will show in Figures 5.2 and 5.3.

(3) Covariance Matrix of Estimator Error

The covariance matrix includes matrix H and weighting matrix W

algorithm algorithm

because of cov(e el ): (HalgorithmTWalgorithmHalgorithm )71. Then, the HC

algorithm ™ algorithm
algorithm’s is difficult to calculate because it’s covariance of HC error vector is not a
diagonal matrix in (2.61) and (2.62). Therefore, we discuss TS algorithm and DA

algorithm. However, in TS algorithm, the covariance matrix of estimator error in

(2.26) included angle matrix H, s and its weighting matrix W,

s Isgiven by
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1N
72

Cov(ei_WTS ) = o~
=

(XiO_YJ)Z (XiO_Yj)(yiO
ri(Z),T ritZJ,T
(%0=%)(%~7) (Y-, )2
r2- r2-
i0,] i0,]

(2.70)

If the reference point (X, Y,,) is very close to true point (x;,Y;), (2.70) can be

approximated as follows

j=1

cov (e yrs) >0

(2.71)

In fact, the right'hand side of (2.71).is the full uncooperative FisherInformation

Matrix (FIM) (4:4) inverse and is proportion to the noise variance o*. Therefore, the

theoretical MSE of TS estimator is very close to-uncooperative CRLB. As before, the

covariance of estimator error. for DA algorithm can be formed as

2
O

cov(e; ou)

—2 — — ]
4x; AX:Y; k 2xj
4k 43 A543 4r’ 3
— — —2 ” 4
4X;y; 4y; 2y
4ri2T+3 4ri27+3 4q§+3
~ ZYJ. . ZVJ. 1
4r>+3  Ar2+3  4ri+3

(2.72)

The covariance matrix is proportion to the noise variance o as well. If erT >3,

(2.53) can be simplified as follows
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X5y X
2 2 2
hiy Ny 255
M XYY y.
COV (€, ypn ) = 0" le ‘r%‘ r—zi _Zr_J% (2.73)
= b i i]
XY, 1
2rz  2rk Ak

There are negative numbers in (2.73), it can reduce the covariance matrix. Then, the
theoretical MSE of DA estimator is larger than TS estimator’s. Finally, the noise
source of HC algorithm is similar to DA algorithm’s expect the new augmented
variable. Therefore, the two methods have similar theoretical MSE. Simulation results

demonstrate the effectiveness of these algorithms in Section 5.1.

23



Chapter 3
Cooperative Localization Algorithm

In cooperative system, cooperative relay or Ad Hoc short-rang communication
among the terminals will be supported [41, 42]. They consider the short-range has
lower measurement error interference, therefore it can enhance the location estimation
accuracy. Then, they investigate the data fusion of large-scale and small-scale. [26]
proposed Cooperative Localization with- Optimum Quality of Estimate (CLOQ) which
takes advantage of the behavior of the channel to provide accurate indoor positioning.
This algorithm uses the quality of ranging and positioning estimates to provide
practical and accurate results..More importantly; it reduces error propagation
substantially. 1 Non-Line-Of-Sight (NLOS) exists, cooperative group localization
(CGL) scheme is proposed in [13] based onrigid graph theory.

However, cooperative localization is not a well solved problem because the
distance measurement between.any pairs of unknown positions (mobiles) are utilized
to assist in the location.estimation. This is much more challenging than the traditional
localization where only distance measurements between unknown position (one
mobile) and known positions (sensors) are employed for localization. Therefore, [12]
devised subspace approach to solve that problem and which can outperform the
classical MDS algorithm. The other chooses is cooperative ML estimator which can
be solved by joint Newton’s algorithm. But the computation cost is quite high because
it is nonlinear iterated solution. Base on the linearized algorithm of uncooperative
localization, we propose joint Taylor-series expansion algorithm to reduce the cost.
But other linear operation can not linearize the cooperative TOA measurement to

form joint algorithms. Therefore, we devise divided-and-conquer method to overcome
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that problem and it can also reduce computation cost from joint Newton’s algorithm.
In divided-and-conquer method, we need uncertain virtual sensors to achieve the
method. [15] proposed an error propagation aware algorithm to track the extent of the
uncertain virtual position error. It sets threshold to decide which virtual can be involve
in localization. By recursive position estimation, the more estimated locations are
selected as virtual sensor locations until all estimated positions are virtual sensor
locations. In fact, some bad virtual sensor positions still provide the information to
localization and the selection of threshold has trade-off between computation cost and
localization accuracy. Therefore, our proposed.algorithm consider all virtual sensors
to help by global iteration and we also discuss the computation cost.

Figure 3.1 indicates the cooperative localization system. As before, there are N
known positions of sensors and M unknown positions-of mobiles. The two individual

localization system for mobile i and mobile | are cooperated by cooperative TOA

measurement, _d;;. Then, r; isrealcooperative distance from mobilesiand j.

_.J_,f‘;“ériisor_r\l
SFQS.JE; r)_l Mobile_i '
n = (5.2
| T
Ky
Sensor_2 Maobile_j -
(%, 2 (5. 7) Sensor_3

(%, 5%)
Figure 3.1 Cooperative localization system with cooperative TOA measurement.
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The dot line distance denotes cooperative distance that connects two mobiles. All
measurements of cooperative localization are illustrated as follows

The uncooperative measurement between mobile i and sensor j is denoted as

i7

i=1~M, j=1~N  (3.1)

i
and the cooperative measurement between mobile i and mobile j is denoted as

d;=r+n;, i<j, i,j=1-M (3.2
where n;; and n;; isuncooperative and cooperative measurement error belong to
AWGN n;; ~N(0,07;) a@nd .n; ~N(0,5%)

There are M positions of mobile will be estimated, the cooperative likelihood function
(ML) [42] is similar to uncooperative likelihood - functionin (2,9) and it is written as

follows

p (dUncoop ! dCoop | X) <

I e I (8, -x,))
1 i7 1N T 1 =X

Uncooperation Cooperation

(3.3)

where cooperative observation set d is like” d, in(2.9), cooperative

i_Uncoop
observation set dg,,, = dy, Gyg,++, Gy, Oyg0 Ay ey ,+-dy_y | and all positions of
mobiles x=[x, X, - X,] .

The cooperative ML criterion searches a X which maximizes likelihood function

(3.3),

M N M
L LR IR o O

i=1l j=1

j>i

Noncooperation

Cooperation
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A

where X=[%, %, - %,] isthe cooperative ML estimator.

We will introduce a common joint Newton’s method to solve it. However, joint
Newton’s method is nonlinear function and it computation cost is quite high.
Therefore we propose two new methods to reduce it, joint Taylor-series expansion
algorithm (joint TS) and divide-and-conquer method (divided algorithms). The
structure of the rest of this section is as follows. Section 3.1 discusses joint
cooperative algorithms. The divide-and-conquer method is proposed in Section 3.2. In
Section 3.3, discusses the issue of divide-and-conquer method, compensation of

uncertain virtual sensor.

3.1 Joint Cooperative Algorithm

According.to cooperative algorithms, we will introduce a commaon.nonlinear joint
Newton’s method to solved (3.4) in 3.1.1-and.we propose a joint TS in.Section 3.1.2.
In 3.1.3, we will.illustrate why the other linearized methods can’t form joint

algorithms.

3.1.1 Newton’s Method
In order to minimize the object function in (3.4), we can set its gradient function
to zero and to get the estimated positions. Let the object function be denoted as

R
(0~ |) 2 207 (d-x-x]) @9

j>i

1

20,

G(x):ii

i=l j=

and

TG00 - aca;(x) 0G() 0G(X) 9G(X) . 9G(X) |_

0 (3.6)
oy, OX, oy, N

We can use Newton’s method [26] to solve (3.6) and it is donated as follows
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-1

)?Joint_Newton ( k + 1) = )?Joint_Newton (k ) - [VXV1 G (f(Joint_Newton (k )):| VI G (RJoint_Newton (k ))

2Mx2M
(3.7)
where K is the iteration index,
°G(X) PG(X) °6(X) IG(X)  FG(X)]
oX0% — OX0y,  OX0X,  OX0Y, 0%, 0¥y
°G(X) 9°G(X) 0°G(X) 0°G(X) 9°G(X)
oy,0% OO0y, OY,0%,  OY,0, Y10Yy
°G(X) o°G(X) . (3.8)
VVIG(R)=| ax,0x,  ox,0y, '

?°G(X) 0°G(X)
0y,0%, 0Y,0Y,
G (X)) 0°G(X) 9’G (%)
| OYO%, YOy, NNy |

is the Jacobian matrix [23] whose-element is

o) 4 1 {(d i) =%) (%,-%,) (dm—m]

X ,0X, 02 r " r [V ;
p i pj pj. pj pi

+

=
w

%ji[Jd.pr.p)(X-Xp)z (=) (dm“pq

= N

pi i

+p1[+<d.p W) )(v-v,) (5% yp)]

i 52 r3 r2

= 7 v "

+i%{+(dp.rp.)(xr3x)(yp V), (xpx.zgypy.)}

:?Eﬂapi pi pi
aZG()A():_ 1 (dpq_rpQ)(Xp_XQ)z+(Xp_xq)2_(dpq_rpQ)
X, 0%, O-ﬁq rqu rpzq "oq
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:zlpo-_lf) ris ri§ Fip
M 1 (dpi_rip)(yp_yi>2 (yp_yi>2 (dpl_rpl)
+'_Zp;flo-_ii rpsi : Mo B Mo

0°G(X) _ 4 (dpq _rpq)(yp - yq)2 .. (yp B yq)
%Y, %, O_Eq Mo N Mg

Actually, the Jacobianmatrix inverse part

[vlva (%Joint_Newton (k ))]

-1

V5.6 (Rt newton (K ) ) i (3.7) can be achieved

2Mx2M

X

by V1V, G (Xt newten (K)) \V, G (X(k)) of Gaussian elimination method in MATLAB

function. Even if the Gaussian elimination method replaces that part, but the size of
Jacobian matrix is-quite large and the elements have to calculate a lot of summations
when it exists multitudinous mobiles. We assume one global iteration in (3.7) needs

F,u.ow flops. G global iterations are needed to converge in (3.7). Then, the total

computation cost is given by

Joint Newton computation cost = F,,, .,y XG.,;x flops.  (3.9)

joint
Then, we derive linearized method, joint TS to reduce the calculation complexity

F,w.om for Gaussian elimination method of large matrix in following section.

3.1.2 Taylor-Series Expansion Algorithm
Now we use Taylor-series approximation method to linearize cooperative

nonlinear function. According to (2.17) in Section 2.2.2a, we have M uncooperative
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TS matrix equation as follows

H, 1X =b; 14N s i=12,..,M  (3.10)

Now, the remaining task for us is to linearize cooperative distances r; among

mobiles. We know the relationship of real distance from mobile i to mobile j is

i =\/(Xi_xj)2+(yi_yj)2 = f; (A%, Ay;) - (3.11)
Because there are four variables in a cooperative real distance (includes two positions

of mobiles), we can regard the difference variable as a new variable,

difference-variable Ax; and Ay,

[Xi % } = {AX“} (3.12)
Yi=Yj | |AY;
later we will convert these difference-variable Ax;; Ay, back to four original
variablex;, yioX;, ;.
Apply Taylor-series expansion to (3.11) as follows.
iy (A%, Ayg) = B (AX 0 AY0) + VT 1 (A%, AYo) |AD y (3.13)

where (Ax;o,Ay;;,) s the difference reference point;n; ; is the higher order

truncation error of the Taylor-series expansion for the distancer;,

VT E (AX. . Ay o)z{afij (Ao, AY;o)  OF; (Ao, AYyo) }:{ AXijo Ay,
ij (B0, AYj;

OAX;; OAy; fi (Ao, AYi0) i (AXo, AYio)

1

and
A AX; — AX;o |
Ayij - Ayijo
Now the cooperative measurement model (3.2) becomes
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AX, Ay,
Ay =1 + 1 = by +—= (AX; — AXyy )+ —22(AX; = AXyp )+ 0y +1y (3.14)

i0 fijo
where 1y, = T (AXjo, AY;o)

Knowing that (3.14) is a linear function of difference-variable (Ax;,, Ay;,) , We may

form a cooperative TS equation

( IJO)AX +( yuO

ijo ijo

)Ayu - d IJO I’]T_ij + r]ij (315)

The cooperative TS equation in (3:15), distance-variable  (Ax,, Ay; )T is different

form the variables of uncooperative matrixes equation-in (2.17) for mobile i and

mobile j with original variables x; and x;.Consequently we convert the

difference-variable back to original variable. (3.15) can be written as follow

|:( |JO) ( yle):| |:( IJO) ( yljo):ix —d .,o+nT_i,-+ni,- (316)

ruO ijo ijo ijo

The cooperative TS equation (3:14) has the original variable (X, X, )T which is like

uncooperative TS matrix equation’s for mobile i and mobile j. Therefore, we can
combine two equations to form a joint TS matrix equaiton. In case of M=4, the joint

TS cooperative matrix equation is given by
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H, 1 0 0 0 b, N 1
0 H 2.TS 0 0 bz UPRS
0 0 H 3_TS 0 b3 N3 s
0 0 0 H ats || %1 b4 Ny _1s
hIzo - Izo 0 0 X, _ d12 - r~'120 " L RPRALP (3 17)
hIso 0 - Iso 0 X3 d13 - F130 Ny 43+ 13 .
hLo 0 0 - 140 Xy d14 - I7140 nT_14 +Ny,
0 hgso - ;30 0 dzs - r7230 Ny 53+ Ny
0 h£4o 0 - ;40 d24 - '7240 Ny o4 1y
L 0 0 h;4o _h;to | _d34 - '7340_ N g+ Ny
Where

-
Ao Ay
hyo = [ —" Yo =[ cos g, sinajOJT.
fio Fijo

is a cooperative angle vector between two reference points ( x;,, ;) and (x 0 yjo).

Here, there areC (M ,2) =6 pairs cooperative measurements between mobiles. We

note a angle vector in (3.17) for one pair is [ hy, —hy, | because of the

difference-variable in (3.12). In addition, (3,17) can be'simplified as

HJoint_TSX = bJoint_TS + nJoint_TS (318)

where H,;, s isjoint TS angle matrix.

As before, the joint TS estimator is given by

A~

X H

-1
T T
Joint_TS WJoint_TS H Joint_TS ) H Joint_TS WJoint_TSbJoint_TS (3 ' 19)

Joint_TS — (

. . . . . -1
where the joint TS weighting matrix, W, +s = E [ Nyge 15N 7s | -

Itis like (2.29). We also can get the better reference point set by updating the

reference point set from joint TS estimator in (3.19).

~ -1
XJoint_TS (k + 1) = ( H Joint_TST (k)WJoint_TS (k) H Joint_TS (k)) H Joint_TST (k)WJoint_TS (k)bJoint_TS (k)

(3.20)

32



In the same reason, the solution (3.20) can be solved by Gaussian elimination method

in MATLAB funCtion’ 5\(Joint_TS = \[ WJoint_TS HJoint_TS \\[ WJoint_TSbJoint_TS . Even If the

mobiles more, the size of joint TS angle matrix larger, but it doesn’t do a lot of
summations. However, it can reduce the computation cost of joint Newton’s method.
Simulations are presented in terms of the MSE, convergence rate and computation
cost for two joint algorithms in Section 5.2. Alternatively, we also propose a
divide-and-conquer method the reduce the cost of calculation complexly (3.7) in

Section 3.2

3.1.3 Other Joint Linearization Algorithms
We will briefiillustrate that distance-augmented method and hyperbolic-canceled

method can not achieve joint algorithms. We know the new challenge to form joint

algorithm is to linearize the cooperative real distance r; = \/(xi - xj)2 +(y, - yj)2 .

However, in DA method, we square the measurement model before linearized

operation. Therefore, (3.7) can be operated as follows,
dj =(%—%) +(y;—y;)" +2n;+n;
=R +R;—=2xX, -2y,y, +2r,n, +n;  (3.21)
In (3.21) even if we augment the new variable R; and R;, itstill exist the nonlinear
term xx; and vy,y;. Therefore, DA method can not achieve joint algorithm. Of

course, HC method has the same problem because it has to do square operation.

Therefore, we do not have joint DA and joint HC algorithms. However, if (xj : yj)

are known, (3.21) can be linearized. Therefore, we proposed divide-and-conquer to

solve that problem.

33



3.2 Divide-and-Conquer Method

We know that cooperative localization is involved unknown positions connection.

It is more difficult than uncooperative localization. Therefore, we can simplify it by

divide-and-conquer method. We illustrate the method Figures 3.2 to 3.4.

1l
_Sensor_N

Sl?s%j"f““---- Mobile_i -/
i (%)
@
L
.'._.‘f;j.
Sensor_2 Mabile_j -
(7. 7) (2. 7,) Sansor_3

(%. %)
Figure 3.2 The joint localization method.

If the mobile j location is know as ()?j, 91.), we have a individual localization in

Figure 3.3.
--
_.‘.,Séhsor_r\l
[ o (e P
SFQSJE}W)— L. Mobile_i
b (%)
L
.‘1_"33'
‘-'.
Sensor_2 Mobile_j o
(%, ) (. ¥ Sensor_3

(%, %)

Figure 3.3 A part of divide-and-conquer method.

34



As before, if mobile j location is known, we have another part of divide-and-conquer

method in Figure 3.4.

f;‘,eﬁsor_N
[ o (ENFEN)
Sensor=]
(R
Sensor_2 Mobile_j e
(%3, ¥a) (2. yp) Sensor_3

(%, 5%)

Figure 3.4 Another part of divide-and-conquer method.

However, divide-and-conquer method can reduce the computation cost in (3.7).
the system model is described in follows. At first, every position of mobiles can be
estimated from uncooperative ML estimator. Then, we have initial virtual sensors.

min iriz(dij—”xi—xju)z i=1~M < (322)

Xio j::L IT

Noncooperation

From (3.22), we have M initial virtual sensors X, ;,X,,, -+, X . Next, we divide M

virtual ML functions to estimate M positions of mobiles again. Every function can be
achieved by other M-1 positions of virtual sensors and it can be updated until their
locations are converged, we call global iteration. According to the sequential of virtual
sensors location updating, there are two type sequential, Jacobi method and
Gauss-Seidel method. The detail of divide-and-conquer method and sequential of
virtual sensors updating are discuss in Section 3.2.1. A joint Newton’s algorithm and

three joint linearized algorithms perform the proposed method are discussed in
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Section 3.2.2.

3.2.1 Two Category of Update Sequence

We will introduce Jacobi method and Gauss-Seidel method for
divide-and-conquer method in Section 3.2.1a and Section 3.2.1b.
3.2.1a Jacobi Method

Now, we describe the divide-and-conquer method for Jacobi method [23]. After
we have initial virtual sensors from uncooperative algorithm, we start form mobile 1.
Then, the positions of virtual sensor 2 to virtual sensor M will be helped to estimate
the position of mobile 1 at 1 global iteration. The divided: ML estimator for the
mobile 1 is given by

N M
D o (b =) 2 5 b=l
(3.23)

It is similar uncooperative ML estimator (2.11) because its only includes one

unknown position X; of mobile 1, while virtual sensors locations

X0 1=2,3,...,M, arealready known. After estimating position of mobile 1, do the

same step to get virtual sensor positions: X,,,X,,,...,X,,, from mobile 2 to mobile M.

This procedure is called a global iteration, as shown in the right-hand-side of Figure
3.5. Next, this global iteration can be repeated to update positions from
Xins X e Xpg 100 X0, Xo ey Xy nia - The divided ML estimator for mobile i at

1,n?

n™ is given by

R | - i1 - .
min ;20’2((1”_HXi_XjH)Z—’_EZGE(d”_HXi_XLn )2 i=12,.,M  (3.24)

1#i
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where X, denotes position of virtual sensor i at the n™ global iteration. This

divide-and-conquer method in (3.24) stops until all positions of virtual sensors are

converged.
Uncooperative R Virtual algorithm 1
Localization » 10 y » by virtual sensors >
AI th X2'0 5\(Z,n’s\(s,n "")’iM n Xy na
gorithm 5(2,n+1
K Virtual algorithm 2 :
M.0 » by virtual sensors > Ky it
(Initial positions.of virtual sensors) X101 Xanr Xan " Xu

Virtual algorithm

» M by virtual
Sensors
Xl,n 1 X3,n 1 X4,n N .XM—l,n

Figure 3.5 The Jacobi method diagram for divide-and-conquer-method.

3.2.1b Gauss-Seidel Method

The only difference between Gauss-Seidel method [23] and Jacobi method is that

in the former, the most recently update step. First, we start from mobile 1, the

positions of initial virtual SeNSOrs X5 Xy0,++5 Xy and positions of sensors
X,,X,, -+, X, estimate position of mobile 1 to get virtual sensor 1, X,,at 1% global
iteration. Next, we estimate mobile 2 by position virtual sensors X, ;,X; .+, X,y o - We
can see the position of virtual sensor 1, X,, had been updated in virtual sensors

locations. In Jacobi method, it uses X, ,,X;,,:-+, Xy, to estimate position of mobile 2.

The divided ML of Gauss-Seidel method is given by
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rpin 1 2 1 2 1=1-M
- +22 2 (d"_HXi’nﬂ_)A('v"”) +Z‘203 (d“_HXi’“”_f("”)

il,n+1 > il,n

(3.25)
Usually, the convergence rate of Gauss-Seidel method is faster than Jacobi method if
the method is convergent.
We know that the virtual sensors locations can destroy the localization accuracy

because their positions are uncertain: Therefore, we have to compensate the weighted

204 in the virtual sensor terms ) 255 (d, —|x, — %, " /We will derive the
il il '
1=1

1#i

compensation in Section 3.3.

3.2.2 Divided individual localization: Newton’s Algorithmand Three
Linearization Algorithms

For easy to describe, we use Newton’s method and three divided linearization
algorithms to perform divided-and-conquer method under Jacebi method. The divided
ML estimator in (3.24) can be achieved by these algorithms, because it is similar with
the uncooperative ML estimator in (2.11). Therefore, the Divided Newton’s algorithm
is described in Section 3.2.2a, three divided linearization algorithms in Sections

3.2.2b, 3.2.2c and 3.2.2d.

3.2.2a Newton’s Algorithm
In divided ML estimator (3.24), it can be solved by Newton’s method. As before,
the solution of Newton’s method for mobile i at (n+1)™ global iteration can be written

as
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5\(i,n+l(k-i_l):;(i,ml(k) |:vx VI Gln(A|n+1(k)):|2 9 VI Gln(,\m 1(k)) (326)

G, (xi,nﬂ)zi%(olij - P

j=1 ij

_Xl,n

i,n+1
|I n

Xini _JH) +ZZ 2 ( i~ [|X

°G(%) 0°G(X;)

VVIG, (% )| D00 O
’G(%) 0°G(%;)
xoy, Oy,

is Jacobian matrix with size 2 x 2 and the elements of matrix are
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As before, the solution of matrix inverse

[VX V.G, (A, o 1(k))]:2 V.G (A, ..1(K)) can be replaced Gaussian elimination

X; —Ln

method,V V] G, (AI n+1(k))\VT (A, n+1(k)) by MATLAB function. Even if the

X Xj —nLn X i,n

Jacobian matrix will calculate a lot of summations, but the solution is only calculated
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2x2 matrix Gaussian elimination method. It really reduces the large Jacobian matrix
Gaussian elimination method (3.8) of joint Newton’s method calculation complexity.
However, joint Newton’s algorithm has to count M times. Then, we assume one local
iteration for one single mobile in (3.26) needs F,, flops. L local iterations are
needed for each mobile to converge in (3.24). Once global iteration for all M mobiles
needs F,,xLxM flops. It needs G global iterations to converge all the positions of
mobile. Then, the total computation cost is given by

Divided Newton computation cost= _F, ,xLxM xG, . flops.  (3.27)
Contrast with joint Newton’s computation-cost (3.9) which is larger than the divided
Newton computation‘cost in'(3.27) when M is large. Computer simulations will

demonstrate it in Section 5.3.

3.2.2b Taylor-Series Expansion
Actually, divided ML estimator in(3.24) is similar to ML estimator of traditional
localization (2.11). In case of cooperative system, the matrix form of divided TS

matrix for mobile i at n"™global iteration time is
Hi_DTS,nXi_DTS|n+1 = bi_DTS,n +Diorsin (3.28)

where

H . |
Hi_brs.n :{H - (3.29)

i_VTS,n |

b
bi_DTS,n:|:b T (3.30)

i_VIS,n |

and

n.
ni_ms,n{ - } (3.31)

ni_VTS n
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H, o5, Isadivided angle matrix and n; .., isadivided TS error vector. In case

of uncooperative angle matrix H, ¢ is like (2.17). Without loss of generality, let

i=1, the virtual TS matrix for mobile 1 is

X — X2,n Yio — y2,n

r . r . - .
10,2,n 10,2,n r ; 7 T
X, _% y 9 Cosem,é,n Smelo,é,n alo,i,n
0 3 - )
3n 710 73n cosd - siné . al .
H _ r. r. — 10,3,n 10,3,n — 10,3,n (3 32)
1_VTS,n 10,3,n 10,3,n : : ’ '

H T
o _cos¢910M'n SN0, i a .

B r1o,r\7|,n r10,r\7|,n o
I d, - I710,2,n ]
d.—-7 .
bl_VTS,n = N :"10,3,n ) (3-33)
_dlM = r1o,m,n_
and
N, +Np o+ éz_VTs,n
0y sl = Nz + nT_lf% T é\s_wsm (3.34)

A

Ny + 0 v € vrsn

where H, .., isvirtual angle matrix, n, .., is virtual TS error vector, (%;,.9;,)

is position of virtual sensor j at n™ global iteration, Mo.in is the distance between

reference point of mobile 1 and virtual sensor j location at n™ global iteration, € visn
is the error of virtual sensor j location,

al. = X0 = X0 Yo = Yjn
1j,n
r:L(),i,n I’10,],n

(3.35)

is a virtual angle vector and
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A A

In (3.28), we utilize positions of virtual sensors (X, X, .-+, X, ,,)at n"" global to get

the solution of n+1™ for mobile 1. As before, the divided TS estimator in (3.26) is

given by
5 T -1 T
Xl_ DWTS,n+1 = (Hl_ DTS,n Wl_DTS,n Hl_DTS,n ) Hl_DTS,n Wl_DTS,nbl_ DTS,n (336)

Assume the reference point (x,,Y,,) is very close to true position (x,,y;) andall

variances of measurement-noises are the same aso,

where

Wl TS

Wl_DWTS,n:(EI:nl_DTS,nnl_DTS,nT ])l :[ O_ (3.37)

W, 51, Is divided TS weighting includes the VW, ;s is uncooperative TS weighting
in (2.22) and The element of virtual TS.weighting W, ., , which is gotten from the

covariance inverse of virtual TS error vector, E [nl_VTS,nnl_VTS,nT:I whose element is
On-diagonal:“E [ N, yrs Ny yrs ' l_j = 0°467 s

As before, if we ignore the statistics™ W, ., the solution in (3.36) can be further

simplified as

-1

)A(l_DTs,nJrl = (Hl_ DTs,nT Hl_ DTS,n) Hl_DTS,nT bl_DTS,n (3-38)
The compensation of TS weighting (02+&J-2_ws,n )71 is gotten by the error of virtual

sensor j, €, s, which will be discussed clearly in Section 3.3

3.2.2c Distance-Augmented

The divided DA matrix form in divided ML (3.24) for mobile i at n" global
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iteration can be denoted as follows

X

Hi_DDA,n i_ DDA+ — bi_DDA,n 1 ppan (3-39)

where

H
Hi_DDA,n = > :|’ (3-40)

b.
bi_DDA,n = - :|’ (3.41)

~ 2
9o —dj;
~ 2
gs,n - d13

b1_VDA,n = . '

and
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n _ 2r13(n13 + A3,n)+(n13 + As,n )2
1_VDAn

where H, ., isvirtual coordinate matrix, n, .., is virtual DA error vector and

A

Y A2
gj,n - Xj,n + yj,n'

As before, the divided DA estimator is given by

A

-1
T T
X; ppana = ( Hl_ DDA,n \Nl_ DDA N H1_ DDAn ) Hl_DDA,n Wl_DDA,nbl_ DDAn (3-43)

Assume all variances of measurement noises are the sameas ¢,

where
1 W.
Wl_DDA,n:<E[nl_DDA,nnl_DDA,nT]) :|: 16DA W ] (3.44)
1_VDAN

the W, . is uncooperative DA weighting matrix in (2.45) and the element of
W, \oan Is gotten from the covariance inverse of virtual DA error vector,
E [nl_VDA,nnl_VDMT ] whose ‘elementis

On-diagonal: E|:nl_DAn1_DAT:|jj =4r’(c®+63,)+3(c” +67,)  (3.45)

3.2.2d Hyperbolic-Canceled

The divided HC matrix equation for mobile i at n" global iteration can be denoted

as follows

Hi_DHC,nXi_DCH,n+l = bi_DHC,n 1 pheon (3.46)

where
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H
Hi_DHC,n = He }, (3.47)

_Hi_VHC,n

bi_DHc,n= b He }v (3.48)
| Ti_VHC,n
n
ni_DHC,n=|:n " } (3.49)
i_VHCn

where H,; ., isdivided coordinate-difference matrix, n; ., isdivided HC

error vector, uncooperative coordinate-difference matrix H,. is like (2.45). Without

loss of generality, let i=1, and sensor 1 is reference'sensor; then the virtual HC matrix

for mobile 1 is,

()22—?1) (92_71)
1_VHC.n 0 P )
(RM _71) (9M _71)
d121 _d122 'sz _gl
b A 1 d121 _d123 +Q3 _gl
1_VHC;n —E . )

dlzi - d12M + QM > gl

and

1.VHC,n —

where H, ., isvirtual coordinate-difference matrix and n, ,,. , isvirtual HC

error vector. As before, the divided HC estimator is given by
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s T -1 T
Xl_DHC,n+1=(H1_DHC,n Wl_DHC,nHl_DHC,n) H, ohen Wl_DHC,nbl_DHC,n (3.50)

where
W, oncn=(E[M owcaeoren )+ (351)
W, phc, IS divided HC weighting matrix. Then E [nl_VHC‘nnl_VHCYnT] whose element
is
11911

. A 3 -
. T _ 2 2 2 2 2 2 2 2
On-diagonal: E[nl_VHC]nnl_VHC,n l_j —rﬁ(a +ajyn)+r o. +Z(G +05,—0,71)

2 2

. 3
Off-diagonal: E[nl_\m’nnl_wc’nT ]jk =r’c +40
Because E [nl_VHC'nnl_VHC,nT] is not a diagonal matrix, the divided HC weighting

matrix will becomes more complex.

3.3 Compensation of Uncertain Virtual Sensor
Actually, if there is a uncertain sensor which will help to estimate mobile locaiton,
its variance of uncertain location error had been derived [43] as follow,

The cooperative measurement TOA model between mobile i and mobile j is given by,
d;, =llx —x; I, +ny,  (3:52)
Now, we have a uncertain virtual sensor j location, f(i which is surround noise by
X;, then (3.31) can be written as follow
dij =|| (Xi _)’Zj)_éj Il Ny (3.53)
where X;+€,=x; and &, = [éjx €, T are x-plane and y-plane error of virtual

coordinate. Here, the coordinate error éj dependents on the traditional localization

algorithm in Section 2.2. For example,
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o s = trace[cov(ej_WTS )} = trace[cov(éj )}
in (2.26) if the uncooperative TS algorithm is used. In (3.53), using virtual sensor X;

instead of true sensor X, the virtual coordinate error will involve inside of norm,

then we want it get out from the norm. Therefore, apply Taylor-series expansion to
(3.53) as follows

d; =% —X; l, =V; &; +higher order terms +n;  (3.54)

The uncertain error is out of norm.in(3.54). Assume the initial is very closed the true

position, the higher order terms can be omitted, (3.54) canbe written as follows

. T A
The total error including measurement noise ny; ‘and virtual sensor error V; €.
]

Therefore, the variance of total error is

o2 = E[(—ngé [+, )2} (3.56)

ij
We assume the measurement noise and virtual sensor error are independent, and the
x-plane and y-plane of virtual sensor location error are i,i,d< Then, (3.56) can be

written as

We have the error variance of virtual sensor j location ,oijf in (3.57). Previous
research has derived (3.57) by considering an uncertain sensor. In the
divide-and-conquer method, we can apply these virtual weightings

compensation W, 5., W, \pa, and W, .. . toall virtual sensors to enhance

1
localization accuracy by global iteration. Then, the error variance of virtual sensor

j,o  will become smaller and smaller after global iteration. On the other hand, the

ij.n
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position of virtual sensor j becomes more accuracy. The computer simulation will
improvement the compensation in Section 5.4.2. [15] proposes an error propagation
aware algorithm to track the extent of the uncertain virtual position error by
compensation in (3.57), but this algorithm doesn’t updated it with global iteration.
Therefore, in our divided method, we update the compensation by iterating

estimation.
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Chapter 4
Theoretical Analysis of Mean Square
Error

Recently, the determination of position accuracy for geolocation is a fundamental
issue in wireless sensor networks. The Cramer-Rao bound (CRLB) provides a useful
means for the analysis of the limits of localization accuracy. Based on different types
of measurements, the CRLB result for cooperative localization can be found in [3] .
However, the CRLB for TOA-based cooperative localization is gotten from Fisher
Information Matrix (FIM) [3,-44].-.But the matrix becomes more complexity when the
number of mobiles increases. Therefore, the eigenvalue view of EFIMis proposed in
[44]. Hence, we use the eigenvalue view to propose recursive block matrix inversion
to derive a simple approximated EFIM (AEFIM). Then, we can see the more mobiles,
the better MSE performance. Next, we further simplify the matrix to get the
approximation of cooperative CRLB (AC-CRLB). Besides, we try to analyze the
theoretical converged MSE of divided algorithms; but it only success in divided TS
algorithm in special case of two mobiles. The rest of the section is organized as
follows. In Section 4.1, we present the approximated cooperative CRLB. The

theoretical converged MSE for divided algorithms are shown in Section 4.2.

4.1 Approximated Cooperative Cramer-Rao Bound

First, we will present the uncooperative CRLB in Section 4.1.1. In Section 4.1.2,
the cooperative CRLB will be illustrated. Next, an eigenvalue view [44] on

cooperative EFIM for two mobiles is shown in Section 4.1.3. Then, we use the
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character to derive a approximated EFIM in Section 4.1.4. Finally, the approximation

of cooperative CRLB is derived in Section 4.1.5.

4.1.1 Basic Localization CRLB
In Basic localization system (Figure 2.2), we estimated mobile i through its
uncooperative measurement. Then let X, denote an estimate of mobile i,x; and

measurement setd, :
d :[dii’dii"'dm] (4.1)
The error covariance matrix of "€, =X, —x, satisfies.Information Inequality [25]
cov(é)=E[&& |23 (4.2)
where J, is the full uncooperative Fisher Information Matrix (FIM) [25] for mobile

i, X

L E{%In f(d)x, )H%ln f(d, |xi)H 43)

where f(d,|x;) isthe likelihood function in (2.9). Expanding (4.3) to get

(X=X)2 e (% =K (V- 7)) |
N s r

in :Ziz y i] 1 |1_ 2

r> .

i] ]

cos’d;;  cosf,;sind;

4.4
cosf;sing;  sin’6; (4.4)

i
trace of inverse of J, in (4.4) is defined as the lower bound for MSE. Therefore,

Basic localization CRLB is given by

CRLB =trace[ J;' |  (45)

Uncooperative
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The size of full uncooperative FIM is 2x2 for mobile i. Then, we have multiple

uncooperative CRLB from mobile 1 to mobile M in (4.5). However, in cooperative
system, the size of cooperative full FIM is complex. Therefore, we derive a simple
Approximated Equivalent-FIM(AEFIM) and further demonstrate approximation of

cooperative CRLB (AC-CRLB) in following section.

4.1.2 Cooperative Localization CRLB
As before, the full cooperative FIM is given by cooperative likelihood function

(3.3). We rewrite the cooperative likelihood function.as follows

p(dUncoop’ Coop | X)

eI o ) B O N T [
l;ﬂllzafj 207 1;[ ot h DV -

Uncooperation Cooperation

According to (4.3), the full cooperative FIX [3, 25] can be written as follows

[ M
‘]x1 + chi _ClZ : _ClM
il
M
C12 sz +ZC2| sz
‘JCoop,x(M) = ::lz (46)
M
ClM CZM ‘]xM +ZCM|
i=1
L i=M Jamxam

where J, is the full uncooperative FIM in (4.4) for mobile iand C; is cooperative

information matrix between mobile i and mobile j which is denoted as

cos? 6, cosé. siné.

=—QaQa= o | @D

cos g, sin 6; sin” 6

Then, the cooperative CRLB for mobile i is

CRLB = trace[upper-left 2x 2 submatrix of J™* (4.8)

Coop,x(M) :I

mobile 1
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Obviously, the size of full cooperative Fisher information matrix (4.6) becomes larger
and complexity when the numbers of mobiles increases. It is difficult to obtain
cooperative CRLB in (4.8). We will derive a simple AEFIM. Therefore, we can get
cooperative easily. Next, we introduce the eigenvalue view on full cooperative FIM

for two mobiles in following section.

4.1.3 Cooperative Fisher Information for Two Mobiles based on
Eigen Decomposition
First, we briefly cite the definition of Equivalent Fisher Information Matrix (EFIM)

[44]. Let the original'FIM and its inverse be

A B »
‘]Coop,x(M) y BT C ! and ‘]Coop,x(M) i K L ’ (49)
2Mx2M

The cooperative CRLB for mobile 1 is given by

CRLB =trace(T,,) (4.10)

mobile 1
Let Je’f:Tw, hence J, isan EFIM of J., suyfor-mobile 1. Now, we use

eigenvalue decomposition [44] to analysis the CRLB of cooperative localization. We
summarize the sight as follows

For M=2, the structure of full cooperative FIM is

J ~ Jxl +C1’2 | _Cl,2 (4 ll)
Coop.x(2) — _C1,2 ‘ ‘]Xz +C1,2 |
4x4

Eigen-value decomposition on full uncooperative FIMJ, , J,  and cooperative

X3

information matrix C,, from mobile 1 and mobile 2 as follows

AT ﬂ“l 0 .
12U Uy i=l2 (@12)
1 | /,ll 1
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where 4 and g are the eigenvalues of J, , and Uﬂi{

cosp,  sing | .
—sing,  cosp, ®

rotation matrix of an angle S, and the cooperative information matrix can be written

as

N )
C,; = U5, { 0 o}ua,j’ i=1j=2  (413)

where we define v, ; as the strength of the cooperative information between mobile i

and mobile j. From (4.4) and (4.12), we can know that

N
YRITEDD iz and viJ.:i (4.14)
j=1

2
j= i i

Actually, because uncooperative FIM is related with the angles from sensor,
therefore the eigenvalues isalsorelated with the angle from sensors to mobile. The
feature will show in Section 4.1.4. We get cooperative CRLB from the full

cooperative FIM inverse. By the following matrix inverse lemma on (4.11) [24]

Ry 37c,,(3, +C,,)

€

-1
‘]Coop,x(Z) > 71 = o (415)
=J.1C,5 (3 +Ciy) J

€2 44

We obtain the EFIM for mobile 1
3, €3, 4C=C,, (3, +C,,) Cpp (416)
After applying eigenvalue decomposition, (4.17) and (4.18) can be shown [44]
Je, =y + 21.C1s (4.17)
where the uncertain weighting of mobile 2 to mobile 1 is given by

1

1+ vlva 825y

X2 (4.18)

and

Agmﬁz:%cosz(ﬂz—91'2)+isin2(,6’2—¢9112). (4.19)

Hy
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(4.17) means the EFIM of mobile 1 includes its own full uncooperative FIM, J,

and cooperative information matrix C; , from mobile 2. Because the exact location of

mobile 2 is uncertain, Cy ; is de-weighted by the z,, <1. We can see the uncertain

cooperative part as follows

V1,2

1+ vllegmﬁ2

X1,C12 = (Zl,z Vi, )Qaij Q;j = Qa,jQ;“_ (4.20)

If bigger v, ,, we have better cooperative localization CRLB. The EFIM for mobile 2

can be obtained similarly. Therefore, we can-get simple cooperative CRLB from

(4.16)

CRLB

oo = trace [J:JM (4.21)
Now, we make a lemma.to.derive the approximate EFIM. First, the relationship of
(4.16) can be written as follow as
—_1 +
(‘Jx1 + Zl,zcl,z) _(‘Jx1 + Zl,zcl,z) C.. (‘sz + Cl,z)
-1 =1 -1
_(‘sz * Zz,lcl,z) C.> ('Jx1 + Cl,Z) (‘]xz + Zz,lcl,z)

(4.22)

-1

-1
‘JCoop,x(z) -

From (4.16) to (4.17), we propose a-block matrix-inversion lemma as follows,

First, we assume J, is large. Therefore, the Block matrix inversion lemma 1:

F”C c T (9,+C-C(3, +c:)‘1(:)_1 3C(3,+C)°
C J+Cl 3Lc(3,+C)” (JB +C—C(JA+C)710)71
) (34+ 20cC)" (3u+20cC) C(I,+C)"
(3 +2.cC) C(3,+C)" (3o + 7acC)”
J c)’ 0
N ( At Xsc ) ) (4.23)
0 (Jg +24cC)

Because J. is large, cause off-diagonal block matrixes to approach zero,
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-1 -1 -1

(9, +;(Blcc)‘lc(JB +C) ~0 and (Jy+x,cC) C(J,+C) ~0. For example,
assume N =20, o® =3, ,=30° 4 = =N/25%, we have uncooperative full

FIM of mobile 2

B [16.6667 0

. (4.24)
0 16.6667
B, =45° 4, u, =3:1, we have uncooperative full FIM of mobile 2

16.6667 8.3333
8.3333 16.6667 |

Xz

6, =90°, we have cooperative information matrix

s——" (4.25)
2710 0.3333 '

and z,, =0.9615. Then the on-diagonal block matrix is

4 [06 © 0
J +7C) = (4.26)
o ALz 0 0.0589

and the off-diagonal block matrix is

- - 0 0
(‘]xl +Zl,2C1,2) 1 Ci, (‘]x2 + C1,2) - |:—0.0008 0.0015} (4.27)

Compare (4.26) and (4.27), the off-diagonal block matrix is relatively smaller than
on-diagonal block matrix. Then, we will use lemma 1 to simplify the EFIM in

following section.

4.1.4 Approximation of Equivalent-FIM (AEFIM) Based on
Recursive Block Matrix Inversion
Now we will extend from two cooperative mobiles in Section 4.1.2 to multiple
mobiles. Exact close form is difficult to obtain. By lemma 1 and eigenvalue view,

AEFIM formula is derived for full cooperative FIM.
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Case a: Three Mobiles

The full cooperative FIM for three mobiles is given by

J X, +C1,2 +Cl,3 | 'C1,2 'Cl,s
‘]Coop,x(S) = 'C1,2 sz +C1,2 +C2,3 'Cz,s (4.28)
'C1,3 'C2,3 J X3 +C1,3 +C2,3 66

We note that mobile 3 has provided additional information matrix C ,and C,,.

We use matrix inverse lemma in (4.22) by partitioning into two groups of mobile 1

and mobiles 2,3. The full cooperative FIM . inverse is given by

1 ‘]e_ll K2><4
‘JCoop,x(s) = KT L (429)
4x4 6x6

Then, the EFIM of maobile 1 1s-given by

il
J Xy +C1,2 +C2,3 _Cz,s :| |:C1,2
C

(4.30)
_C2,3 ‘]x3 +C1,3 +C2,3

‘Jel = (‘Jx1 +C1,2 +C1,3 ) - [Cl,z C1,3:||:

13
Obviously, it becomes more difficult because of two cooperative block matrix

I:sz +C1,2 +C2,3 _Cz,a

-
(4.31)
_C2|3 ‘st +C1,3+C2,3

We call (4.31) two block matrix. Now, we apply the matrix inverse lemma 1 again to

(4.31),

‘sz +C1,2 +C2,3 _C2,3 ’
_Cz,s ‘]x3 +C1,2 +C2,3

(‘]xz + Cl,z +722,3 Cz,3 )71 _(‘Jx2 + Cl,z +722,3C2,3 )71 Cz,a (‘Jx3 +C2,3 )71

(‘]x3 +Co+ 72, Cos )71

- 1

_<'Jx3 + Cl,z +723,2C2,3 )71 Cz,s (sz + Cl,2 +C2,3)
(‘]x2 + C1,2 +7~(2,302,3 )71 0
~ L @32
0 (9., +C12*7.Cus)

This simplified block-diagonal matrix becomes a sum of full uncooperative FIM for
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J, and 7, weighted combination of C, ;. However, the uncertain weighting of

X

mobile 3 to mobile 2, v, , isreplaced by #,, because the J on the lemma 1 is

J,,+C,,. Therefore, 7,, isinvolved in the eigen-parameter of J, +C,,. Then,

(4.30) can be written as

(‘]x2 +C1,2 "722,3(:2,3 )_1 0 |:C1,2

Jelz(\]xl"'cl,z"'cl,s)_[clyz C1'3] 0 (J Cpo+7:,C )_1
x3+ 1]2+Z3,2 2,3

(4.33)
- -1 ~ -1
=, ¥C,*+C, =Cy, (J w TCL*7::Co ) C.-Cis (Jx3 +Cy, +13,2C2,3) Cis
(4.34)

- 1 N -1
=J,,+C1, =Cpp (‘sz +Cy, +Zz,3C2,3) C2tC -Gy (Jx3 +Cy473,Css ) Cia
(4.35)
=J X "721,201,2 +7?1,3 C1,3 (4.36)

As before, the cause of uncertain weighting 7, and 7, is thatthe J on the lemma

lare J, +7,,C,; and J,.+7;,C,,, respectively. In fact,we know 7, ,> 7, and

s> 21, because 7, and  ; havethe help from 7,,C, .. But the help is weak.

Then, we can see the approximated uncertain weighting as follows

721,2 DAY, (4.37)

X3 ® X3 (4.38)
Therefore, we derive the approximated EFIM (AEFIM) for mobile 1
‘]el ~ ‘]xl +212C1+215C0 5 (4.39)

We can see that the AEFIM of mobile 1 includes full uncooperative FIM of mobile 1

add cooperative fisher information from mobile 2 and mobile 3 with their uncertain
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weighting 7,, and .

Case b: Four Mobiles

The full cooperative FIM for four mobiles is given by

‘Jx1 +C1,2 +C1,3 +C1,4 _Cl,z _C1,3 _C1,4
J - _Cl,z ‘]xz +Cl,2 +Cz,3 +Cz,4 'Cz,s _C2,4
coop® _C1,3 _Cz,a ‘Jxa +C1,3 +Cz,3 +CS,4 _C3,4
_C1,4 _C2,4 _C3,4 Jx4 +C1,4 +C2,4 +Cs,4 ax8
(4.40)
The EFIM of mobile 1 can be donated as
3, tC+C, 5 *Cy €5 —Cs. " C.,
Jq =J X +C1,2 +C1,3+C1,4 _[CI,Z C1,3 C1,4:| _Cz,a ‘]xz +C1,3 +C2,3 +C3,4 _CS,A C1,3
_CZ,A _C3,4 ‘Jx3 +C1‘4+C2,4+C3,4 CM
(4.41)
As before, the difficult part in (4.34) is three cooperative block matrix
-1
‘JA,Z +C1,2 +C2,3+Cz,4 | _C2,3 _C2,4
—C2,3 ‘ ‘JA|3+Cl,3 +Cz,3+C3,4 _C3‘4
_C2,4 _C3,4 ‘]A,4+Cl,4 +C2,4 +C3,4
(4.42)
Apply the lemma 1 on (4.42)
-1
‘]A,Z +Cl,2 +Cz,3+C2,4 | _Cz,s _Cz,4 All A
1 2
_Cz,s ‘ J A3 +C1,3 +C2,3 +Cs,4 _C3,4 = AT | AL
2 3
_C2,4 _C3,4 ‘JA,4 +C1,4 +C2,4 +C3,4
(4.43)

As before, A, and A, can be written as
A = sz +C1,2 +22,3C2,3 +722,4cz,4 (4-44)

A,~[0 0] (4.45)

58



Next, we have A,

‘]x3 +C,3+C,,1Cy, -C;, C 1
A= - CZ3 (sz +C,+Cys +Cz,4) [Cz‘s Cz,4:|
_C3,4 Jx4 +Cl,4 +Cz,4+cs,4 2,4
~ 1
— ‘st +C1,3 +ZZ,3C2,3+C3,4 _C3,4 _Cz,s (‘sz +C1,2 +C2,3+C2,4) C2,4
= . )
_03,4 _C2,4 (‘sz +Cl,2 +C2,3+C2,4) C2,3 ‘]x4 +C1,4 +Zz,4C2,4 +C3,4
{]x +C13+/%2 3C2 3 +C3 4 —C3 4 } 0 —C2‘3 (sz +C1v2 +C2,3 +C2,4 )71 C2,4
= 3 " ' ! ! ' +
~Cos Jx" *Cout24Caa*Cay -C,, (‘]xz +C,,+C,,+C,, )-1 C,s 0
N ‘]><3 +C1,3 +)22,3C2,3+C3|4 _C3,4
—C, ‘]x4 +C1,4 +7,.C;5,1C;
(4.46)

As before, apply lemma 1 on(4.46) to obtain A3

» ~ 1
(st +C 3t 224C00 "7(3,4(:3,4) 0

Agl ~ . | )
0 (‘]x4 +C, ,+7,.C5, +Zs,4C3,4)

Summarize A;, A, and A,, the three cooperative block matrix in (4.43) can be

simplify as
-1
‘]A,z +C1,2 +Cz,s"'CzA | _Cz,a _Cz,4
_Cz,s J A3 +C1,3 +C2,3 +C3,4 _C3,4
_C2,4 _C3,4 J A4 +Cl,4 +C2,4 +(:3,4

- ~ -1
(‘]Xz+Cl‘2+12,3cz,3+)(2,4cz,4) 0 0

_ _ 1
~ (‘Jx3 +C3+1,3C0s +Za,4C3,4) 0

. . 1
0 0 (‘Jx4 +Cy,+7,4C04 +Za,4ca,4)

(4.47)
From (4.43) to (4.47) we use recursive block matrix inversion on lemma 1.1t is also a

simplified block-diagonal matrix. The EFIM of mobile 1 in (4.41) can be written as
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follows

. - 1
(JA‘z+C1‘z+lz‘3cz‘3+7(2,402,4> 0 0

-1

J, = ‘]A,1+Ci,2 +C1.3+C1‘4'[Ci‘2 C, Cu] 0 (‘]A‘S +Cys +Zz.3Cz‘3+Zs,acs,4> 0

. - 1
0 0 (‘]A,A +C1t1:4Cou +Za‘4C3‘4)

=3, +1,C,*71:Cs+ 4.4Co (4.48)
As before, the AEFIM of mobile 1 is given by
J, 2+ x,CL+1.Cat i Coy (4.49)
From (4.43) to (4.47) we use recursive block matrix inversion on lemma 1 to get the
simply formulation. In fact, there are two main assumptions: (1) The off-diagonal
block matrix are zero after inverse operation (lemma 1)..(2) The approximated

uncertain weighting (4.37) and.(4.38)..We summarize the AEFIM for M mobiles in

following case.

Case c: M Maobiles

Summarize, the full cooperative FIM becomes for M mobiles

‘]xi +C1,2 +"'C1,M _C1,2 _Cl,M
J _ _C1,2 sz + Cl,z o 'Cz,M _CZ,M
Coop,x(M) — . . . .
L _Cl,M Cz,M ‘JxM +Cyy +”'CM—1,M JoMxom
(4.50)
The EFIM for mobile 1 is denoted as
sz +Cp,+-Cyy Com 1 21'2
Jel:‘]x1+C1,2+"'Cl,M'|:Cl,z C13 ClM:| : 13
CZM ‘]xM +Cl,M +'”CM-l,M Cl,M
(4.51)

As before, by recursive block matrix inversion, (2M —2)x(2M —2) block matrix in
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(4.46) can be partitioned into upper-left single block 2x2and lower-right

(2M —4)x(2M —4) block matrices, and (2M —4)x(2M —4) block matrix can be
further partitioned into upper-left single block and lower-right (2M —6)x(2M —6)
block matrices, and so on. Therefore, (4.46) can be simplified as

- 1 ifc
(‘]A,2+C1‘2+'“ZZ,MCZ‘M) 0 L2

Jalz‘]A.1+C1‘2+"'C1,M-[C1v2 Ca - G
B 1
0 o+ (Iam +Con ++ ZuamCuiam ) Cim

(4.52)

=J, + 7.Cp ot ZaimCon (4.53)

I+ 74.C o+ + uCi (4.54)
From the AEFIM/of mobile 1 for M:mobiles , J,  (4.49), it isa linear combination of
an full uncooperative FIM J,-—and other cooperative information matrixes from
mobile 2 to mobile M, C,,,C,,...,C,,, Wwith their approximated uncertain weighting,

X2y Xas -+ Xogs We can see that the more mobiles, the better localization accuracy.

Therefore, the cooperative CRLB for M>2 mobiles can be obtain easily

CRLB ztrace[J;j]22 (455)

mobile 1

4.1.5 Approximated Cooperative CRLB in Case of a Central Mobile
The research utilizes the eigenvalue view to observe the cooperative FIM, but it
can see the cooperation benefit only for two mobiles and do not derive a close from of
cooperative CRLB. Then, we discuss cooperative CRLB for special case, a central
mobile. Figure 4.1 shows the central mobile 1 in a localization system. All sensor

locations are uniformly located around mobile 1
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Senson2 ensor_1

(X, ¥,) (X, %)

Sensor_3 Sensor_4
(X3, Ys) (X,:¥.)

Figure 4.1 The angle relationship between sensors and mobile 1.

Apply the AEFIM result, the cooperative CRLB (4.55) can be simplified as

CRLB_ ... = trace[(J;ll)J (4.55)
where J. ~Jot x,Cp ++ 20y Cyy IS givVenin (4.54).

Here we make some assumptions as follows
Assumptions: 1.1.1.d. noise.
2. Because Mobile 1 is located near the center of all sensors. Therefore,

the eigenvalues.of uncooperative EF1IM of mobile 1 are the

same, 4, = 4, . Therefore,

(4.56)

N cos® @, - cos @ -siné -
Jxlzziz " N = Al and 4 =

N
. Y -
=g cosé?ﬁsmeﬁ sin 91T 2

M M
Form figure 4.2, we can see the on-diagonal are Zcos2 6,; and Zsin2 6,7 which
j=2 j=2

have similar value in uniform angle situation. Then, the off-diagonal is
M M

D cosg,;sing; =1/2) sin26,; ~ 0.

j=2 =2

Finally, we have AEFIM of mobile as be written as
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N
‘Je1 z?._gl + 21,C ot G (4.57)

We separate two cases to discuss.

Case 1. Same uncertain weighting, v,, = %, == 11y =1 -
N
‘]elzzo_z I+Z(C1,2+"'+C1,M) (4.58)

As before, we do eigenvalue compositionon (C,, +---+C,,, )

(C +.--+C )_—A u’ 0 U (4.59)
1,2 1M @ O ﬂ @4 )
1

where a+ f =

The AEFIM of mobile 1.can be written as follows

=+ ya 0
T |20
J. . ~U, \ U,
0 +
> P

(4.60)

The cooperative CRLB is given by

1 1
TN (4.61)

+1p

AC-CRLB

mobile 1 —

+ ya
20° 4 20°

From (4.61), we have maximum and minimum value as follows

4 2
Omni direction: &= f= At S ACCRLB, .= — 2 (462
26 N+z(M-1)
_ 2 2
Beam: ¢ =M1 B_0 = AC-CRLB 20 +29° (463)

2
O

mobile 1 — N+2){(M _1) N

From (4.62) and (4.63) we can know the Omni direction is better than beam at same
uncertain mobiles help. Figures 4.2 and 4.3 show that omni-direction and beam of

cooperative mobiles with the same cooperative reliable positions.
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Maokile_4
CrLmd

Figure 4.2 Omni-direction type with same reliable cooperative positions.

Mobile ™ 4, =4 =&, = 4,
':351 .Pl} Mobile ™
/\% (:1_‘?1 Mobile_

(xl 1M chile
B e Cty, 73 ]
%7 I ohile 5
(x1 Fil
%@

Figure 4.3 Beam type with same reliable cooperative positions.

Case 2: Difference uncertain' weighting, v,, # 1,5 7 # X\ -

Assume beam type of cooperative mobiles. Figure 4.4 show that.

Mobile 8, =4; =&, =14,
(x1 ‘PI}MODH

% (:1 i) Mobile_

(xl LI chila 3

i%j( 171 Mobile 5
I:xl Fii
\j W

%

Figure 4.4 Beam type with difference reliable cooperative positions.
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The AEFIM of mobile 1 is given by

N M
J, = 207 | + ;;mc (4.64)
v o [E
:20_2I+ZZ]-,JU; 0'2 Ug
1= 0 0
1 N
_2211] + 2 2 0
2 A, (1
0 N
20°
The cooperative CRLB of mobile 1 can be denoted as
2
AC-CRLB o = 2% |14 1 (4.65)

N 1+ I;I i X j
j=2

From the results of situations(4.62), (4.63) and.(4.65), these parameters, numbers of
mobiles and sensors, noise variance and uncertain weighting z, ; canaffect
localization accuracy.

We derive AC-CRLB successfully and find some factors which can improve the
cooperative localization accuracy. The AC-CRLB is shown in'computer simulation, in
terms of noise variance; numbers of mobiles and cooperative angles. We also compare

the difference between cooperative CRLB from full cooperative FIM, AEFIM and

AC-CRLB.

4.2 Converged Theoretical Mean Square Error for Divided

Linearized Algorithms

Previously, we proposed the divide-and-conquer method for cooperative
localization system. It can perform low computation cost and available MSE

performance. Now, we try to analyze the converged MSE for Divided linearized
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algorithms. However, the most analysis of these algorithms is quite hard but we still
try to confess the converged theoretical MSE for divided TS, DA and HC. Especially,
we derive it successfully for divided TS in special case M=2. Simulation results
demonstrate the converged theoretical MSE.

The rest of the section is organized as follows. Convergence analysis of
theoretical MSE will be described for three linearized divide-and-conquer algorithms:
Taylor-series expansion algorithm in Section 4.2.1, distance-augmented algorithm in

Section 4.2.2, Hyperbolic-canceled algorithm_in Section 4.2.3.

4.2.1 Taylor-Series Expansion Algorithm

First, we assume all variance of measurement error are the same as o> and the

reference points are quite close-to-true points, (%, Yio) & (X, Y,).
(Xo00 Y20 ) = (%, ¥ )3 s (Xwor Yamo ) = (X4 Yy )« Consider twao estimations from
divided TS, weighted estimation;  X;_pwrs.ne-10.(3.36) and unweighted estimation,

Xi prsaa (3.38) formobile iat n+1" iteration. Now, we derive the convergence

analysis of MSE. Without loss of generality, let.i=1. The covariance matrix of

weighted estimation, €, pyrs v = X1 pwrs a1 — X, » €ONditioned on position of virtual

sensors 2to M, X, .. X;,,--.Xy , IS denoted as,

,n

A ~ ~ T -1
Cov(el_DWTs,n+1 | XoniXgni Xy ,n) = (Hl_DTS,n Wl_DTS,nHl_ DTS,n )

1 ; J ! (4.66)
= _2H1_TS Hl_TS +Z 2
o i

~2
20 *tO0j \isn

1 T

alo, i,nalo, i.n

T

T _
Where Hl_DTS,n _|:H1_T5,n alO,ﬁ,n alO,é,n

alO,M,n:| is divided angle matrix in

(3.29)and W, ., isdivided TS weighting in (3.37).
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After unconditioning X, ,,Xs .+ Xy » » the MSE of mabile i at n+1" iteration is

/\2 — ~ ~ ~
O-i_DWTS,n+l =trace { E {Cov(el_ DWTS,n+1 | X2_VTS,n ’XS_VTS,n Xy _VTS,n )}} (4-67)

Then, the another error covariance of unweighted estimation €, ;s .1 =X, ors na =%

conditioned on position of virtual sensors 2to M, X, X, ,,-:-.X,, , IS given by

N

Cov(el_DTS,n+l | XonXzns Xy )

-1 -1

_ T T -1 T
—(Hl_DTs,n Hl_DTS,n) Hl_DTS,n Wl_DTS,n Hl_DTS,n(Hl_DTS,n Hl_DTS,n)

=AB.A, . (468)

-1
M
_ T T
Where An_|:H1_TSH1_TS+za10,j,nalo,i,n:| 7
j=2

M

B,= |:GZHI_TS H1_TS +ZZ(O-2 + O-jZ_VTs,n )alo,i,nalo,j;:|
J:

Then the MSE is

&lz_DTS,n+1:trace { E {Cov(el_DTS,n+1 | )A(z,n ’)A(s,n n ’)A(M n )}} (4.69)

It is very hard to analyze (4.67) and (4.69) because the virtual sensors locations
have complex statistic. In‘order.to simplify our analysis, we will consider the special

case of M=2 in Section 4.2.1a and Section 4.2.1D, respectively.

4.2.1a Weighted Estimation for Two Mobiles

In case of M=2 mobiles, the error covariance of weighted estimation €, s .

for mobile 1 at 1¥ global iteration in (4.67) becomes a rank-one update of an inverse

matrix,
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1 1 :

s = T
COVI:el_DWTS,1|X2,O:| T2 Hl_TS Hl_TS t— + 52 A0,50%103.0
o O 7O, vyrs,0

(4.70)
In (4.70), we can see (1/o” H, +s"H, )7l = coV (e, s ) is theoretical error

covariance of uncooperative TS estimation in (2.63). Therefore, the virtual sensor 2

must provides benefits for localization accuracy. Now, we use the eigenvalue

decompositionon H; ;"H, i,

s tho O
Hl_TSTHl_TS -~ U;m[ 00 " Us. (4.71)
0

Based on (4.71), (4.70) can be.written.as follows,

cov [el_Dv\rrs ,1|§(2|0 :'

=| 1 = Uy Fi O}Uﬁlﬁ;a ;A AT} (4.72)

o 0 14 0'2+5-22 vis.o 10,3,0%10,2,0
i 1
0
_| 1 Ul Ao }UAO'F;ZUT Uy s, IOZOTUT U, @13
O- 0 Hio o +()'2 VTS 0

-1
[ 1| A0 1 T
_Uﬂw (? +#Cﬂm 2 oC/z10 2.0 Uﬂlo (4.74)

0 ) o *t0; vso
T
Where C 30 Uﬂl 1020,and CﬁlZOCﬂ1020 l.

In order to simplify (4.74), we assume the mobile 1 is located at the center around all

sensors. As before, A, = 1. (4.74) can be simplified as.

-1
- 1
C0V|:el_DWTS,l|X2,0] U (210 I+ﬁcﬂwzocz 20} Uﬂm (4.75)
2_VTs,0

Apply matrix inverse lemma [24] on inverse term on (4.75)

matrix inverse lemma: (A +accC’ )71 —Al_ aA’lC( I +aC’ A’lC)f1 C'A™
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we have

-1
A 1
2l1+——F—=C ,C .
(O‘z o +022 VTS0 Fo.2.0 " o 20

-1

2 4 2

o (o} o

=—I- C . |1+ C' . C ol
0:2,0 0 2,0 0 2, 10+2,0
Ao o (G +o—2_VTS,O) A Ao (G +6; VTS o) flat0 fo 28 flo2
(4.76)
2 4 2 -
o o o
=—1- C . |I+ 1| C' (4.77)
~ 0.2.0 ~ 2,0 -
Ao g (02 +O_§_VTS,O) A Ao (02 +G§_VTS,O) Vo
1
2 2, 72
O'_ZI B o’ C oo+ A, (O- +O_2_VTS,O) ol 4.78)
~ 02,0 ~ 2,0 '
Ao g (0'2 +O_22_VTS,O) A Ay (02 +022_VTS,0) &
2, A2

B o? | o c A (O- +O_2_VTS,O) ol (4.79)
T A 2,0 ~ 2,0 :

Ao o (62+022_VTS,0) - 0" + A (62 +622_VTS,O) \

2 4
O (o)
=== C, ;.C.l5, (480)

Ao Ao [0'2 + Ao (0-2 +6_22_VTS,O )] P2 A0

Then, the error covariance can be written as follows

2 4
o o T

o —T
COVI:el_DWTS ,1|X2,0J =U —I- C

. C .
| o /110[0'2+/110(02+0'22_VT5,0)} Plat0 fho20

(4.81)

Uﬂm

Next, the variance of weighted divided TS estimator is

o puns 1 =trace{ E[ cov[ e, pureslRz0 ||| (4.82)

=E {trace [cov [ &1 pwrs %o ﬂ} (4.83)

(4.82) and (4.83) have same consequence. The we use (4.83) on (4.81), (4.82) can be

written as

2 4
o o T

2 T
Oy pwrsy = Eqtrace| U, | —1— C

5 5. (U
2 2, ~2 B0 2.0 fig2,0
Ao Ay |:(7 + Ao (O' +02_VTS,O)i| ’ *

Pro
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(4.84)

02 0_4 )
=E<trace| — I - — a . a : (4.85)
Ao Ay [0'2+/1m (02+O-22_VTS,0):| 10,2,0710,2,0
- trace(a_z'}”ace . 8508050 | (486)
Ao Ao [0-2 + A (02_’_6_22_\”8’0 )] 10,2,0710,2,0 :
—trace[a—zlj—E trace o' 4 g T ws
& Ao [0'2+/1m (02+6_22_VTS,0):| 10,2,0710,2,0
? 4
_20" _£lirace 2 o 'y I w59
Ao Ao [O' +ﬂ,lo(0 +02_VTS’0):|
N7 o (e,
% palotrhle Tl
20% o 1

=2 2. (4.90)
Bo Ao (10 3] Yot 46 v,
Actually, we know 207/ 4,, = 0'21_vws = &f_myo In (4.90) which is error variance of

uncooperative weighted TS estimation and is also the initial value in global iteration.

Then, (4.90) can be written as follows

o 1
O-‘_IZ_DWTS 1= O-zl_WTS a W (4.91)
ZiO (1+ %10]02+022_WTS
The MSE of divided TS for mobile 2 can be obtained similarly,
o’ 1
O-ZZ_DWTS,l = O—ZZ_WTS - (4.92)

5
/Izo (1+}gq )o-2+o'2l WTS
0 _

We know that the MSE of error estimations is also the variance of uncertain virtual
SENSOrS, 07 pursy = Ot yrss ANA O3 pyrs1 = G s, - Therefore, the MSE at 2™ global

iteration for mobile 1can be written as
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o’ 1

-
Ao (14' %10 ) o’ +O—22_VTS,1

(4.93)

2 )
O1 pwrs,2 =0 1 wrs —

4

o 1
= O-Zl_WTS -V 2 (4.94)
Ao 2, 2 o 1
1+}ﬁm ore Z‘WTS_/IZZ( 2, 2
0 1+}/ o' to
ﬂ'zo) 1_WTS
At 3" global iteration,
o’ 1
O-lz_DWTS,S = UZ1_WTS - N (4.95)
%o (1+}i j0'2+0'§ VTS, 2
. _
_ 52 o' 1
O wrs T 27 N
- AO(H )&+& _o !
2_WTS
%o ﬂvzoz (1_,_%2 )0'2+0'21 WTS_LZ, 1
0 N ﬂlo (]_+ %10)0-2+O-22_WTS
(4.96)

The iteration formulation can written as
o’ 1

>
Ao (1"' }ﬁm ) o’ +6—§_VTS,n

The MSE of mobile 2 has the similar result. We can see that the'variance of uncertain

(4.97)

3 2
O pwrs.nit — O 1 wrs =

virtual sensor location; @25, becomessmaller by global iteration. Therefore, the

MSE will become smaller, o} 5,55 nia ~When the variance of uncertain location is

tending downward.
The theoretical formulation has no closed form. In the simulation, it can be

converged by only three times global iteration later.

4.2.1b Unweighted Estimation for Two Mobiles

In case of M=2 mobiles, the error covariance of unweighted divided TS

estimation e, ..., infor mobile 1 at 1% global iteration in (4.68) becomes
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cov (e1_ DTS 1 | X20 )

-1 -1

_ T T -1 T
_(Hl_DTS,O Hl_DTS,O) Hl_DTS,O Wl_DTS,O Hl_DTS,O(Hl_DTS,O Hl_DTS,O)

T T

1 -1
_ T 2T 2 ~2 T T
_|:H1_T5H1_T5+a10,2,0a10,§,0] [‘7 H] Hy s+ (o +Uz_ws,o)alo,i,oam,i,o][Hl_TsHl_Ts+a1o,§,oa1o,i,o]

(4.98)

As before, assume HJ (H, s = 4,1 . Then the error covariance in (4.93) can be
written as

COV(e1_ DTS, | )A(z,o )

1 -1
_ T 2 2, ~2 T T
- |:110|+a10,é,0a10,2,0] I:O_ /110'+(O- +02_VTS,0)alo,i,oam,i,o:”:ﬂ'lol+a10,§,oa10,2,0] (499)

Apply matrix inverse lemma on inverse term in (4.99), we have

T

-1 1 8155024030
Aol+a ,a 1| =220 120 (4 100)
[ 0! T30 10,2,0] Ay Ao (1+y)

Expansion of (4.99) by (4.100), the covariance matrix.is given by

cov(el_ DTS 1 | 5\(2,0 )

T

_ il_aw,i,oam,i,To [O_zﬂl |+(0'2+&2 )a _a HT:| il— 80021050 (4.101)
Ao A (1 Ao ) X TR0 028 N A A (1 )

2, ~2 2 | ~2 T

) (U +O—2_VTS,O) o’ (O- +O-Z_VTS,O) | 1 A105.0%105.0

=lol+ - - a . a - | — =2 e
10,3,0%10,2,0

2o (1+4) (1+4) Ao AL+ Ay)

(4.102)
—| o214 (1+ﬂlo)(02 +OA-227VTS‘O)_11002 _(0-2 +&227VTS,0) a_, a, QTO il B a120,i,oa10,i,To
/110(1"‘/110) R | ﬂio(l"'ﬂio)

(4.103)

_ O_2|+6-22_WS,0 a .a .7 il_alo,é,oalo,i,{) (4_104)
(L ) 007080 || 2, ) (1 )
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G_ZI_ o ~ 5'22_VT5,0 . 5'22_VT5,0 : aloéoamég (4.105)
Zo (Aao(T+) (Lt 20) A (L) ) 1020502

g_zl_{az (1+ Ao)—%oizz_ws,oJamOamz (4.106)
j'10 /110 (1+ﬂ10) v -

Next, the MSE at 1¥ global iteration is

o7 prs =trace { E [cov [ ors4l% ﬂ} (4.107)

:E{trace[cov[el_msyl|>”<zyoﬂ} (4.108)

Then, the MSE of estimation.for mobile 1 based on (4.108) can be written as follows

2 2(1+ A, ) - A, 07
o7 prs, = E { trace < L (1+4) 210022—‘”3’0 oY, - A (4.109)
/110 ﬂ'.LO (1"'210) N y

g o 1+ A) - A0
-E trace(a—l)—trace Qi) = A, 508,050 (4.110)
0 ﬂiO (1+/110) - "y

—trace[Z—zlj—E{La (l+/11°)_/11°&2WS'Ojtrace[alozoalo,éL} (4.111)

0 Zn (1+ A )2
4 207 _[0-2 (1+ 110)_2100;_22_VTS,0] (4.112)
/110 /110 (1+ 210)
20" [ ot Orss (4.113)

Ao B Ao (1"'210) (1"']10 )2

The MSE of estimation for mobile 2 has the similar result

2 2 52
O-ZZ_DTS,l = 20 - g =80 (4.114)

oy o (14 Ay (1+/120)2

As before, 20%/ 2, =67 150 =01 15 aNd 207/ Ay =63 \rs =07 15, they are the

uncooperative MSE. Therefore, the MSE at 2" global iteration is denoted as

2 0“.2
ol =gl —— T 4 T2Vl (995)
1 DTS,2 1.TS s (1+/110) (1+ﬂ10 )2
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2 2 2
2 o 1 2 o 01 715
=01 15~ +

ot - | (4116
/110(1+210)+(1+210)2 =7 Ay (14 Ay) (1+ﬂ,20)} ( )

2 2
05 15

=012 TS 2 + 2
T A1+ Ay) (1+ )

N 1 B o’ N 012_TS (4.117)
(1+/110)2[ Ao (L4 20 (1+ﬂzo)2J

and the MSE at 3" global iteration is

2 ~2
2 2 o O, v1s,2
= - = 4,118
O p1s,3 = 01 75 7o) (1_’_/110) (1+/110 )2 ( )
2 o’ 1 20° ot 0'1z TS 1 o’ o'zz TS
=015~ + 2 - + =T N + —
T Ao (I A ) (14 A ) At A) | (L4 A)T (B A )L A+ AG) (14 4) H
(4.119)
2 o’ O-ZZ_TS

1.TS ﬂlo (1_'_210) (1_'_]10)2

+ 1 4 o’ - GlZ_TS
(1“'/110)2 ’?'20(1"']‘20) (1"'/120)2

2 2
1 o 05 15

) e + ~| (4.120)
(1+ 7)o o (o) (1+ﬂio)]

We have cooperative benefit of mobile 1 is

o’ 5'22 VTS,0
b,=- +——=<0 (4.121)
i Ao (1+4yg) (1+/110)2

2 ~2
b= 4 VS0 g (4122

Joo (14 230 (1+ ﬂzo)z

Then, the converged MSE closed form of mobile 1 is denoted as

2 2 C by, . by
01 prsn =01 15t Z — onan T Z T k) (4.123)
o (o 2 (L )
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Then, the converged MSE of unweighted divided TS estimator is calculated as

1 2
(2”20) by + 20 b, (4.124)
+ Ay 2+ 4,

2 2
O1prs =01 15t

The converged MSE for mobile 2 can be obtained similarly.

The computer simulation will shown the derivation result in Section 5.4

4.2.2 Distance-Augmented Method
In this section, we discuss that the converged MSE for estimation of divided
distance-augmented (DDA) algorithm in (3:43)..As previous assumption, all

measurement error variance are the same as o . Without loss of generality, let i=1,

the error covariance of DDA estimation, €, ppa.u =X; ppan. —Xi for mobile 1 at 1

global iteration, conditioned on positions of virtual sensors 2 toM, X, X, ,,--*. Xy ,

is denoted as,

A ~

~ T -1
Cov(el_DDA,n+1 | XonXgns ™ Ky ) = (Hl_DDA,n Wl_DDA,nHl_DDA,n ) (4-125)

M
1 '~
=1 H, o W, b ot N 4.126
DA UL SN §4q§(02+5§,n)+3(02+&§n) e (4120

3x3

where H, ,,,, isdivided coordinate matrix in (3.43), W, ., isdivided DA

weighting in (3.45), H, ,,"W, ,,H, , is error covariance matrix inverse of

A

uncooperative weighted DA estimation in (2.48) and ¢&;, =|2%;, 2§, —1]T isa
virtual coordinate vector. After unconditioning X, ,.X,,,---.X,, ,, the theoretical MSE

for mobile 1 at n+1" global iteration is given by

&iz_ DDA,n+1 =trace { E |:Cov(el_ DDA,n+1 | )A(z,n ’5\(3,n 1 ’)A(M n ):|}2><2 (4.127)

(4.127) is quite difficult to analyze. The main course is that the error covariance
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matrix of divided DA estimation is 3x 3, however the MSE is obtain by take trace on
error covariance with size 2x2. As before, another reason is that the statistic of

virtual coordinate vector is very complex.

4.2.3 Hyperbolic Positioning Algorithm

As before, we discuss the error covariance of divided HC estimation,

A

€ pHe. = X1 pren — X% fOr mobile 1 at 1* global iteration, conditioned on positions

of virtual sensors 2to M, X, X, 1+ Xy, IS denoted as,

N

A A

K T -1
Cov(el_DHc,n+1 | XonXgn Xy ,n) = ( Hl_DHC,n Wl_DHC,n Hl_DHC,n ) (4.128)
where H; 4., 1sdivided difference-coordinate matrix in'(3.29).and W, . ,

is divided CH weighting-matrix-in(3.37).

After unconditioning X, ,,%; .+ Xy » the-theoretical MSE formabile 1 at n+1"

2,n?

global iteration is-given by

&iz_ DHC ins1 - LIACE { E [Cov(el_DHC,nﬂ | )A(z,n l)A(s,n v X n ):|} (4.129)

We know that the divided CH weighting matrix is not.a'diagonal anymore, then the

error covariance is very to analyze.

From AEFIM, we can discover that more mobiles will enhance the localization
accuracy. Then, we further derive AC-CRLB. The numbers of sensors, of mobiles,
measurement error variance, and cooperative angle will affect the theoretical
cooperative MSE performance. Next, we try to analyze the converged MSE of divided
linearized algorithm estimations. However, most of them are very harsh to evaluate
the theoretical MSE but we still demonstrate the converged MSE of divided TS

estimation successfully for special case M=2. Although we have on the theoretical
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MSE of some divided algorithms, we still use computer simulation to show their MSE

performance.
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Chapter 5
Computer Simulations

Now, in uncooperative localization system, we will study the theoretical MSE
performance of three linearized algorithms. Numerical examples are presented in
Section 5.1 to evaluate the performance of these algorithms by comparing
nonlinearized algorithm and CRLB. However, in unweighted linearized algorithms,
TS has the best MSE performance and DA has the worst MSE. After the
compensation of weighting, the MSE performance of DA and HC will be close to TS.
That means the weighting matrix can improve the localization accuracy.

Next, in cooperative system, the ML estimator can be solved by joint Newton’s
algorithm (3.7). But it cost too much when many mobiles exist. Therefore, we
propose joint TS (3.20) and divided-and-conquer method to reduce the computer cost.
However, besides divided Newton’s algorithm (3.26), we also can utilize TS, DA and
HC to perform divide-and-conquer method (3.36), (3.43) and(3:50). In Sections 5.2
and 5.3, the computer simulation will show these two.new algorithms can reduce the
computer cost and the MSE performances are still very good. Beside, we know that
the CRLB provides a useful means for the analysis of the limits of localization
accuracy. But it is obtained by full cooperative FIM (4.6). However, the cooperative
FIM is quite complicate. Therefore, we derive AEFIM (4.54) and AC-CRLB (4.64).
From AC-CRLB, we can see that the number of mobiles and cooperative angles can
affect the MSE performance. Computer simulations are included to contrast the
performance of the derivations with true CRLB. Finially, we also evaluate the

theoretical converged MSE of divided TS algorithm for tow mobiles.
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5.1 The Theoretical MSE of Three Uncooperative Linearized

Algorithms
We compare the theoretical MSE of three uncooperative linearized algorithms to

traditional CRLB. Note that for an uncooperative localization system, the additive

noises {nq} are zero-mean white Gaussian processes and their variance are the

same o’. There are 15 unknown positions of mobiles. We focus on the localization
performance at central mobile (10, 10) and other mobiles are uniformly located in a
20m x 20m area with 4 known positions.of sensors(0,0)m,.(0,20), (20,0)m and

(20,20)m. The localization system is shown in Figure 5.1. All simulation results are

averages of 100 independent runs:
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The thearetical MSE for three unweighted linearized methods and CRLE

—t+— CRLE L
— #+— - Taylor-series expansion |

Distance-augmented
—+#— Hyperbolic-canceled

0 2 4 5] g 10 12 14 16 18 20
variance of noise (dB)

Figure 5.2 The theoretical MSE versus-noise variance for three unweighted linearized
methods.

The the theoretical MSE of three unweighted liearized methods and CRLB are
plotted in Figure 5.2. It can be observed that distance-augmented method has the
worst MSE performance because its noise source is expanded by real distance and the
augmented distance variable is not independent on true position. The MSE of
hyperbolic-canceled method is better than distance-augmented method but worse than
Taylor-series expansion method because it is only involve in noise source effect
which is like distance-augmented method’s. However, Taylor-series expansion
method has the best theoretical MSE because its noise source is not expanded by real

distance and it is very close to CRLB.
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The thearetical MSE far three weighted lineanzed methads and CRLE

____________________________________________________________________________________________

] —— Weighted Taylor-series expansion [

] —+— WWeighted hyperbolic-canceled
r-{ —&— Weighted distance-augmented
— CRLE

variance of noise [dB)

Figure 5.3 The theoretical MSE versus noise variance for three weighted linearized
methods and CRLB.

The the theoretical MSE of three weighted liearized methods and CRLB are
plotted in Figure 5.3. After being weighted, the MSE performance of
hyperbolic-canceled method and distance-augmented method are improved but still
worse than Taylor-series expansion method. Then, Taylor-series expansion’s MSE

maintain the same because we assume the noise variance are the same and the

1

Taylor-series weighting becomes W, . = s I .\ - However, the localization error

covariance for weighted matrix and unweighted matrix are the same.
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cov(f(j_WTS —X) = (H j_TsTWj_TSH i TS )‘1

T 1

-1
=(HJ_TS _2|N><NHj_TSj
o

=o° (H j_TsT H; 1 )_1
cov(s\(j_TS - X) = (H j—TsT H s )_1 H j—TsT Wj—TS_lH j-Ts (H j—TsT Hi )_1
h -TsTo'zl Ny H i-Ts (H j—TST H TS )_l

:(Hj—TSTHj—TS) H;
=0 (H, ' H, )

The simulation will demonstrate the theoretical MSE in Figure 5.4.
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The simulated MSE for three weighted linearized methods and nonlinear algarithm in MATLAB
L 1 il 1
—+—Weighted Taylor-series eapansion
| —&— Weighted distance-augmented
r-1 —+—Weighted hyperbolic-canceled
—— Maonlinear function in MATLAB I

1] 2 4 B 8 10 12 14 16 18 20
vaiance of noise (dB)

Figure 5.4 The simulated MSE versus noise variance for three weighted linearized
methodsand nonlinear algorithm in MATLAB.

The simulated MSE of three uncooperative liearized methods and one nonlinear
algorithm MATLAB function to solve ML estimator (2:11) are plotted in Figure 5.4.
As theoretical MSE, the simulated MSE performance of distance-augmented method
and hyperbolic-canceled method are very close but worse than Taylor-series
expansion. However, the nonlinear function in MATLAB is fminunc () and the

Taylor-series expansion’s simulated MSE is quit close to each other.
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The theotetical MSE of Taylor-series expansion method for diffierent position of mobile

20
| |

13

16

14

12

10

y-coordinate (i)

10
¥-coordinate ()

Figure 5.5'The theoretical MSE of Taylor-series expansion method for different

position of mobile.

The theoretical MSE of Taylor-series expansion method for different position of

mobile is plotted in Figure 5.5.The noise variance is 8 dB. However, the center has

the best MSE performance and the four corners have the worst performance.
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The thearetical MSE of weighted distance-augmented method for different position of mobile
20

18

16

14 -8.5
12

10

y-coordinate (m)

=7.4

2 4 B 8 10 12 14 16 18 20
¥-coordinate (m)

Figure 5.6 The theoretical MSE of weighted distance-augmented algorithm for

different position of mobile.

The theoretical MSE of weighted distance-augmented method for different
position of mobile is shown in/Figure 5.6. It has the same result which is like the MSE
of Taylor-series expansion method. Moreover, the all MSE of any place are worse

than Taylor-series expansion method.
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The thearetical MSE of weighted hyperbolic-canceled method for different position of mobile
20

-58.5

y-coardinate (m)

it

2 4 B 8 10 12 14 16 18 20
¥-coardinate (m)

Figure 5.7 The theoretical MSE of weighted hyperbolic-canceled method for different

position of mobile.

The theoretical MSE of weighted hyperbolic-canceled method for different

position of mobile is shown in/Figure 5.7. The MSE is similar to distance-augmented

method’s.
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5.2 Comparison of Joint Newton’s Algorithm and Joint

Taylor-Series Expansion Algorithm

The simulation scenario and assumption of noise are designed such as Figure 5.1
In this section, we present some simulations for two joint algorithms; joint
Taylor-series expansion algorithm and joint Newton’s algorithm which are described
in the previous section. We consider the convergence rate, computation cost and MSE

performance between two joint algorithms.
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The comvergence rate of global iteration (5 dE)
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Global iteration

Figure 5.8 The MSE vs. convergence rate for joint Newton’s method and joint TS

with good initial guess set.

Figure 5.8 shows the MSE vs. convergence rate for joint Newton’s method in (3.7)

and joint TS in (3.20) with good initial-guess set: (aif]mal_guess =3). We can see that

joint TS convergence rate is faster than joint Newton’s method. Joint TS needs an
average of three iterations to converge but joint Newton’s method needs more than
about twenty global iterations to converge. In our simulations, Newton’s method may
not converge and oscillation can happen occasionally. In the end of the iteration, these

two methods have about the same MSE performance.
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The convergence rate of global iteration with bad initial guess set {noice varianve is 5 dB)

o= r rrror oo
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Global iteration

Figure 5.9 The MSE vs. convergence rate for joint Newton’s method and joint TS

with bad initial guess set.

The MSE vs. convergence rate for joint Newton’s method and joint TS with bad
initial guess set. is plotted.in Figure 5.9. Obviously, the convergence rate of joint TS
is still faster than joint Newton. Unfortunately, the joint Newton’s method have

oscillation happened. Therefore, the joint Newton’s method is no guarantee of global

solution.
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converged MSE

1a

(2]

BS=[00;0 20,20 20,20 0]

MS=[10 10,15 5,5 15,15 10;15 6;7 13,2 15,5 10,17 3,10 3,1 3;3 1,18 15,5 18,6 19]

_____________

21| —+— Cooperative CRLB
______ —+— Jaint TS ]

— - Jainit Mewton

variance of noise (dB)

Figure 5.10 The converged MSE vs. The variance of noise.

Figure 5.10 shows the converged MSE vs. the variance of noise for joint TS and

joint Newton’s method and cooperative CRLB. Under low variance of noise, the

convergence MSE of Joint TS and joint Newton’s method are closed to cooperative

CRLB (is obtained form (4.6)). But in higher variance of noise (up to about 15 dB),

the MSE performance of joint TS is the worst but joint Newton’s method is still close

to cooperative CRLB.
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nurnber of mobile for joint Newton and TS,
noise variance=10 dB.
10 T T I
: : — == Joint TS
: i —— Joint Newtaon
' —+— Cooperative CRELE |

MSE ws.

MSE(r?)

nurnber of mobile

Figure 5.11 MSE,vs. the number of mobile forjoint Newton’s and TS.

MSE vs. the number of mobile for joint Newton’s and TS are plotted in Figure

5.11. We can see the localization‘accuracy of joint Newton’s method is better than

joint TS. However, the MSE of joint TS is still quite good.

92



LI e e e T T - ]

——————————————————————————————————————————————————————————————————

——————————————————————————————————————————————————————————————————

------------- e B T Sttt [ o 4111 8 1= -
------------- R et I gL I G

cost time of computer (sec)

number of maohile

Figure 5.12 The computation costvs. the number of mobile for joint TS and joint

Newton on once global iteration.

Figure 5.12 shows the computation cost vs. number‘of mobile for joint TS and
joint Newton. The computer equivalent we use as follows,
System: Microsoft Windows XP Professional Version 2002 Service Pack 3.
Hardware: AMD phenom (tm) 11 X3 710 Processor 2.61 GHz, 3.25 GB RAM.
Software: MATLAB Version 7.5.0.342 (R2007b).
We compare the cost time of computer at 1 global iteration between joint Newton’s

method (3.7) and joint Newton’s method (3.20). However, the computation of matrix
inverses (3.7) and (3.20) are replaced Gaussian elimination method, (HTH)f1 Hb is

replaced by H\b in MATLAB function. Obviously, the joint TS spends less
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computation cost than joint Newton’s method. Summarize the joint TS from figures
5.8 t0 5.11, it can perform a quite good MSE and low computation cost. Therefore,

joint TS is a very good algorithm for cooperative localization.

5.3 Comparison of Joint Algorithms and Divide-and-Conquer
Algorithms
We compare the MSE performance and cost for joint and divided Newton’s
method in Section 5.3.1. Then, the comparisons of joint and divided Taylor-series

expansion are shown in Section 5:3.2.
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5.3.1 Newton’s Method

The simulated MSE of joint and divided Newton's algorithm

10

___________________

""""""""" 177 —=— Joint Newton

—+— Cooperative CRLE
—+— Divided MNewton

__________________________________

____________________

MSE(m?)

10
5 10 15
variance of noise (dB)

Figure 5.13. The MSE vs. noise variance for joint and divided Newton’s algorithm

Figure 5.13 Shows the MSE of joint and divide Newton’s algorithm. The
simulated MSE of joint Newton’s algorithm in (3.7) and divided Newton’s algorithm

(3.26) are very close to each other and also close to CRLB. The CRLB is calculated

from full cooperative FIM (4.7).
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The MSE vs. number of mobile for Joint Mewton's method, divided Mewton's method
and cooperative CRLE

10 T T T I I
g : : : — <— - loint Mewton
: H H . —— Divided Mewton
9__\1' """"""" """" —+— Cooperative CRLE []

MSE(rm-)

nutmber of mobile

Figure 5.14 The MSE vs. number of mobile for joint Newton’s algorithm, divided

Newton’s algorithm and cooperative CRLB:

The MSE vs. number of mobile for joint Newton’s algorithm, divided Newton’s
algorithm and cooperative CRLB are plotted in Figure 5.14. We can see the more
mobiles, the better MSE performance. Then, in few mobiles situation, the MSE
performance of divided Newton’s algorithm is better than joint Newton’s. However,
in more mobiles situation, the MSE performance has opposite result, but the both

MSE performances are quiet close to cooperative CRLB.
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Figure 5.15 CDF comparison of joint and divided Newton’s algorithm.
The CDF comparison of joint and divided Newton’s algorithm.is plotted in Figure

5.15. We can see the localization accuracy of joint Newton’s algorithm is a little

better than divided Newton’s algorithm.
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The computation tims cost vs. the number of rmoble for joint and divided Bewton's algarithm
on ance global iteration.
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Figure 5.16 The computation time cost vs. the number of mabile for joint and

divided Newton’s algorithm on once global iteration.

Figure 5.16 shows the computation cost vs. number‘of mobile for joint and

divided Newton’s algorithm on once global iteration. We can see the computer time

cost of joint Newton’s algorithm  F,, ,\, xG,,,, (3.9) is higher than divided

Newton’s algorithm’s cost F, ,xLxM xG, g (3.27) when G Gievices =1

joint =
Obviously, the divided Newton’s algorithm reduces the computer time cost. Based on

experience, the divided algorithm has only three times of global iteration to get

converged, G,,.q =3 and the jointalgorithm has at least eight times of global

iteration, G.

joint_two mobiles

=8 to get converged on two mobiles. Therefore, the cost time

of divided Newton’s algorithm, F,,xLxM xG,,,.q isSmaller cost time of joint
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Newton’s algorithm, F,,, .4 xG

joint *

5.3.2 Taylor-Series Expansion Method

The MSE w=. noise variance for joint TS, divide TS and cooperative CRLE
10

#=—Joint TS ~  [777777770T T
: ; —+— Cooperative CELE
""""""""" Vo — o - Divided TS T

a 5 10 15 20 25
variance of noise [dB)

Figure 5.17 The MSE vs. noise variance for divided TS, joint TS and cooperative

CRLB.

Figure 5.17 shows the MSE vs. noise variance for divided TS, joint TS and
cooperative CRLB. In low noise variance, the MSE performance of joint TS is better
than divided TS. However, in high noise variance, joint TS has worse MSE

performance.
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Figure 5.18 The CDF comparison of joint and-divided TS algorithms.
The CDF comparison/of joint and.divided TS algorithms is plotted in Figure 5.18.

The divided TS has the better localization accuracy. The result is similar to the

comparison of joint and divided Newton’s algorithm in Fig. 15.
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5.4 Comparison of Divide-and-Conquer Algorithms

We have one divided nonlinear algorithm; divided Newton’s algorithm and three
divided linear algorithms; divided TS, AD and HC. Because we don’t have the
theoretical converged MSE of them, we use computer simulation to show the MSE
performance and the convergence rate of Jacobi method and Gauss-Seidel method in
following section. Previous description, we showed we can use compensation of
uncertain virtual sensor to enhance the localization accuracy. However, divided
Newton’s algorithm can not achieve it because we don’t have the theoretical MSE
(3.26). On the contrary, the other three divided linear.algorithms can accomplish the
compensation. Therefore, we show the computer simulation to show the result by
divided TS. Theother divided linear algorithms-have same outcome:

The rest of the paper-is-organized as follows. The convergence MSE and rate of
divided Newton’s algorithm, TS, DA and HC are shown in Section 5.4.1, 5.4.2,5.4.3

and 5.4.4.
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5.4.1 Newton’s Method

Mewton divide-and-conguer algarithrm
dB=10
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—+— Gauss-Seidel ||

Global iteration

Figure 5.19:The MSE vs. Global-iteration for Compare Jacobi and Gauss-Seidel.

Figure 5.19 shows the convergence rate for two update schemes, Jacobi method

(3.24) and Gauss-Seidel method (3:25). Obviously; the convergence rate of

Gauss-Seidel method is faster than Jacobi method.
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5.4.2 Taylor-Series Expansion Algorithm

MSE ws. global iteration

noige variance = 10 dB
11 T T T T T T T
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— == Withaut compensation

MSE (rm?)

Global iteration

Figure 5.20 The MSE vs. global iteration for divided TS.

Figure 5.20 shows the MSE vs. global iteration for-divided TS. The compensation

of uncertain virtual sensor (3.17) can improve the MSE performance.
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Errar behavior vs. global iteration for divided TS
80

Error behavior

Global iteration

Figure 5.21 The error and MSE vs. global iteration for divided TS.

The error and MSE vs. number of mobile for divided TS .is plotted in Figure 5.21.
The iteration can improve the MSE performance. In most of time, it has stable
situation. Sometime, the 1% iteration has the worst localization accuracy. However, it

exists that cooperation can not improve localization. But all of them are converged.
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noise variance is 10 dB
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Figure 5.22 The CDF comparison-of divided TS and uncooperative TS.

The CDF comparison of joint and divided TS and uncooperative TS is plotted in

Figure 5.22. The localization accuracy of divided TS is better than uncooperative TS.
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5.4.3 Distance-Augmented Algorithm

Errar behavior vs. global iteration for divided DA

Errar behavior

Global iteration

Figure 5.23 The error and MSE vs. global iteration for divided DA.

Figure 5.23 shows the errorand MSE vs. number of mobile for divided DA. As

divided TS algorithm, in most of time, it is stable. But it could be diverged.
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Figure 5.24 The CDF comparison.of divided DA and uncooperative DA.
The CDF comparison of joint and divided DA and uncooperative DA is plotted in

Figure 5.24. As before, the localization accuracy of divided DA is better than

uncooperative DA.
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5.4.4 Hyperbolic-Canceled Algorithm

Error ehavior vs. global iteration for divided HC
3Er

Behavior

Global iteration

Figure 5.25 The error and MSE vs. global iteration for divided HC.

Figure 5.25 shows the error and MSE vs. number of mobile for divided HC. As

divided TS, in most of time, it has acceptable localization result.
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Figure 5.26 The CDF comparison.of divided HC and uncooperative HC.

The CDF comparison of joint and divided HC and uncooperative HC is plotted in

Figure 5.26. As before, the localization accuracy of divided HC is better than

uncooperative HC.
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MWSE vs. globeal iteration for three divided linearied algarithms
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Figure 5.27 The MSE vs. global iteration for three divided linearized algorithms.

The MSE vs. global iteration for three divided linearized algorithms are plotted in

Figure 5.27. we can see TS hasthe best MSE performance and DA’s performance is

the worst one.
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The MSE ws.noise variance for three linearized algarithms.
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Figure 5.28 The MSE vs. noise variance for three linearized divided algorithms.

The MSE vs. noise variance for three linearized divided algorithms are plotted in
Figure 5.28. We can see that the divided TS has the best MSE performance and
divided DA has the worse one. We can expect that from the MSE performance of

uncooperative linearized algorithms in Figures 5.3 to 5.7.

111



MSE vs. number of mobile for three linearized algorithms
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Figure 5.29 The MSE vs. number of mobile for three divided linearized algorithms.

The MSE vs. number.of mobile for three divided linearized algorithms are plotted
in Figure 5.29. We can see that the more mabiles, the better MSE performance.
However, divided TS has the best performance and divided DA has the worst. No

matter witch on algorithm, the more mobiles, and the farter from cooperative CRLB.
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MSE ws. number of mobile for three divided algorithms
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Figure 5.30 The MSE vs. number of mobile for three divided linearized algorithms

with fixed 14 mobiles.

The MSE vs. number of mobile for three divided linearized algorithms with fixed
14 mobiles are plotted in figure 5.30. we can see that if we fix 14 mobiles at (15, 5)m,
(5, 15)m, (10, 15)m, (15, 6)m, (7, 13)m, (2, 15)m, (5, 10)m, (17, 3)m, (10, 3)m, (1,
3)m, (3, 1)m, (18, 15)m, (5, 18)m and (6, 19)m, it can not ensure that more mobiles

can provide localization benefit.
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5.5 Theoretical Analysis of Mean-Square-Error

Previous description, we know the cooperative CRLB from full cooperation FIM
(4.7) is very difficult and complex when the number of mobile increases. Therefore,
we first derive AEFIM (4.54). We can see that if there are more mobiles, the MSE
performance will be improved. Then, we derive AC-CRLB (4.64) by AEFIM. We can
discover that the cooperative angles and number of mobile can influence the MSE
performance. Computer simulation will compare the true cooperative CRLB and
approximation (cooperative CRLB:from AEFIM and AC-CRLB), and show factors
how to effect the MSE performance in Section 5.5.1.. However, we also derive the
converged MSE for divided TS in special case M=2. Therefore, we utilize computer

simulation to show:the result in Section 5:5.2.
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5.5.1 Approximation of CRLB
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Figure 5:31 The MSE vs. number of mobile for difference value of J, .

The MSE vs. number of mobile for difference value of J, are plotted in Figure

5.31. it sets omni-direction cooperative mobiles. We can see that if the J, is larger,

the CRLB of AEFIM (4.54) is closer to cooperative CRLB (4.8). The reason is that

Block matrix inversion lemma 1 is proposed under larger J, . Evenif J, is smaller,

the CRLB of AEFIM is not far from cooperative CRLB.
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MSE vs. cooperative angles (alpha) for AC-CRLE and Joint TS
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Figure 5.32 The MSE vs. cooperative angles (alpha) for AC-CRLB and joint TS.

The MSE vs. cooperative angles (alpha) for AC-CRLB and joint TS are plotted in

Figure 5.32. We set M=4, » =0.5 in (4.64). The eigenvalue « in (4.64) means a

trend of the cooperative angles. If the value of alpha has minimum zero and maximum

(M —1)/02, that means these cooperative angles tend to one direction. Therefore,

AC-CRLB will has the maximum value. However, if «=(M -1)/25*, AC-CRLB

has the best MSE performance. The MSE performance of joint TS can show that

effect of cooperation angles. We can see the omni-direction is better than beam.
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5.5.2 Divided Taylor-series Expansion for Twins Mobiles
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Figure 5.33 The MSE vs. global iteration of divided TS for two mobiles.

Figure 5.33 shows the MSE vs. global iteration of divided TS for two mobiles.
We can see the that no matter theoretical MSE or simulated MSE, the performance of

weighted TS is better than unweithted TS. Even if the simulated results are not really

close to theoretical MSE, but the trend are very similar.
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Chapter 6
Conclusions and Future Works

Joint TS algorithm and three linearized divided algorithms based on distance
measurement have been devised for cooperative localization system. Alternative
realizations with smaller computational complexity are also proposed. In addition,
theoretical performance measure, namely, biases and mean square error of the sensor
position estimates are derived and verified by computer simulation. It is shown that
the proposed positioning methods have lower computation cost and available MSE
performance. Besides, we investigate the fundamental limits of cooperative
localization system with ranging-capability. \We.then applied the notion of equivalent
Fisher information matrix (EFIM) to derive and simplify the full cooperative FIM,
approximation.of EFIM (AEFIM). We can see the more cooperative mobiles, the
better of MSE performance. Than, we further utilize AEFIM to simplify the
cooperative Cramer-Roa Lower Bound (CRLB), hamed approximation of cooperative
CRLB (AC-CRLB). From AC-CRLB, we know that the measurement error variance,
numbers of sensors, numbers of mobiles and cooperative angles can affect the
localization accuracy. We also derive the theoretical converged MSE of divided TS for
two mobiles. The simulation has been shown that these approximations are reliable.

Therefore, the derivation of theoretical MSE performance for divided linearized
algorithms is also an interesting research topic and a good starting point is to
investigate that sensors placement and cooperative mobiles in wireless sensor

networks.
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