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Energy Detection Based Spectrum Sensing with Unknown
Primary Signal Arrival Time

Student : Chih-Hsiang Wang Adviser : Dr. Jwo-Yuh Wu
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National Chiao Tung University

Abstract

Spectrum sensing in next-generation wireless cognitive systems, such as overlay
femtocell net-works, is typically subject to timing misalignment between the primary
transmitter and the secondary receiver. In this thesis we investigate the performance of the
energy detector (ED) when the arrival time of the primary signal is modeled as a uniform
random variable over the observation interval. The exact formula for the detection probability
is derived and corroborated via numerical simulation. To further improve the detection
performance, we propose a robust ED based on the Bayesian principle. In addition, when the
primary signal arrival time is unknown but fixed, we propose another detection rule based on
the generalized-likelihood ratio test (GLRT) to improve the detection performance. Computer
simulation confirms the effectiveness of the Bayesian based and the GLRT based solution

when compared with the traditional ED.
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Chapter 1

Introduction

1.1 Overview

Due to tremendous growth in the wireless based systems and the limitations of the natural
frequency spectrum, we need innovative techniques that can exploit the available spectrum to
accommodate the requirements of higher rate transmissions while the current frequency allo-
cation schemes can’t. Even though most of available spectrum has been assigned for various
services, such as military communications, broadcast service and telecom service, investigations
of spectrum utilization show that many allocated spectrum are not occupied by licensed users
for all time. This fact motivates a spectrum allocation scheme that allows secondary users to
utilize the idle spectrum licensed to the primary users. It is known as the concept of spectrum

reuse. A pictorial description is as follows [1].

Frequency

Time

Figure 1.1: Transmission opportunities of specific bands in time



Cognitive radio (CR) is now acknowledged as a tempting solution to reusing the underuti-
lized spectrum in an opportunistic manner [1], [2]. CR is an autonomous system that senses
its communication environment, tracks changes and dynamically accesses the unused spec-
trum [1], [2]. In CR terminology, primary users can be defined as the users who can utilize a
specific part of spectrum with higher priority. On the other hand, secondary users have lower
priority to access the specific part of spectrum and they can not cause interference to primary
users when they exploit the unused part of spectrum.

One of the most essential components for enabling the CR technique is spectrum sensing.
The task of spectrum sensing, implemented at the secondary receiver, is to detect the idle
frequency bands and monitor the existence of primary users. Challenges, design trade-offs
and implementation issues of spectrum sensing are addressed in [2], [3], [4]. The reference [1]
provides brief introductions of various sensing techniques. Since enhancing the accuracy of
spectrum sensing can not only reduce the possible interference to primary users but also in-
crease the opportunistic access to idle frequency bands, there are many research works that

aim to develop new methods to improve the sensing performance.

The most commonly-used techniques of spectrum sensing in the literature can be catego-

rized into the following four classes.

Energy detection (ED): To detect the existence of primary users, ED computes the energy
of the received signal, and then compares this energy with a given threshold. If the energy
of the received signal exceeds the threshold, the ED claims that the primary user is present.
Otherwise, the ED decides that the primary user is absent. ED is the most common method
of spectrum sensing when the receiver doesn’t have any information about the primary users’

signal.

Waveform-Based Sensing: If the known patterns, such as pilot, spreading sequences, pream-
bles etc, are available at the receiver, the spectrum sensing can be performed by correlating the

received signal with the known signal pattern.

Cyclostationarity-based detection: Since the modulated signals are generally transmitted
by a sinewave carrier, the modulated signals are cyclostationary due to the periodic property.
When the noise is wide-sense stationary, certain cyclic autocorrelation function (CAF) of the

received signal will be nonzero in the presence of the primary signal. On the other hand, the



CAS of the received signal will be zero since the received signal contains only the noise term.

This fact can be exploited for spectrum identification.

Matched-Filtering (MF): Assuming that there is perfect knowledge of primary users’ sig-
nal and accurate synchronization, MF is known as the optimal solution for spectrum sensing.
However, if the mentioned assumptions cannot be satisfied, the performance of MF will be

dramatically reduced.

1.2 Research Motivation

In the literature, the detection of idle spectrum is typically considered as a binary hypothesis

test, and a commonly used signal model under both hypotheses is [10], [11]
Ho : xz[n| = vin), 0<n<N-1 (idle) (11)
Hy:z[n] =sn]+vRpl, 0<n<N-1 (occupied) '

where N is the length of the data record, s[n], z[n], v[n] are, respectively, the signal of the
primary user, the received signal at the CR receiver, and the measurement noise. The hypoth-
esis model (1.1) implicitly assumes perfect synchronization between the primary transmitter
and the CR receiver. Such an assumption, however, is not valid in many practical situations.
For example, in an overlay femto cell network [12], the signal of the macro mobile subscriber,
synchronized with the macro base station (BS), will arrive at a femto BS asynchronously. The
spectrum detection at the femto BS is typically subject to timing misalignment of the primary
signal [13], [14]. Thus, in such a case, a more reasonable signal model for the binary hypothesis

test is therefore

Ho : x[n] = vin], 0<n<N-1 (idle)
x[n] = vn], 0<n<nyg—1 , (1.2)
H;y - occupied
{:B[n]:s[n]+v[n], ng<n<N-1 ( piec)

where ng accounts for the primary signal arrival time. Therefore, in contrast to the spectrum
sensing schemes in the literature focusing on the synchronized signal model (1.1) [10], [11], this
thesis considers the spectrum detection aimed for tackling signal timing uncertainty under the
hypothesis (1.2).



1.3 Thesis Contributions

Unlike the prior researches investigating the performance characteristics of ED based on the
idealized model, this thesis studies the detection performance of ED in the presence of unknown
primary signal arrival time. Specifically, assuming the time delay is a uniform random variable,
the exact formula of average detection probability of ED is derived. Further, in order to
improve the detection performance against the timing mismatch, we then propose a Bayesian
based detection rule to exploit the prior statistical knowledge of the unknown primary signal
arrival time. In addition, when the prior knowledge of unknown primary signal arrival time
is not available, we propose a generalized likelihood ratio test (GLRT) based detection rule
to deal with the case in which the primary signal arrival time is considered as a deterministic

unknown.

1.4 Thesis Organization

The organization of this thesis is-as follows. In Chapter 2. the energy detection for spectrum
sensing is introduced and the detection performance for the signal model taking account of
unknown primary signal arrival time is also provided. In chapter 3, we propose a robust
energy detection scheme based on the Bayesian principle to improve the detection performance
when primary signal arrival time is uniformly distributed. In Chapter 4, we consider the
primary signal arrival time as a deterministic unknown, and then propose another robust energy
detection scheme based on the principle of the GLRT. Chapter 5 concludes this thesis and points

out some future work. Some proofs are provided in Appendix.



Chapter 2

Detection Performance of Energy

Detector in the Presence of Time Delay

2.1 Neyman-Pearson Theorem

Recall the signal model for the considered binary hypothesis test is

Ho : xz[n} = vin], 0<n<N-1
le{x[n]:v[n], 0<n<nyg—1
z[n] = s[nl+o[nly ng<n<N-1

With this scheme we may make two types of errors. If we decide H; but H, is true, it can
be thought of as a false alarm. On the other hand, if we decide Hy but H; is true, it is a
miss detection. Let P(H;;H;) indicate the probability of deciding H; when H; is true. Hence,
P(H1; Ho) is he probability of false alarm and is denoted by Pr4. To design the optimal de-

tector for a given Pr,, we would like to minimize the other error P(Hy; H;) or equivalently to
maximize P(Hi;H;). The latter is called the probability of detection and is denoted by Pp.
In summary, the Neyman-Pearson (NP) approach to hypothesis testing or to signal detection
is to maximize Pp = P(Hi;H;) subject to the constraint Ppa = P(Hi;Ho) = .

Theorem 2.1: Neyman-Pearson Theorem [15]

To maximize Pp for a given Pry = « decide H; if

_ p(x; Hy)
p(x; Ho)

L(x) >,



where p(x;H;) is the probability dencity function (PDF) of x under H;, p(x;Hp) is the PDF
x under Hy, and the threshold ~ is found from

Pra = / p(x; Hp)dx = a.
e L(x)>7}

O
2.2 Performance Analysis
According to Neyman-Pearson theorem and [15], the NP detector decides H; if
N-1
Tx) = 3 felnl? > 7. (2.1)
n=0

That is, the NP detector computes the energy in the received data and compares it to a
threshold. Hence, in this case it is known as an energy detector. This section characterizes the
performance of ED under the signal model (2.1).

The following assumptions are made in the sequel.

e The primary signal s[n| is a zero mean, white Gaussian random process with known
2

s*

variance o

2

e The noise v[n] is a zero mean, white Gaussian random process with known variance o;.

e s[n] and v[n| are independent.

e The primary signal arrival time nq is discrete and uniformly distributed over the obser-
vation interval 0 < n < N — 1, i.e. the PDF of ng is p(ng) = 1/N, for 0 <n < N — 1.

2.2.1 False-Alarm Probability

Under the null hypothesis H,, we have

zn] =v[n], 0<n<N-1 (2.2)

=3 el = 3 ol (2



and the false-alarm probability Pr, is given by

Pra = Pr{T(x) > v; Ho}
— Pr {‘Zgj VI l-HO}

(2.4)

where (a) holds directly by definition of the right-tail probability of the Chi-square random

variable y3% with an even degree-of-freedom [15]. However, the probability of detection is much

more difficult to compute since its PDF is not as familiar as Chi-square distribution. The detail

will be presented in 2.2.2.

To find the threshold of ED according to a given Pr4, we represent (2.4) as (for the case of

N even) [15]

” N/2—1 (272)T
PFAIQXp (_ﬁ) 1+ Z -
r=1

; rl

By letting 7/ = /202 and rearranging terms we have

N/2—-1 o
, P — —_
v =—InPps+1In |1+ Z .

r=1
To solve for 7" we can use the fixed point iteration

N/2—-1 V/T
k
7,’6+1=—1HPFA+1H ].—l— Z; 7

—_

Hence, the threshold v can be obtained by iterating with ~; =

2.2.2 Exact Detection Probability

Under the alternative hypothesis H;, we have

(2.6)

(2.7)



The test statistic of the energy detector under H; and conditioned on a fixed ng is thus

N-1 no—1 N-1
T="Y lzl* =) e+ ) lzn)]® > 7. (2.9)
n=0 n=0 n=ng
5;511 ::‘}‘2

Based on (2.9), we shall first derive the conditional detection probability; the average detection
probability can then easily obtained by taking the expectation with respect to ng.
Note that, with 77 and T, defined in (2.9), it is easy to verify 2z; := T}/0? ~ ngo and

2 =T /(02 + 02) ~ X3_n,» and hence the associated probability density functions is

o(no/2)—1 ,—z/2
fa(z) = mu@) (2.10)
and
AR

T BTN <o) f2)

fo () u(x), (2.11)

where wu(t) is the unit step function. To simplify notation let us consider the equivalent test

statistic

N—-1
- T 1 T, T 2402
T=7=7§wmwzé+2:a+(s Q@:aﬂuﬂmw% (2.12)

52
UU

where SNR := 02/02. Since 2, and 2z, are independent, the PDF of T is given by
1 x
Jr(x) = fo(x) * m [ m , (2.13)

where * denotes the convolution. In terms of Laplace transform, (2.13) reads

Fp(s) = F.,(s) x (Hﬁ) c {fZQ (H%) } — F, x F, (s(1+SNR)), (2.14)

where the second equality follows since £ {f(az)} = a=*F(s/a). To derive an explicit expres-

sion for F7(s) in (2.14), we need the next lemma.



Lemma 2.2 [16]: For A > 0, we have £ {2*le=u(z)} = T(\)(s +a)~. ]

From (2.10), (2.11), and by means of Lemma 2.1, we immediately have

L (n0/2) (s +1/2) ™% (s+1/2) ™"

F, (s) = = 2.15
(5 V2T (ng/2) T (2.15)
and
— 1/92)~(V—=no)/2 1/9)~(N—-n0)/2
Fu(s) = L ((N —no)/2) (s +1/2)" _ (s+1/2) . (2.16)
2oL (N — n0)/2) V2
Based on (2.14), (2.15), and (2.16), direct manipulation shows
1 1\ "/ 1\ ~(V—no)/2
Fr(s) = NoT] (3 + 5) (S(l + SNR) + 5)
—(N—no)/2 —no/2 —(N—ng)/2
_ (1+SNR) 3—1—1 \ ) 1 | 217
V2N 2 2(1+ SNR)

With the aid of (2.17), the PDF fz(x) is given by

(1+ SNR)~(N=m0)/2 . 1)) 1 —(N—-no)/2
fr(x) = N ) {L7 {(s 4 1/2) ™2} s £ {(s 4+ 1/200+ SNR))~ V0 L
o (1+ SNR)--m)/2 {{x(mﬂ)—le—x/?u(gj)] ) {quv—no)/z}—1€—x/[2<1+SNRnu(x)]}

VN T(no/2) I'((N —no)/2)
(a4 SNR)~(N=mo)/2 wT(N—no)/2—1e—r/[2(1+SNR)] & — 7\0/2=1—(a=7)/2 0
V2NT (ng/2)T (N —no)/2)/ o
_ (1 +SNR) Wm0
V2NT(ng/2)T (N = no)/2)

> e—m/2 /ZD 7_(N—no)/2—1(x . T)n0/2_165NRT/[2(1+SNRHdT,
0
(2.18)
where (b) holds by using Lemma 2.1. Hence, for a given threshold « determined according to

the prescribed false-alarm probability, the conditional probability of detection can be computed
based on (2.18) as



p(10) / fr(z

(N—n [e%¢) T
(14 SNR)~WN-m0)/2 / [e_m/ T(N_no)/z—l(x _ T)no/2—165NRT/[2(1+SNR)}d,r do.
V2T (ne/2)T (N = o) /2) 0

7

i=p(z)
(2.19)
To find a closed-form expression of Pp(ng) in (2.19), we need the next lemma.
Lemma 2.3 [16]: For v > 0 and p > 0, it follows
/ "N — )" = Bp, )2 O (v, py; o), (2.20)
0

where B(+,-) is the beta function, and ®(-,+, ) is the confluent hypergeometric function defined

a 2z alat+l) 22 alat+)(a+2) 2?
B TR 12 AT e R

O
Based on Lemma 2.2, (2.18) becomes
1+ SNR (N— no)/2B ng N-—ng 9] 0 '
PD(no)—( i )" (3.5 )X/ e~/ 2gN/2-1 Zaixl dz, (2.22)
V28T (ng/2) (N = 10)/2) v i
where
SNR svr_\?
L W) nm (V) —n2+1) (i)
o N/2 T (N/2)(N/2 + 1) 2!
(2.23)

Based on (2.22), the exact form of the conditional detection probability can be obtained as

(14 SNR)-W-mo)2p (1m0 N o—o/2pN/2+i-1
PD(no) = \/2_NF(7L0/2) (( ~ g /2 [Z al/ dz

© (L+ SNR)" B (5, 55m0) S~ owpsip (N, 7
VRN T(no/2T (N —mo)/2) 3 2[2 P<2 ' 2)] .

10



where (c) follows since [ 2/~ 'e™#*dx = =T (v, py) [Kay, p-346], and T'(a, y) := [ e 't*""dt
is the incomplete Gamma function. Based on (2.24), we summarize the main result in the fol-

lowing theorem.

Theorem 2.4: The average detection probability of the ED under the proposed hypoth-

esis test is given by

1 SNR (N— "0)/2B ng N— no 00 '
+ ) ( % Za |:2N/2+7,1—\ (E +Z, l):|
VI T2 (N o)) 2 7 Ty

(2.25)

11\7—1
PD:NMZZO Dno NZ

no=0

where v is the threshold determined according to the prescribed false-alarm probability. O

2.2.3 Low-SNR Regime

While the formula (2.25) appears quite involved, in the low-SNR regime it admits a very simple
form that is compatible with the existing study of ED [Kay]. To see this, we need the next

lemma, which provides an upper and lower bounds for the conditional detection probability
P D (no)

Lemma 2.5: Let Pp(ng) be defined in (2.24). Then we have

F ( - Y (1+SNR))
(1+ SNR)n/>+10(N/2)

(1+ SNR)YY™)2T (F,3)
[(N/2)

< Pp(ng) < (2.26)

[Proof]: See Appendix. O

To gain further insight based on (2.26), let us assume without loss of generality that the

total number of samples N is even, so that N/2 is a positive integer. In this case, we have

T(N/2) = (N/2 — 1)l and T(N/2,y) = (N/2 — 1)le= S"0/2 7" 2 [16]. Hence (2.26) becomes
e~ V(1+SNR)/2 ZN/2 1 [y(1+S]iVR)/2} N/2— 1( /Q)k
! (N—ng)/2—1 —7/2
(1 + SNR)no/2+1 < Pp(ng) < (1+SNR)\W " Z e (2.27)

k=0

11



In the low SNR regime, e.g., SNR — 0, we have 1 + SNR — 1 and (2.27) then becomes

N/2—1

Pp(ng) — e 72 Z (72'2) = Q2 (7). (2.28)

k=0

With the aid of (2.28) and since the limiting probability is independent of ny , we have the

following asymptotic result.

Proposition 2.6: Let Pp be the average detection probability defined in (2.25). Then
we have

Jm Po=Qa (). (2:29)

O

Recall from [15] that Q2 (7) is the detection probability for ED when SNR = o7 /07 ~ 0.
In this case, the performance of ED can be very poor since the energy of the received signal in
either hypothesis is very close to the noise floor. To further enhance the detection performance
when SNR is low and the signal timing mismatch is present, robust ED schemes based on the

Bayesian principle and the GLRT principle will be proposed in next two chapters.

2.3 Simulation Results

In the following simulations we consider the hypothesis signal model (1.2), in which the total
number of samples is set to be N = 200 and the primary signal arrival time ng is uniformly
distributed within 0 < ng < 199. Note that the simulated results are obtained from 5000
Monte-Carlo runs. Figure 2.1 plots the ROC curves of ED (2.1), with SNR set to be —5 dB;
Figure 2.2 plots the probability of detection Pp at various SNR levels, assuming that the false-
alarm probability Pra = 0.05. As can be seen from the figures, the derived analytic formula

(2.25) closely matches the simulated results.

12
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Chapter 3

Bayesian Based Detection

3.1 The Test Statistic of Bayesian Detection

To exploit the prior statistical knowledge of ny for enhancing the detection performance, a typ-
ical approach is the Bayesian philosophy [15]. The conditional joint PDF of the data samples
under two hypotheses Hy and H; are

p(x, Hp) = @T]We}{p [—%‘3 2_: \x[n]|2] 7 (3.1)

and

1 1= 1
p(x;no, Hy) = WGXP [—T‘g Z |z [n]| ] X (27(02 1 02))N—m0)/2 exXp [ 02 +a2 Z |z[n

n=ng

(3.2)

The Bayesian test decides H; if [15]

p(x;n9, Hy) _ fP(X|n0,H1)P(no)dno
p(x, Ho) p(x, Ho)

{ 37 Lno 1|x[nﬂ} [ SeTaT Ly |x[nn2}

1
(o3 +a?)™ 07

1 N-1
| i et

(2mo2)N/2

N Zno =0 (2702) "0/26

> 7.

(3.3)

15



After some manipulations of (3.3), the test statistic of Bayesian detection can be represented as

1 N-1 o2 (N—ng)/2 1 ] [ 2
N : 202 2(02 + 02) > 7. 3.4
N7;:0 <03+0§) o (203 2(ag+ag)) > 2l > (34)

n=ngo

3.2 Simulation Results

The following simulation results are obtained from 5000 Monte-Carlo runs under the hypothesis
signal model (1.2), in which the total number of samples is set to be N = 200 and the primary
signal arrival time ng is uniformly distributed within 0 < ng < 199. Figure 3.1 compares the
ROC curves of ED (2.1) and the Bayesian based detection rule (3.4). Figures 3.2 and 3.3,
respectively, compare Pp and 1 — Ppy curves (as a function of SNR) of the ED (2.1) and the
Bayesian based solution (3.4); note that large values of 1 — Pr4 mean better channel utilization
efficiency of secondary users [17]. The figures show that the Bayesian based solution (3.4),
which takes into account the statistical knowledge of the primary signal arrival time, not only

improves Pp but also leads to larger 1 — Pry, especially when SNR is low.
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Figure 3.1: Experimental ROC curves of ED and Bayesian ED. (N = 200, SNR = —5 dB)
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Figure 3.2: Detection probabilities Pp of ED and Bayesian ED versus SNR. (N = 200, Ppa =
0.05)
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Chapter 4

GLRT Based Detection

4.1 The Test Statistic of GLRT Based Detection

In chapter 3, we consider ng as a uniform random variable, and then propose a Bayesian based
detection rule to deal with the timing mismatch. However, the prior statistic knowledge of ng
is not always available at the receiver. Hence, instead of modeling ny as a random variable, an
alternative approach is to consider time delay ng as a deterministic unknown, and resort to the
GLRT based test rule for spectrum sensing. Recall the joint PDF of the data samples under
the two hypotheses Hy and H; are

p(x, Ho) = Wexp [—2%'3 Z_ |:L'[n]|2] ’ (4.1)

and

1 1S, 1 1 = e
s ) s |35 35 | = s |- 2

n=ng

(4.2)

According to [15] and after some straightforward manipulations, the GLRT decides H; if the

test statistic exceeds a threshold ~

p(X;n())Hl)
L = n&8> "
a(x) maxln =~ =
- 1 g 552 202 + o2) L&
I%%X{< 2 ) n<03+gg>+<2gg 2(03+U§)>§O|x[n]‘ >, (4.3)
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Since the test statistic is maximized over all possible value of ng, the primary user arrival time

can also be estimated.

4.2 Performance Analysis

The probability of false-alarm of the test rule (4.3) is by definition given by

p(x; 1o, Hq)
Pry=P In—F—"F—2% >
FA T{H}%X n p(x, Ho) V‘Ho}

N—’n,(] 0'12)
:PT{‘%%X{< ) () +

and the probability of detection is

Pp = Pr {maxlnzM > 7]7‘(1}
no p(X7 HO)

N—?’LO 0'12)
:PT{”%%XK )l

2
2072

1

2
207

2(02 4 o2

! >) 3 \x[nw} >vmo}

n=ngo

L)X |:c[nn2} >VIH1}-

2(02 + o2

n=ng

(4.5)

However, neither the exact form of Prs nor the exact form of Pp exist. We then try to derive

a lower bound of Pp and that of Ppy4.

The probability of false-alarm Pr4 in (4.4) can be expressed as

N —nyg o?
PFAzl—Pr{n}%x{( 5 )ln<o_g+o_§)+(

and it will be lower bounded by

N-—1

1 N —ng o? 1
Pra>1——> P 1 o —
R P {( 2 )“(azwz)*(zoz
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Since 02, 02, and ng are known, (4.7) can be further rewritten as

1 Nl N —) 0-2 1 1 N-1
Pra>1— — P 0 v o 2 H
Ml {( ) (75w) (o zrem) 2 el ol }
N-1 N-1 _ (N=m)q o3
1 , - () ()
:1_N PT{ZJZ‘[TZ] < ( L ) ) ‘no,HO
no=0 n=no 207 T A3t
_ _ N—n, 0'12
1 «— Zivznlo z[n]> 7~ (%) In <og+gg>
=l-5 Pr — |n07H0
N o2 Uz( 1 1 )
no=0 v\ 202 2(c2+02)

2 ’ 2 1 1
205\ 27 ~ 23407

where (d) follows since S0 ! 2l 0 X% and P(-,-) is the regular Gamma function.

n=ng o2

On the other hand, the probability of detection Pp in (4.5) will be similarly lower bounded by

—

1= N —n 02 i 1 i
— 1o v 2
PDZl_N;PTK ) (%) (o~ s ram) 2 WP <o

v s n=ng
N-1 N-1 — (M=) o
' L= (55 m ()
ZI—N Pr Z |:L'[n]| < (L_ 1 ) |n0’H1
no=0 n=ng 202 2(02+02)
_ _ N—n oy
1 N Zgznlo |z[n]|? v = (F7") In <03+o§>
=1- N Pr 2 1 o2 < ) |7”L0, Hy
no=0 Tu 95 (0121 + 03) (m - 2(0%—}-0’3))
_ N—n o3
N np=0 2 2<012) + O-g) (ﬁ - 2(0’51—03))

(4.9)
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4.3 Simulation Results

In the following simulations the total number of samples is set to be N = 100 and the Monte-
Carlo run is 5000. For SNR = 5 dB, Figure 4.1 compares the ROC curves of the ED (2.1) and
the GLRT (4.3) for two arrival time ng = 56, 96. It is seen from the figure that the performance
of ED is poor for ng = 96, and, in this case, the GLRT (4.3) does significantly improve the
detection probability. With fixed ng = 96 and Pr4q = 0.1, Figure 4.2 plots the detection
probability of ED (2.1) and the GLRT (4.3) as a function of SNR. As expected, the GLRT
performs better over a wide range of SNR. By setting Pp = 0.9, Figure 4.3 plots 1 — Pg4 versus
SNR (with ng = 96), whereas Figure 4.4 depicts 1 — Pr4 versus ng (with SNR= 0 dB) for ED
(2.1) and GLRT (4.3). The figures show that the GLRT does enhance the spectrum utilization
efficiency, especially when SNR is small to moderate and is large. Figure 4.5, Figure 4.6, and
Figure 4.7 examine the tightness of the lower bound of Pp (4.9) by plotting ROC curves and
Pp versus SNR respectively. As we can see, the lower bound is close to the simulated Pp when
SNR is large.
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Figure 4.1: Experimental ROC curves of ED and GLRT ED with two different ny. (N = 100,
SNR = 5 dB)
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Figure 4.5: Experimental ROC curve and the lower bound of Pp of GLRT ED. (N = 100, SNR
=5 dB)
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Chapter 5
Conclusion

Spectrum sensing in the presence of unknown arrival time of the primary signal finds appli-
cations in many practical system scenarios and is thus an important issue in the study of CR
networks. In this thesis we derive the exact formula of conditional detection probability given
the primary signal arrival time for ED. when the primary signal arrival time is modeled as
a uniform random variable over the observation interval, the exact detection probability for
ED can be obtained by averaging the conditional detection probability over all possible arrival
time. To further improve the detection performance against the timing uncertainty, we then
propose a Bayesian based detection scheme. Moreover, when the prior statistical knowledge of
the primary signal arrival time is not available, we consider the time delay as a deterministic
unknown, and then proposed a GLRT based detection rule. Simulation results show that the
Bayesian ED and the GLRT ED not only improve the detection probability but also reduce
the false-alarm probability, thus enhancing the spectrum utilization in the considered asyn-
chronous scenario. Future research will be dedicated to characterizing the ROC performance

of the Bayesian scheme and extending the current results to the cooperative sensing scenario.
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Appendix A
Proof of Lemma 2.5

We first observe that p(x) in (2.19) satisfies

6—:(:/2 % e—SNRx/Z /96 7_(N—no)/2—1(£B . 7_)no/2—1d,7_ < p(:L’) < e—x/2 /‘SL‘ T(N_no)/2_l(£lj' . T)n0/2_1d7'.
0 0

(A1)
Since
/1‘ T(N—NO)/Z_l(x - | T)"O/z_ldT 7+ :E(N_"O)/2_1u(x) * :L'"O/Z_lu(x), (A.2)
0
we have
L {/ T N=no)/2=1 (5 _ 7-)"0/2_1d7} =L {x(N_”O)/Z_lu(x)} x L {x"o/z_lu(x)}
0
D((N —no)/2)  T'(no/2)
- g(IN—n0)/2 5no/2
L((N —ng)/2)l(no/2)
= N2 ) (A.3)

By taking the inverse Laplace transform of both sides of (A.3) we have

/Ox F(N=n0)/2=1 (1 7yn0/2=1 g = D((N — ng) /2)T (0/2) L {Szi/z} _ (N —Fn(ojzf//?)f‘(no/?) LN/2-1

(A.4)
where the last equality holds due to Lemma 2.1. With the aid of (A.4), (A.1) becomes

D((N —n0)/2)L(no/2) Njoy 1+SNR)z/2 D((N —n0)/2)L(n0/2) Njo1 —apo
Tva o e s s e e e

(A.5)
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Based on (A.5), we have

1+ SNR)=(V=m0)/2 >
Pp(ng) = \/—]\(f S / p(z)dx
2N (no/2)I (N —no) /2)

- (14 SNR)~W=no /2/ /21 ,~(+SNR)2/2 g .
V2NT(N/2) Y

@ (14 SNR)~(V=no)/2 <1+SNR)_N/2F (g 1+SNR)
T VRNI(N)2) 2 2772

1—\( 71+SNR)

_ 27
= (1+SNR)”O/2+1F(N/2)7

where (a) follows since fyoo e " dy = T (v, pry) [16]. Similarly we have

Py < (LHSNRY 0! (N 7)
D\'t0) > .

T(N/2) 272

The assertion follows from (A.6) and (A.7).
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