| 1 328 K2

=15 T=EMEm

"t @ X

FERELEEEARER/HERG LY Aho-Corasick SEE EME{LEEE R

Enhancing the Aho-Corasick Algorithm for Signature Based

Anti-Virus/Worm Implementations

G R
TR AR KR

PERE AL+R F KA

FEOLHE A BRI/ E S £4 Aho-Corasick & & iz
Ll
Enhancing the Aho-Corasick Algorithm for Signature Based
Anti-Virus/Worm Implementation

I RET S Student : Wei-Zoo Lee

I EFR 3 AR Advisor : Tsern-Huei Lee

A Thesis
Submitted to Institute.of Communications Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
In partial Fulfillment of the Requirements for the Degree of
Master
in

Communications Engineering
June 2010

Hsinchu, Taiwan, Republic of China

PERARA L4 ES D

/.

el

XN
ji4

it

FELEHEARE /P ERSK L ¥ Aho-Corasick
SEEENR{LEER

B R HEAIY PRI

EAS TN
CAERNEANE

i %

N R ARG HVAER & > FSBEEH EA&ER B/ 8 E TR TR E Y
Rty - HATHE A 7B ELEEEE © Aho-Corasick (AC)HEE » & —(ERES
[FRF L 2 e > M HAE S HEIREE 2 [A REAOraa iR e i RS A 0L -
AC HEBUAH 3 R KR - S EE AT 20 PRI 5 /i aa A B 2 il AR FHIEAR %
REAETR » iEhmam S FlTE R ACTEELAIFIR(E - Fl—TERGUEAY T =K
B EELMR LR AC EEA» DUES A LI — T B LU IERFR R
TE Ry & Eui > W H REAEHESS tH - SR YRR DL AR R Z (R BEE
HIALE -

BRI MRS FEREEY - IERFORA

Enhancing the Aho-Corasick Algorithm
for Signature Based Anti-Virus/Worm
Implementations

Student: Wei-Zoo Lee Advisor: Prof. Tsern-Huei Lee

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

Because of its accuracy, pattern matching is considered an important technique in
anti-virus/worm applications. Among some famous pattern matching algorithms, the
Aho-Corasick (AC) can match multiple patterns simultaneously and guarantee
deterministic performance under all circumstances.. However, the AC algorithm was
developed for strings while virus/worm signatures could be specified by simple
regular expressions. In this paper, we enhance the AC algorithm to systematically
construct a signature matching system which can indicate the ending position in a
finite input string for the occurrence of virus/worm signatures that are specified by
strings or simple regular expressions. The regular expressions studied are those

adopted in ClamAV for signature specification.

Keywords: network security, string matching, regular expression

" Eel
RSN (S TRETFTAT NTL Eha=ay S AR - SRl
B~ AlfmERdH - R - FERH ~ ZEBE - KB ki BERHRELE &
B~ MARD ~ 3R~ R5E ~ ER BEE RKR > ERCAEERRES
& MMEER - P9EER - B R R IABTERT - URAEE
Z AT e ERAV LR RERAEE -

Frol R EAVIE EREY 2= 2 1L > fEFRAVERSE - WIFThmaves
ERPAETTTC R A P £ BE S - BN SRl ~ AR £ B ZRRHE] 52
TERRSE)7 IR AE B o o B st R IR RE S A A T Y — KB T -
A& R B R BT HE S R BT e B E 5K

S R SORG FTE BN TR
2010/06

R X

iy

=+
1:IN\BY

° &

&

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4

Introduction
Aho-Corasick Algorithm
Problem Definition
The Proposed Signature Matching System
Pre-filter
Verification Module
The goto function
The failure function
The output function
The signature matching machine
Data Structures

Programming Schedule

Experimental Result

oo oo ~ w = <

10
10
16
17
18
20

25
29
33

Bl 1

] 2
B 3

B 4

B 5
) 6
Bl 7

) 8

B P &x

goto function, failure function, output function, for Y = {he, she, his,
hers}.

The stateful pre-filter architecture form =6 and k = 3.
The goto graphs for RE, =a*bc*d, RE,=a*ef *d, RE,=pqr*st,
and RE, = p*a{2,43u{3,5}vw*xy .

The failure function and (b) the output function for the example regular
expressions used for Fig. 3.
Data structures for leaf, single-child, and branch states.

Data structures for Non-branch, non-leaf explicit state.

Performance comparison of ClamAV implementation and our proposed
signature matching system for clean files of various sizes.
Performance comparison of ClamAV implementation and our proposed
signature matching system for clean files of various sizes.

3

10

17

21
24
31

32

Chapter 1.

Introduction

Because of the rapid advances of computer and network technologies, modern
computer viruses and worms can spread at a speed much faster than human-mediated
responses. Fast and effective detection of viruses/worms as they are spreading is,
therefore, necessary to prevent the majority of vulnerable systems from being infected

and minimize the damage.

There are some well-known pattern matching algorithms such as
Knuth-Morris-Pratt (KMP) [1], Boyer-Moore (BM) [2], and Aho-Corasick (AC) [3].
The KMP and BM algorithms are efficient for single pattern matching but are not
scalable for multiple patterns. The AC algorithm pre-processes the patterns and builds
a finite automaton which can match multiple patterns simultaneously. Another
advantage of the AC algorithm is that it guarantees deterministic performance under

all circumstances.

As security attacks become sophisticated, regular expressions which are much
more expressive than plain strings were used to specify their signatures. Fortunately,
the regular expressions used to specify virus/worm signatures are often simple ones.
For example, the signatures defined in ClamAV [4] allow only plain strings and three
operators: * (match any number of symbols), ? (match any symbol), and {min, max}
(match minimum of min, maximum of max symbols). The AC algorithm was

generalized to match such simple regular expressions in [5]. Actually, the AC

algorithm can be extended to detect other types of attacks, such as injection attacks

[6].

The purpose of this paper is to present an implementation of a high-performance
and reasonable memory requirement signature matching system for plain strings and
simple regular expressions. It can be directly applied to anti-virus/worm applications
for matching exploit signatures or used as a matcher primitive for matching
vulnerability signatures [7]. The proposed signature matching system consists of a
pre-filter and a verification module. It has space complexity comparable to

NFA-based solutions.

Chapter 2.

The Aho-Corasick Algorithm

The AC algorithm is a string matching algorithm which can match multiple
patterns simultaneously. It is dictated by three functions: a goto function g, a failure
function f, and an output function output. Fig. 1 shows the three functions for the

pattern set Y = {he, she, his, hers} [9].

fR 0 0 o0 1 2 0 3 0 3

R output(R)
2 {he}

5 {she, he}
7 {his}

9 {hers}
©)

Fig. 1. (a) goto function, (b) failure function, and (c) output function for Y = {he, she,
his, hers}.

Some definitions are needed. Let SS, represent concatenation of strings S,
and S,. Wesay S, isaprefix and S, is a suffix of the string S;S,. Moreover,
S, is a proper prefix if S, is not empty. Likewise, S, is a proper suffix if S, is
not empty. String S is said to represent state P on a goto graph if the shortest path
from the start state to state P spells out S. For example, string her represents state
8 in Fig. 1. The start state is represented by the empty string ¢. Throughout this

paper, the representing string of state P is denoted by S”. The length of string S

is represented by |S |.

One state, numbered 0, is designated as the start state. The goto function g maps a
pair (state, input symbol) into a state or the message fail. For the example shown in
Fig. 1, we have g(0, h) = 1 and g(1,0) =failif o isnoteori. State 0 is a special
state which never results in the fail message. -~ With this property, one input symbol is

processed by the AC algorithm in every operation cycle.

The failure function f maps a state into a state and is consulted when the outcome
of the goto function is the fail message. We have f(P) = R if and only if (iff) S® is
the longest proper suffix of S° that is also a prefix of some pattern. The output
function maps a state into a set of patterns. (Note that the set could be empty.) The set

output(P) contains a pattern if the pattern is a suffix of S°.

The operation of the AC pattern matching machine is as follows. Let P be the
current state and o the current input symbol. Also, let X denote the input string.
Initially, the start state is assigned as the current state and the first symbol of X is
the current input symbol. An operation cycle of the AC algorithm is defined as

follows.

1. If g(P, o) = R, the algorithm makes a state transition such that state R
becomes the current state and the next symbol in X becomes the current
input symbol. If output(R) # O, the algorithm emits the set output(R).
The operation cycle is complete.

2. Ifg(P, o) =fail, the algorithm makes a failure transition by consulting the
failure function f. Assume that f(P) = R. The algorithm repeats the cycle

with R as the current state and o as the current input symbol.

The procedures to construct the goto, failure, and output functions are described
in Algorithms AC1 and AC2 below [3]. The goto function and the failure function
are constructed in Algorithms 1 and 2, respectively. The output function is partially

constructed in Algorithm 1 and completed in'Algorithm 2.

Algorithm AC1. Construction of the goto function.

Input. Set of keywords Y ={y,, ¥,5 Vi }-

Output. Goto function g and a partially computed output function output.

Method. We assume output(P)=& when state P is first created, and g(P, o) = fail if
o 1s undefined or if g(P,o) has not yet been defined. The procedure enter(y)
inserts into the goto graph a path that spells out y.

begin
newstate < 0
for i — 1 until k do enter(y,)
for all o such that g(0,0) = fail do g(0,0) < 0
end
procedure enter(aa,..a,):

begin
state «— 0;] «— 1

while g(state,a;)# fail do
begin

state < g(state,a;)

je—j+l1
end
for p < j until m do
begin
newstate «— newstate + 1

g(state,a,) « newstate

state < newstate
end
output(state) — {aa,...a}

end

Algorithm AC2. Construction of the failure function.

Input. Goto function g and output function output from Algorithm 1.
Output. Failure function f and output function output.

Method.

begin
queue «— empty
foreach o suchthatg(0,0)=P#0 do
begin
queue «— queue U {P}
f(P)<—0
end
while queue # empty do
begin
let R be the next state in queue
queue «— queue - {R}
for cach o such that g(R,o0) =P # fail do
begin
queue «— queue U {P}
state — f(R)
while g (state, o) = fail do state < f(state)
f(P) < g(state,o)
output(P) «—output(P) U output(f(P))
end
end
end

Chapter 3.

Problem Definition

We address in this paper the problem of detecting occurrence in a given input
string for a group of plain strings and simple regular expressions. We focus on
simple regular expressions because plain strings can be considered as special cases of
simple regular expressions. As mentioned before, the studied regular expressions
can only contain strings and three operators: *, ?, and {min,max}. It is assumed
that every symbol is a byte. We only consider * and {min,max} operators because

consecutive ? operators can be replaced with a {min,max} operator.

We shall construct a signature matching system that can indicate the ending
position in a finite input string X for'the occurrence of signature(s). Note that it is
possible for multiple signatures to be matched simultaneously. As in the AC pattern
matching machine, we use functions g, f, and output to represent, respectively, the
goto function, the failure function, and the output function of the constructed

signature matching system.

Chapter 4.

The Proposed Signature Matching System

Let RE,, RE,, ..., and RE, be n regular expressions that contain * operators

only. Further, let RE RE ...,and RE_ be m regular expressions, each of

n+1° n+2° °

them contains at least one {min, max} operator. We construct in this section the

signature matching system for RE,, RE,, ..., RE,, RE RE and RE_ .

ns n 2 hens e
Let RE=RE'*RE’, where RE' and RE’ are plain strings or simple regular
expressions. An important fact in finding a match for RE is that, once RE' was
matched before, a match of RE is found if RE” is matched. Therefore, we need
to remember whether or not RE' was matched before. We use different goto
graphs to implicitly memorize such information. Similar to the Wu-Manber (WM)
algorithm [8], our proposed signature matching system consists of a pre-filter and a
verification module which are described separately below. With a pre-filter, the

space complexity is largely reduced and the throughput performance can be

significantly improved.

4.1 Pre-filter
The pre-filter is designed based on the well-known Bloom filters [9], [10] which

guarantee no false negative. Given block size K, there are m-k+1 membership query

module. Recall that p/p;...p" are the first m symbols of pattern P, . The sub-string
p/p’...pS is a member stored in the first membership query module, the sub-string

p2p’...p<*" is a member stored in the second membership query module, ..., and the

m-k+1 ~m-k+2 m

sub-string P, p; ..p;" 1s a member stored in the (m-k+D" (or the last)

membership query module. For convenience, these membership query modules are

denoted by MQ, , MQ,, ..., and MQ The h™ bit of MQ; is set to 1 iff there

m-k+1 *

exists pattern P, such that h =hash(p/p/™...p/""). Every membership query

module reports 1 if the query result is positive or 0 otherwise.

Again, a search window W of length m is used during scanning. Initially, W is

aligned with T so that the first symbol of T, i.e.,t,, is at the first position of W. The

last kK symbols in W, ie., t .t t, at this moment, are used to query MQ, ,

m—-k+1"m—k+2°**"m

MQ,, ..., and MQ Let gb, be the report of MQ, and QB = qgb,gb,...qb,, .,

m—k+1 *
denote the bitmap of current query result. We observe that not only current query
result but also previous ones are useful for filtering. Therefore, we introduce the
stateful concept in pre-filter design. That is; current query result and previous ones are
utilized to determine how many symbols in the text can be skipped in our pre-filter
design. Note that no additional queries are required to implement the stateful concept.

In our implementation, we use a master bitmap of size m—k+1 bits to accumulate

results obtained from previous queries. Let MB = mb,mb,...mb

., Tepresent the
master bitmap. Initially, the master bitmap contains all 1's, i.e., mb, = 1 for all i,

1<i<m-k+1. After a query result is fetched, we perform MB= MB @ QB, where

@ 1is the bitwise AND operation. A suspicious sub-string is found and the
verification engine is consulted if mb, ,.,= 1. The advancement of W is m—k+1
positions if i mb =0 for all i, 1<i<m-k+1 positions if mb, =1 and mb =0

for all i, r<i<m-k. If W is decided to be advanced by g positions, MB is

right-shifted by g bits and filled with 1's for the holes left by the shift. Fig. 2 shows

the architecture with master bitmap (stateful) for m = 6 and k = 3.

W

T= . |ts|la b | & G B fes

Master bitmap MB

| ——
// Ntm%mz’”b‘;

WG (MO |[mbr | | M@ || mbe | M@ mb s | | MG |

|rANDr| |'AND‘| "AND‘| |IAND |

Rightmost 1 detector Verification
l engine
Ia

{ r is used to compute the window advancement g = m-i+1-r)

Fig. 2. The stateful pre-filter architecture for m =6 and k = 3.

4.2 Verification Module
The verification module is an extension-of the AC algorithm. We describe
constructions of the goto function, the failure function, the output function, and the

signature matching machine separately.

4.2.1 The goto function
A regular expression which contains at least one {min,max} operator is
fragmented by the {min,max} operators. For example, regular expression RE=

S, *S,*S, {min;,max } S, *S, {min,,max,} S, is fragmented into S, *S, *S,, S, *S;,

and S,. Letre 1<k <m, represent the first fragment of RE_,, and

n+k °

Y ={RE,,...,RE,_,re re Define SRE, as the string derived from REy

n+l12°*> n+m} .

(ifi<k<n)or re, (ifn+1<k <n+m)byremoving all the * operators. We shall

construct multiple goto graphs using suffixes of SRE,, 1<k <n+m.

10

Let Z,={SRE,...,SRE,,SRE .,SRE and G, be the goto graph

n+12°° n+m}

constructed with the strings contained inZ,. The self-loop at the start state, if exists,

is deleted. Consider a regular expression REeY . Assume

that RE =S, *S,*..*S,,, . We call states Q,, 1<i<J, on graph G, with
S%=SS,..S, switching states. These J switching states are said to be
contributed by RE or they belong toRE. Note that it is possible for a switching

state to belong to multiple regular expressions. Define SRE-S%*=S .S, . If
string SRE —S% is included in constructing a goto graph G, states Qj, 1<j<Jd-i,

on graph G with s =S,,,...5,,;, are switching states on graph G . These

i+
switching states also belong to RE . < It is not hard to see that, for the switching state
Q; on graphG, there is a switching state on'graph G, represented by S,..S, ;.
We call this switching state on graph /Gy the corresponding switching state ofQ;.
In this paper, we shall use Q" to denote the corresponding switching state of a
switching state Q. We have Q =Q if switching state Q is on graph G, .

Construction of other goto graphs is as follows.

Assume that there are a total of M distinct switching states on graphG,. Let
Q,.Q,,..., and Q,, denote the switching states. A binary flag FQ, is associated
with state Q,. The flag FQ, =1 iff the string representing state Q, was found.

The possible values of (FQ,,FQ,,...,FQ,,) are called configurations. Clearly,
there are 2" possible values for (FQ,,FQ,,...,FQ,,). We say a configuration is

feasible if it is possible to occur during scanning. A goto graph is constructed for

11

each feasible configuration. In general, not all the 2" possible configurations are

feasible. The goto graph G, corresponds to the all-zero feasible configuration
C,=0=(0, 0, ..., 0). We call goto graph G, the Level O graph. Graph G, is
used to construct Level 1 goto graphs, which in turn are used to construct Level 2
goto graphs, and so on. In the construction procedure shown below, the function
Construct_Goto_Graph(G, Z) is to construct goto graph G with the strings in
Z using Algorithm ACI, except that the self-loop at the start state, if exists, is
removed. The goto graphG,, with corresponding feasible configuration C,, is
constructed with the strings contained in set Z,. The set Z; is the input to the

construction procedure. Some states are marked as fork states because, as will

become clear in sub-section B.4, a process is forked whenever a fork state is visited.

State R on goto graph G, is a fork'state iff.S"=SRE,,, for some k, 1<k <m.

n+k
Similarly, state R on goto graphG, (i=>1)is a fork state iff S® =SRE,, —S® isa

string in Z;, where Q is a switching state on graph G, that is contributed by

RE

n+k *

Procedure Goto(Z,)
i=0 /*index of goto graphs */
I =0 /*level of goto graphs */
C,=0
Configurations _in_ Level[l]={C,}
Construct_Goto_Graph(G,, Z,)
Mark the fork states on graph G,
Graphs _in_ Level[l]={G,}
while (1)
J=1+1
Configurations _in_Level[J]=O
Graphs _in_Level[J]=O
For every G € Graphs in_Level[l] with corresponding configuration C
For every switching state Q on graph G

12

Determine the corresponding switching state Q" on graph G,

Set_Flags(C', Q') /*set FQ, =1 if S¥ isaprefixof S% *
C"=C@®C’' /* @ denotes the bitwise OR operation */

If C"#C; forall j, 0<j<i /*anew feasible configuration */

I++
C =C"
Configurations _in_Level[J]=

Configurations _in_ Level[J]U{C.}
Find_Strings(Z,, C,) /* determine Z; */
Construct_Goto_Graph(G,;, Z,)

Mark the fork states on graph G,
Graphs _in_Level[J]=Graphs in_Level[J]U{G;}

If Configurations in_Level[J]=9

Break
| ++

Set Flags(C, Q)
C=0

For every switching state Q,
If S9 isaprefix of S°

FQ=1 /* FQ denotesthe i" bitof C */

Find_Strings(Z, C)
For every switching state Q, such that FQ, =1
Find B(Q,) the set of regular expressions that contribute state Q,

Forevery RE; € B(Q))
Z =7 U{SRE;-S%}
For every SRE; -S% ez
If there exists SRE; —S% € Z which is a proper suffix of SRE; —S%
Z=7—-{SRE,-S%}

13

Construction of the goto graphs for Y ={RE,..,RE,re ,...re, .} 1is

accomplished by the above procedure. The remaining work is to handle the other

fragments of RE, , 1<ks<m . Again, we use RE, =
§,*S,*S, {min,max;} S,*S, {min,,max,} S, as an example for explanation.
Handling of the other fragments of RE ,, 1is basically to repeat the above
construction procedure assuming that there is only one regular expression
RE=S,*S, {min,,max,} S,. Consider handling of the second fragment S,*S;.
Two goto graphs are constructed: one for {S,S,} and another one for{S;}. The
start state on the goto graph constructed for {S,S.} is modified as follows. It is
marked with {min,max,} and the self-loop, if exists, is not removed. The
remaining fragments are handled the same as the second fragment. For

differentiation, we shall useT,'s to represent the goto graphs constructed for the

fragments other than the first one of RE 1<k <m. The construction of goto

n+k >

graphs is completed after all fragments of RE 1<k <m, are processed.

n+k 2

Note that there is no Level 2 goto graph if the first string of any regular
expression is not a prefix of the first string of any other regular expression. This is
called non-overlapping condition. Under the non-overlapping condition, string S,

of RE=S *S,*..*S, | appears exactly i times on i different goto graphs.

Fig. 5 shows the goto graphs for RE, =a*bc*d,RE, =a*ef *d, RE, = pqr*st,
and RE, = p*q{2,4}u{3,5}vw*Xxy. Note that there are five switching states and
one fork state on graph G,. Switching state Q, is contributed by both RE,
and RE,. Therefore, strings bcd and efd are used to construct graph G, .
Graphs G, to G, are Level 1 graphs while graph G, is the only Level 2 graph

and is generated by graphG,. Goto graph T, is created by the second fragment

14

of RE,. Note that state 31 is a fork state and marked with {2,4} .

1 Qz GO
G =0.00,00)

G3
C=(1.0.100

O .
C=0.00,1,0

GS
C,=(0,0.0.1,1)

d G6
C,=(1,1,1,0,)

[("u]

[

(V=)
Q @k
=
@}*’
wn
=

"y {35

15

X y
:

Figure 3. The goto graphs for RE, =a*bc*d, RE,=a*ef *d, RE, = pqr*st, and
RE, = p*0{2,4}u{3,5}vw*xy .

4.2.2 The failure function

For convenience, we call a goto graph whose start state is marked with some
{min,max} operatora {min,max}—graph. As an example, the goto graphs T,
and T, shown in Figure 5 are {min,max} —graphs. The failure functions for
non —{min,max} —graphs and {min,max}— graphs are constructed with the
following Non-{min, max} Failure and {min, max} Failure procedures,
respectively. In the procedures, C represents the corresponding feasible
configuration of graph G or T. Anadditional state, called the END state, is
added in constructing the failure function. As will be seen in Sub-section B.4,

traversal on a goto graph ends if it enters the 'END- state.

Fig. 4(a) shows the failure function for the four regular expressions used in Fig.
5. In this figure, the state number of the (i, j)" entry is 10*i+ j and value O for

f(R) represents the END state. The symbol “- means failure never occurs in

that state. For example, failure never occurs in states 38 and 40.

f(R) [0 1 2 3 4 5 6 7 8 9
0 13 13 (20 |20 13 (25 |25 |30 |30
1 32 |32 |32 |0 0 20 |20 |0 25 |25
2 36 |36 |0 0 36 |36 |0
3 0 0 0 0 0 0 - 38
4 - 40 |45 |45 |45 |0 0

(a)

16

R 4,16,21,28 |7,19,24,29 | 12,34 44, 47 37
output(R) RE, RE, RE, RE, RE,,RE,

(b)

Fig. 4. (a) The failure function and (b) the output function for the example regular

expressions used for Fig. 3.

4.2.3 The output function

Consider some goto graph G constructed for Y . Assume that
RE, =S, *S,*..*S,,,, 1<k<n, and S, .S, is included in constructing graph
G. We assign initially output(P)= for every state P on graph G. Let R be

the state on graph G with S® =8 TR The output function output(R) is

+1 I+ 0

modified as output(R) = output(R) U{RE,} .

Now consider a goto graph T - constructed for some fragment of RE_,,,

1<k <m. Forevery state P on graph - T, we assign output(P)=. Ifgraph T

is constructed for the last fragment of RE__, , then output(R) is modified for some

n+k >

state R. Assume that the last fragment of RE_,, is S, *S,*..*S, andgraph T

is constructed with §;,,...S; ;. The output function of state R on graph T is

modified as output(R) =output(R) U {RE, } if SR:SH...SM.

Note that, with the pre-filter and the fork states, we do not need to consider the
case where a string which matches a regular expression contains a sub-string that
matches another regular expression. Fig. 6(b) gives the output function of the states
shown in Fig. 5. States with the same output function are shown in the same column.

We have output(R)=(if state R does not appear in the figure.

17

4.2.4 The signature matching machine

During scanning, a set called Active Graphs is maintained. @When the
pre-filter finds the starting position of a suspicious sub-string which may result in
match of some signatures, concurrent traversals begin at the start states of all the goto
graphs contained in Active Graphs. Initially, we have Active Graphs ={G,}.
Consider the traversal on a specific goto graph. A process is forked to traverse a
{min,max} —graph if a fork state is visited. As an example, consider the goto
graphs shown in Fig. 5. A process is forked to traverse graph T, if state 9, 31, or
35 i1s visited. As another example, a process is forked to traverse graph T, if state
39 is visited. Assume that the failure function is consulted in state R and f(R) is
the start state of some goto graph G or T, different from the goto graph state R is
on. In this case, graph G or T is.added .to Active Graphs so that it will be
traversed when succeeding suspicious sub-strings: are found by the pre-filter. For

example, for the goto graphs shown in Fig. 5, if the failure function is consulted in

state 2, then graph G, is added to Active Graphs . Traversal on a

non —{min,max} —graph ends if a match is found or the failure function is consulted.

Traversal on {min,max}—graph T 1is as follows. Let {min, max} be the
mark of its start state. A counter Ctr is maintained when traversing graph T.
The content of ctr is initialized to min and the next min symbols are skipped.
The counter is increased by one if the current state is the start state of T and it
returns to the same state after an input symbol is processed. Assume that the failure
function is consulted in state P. If state f(P) is also on graph T, which implies
state P is not on the sub-tree of any switching state, then ctr is updated as ctr =
ctr+ |S7] - |S'™|. We set ctr=max+l if state f(P) is on a different graph.

The traversal ends iff a match is found or ctr >max.

18

Note that traversal on a {min,max} —graph with mark {min, max} may take a
long time to end if max islarge. One possible remedy for this is to place the string
that follows such a {min, max} operator into the pre-filter and let the traversal ends
once it enters the start state. If ctr < max when the traversal ends, then the status,
including min, max, ctr value, and the position of the last processed symbol, are
saved. Moreover, the {min,max}—graph is added to Active Graphs. The ctr
value can be updated according to the saved status and the starting position of the next
suspicious sub-string. The traversal on the {min,max}—graph ends immediately if
the starting position of the suspicious sub-string minus the position of the last
processed symbol is smaller than min or the updated ctr value is greater than

max.

Assume that a particular goto graph is under traversal. RE,, 1<k<n, is a
candidate signature to be matched if some suffix of SRE, is included in constructing

the goto graph. Similarly, RE 1<k <m, is a candidate signature to be matched

n+k °
if some suffix of the string obtained by removing the * operators of some fragment of

RE,., is included in constructing the goto graph. Obviously, the number of
candidates never increases during traversal for a given suspicious sub-string. The

verification process ends if any signature is matched, the input string is exhausted, or

all concurrent traversals end.

19

Chapter 5.

Data Structures

Consider a particular goto graph. In our proposed scheme, we classify states
according to the number of child states. State P is said to be a branch state, a
single-child state, or a leaf state, if it has at least two child states, exactly one child
state, or no child state, respectively. Moreover, state P is said to be a final state if
output(P) = <. Note that a leaf state is either a final state or a fork state or both.
As shown in Fig. 5, the data structures for branch, single-child, and leaf states are
different. The meanings of the first four bits of the first byte, denoted by b bb,b;,
are the same for all data structures.” -Bit b,=1iff the state is a final state and bit
b,=1 iff the state is a fork state.- Bits ‘b,b,. indicate the type of the state and are
equal to 00, 01, or 10 if the state is a leaf state, a single-child state, or a branch state,
respectively. The rest four bits of the first byte are unused. The data structure
consists of four bytes if b,=1 regardless of the type of the state. In this case, bytes 2,
3, and 4 store the index of matched signatures. In the following, we only describe

data structures for non-final states.

20

Final state

Final | Fork Type

Index of matched signatures: 3 bytes

Leaf state

Final | Fork 00

fork(P): 3 bytes

min: 2 bytes

max: 2 bytes

f(P): 3 bytes

Single-child state

Final | Fork 01

o: 1 byte

f(P): 3 bytes

R: 3 bytes

fork(P): 3 .bytes or empty

min: 2 bytes.or empty

max:2 bytes or empty

Branch state

Final | Fork 10

f(P): 3 bytes

fork(P): 3 bytes or empty

min: 2 bytes or empty

max: 2 bytes or empty

start index: 1 byte

end index: 1 byte

band values: 3(start index — end index +1) bytes

P is not a final state, it must be a fork state.

the goto graph to be traversed by a forked process.

Figure 5. Data structures for leaf, single-child, and branch states.

The data structure for non-final leaf state P consists of eleven bytes.

Bytes 5 and 6 store the min value and bytes 7 and 8 store the max

21

Since state

Bytes 2, 3, and 4 store the start state of

Let {min,max} be the mark of

value. The content of bytes 9, 10, and 11 represents the failure state f(P). Note

that f(P)=0 means the END state is entered when the failure function is

consulted in state P.

Assume that state P is a single-child state and g(P,o) = R. We allocate eight or
fifteen bytes for state P. The second byte stores the symbolo. Bytes 3, 4, and 5
store the failure state f(P) and bytes 6, 7, and 8 store state R. The data structure is
completed if state P is not a fork state. Otherwise, seven more bytes are needed.
Bytes 9, 10, and 11 store the start state of the goto graph to be traversed by a forked
process. Bytes 12 and 13 store the min value and bytes 14 and 15 store the max

value of the mark.

Finally, assume that state P is.a branch state.. The data structure adopted is the
banded-row format [11]. As an example, consider the sparse vector (00054000
907000000000). The non-zero values occur in between the third (numbered
from 0) and the tenth elements. Consequently, it can be represented as (3 105400
0 9 0 7), where the first number indicates the start index and the second number
denotes the end index, followed by eight band values. In our application, a non-zero
band value represents the next state number and value zero means the failure function
1s to be consulted. To summarize, the data structure for non-final branch state P
includes four or eleven bytes followed by the banded-row format. Bytes 2, 3, and 4
store the failure state f (P). If state P is a fork state, then seven more bytes are
needed. Bytes 5, 6, and 7 store the start state of the goto graph to be traversed by a
forked process. Bytes 8 and 9 store the min value and bytes 10 and 11 store the
max value of the mark. As for the banded-row format, there is one byte for the

start index and another byte for the end index. Each band value takes three bytes.

22

For an input symbol o which falls in the band with a non-zero band value k, it
means thatg(P,o)=k. In case the input symbol o falls outside the band or it

falls in the band with a band value zero, it means g(P, o) = fail .

Since the goto graph G, is likely to have a large number of states for a large
signature set. As a result, to make the proposed signature matching system useful, it

is necessary to reduce the memory space required by goto graphs. We modified the

goto graph G, such that the state number of G, can be largely reduced.

There are many redundancies in the failure function, since many states may fail to
the same state (say, the start state of a goto graph). But in the data structure we
mention before, we store the failure function for each state. State R is said to be a first
single-child state if it is a single-child state and its parent state is a branch state.
Moreover, state S is said to be an explicit state if it is the start state, a branch state, a

first single-child state, a switching state, a fork state, or a final state. We modified the

goto graph G, into a different way which is represented by explicit state only.

Assume that state P is a single-child state and is represented by string S, . State R
is said to be a descendent state of state P if it is represented by S,S,, where S, is a
non-empty string. Furthermore, state R is said to be a descendent explicit state of state
P if R is an explicit state and a descendent state of state P. State R is said to be the
nearest descendent explicit state (NDES) of state P if state R is a descendent explicit
state of state P and there is no other descendent explicit state of state P which is
represented by string SW, where stringW, is a proper prefix of stringS,. The data

structure for the single-child state P includes P.pattern, P.distance, and f(P), where

P.pattern and P.distance store, respectively, the identification of the patternP,,

23

and|S S, |.

Only the goto graph G,is modified, the original data structure is still needed. It
doesn't make any different on branch state and leaf state (or final state). So we add an
additional data structure shown if Fig. 6 for the first single-child state on G . Bytes 2,
3, and 4 store the failure state f (P). Bytes 5, 6, and 7 store the next explicit state it
will enter according to the goto function. If it is not a fork state, bytes 8 and 9 store
the P.distance. Bytes 10 and more (if needed) store the P.pattern. If it is a fork state,
then seven more bytes are needed. Bytes 8, 9, and 10 store the start state of the goto
graph to be traversed by a forked process. Bytes 11 and 12 store the min value and
bytes 13 and 14 store the max value of the mark. Bytes 15 and 16 store the

P.distance. Bytes 17 and more (if needed) store.the P.pattern.

Non-branch, non-leaf explicit state

Final | Fork 11
f(P): 3 bytes
R: 3 bytes

fork(P): 3 bytes or empty

min: 2 bytes or empty

max: 2 bytes or empty

distance: 2 bytes

o : 1*(distance) bytes

Figure 6. Data structures for Non-branch, non-leaf explicit state.

24

Chapter 6.

Programming Schedule

In this section, we will describe the programming schedule in detail. There are
six processes in this program, each of them has their own input and output. The main
idea of this program is dictated by three parts: the matching machine construction,
data compression, the scanning engine. Process 1 to 4 is the construction part,
including the pre-filter, goto function, failure function, and output function. Process 5
handles the data compression. In this process, we combine the goto, failure and output
function into a form of data structure we describe in section 5. Process 6 is the
scanning part. In this process, we canjreally scan a file and show that if there is any
pattern matched. Each process is described in the following statement in detail

individually:

Process 1: Signature analysis

Inputs: Signature file

Outputs: NumSignature, eacwp.pattern[NumSignature]|
Description:

Since we care about the regular expression, each signature is fragmented into
several segments according to their operator. And we need to know how many
segment does a signature has. If it’s a plain string, it’s obvious that it doesn’t need to
be fragmented, so the segment number must be one. For each segment, we not only
store the actual string, but also other information, ex. Length, operator type following

the segment. All this information will be stored under eacwp.pattern.

25

Process 2: Pre-filter construction
Inputs: eacwp.pattern
Outputs: Pre-filter, Advancement table
Description:

Let the windows length m=10, block size k=4. We hash the series of 4 bytes into
18 bits, hence the pre-filter has 2°18=262144 entries. Each hash result will reply a
bitmap with the size of 8 bits. So the total size of the pre-filter is about 256k bytes.
Note that the advancement table is used to look up the pre-filter’s advance number. In

that way, we don’t need to do the online computing to get the advancement number.

Process 3: Goto graph procedure
Inputs: eacwp.pattern
Outputs: Numstate, goto function, output function, Configuration
Description:

During the construction of the graphs, we can also decide the output function.
It’s important for us to remember all the switching state and it’s represented pattern
sting, in that way, it’s possible to get the all feasible configurations. Note that it’s
impossible to construct the failure function before we finish all the graph’s
constructions, since we need to know all feasible configurations and its corresponding
goto graph when we build the failure function. And the fork transition is not
completed yet. We only decide the fork transition on the goto graph G, during the

construction, but not all the other level’s graph.

26

Process 4: Failure function procedure
Inputs: Numstate, goto function, Configuration
Outputs: failure function, fork transition
Description:
We finish the fork transition and build the failure function state by state in this
process. After that, the pattern matching machine’s construction is completely

finished.

Process 5: Data compression

Inputs: goto function, failure function, output function, fork transition
Outputs: eacwp.datastructure[NumState]|

Description:

Before we combine the three main functions and the fork transition into a special
data structure, the modification of'the goto graph G, is needed. As we mentioned in
section 5, in order to reduce the memory requirement, we represent the goto graph
G, 1n a different way. Note that this modification is only for memory reduction, the

data structure is still suitable if we don’t modify the goto graph G, . The data structure

eacwp.datastructure is the only one we need in verification module.

Process 6: Scanning procedure
Inputs: eacwp.datastructure, pre-filter, Advancement table, Text file
Outputs: Matched Signature ID and starting position, if signature occurs in Text.
Description:
During the scanning process, we have to maintain an information : Active_graph.

The procedure will be end if there is any pattern matched or the text file is finished.

27

The program can also apply on the internet. The only difference is that we need to
modify the program for packet based. Since the original program will be end when the
input file comes to the end if there is no pattern matched. But in the network, all the
file transmission is based on the packet, in other words, we have to scan these packets
in order to guarantee the whole completed file to be scanned. It means that the
scanning process doesn’t end until all the packets have been scanned. In order to
continue the scanning process between each packet, we must to remember all the
status about the scanning process. The status is including the state we are going to
continue, and if it’s during the traversal on {min, max} — graphs, the counter and the
value of min and max are needed. Note that it’s possible that the process will stop on
multiple goto graphs when we finish a single packet’s scanning. Not only the state
information, pre-filter’s window and its:hext'adyancement are both needed too. And
the program will end if there is a pattern matched or all the packets are completed

finished its own scanning process.

28

Chapter 7.

Experimental Result

In this section, we compare the performance of our proposed signature matching
system with that of the ClamAV implementation and its enhancement [?]. Both
throughput performance and memory requirement are compared. Programs are
coded in C++ and the experiments are conducted on a PC with an Intel Pentium 4

CPU operated at 2.02GHz with 1.75GB of RAM.

We traced the ClamAV implementation, extracted the ideas, and re-wrote the codes
for our experiments. In the ClamAV implementation, a trie of height two is
constructed for the first two bytes of all patterns based on AC pattern matching
machine. Effectively, patterns are grouped based on their first two bytes. The
failure function for non-leaf states is eliminated because the next move function 6 is
adopted. = The next move function o 1is defined as o(P,o0)=9(P,o) if
g(P,o) = fail or 6(P,0)=06(f(P),0) otherwise. When the first two bytes of
some group are matched, a sequential search is performed for all patterns in the group.
Different from our proposed scheme, a regular expression is fragmented by the three
*, 2, and {min, max} operators. A data structure is maintained to indicate up to
which fragment a regular expression had been matched and the position in the text of
the last matched fragment. Consider a regular expression which consists of k
fragments. Assume that the first e fragments had been matched and the e"
fragment ends at the i"™ position of the text. Assume further that another fragment

is matched at the ™ position. This newly matched fragment is discarded if it is

29

not the (e+1)" fragment or i and j do not satisfy the condition specified by the
operator which separates the e€” and the (e+1)" fragments. As an example,
consider a regular expression RE = sre, ?sre, {2,4} sre, {3,5} sre,. Assume that the
first fragment sre, was matched at the i" position of the text. If the second
fragment sre, is matched at the (i+]sre, |+1)™ position, then the data structure
will be updated to indicate that the first two fragments are matched and the position of
the second fragment is matched at the (i+]|sre,|+1)" position. Assume that a
fragment is further found at the j" position, then the data structure is further
updated only if it is the third fragment sre, and j satisfies 2<j-i-|sre, |-|sre,|-1<4.
Otherwise, the newly matched fragment is discarded and the data structure remains

intact.

As of November 2009, the ClamAV database has 30,385 signatures. Among these
signatures, 1599 are regular expressions. After converting ? operators into {min,
max} operators, there are ? regular expressions which contain at least one {min, max}
operator. The shortest pre-filter pattern has only two bytes. To demonstrate the
potential benefit of using a pre-filter, we discard a string which generates a pre-filter

pattern of length shorter than 6. We eliminated 217 signatures based on this criterion.

In our simulations, we select K = 6 and L = 3 with four pre-filters. Let t;t; ,..t; 5 be

the string contained in the search window. Since hash functions are not the focus of
this paper, we use simple ones. The i" hash function used in our experiments is
simply t,, t;,; ®t, t where ® represents the bitwise exclusive-OR

JH5—iTj+6-i 0

operation.

30

Fig 7 shows the comparison of CPU execution time for randomly generated files of
various sizes without any signature occurrence. We call our proposed system eacwp
for short. It can be seen that the CPU execution time is proportional to file size. The
CPU time required by the ClamAV implementation is about 4 times of that required
by eacwp. We expect the performance improvement to become larger as the number
of signatures increases. The reason is that, in ClamAV implementation, the number
of strings in a group with identical first two bytes increases as the number of
signatures increases. Since the ClamAV implementation performs sequential search
for strings in the same group, it consumes more CPU time to find the match in a larger

group.

10000

T
—#— ClamAV : /
9000| —©— eacwp(master bitmap) | - - - 'L __ 1 ,/%, [

8000

%

7000

6000

5000

time (ms)

4000

3000

2000

1000+

file size (MB)

Figure 7. Performance comparison of ClamAV implementation and our proposed

signature matching system for clean files of various sizes.

As for memory requirement, ClamAV implementation uses 3.57M bytes and eacwp
uses about 5.7M bytes. The pre-filter requires 256K bytes and the verification
module needs 5.5M bytes. We believe the amount of memory required by our

proposed signature matching system is acceptable for practical systems.

31

Now we modify the pre-filter with a new value of K= 10 and L = 4. And we increase
the hash value’s bit number so that the collision due to the hash function will be
reduced. So the size of the pre-filter will come to 1M bytes (20 entries,
2720=1048576). Because of the difference of window size, we discard a string which
generates a pre-filter pattern of length shorter than 10. We eliminated a little more,
about 377 signatures based on this criterion. And one more difference is that we apply
two pre-filters. Each pre-filter is built with its own hash function which is different
from the other one. When the first pre-filter’s query result consults the verification
module, we apply the second pre-filter instead. The verification module is consulted
iff the two pre-filters both consult the verification module. The memory requirement
grows up a little, comes to 7.5M bytes. The pre-filter requires 2M bytes and the
verification module needs 5.5M bytes. We expect the improvement will work on the
performance’s advancement. Fig 8:shows the result and confirms our expectation. The
CPU time required by the ClamAV implementation is about more than 10 times of

that required by modified eacwp.

10000

—+— ClamAV
9000| —© eacwp(master bitmap)

8000

7000

6000

5000

time (ms)

4000

3000

2000

1000+

file size (MB)

Figure 8. Performance comparison of ClamAV implementation and our proposed

signature matching system for clean files of various sizes.

32

References

[1]

2]

[3]

[4]
[3]

[6]

[7]

[8]

[9]

[10]

[11]

D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,”
TR CS-74-440, Stanford University, Stanford, California, 1974.

R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, Vol. 20, October 1977, pp. 762-772.

A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM, Vol. 18, June 1975, pp. 333-340.

Clam anti virus signature database, www.clamav.net.

F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspection,” in

Proc. of Architectures for Networking and Communications Systems (ANCS),
pp- 93-102, 2006.

G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Joannidis,
“Gnort: High performance network intrusion detection using graphics
processors,” In Recent Advances in Intrusion Detection (RAID), 2008.

J. Rejeb and M. Srinivasan, “Extension of Aho-Corasick algorithm to detect
injection attacks,” SCSS (1) 2007.

S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” TR-94-17,
1994.

B Bloom, “Space/time trade-offs in hash coding with allowable errors,” ACM,
13(7): 422-426, May 1970.

A. Broder and M. Mitzenmacher, “Network applications of Bloom filters: a

survey,” Internet Mathematics, vol. 1, no. 4, pp. 485-509.
R. Smith, C. Estan, and S. Jha, “XFA: Fast signature matching with extended
automata,” In IEEE Symposium on Security and Privacy, May 2008.

33

	論文封面
	論文目錄
	論文範本

