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摘 要       

 

下一代通訊系統中要求更高的資料傳輸速率及更可靠的通訊，由於嚴重的路經衰減及干擾，

位於蜂巢式網路邊界的用戶很難達到上述的要求。近來，Wang和 Giannakis提出 Complex Field 

Network Coding來增加多用戶通訊的吞吐量，然而，他們的方法不能為用戶提供差異化服務。

其中，差異化服務是指保證基地台內的用戶能穩定的通訊。這些因素促使我們設計上行系統中

繼器的功率分配來幫助用戶達到最小的誤碼率，我們更進一步引入最佳化方法來解決這個問題，

模擬結果顯示，我們的方法可在蜂巢網路中提供差異化服務，除此之外，這個方法可以達到無

干擾下單一使用者的效能。 
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ABSTRACT 

 
Higher data rates and more reliable communications are required in next generation 

communication systems. But the subscribers on the cellular boundary are difficult to attain these 
requirements due to the severe path loss and interference. Recently, the complex field network 
coding (CNFC) method has been proposed by Wang and Giannakis for multiuser communications to 
enhance the throughput. However, their method can't provide users with differentiated services. The 
differentiated services should guarantee that the subscribers have reliable communications in their 
correspond cellular networks. These considerations motivate us to design a power allocation 
precoder for a relay node employed in a uplink network to help subscribers, so as to minimize their 
BERs. We further introduce an optimization method to address this problem. Simulations show that 
our method can provide the differentiated service in the cellular network. In addition to providing 
users with differentiated service, our scheme always achieves the single user's bound that is based on 
a no-interference assumption. 
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Abstract

Higher data rates and more reliable communications are required in next generation

communication systems. But the subscribers on the cellular boundary are difficult to

attain these requirements due to the severe path loss and interference. Recently, the com-

plex field network coding (CNFC) method has been proposed by Wang and Giannakis

for multiuser communications to enhance the throughput. However, their method can’t

provide users with differentiated services. The differentiated services should guarantee

that the subscribers have reliable communications in their correspond cellular networks.

These considerations motivate us to design a power allocation precoder for a relay node

employed in a uplink network to help subscribers, so as to minimize their BERs. We

further introduce an optimization method to address this problem. Simulations show

that our method can provide the differentiated service in the cellular network. In addi-

tion to providing users with differentiated service, our scheme always achieves the single

user’s bound that is based on a no-interference assumption.



Chapter 1

Introduction

In view of the demands of the 3GPP LTE-Advanced [1] and WiMax systems for

high data rates and reliable communications, we in this work apply a relay-based coop-

erative scheme in a multi-cell uplink network. Employing relays in the system can have

many benefits such as enhancing transmission coverage, exploiting the spatial diversity

and other benefits. On the other hand, it also can efficiently improve the destination’s

received SINRs. In other words, relaying techniques are very useful for wireless com-

munications, especially when the subscribers are located on the cellular boundary. But

in this specific environment, there isn’t just an intra-cell interference but also inter-cell

interference [2]. And the subscribers on the cell boundary usually need to consume

more power for communication with their own base station than ones within the cell do.

Therefore, the boundary issue about how to control the users’ power for improving their

transmit SINRs becomes a very important topic.

On the other hand, the topologies of the 4G communication systems are more com-

plicated than other conventional communication systems. If simply applying traditional

relaying schemes into the 4G systems, the transmission efficiency will decrease with the

number of subscribers, because a relay node equipped with a single antenna can serve

only one subscriber each transmission round from the viewpoint of the degree of free-
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dom. But recently, there are a few publications that use the network coding to address

this problem [3–6]. Generally, the ideal of network coding was proposed for the noiseless

wireless networks to enhance capacity [7]. The publication [8] used the max-flow min-cut

theory to derive the network capacity based on linear network coding. In [9], the author

proposed a practical network coding and further implemented it. Simulations in [9] show

that the scheme with this coding method can almost achieve the proposed theoretical

optimal performance. Besides, more and more publications extend the network coding

method to applications of wireless cooperative communications, such as XOR network

coding [3], nonlinear network coding [4], analog network coding [5], and complex field

network coding [6]. Due to the broadcasting nature of wireless networks, network coding

becomes more and more useful in the field of cooperative communications.

Not only can the relaying mechanism and network coding scheme improve throughput

but also there exists another popular technique that can improve the spectrum efficiency

in 4G communication systems called network MIMO [10–14]. This scheme collects some

resources from base stations to exploit the MIMO-like potential. In the uplink Network

MIMO system, there usually exists a specific center node, via backhauls collecting all

the signal packets received by the coordinated BSs or other useful data for performing

a multi-user detection. In fact, the scheme can be viewed as a virtual MIMO system,

like V-BLAST. However, the idea of virtual MIMO for the uplink Network MIMO will

become more and more impractical with the amount of the data that need to be ex-

changed between the center and the BSs, especially when the users require higher data

rates. Therefore, for reality, our CoMP systems only coordinates users’ transmissions

but doesn’t exchange any information among the BSs.

Besides, Wang and Giannakis’ publication [6] combines the complex field network

coding methods and precoder mechanism. The complex field network coding method can

provide higher degree of freedom than other network coding methods. In their scenario,

the relay node has users-to-relay and relay-to-destination CSIs to design the precoder by
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itself. This precoding method perform well and is easy to use when the channel qualities

between each user and the destination are equal. But when the channel qualities are not

equal anymore, the user’s BER performances will become poor, and it’s hard to exploit

the diversity in finite SNR. In fact, their method can’t provide the user’s differentiated

services. The differentiated services can guarantee the reliable communications for the

subscribers on the cellular boundary.

In our work, we concentrate on the scenario of the uplink relaying CoMP systems

having users on the cell boundary. We first derive the system BER conditioned on all

the channel states. Later, we also derive the subscriber’s BER at the corresponding BS

which is a marginal case of the system error probability. The above two results can

be bounded as a sum of exponential functions. And it’s a function of the precoder.

However, the function is too complicated to average the channel effect. We apply the

optimization technique to solve this complicated problem. The problem can be modeled

as minimizing the BER function of the channel state and being subject to the total power

constraint at relay node. We have known that the BER function is a sum of exponential

functions and the power constraint is a posynomial function. The optimization problem

can be dealt with using the geometric programming (GP) [15–17]. However,the GP

requires posynomial function in the exponents. But the result in this work is difficult

to attain the requirement. To move on, we use another more powerful optimization

method which is called signomial programming (SP) [18]. SP is an extension version

of GP. However, SP is also not a convex optimization problem and there doesn’t ex-

ist powerful tools to solve it so far. Fortunately, we apply a technique which is called

condensed programming to transform the SP problem into a GP one. The condensed

programming is based on the arithmetic-geometric inequality. After the manipulations,

our problem can be addressed by the solver CVX [19]. Simulations show that the CVX

and exhaustive search have almost the same BER performance. And the subscriber’s

BER at the corresponding BS isn’t influenced by the inter-cell interference in any topol-
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ogy. For comparison, we introduce a single user’s BER bound calculated based on the

assumption that the subscriber doesn’t suffers interference from other sources any more.

The subscriber at the corresponding BS in our scheme almost achieves the single user’s

BER bound. Both on symmetric and asymmetric channel scenarios, our method can

provide the differentiated service in the cellular network.
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Chapter 2

System Model and Error Analysis

2.0.1 System Model

The system model is showed on Figure 2.1. The wireless relay network consists

of two subscribers, two relays, and two base stations. All the nodes are equipped with

single antenna, and transmit packets in a half-duplex mode. Besides, the two subscribers

belong to different cells and their signals would interfere with each other. They would

like to transmit their signals to their own base stations, and can be assisted by the

relay nodes, respectively. We apply the complex field network coding (CNFC) scheme

in our system. And the precoders at the relay nodes are developed to ensure that

the subscribers can get differentiated services. Due to the differentiated services, the

performance of the subscribers in the cell are better than the other subscribers. In the

first time slot, S1 and S2 broadcast their signal b1x1 and b2x2 to the relays and the base

stations simultaneously and the coefficient b1 and b2 [20] are assumed to be known at

all nodes. And the known coefficients b1 and b2 are drawn from the complex field which

can make sure b1x1 + b2x2 6= b1x2 + b2x1 when x1 6= x2. The inequality property ensures

that the relays and base stations can detect both x1 and x2 only by the received signal

that transmitted from the subscribers. This can’t be done by the other network coding

methods like the XOR network coding and physical layer network coding, that need
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Figure 2.1: The system model has two cellular. Each cellular has one source, one relay,
and one destination.

another associated signal to recover the original signal. For example, the XOR signal

x1 ⊕ x2 can get the original signal only by XOR x1 or XOR x2. The ideal degree of

freedom of CNFC [6] is 1/2 symbol per channel use. However, the XOR network coding

will take three time slots to perform an entire round for transmitting a message packet

to base station and conventional cooperative system need four time slots to do it. So, the

ideal degree of freedom of CNFC is better than XOR network coding and conventional

cooperative system. The CNFC has good properties both on detection and degree of

freedom. This properties are suited for our application. The received signals in the first

time slot at relays and base stations are

yR1,1 = hS1R1b1x1 + hS2R1b2x2 + nR1,1

yR2,1 = hS1R2b1x1 + hS2R2b2x2 + nR2,1

yD1,1 = hS1D1b1x1 + hS2D1b2x2 + nD1,1

yD2,1 = hS1D2b1x1 + hS2D2b2x2 + nD2,1

(2.1)

where hij ∼ CN
(

0, σ2
ij

)

, i, j ∈ S1, S2, R1, R2, D1, D2 denote the channel coefficient,

ni,j ∼ CN (0, σ2
n), i ∈ R1, R2, D1, D2, j ∈ 1, 2 represent the noise term, and yij ,k rep-
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resents the received signal at node ij in the time slot k. The relays use the maximum

likelihood (ML) detection after receiving the combining signal. The ML detection at

relay nodes are

(x̂1, x̂2)R1
= arg min

x1,x2∈S(M)

{

‖yR1,1 − hS1R1b1x1 − hS2R1b2x2‖2}

(x̂1, x̂2)R2
= arg min

x1,x2∈S(M)

{

‖yR2,1 − hS1R2b1x1 − hS2R2b2x2‖2}
(2.2)

where S (M) is the possible constellation points set and M is the constellation size. In

the second time slot, the relays transmit the detection signals x̂1, x̂2 to the base stations

without checking the correctness. The received signals in the second time slot at base

stations are

yD1,2 = hR1D1 (b1p1x̂1 + b2p2x̂2) + nD1,2

yD2,2 = hR2D2 (b1p1x̂1 + b2p2x̂2) + nD2,2

(2.3)

where hRiDi
∼ CN

(

0, σ2
RiDi

)

, i ∈ 1, 2 represent the channel coefficient, and nD1,2, nD2,2 ∼

CN (0, σ2
n) denote the noise term. The p1 and p2 are power allocation factor at relay

node which will affect the system performance. Designing the power allocation factor

is the main problem in our work. However, the system doesn’t change the sources

power because each source wants transmit their signal to the their base station. If the

system set one subscriber’s power as zero, the corresponding base station will get poor

performance.

2.0.2 Error Analysis

The error propagation will influence the detection result at base station because the

relay doesn’t check the correctness before transmission. So, the error probability at base

station is conditional on the event which the relay detects the subscribers signal correct

or not. There are four possible constellation points in the relay node. The four possible

7



constellation points are

dR1 = hS1Rb1x1 + hS2Rb2x2

dR2 = hS1Rb1x1 − hS2Rb2x2

dR3 = −hS1Rb1x1 + hS2Rb2x2

dR4 = −hS1Rb1x1 − hS2Rb2x2

(2.4)

where the second line in (2.4) means the constellation point which the subscriber 1

transmits x1 and the subscriber 2 transmits −x2. The probability of the four cases can

be calculated by the union bound. For example, if the subscriber 1 and subscriber 2

transmit x1 and x2 respectively and the relay detects as x1 and −x2, the probability can

be expressed as

P(x1,x2),(x1,−x2) = Q

(

|dR1
−dR2 |/2

σn/
√

2

)

= Q

(

|√2hS2Rb2x2|
σn

)

≤ 1
2
exp

(

|hS2Rb2x2|2
σ2

n

)

(2.5)

where |dR1 − dR2| means the Euclidean distance between the two constellation point

dR1 and dR2 . The last equation in (2.5) uses the Chernoff bound which is Q (x) ≤
1
2
exp

(

−x2

2

)

. Similarly, the other three cases are

P(x1,x2),(−x1,x2) ≤ 1
2
exp

(

−|hS1Rb1x1|2
σ2

n

)

P(x1,x2),(−x1,−x2) ≤ 1
2
exp

(

−|hS1Rb1x1+hS2Rb2x2|2
σ2

n

)

P(x1,x2),(x1,x2) ≈ 3 − P(x1,x2),(x1,−x2) − P(x1,x2),(−x1,x2) − P(x1,x2),(−x1,−x2)

(2.6)

and the last equation uses the property of the total probability equals to one. This isn’t

a tight bound in low SNR region. But it can present the diversity performance in high

SNR region. The union bound only associate with the relative position. So, the other

cases can be express as the same method. There are some advantages of the CNFC

scheme such as the relay doesn’t need the CRC because it doesn’t check the correctness

8



before transmission. This can reduce the complexity of the relay node and the relay can

process the signal more quickly.

Originally, the base stations use the ML detector to detect the signals which come

from the subscriber nodes and relay node. The ML detector at base stations can be

expressed as

(x̂1, x̂2)D1
= arg max

(x1,x2)∈S(M)

{

∑

(x̃1,x̃2)∈S(M)

P(x1,x2),(x̃1,x̃2)×

exp
(

− |yD1,1−hS1D1
b1x1−hS2D1

b2x2|2+|yD1,2−hR1D1
p11b1x̃1−hR1D1

p12b2x̃2|2
2σ2

n

)}

(x̂1, x̂2)D2
= arg max

(x1,x2)∈S(M)

{

∑

(x̃1,x̃2)∈S(M)

P(x1,x2),(x̃1,x̃2)×

exp
(

− |yD2,1−hS1D2
b1x1−hS2D2

b2x2|2+|yD2,2−hR2D2
p21b1x̃1−hR2D2

p22b2x̃2|2
2σ2

n

)}

(2.7)

where (x1, x2) is a candidate of the transmitting symbol, (x̃1, x̃2) is a candidate of the

detection symbol in the relay node, and S (M) is the possible constellation set, where M

is the constellation size. The ML detector has four terms (MPSK has M2 terms) in its

equation because the relay give four possible reverse signals to the destination. Based

on the detection scheme, the destination must knows all the channel state information

which includes sources to relay, sources to destination, and relay to destination. And the

detection scheme consider all the possible constellation points which comes from sources

and relay.

For convenience, we define the function f as

f =
∑

(x̃1,x̃2)∈S(M)

P(x1,x2),(x̃1,x̃2)×

exp
(

− |yD1,1−hS1D1
b1x1−hS2D1

b2x2|2+|yD1,2−hR1D1
p11b1x̃1−hR1D1

p12b2x̃2|2
2σ2

n

)

(2.8)

There are four terms in (2.8). Each term multiply with a probability which represents

the constellation point (x1, x2) decoding as (x̃1, x̃2). In high region, the probability
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P(x1,x2),(x1,x2) almost equal to one and the other three probabilities almost equal to zero

when comparing with P(x1,x2),(x1,x2). The P(x1,x2),(x1,x2) means that the two sources trans-

mit (x1, x2) and relay decode as the same constellation point. So, the (2.8) can be

approximate as

f =
∑

(x̃1,x̃2)∈S(M)

P(x1,x2),(x̃1,x̃2)×

exp
(

− |yD1,1−hS1D1
b1x1−hS2D1

b2x2|2+|yD1,2−hR1D1
p11b1x̃1−hR1D1

p12b2x̃2|2
2σ2

n

)

≈ P(x1,x2),(x1,x2) × exp
(

− |yD1,1−hS1D1
b1x1−hS2D1

b2x2|2+|yD1,2−hR1D1
p11b1x1−hR1D1

p12b2x2|2
2σ2

n

)

≈ exp
(

− |yD1,1−hS1D1
b1x1−hS2D1

b2x2|2+|yD1,2−hR1D1
p11b1x1−hR1D1

p12b2x2|2
2σ2

n

)

(2.9)

After approximation, there is only one term in the likelihood function. And the detection

rule is also changed. The detection rule in destination 1 can be

(x̂1, x̂2)D1
= arg min

(x1,x2)∈S(M)
{|yD1,1 − hS1D1b1x1 − hS2D1b2x2|2

+|yD1,2 − hR1D1p11b1x1 − hR1D1p12b2x2|2}
(2.10)

and the detection rule in destination 2 is

(x̂1, x̂2)D2
= arg min

(x1,x2)∈S(M)
{|yD2,1 − hS1D2b1x1 − hS2D2b2x2|2

+|yD2,2 − hR2D2p21b1x1 − hR2D2p22b2x2|2}
(2.11)

We can find that the detection rule is only correlated with the constellation distance.

For analysis, we define the function

f̄ (yD1,1, yD1,2, x1, x2) = |yD1,1−hS1D1b1x1−hS2D1b2x2|2+|yD1,2−hR1D1p11b1x1−hR1D1p12b2x2|2

(2.12)

where yD1,1 and yD1,2 are the receiving signals in the first and second time slot at desti-
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nation 1. Thus, the bit error probability (BEP) at destination 1 is

Pe =
1

4

∑

(x1,x2)∈S(M)

P(x1,x2) (2.13)

where P(x1,x2) is the error probability when the sources transmit (x1, x2) and 1
4

means

each signal transmits with equal probability in the source nodes. The P(x1,x2) can be

expressed as

P(x1,x2) =

∑

(x̂1,x̂2)∈S(M)

[

P(x1,x2),(x̂1,x̂2)×

Pr
{

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x1, x2)

≥ min
(x̃1,x̃2)6=(x1,x2)

(

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x̃1, x̃2)
)

}]

(2.14)

Originally, the term before the inequality in (2.14) should be the smallest one when there

is no error occurring in the destination 1. Because the detection rule will choose the

constellation point which closed to the candidate (x1, x2) in this case. So, the error event

describes that the distance between transmitted constellation point and the candidate

(x1, x2) isn’t the smallest one.

The minimum function can be expanded as

Pr {a ≥ min (b, c, d)} ≤ Pr {a ≥ b} + Pr {a ≥ c} + Pr {a ≥ d} (2.15)

11



So, the (2.14) can be rewrote as

P(x1,x2) ≤
∑

(x̂1,x̂2)∈S(M)

[

P(x1,x2),(x̂1,x̂2)×
∑

(x̃1,x̃2)6=(x1,x2)

Pr
{

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x1, x2)

≥ f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x̃1, x̃2)
}]

(2.16)

Now, we are going to analysis the probability function in (2.16).

Pr
{

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x1, x2)

≥ f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hRDb1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x̃1, x̃2)
}

= Pr {|nD1,1|2 + |hR1D1b1p1 (x̂1 − x1) + hR1D1b2p2 (x̂2 − x2) + nD1,2|2

≥ |hS1D1b1 (x1 − x̃1) + hS2D1b2 (x2 − x̃2) + nD1,1|2

+|hR1D1b1p1 (x̂1 − x̃1) + hR1D1b2p2 (x̂2 − x̃2) + nD1,2|2}

= Pr
{

−2((hS1D1b1 (x1 − x̃1) + hS2D1b2 (x2 − x̃2))
∗nD1,1)R

−2((hR1D1b1p1 (x1 − x̃1) + hR1D1b2p2 (x2 − x̃2))
∗nD1,2)R

≥ |hS1D1b1 (x1 − x̃1) + hS2D1b2 (x2 − x̃2)|2

−|hR1D1b1p1 (x̂1 − x1) + hR1D1b2p2 (x̂2 − x2)|2

+|hR1D1b1p1 (x̂1 − x̃1) + hR1D1b2p2 (x̂2 − x̃2)|2
}

(2.17)

Let hS1D1b1 (x1 − x̃1) = c1, hS2D1b2 (x2 − x̃2) = c2, hR1D1b1p1 (x1 − x̃1) = c3, hR1D1b2p2 (x2 − x̃2) =

c4, hR1D1b1p1 (x̂1 − x1) = c5, and hR1D1b2p2 (x̂2 − x2) = c6. The above equation can be

rewrote as

Pr
{

−2((c1 + c2)
∗nD1,1)R

− 2((c3 + c4)
∗nD1,2)R

≥ |c1 + c2|2 − |c5 + c6|2 + |c3 + c5 + c4 + c6|2
}

= Pr

{

−((c1+c2)
∗nD1,1)

R
−((c3+c4)

∗nD1,2)
R√

|c1+c2|2+|c3+c4|2

≥ |c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2

2
√

|c1+c2|2+|c3+c4|2

}

(2.18)
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Let Ω =
−((c1+c2)

∗nD1,1)
R
−((c3+c4)

∗nD1,2)
R√

|c1+c2|2+|c3+c4|2
. The mean and variance of Ω are

E [Ω] = 0 (2.19)

V ar [Ω]

= 1
|c1+c2|2+|c3+c4|2

V ar
[

−
(

(c1 + c2)
∗
R(nD1,1)R

− (c1 + c2)
∗
i(nD1,1)i

)

−
(

(c3 + c4)
∗
R(nD1,2)R

− (c3 + c4)
∗
i(nD1,2)i

)]

= 1
|c1+c2|2+|c3+c4|2

[(

|(c1 + c2)
∗
R|

2
+ |(c1 + c2)

∗
i|

2
)

σ2
n

2

+
(

|(c3 + c4)
∗
R|

2
+ |(c3 + c4)

∗
i|

2
)

σ2
n

2

]

= σ2
n

2

(2.20)

Therefore, the distribution of Ω is N
(

0, σ2
n

2

)

. So, the (2.18) can be rewrote as

Pr

{

Ω ≥ |c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2

2
√

|c1+c2|2+|c3+c4|2

}

= Pr

{√
2Ω

σn
≥ |c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2√

2σn

√
|c1+c2|2+|c3+c4|2

}

= Q

(

|c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2√
2σn

√
|c1+c2|2+|c3+c4|2

)

≤ 1
2
exp

(

−(|c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2)
2

4σ2
n(|c1+c2|2+|c3+c4|2)

)

(2.21)

where the last inequality use the Chernoff bound which is Q (x) ≤ 1
2
exp

(

−x2

2

)

. Based

on above derivation, we use it in the (2.16). The result can be expressed as

P(x1,x2) ≤
∑

(x̂1,x̂2)∈S(M)

[

P(x1,x2),(x̂1,x̂2)×

∑

(x̃1,x̃2)6=(x1,x2)

1
2
exp

(

−(|c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2)
2

4σ2
n(|c1+c2|2+|c3+c4|2)

)

] (2.22)

where c1 = hS1D1b1 (x1 − x̃1), c2 = hS2D1b2 (x2 − x̃2), c3 = hR1D1b1p1 (x1 − x̃1), c4 =

hR1D1b2p2 (x2 − x̃2), c5 = hR1D1b1p1 (x̂1 − x1), and c6 = hR1D1b2p2 (x̂2 − x2). The result

is for destination 1. The destination 2 can use the similar way to get the BER function.

So far, we have derive the system BER for the destination 1 and destination 2.

13



However, we want to provide the differentiated service to the users in corresponding

BSs. Based on (2.12), the BEP of user 1 at BS1 is

Pe1 =
1

4

∑

(x1,x2)∈S(M)

P̄(x1,x2) (2.23)

where P̄(x1,x2) is the error probability of user 1 when the sources transmit (x1, x2). The

P̄(x1,x2) can be expressed as

P̄(x1,x2) =
∑

(x̂1,x̂2)∈S(M)

[

P(x1,x2),(x̂1,x̂2)×

Pr

{

min
x̄2∈S2(M)

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x1, x̄2)

≥ min
x̃1 6=x1,x̃2∈S2(M)

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x̃1, x̃2)

}]

(2.24)

where S2 (M) is the possible constellation set of user 2. The minimum function in (2.24)

can be expanded as

Pr {min (a, b) ≥ min (c, d)} ≤ Pr (a ≥ c) + Pr (a ≥ d) (2.25)

Hence, the (2.24) can be rewrote as

P̄(x1,x2) ≤
∑

(x̂1,x̂2)∈S(M)

[

P(x1,x2),(x̂1,x̂2)×
∑

x̃1 6=x1,x̃2∈S2(M)

Pr
{

f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x1, x2)

≥ f̄ (hS1D1b1x1 + hS2D1b2x2 + nD1,1, hR1D1b1p1x̂1 + hR1D1b2p2x̂2 + nD1,2, x̃1, x̃2)
}]

(2.26)

We can find that the (2.26) is a reduced form of (2.16). Based on the derivation of
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system error probability, the result can be expressed as

P̄(x1,x2) ≤
∑

(x̂1,x̂2)∈S(M)

[

P(x1,x2),(x̂1,x̂2)×

∑

x̃1 6=x1,x̃2∈S2(M)

1
2
exp

(

−(|c1+c2|2−|c5+c6|2+|c3+c5+c4+c6|2)
2

4σ2
n(|c1+c2|2+|c3+c4|2)

)

] (2.27)

where c1 = hS1D1b1 (x1 − x̃1), c2 = hS2D1b2 (x2 − x̃2), c3 = hR1D1b1p1 (x1 − x̃1), c4 =

hR1D1b2p2 (x2 − x̃2), c5 = hR1D1b1p1 (x̂1 − x1), and c6 = hR1D1b2p2 (x̂2 − x2). Both re-

sults in this section are a sum of exponential functions. However, the results are too

complicated to average the channel effect. In Chapter 3, we apply the optimization

technique to solve this complicated problem.
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Chapter 3

Optimization

The result in chapter 2 is a sum of exponential functions. And it’s too complicated to

average the channel effect. In this chapter, we apply the optimization technique to solve

this complicated problem. The optimization of exponential functions can be dealt with

by using GP. However,the GP requires a form of posynomial functions in the exponent.

But our result is difficult to attain the requirement. To do so, we use another more

powerful optimization method which is called SP. SP is an extension version of the GP

and it’s a nonlinear optimization method. In this section, we introduce the standard

form and properties of GP at first. Second, the form of SP and transformation skills are

presented.

The standard form of GP is minimizing a posynomial subject to posynomial up-

per bound inequality constraints and monomial equality constraints. The form can be

expressed as

minimize f0 (x)

subject to fi (x) ≤ 1, i = 1, . . . , m

hl (x) = 1, l = 1, . . .M

variables x

(3.1)

16



where hl, l = 1, . . .M are monomials

hl (x) = dx
a
(1)
k

1 x
a
(2)
k

2 . . . x
a
(n)
k

n (3.2)

where the multiplicative constant d ≥ 0 and the exponential constants a(j) ∈ ℜ, j =

1, . . . , n and xi ≥ 0, i = 1, . . . , n. And fi, i = 1, . . . , m, are posynomials

fi (x) =

K
∑

k=1

dikx
a
(1)
k

1 x
a
(2)
k

2 . . . x
a
(n)
k

n (3.3)

which is a sum of monomials.

Note that the domain of monomials is strictly positive quadrant of ℜn, where the

objective functions and constraint functions are writing in terms of monomials, The

domain of monomials implies that the optimal variables cannot be zero. GP in standard

form isn’t a convex optimization problem, because posynomials aren’t convex functions.

It can be used a logarithmic change of all variables and becomes a convex optimization

problem. The details doesn’t introduce in this work.

In our work, the objective function isn’t a posynomial function. We can’t directly

use the GP for the problem. In the problem, the objective function and constraint

functions are polynomials division. Polynomial is a form of posynomial with negative

multiplicative coefficients. It can be divided to two parts which are monomials terms

with positive multiplicative coefficients and negative multiplicative coefficients. Each

parts are posynomial function and can applied the SP to optimize. The form of SP is

minimize f01 (x) − f02 (x)

subject to fi1 (x) − fi2 (x) ≤ 1, i = 1, . . . , m
(3.4)

where fi1 (x) , i = 1, . . . , m are separated from those monomial terms with positive mul-

tiplicative coefficients and it’s a posynomial function. We need to convert the signomial

objective function into the form by GP. In Table 3.1, we can see that the major difference
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Table 3.1: GP and SP comparison

Geometric Programming Signomial Programming

dik ℜ+ ℜ
a(j) ℜ ℜ
xj ℜ++ ℜ++

between GP and SP lies in the multiplicative coefficients and other parameters are al-

most the same. Let t be an auxiliary variable and transfer the objective to minimization

of t.

minimize t

subject to f01 (x) − f02 (x) ≤ t

fi1 (x) − fi2 (x) ≤ 1, i = 1, . . . , m

(3.5)

This problem can be solved by the algorithm that has been proposed by Avriel and

Williams. Consider the kth constraint of above signomial:

fi1 (x) − fi2 (x) ≤ 1 (3.6)

This can be rewrote as

fi1 (x)

1 + fi2 (x)
≤ 1 (3.7)

and the original objective function can be transformed as a constraint :

f01 (x)

t + f02 (x)
≤ 1 (3.8)
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The problem becomes

minimize t

subject to f01(x)
t+f02(x)

≤ 1

fi1(x)
1+fi2(x)

≤ 1, i = 1, . . . , m

(3.9)

However, the fi1(x)
1+fi2(x)

and f01(x)
t+f02(x)

aren’t posynomial functions (A posynomial divided by

a posynomial isn’t a posynomial function). But we can use a technique which is called

condensed programs to condense the posynomial function where in the denominator as a

monomial function. As a result, the posynomial function divided by a monomial function

is a posynomial function. And we can use the function which has been condensed to do

the GP.

Before describing the condensed programs, we first introduce the arithmetic-geometric

inequality. The condensed program is based on this inequality. The inequality describe

that the weighted arithmetic mean of positive numbers f1, f2, . . . , fn is greater than or

equal to the geometric mean. And it can be wrote as follows

n
∑

i=1

fi ≥
n

∏

i=1

(

fi

ωi

)ωi

(3.10)

where
n

∑

i=1

ωi = 1 (3.11)

ωi ≥ 0, i = 1, 2, . . . , n (3.12)

Equality holds if and only if

f1

ω1
=

f2

ω2
= · · · =

fn

ωn

(3.13)

Based on the above inequality, we introduce the condensed programs. For an any posyn-
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omial function

fi (x) =
K

∑

k=1

dikx
a
(1)
k

1 x
a
(2)
k

2 . . . x
a
(n)
k

n =
K

∑

k=1

uik (x) (3.14)

the definition of condensed posynomial, formed at a point x̃ :

fi (x, x̃) =

K
∏

k=1





dikx
a
(1)
k

1 x
a
(2)
k

2 . . . x
a
(n)
k

n

ωik (x̃)





ωik(x̃)

=

K
∏

k=1

(

uik (x)

ωik (x̃)

)ωik(x̃)

(3.15)

For a given x̃ > 0 we will choose the set of weights which is based on the arithmetic-

geometric inequality :

ωik (x̃) =
uik (x̃)

fi (x̃)
(3.16)

There is an important property of the above result which the fi (x, x̃) is a monomial

function. The condensed posynomial must rule by the arithmetic-geometric inequality :

fi (x, x̃) ≤ fi (x) (3.17)

for any positive x and x̃.

Back to the original problem in (3.9). We can apply the condensed programs to the

denominator of the constraints. And it can be translated as :

t + f02 (x) ≥ f0 (x, x̃1)

1 + fi2 (x) ≥ fi (x, x̃2)
(3.18)

And the optimization problem will be :

minimize t

subject to f01(x)
f0(x,x̃1)

≤ 1

fi1(x)
fi(x,x̃2)

≤ 1, i = 1, . . . , m

(3.19)

The program has the following properties :
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• (3.19) is a standard form of GP because all constraints are posynomial function.

• At any point, x̃1 and x̃2 satisfy the constraints of (3.19) will satisfy the constraints

of (3.9). This can be observed by the inequality (3.17), i.e.:

f01(x)
t+f02(x)

≤ f01(x)
f0(x,x̃1)

≤ 1

fi1(x)
1+fi2(x)

≤ fi1(x)
f1(x,x̃2)

≤ 1
(3.20)

• Inequality (3.20) implies that the feasible set of (3.19) is fully constrained in (3.9).

So, the optimal solution to (3.19) will be a feasible solution to (3.9).

Based on the above introducing of SP, we want to apply it to our problem. In the

chapter 2, we get a BER function which is formed by exponential terms. The general

form is like :

f (p1, p2) =
∑

i

ci exp

(

−wi (p1, p2) − xi (p1, p2)

ui (p1, p2) − vi (p1, p2)

)

(3.21)

where the ui (p1, p2), vi (p1, p2), wi (p1, p2), and xi (p1, p2) are posynomial functions. And

the exponential term, −wi(p1,p2)−xi(p1,p2)
ui(p1,p2)−vi(p1,p2)

, is negative number because we derive it from

the Chernoff bound. This can’t use the SP directly. In the optimization problem, we use

a auxiliary variable to substitute the negative term where in the exponential function.

And the negative term becomes a constraint which is upper bounded by the auxiliary

variable. This constraint is violate the definition of GP(The constraints are posynomial

functions in GP. This implies all the constraints must great than zero.). For this problem,

we change the function f (p1, p2) as f̄ (p1, p2) :

f̄ (p1, p2) = ek × f (p1, p2) =
∑

i

ci exp

(

−wi (p1, p2) − xi (p1, p2)

ui (p1, p2) − vi (p1, p2)
+ k

)

(3.22)

where the k is a constant which ensure the exponential terms in positive domain. And
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it must follow the rule :

k > max
i

(

wi (p1, p2) − xi (p1, p2)

ui (p1, p2) − vi (p1, p2)

)

(3.23)

Now, the original problem is

minimize f (p1, p2)

subject to p2
1 + p2

2 ≤ 2
(3.24)

and we transform it as

minimize f̄ (p1, p2)

subject to p2
1 + p2

2 ≤ 2
(3.25)

where p2
1 + p2

2 ≤ 2 is the total power constraint in the relay node. Introducing auxiliary

variables ti, we transform the above problem to the following equivalent problem :

minimize
∑

i

ci exp (ti)

subject to p2
1 + p2

2 ≤ 2

−wi(p1,p2)−xi(p1,p2)
ui(p1,p2)−vi(p1,p2)

+ k ≤ ti, i = 1, . . . , K

(3.26)

The second constraint can be rewrite as

xi (p1, p2) + kui (p1, p2) + tivi (p1, p2)

tiui (p1, p2) + kvi (p1, p2) + wi (p1, p2)
=

xi (p1, p2) + kui (p1, p2) + tivi (p1, p2)

Qi (p1, p2)
≤ 1

(3.27)

Let Qi (p1, p2, p̃1, p̃2) denote the monomial function which obtained by condensing the

posynomial function Qi (p1, p2) at the point p̃1, p̃2. The posynomial function will great

than or equal to the monomial function.

Qi (p1, p2) ≥ Qi (p1, p2, p̃1, p̃2) (3.28)
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and the weights of condensed program uses the method that is introduced in (3.16). We

substitute the Qi (p1, p2, p̃1, p̃2) for Qi (p1, p2) in (3.26). The optimization becomes

minimize
∑

i

ci exp (ti)

subject to p2
1 + p2

2 ≤ 2

xi(p1,p2)+kui(p1,p2)+tivi(p1,p2)
Qi(p1,p2,p̃1,p̃2)

≤ 1, i = 1, . . . , K

(3.29)

The (3.29) is a standard form of GP. And the tool CVX can solve this kind of problems.

Algorithm 1 The Application of SP on Power Allocation Precoder for a Relay Node

1). Initialize n = 0

2). Set k > max
i

(

wi(p1,p2)−xi(p1,p2)
ui(p1,p2)−vi(p1,p2)

)

3). Random peak p1 (0) and p2 (0) in the constraint p2
1 (0) + p2

2 (0) ≤ 2
4). Calculate the weights of condensed program in (3.28)
5). Set Cvx optimum (0) = 10
6). Set m = 0
while m ≤ 99.9% do

Cvx begin gp

minimize
∑

i

ci exp (ti)

subject to p2
1 + p2

2 ≤ 2
xi(p1,p2)+kui(p1,p2)+tivi(p1,p2)

Qi(p1,p2,p̃1,p̃2)
≤ 1, i = 1, . . . , K

(3.30)

Cvx end
m = Cvx optimum (n) /Cvx optimum (n − 1)
Update the weights of condensed program in (3.28) using p1 (n) and p2 (n)
Set n=n+1

end while

The algorithm 1 described the optimization method in our scheme and the perfor-

mance will present in the next section.
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Chapter 4

Simulation Result

We in this section show the simulations which compare the BERs of the relay-based

CoMP systems with the proposed precoder in the different topologies shown in Fig.4.1

and Fig.4.2. Fig.4.1 demonstrates the simulation environment for our multi-cell commu-

nications, and Fig.4.2 represents the case that the MS1 doesn’t suffers interference from

other MSs any more. The D1, D2, and D3 are the distances of BS1-to-RS, BS1-to-MS1,

and BS1-to-MS2, respectively. And MS2 isn’t belonging to the cellular 1. In our simula-

tions, the average channel power is assumed to be inversely proportional to the cubic of

the distance between transmitter and receiver. In Fig.4.3, we set D1 = D2 = D3 = D/2

where D is defined as a standard distance that is a distance from the cellular boundary

to its BS. The average SNR caused by the path loss of the distance D is assumed as

γ = Px/σ
2
n where Px denotes the received power when the MS signals from a cell bound-

ary has been transmitted to the destination, i.e.,the BS. Following this assumption, the

other average SNRs can be given by (D/Di)
3γ for i = 1, 2, 3. Both ”ML with Exhaustive

Search” and ”CVX” (Chapter 3) methods are used to find a pair (p1, p2) that can min-

imize the function (2.22). The curve ”ML with Exhaustive Search” and ”CVX” show

almost the same BEP performance. But the ”CVX” is a precise and efficient method to

find a solution for the power allocation. Compared with Wang and Giannakis’ CNFC
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method, both ”ML with Exhaustive Search” and ”CVX have 3dB gain in BER perfor-

mance. The curve Simplification detection with ”p1 = 1 and p2 = 1” shows that the

BEPs of the MS1 of the cells without designing the power allocation precoders for the

RS. In this situation, the MS can’t exploit full diversity at the corresponding BS. The

last curve ”One user bound” represents a performance metric based on the MS1 doesn’t

suffer any interference. And our scheme can almost achieve this performance bound.

In Fig.4.4, the network topology is set as 2D1 = D2 = D3 = D. The topology would

happen when the MSs in Figure 4.1 are located on the cellular boundary. In this situa-

tion, applying our method the MS1 and MS2 can achieve the same performance as they

do by Wang and Giannakis’ precoder. As the same result in Fig.4.3, our performance in

BER is 3dB better than Wang and Giannakis’ CNFC method. In Fig.4.5, the network

topology is set as 2D1 = D2 = 2D3/3 = D. The topology is called as asymmetric

topology because the two MSs have different distance to the base station. Besides, the

differentiated services are clearly showed on this figure. For example, the MS1 in cellular

1 has better performance than the MS2 in cellular 1. The power allocation precoders

at RS1 actually can provide the advantage for the MS1. And compared with Wang

and Giannakis’ CNFC method, we have 6dB gain in BER performance. In Fig.4.6, the

network topology is 2D1 = D2 = D3/3 = D. The differentiated services are also show

up in this figure. The performance of the MS in the corresponding BS is also reliable

and closed to the one user bound when the topology becomes more asymmetric than

in Fig.4.5. Wang and Giannakis’ CNFC method can’t exploit diversity in this topology

and the performance gap between their scheme and our method is about 10dB. In the

last simulation Fig.4.7, the performance of the MS1 on the cell boundary almost remains

the same even though the location of MS2 has been changed.
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Figure 4.1: The simulation topology in two cellular case.

Figure 4.2: The simulation topology in single user environment.
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Figure 4.5: The topology setting is 2D1 = D2 = 2D3/3 = D (Asymmetric Case). The
BEP performance of all users.
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Figure 4.7: The topology setting is 2D1 = D2 = D. And the D3 is changed.
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Chapter 5

Conclusions

We have introduced a power allocation method for the relay node to provide differen-

tiated services in multi-cell communications. The differentiated services are possible in

multi-cell communications and subscriber’s diversity gain at corresponding BS is guar-

anteed. Besides, the SP provides an efficiency search for the power allocation method.

However, we only considered the simple scenario that consists of two adjacent cells whcih

have two individual subscribers both using the BPSK modulation. In the future, the

power allocation method would be extended to high order modulation and more complex

topologies.
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