
國 立 交 通 大 學
電信工程研究所

碩 士 論 文

字串比對在入侵偵測/防護系統上針對 Aho-Corasick 演算法的強化與實現

Enhancing the Aho-Corasick Algorithm for Signature Based

Anti-Virus/Worm Implementations

研 究 生：李韋儒

指導教授：李程輝 教授

中 華 民 國 九十九 年 六 月

字串比對在入侵偵測/防護系統上針對 Aho-Corasick 演算法的強化

與實現

Enhancing the Aho-Corasick Algorithm for Signature Based
Anti-Virus/Worm Implementation

研 究 生：李韋儒 Student：Wei-Zoo Lee
指導教授：李程輝 Advisor：Tsern-Huei Lee

國 立 交 通 大 學
電信工程研究所

碩士論文

A Thesis

Submitted to Institute of Communications Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

In partial Fulfillment of the Requirements for the Degree of

Master

in

Communications Engineering

June 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年六月

i

字串比對在入侵偵測/防護系統上針對 Aho-Corasick
演算法的強化與實現

學生: 李韋儒 指導教授：李程輝教授

國立交通大學

電信工程研究所

摘要

因為現在網路的迅速成長，字串比對已經在防毒/防蟲當中被視為一種很重要的

技術。目前相當有名的字串比對演算法：Aho-Corasick (AC)演算法，是一個能夠

同時比對多重字串，並且在各種環境之下都能夠保證穩定的輸出表現的演算法。

AC 演算法的發展是依照字串比對的方式，然而病毒/蠕蟲本身是可以利用正規表

示式來表示。這篇論文裡，我們會將 AC 演算法作強化，用一種系統化的方式來

實現這套延伸強化應用的 AC 演算法，以達到可以針對一般字串以及正規表示式

作為表示的字串比對，並且能準確指出字串的來源以及在文件中出現之後到結束

的位置。

關鍵字：網路安全，字串比對，正規表示式

ii

Enhancing the Aho-Corasick Algorithm
for Signature Based Anti-Virus/Worm

Implementations

Student: Wei-Zoo Lee Advisor: Prof. Tsern-Huei Lee

Department of Communication Engineering

National Chiao Tung University

ABSTRACT

Because of its accuracy, pattern matching is considered an important technique in

anti-virus/worm applications. Among some famous pattern matching algorithms, the

Aho-Corasick (AC) can match multiple patterns simultaneously and guarantee

deterministic performance under all circumstances. However, the AC algorithm was

developed for strings while virus/worm signatures could be specified by simple

regular expressions. In this paper, we enhance the AC algorithm to systematically

construct a signature matching system which can indicate the ending position in a

finite input string for the occurrence of virus/worm signatures that are specified by

strings or simple regular expressions. The regular expressions studied are those

adopted in ClamAV for signature specification.

Keywords: network security, string matching, regular expression

iii

誌 謝

感謝交通大學電信工程研究所 NTL 實驗室的各位，郁文學長、景融

學長、迺倫學姐、曉薇、建碩、奕璉、永昌、永祥，學弟妹國書、煜

傑、順閔、謙和、建男、運良、晴嬅、承潔，還有已經畢業的俊德學

長、松晏學長、鈞傑學長，感謝你們陪我度過我的研究所，以及在這

之間所提供給我的任何意見跟想法。

特別感謝我的指導教授 李 程輝 博士，在我的學業、研究方面的指

導讓我在研究所兩年中獲益匪淺。與迺倫學姐、建碩同學與奕璉同學

在研究方面的相互討論更是讓我的研究能夠順利進行的一大助力。

最後感謝我的家人對我的付出與支持我才能走到今天。

謹將此論文獻給所有幫助過我的人

 2010/06

iv

目 錄

中文摘要 i

英文摘要 ii

誌謝 iii

目錄 iv

圖目錄 v

一、 Introduction 1

二、 Aho-Corasick Algorithm 3

三、 Problem Definition 7

四、 The Proposed Signature Matching System 8

4.1 Pre-filter 8

4.2 Verification Module 10

4.2.1 The goto function 10

4.2.2 The failure function 16

4.2.3 The output function 17

4.2.4 The signature matching machine 18

五、 Data Structures 20

六、 Programming Schedule 25

七、 Experimental Result 29

參考文獻 33

v

圖 目 錄

圖 1 goto function, failure function, output function, for Y = {he, she, his,

hers}.
3

圖 2 The stateful pre-filter architecture for m = 6 and k = 3. 10

圖 3 The goto graphs for 1 * *RE a bc d , 2 * *RE a ef d , 3 *RE pqr st ,

and 4 * {2,4} {3,5} *RE p q u vw xy .

16

圖 4 The failure function and (b) the output function for the example regular

expressions used for Fig. 3.

17

圖 5 Data structures for leaf, single-child, and branch states. 21

圖 6 Data structures for Non-branch, non-leaf explicit state. 24

圖 7 Performance comparison of ClamAV implementation and our proposed

signature matching system for clean files of various sizes.

31

圖 8 Performance comparison of ClamAV implementation and our proposed

signature matching system for clean files of various sizes.

32

1

Chapter 1.

Introduction

Because of the rapid advances of computer and network technologies, modern

computer viruses and worms can spread at a speed much faster than human-mediated

responses. Fast and effective detection of viruses/worms as they are spreading is,

therefore, necessary to prevent the majority of vulnerable systems from being infected

and minimize the damage.

There are some well-known pattern matching algorithms such as

Knuth-Morris-Pratt (KMP) [1], Boyer-Moore (BM) [2], and Aho-Corasick (AC) [3].

The KMP and BM algorithms are efficient for single pattern matching but are not

scalable for multiple patterns. The AC algorithm pre-processes the patterns and builds

a finite automaton which can match multiple patterns simultaneously. Another

advantage of the AC algorithm is that it guarantees deterministic performance under

all circumstances.

As security attacks become sophisticated, regular expressions which are much

more expressive than plain strings were used to specify their signatures. Fortunately,

the regular expressions used to specify virus/worm signatures are often simple ones.

For example, the signatures defined in ClamAV [4] allow only plain strings and three

operators: * (match any number of symbols), ? (match any symbol), and {min, max}

(match minimum of min, maximum of max symbols). The AC algorithm was

generalized to match such simple regular expressions in [5]. Actually, the AC

2

algorithm can be extended to detect other types of attacks, such as injection attacks

[6].

The purpose of this paper is to present an implementation of a high-performance

and reasonable memory requirement signature matching system for plain strings and

simple regular expressions. It can be directly applied to anti-virus/worm applications

for matching exploit signatures or used as a matcher primitive for matching

vulnerability signatures [7]. The proposed signature matching system consists of a

pre-filter and a verification module. It has space complexity comparable to

NFA-based solutions.

3

Chapter 2.

The Aho‐Corasick Algorithm

The AC algorithm is a string matching algorithm which can match multiple

patterns simultaneously. It is dictated by three functions: a goto function g, a failure

function f, and an output function output. Fig. 1 shows the three functions for the

pattern set Y = {he, she, his, hers} [9].

(a)

R 1 2 3 4 5 6 7 8 9

f(R) 0 0 0 1 2 0 3 0 3

(b)

R output(R)

2 {he}

5 {she, he}

7 {his}

9 {hers}

(c)

Fig. 1. (a) goto function, (b) failure function, and (c) output function for Y = {he, she,

his, hers}.

4

Some definitions are needed. Let 1 2S S represent concatenation of strings 1S

and 2S . We say 1S is a prefix and 2S is a suffix of the string 1 2S S . Moreover,

1S is a proper prefix if 2S is not empty. Likewise, 2S is a proper suffix if 1S is

not empty. String S is said to represent state P on a goto graph if the shortest path

from the start state to state P spells out S . For example, string her represents state

8 in Fig. 1. The start state is represented by the empty string  . Throughout this

paper, the representing string of state P is denoted by PS . The length of string S

is represented by | |S .

One state, numbered 0, is designated as the start state. The goto function g maps a

pair (state, input symbol) into a state or the message fail. For the example shown in

Fig. 1, we have g(0, h) = 1 and g(1,) = fail if  is not e or i. State 0 is a special

state which never results in the fail message. With this property, one input symbol is

processed by the AC algorithm in every operation cycle.

The failure function f maps a state into a state and is consulted when the outcome

of the goto function is the fail message. We have f(P) = R if and only if (iff) RS is

the longest proper suffix of PS that is also a prefix of some pattern. The output

function maps a state into a set of patterns. (Note that the set could be empty.) The set

output(P) contains a pattern if the pattern is a suffix of PS .

The operation of the AC pattern matching machine is as follows. Let P be the

current state and  the current input symbol. Also, let X denote the input string.

Initially, the start state is assigned as the current state and the first symbol of X is

the current input symbol. An operation cycle of the AC algorithm is defined as

follows.

5

1. If g(P, ) = R, the algorithm makes a state transition such that state R

becomes the current state and the next symbol in X becomes the current

input symbol. If output(R) ≠  , the algorithm emits the set output(R).

The operation cycle is complete.

2. If g(P, ) = fail, the algorithm makes a failure transition by consulting the

failure function f. Assume that f(P) = R. The algorithm repeats the cycle

with R as the current state and  as the current input symbol.

The procedures to construct the goto, failure, and output functions are described

in Algorithms AC1 and AC2 below [3]. The goto function and the failure function

are constructed in Algorithms 1 and 2, respectively. The output function is partially

constructed in Algorithm 1 and completed in Algorithm 2.

Algorithm AC1. Construction of the goto function.
Input. Set of keywords 1 2{ , ,..., }kY y y y .

Output. Goto function g and a partially computed output function output.

Method. We assume output(P)= when state P is first created, and g(P, ) = fail if

 is undefined or if g(P,) has not yet been defined. The procedure enter(y)

inserts into the goto graph a path that spells out y.

begin

 newstate ← 0

 for i ← 1 until k do ()ienter y

 for all  such that g(0,) = fail do g(0,) ← 0

end
procedure 1 2(...)menter a a a :

begin

 state ← 0; j ← 1

 while (,)jg state a fail do

 begin

 state ← (,)jg state a

6

 j ← j + l

 end

 for p ← j until m do

 begin

 newstate ← newstate + 1

 (,)pg state a ← newstate

 state ← newstate

 end
 output(state) ← 1 2{ ... }ma a a

end

Algorithm AC2. Construction of the failure function.

Input. Goto function g and output function output from Algorithm 1.

Output. Failure function f and output function output.

Method.

begin

 queue ← empty

 for each  such that g(0,) = P ≠ 0 do

 begin

 queue ← queue∪{P}

 f(P) ← 0

 end

 while queue ≠ empty do

 begin

 let R be the next state in queue

 queue ← queue - {R}

 for each  such that g(R,) = P ≠ fail do

 begin

 queue ← queue∪{P}

 state ← f(R)

 while g (state,) = fail do state ← f(state)

 f(P) ← g(state,)

 output(P) ←output(P)∪output(f(P))

 end

 end

end

7

Chapter 3.

Problem Definition

We address in this paper the problem of detecting occurrence in a given input

string for a group of plain strings and simple regular expressions. We focus on

simple regular expressions because plain strings can be considered as special cases of

simple regular expressions. As mentioned before, the studied regular expressions

can only contain strings and three operators: *, ?, and { , }min max . It is assumed

that every symbol is a byte. We only consider * and { , }min max operators because

consecutive ? operators can be replaced with a { , }min max operator.

We shall construct a signature matching system that can indicate the ending

position in a finite input string X for the occurrence of signature(s). Note that it is

possible for multiple signatures to be matched simultaneously. As in the AC pattern

matching machine, we use functions g, f, and output to represent, respectively, the

goto function, the failure function, and the output function of the constructed

signature matching system.

8

Chapter 4.

The Proposed Signature Matching System

Let 1RE , 2RE , …, and nRE be n regular expressions that contain * operators

only. Further, let 1nRE  , 2nRE  , …, and n mRE  be m regular expressions, each of

them contains at least one {min, max} operator. We construct in this section the

signature matching system for 1RE , 2RE , …, nRE , 1nRE  , 2nRE  , …, and n mRE  .

Let 1 2*RE RE RE , where 1RE and 2RE are plain strings or simple regular

expressions. An important fact in finding a match for RE is that, once 1RE was

matched before, a match of RE is found if 2RE is matched. Therefore, we need

to remember whether or not 1RE was matched before. We use different goto

graphs to implicitly memorize such information. Similar to the Wu-Manber (WM)

algorithm [8], our proposed signature matching system consists of a pre-filter and a

verification module which are described separately below. With a pre-filter, the

space complexity is largely reduced and the throughput performance can be

significantly improved.

4.1 Pre-filter

The pre-filter is designed based on the well-known Bloom filters [9], [10] which

guarantee no false negative. Given block size k, there are m-k+1 membership query

module. Recall that 1 2... m
i i ip p p are the first m symbols of pattern iP . The sub-string

1 2... k
i i ip p p is a member stored in the first membership query module, the sub-string

2 3 1... k
i i ip p p  is a member stored in the second membership query module, …, and the

9

sub-string 1 2...m k m k m
i i ip p p    is a member stored in the (1)thm k  (or the last)

membership query module. For convenience, these membership query modules are

denoted by 1MQ , 2MQ , …, and 1m kMQ   . The thh bit of jMQ is set to 1 iff there

exists pattern iP such that h = 1 1(...)j j j k
i i ihash p p p   . Every membership query

module reports 1 if the query result is positive or 0 otherwise.

Again, a search window W of length m is used during scanning. Initially, W is

aligned with T so that the first symbol of T, i.e., 1t , is at the first position of W. The

last k symbols in W, i.e., 1 2...m k m k mt t t    at this moment, are used to query 1MQ ,

2MQ , …, and 1m kMQ   . Let iqb be the report of iMQ and QB = 1 2 1... m kqb qb qb  

denote the bitmap of current query result. We observe that not only current query

result but also previous ones are useful for filtering. Therefore, we introduce the

stateful concept in pre-filter design. That is, current query result and previous ones are

utilized to determine how many symbols in the text can be skipped in our pre-filter

design. Note that no additional queries are required to implement the stateful concept.

In our implementation, we use a master bitmap of size m−k+1 bits to accumulate

results obtained from previous queries. Let MB = 1 2 1... m kmb mb mb   represent the

master bitmap. Initially, the master bitmap contains all 1's, i.e., imb = 1 for all i,

1 1i m k    . After a query result is fetched, we perform MB= MB QB, where

 is the bitwise AND operation. A suspicious sub-string is found and the

verification engine is consulted if 1m kmb   = 1. The advancement of W is m−k+1

positions if i mb = 0 for all i, 1 1i m k    positions if rmb = 1 and imb = 0

for all i, r< i m k  . If W is decided to be advanced by g positions, MB is

10

right-shifted by g bits and filled with 1's for the holes left by the shift. Fig. 2 shows

the architecture with master bitmap (stateful) for m = 6 and k = 3.

Fig. 2. The stateful pre-filter architecture for m = 6 and k = 3.

4.2 Verification Module

The verification module is an extension of the AC algorithm. We describe

constructions of the goto function, the failure function, the output function, and the

signature matching machine separately.

4.2.1 The goto function

A regular expression which contains at least one { , }min max operator is

fragmented by the { , }min max operators. For example, regular expression RE =

1 2 3* *S S S 1 1{ , }min max 4 5*S S 2 2{ , }min max 6S is fragmented into 1 2 3* *S S S , 4 5*S S ,

and 6S . Let n kre  , 1 k m  , represent the first fragment of n kRE  and

1 1{ ,..., , ,..., }n n n mY RE RE re re  . Define kSRE as the string derived from REk

(if1 k n ) or kre (if 1n k n m   ) by removing all the * operators. We shall

construct multiple goto graphs using suffixes of kSRE , 1 k n m   .

11

Let 0 1 1{ ,..., , ,..., }n n n mZ SRE SRE SRE SRE  and 0G be the goto graph

constructed with the strings contained in 0Z . The self-loop at the start state, if exists,

is deleted. Consider a regular expression RE Y . Assume

that 1 2 1* *...* JRE S S S  . We call states iQ , 1 i J  , on graph 0G with

1 2...iQ
iS S S S switching states. These J switching states are said to be

contributed by RE or they belong to RE . Note that it is possible for a switching

state to belong to multiple regular expressions. Define iQSRE S = 1 1...i JS S  . If

string iQSRE S is included in constructing a goto graphG , states jQ , 1 j J i   ,

on graph G with 1...
jQ

i i jS S S


  are switching states on graph G . These

switching states also belong to RE . It is not hard to see that, for the switching state

jQ on graphG , there is a switching state on graph 0G represented by 1... i jS S  .

We call this switching state on graph 0G the corresponding switching state of jQ .

In this paper, we shall use *Q to denote the corresponding switching state of a

switching state Q . We have *Q Q if switching state Q is on graph 0G .

Construction of other goto graphs is as follows.

Assume that there are a total of M distinct switching states on graph 0G . Let

1 2, ,...Q Q , and MQ denote the switching states. A binary flag iFQ is associated

with state iQ . The flag 1iFQ  iff the string representing state iQ was found.

The possible values of 1 2(, ,...,)MFQ FQ FQ are called configurations. Clearly,

there are 2M possible values for 1 2(, ,...,)MFQ FQ FQ . We say a configuration is

feasible if it is possible to occur during scanning. A goto graph is constructed for

12

each feasible configuration. In general, not all the 2M possible configurations are

feasible. The goto graph 0G corresponds to the all-zero feasible configuration

0C = 0 =(0, 0, …, 0). We call goto graph 0G the Level 0 graph. Graph 0G is

used to construct Level 1 goto graphs, which in turn are used to construct Level 2

goto graphs, and so on. In the construction procedure shown below, the function

Construct_Goto_Graph(G , Z) is to construct goto graph G with the strings in

Z using Algorithm AC1, except that the self-loop at the start state, if exists, is

removed. The goto graph iG , with corresponding feasible configuration iC , is

constructed with the strings contained in set iZ . The set 0Z is the input to the

construction procedure. Some states are marked as fork states because, as will

become clear in sub-section B.4, a process is forked whenever a fork state is visited.

State R on goto graph 0G is a fork state iff RS = n kSRE  for some k , 1 k m  .

Similarly, state R on goto graph iG (1i ) is a fork state iff R Q
n kS SRE S  is a

string in iZ , where Q is a switching state on graph 0G that is contributed by

n kRE  .

Procedure Goto(0Z)

0i  /* index of goto graphs */

0I  /* level of goto graphs */

0C  0

0_ _ [] { }Configurations in Level I C

Construct_Goto_Graph(0G , 0Z)

Mark the fork states on graph 0G

_ _ [] { }Graphs in Level I  0G

while (1)

 1J I 

 _ _ []Configurations in Level J 

 _ _ []Graphs in Level J 

 For every _ _ []Graphs in Level IG with corresponding configuration C

 For every switching state Q on graph G

13

 Determine the corresponding switching state *Q on graph 0G

 Set_Flags(C , *Q) /* set 1jFQ  if jQS is a prefix of
*QS */

 C C C   /*  denotes the bitwise OR operation */

 If jC C  for all j , 0 j i  /* a new feasible configuration */

 i  

 iC C

 _ _ []Configurations in Level J 

_ _ [] { }iConfigurations in Level J C

 Find_Strings(iZ , iC) /* determine iZ */

 ` Construct_Goto_Graph(iG , iZ)

Mark the fork states on graph iG

 _ _ [] _ _ [] { }iGraphs in Level J Graphs in Level J  G

 If _ _ []Configurations in Level J 

 Break

 I  

Set_Flags(C , Q)

C  0

For every switching state iQ

If iQS is a prefix of QS

iFQ =1 /* iFQ denotes the thi bit of C */

Find_Strings(Z , C)

For every switching state iQ such that iFQ =1

 Find ()iB Q the set of regular expressions that contribute state iQ

 For every ()j iRE B Q

 { }iQ
jZ Z SRE S  

For every kQ
jSRE S Z 

If there exists lQ
jSRE S Z  which is a proper suffix of kQ

jSRE S

 { }kQ
jZ Z SRE S  

14

Construction of the goto graphs for 1 1{ ,..., , ,..., }n n n mY RE RE re re  is

accomplished by the above procedure. The remaining work is to handle the other

fragments of n kRE  , 1 k m  . Again, we use 1nRE  =

1 2 3* *S S S 1 1{ , }min max 4 5*S S 2 2{ , }min max 6S as an example for explanation.

Handling of the other fragments of 1nRE  is basically to repeat the above

construction procedure assuming that there is only one regular expression

RE = 4 5*S S 2 2{ , }min max 6S . Consider handling of the second fragment 4 5*S S .

Two goto graphs are constructed: one for 4 5{ }S S and another one for 5{ }S . The

start state on the goto graph constructed for 4 5{ }S S is modified as follows. It is

marked with 1 1{ , }min max and the self-loop, if exists, is not removed. The

remaining fragments are handled the same as the second fragment. For

differentiation, we shall use Ti 's to represent the goto graphs constructed for the

fragments other than the first one of n kRE  , 1 k m  . The construction of goto

graphs is completed after all fragments of n kRE  , 1 k m  , are processed.

Note that there is no Level 2 goto graph if the first string of any regular

expression is not a prefix of the first string of any other regular expression. This is

called non-overlapping condition. Under the non-overlapping condition, string iS

of 1 2 1* *...* JRE S S S  appears exactly i times on i different goto graphs.

Fig. 5 shows the goto graphs for 1 * *RE a bc d , 2 * *RE a ef d , 3 *RE pqr st ,

and 4 * {2,4} {3,5} *RE p q u vw xy . Note that there are five switching states and

one fork state on graph 0G . Switching state 1Q is contributed by both 1RE

and 2RE . Therefore, strings bcd and efd are used to construct graph 1G .

Graphs 1G to 5G are Level 1 graphs while graph 6G is the only Level 2 graph

and is generated by graph 2G . Goto graph 0T is created by the second fragment

15

of 4RE . Note that state 31 is a fork state and marked with{2,4} .

1Q 2Q
0G

3Q

0C

5Q4Q

1G

1C

'2Q

'3Q

2G
2C

"3Q

3G
3C

"2Q

4C
4G

32 33 34

35

5G
=(0,0,0,1,1)5C{2,4}

6C
6G

0T

1T

Q

16

 2T

Figure 3. The goto graphs for 1 * *RE a bc d , 2 * *RE a ef d , 3 *RE pqr st , and

4 * {2,4} {3,5} *RE p q u vw xy .

4.2.2 The failure function

For convenience, we call a goto graph whose start state is marked with some

{ , }min max operator a { , } graphmin max  . As an example, the goto graphs 0T

and 1T shown in Figure 5 are { , } graphsmin max  . The failure functions for

{ , } graphsnon min max  and { , } graphsmin max  are constructed with the

following Non-{min, max}_Failure and {min, max}_Failure procedures,

respectively. In the procedures, C represents the corresponding feasible

configuration of graph G or T . An additional state, called the END state, is

added in constructing the failure function. As will be seen in Sub-section B.4,

traversal on a goto graph ends if it enters the END state.

Fig. 4(a) shows the failure function for the four regular expressions used in Fig.

5. In this figure, the state number of the (,)thi j entry is 10*i j and value 0 for

()f R represents the END state. The symbol “-“ means failure never occurs in

that state. For example, failure never occurs in states 38 and 40.

()f R 0 1 2 3 4 5 6 7 8 9

0 0 13 13 20 20 13 25 25 30 30

1 32 32 32 0 0 20 20 0 25 25

2 0 0 0 36 36 0 0 36 36 0

3 0 0 0 0 0 0 0 0 - 38

4 - 40 45 45 45 0 0 0

(a)

17

R 4, 16, 21, 28 7, 19, 24, 29 12, 34 44, 47 37

()output R 1RE 2RE 3RE 4RE 1RE , 2RE

(b)

Fig. 4. (a) The failure function and (b) the output function for the example regular

expressions used for Fig. 3.

4.2.3 The output function

Consider some goto graph G constructed for Y . Assume that

1 2 1* *...*k JRE S S S  , 1 k n  , and 1 1...j JS S  is included in constructing graph

G . We assign initially ()output P  for every state P on graph G . Let R be

the state on graph G with 1 1...R
j JS S S  . The output function ()output R is

modified as () () { }koutput R output R RE  .

Now consider a goto graph T constructed for some fragment of n kRE  ,

1 k m  . For every state P on graph T , we assign ()output P  . If graph T

is constructed for the last fragment of n kRE  , then ()output R is modified for some

state R. Assume that the last fragment of n kRE  is 1 2 1* *...* JS S S  and graph T

is constructed with 1 1...j JS S  . The output function of state R on graph T is

modified as () () { }n koutput R output R RE   if 1 1...R
j JS S S  .

Note that, with the pre-filter and the fork states, we do not need to consider the

case where a string which matches a regular expression contains a sub-string that

matches another regular expression. Fig. 6(b) gives the output function of the states

shown in Fig. 5. States with the same output function are shown in the same column.

We have ()output R  if state R does not appear in the figure.

18

4.2.4 The signature matching machine

During scanning, a set called _Active Graphs is maintained. When the

pre-filter finds the starting position of a suspicious sub-string which may result in

match of some signatures, concurrent traversals begin at the start states of all the goto

graphs contained in _Active Graphs . Initially, we have _ { }Active Graphs  0G .

Consider the traversal on a specific goto graph. A process is forked to traverse a

{ , } graphmin max  if a fork state is visited. As an example, consider the goto

graphs shown in Fig. 5. A process is forked to traverse graph 0T if state 9, 31, or

35 is visited. As another example, a process is forked to traverse graph 1T if state

39 is visited. Assume that the failure function is consulted in state R and ()f R is

the start state of some goto graph G or T , different from the goto graph state R is

on. In this case, graph G or T is added to _Active Graphs so that it will be

traversed when succeeding suspicious sub-strings are found by the pre-filter. For

example, for the goto graphs shown in Fig. 5, if the failure function is consulted in

state 2, then graph 1G is added to _Active Graphs . Traversal on a

{ , } graphnon min max  ends if a match is found or the failure function is consulted.

Traversal on { , } graphmin max  T is as follows. Let {min, max} be the

mark of its start state. A counter ctr is maintained when traversing graph T .

The content of ctr is initialized to min and the next min symbols are skipped.

The counter is increased by one if the current state is the start state of T and it

returns to the same state after an input symbol is processed. Assume that the failure

function is consulted in state P. If state ()f P is also on graph T , which implies

state P is not on the sub-tree of any switching state, then ctr is updated as ctr =

ctr + | |PS - ()| |f PS . We set ctr =max +1 if state ()f P is on a different graph.

The traversal ends iff a match is found or ctr >max .

19

Note that traversal on a { , } graphmin max  with mark {min, max} may take a

long time to end if max is large. One possible remedy for this is to place the string

that follows such a {min, max} operator into the pre-filter and let the traversal ends

once it enters the start state. If ctr  max when the traversal ends, then the status,

including min , max , ctr value, and the position of the last processed symbol, are

saved. Moreover, the { , } graphmin max  is added to _Active Graphs . The ctr

value can be updated according to the saved status and the starting position of the next

suspicious sub-string. The traversal on the { , } graphmin max  ends immediately if

the starting position of the suspicious sub-string minus the position of the last

processed symbol is smaller than min or the updated ctr value is greater than

max .

Assume that a particular goto graph is under traversal. kRE , 1 k n  , is a

candidate signature to be matched if some suffix of kSRE is included in constructing

the goto graph. Similarly, n kRE  , 1 k m  , is a candidate signature to be matched

if some suffix of the string obtained by removing the * operators of some fragment of

n kRE  is included in constructing the goto graph. Obviously, the number of

candidates never increases during traversal for a given suspicious sub-string. The

verification process ends if any signature is matched, the input string is exhausted, or

all concurrent traversals end.

20

Chapter 5.

Data Structures

Consider a particular goto graph. In our proposed scheme, we classify states

according to the number of child states. State P is said to be a branch state, a

single-child state, or a leaf state, if it has at least two child states, exactly one child

state, or no child state, respectively. Moreover, state P is said to be a final state if

()output P   . Note that a leaf state is either a final state or a fork state or both.

As shown in Fig. 5, the data structures for branch, single-child, and leaf states are

different. The meanings of the first four bits of the first byte, denoted by 0 1 2 3b b b b ,

are the same for all data structures. Bit 0b =1 iff the state is a final state and bit

1b =1 iff the state is a fork state. Bits 2 3b b indicate the type of the state and are

equal to 00, 01, or 10 if the state is a leaf state, a single-child state, or a branch state,

respectively. The rest four bits of the first byte are unused. The data structure

consists of four bytes if 0b =1 regardless of the type of the state. In this case, bytes 2,

3, and 4 store the index of matched signatures. In the following, we only describe

data structures for non-final states.

21

Final state

Final Fork Type

Index of matched signatures: 3 bytes

Leaf state

Final Fork 00

fork(P): 3 bytes

min: 2 bytes

max: 2 bytes

f(P): 3 bytes

Single-child state

Final Fork 01

 : 1 byte

f(P): 3 bytes

R: 3 bytes

fork(P): 3 bytes or empty

min: 2 bytes or empty

max: 2 bytes or empty

Branch state

Final Fork 10

f(P): 3 bytes

fork(P): 3 bytes or empty

min: 2 bytes or empty

max: 2 bytes or empty

start index: 1 byte

end index: 1 byte

band values: 3(start index – end index +1) bytes

Figure 5. Data structures for leaf, single-child, and branch states.

The data structure for non-final leaf state P consists of eleven bytes. Since state

P is not a final state, it must be a fork state. Bytes 2, 3, and 4 store the start state of

the goto graph to be traversed by a forked process. Let { , }min max be the mark of

the state. Bytes 5 and 6 store the min value and bytes 7 and 8 store the max

22

value. The content of bytes 9, 10, and 11 represents the failure state ()f P . Note

that () 0f P  means the END state is entered when the failure function is

consulted in state P.

Assume that state P is a single-child state and g(P,) = R. We allocate eight or

fifteen bytes for state P. The second byte stores the symbol . Bytes 3, 4, and 5

store the failure state ()f P and bytes 6, 7, and 8 store state R. The data structure is

completed if state P is not a fork state. Otherwise, seven more bytes are needed.

Bytes 9, 10, and 11 store the start state of the goto graph to be traversed by a forked

process. Bytes 12 and 13 store the min value and bytes 14 and 15 store the max

value of the mark.

Finally, assume that state P is a branch state. The data structure adopted is the

banded-row format [11]. As an example, consider the sparse vector (0 0 0 5 4 0 0 0

9 0 7 0 0 0 0 0 0 0 0 0). The non-zero values occur in between the third (numbered

from 0) and the tenth elements. Consequently, it can be represented as (3 10 5 4 0 0

0 9 0 7), where the first number indicates the start index and the second number

denotes the end index, followed by eight band values. In our application, a non-zero

band value represents the next state number and value zero means the failure function

is to be consulted. To summarize, the data structure for non-final branch state P

includes four or eleven bytes followed by the banded-row format. Bytes 2, 3, and 4

store the failure state ()f P . If state P is a fork state, then seven more bytes are

needed. Bytes 5, 6, and 7 store the start state of the goto graph to be traversed by a

forked process. Bytes 8 and 9 store the min value and bytes 10 and 11 store the

max value of the mark. As for the banded-row format, there is one byte for the

start index and another byte for the end index. Each band value takes three bytes.

23

For an input symbol  which falls in the band with a non-zero band value k, it

means that (,)g P k  . In case the input symbol  falls outside the band or it

falls in the band with a band value zero, it means (,)g P fail  .

Since the goto graph 0G is likely to have a large number of states for a large

signature set. As a result, to make the proposed signature matching system useful, it

is necessary to reduce the memory space required by goto graphs. We modified the

goto graph 0G such that the state number of 0G can be largely reduced.

There are many redundancies in the failure function, since many states may fail to

the same state (say, the start state of a goto graph). But in the data structure we

mention before, we store the failure function for each state. State R is said to be a first

single-child state if it is a single-child state and its parent state is a branch state.

Moreover, state S is said to be an explicit state if it is the start state, a branch state, a

first single-child state, a switching state, a fork state, or a final state. We modified the

goto graph 0G into a different way which is represented by explicit state only.

Assume that state P is a single-child state and is represented by string 1S . State R

is said to be a descendent state of state P if it is represented by 21S S , where 2S is a

non-empty string. Furthermore, state R is said to be a descendent explicit state of state

P if R is an explicit state and a descendent state of state P. State R is said to be the

nearest descendent explicit state (NDES) of state P if state R is a descendent explicit

state of state P and there is no other descendent explicit state of state P which is

represented by string 1 1S W where string 1W is a proper prefix of string 2S . The data

structure for the single-child state P includes P.pattern, P.distance, and f(P), where

P.pattern and P.distance store, respectively, the identification of the pattern lP ,

24

and 1 2| |S S .

Only the goto graph 0G is modified, the original data structure is still needed. It

doesn't make any different on branch state and leaf state (or final state). So we add an

additional data structure shown if Fig. 6 for the first single-child state on 0G . Bytes 2,

3, and 4 store the failure state ()f P . Bytes 5, 6, and 7 store the next explicit state it

will enter according to the goto function. If it is not a fork state, bytes 8 and 9 store

the P.distance. Bytes 10 and more (if needed) store the P.pattern. If it is a fork state,

then seven more bytes are needed. Bytes 8, 9, and 10 store the start state of the goto

graph to be traversed by a forked process. Bytes 11 and 12 store the min value and

bytes 13 and 14 store the max value of the mark. Bytes 15 and 16 store the

P.distance. Bytes 17 and more (if needed) store the P.pattern.

Non-branch, non-leaf explicit state

Final Fork 11

f(P): 3 bytes

R: 3 bytes

fork(P): 3 bytes or empty

min: 2 bytes or empty

max: 2 bytes or empty

distance: 2 bytes

σ : 1*(distance) bytes

Figure 6. Data structures for Non-branch, non-leaf explicit state.

25

Chapter 6.

Programming Schedule

In this section, we will describe the programming schedule in detail. There are

six processes in this program, each of them has their own input and output. The main

idea of this program is dictated by three parts: the matching machine construction,

data compression, the scanning engine. Process 1 to 4 is the construction part,

including the pre-filter, goto function, failure function, and output function. Process 5

handles the data compression. In this process, we combine the goto, failure and output

function into a form of data structure we describe in section 5. Process 6 is the

scanning part. In this process, we can really scan a file and show that if there is any

pattern matched. Each process is described in the following statement in detail

individually:

Process 1: Signature analysis

Inputs: Signature file

Outputs: NumSignature, eacwp.pattern[NumSignature]

Description:

Since we care about the regular expression, each signature is fragmented into

several segments according to their operator. And we need to know how many

segment does a signature has. If it’s a plain string, it’s obvious that it doesn’t need to

be fragmented, so the segment number must be one. For each segment, we not only

store the actual string, but also other information, ex. Length, operator type following

the segment. All this information will be stored under eacwp.pattern.

26

Process 2: Pre-filter construction

Inputs: eacwp.pattern

Outputs: Pre-filter, Advancement table

Description:

Let the windows length m=10, block size k=4. We hash the series of 4 bytes into

18 bits, hence the pre-filter has 2^18=262144 entries. Each hash result will reply a

bitmap with the size of 8 bits. So the total size of the pre-filter is about 256k bytes.

Note that the advancement table is used to look up the pre-filter’s advance number. In

that way, we don’t need to do the online computing to get the advancement number.

Process 3: Goto graph procedure

Inputs: eacwp.pattern

Outputs: Numstate, goto function, output function, Configuration

Description:

During the construction of the graphs, we can also decide the output function.

It’s important for us to remember all the switching state and it’s represented pattern

sting, in that way, it’s possible to get the all feasible configurations. Note that it’s

impossible to construct the failure function before we finish all the graph’s

constructions, since we need to know all feasible configurations and its corresponding

goto graph when we build the failure function. And the fork transition is not

completed yet. We only decide the fork transition on the goto graph 0G during the

construction, but not all the other level’s graph.

27

Process 4: Failure function procedure

Inputs: Numstate, goto function, Configuration

Outputs: failure function, fork transition

Description:

We finish the fork transition and build the failure function state by state in this

process. After that, the pattern matching machine’s construction is completely

finished.

Process 5: Data compression

Inputs: goto function, failure function, output function, fork transition

Outputs: eacwp.datastructure[NumState]

Description:

Before we combine the three main functions and the fork transition into a special

data structure, the modification of the goto graph 0G is needed. As we mentioned in

section 5, in order to reduce the memory requirement, we represent the goto graph

0G in a different way. Note that this modification is only for memory reduction, the

data structure is still suitable if we don’t modify the goto graph 0G . The data structure

eacwp.datastructure is the only one we need in verification module.

Process 6: Scanning procedure

Inputs: eacwp.datastructure, pre-filter, Advancement table, Text file

Outputs: Matched Signature ID and starting position, if signature occurs in Text.

Description:

During the scanning process, we have to maintain an information : Active_graph.

The procedure will be end if there is any pattern matched or the text file is finished.

28

The program can also apply on the internet. The only difference is that we need to

modify the program for packet based. Since the original program will be end when the

input file comes to the end if there is no pattern matched. But in the network, all the

file transmission is based on the packet, in other words, we have to scan these packets

in order to guarantee the whole completed file to be scanned. It means that the

scanning process doesn’t end until all the packets have been scanned. In order to

continue the scanning process between each packet, we must to remember all the

status about the scanning process. The status is including the state we are going to

continue, and if it’s during the traversal on{ , } graphsmin max  , the counter and the

value of min and max are needed. Note that it’s possible that the process will stop on

multiple goto graphs when we finish a single packet’s scanning. Not only the state

information, pre-filter’s window and its next advancement are both needed too. And

the program will end if there is a pattern matched or all the packets are completed

finished its own scanning process.

29

Chapter 7.

Experimental Result

In this section, we compare the performance of our proposed signature matching

system with that of the ClamAV implementation and its enhancement [?]. Both

throughput performance and memory requirement are compared. Programs are

coded in C++ and the experiments are conducted on a PC with an Intel Pentium 4

CPU operated at 2.02GHz with 1.75GB of RAM.

We traced the ClamAV implementation, extracted the ideas, and re-wrote the codes

for our experiments. In the ClamAV implementation, a trie of height two is

constructed for the first two bytes of all patterns based on AC pattern matching

machine. Effectively, patterns are grouped based on their first two bytes. The

failure function for non-leaf states is eliminated because the next move function  is

adopted. The next move function  is defined as (,) (,)P g P   if

(,)g P fail  or (,) ((),)P f P    otherwise. When the first two bytes of

some group are matched, a sequential search is performed for all patterns in the group.

Different from our proposed scheme, a regular expression is fragmented by the three

*, ?, and {min, max} operators. A data structure is maintained to indicate up to

which fragment a regular expression had been matched and the position in the text of

the last matched fragment. Consider a regular expression which consists of k

fragments. Assume that the first e fragments had been matched and the the

fragment ends at the thi position of the text. Assume further that another fragment

is matched at the thj position. This newly matched fragment is discarded if it is

30

not the (1)the fragment or i and j do not satisfy the condition specified by the

operator which separates the the and the (1)the  fragments. As an example,

consider a regular expression RE = 1sre ? 2sre {2,4} 3sre {3,5} 4sre . Assume that the

first fragment 1sre was matched at the thi position of the text. If the second

fragment 2sre is matched at the 2(| | 1)thi sre  position, then the data structure

will be updated to indicate that the first two fragments are matched and the position of

the second fragment is matched at the 2(| | 1)thi sre  position. Assume that a

fragment is further found at the thj position, then the data structure is further

updated only if it is the third fragment 3sre and j satisfies 2 j-i-| 2sre |-| 3sre |-14.

Otherwise, the newly matched fragment is discarded and the data structure remains

intact.

As of November 2009, the ClamAV database has 30,385 signatures. Among these

signatures, 1599 are regular expressions. After converting ? operators into {min,

max} operators, there are ? regular expressions which contain at least one {min, max}

operator. The shortest pre-filter pattern has only two bytes. To demonstrate the

potential benefit of using a pre-filter, we discard a string which generates a pre-filter

pattern of length shorter than 6. We eliminated 217 signatures based on this criterion.

In our simulations, we select K = 6 and L = 3 with four pre-filters. Let 1 5...j j jt t t  be

the string contained in the search window. Since hash functions are not the focus of

this paper, we use simple ones. The thi hash function used in our experiments is

simply 4 5 5 6j i j i j i j it t t t        , where  represents the bitwise exclusive-OR

operation.

31

Fig 7 shows the comparison of CPU execution time for randomly generated files of

various sizes without any signature occurrence. We call our proposed system eacwp

for short. It can be seen that the CPU execution time is proportional to file size. The

CPU time required by the ClamAV implementation is about 4 times of that required

by eacwp. We expect the performance improvement to become larger as the number

of signatures increases. The reason is that, in ClamAV implementation, the number

of strings in a group with identical first two bytes increases as the number of

signatures increases. Since the ClamAV implementation performs sequential search

for strings in the same group, it consumes more CPU time to find the match in a larger

group.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

file size (MB)

ti
m

e
 (

m
s)

ClamAV
eacwp(master bitmap)

Figure 7. Performance comparison of ClamAV implementation and our proposed

signature matching system for clean files of various sizes.

As for memory requirement, ClamAV implementation uses 3.57M bytes and eacwp

uses about 5.7M bytes. The pre‐filter requires 256K bytes and the verification

module needs 5.5M bytes. We believe the amount of memory required by our

proposed signature matching system is acceptable for practical systems.

32

Now we modify the pre-filter with a new value of K = 10 and L = 4. And we increase

the hash value’s bit number so that the collision due to the hash function will be

reduced. So the size of the pre-filter will come to 1M bytes (20 entries,

2^20=1048576). Because of the difference of window size, we discard a string which

generates a pre-filter pattern of length shorter than 10. We eliminated a little more,

about 377 signatures based on this criterion. And one more difference is that we apply

two pre-filters. Each pre-filter is built with its own hash function which is different

from the other one. When the first pre-filter’s query result consults the verification

module, we apply the second pre-filter instead. The verification module is consulted

iff the two pre-filters both consult the verification module. The memory requirement

grows up a little, comes to 7.5M bytes. The pre-filter requires 2M bytes and the

verification module needs 5.5M bytes. We expect the improvement will work on the

performance’s advancement. Fig 8 shows the result and confirms our expectation. The

CPU time required by the ClamAV implementation is about more than 10 times of

that required by modified eacwp.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

file size (MB)

ti
m

e
 (

m
s)

ClamAV
eacwp(master bitmap)

Figure 8. Performance comparison of ClamAV implementation and our proposed

signature matching system for clean files of various sizes.

33

References

[1] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,”

TR CS-74-440, Stanford University, Stanford, California, 1974.

[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, Vol. 20, October 1977, pp. 762-772.

[3] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic

search,” Communications of the ACM, Vol. 18, June 1975, pp. 333-340.

[4] Clam anti virus signature database, www.clamav.net.

[5] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspection,” in

Proc. of Architectures for Networking and Communications Systems (ANCS),

pp. 93-102, 2006.

[6] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Joannidis,

“Gnort: High performance network intrusion detection using graphics

processors,” In Recent Advances in Intrusion Detection (RAID), 2008.

[7] J. Rejeb and M. Srinivasan, “Extension of Aho-Corasick algorithm to detect

injection attacks,” SCSS (1) 2007.

[8] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” TR-94-17,

1994.

[9] B Bloom, “Space/time trade-offs in hash coding with allowable errors,” ACM,

13(7): 422–426, May 1970.

[10] A. Broder and M. Mitzenmacher, “Network applications of Bloom filters: a

survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509.

[11] R. Smith, C. Estan, and S. Jha, “XFA: Fast signature matching with extended

automata,” In IEEE Symposium on Security and Privacy, May 2008.

	論文封面
	論文目錄
	論文範本

