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字串比對在入侵偵測/防護系統上針對 Aho-Corasick
演算法的強化與實現 

 
學生: 李韋儒            指導教授：李程輝教授 

 
國立交通大學 

電信工程研究所 

摘要 

因為現在網路的迅速成長，字串比對已經在防毒/防蟲當中被視為一種很重要的

技術。目前相當有名的字串比對演算法：Aho-Corasick (AC)演算法，是一個能夠

同時比對多重字串，並且在各種環境之下都能夠保證穩定的輸出表現的演算法。

AC 演算法的發展是依照字串比對的方式，然而病毒/蠕蟲本身是可以利用正規表

示式來表示。這篇論文裡，我們會將 AC 演算法作強化，用一種系統化的方式來

實現這套延伸強化應用的 AC 演算法，以達到可以針對一般字串以及正規表示式

作為表示的字串比對，並且能準確指出字串的來源以及在文件中出現之後到結束

的位置。 

 

關鍵字：網路安全，字串比對，正規表示式 
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Enhancing the Aho-Corasick Algorithm 
for Signature Based Anti-Virus/Worm 

Implementations 
 

Student: Wei-Zoo Lee        Advisor: Prof. Tsern-Huei Lee 

 
Department of Communication Engineering 

National Chiao Tung University 

ABSTRACT 

Because of its accuracy, pattern matching is considered an important technique in 

anti-virus/worm applications.  Among some famous pattern matching algorithms, the 

Aho-Corasick (AC) can match multiple patterns simultaneously and guarantee 

deterministic performance under all circumstances.  However, the AC algorithm was 

developed for strings while virus/worm signatures could be specified by simple 

regular expressions.  In this paper, we enhance the AC algorithm to systematically 

construct a signature matching system which can indicate the ending position in a 

finite input string for the occurrence of virus/worm signatures that are specified by 

strings or simple regular expressions. The regular expressions studied are those 

adopted in ClamAV for signature specification.  

 

Keywords: network security, string matching, regular expression 
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Chapter 1.   
 

Introduction 

 
Because of the rapid advances of computer and network technologies, modern 

computer viruses and worms can spread at a speed much faster than human-mediated 

responses. Fast and effective detection of viruses/worms as they are spreading is, 

therefore, necessary to prevent the majority of vulnerable systems from being infected 

and minimize the damage. 

 

There are some well-known pattern matching algorithms such as 

Knuth-Morris-Pratt (KMP) [1], Boyer-Moore (BM) [2], and Aho-Corasick (AC) [3].  

The KMP and BM algorithms are efficient for single pattern matching but are not 

scalable for multiple patterns. The AC algorithm pre-processes the patterns and builds 

a finite automaton which can match multiple patterns simultaneously.  Another 

advantage of the AC algorithm is that it guarantees deterministic performance under 

all circumstances. 

 

As security attacks become sophisticated, regular expressions which are much 

more expressive than plain strings were used to specify their signatures. Fortunately, 

the regular expressions used to specify virus/worm signatures are often simple ones.  

For example, the signatures defined in ClamAV [4] allow only plain strings and three 

operators: * (match any number of symbols), ? (match any symbol), and {min, max} 

(match minimum of min, maximum of max symbols). The AC algorithm was 

generalized to match such simple regular expressions in [5].  Actually, the AC 
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algorithm can be extended to detect other types of attacks, such as injection attacks 

[6]. 

 

The purpose of this paper is to present an implementation of a high-performance 

and reasonable memory requirement signature matching system for plain strings and 

simple regular expressions. It can be directly applied to anti-virus/worm applications 

for matching exploit signatures or used as a matcher primitive for matching 

vulnerability signatures [7].  The proposed signature matching system consists of a 

pre-filter and a verification module.  It has space complexity comparable to 

NFA-based solutions. 
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Chapter 2.   
 

The Aho‐Corasick Algorithm 

 
The AC algorithm is a string matching algorithm which can match multiple 

patterns simultaneously. It is dictated by three functions: a goto function g, a failure 

function f, and an output function output.  Fig. 1 shows the three functions for the 

pattern set Y = {he, she, his, hers} [9]. 

 

(a)  

 

R 1 2 3 4 5 6 7 8 9 

f(R) 0 0 0 1 2 0 3 0 3 

(b)  

 

R output(R) 

2 {he} 

5 {she, he} 

7 {his} 

9 {hers} 

(c)  

 

Fig. 1. (a) goto function, (b) failure function, and (c) output function for Y = {he, she, 

his, hers}. 
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Some definitions are needed.  Let 1 2S S  represent concatenation of strings 1S  

and 2S .  We say 1S  is a prefix and 2S  is a suffix of the string 1 2S S .  Moreover, 

1S  is a proper prefix if 2S  is not empty.  Likewise, 2S  is a proper suffix if 1S  is 

not empty.  String S  is said to represent state P on a goto graph if the shortest path 

from the start state to state P spells out S .  For example, string her represents state 

8 in Fig. 1.  The start state is represented by the empty string  .  Throughout this 

paper, the representing string of state P  is denoted by PS .  The length of string S 

is represented by | |S . 

 

One state, numbered 0, is designated as the start state. The goto function g maps a 

pair (state, input symbol) into a state or the message fail.  For the example shown in 

Fig. 1, we have g(0, h) = 1 and g(1, ) = fail if   is not e or i.  State 0 is a special 

state which never results in the fail message.  With this property, one input symbol is 

processed by the AC algorithm in every operation cycle. 

 

The failure function f maps a state into a state and is consulted when the outcome 

of the goto function is the fail message.  We have f(P) = R if and only if (iff) RS  is 

the longest proper suffix of PS  that is also a prefix of some pattern.  The output 

function maps a state into a set of patterns. (Note that the set could be empty.) The set 

output(P) contains a pattern if the pattern is a suffix of PS . 

 

The operation of the AC pattern matching machine is as follows. Let P be the 

current state and   the current input symbol.  Also, let X  denote the input string.  

Initially, the start state is assigned as the current state and the first symbol of X  is 

the current input symbol.  An operation cycle of the AC algorithm is defined as 

follows. 
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1. If g(P,  ) = R, the algorithm makes a state transition such that state R 

becomes the current state and the next symbol in X  becomes the current 

input symbol.  If output(R) ≠  , the algorithm emits the set output(R).  

The operation cycle is complete. 

2. If g(P,  ) = fail, the algorithm makes a failure transition by consulting the 

failure function f.  Assume that f(P) = R.  The algorithm repeats the cycle 

with R as the current state and   as the current input symbol. 

 

The procedures to construct the goto, failure, and output functions are described 

in Algorithms AC1 and AC2 below [3].  The goto function and the failure function 

are constructed in Algorithms 1 and 2, respectively.  The output function is partially 

constructed in Algorithm 1 and completed in Algorithm 2. 

 

Algorithm AC1. Construction of the goto function. 
Input. Set of keywords 1 2{ , ,..., }kY y y y . 

Output. Goto function g and a partially computed output function output. 

Method. We assume output(P)=  when state P is first created, and g(P,  ) = fail if 

  is undefined or if g(P, ) has not yet been defined.  The procedure enter(y) 

inserts into the goto graph a path that spells out y. 

 

begin 

   newstate ← 0 

  for i ← 1 until k do ( )ienter y  

  for all   such that g(0, ) = fail do g(0, ) ← 0 

end 
procedure 1 2( ... )menter a a a : 

begin 

  state ← 0; j ← 1 

  while ( , )jg state a fail  do 

    begin 

      state ← ( , )jg state a  
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      j ← j + l 

    end 

  for p ← j until m do 

    begin 

      newstate ← newstate + 1 

      ( , )pg state a  ← newstate 

      state ← newstate 

    end 
  output(state) ← 1 2{ ... }ma a a  

end 

 

Algorithm AC2. Construction of the failure function. 

Input. Goto function g and output function output from Algorithm 1. 

Output. Failure function f and output function output. 

Method. 

 

begin 

  queue ← empty 

  for each   such that g(0, ) = P ≠ 0 do 

   begin 

     queue ← queue∪{P} 

     f(P) ← 0 

   end    

  while queue ≠ empty do 

   begin 

     let R be the next state in queue 

     queue ← queue - {R} 

     for each   such that g(R, ) = P ≠ fail do 

     begin 

       queue ← queue∪{P} 

       state ← f(R) 

       while g (state, ) = fail do state ← f(state) 

        f(P) ← g(state, ) 

        output(P) ←output(P)∪output(f(P)) 

     end 

   end 

end 
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Chapter 3.   
 

Problem Definition 

 
We address in this paper the problem of detecting occurrence in a given input 

string for a group of plain strings and simple regular expressions.  We focus on 

simple regular expressions because plain strings can be considered as special cases of 

simple regular expressions.  As mentioned before, the studied regular expressions 

can only contain strings and three operators: *, ?, and { , }min max .  It is assumed 

that every symbol is a byte.  We only consider * and { , }min max  operators because 

consecutive ? operators can be replaced with a { , }min max  operator. 

 

We shall construct a signature matching system that can indicate the ending 

position in a finite input string X for the occurrence of signature(s).  Note that it is 

possible for multiple signatures to be matched simultaneously.  As in the AC pattern 

matching machine, we use functions g, f, and output to represent, respectively, the 

goto function, the failure function, and the output function of the constructed 

signature matching system. 
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Chapter 4.   
 

The Proposed Signature Matching System 

 
Let 1RE , 2RE , …, and nRE be n regular expressions that contain * operators 

only.  Further, let 1nRE  , 2nRE  , …, and n mRE   be m regular expressions, each of 

them contains at least one {min, max} operator.  We construct in this section the 

signature matching system for 1RE , 2RE , …, nRE , 1nRE  , 2nRE  , …, and n mRE  .  

Let 1 2*RE RE RE , where 1RE  and 2RE  are plain strings or simple regular 

expressions.  An important fact in finding a match for RE  is that, once 1RE  was 

matched before, a match of RE  is found if 2RE  is matched.  Therefore, we need 

to remember whether or not 1RE  was matched before.  We use different goto 

graphs to implicitly memorize such information. Similar to the Wu-Manber (WM) 

algorithm [8], our proposed signature matching system consists of a pre-filter and a 

verification module which are described separately below.  With a pre-filter, the 

space complexity is largely reduced and the throughput performance can be 

significantly improved. 

 

4.1 Pre-filter 

The pre-filter is designed based on the well-known Bloom filters [9], [10] which 

guarantee no false negative. Given block size k, there are m-k+1 membership query 

module. Recall that 1 2... m
i i ip p p  are the first m symbols of pattern iP . The sub-string 

1 2... k
i i ip p p  is a member stored in the first membership query module, the sub-string 

2 3 1... k
i i ip p p   is a member stored in the second membership query module, …, and the 
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sub-string 1 2...m k m k m
i i ip p p     is a member stored in the ( 1)thm k   (or the last) 

membership query module. For convenience, these membership query modules are 

denoted by 1MQ , 2MQ , …, and 1m kMQ   . The thh  bit of jMQ  is set to 1 iff there 

exists pattern iP  such that h = 1 1( ... )j j j k
i i ihash p p p   . Every membership query 

module reports 1 if the query result is positive or 0 otherwise. 

 

Again, a search window W of length m is used during scanning. Initially, W is 

aligned with T so that the first symbol of T, i.e., 1t , is at the first position of W. The 

last k symbols in W, i.e., 1 2...m k m k mt t t     at this moment, are used to query 1MQ , 

2MQ , …, and 1m kMQ   . Let iqb be the report of iMQ and QB = 1 2 1... m kqb qb qb    

denote the bitmap of current query result. We observe that not only current query 

result but also previous ones are useful for filtering. Therefore, we introduce the 

stateful concept in pre-filter design. That is, current query result and previous ones are 

utilized to determine how many symbols in the text can be skipped in our pre-filter 

design. Note that no additional queries are required to implement the stateful concept. 

In our implementation, we use a master bitmap of size m−k+1 bits to accumulate 

results obtained from previous queries. Let MB = 1 2 1... m kmb mb mb   represent the 

master bitmap. Initially, the master bitmap contains all 1's, i.e., imb = 1 for all i, 

1 1i m k    . After a query result is fetched, we perform MB= MB QB, where 

  is the bitwise AND operation. A suspicious sub-string is found and the 

verification engine is consulted if 1m kmb   = 1. The advancement of W is m−k+1 

positions if i mb = 0 for all i, 1 1i m k     positions if rmb  = 1 and imb  = 0 

for all i, r< i m k  . If W is decided to be advanced by g positions, MB is 
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right-shifted by g bits and filled with 1's for the holes left by the shift. Fig. 2 shows 

the architecture with master bitmap (stateful) for m = 6 and k = 3. 

 
Fig. 2. The stateful pre-filter architecture for m = 6 and k = 3. 

 

4.2 Verification Module 

The verification module is an extension of the AC algorithm.  We describe 

constructions of the goto function, the failure function, the output function, and the 

signature matching machine separately. 

 

4.2.1 The goto function 

A regular expression which contains at least one { , }min max  operator is 

fragmented by the { , }min max  operators.  For example, regular expression RE = 

1 2 3* *S S S 1 1{ , }min max 4 5*S S 2 2{ , }min max 6S  is fragmented into 1 2 3* *S S S , 4 5*S S , 

and 6S .  Let n kre  , 1 k m  , represent the first fragment of n kRE   and 

1 1{ ,..., , ,..., }n n n mY RE RE re re  .  Define kSRE  as the string derived from REk 

(if1 k n  ) or kre  (if 1n k n m    ) by removing all the * operators.  We shall 

construct multiple goto graphs using suffixes of kSRE , 1 k n m   . 
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Let 0 1 1{ ,..., , ,..., }n n n mZ SRE SRE SRE SRE   and 0G  be the goto graph 

constructed with the strings contained in 0Z .  The self-loop at the start state, if exists, 

is deleted.  Consider a regular expression RE Y .  Assume 

that 1 2 1* *...* JRE S S S  .  We call states iQ , 1 i J  , on graph 0G  with 

1 2...iQ
iS S S S  switching states.  These J  switching states are said to be 

contributed by RE  or they belong to RE .  Note that it is possible for a switching 

state to belong to multiple regular expressions.  Define iQSRE S = 1 1...i JS S  .  If 

string iQSRE S  is included in constructing a goto graphG , states jQ , 1 j J i   , 

on graph G  with 1...
jQ

i i jS S S


   are switching states on graph G .  These 

switching states also belong to RE .  It is not hard to see that, for the switching state 

jQ  on graphG , there is a switching state on graph 0G  represented by 1... i jS S  .  

We call this switching state on graph 0G  the corresponding switching state of jQ .  

In this paper, we shall use *Q  to denote the corresponding switching state of a 

switching state Q .  We have *Q Q  if switching state Q  is on graph 0G .  

Construction of other goto graphs is as follows. 

 

Assume that there are a total of M distinct switching states on graph 0G .  Let 

1 2, ,...Q Q , and MQ  denote the switching states.  A binary flag iFQ  is associated 

with state iQ .  The flag 1iFQ   iff the string representing state iQ  was found.  

The possible values of 1 2( , ,..., )MFQ FQ FQ  are called configurations.  Clearly, 

there are 2M  possible values for 1 2( , ,..., )MFQ FQ FQ .  We say a configuration is 

feasible if it is possible to occur during scanning.  A goto graph is constructed for 
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each feasible configuration.  In general, not all the 2M  possible configurations are 

feasible.  The goto graph 0G  corresponds to the all-zero feasible configuration 

0C = 0 =(0, 0, …, 0).  We call goto graph 0G  the Level 0 graph.  Graph 0G  is 

used to construct Level 1 goto graphs, which in turn are used to construct Level 2 

goto graphs, and so on.  In the construction procedure shown below, the function 

Construct_Goto_Graph(G , Z ) is to construct goto graph G  with the strings in 

Z  using Algorithm AC1, except that the self-loop at the start state, if exists, is 

removed.  The goto graph iG , with corresponding feasible configuration iC , is 

constructed with the strings contained in set iZ .  The set 0Z  is the input to the 

construction procedure.  Some states are marked as fork states because, as will 

become clear in sub-section B.4, a process is forked whenever a fork state is visited.  

State R  on goto graph 0G  is a fork state iff RS = n kSRE   for some k , 1 k m  .  

Similarly, state R  on goto graph iG  ( 1i  ) is a fork state iff R Q
n kS SRE S   is a 

string in iZ , where Q  is a switching state on graph 0G  that is contributed by 

n kRE  . 

 

Procedure Goto( 0Z ) 

0i     /* index of goto graphs */ 

0I     /* level of goto graphs */ 

0C  0  

0_ _ [ ] { }Configurations in Level I C  

Construct_Goto_Graph( 0G , 0Z ) 

Mark the fork states on graph 0G  

_ _ [ ] { }Graphs in Level I  0G  

while  (1) 

 1J I   

 _ _ [ ]Configurations in Level J   

 _ _ [ ]Graphs in Level J   

 For every _ _ [ ]Graphs in Level IG  with corresponding configuration C  

  For every switching state Q  on graph G  
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   Determine the corresponding switching state *Q  on graph 0G  

   Set_Flags(C , *Q )   /* set 1jFQ   if jQS  is a prefix of 
*QS  */ 

   C C C    /*   denotes the bitwise OR operation */ 

   If jC C   for all j , 0 j i     /* a new feasible configuration */ 

    i    

    iC C  

    _ _ [ ]Configurations in Level J   

_ _ [ ] { }iConfigurations in Level J C  

    Find_Strings( iZ , iC )   /* determine iZ  */ 

 `   Construct_Goto_Graph( iG , iZ ) 

Mark the fork states on graph iG  

    _ _ [ ] _ _ [ ] { }iGraphs in Level J Graphs in Level J  G  

 If _ _ [ ]Configurations in Level J   

  Break 

 I    

 

Set_Flags(C , Q )  

C  0  

For every switching state iQ  

If iQS  is a prefix of QS  

iFQ =1  /* iFQ  denotes the thi  bit of C  */ 

 

Find_Strings( Z , C ) 

For every switching state iQ  such that iFQ =1 

 Find ( )iB Q  the set of regular expressions that contribute state iQ  

 For every ( )j iRE B Q  

  { }iQ
jZ Z SRE S    

For every kQ
jSRE S Z   

If there exists lQ
jSRE S Z   which is a proper suffix of kQ

jSRE S  

  { }kQ
jZ Z SRE S    
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Construction of the goto graphs for 1 1{ ,..., , ,..., }n n n mY RE RE re re   is 

accomplished by the above procedure.  The remaining work is to handle the other 

fragments of n kRE  , 1 k m  .  Again, we use 1nRE  = 

1 2 3* *S S S 1 1{ , }min max 4 5*S S 2 2{ , }min max 6S  as an example for explanation.  

Handling of the other fragments of 1nRE   is basically to repeat the above 

construction procedure assuming that there is only one regular expression 

RE = 4 5*S S 2 2{ , }min max 6S .  Consider handling of the second fragment 4 5*S S .  

Two goto graphs are constructed: one for 4 5{ }S S  and another one for 5{ }S .  The 

start state on the goto graph constructed for 4 5{ }S S  is modified as follows.  It is 

marked with 1 1{ , }min max  and the self-loop, if exists, is not removed.  The 

remaining fragments are handled the same as the second fragment.  For 

differentiation, we shall use Ti 's to represent the goto graphs constructed for the 

fragments other than the first one of n kRE  , 1 k m  .  The construction of goto 

graphs is completed after all fragments of n kRE  , 1 k m  , are processed. 

 

Note that there is no Level 2 goto graph if the first string of any regular 

expression is not a prefix of the first string of any other regular expression.  This is 

called non-overlapping condition.  Under the non-overlapping condition, string iS  

of 1 2 1* *...* JRE S S S   appears exactly i times on i different goto graphs. 

 

Fig. 5 shows the goto graphs for 1 * *RE a bc d , 2 * *RE a ef d , 3 *RE pqr st , 

and 4 * {2,4} {3,5} *RE p q u vw xy .  Note that there are five switching states and 

one fork state on graph 0G .  Switching state 1Q  is contributed by both 1RE  

and 2RE .  Therefore, strings bcd  and efd  are used to construct graph 1G .  

Graphs 1G  to 5G  are Level 1 graphs while graph 6G  is the only Level 2 graph 

and is generated by graph 2G .  Goto graph 0T  is created by the second fragment 
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of 4RE .  Note that state 31 is a fork state and marked with{2,4} . 
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 2T
 

 

Figure 3. The goto graphs for 1 * *RE a bc d , 2 * *RE a ef d , 3 *RE pqr st , and 

4 * {2,4} {3,5} *RE p q u vw xy . 

 

4.2.2 The failure function 

For convenience, we call a goto graph whose start state is marked with some 

{ , }min max  operator a { , } graphmin max  .  As an example, the goto graphs 0T  

and 1T  shown in Figure 5 are { , } graphsmin max  .  The failure functions for 

{ , } graphsnon min max   and { , } graphsmin max   are constructed with the 

following Non-{min, max}_Failure and {min, max}_Failure procedures, 

respectively.  In the procedures, C  represents the corresponding feasible 

configuration of graph G  or T .  An additional state, called the END  state, is 

added in constructing the failure function.  As will be seen in Sub-section B.4, 

traversal on a goto graph ends if it enters the END  state. 

 

Fig. 4(a) shows the failure function for the four regular expressions used in Fig. 

5.  In this figure, the state number of the ( , )thi j  entry is 10*i j  and value 0 for 

( )f R  represents the END  state.  The symbol “-“ means failure never occurs in 

that state.  For example, failure never occurs in states 38 and 40. 

 

 

( )f R  0 1 2 3 4 5 6 7 8 9 

0 0 13 13 20 20 13 25 25 30 30 

1 32 32 32 0 0 20 20 0 25 25 

2 0 0 0 36 36 0 0 36 36 0 

3 0 0 0 0 0 0 0 0 - 38 

4 - 40 45 45 45 0 0 0   

(a) 
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R  4, 16, 21, 28 7, 19, 24, 29 12, 34 44, 47 37 

( )output R  1RE  2RE  3RE  4RE  1RE , 2RE  

(b) 

 

Fig. 4. (a) The failure function and (b) the output function for the example regular 

expressions used for Fig. 3. 

 

4.2.3 The output function 

Consider some goto graph G  constructed for Y .  Assume that 

1 2 1* *...*k JRE S S S  , 1 k n  , and 1 1...j JS S   is included in constructing graph 

G .  We assign initially ( )output P   for every state P on graph G .  Let R be 

the state on graph G  with 1 1...R
j JS S S  .  The output function ( )output R  is 

modified as ( ) ( ) { }koutput R output R RE  . 

 

Now consider a goto graph T  constructed for some fragment of n kRE  , 

1 k m  .  For every state P on graph T , we assign ( )output P  .  If graph T  

is constructed for the last fragment of n kRE  , then ( )output R  is modified for some 

state R.  Assume that the last fragment of n kRE   is 1 2 1* *...* JS S S   and graph T  

is constructed with 1 1...j JS S  .  The output function of state R on graph T  is 

modified as ( ) ( ) { }n koutput R output R RE    if 1 1...R
j JS S S  . 

 

Note that, with the pre-filter and the fork states, we do not need to consider the 

case where a string which matches a regular expression contains a sub-string that 

matches another regular expression.  Fig. 6(b) gives the output function of the states 

shown in Fig. 5.  States with the same output function are shown in the same column.  

We have ( )output R   if state R does not appear in the figure. 
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4.2.4 The signature matching machine 

During scanning, a set called _Active Graphs  is maintained.  When the 

pre-filter finds the starting position of a suspicious sub-string which may result in 

match of some signatures, concurrent traversals begin at the start states of all the goto 

graphs contained in _Active Graphs .  Initially, we have _ { }Active Graphs  0G .  

Consider the traversal on a specific goto graph.  A process is forked to traverse a 

{ , } graphmin max   if a fork state is visited.  As an example, consider the goto 

graphs shown in Fig. 5.  A process is forked to traverse graph 0T  if state 9, 31, or 

35 is visited.  As another example, a process is forked to traverse graph 1T  if state 

39 is visited.  Assume that the failure function is consulted in state R  and ( )f R  is 

the start state of some goto graph G  or T , different from the goto graph state R  is 

on.  In this case, graph G  or T  is added to _Active Graphs  so that it will be 

traversed when succeeding suspicious sub-strings are found by the pre-filter.  For 

example, for the goto graphs shown in Fig. 5, if the failure function is consulted in 

state 2, then graph 1G  is added to _Active Graphs .  Traversal on a 

{ , } graphnon min max   ends if a match is found or the failure function is consulted. 

 

Traversal on { , } graphmin max   T  is as follows.  Let {min, max}  be the 

mark of its start state.  A counter ctr  is maintained when traversing graph T .  

The content of ctr  is initialized to min  and the next min  symbols are skipped.  

The counter is increased by one if the current state is the start state of T  and it 

returns to the same state after an input symbol is processed.  Assume that the failure 

function is consulted in state P.  If state ( )f P  is also on graph T , which implies 

state P is not on the sub-tree of any switching state, then ctr  is updated as ctr  = 

ctr + | |PS  - ( )| |f PS .  We set ctr =max +1 if state ( )f P  is on a different graph.  

The traversal ends iff a match is found or ctr >max . 
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Note that traversal on a { , } graphmin max   with mark {min, max}  may take a 

long time to end if max  is large.  One possible remedy for this is to place the string 

that follows such a {min, max}  operator into the pre-filter and let the traversal ends 

once it enters the start state.  If ctr  max  when the traversal ends, then the status, 

including min , max , ctr  value, and the position of the last processed symbol, are 

saved.  Moreover, the { , } graphmin max   is added to _Active Graphs .  The ctr  

value can be updated according to the saved status and the starting position of the next 

suspicious sub-string.  The traversal on the { , } graphmin max   ends immediately if 

the starting position of the suspicious sub-string minus the position of the last 

processed symbol is smaller than min  or the updated ctr  value is greater than 

max . 

 

Assume that a particular goto graph is under traversal.  kRE , 1 k n  , is a 

candidate signature to be matched if some suffix of kSRE  is included in constructing 

the goto graph.  Similarly, n kRE  , 1 k m  , is a candidate signature to be matched 

if some suffix of the string obtained by removing the * operators of some fragment of 

n kRE   is included in constructing the goto graph.  Obviously, the number of 

candidates never increases during traversal for a given suspicious sub-string.  The 

verification process ends if any signature is matched, the input string is exhausted, or 

all concurrent traversals end. 
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Chapter 5.   
 

Data Structures 

 
Consider a particular goto graph.  In our proposed scheme, we classify states 

according to the number of child states.  State P is said to be a branch state, a 

single-child state, or a leaf state, if it has at least two child states, exactly one child 

state, or no child state, respectively.  Moreover, state P is said to be a final state if 

( )output P   .  Note that a leaf state is either a final state or a fork state or both.  

As shown in Fig. 5, the data structures for branch, single-child, and leaf states are 

different.  The meanings of the first four bits of the first byte, denoted by 0 1 2 3b b b b , 

are the same for all data structures.  Bit 0b =1 iff the state is a final state and bit 

1b =1 iff the state is a fork state.  Bits 2 3b b  indicate the type of the state and are 

equal to 00, 01, or 10 if the state is a leaf state, a single-child state, or a branch state, 

respectively.    The rest four bits of the first byte are unused.  The data structure 

consists of four bytes if 0b =1 regardless of the type of the state.  In this case, bytes 2, 

3, and 4 store the index of matched signatures.  In the following, we only describe 

data structures for non-final states. 
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Final state 

Final Fork Type  

Index of matched signatures: 3 bytes 

 

Leaf state 

Final Fork 00  

fork(P): 3 bytes 

min: 2 bytes 

max: 2 bytes 

f(P): 3 bytes 

 

Single-child state 

Final Fork 01  

 : 1 byte 

f(P): 3 bytes 

R: 3 bytes 

fork(P): 3 bytes or empty 

min: 2 bytes or empty 

max: 2 bytes or empty 

 

Branch state 

Final Fork 10  

f(P): 3 bytes 

fork(P): 3 bytes or empty 

min: 2 bytes or empty 

max: 2 bytes or empty 

start index: 1 byte 

end index: 1 byte 

band values: 3(start index – end index +1) bytes 

 

Figure 5. Data structures for leaf, single-child, and branch states. 

 

The data structure for non-final leaf state P consists of eleven bytes.  Since state 

P is not a final state, it must be a fork state.  Bytes 2, 3, and 4 store the start state of 

the goto graph to be traversed by a forked process.  Let { , }min max  be the mark of 

the state.  Bytes 5 and 6 store the min  value and bytes 7 and 8 store the max  
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value.  The content of bytes 9, 10, and 11 represents the failure state ( )f P .  Note 

that ( ) 0f P   means the END  state is entered when the failure function is 

consulted in state P. 

 

Assume that state P is a single-child state and g(P, ) = R.  We allocate eight or 

fifteen bytes for state P.  The second byte stores the symbol .  Bytes 3, 4, and 5 

store the failure state ( )f P  and bytes 6, 7, and 8 store state R.  The data structure is 

completed if state P is not a fork state.  Otherwise, seven more bytes are needed.  

Bytes 9, 10, and 11 store the start state of the goto graph to be traversed by a forked 

process.  Bytes 12 and 13 store the min  value and bytes 14 and 15 store the max  

value of the mark. 

 

Finally, assume that state P is a branch state.  The data structure adopted is the 

banded-row format [11].  As an example, consider the sparse vector (0 0 0 5 4 0 0 0 

9 0 7 0 0 0 0 0 0 0 0 0).  The non-zero values occur in between the third (numbered 

from 0) and the tenth elements.  Consequently, it can be represented as (3 10 5 4 0 0 

0 9 0 7), where the first number indicates the start index and the second number 

denotes the end index, followed by eight band values.  In our application, a non-zero 

band value represents the next state number and value zero means the failure function 

is to be consulted.  To summarize, the data structure for non-final branch state P 

includes four or eleven bytes followed by the banded-row format.  Bytes 2, 3, and 4 

store the failure state ( )f P .  If state P is a fork state, then seven more bytes are 

needed.  Bytes 5, 6, and 7 store the start state of the goto graph to be traversed by a 

forked process.  Bytes 8 and 9 store the min  value and bytes 10 and 11 store the 

max  value of the mark.  As for the banded-row format, there is one byte for the 

start index and another byte for the end index.  Each band value takes three bytes.  
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For an input symbol   which falls in the band with a non-zero band value k, it 

means that ( , )g P k  .  In case the input symbol   falls outside the band or it 

falls in the band with a band value zero, it means ( , )g P fail  . 

 

Since the goto graph 0G  is likely to have a large number of states for a large 

signature set.  As a result, to make the proposed signature matching system useful, it 

is necessary to reduce the memory space required by goto graphs.  We modified the 

goto graph 0G  such that the state number of 0G  can be largely reduced. 

 

There are many redundancies in the failure function, since many states may fail to 

the same state (say, the start state of a goto graph). But in the data structure we 

mention before, we store the failure function for each state. State R is said to be a first 

single-child state if it is a single-child state and its parent state is a branch state. 

Moreover, state S is said to be an explicit state if it is the start state, a branch state, a 

first single-child state, a switching state, a fork state, or a final state. We modified the 

goto graph 0G  into a different way which is represented by explicit state only. 

 

Assume that state P is a single-child state and is represented by string 1S . State R 

is said to be a descendent state of state P if it is represented by 21S S , where 2S  is a 

non-empty string. Furthermore, state R is said to be a descendent explicit state of state 

P if R is an explicit state and a descendent state of state P. State R is said to be the 

nearest descendent explicit state (NDES) of state P if state R is a descendent explicit 

state of state P and there is no other descendent explicit state of state P which is 

represented by string 1 1S W where string 1W  is a proper prefix of string 2S . The data 

structure for the single-child state P includes P.pattern, P.distance, and f(P), where 

P.pattern and P.distance store, respectively, the identification of the pattern lP , 
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and 1 2| |S S .  

 

Only the goto graph 0G is modified, the original data structure is still needed. It 

doesn't make any different on branch state and leaf state (or final state). So we add an 

additional data structure shown if Fig. 6 for the first single-child state on 0G . Bytes 2, 

3, and 4 store the failure state ( )f P . Bytes 5, 6, and 7 store the next explicit state it 

will enter according to the goto function. If it is not a fork state, bytes 8 and 9 store 

the P.distance. Bytes 10 and more (if needed) store the P.pattern. If it is a fork state, 

then seven more bytes are needed. Bytes 8, 9, and 10 store the start state of the goto 

graph to be traversed by a forked process.  Bytes 11 and 12 store the min  value and 

bytes 13 and 14 store the max  value of the mark. Bytes 15 and 16 store the 

P.distance. Bytes 17 and more (if needed) store the P.pattern. 

 

Non-branch, non-leaf explicit state 

Final Fork 11  

f(P): 3 bytes 

R: 3 bytes 

fork(P): 3 bytes or empty 

min: 2 bytes or empty 

max: 2 bytes or empty 

distance: 2 bytes 

σ : 1*(distance) bytes 

 

Figure 6. Data structures for Non-branch, non-leaf explicit state. 
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Chapter 6.   
 

Programming Schedule 

 
In this section, we will describe the programming schedule in detail. There are 

six processes in this program, each of them has their own input and output. The main 

idea of this program is dictated by three parts: the matching machine construction, 

data compression, the scanning engine. Process 1 to 4 is the construction part, 

including the pre-filter, goto function, failure function, and output function. Process 5 

handles the data compression. In this process, we combine the goto, failure and output 

function into a form of data structure we describe in section 5. Process 6 is the 

scanning part. In this process, we can really scan a file and show that if there is any 

pattern matched. Each process is described in the following statement in detail 

individually: 

 

Process 1: Signature analysis 

Inputs: Signature file 

Outputs: NumSignature, eacwp.pattern[NumSignature] 

Description:  

Since we care about the regular expression, each signature is fragmented into 

several segments according to their operator. And we need to know how many 

segment does a signature has. If it’s a plain string, it’s obvious that it doesn’t need to 

be fragmented, so the segment number must be one. For each segment, we not only 

store the actual string, but also other information, ex. Length, operator type following 

the segment. All this information will be stored under eacwp.pattern. 



26 
 

 

Process 2: Pre-filter construction 

Inputs: eacwp.pattern 

Outputs: Pre-filter, Advancement table 

Description:  

Let the windows length m=10, block size k=4. We hash the series of 4 bytes into 

18 bits, hence the pre-filter has 2^18=262144 entries. Each hash result will reply a 

bitmap with the size of 8 bits. So the total size of the pre-filter is about 256k bytes. 

Note that the advancement table is used to look up the pre-filter’s advance number. In 

that way, we don’t need to do the online computing to get the advancement number. 

 

Process 3: Goto graph procedure 

Inputs: eacwp.pattern 

Outputs: Numstate, goto function, output function, Configuration 

Description:  

During the construction of the graphs, we can also decide the output function. 

It’s important for us to remember all the switching state and it’s represented pattern 

sting, in that way, it’s possible to get the all feasible configurations. Note that it’s 

impossible to construct the failure function before we finish all the graph’s 

constructions, since we need to know all feasible configurations and its corresponding 

goto graph when we build the failure function. And the fork transition is not 

completed yet. We only decide the fork transition on the goto graph 0G  during the 

construction, but not all the other level’s graph. 
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Process 4: Failure function procedure 

Inputs: Numstate, goto function, Configuration 

Outputs: failure function, fork transition 

Description:  

We finish the fork transition and build the failure function state by state in this 

process. After that, the pattern matching machine’s construction is completely 

finished. 

 

Process 5: Data compression 

Inputs: goto function, failure function, output function, fork transition 

Outputs: eacwp.datastructure[NumState] 

Description:  

Before we combine the three main functions and the fork transition into a special 

data structure, the modification of the goto graph 0G  is needed. As we mentioned in 

section 5, in order to reduce the memory requirement, we represent the goto graph 

0G  in a different way. Note that this modification is only for memory reduction, the 

data structure is still suitable if we don’t modify the goto graph 0G . The data structure 

eacwp.datastructure is the only one we need in verification module. 

 

Process 6: Scanning procedure 

Inputs: eacwp.datastructure, pre-filter, Advancement table, Text file 

Outputs: Matched Signature ID and starting position, if signature occurs in Text. 

Description:  

During the scanning process, we have to maintain an information : Active_graph. 

The procedure will be end if there is any pattern matched or the text file is finished. 

 

 



28 
 

The program can also apply on the internet. The only difference is that we need to 

modify the program for packet based. Since the original program will be end when the 

input file comes to the end if there is no pattern matched. But in the network, all the 

file transmission is based on the packet, in other words, we have to scan these packets 

in order to guarantee the whole completed file to be scanned. It means that the 

scanning process doesn’t end until all the packets have been scanned. In order to 

continue the scanning process between each packet, we must to remember all the 

status about the scanning process. The status is including the state we are going to 

continue, and if it’s during the traversal on{ , } graphsmin max  , the counter and the 

value of min and max are needed. Note that it’s possible that the process will stop on 

multiple goto graphs when we finish a single packet’s scanning. Not only the state 

information, pre-filter’s window and its next advancement are both needed too. And 

the program will end if there is a pattern matched or all the packets are completed 

finished its own scanning process. 
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Chapter 7.   
 

Experimental Result 

 
In this section, we compare the performance of our proposed signature matching 

system with that of the ClamAV implementation and its enhancement [?].  Both 

throughput performance and memory requirement are compared.  Programs are 

coded in C++ and the experiments are conducted on a PC with an Intel Pentium 4 

CPU operated at 2.02GHz with 1.75GB of RAM. 

 

We traced the ClamAV implementation, extracted the ideas, and re-wrote the codes 

for our experiments.  In the ClamAV implementation, a trie of height two is 

constructed for the first two bytes of all patterns based on AC pattern matching 

machine.  Effectively, patterns are grouped based on their first two bytes.  The 

failure function for non-leaf states is eliminated because the next move function   is 

adopted.  The next move function   is defined as ( , ) ( , )P g P    if 

( , )g P fail   or ( , ) ( ( ), )P f P     otherwise.  When the first two bytes of 

some group are matched, a sequential search is performed for all patterns in the group.  

Different from our proposed scheme, a regular expression is fragmented by the three 

*, ?, and {min, max} operators.  A data structure is maintained to indicate up to 

which fragment a regular expression had been matched and the position in the text of 

the last matched fragment.  Consider a regular expression which consists of k 

fragments.  Assume that the first e fragments had been matched and the the  

fragment ends at the thi  position of the text.  Assume further that another fragment 

is matched at the thj  position.  This newly matched fragment is discarded if it is 
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not the ( 1)the  fragment or i and j do not satisfy the condition specified by the 

operator which separates the the  and the ( 1)the   fragments.  As an example, 

consider a regular expression RE = 1sre ? 2sre {2,4} 3sre {3,5} 4sre .  Assume that the 

first fragment 1sre  was matched at the thi  position of the text.  If the second 

fragment 2sre  is matched at the 2( | | 1)thi sre   position, then the data structure 

will be updated to indicate that the first two fragments are matched and the position of 

the second fragment is matched at the 2( | | 1)thi sre   position.  Assume that a 

fragment is further found at the thj  position, then the data structure is further 

updated only if it is the third fragment 3sre  and j satisfies 2 j-i-| 2sre |-| 3sre |-14.  

Otherwise, the newly matched fragment is discarded and the data structure remains 

intact. 

 

As of November 2009, the ClamAV database has 30,385 signatures.  Among these 

signatures, 1599 are regular expressions.  After converting ? operators into {min, 

max} operators, there are ? regular expressions which contain at least one {min, max} 

operator.  The shortest pre-filter pattern has only two bytes.  To demonstrate the 

potential benefit of using a pre-filter, we discard a string which generates a pre-filter 

pattern of length shorter than 6. We eliminated 217 signatures based on this criterion. 

 

In our simulations, we select K = 6 and L = 3 with four pre-filters. Let 1 5...j j jt t t   be 

the string contained in the search window.  Since hash functions are not the focus of 

this paper, we use simple ones.  The thi  hash function used in our experiments is 

simply 4 5 5 6j i j i j i j it t t t        , where   represents the bitwise exclusive-OR 

operation. 
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Fig 7 shows the comparison of CPU execution time for randomly generated files of 

various sizes without any signature occurrence. We call our proposed system eacwp 

for short. It can be seen that the CPU execution time is proportional to file size.  The 

CPU time required by the ClamAV implementation is about 4 times of that required 

by eacwp. We expect the performance improvement to become larger as the number 

of signatures increases.  The reason is that, in ClamAV implementation, the number 

of strings in a group with identical first two bytes increases as the number of 

signatures increases.  Since the ClamAV implementation performs sequential search 

for strings in the same group, it consumes more CPU time to find the match in a larger 

group. 
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Figure 7. Performance comparison of ClamAV implementation and our proposed 

signature matching system for clean files of various sizes.  

 

As  for memory requirement, ClamAV  implementation uses 3.57M bytes and eacwp 

uses  about  5.7M  bytes.    The  pre‐filter  requires  256K  bytes  and  the  verification 

module  needs  5.5M  bytes.    We  believe  the  amount  of memory  required  by  our 

proposed signature matching system is acceptable for practical systems. 
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Now we modify the pre-filter with a new value of K = 10 and L = 4. And we increase 

the hash value’s bit number so that the collision due to the hash function will be 

reduced. So the size of the pre-filter will come to 1M bytes (20 entries, 

2^20=1048576). Because of the difference of window size, we discard a string which 

generates a pre-filter pattern of length shorter than 10. We eliminated a little more, 

about 377 signatures based on this criterion. And one more difference is that we apply 

two pre-filters. Each pre-filter is built with its own hash function which is different 

from the other one. When the first pre-filter’s query result consults the verification 

module, we apply the second pre-filter instead. The verification module is consulted 

iff the two pre-filters both consult the verification module. The memory requirement 

grows up a little, comes to 7.5M bytes. The pre-filter requires 2M bytes and the 

verification module needs 5.5M bytes. We expect the improvement will work on the 

performance’s advancement. Fig 8 shows the result and confirms our expectation. The 

CPU  time  required by  the ClamAV  implementation  is about more  than 10  times of 

that required by modified eacwp. 
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Figure 8. Performance comparison of ClamAV implementation and our proposed 

signature matching system for clean files of various sizes.  
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