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以基於能量偵測法則的頻譜偵測演算法偵測抵達時間未知的主

要使用者訊號 

 
學生：王致翔                                    指導教授：吳卓諭 

 
 

國立交通大學電信工程研究所碩士班 
 
 

摘要 
 

在下世代的無線感知系統中，次要使用者 (Secondary user) 進行頻譜

偵測 (Spectrum sensing) 時會遇到與主要使用者 (Primary user) 時間不同

步的情形。因此，本論文假設主要使用者存取頻帶的時間為一均勻分布的

隨機變數，進而分析能量偵測器 (Energy detector) 在此環境設定下的效

能。其中，本論文推導出準確偵測機率 (Detection probability) 的公式並藉

由電腦模擬驗證之。為了進一步提升系統偵測效能，本論文提出一個基於

貝氏 (Bayesian) 原則的偵測演算法。此外，當主要使用者存取頻帶的時

間被視為一個不變的未知數，本論文則提出另一個以廣義概似比例檢定 
(Generalized likelihood ratio test, GLRT) 為基礎的偵測法則，藉以改善系統

偵測效能。電腦模擬的結果證實本論文所提出的兩種偵測演算法皆能有效

提升系統偵測效能。 
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Energy Detection Based Spectrum Sensing with Unknown 
Primary Signal Arrival Time 

 
Student : Chih-Hsiang Wang                   Adviser : Dr. Jwo-Yuh Wu 

 
 

Institute of Communications Engineering 
National Chiao Tung University 

 
 

Abstract 
 

Spectrum sensing in next-generation wireless cognitive systems, such as overlay 

femtocell net-works, is typically subject to timing misalignment between the primary 

transmitter and the secondary receiver. In this thesis we investigate the performance of the 

energy detector (ED) when the arrival time of the primary signal is modeled as a uniform 

random variable over the observation interval. The exact formula for the detection probability 

is derived and corroborated via numerical simulation. To further improve the detection 

performance, we propose a robust ED based on the Bayesian principle. In addition, when the 

primary signal arrival time is unknown but fixed, we propose another detection rule based on 

the generalized-likelihood ratio test (GLRT) to improve the detection performance. Computer 

simulation confirms the effectiveness of the Bayesian based and the GLRT based solution 

when compared with the traditional ED. 
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Chapter 1

Introduction

1.1 Overview

Due to tremendous growth in the wireless based systems and the limitations of the natural

frequency spectrum, we need innovative techniques that can exploit the available spectrum to

accommodate the requirements of higher rate transmissions while the current frequency allo-

cation schemes can’t. Even though most of available spectrum has been assigned for various

services, such as military communications, broadcast service and telecom service, investigations

of spectrum utilization show that many allocated spectrum are not occupied by licensed users

for all time. This fact motivates a spectrum allocation scheme that allows secondary users to

utilize the idle spectrum licensed to the primary users. It is known as the concept of spectrum

reuse. A pictorial description is as follows [1].

Figure 1.1: Transmission opportunities of specific bands in time
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Cognitive radio (CR) is now acknowledged as a tempting solution to reusing the underuti-

lized spectrum in an opportunistic manner [1], [2]. CR is an autonomous system that senses

its communication environment, tracks changes and dynamically accesses the unused spec-

trum [1], [2]. In CR terminology, primary users can be defined as the users who can utilize a

specific part of spectrum with higher priority. On the other hand, secondary users have lower

priority to access the specific part of spectrum and they can not cause interference to primary

users when they exploit the unused part of spectrum.

One of the most essential components for enabling the CR technique is spectrum sensing.

The task of spectrum sensing, implemented at the secondary receiver, is to detect the idle

frequency bands and monitor the existence of primary users. Challenges, design trade-offs

and implementation issues of spectrum sensing are addressed in [2], [3], [4]. The reference [1]

provides brief introductions of various sensing techniques. Since enhancing the accuracy of

spectrum sensing can not only reduce the possible interference to primary users but also in-

crease the opportunistic access to idle frequency bands, there are many research works that

aim to develop new methods to improve the sensing performance.

The most commonly-used techniques of spectrum sensing in the literature can be catego-

rized into the following four classes.

Energy detection (ED): To detect the existence of primary users, ED computes the energy

of the received signal, and then compares this energy with a given threshold. If the energy

of the received signal exceeds the threshold, the ED claims that the primary user is present.

Otherwise, the ED decides that the primary user is absent. ED is the most common method

of spectrum sensing when the receiver doesn’t have any information about the primary users’

signal.

Waveform-Based Sensing: If the known patterns, such as pilot, spreading sequences, pream-

bles etc, are available at the receiver, the spectrum sensing can be performed by correlating the

received signal with the known signal pattern.

Cyclostationarity-based detection: Since the modulated signals are generally transmitted

by a sinewave carrier, the modulated signals are cyclostationary due to the periodic property.

When the noise is wide-sense stationary, certain cyclic autocorrelation function (CAF) of the

received signal will be nonzero in the presence of the primary signal. On the other hand, the

2



CAS of the received signal will be zero since the received signal contains only the noise term.

This fact can be exploited for spectrum identification.

Matched-Filtering (MF): Assuming that there is perfect knowledge of primary users’ sig-

nal and accurate synchronization, MF is known as the optimal solution for spectrum sensing.

However, if the mentioned assumptions cannot be satisfied, the performance of MF will be

dramatically reduced.

1.2 Research Motivation

In the literature, the detection of idle spectrum is typically considered as a binary hypothesis

test, and a commonly used signal model under both hypotheses is [10], [11]

{

H0 : x[n] = v[n], 0 ≤ n ≤ N − 1 (idle)

H1 : x[n] = s[n] + v[n], 0 ≤ n ≤ N − 1 (occupied)
(1.1)

where N is the length of the data record, s[n], x[n], v[n] are, respectively, the signal of the

primary user, the received signal at the CR receiver, and the measurement noise. The hypoth-

esis model (1.1) implicitly assumes perfect synchronization between the primary transmitter

and the CR receiver. Such an assumption, however, is not valid in many practical situations.

For example, in an overlay femto cell network [12], the signal of the macro mobile subscriber,

synchronized with the macro base station (BS), will arrive at a femto BS asynchronously. The

spectrum detection at the femto BS is typically subject to timing misalignment of the primary

signal [13], [14]. Thus, in such a case, a more reasonable signal model for the binary hypothesis

test is therefore







H0 : x[n] = v[n], 0 ≤ n ≤ N − 1 (idle)

H1 :

{

x[n] = v[n], 0 ≤ n ≤ n0 − 1

x[n] = s[n] + v[n], n0 ≤ n ≤ N − 1
(occupied)

(1.2)

where n0 accounts for the primary signal arrival time. Therefore, in contrast to the spectrum

sensing schemes in the literature focusing on the synchronized signal model (1.1) [10], [11], this

thesis considers the spectrum detection aimed for tackling signal timing uncertainty under the

hypothesis (1.2).
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1.3 Thesis Contributions

Unlike the prior researches investigating the performance characteristics of ED based on the

idealized model, this thesis studies the detection performance of ED in the presence of unknown

primary signal arrival time. Specifically, assuming the time delay is a uniform random variable,

the exact formula of average detection probability of ED is derived. Further, in order to

improve the detection performance against the timing mismatch, we then propose a Bayesian

based detection rule to exploit the prior statistical knowledge of the unknown primary signal

arrival time. In addition, when the prior knowledge of unknown primary signal arrival time

is not available, we propose a generalized likelihood ratio test (GLRT) based detection rule

to deal with the case in which the primary signal arrival time is considered as a deterministic

unknown.

1.4 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, the energy detection for spectrum

sensing is introduced and the detection performance for the signal model taking account of

unknown primary signal arrival time is also provided. In chapter 3, we propose a robust

energy detection scheme based on the Bayesian principle to improve the detection performance

when primary signal arrival time is uniformly distributed. In Chapter 4, we consider the

primary signal arrival time as a deterministic unknown, and then propose another robust energy

detection scheme based on the principle of the GLRT. Chapter 5 concludes this thesis and points

out some future work. Some proofs are provided in Appendix.
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Chapter 2

Detection Performance of Energy

Detector in the Presence of Time Delay

2.1 Neyman-Pearson Theorem

Recall the signal model for the considered binary hypothesis test is

H0 : x[n] = v[n], 0 ≤ n ≤ N − 1

H1 :

{

x[n] = v[n], 0 ≤ n ≤ n0 − 1

x[n] = s[n] + v[n], n0 ≤ n ≤ N − 1

With this scheme we may make two types of errors. If we decide H1 but H0 is true, it can

be thought of as a false alarm. On the other hand, if we decide H0 but H1 is true, it is a

miss detection. Let P (Hi;Hj) indicate the probability of deciding Hi when Hj is true. Hence,

P (H1;H0) is he probability of false alarm and is denoted by PFA. To design the optimal de-

tector for a given PFA, we would like to minimize the other error P (H0;H1) or equivalently to

maximize P (H1;H1). The latter is called the probability of detection and is denoted by PD.

In summary, the Neyman-Pearson (NP) approach to hypothesis testing or to signal detection

is to maximize PD = P (H1;H1) subject to the constraint PFA = P (H1;H0) = α.

Theorem 2.1: Neyman-Pearson Theorem [15]

To maximize PD for a given PFA = α decide H1 if

L(x) =
p(x;H1)

p(x;H0)
> γ,

5



where p(x;H1) is the probability dencity function (PDF) of x under H1, p(x;H0) is the PDF

x under H0, and the threshold γ is found from

PFA =

∫

{x:L(x)>γ}

p(x;H0)dx = α.

2

2.2 Performance Analysis

According to Neyman-Pearson theorem and [15], the NP detector decides H1 if

T (x) =
N−1∑

n=0

|x[n]|2 > γ. (2.1)

That is, the NP detector computes the energy in the received data and compares it to a

threshold. Hence, in this case it is known as an energy detector. This section characterizes the

performance of ED under the signal model (2.1).

The following assumptions are made in the sequel.

• The primary signal s[n] is a zero mean, white Gaussian random process with known

variance σ2
s .

• The noise v[n] is a zero mean, white Gaussian random process with known variance σ2
v .

• s[n] and v[n] are independent.

• The primary signal arrival time n0 is discrete and uniformly distributed over the obser-

vation interval 0 ≤ n ≤ N − 1, i.e. the PDF of n0 is p(n0) = 1/N , for 0 ≤ n ≤ N − 1.

2.2.1 False-Alarm Probability

Under the null hypothesis H0, we have

x[n] = v[n], 0 ≤ n ≤ N − 1 (2.2)

The test statistic of the energy detector under H0 is thus

T =

N−1∑

n=0

|x[n]|2 =

N−1∑

n=0

|v[n]|2. (2.3)
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and the false-alarm probability PFA is given by

PFA = Pr{T (x) > γ;H0}

= Pr

{∑N−1
n=0 |v[n]|2

σ2
v

>
γ

σ2
v

;H0

}

(a)
= Qχ2

N

(
γ

σ2
v

)

, (2.4)

where (a) holds directly by definition of the right-tail probability of the Chi-square random

variable χ2
N with an even degree-of-freedom [15]. However, the probability of detection is much

more difficult to compute since its PDF is not as familiar as Chi-square distribution. The detail

will be presented in 2.2.2.

To find the threshold of ED according to a given PFA, we represent (2.4) as (for the case of

N even) [15]

PFA = exp

(

− γ

2σ2
v

)


1 +

N/2−1
∑

r=1

(
γ

2σ2
v

)r

r!



 . (2.5)

By letting γ′ = γ/2σ2
v and rearranging terms we have

γ′ = − ln PFA + ln



1 +

N/2−1
∑

r=1

γ′r

r!



 . (2.6)

To solve for γ′ we can use the fixed point iteration

γ′
k+1 = − ln PFA + ln



1 +

N/2−1
∑

r=1

γ′
k
r

r!



 . (2.7)

Hence, the threshold γ can be obtained by iterating with γ′
0 = 1.

2.2.2 Exact Detection Probability

Under the alternative hypothesis H1, we have

x[n] =

{

v[n], 0 ≤ n ≤ n0 − 1

s[n] + v[n], n0 ≤ n ≤ N − 1
(2.8)

7



The test statistic of the energy detector under H1 and conditioned on a fixed n0 is thus

T =

N−1∑

n=0

|x[n]|2 =

n0−1∑

n=0

|x[n]|2

︸ ︷︷ ︸

:=T1

+

N−1∑

n=n0

|x[n]|2

︸ ︷︷ ︸

:=T2

> γ. (2.9)

Based on (2.9), we shall first derive the conditional detection probability; the average detection

probability can then easily obtained by taking the expectation with respect to n0.

Note that, with T1 and T2 defined in (2.9), it is easy to verify z1 := T1/σ
2
v ∼ χ2

n0
and

z2 := T2/(σ2
v + σ2

s) ∼ χ2
N−n0

, and hence the associated probability density functions is

fz1(x) =
x(n0/2)−1e−x/2

√
2n0Γ(n0/2)

u(x) (2.10)

and

fz2(x) =
x[(N−n0)/2]−1e−x/2

√
2(N−n0)Γ ((N − n0)/2)

u(x), (2.11)

where u(t) is the unit step function. To simplify notation let us consider the equivalent test

statistic

T̄ =
T

σ2
v

=
1

σ2
v

N−1∑

n=0

|x[n]|2 =
T1

σ2
v

+
T2

σ2
v

= z1 +

(
σ2

s + σ2
v

σ2
v

)

z2 = z1 + (1 + SNR)z2, (2.12)

where SNR := σ2
s/σ

2
v . Since z1 and z2 are independent, the PDF of T̄ is given by

fT̄ (x) = fz1(x) ∗
(

1

1 + SNR

)

· fz2

(
x

1 + SNR

)

, (2.13)

where ∗ denotes the convolution. In terms of Laplace transform, (2.13) reads

FT̄ (s) = Fz1(s) ×
(

1

1 + SNR

)

L
{

fz2

(
x

1 + SNR

)}

= Fz1 × Fz2 (s(1 + SNR)) , (2.14)

where the second equality follows since L{f(ax)} = a−1F (s/a). To derive an explicit expres-

sion for FT̄ (s) in (2.14), we need the next lemma.

8



Lemma 2.2 [16]: For λ > 0, we have L
{
xλ−1e−axu(x)

}
= Γ(λ)(s + a)−λ. 2

From (2.10), (2.11), and by means of Lemma 2.1, we immediately have

Fz1(s) =
Γ (n0/2) (s + 1/2)−n0/2

√
2n0Γ (n0/2)

=
(s + 1/2)−n0/2

√
2n0

(2.15)

and

Fz2(s) =
Γ ((N − n0)/2) (s + 1/2)−(N−n0)/2

√
2(N−n0)Γ ((N − n0)/2)

=
(s + 1/2)−(N−n0)/2

√
2(N−n0)

. (2.16)

Based on (2.14), (2.15), and (2.16), direct manipulation shows

FT̄ (s) =
1√
2N

(

s +
1

2

)−n0/2 (

s(1 + SNR) +
1

2

)−(N−n0)/2

=
(1 + SNR)−(N−n0)/2

√
2N

(

s +
1

2

)−n0/2 (

s +
1

2(1 + SNR)

)−(N−n0)/2

. (2.17)

With the aid of (2.17), the PDF fT̄ (x) is given by

fT̄ (x) =
(1 + SNR)−(N−n0)/2

√
2N

×
{

L−1
{
(s + 1/2)−n0/2

}
∗ L−1

{

(s + 1/[2(1 + SNR)])−(N−n0)/2
}}

(b)
=

(1 + SNR)−(N−n0)/2

√
2N

×
{[

x(n0/2)−1e−x/2u(x)

Γ(n0/2)

]

∗
[
x[(N−n0)/2]−1e−x/[2(1+SNR)]u(x)

Γ ((N − n0)/2)

]}

=
(1 + SNR)−(N−n0)/2

√
2NΓ(n0/2)Γ ((N − n0)/2)

∫ x

0

τ (N−n0)/2−1e−τ/[2(1+SNR)](x − τ)n0/2−1e−(x−τ)/2dτ

=
(1 + SNR)−(N−n0)/2

√
2NΓ(n0/2)Γ ((N − n0)/2)

× e−x/2

∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1eSNRτ/[2(1+SNR)]dτ,

(2.18)

where (b) holds by using Lemma 2.1. Hence, for a given threshold γ determined according to

the prescribed false-alarm probability, the conditional probability of detection can be computed

based on (2.18) as
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PD(n0) =

∫ ∞

γ

fT̄ (x)dx

=
(1 + SNR)−(N−n0)/2

√
2NΓ(n0/2)Γ ((N − n0)/2)

∫ ∞

γ

[

e−x/2

∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1eSNRτ/[2(1+SNR)]dτ

]

︸ ︷︷ ︸

:=p(x)

dx.

(2.19)

To find a closed-form expression of PD(n0) in (2.19), we need the next lemma.

Lemma 2.3 [16]: For ν > 0 and µ > 0, it follows
∫ x

0

tν−1(x − t)µ−1eδt = B(µ, ν)xµ+ν−1Φ(ν, µν ; δx), (2.20)

where B(·, ·) is the beta function, and Φ(·, ·, ·) is the confluent hypergeometric function defined

by

Φ(α, γ, z) = 1 +
α

γ
· z

1!
+

α(α + 1)

γ(γ + 1)
· z2

2!
+

α(α + 1)(α + 2)

γ(γ + 1)(γ + 2)
· z3

3!
+ · · · . (2.21)

2

Based on Lemma 2.2, (2.18) becomes

PD(n0) =
(1 + SNR)−(N−n0)/2B

(
n0

2
, N−n0

2

)

√
2NΓ(n0/2)Γ ((N − n0)/2)

×
∫ ∞

γ

e−x/2xN/2−1

[
∞∑

i=0

aix
i

]

dx, (2.22)

where

a0 = 1, a1 =
(N − n0)/2

N/2
·

SNR
2(1+SNR)

1!
, a2 =

[(N − n0)/2][(N − n0)/2 + 1]

(N/2)(N/2 + 1)
·

(
SNR

2(1+SNR)

)2

2!
, . . .

(2.23)

Based on (2.22), the exact form of the conditional detection probability can be obtained as

PD(n0) =
(1 + SNR)−(N−n0)/2B

(
n0

2
, N−n0

2

)

√
2NΓ(n0/2)Γ ((N − n0)/2)

×
[

∞∑

i=0

ai

∫ ∞

γ

e−x/2xN/2+i−1dx

]

(c)
=

(1 + SNR)−(N−n0)/2B
(

n0

2
, N−n0

2

)

√
2NΓ(n0/2)Γ ((N − n0)/2)

×
∞∑

i=0

ai

[

2N/2+iΓ

(
N

2
+ i,

γ

2

)]

, (2.24)
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where (c) follows since
∫ ∞

γ
xν−1e−µxdx = µ−νΓ(ν, µγ) [Kay, p-346], and Γ(α, y) :=

∫ ∞

y
e−ttα−1dt

is the incomplete Gamma function. Based on (2.24), we summarize the main result in the fol-

lowing theorem.

Theorem 2.4: The average detection probability of the ED under the proposed hypoth-

esis test is given by

PD =
1

N

N−1∑

n0=0

PD(n0) =
1

N

N−1∑

n0=0

(1 + SNR)−(N−n0)/2B
(

n0

2
, N−n0

2

)

√
2NΓ(n0/2)Γ ((N − n0)/2)

×
∞∑

i=0

ai

[

2N/2+iΓ

(
N

2
+ i,

γ

2

)]

(2.25)

where γ is the threshold determined according to the prescribed false-alarm probability. 2

2.2.3 Low-SNR Regime

While the formula (2.25) appears quite involved, in the low-SNR regime it admits a very simple

form that is compatible with the existing study of ED [Kay]. To see this, we need the next

lemma, which provides an upper and lower bounds for the conditional detection probability

PD(n0)

Lemma 2.5: Let PD(n0) be defined in (2.24). Then we have

Γ
(

N
2
, γ

(
1+SNR

2

))

(1 + SNR)n0/2+1Γ(N/2)
≤ PD(n0) ≤

(1 + SNR)(N−n0)/2−1Γ
(

N
2
, γ

2

)

Γ(N/2)
. (2.26)

[Proof]: See Appendix. 2

To gain further insight based on (2.26), let us assume without loss of generality that the

total number of samples N is even, so that N/2 is a positive integer. In this case, we have

Γ(N/2) = (N/2 − 1)! and Γ(N/2, y) = (N/2 − 1)!e−y
∑N/2−1

k=0
yk

k!
[16]. Hence (2.26) becomes

e−γ(1+SNR)/2
∑N/2−1

k=0
[γ(1+SNR)/2]k

k!

(1 + SNR)n0/2+1
≤ PD(n0) ≤ (1 + SNR)(N−n0)/2−1e−γ/2

N/2−1
∑

k=0

(γ/2)k

k!
. (2.27)
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In the low SNR regime, e.g., SNR → 0, we have 1 + SNR → 1 and (2.27) then becomes

PD(n0) → e−γ/2

N/2−1
∑

k=0

(γ/2)k

k!
= Qχ2

N
(γ). (2.28)

With the aid of (2.28) and since the limiting probability is independent of n0 , we have the

following asymptotic result.

Proposition 2.6: Let PD be the average detection probability defined in (2.25). Then

we have

lim
SNR→0

PD = Qχ2
N
(γ). (2.29)

2

Recall from [15] that Qχ2
N
(γ) is the detection probability for ED when SNR = σ2

s/σ
2
v ≈ 0.

In this case, the performance of ED can be very poor since the energy of the received signal in

either hypothesis is very close to the noise floor. To further enhance the detection performance

when SNR is low and the signal timing mismatch is present, robust ED schemes based on the

Bayesian principle and the GLRT principle will be proposed in next two chapters.

2.3 Simulation Results

In the following simulations we consider the hypothesis signal model (1.2), in which the total

number of samples is set to be N = 200 and the primary signal arrival time n0 is uniformly

distributed within 0 ≤ n0 ≤ 199. Note that the simulated results are obtained from 5000

Monte-Carlo runs. Figure 2.1 plots the ROC curves of ED (2.1), with SNR set to be −5 dB;

Figure 2.2 plots the probability of detection PD at various SNR levels, assuming that the false-

alarm probability PFA = 0.05. As can be seen from the figures, the derived analytic formula

(2.25) closely matches the simulated results.
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Figure 2.1: Analytic and experimental ROC curves of ED. (N = 200, SNR = −5 dB)
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Figure 2.2: Detection probability PD versus SNR. (N = 200, PFA = 0.05)
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Chapter 3

Bayesian Based Detection

3.1 The Test Statistic of Bayesian Detection

To exploit the prior statistical knowledge of n0 for enhancing the detection performance, a typ-

ical approach is the Bayesian philosophy [15]. The conditional joint PDF of the data samples

under two hypotheses H0 and H1 are

p(x,H0) =
1

(2πσ2
v)

N/2
exp

[

− 1

2σ2
v

N−1∑

n=0

|x[n]|2
]

, (3.1)

and

p(x; n0,H1) =
1

(2πσ2
v)

n0/2
exp

[

− 1

2σ2
v

n0−1∑

n=0

|x[n]|2
]

× 1

(2π(σ2
v + σ2

s ))
(N−n0)/2

exp

[

− 1

2(σ2
v + σ2

s)

N−1∑

n=n0

|x[n]|2
]

.

(3.2)

The Bayesian test decides H1 if [15]

p(x; n0,H1)

p(x,H0)
=

∫
p(x|n0,H1)p(n0)dn0

p(x,H0)

=

1
N

∑N−1
n0=0

1
(2πσ2

v)n0/2 e

[

− 1

2σ2
v

∑n0−1
n=0 |x[n]|2

]

× 1
(2π(σ2

v+σ2
s))(N−n0)/2 e

[

− 1

2(σ2
v+σ2

s)

∑N−1
n=n0

|x[n]|2
]

1
(2πσ2

v)N/2 e

[

− 1

2σ2
v

∑N−1
n=0 |x[n]|2

] > γ.

(3.3)
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After some manipulations of (3.3), the test statistic of Bayesian detection can be represented as

1

N

N−1∑

n0=0

(
σ2

v

σ2
v + σ2

s

)(N−n0)/2

exp

[(
1

2σ2
v

− 1

2(σ2
v + σ2

s )

) N−1∑

n=n0

|x[n]|2
]

> γ. (3.4)

3.2 Simulation Results

The following simulation results are obtained from 5000 Monte-Carlo runs under the hypothesis

signal model (1.2), in which the total number of samples is set to be N = 200 and the primary

signal arrival time n0 is uniformly distributed within 0 ≤ n0 ≤ 199. Figure 3.1 compares the

ROC curves of ED (2.1) and the Bayesian based detection rule (3.4). Figures 3.2 and 3.3,

respectively, compare PD and 1 − PFA curves (as a function of SNR) of the ED (2.1) and the

Bayesian based solution (3.4); note that large values of 1−PFA mean better channel utilization

efficiency of secondary users [17]. The figures show that the Bayesian based solution (3.4),

which takes into account the statistical knowledge of the primary signal arrival time, not only

improves PD but also leads to larger 1 − PFA, especially when SNR is low.
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Figure 3.1: Experimental ROC curves of ED and Bayesian ED. (N = 200, SNR = −5 dB)
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Figure 3.2: Detection probabilities PD of ED and Bayesian ED versus SNR. (N = 200, PFA =

0.05)
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Figure 3.3: 1 − PFA of ED and Bayesian ED versus SNR. (N = 200, PD = 0.95)
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Chapter 4

GLRT Based Detection

4.1 The Test Statistic of GLRT Based Detection

In chapter 3, we consider n0 as a uniform random variable, and then propose a Bayesian based

detection rule to deal with the timing mismatch. However, the prior statistic knowledge of n0

is not always available at the receiver. Hence, instead of modeling n0 as a random variable, an

alternative approach is to consider time delay n0 as a deterministic unknown, and resort to the

GLRT based test rule for spectrum sensing. Recall the joint PDF of the data samples under

the two hypotheses H0 and H1 are

p(x,H0) =
1

(2πσ2
v)

N/2
exp

[

− 1

2σ2
v

N−1∑

n=0

|x[n]|2
]

, (4.1)

and

p(x; n0,H1) =
1

(2πσ2
v)

n0/2
exp

[

− 1

2σ2
v

n0−1∑

n=0

|x[n]|2
]

× 1

(2π(σ2
v + σ2

s ))
(N−n0)/2

exp

[

− 1

2(σ2
v + σ2

s)

N−1∑

n=n0

|x[n]|2
]

.

(4.2)

According to [15] and after some straightforward manipulations, the GLRT decides H1 if the

test statistic exceeds a threshold γ

LG(x) := max
n0

ln
p(x; n0,H1)

p(x,H0)

= max
n0

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s )

) N−1∑

n=n0

|x[n]|2
}

> γ. (4.3)
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Since the test statistic is maximized over all possible value of n0, the primary user arrival time

can also be estimated.

4.2 Performance Analysis

The probability of false-alarm of the test rule (4.3) is by definition given by

PFA = Pr

{

max
n0

ln
p(x; n0,H1)

p(x,H0)
> γ|H0

}

= Pr

{

max
n0

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s )

) N−1∑

n=n0

|x[n]|2
}

> γ|H0

}

(4.4)

and the probability of detection is

PD = Pr

{

max
n0

ln
p(x; n0,H1)

p(x,H0)
> γ|H1

}

= Pr

{

max
n0

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s)

) N−1∑

n=n0

|x[n]|2
}

> γ|H1

}

.

(4.5)

However, neither the exact form of PFA nor the exact form of PD exist. We then try to derive

a lower bound of PD and that of PFA.

The probability of false-alarm PFA in (4.4) can be expressed as

PFA = 1 − Pr

{

max
n0

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s)

) N−1∑

n=n0

|x[n]|2
}

≤ γ|H0

}

(4.6)

and it will be lower bounded by

PFA ≥ 1 − 1

N

N−1∑

n=0

Pr

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s)

) N−1∑

n=n0

|x[n]|2 ≤ γ|n0,H0

}

(4.7)

21



Since σ2
v , σ2

s , and n0 are known, (4.7) can be further rewritten as

PFA ≥ 1 − 1

N

N−1∑

n=0

Pr

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s)

) N−1∑

n=n0

|x[n]|2 ≤ γ|n0,H0

}

= 1 − 1

N

N−1∑

n0=0

Pr







N−1∑

n=n0

|x[n]|2 ≤
γ −

(
N−n0

2

)
ln

(
σ2

v

σ2
v+σ2

s

)

(
1

2σ2
v
− 1

2(σ2
v+σ2

s)

) |n0,H0







= 1 − 1

N

N−1∑

n0=0

Pr







∑N−1
n=n0

|x[n]|2
σ2

v

≤
γ −

(
N−n0

2

)
ln

(
σ2

v

σ2
v+σ2

s

)

σ2
v

(
1

2σ2
v
− 1

2(σ2
v+σ2

s)

) |n0,H0







(d)
= 1 − 1

N

N−1∑

n0=0

P







N − n0

2
,
γ −

(
N−n0

2

)
ln

(
σ2

v

σ2
v+σ2

s

)

2σ2
v

(
1

2σ2
v
− 1

2(σ2
v+σ2

s)

)






.

(4.8)

where (d) follows since
∑N−1

n=n0

|x[n]|2

σ2
v

∼ χ2
N and P (·, ·) is the regular Gamma function.

On the other hand, the probability of detection PD in (4.5) will be similarly lower bounded by

PD ≥ 1 − 1

N

N−1∑

n=0

Pr

{(
N − n0

2

)

ln

(
σ2

v

σ2
v + σ2

s

)

+

(
1

2σ2
v

− 1

2(σ2
v + σ2

s)

) N−1∑

n=n0

|x[n]|2 ≤ γ|n0,H1

}

= 1 − 1

N

N−1∑

n0=0

Pr







N−1∑

n=n0

|x[n]|2 ≤
γ −

(
N−n0

2

)
ln

(
σ2

v

σ2
v+σ2

s

)

(
1

2σ2
v
− 1

2(σ2
v+σ2

s )

) |n0,H1







= 1 − 1

N

N−1∑

n0=0

Pr







∑N−1
n=n0

|x[n]|2
σ2

v + σ2
s

≤
γ −

(
N−n0

2

)
ln

(
σ2

v

σ2
v+σ2

s

)

(σ2
v + σ2

s )
(

1
2σ2

v
− 1

2(σ2
v+σ2

s)

) |n0,H1







= 1 − 1

N

N−1∑

n0=0

P







N − n0

2
,

γ −
(

N−n0

2

)
ln

(
σ2

v

σ2
v+σ2

s

)

2(σ2
v + σ2

s )
(

1
2σ2

v
− 1

2(σ2
v+σ2

s )

)






.

(4.9)
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4.3 Simulation Results

In the following simulations the total number of samples is set to be N = 100 and the Monte-

Carlo run is 5000. For SNR = 5 dB, Figure 4.1 compares the ROC curves of the ED (2.1) and

the GLRT (4.3) for two arrival time n0 = 56, 96. It is seen from the figure that the performance

of ED is poor for n0 = 96, and, in this case, the GLRT (4.3) does significantly improve the

detection probability. With fixed n0 = 96 and PFA = 0.1, Figure 4.2 plots the detection

probability of ED (2.1) and the GLRT (4.3) as a function of SNR. As expected, the GLRT

performs better over a wide range of SNR. By setting PD = 0.9, Figure 4.3 plots 1−PFA versus

SNR (with n0 = 96), whereas Figure 4.4 depicts 1 − PFA versus n0 (with SNR= 0 dB) for ED

(2.1) and GLRT (4.3). The figures show that the GLRT does enhance the spectrum utilization

efficiency, especially when SNR is small to moderate and is large. Figure 4.5, Figure 4.6, and

Figure 4.7 examine the tightness of the lower bound of PD (4.9) by plotting ROC curves and

PD versus SNR respectively. As we can see, the lower bound is close to the simulated PD when

SNR is large.
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Figure 4.1: Experimental ROC curves of ED and GLRT ED with two different n0. (N = 100,

SNR = 5 dB)
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Figure 4.2: Detection probability PD of ED and GLRT ED versus SNR. (N = 100, n0 = 96,

PFA = 0.1)
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Figure 4.3: 1 − PFA of ED and GLRT ED versus SNR. (N = 100, n0 = 96, PD = 0.9)
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Figure 4.4: 1 − PFA of ED and GLRT ED versus n0. (N = 100, SNR = 5 dB, PD = 0.9)
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Figure 4.5: Experimental ROC curve and the lower bound of PD of GLRT ED. (N = 100, SNR

= 5 dB)
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Figure 4.6: Experimental ROC curve and the lower bound of PD of GLRT ED. (N = 100, SNR

= −5 dB)
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Figure 4.7: PD and the lower bound of PD of GLRT ED versus n0. (N = 100, PFA = 0.1)
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Chapter 5

Conclusion

Spectrum sensing in the presence of unknown arrival time of the primary signal finds appli-

cations in many practical system scenarios and is thus an important issue in the study of CR

networks. In this thesis we derive the exact formula of conditional detection probability given

the primary signal arrival time for ED. when the primary signal arrival time is modeled as

a uniform random variable over the observation interval, the exact detection probability for

ED can be obtained by averaging the conditional detection probability over all possible arrival

time. To further improve the detection performance against the timing uncertainty, we then

propose a Bayesian based detection scheme. Moreover, when the prior statistical knowledge of

the primary signal arrival time is not available, we consider the time delay as a deterministic

unknown, and then proposed a GLRT based detection rule. Simulation results show that the

Bayesian ED and the GLRT ED not only improve the detection probability but also reduce

the false-alarm probability, thus enhancing the spectrum utilization in the considered asyn-

chronous scenario. Future research will be dedicated to characterizing the ROC performance

of the Bayesian scheme and extending the current results to the cooperative sensing scenario.
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Appendix A

Proof of Lemma 2.5

We first observe that p(x) in (2.19) satisfies

e−x/2 × e−SNRx/2

∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1dτ ≤ p(x) ≤ e−x/2

∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1dτ.

(A.1)

Since
∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1dτ = x(N−n0)/2−1u(x) ∗ xn0/2−1u(x), (A.2)

we have

L
{∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1dτ

}

= L
{
x(N−n0)/2−1u(x)

}
× L

{
xn0/2−1u(x)

}

=
Γ((N − n0)/2)

s(N−n0)/2
× Γ(n0/2)

sn0/2

=
Γ((N − n0)/2)Γ(n0/2)

sN/2
. (A.3)

By taking the inverse Laplace transform of both sides of (A.3) we have

∫ x

0

τ (N−n0)/2−1(x − τ)n0/2−1dτ = Γ((N − n0)/2)Γ(n0/2)L−1

{
1

sN/2

}

=
Γ((N − n0)/2)Γ(n0/2)

Γ(N/2)
xN/2−1

(A.4)

where the last equality holds due to Lemma 2.1. With the aid of (A.4), (A.1) becomes

Γ((N − n0)/2)Γ(n0/2)

Γ(N/2)
xN/2−1e−(1+SNR)x/2 ≤ p(x) ≤ Γ((N − n0)/2)Γ(n0/2)

Γ(N/2)
xN/2−1e−x/2.

(A.5)
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Based on (A.5), we have

PD(n0) =
(1 + SNR)−(N−n0)/2

√
2NΓ(n0/2)Γ ((N − n0)/2)

∫ ∞

γ

p(x)dx

≥ (1 + SNR)−(N−n0)/2

√
2NΓ(N/2)

∫ ∞

γ

xN/2−1e−(1+SNR)x/2dx

(a)
=

(1 + SNR)−(N−n0)/2

√
2NΓ(N/2)

(
1 + SNR

2

)−N/2

Γ

(
N

2
, γ

1 + SNR

2

)

=
Γ

(
N
2
, γ 1+SNR

2

)

(1 + SNR)n0/2+1Γ(N/2)
, (A.6)

where (a) follows since
∫ ∞

γ
xν−1e−µxdx = µ−νΓ(ν, µγ) [16]. Similarly we have

PD(n0) ≤
(1 + SNR)(N−n0)/2−1

Γ(N/2)
Γ

(
N

2
,
γ

2

)

. (A.7)

The assertion follows from (A.6) and (A.7). 2
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