
國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

智慧型機器人之彈性化即時控制系統

A Flexible Real-Time Control System for

Autonomous Mobile Robots

 研 究 生：林 嘉 豪

 指 導 教 授：宋 開 泰 博士

中華民國九十三年七月

智慧型機器人之彈性化即時控制系統

A Flexible Real-Time Control System for Autonomous

Mobile Robots

研 究 生：林嘉豪 Student: Chia-How Lin

指導教授：宋開泰 博士 Advisor: Dr. Kai-Tai Song

國立交通大學

電機與控制工程學系

碩（博）士論文

A Thesis
Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science
National Chiao-Tung University

in Partial Fulfillment of the Requirements
for the Degree of Master

in
Electrical and Control Engineering

July 2004
Hsinchu, Taiwan, Republic of China

中華民國2004年7月

 i

智慧型機器人之彈性化即時控制系統

研究生：林嘉豪 指導教授：宋 開 泰 博士

國立交通大學電機與控制工程學系

摘 要

本論文以多代理人導向的方式設計一套具有高發展彈性的機器人即時控

制系統。本系統的主要目的在於整合異質性機器人控制程式，同時確保系

統能有即時的反應效率，並在彈性與通用性之間取得平衡。本架構可幫助

開發團隊成員將一複雜之控制系統依照其功能性切割成多個代理人，如此

系統的發展得以平行進行，各程式也能共享有限的硬體資源。本系統並提

供即時的訊息流通以及決策機制，開發人員只需專注在演算法的開發而不

是系統整合的細節部分。在軟體方面本論文使用 RTAI 這套即時 Linux 套

件來實現，整個架構並提供開放式代理人樣版，使得開發者可以在維持擴

充性以及相容性的前提下移植並整合各種異質性的程式。本論文以實驗室

研製之家用機器人平台為主，實際製作環境探索、影像追蹤系統及雙機器

人合作任務，以驗證本系統的控制效果。

 ii

A Flexible Real-time Control System for Autonomous

Mobile Robots

Student: Chia-How Lin Advisor: Dr. Kai-Tai Song

Department of Electrical and Control Engineering
National Chiao-Tung University

Abstract

This thesis studies an agent-based approach to developing a flexible real-time robot

control system. The main purpose of the system is to integrate heterogeneous

algorithms and control methods while still guarantee real-time responding of robotic

behaviors. The balance between generality and flexibility is also considered. The

proposed architecture facilitates a robot research team to divide a complex control

system into agents according to various functions. Therefore, the development can be

carried out simultaneously in parallel and integrated in a latter phase. Moreover, the

programs can share limited hardware resources onboard the robot. The system also

provides a real-time message delivery and decision making mechanism, which help

the designers to concentrate on the development of individual algorithm: The software

framework of the system is realized using a Linux platform equipped with Real Time

Application Interface (RTAI). An agent template is provided with scalability and

compatibility to port and integrate heterogeneous programs. Finally, the control

system has been tested using a laboratory mobile robot to realize environmental

exploration, visual tracking, and a two-robot-cooperation. Experiment results verify

the effectiveness of the proposed architecture.

 iii

ACKNOWLEDGMENT

First of all, I would like to express my deepest sense of gratitude to my advisor Dr.
Kai-Tai Song for his patient guidance, advice encouragement and excellent advice
throughout this study.

I am thankful to Professor Gary Anderson for his participation and advice for the

experiment of my thesis.

I would like to thank Dr. Yu-Lun Huang and Dr. Jwu-Sheng Hu, for their comments

and suggestions for the editing of my thesis.

I also thank my colleagues in isci lab, Hennry, Chih-Chieh, Chih-How, Yao-Qing, for

sharing experiences and knowledge during the time of study.

Finally, I take this opportunity to express my profound gratitude to my beloved parent,

and my friends for their moral support and patience during my study in NCTU.

 iv

CONTENTS

ABSTRACT(CHINESE)... i
ABSTRACT(ENGLISH) ... ii
ACKNOWLEDGMENT...iii
CONTENTS ... iv
LIST OF TABLES ...vi
LIST OF FIGURES..vii
1 . INTRODUCTION .. 1

1.1. Motivation ..1
1.2. Background and Related Work...1

1.2.1. Hybrid System ..1
1.2.2. Software Frameworks for Robot Development..3

1.2.2.1. Classification of deliberation and reactive behaviors.........................4
1.2.2.2. Real-time responding vs. computing time..5
1.2.2.3. Team work in robot development ...6

1.3. Problem Statements ..7
1.4. Organization of the Thesis..7

2 . SYSTEM DESIGN ... 8
2.1. System Overview..8
2.2. Properties of Robot Control System...9

2.2.1. Flexibility ...9
2.2.2. Real-time Response and Adjustable Execution Period...............................9
2.2.3. Connectivity ...10
2.2.4. Loosely Classified ..10
2.2.5. Generality ... 11

2.3. Proposed System Architecture.. 11
2.3.1. System Components ...12
2.3.2. Inter Agent Communication ...15
2.3.3. Examples ..16

2.3.3.1. Multi-agent cooperation ...16
2.3.3.2. Multi-robot control ...18

2.4. Summary...20
3 . SOFTWARE REALIZATION... 21

3.1. RTAI ...21
3.1.1. Overview ..21
3.1.2. Compare with Other RTOS ..23

3.1.2.1. Microsoft Windows® ...23
3.1.2.2. Commercial hard real-time operating systems23

3.1.3. RTAI Features...24
3.1.3.1. Scheduling ..24

 v

3.1.3.2. Inter Process Communication (IPC)...24
3.1.3.3. Memory management ...25
3.1.3.4. Soft-hard real time in user space: LXRT..25
3.1.3.5. Real-time API for hardware..26

3.2. Implementation...26
3.2.1. Clock...26
3.2.2. Short-term Memory ..27
3.2.3. Message Delivery and Router ..28
3.2.4. Agent ..30
3.2.5. Decision Maker and Knowledge base ..32
3.2.6. Resource Manager ..32

3.3. Summary...32
4 . EXPERIMENTAL RESULTS ... 33

4.1. The experimental mobile robots ...33
4.2. Experiment of single robot exploration ..34

4.2.1. Goal ..34
4.2.2. Implementation...34

4.2.2.1. Sensor agents ..35
4.2.2.2. Actuator agents ...36
4.2.2.3. Functional agents..36
4.2.2.4. Decision making...37

4.2.3. Experimental Result ...38
4.3. Experiment of two robot cooperation...41

4.3.1. Goal ..41
4.3.2. Implementation...42

4.3.2.1. Localization ..42
4.3.2.2. Robot 1(Exploration)..44
4.3.2.3. Robot 2(Task Execution) ..45

4.3.3. Experimental Result ...47
5 . CONCLUSIONS AND FUTURE WORK.. 52

5.1. Conclusions ..52
5.2. Future work ..52

REFERENCES ... 54
APPENDIX A- DISTANCE ESTIMATION OF CHECKPOINT...................................... 56

 vi

LIST OF TABLES

Table 1-1 A comparison of three different styles..5

 vii

LIST OF FIGURES

Figure 1-1 Hybrid architecture for robot control...2
Figure 2-1 A simplified example for period adjusting ..10
Figure 2-2 Global view of the control system architecture ...12
Figure 2-3 Sensor agent pattern...13
Figure 2-4 Actuator agent pattern..14
Figure 2-5 An example of the control system ...17
Figure 2-6 An example of a 2-robot cooperation system ..19
Figure 3-1 RTAI architecture...22
Figure 3-2 The concept of the circular buffer..27
Figure 3-3 The connection list of the router ..29
Figure 3-4 The basic design pattern of agents...30
Figure 4-1 (a) H1 robot platform (b) H2 robot platform...34
Figure 4-2 The system organization e robot exploration experiment..35
Figure 4-3 The sonar sensors module..36
Figure 4-4 Recorded trajectory of the robot ..40
Figure 4-5 The environment of the experiment...40
Figure 4-6 The changes of the (a) velocity, (b) angular speed, and (c) angle versus time of

this experiment...41
Figure 4-7 The artificial landmark: checkpoint...43
Figure 4-8 The programming organization of robot 1...44
Figure 4-9 The programming organization of robot 2...46
Figure 4-10 The recorded trajectories of two robots ...48
Figure 4-11 (a) Robots at the starting point (b)Robot 2 at via point 2 (c) Robot 2 at via point

2 (d)Robot 2 start the right turn (e)Robot 2 approaching target point (e)Robot 2
arrived ..49

 1

1 . Introduction

1.1. Motivation

The main purpose of this study is to develop a flexible control system for autonomous

mobile robots. An autonomous robot is a complex system, which integrates various control

functions for practical applications, such as autonomous navigation, human face tracking and

recognition, etc. It is desirable to integrate these functions, developed by different people or

on different platforms, into one single system. Furthermore, the system needs to keep the

capacity of adding new functions as well as purging unnecessary functions. Flexible control

architecture is therefore a key factor for realizing intelligent autonomous control. Via such

control architecture, the robot designers can focus on developing their own sub-systems, and

the architecture will do the rest: integrating these sub-systems, managing the resources,

exchanging the messages, etc. Moreover, the architecture archives improved performance by

integrating different control methods, rather than using a single complex controller.

1.2. Background and Related Work

1.2.1. Hybrid System

In the last two decades, many researchers have made their efforts in developing control

architectures for autonomous and intelligent robotic systems. The trend converges to a similar

architectural solution – a hybrid architecture that integrates deliberative and reactive strategies,

 2

as shown in Fig. 1-1. The reactive approaches provide features such as fast response without

complex representational symbolic knowledge. The deliberative systems, on the other hand

provide capabilities such as planning, problem solving and goals achieving with a global view.

The hybrid, multi-tiered architecture has the advantages of both and satisfies task-oriented

specific requirements [1]. Arkin proposed the “Autonomous Robot Architecture (AuRA)” [2],

known as the first example of hybrid architecture, which integrates behavioral, perceptual,

and environment information. AuRA has been successfully implemented and affected other

control architectures further on.

Recently, many researchers in the traditional AI field have become involved in robotics,

and led to several interesting new design concept. The concept of agents and multi-agent

system, for example, has been widely used in the field of intelligent robotics. Agents are

computer systems situated in some environment that are capable of flexible, autonomous

action in order to meet their design objectives. Agents can exist in a structure as complex as a

global Internet or one as simple as a module of a common program. Agents can be

autonomous entities, deciding their next step without the interference of a user, or they can be

controllable, serving as a middleware between the user and other agents, thus they can exhibit

deliberation, rationality, and intelligence in achieving their goals.

Figure 1-1 Hybrid architecture for robot control

PLAN

SENSE ACT

Deliberative

Reactive

 3

Multi-agent systems focus on the development of computational principles and models

for constructing, describing, implementing, and analyzing the patterns of interaction and

coordination in agent societies [3].

The agent-oriented approaches help engineers to decompose and analysis the complete

system. Saphira divided the deliberation activities of the robot among software agents [4].

Oliveira treats the intelligent robot as autonomous agents capable of flexible action in real

world environments [5]. He proposed Autonomous Mobile Robot Control System (ARCoS),

which uses a multi-agent system framework to give a flexible strategy for single agents’

cooperation and enables a set of behaviors to have a certain degree of autonomy.

1.2.2. Software Frameworks for Robot Development

In parallel with the efforts of architecture and control methodologies, the software

framework of intelligent autonomous system is another important issue. Since the rapid

growth of quantity and complexity of robot components, the flexibility and reusability during

the software development have become more and more important, in order to eliminate the

duplicated efforts on programming. Some agent-based design exploits the traditional

agent-development tools, such as April [6, 7]. BERRA [8] adopts several platform-portable

software packages. CLARAty develops a framework for generic and reusable robotic

components that can be adapted to a number of heterogeneous robot platforms [9]. OROCOS

project (Open Robot Control Software) [10, 11] is a component-based, distributed, and

configurable software framework. Its hard real-time core provides a generic control structure,

 4

with plug-in facilities for customization, and gives optimal flexibility: distributed control over

a network, portable over several (real-time) operating systems, configurable for high

performance on special purpose hardware, scalable from limited to full functionality, etc.

Although much architecture have been proposed and examined successfully, still, there

are some open questions needed to be discussed and some interesting areas needed to be

studied. For instance, how the engineers distinguish different behaviors when analyzing the

control system? How does the system reach a real-time response? How could team members

work together efficiently? The detailed will be illustrated in the next section.

1.2.2.1. Classification of deliberation and reactive behaviors

Building a hybrid system requires cooperation between both deliberative and reactive layers.

However, since boundary between deliberative and reactive behavior is still not well

understood, it is difficult to classify all the behaviors into two layers without doubts. Various

approaches have been used in different architectures. They can be loosely divided into three

styles: managerial, state hierarchies, and model-oriented [1]. Managerial styles, such as AuRA

[2], and SFX [1], are recognizable by their decomposition of responsibilities similar to

business management. State hierarchies, such as 3T [1], use the knowledge about the robot’s

state to distinguish. In model-oriented styles, such as Saphira [4] and TCA [1], reactive model

serves as virtual sensors. The features of these styles are listed in Table 1. It can be seem that

each one has its own advantages and disadvantages, which can hardly be evaluated.

 5

Table 1-1 A comparison of three different styles

 Deliberation Reaction

Managerial styles Global knowledge or
world models

Behaviors which have some past /
persistence of perception and external state

State Hierarchies Requires past or future
knowledge

Behaviors are purely reflexive and have only
local, behavior specific; require only
PRESENT

Model-oriented
styles

Anything relating a
behavior to a goal or
objective

Behaviors are “small control units”
operating in present, but may use global
knowledge as if it were a sensor (virtual
sensor)

Therefore, it would be admirable if different architectures can be integrated into a single

system. Therefore, behaviors would not have to be distinguished in a regular way, and could

vary under different circumstances.

1.2.2.2. Real-time responding vs. computing time

Real-time responding is an important factor for a robot control system, especially in

dynamic environments. The hybrid architecture archives this requirement by distinguishing

the deliberative and reactive behaviors and keeping the reactive one working at the higher

priority and execution rate. However, it is not possible to execute every task in its highest rate

since the CPU time is limited. Traditionally, the priority of the tasks decides which task

should be launched first. However, it is still a style of art to solve the dead lock problem.

 6

1.2.2.3. Team work in robot development

In most cases, a complex system such as a home robot system is a cooperative work of

a group of researchers rather than an individual research results. Therefore, it is desired to

have a good way to merge these works from different people. One favorite method is to use

object oriented programming (OOP) technique. Researchers define the objects used in the

project and then develop them simultaneously. This approach provides good reusability and

portability, since these objects can be separately developed and modified. However, if the

specification of the object is changed, there are some new objects added, or some unused

objects are waived, the main program of the control system has to be altered to fit these

modifications. Researchers therefore have to take extra effort maintaining different versions

of main programs for different purposes, for instance, testing different modules, debugging,

monitoring, etc.

Another good approach is to use agent oriented programming (AOP) technique.

Researchers develop their own agents and execute them separately, without a launcher

program. These agents can therefore forms a system by communicate with each other, and the

system is therefore easier to maintain. However, in AOP agents need some specific languages

to design, which may cause a strict learning curve for the researchers, and takes more extra

time when porting the old programs.

 7

1.3. Problem Statements

This study aims to construct a flexible system for robot control that solves the previous

problems and remains good features of other systems. The main purpose is to develop a

software architecture to integrate multiple research results into one program to control a home

robot. Therefore, the objective of this study will include: (i) a good control strategy to

negotiate between programs; (ii) a software framework including useful APIs and modules to

simplify the process of porting/combining the programs and allocates/shares the resource

properly. Moreover, through the implementation of this system, several advanced control

functions of an experimental home robot will be demonstrated.

1.4. Organization of the Thesis

Chapter 2 describes the proposed system. It presents an overview of the design and its

details. Chapter 3 describes the software implementation of the system. The OS, the API, and

realization issues are presented. Chapter 4 illustrates experimental studies of the proposed

control system. Experimental results are presented for performance evaluation. Finally,

Chapter 5 is the conclusion and future works of this study

 8

2 . System Design

2.1. System Overview

The concept of the proposed system is from the neural system of human beings and the

managerial architecture of an organization. Human sensors work continuously, whether the

brain process its data or not. In other words, the information flows into the brains, muscles,

and organs automatically, rather than requested.

On the other hand, managerial architecture can be considered as a group of people

manipulating a robot. They work individually or in a small team, and are in charge of different

jobs: sensing, interpreting, decision-making, and reacting, etc. They work autonomously and

asynchronously. Moreover, they can exchange information to cooperate on a complex task

and increase their performance.

In a designer’s point of view, the programming process of a complex system can be

treated as a circuit board assembled from ICs and other electronic components. In a similar

way, the robot designer can build and modify the robotic system by connecting reusable parts.

This flexible architecture helps the robot designer to decompose a complex system into many

specific, independent parts, and develop them separately. The details will be discussed in the

following sections.

 9

2.2. Properties of Robot Control System

2.2.1. Flexibility

The proposed system is composed with loosely coupled agents, which means that

agents can be added or purged without breaking or blocking the whole system. Therefore, the

control method and performance can be customized easily by adding or purging agents, or

changing the connections among agents. Furthermore, agents can be tested individually, or in

small groups first, and then the whole system with those proved agents.

2.2.2. Real-time Response and Adjustable Execution

Period

The system is designed to keep a quick and predictable responding time even if

numerous programs are running simultaneously. In such a system, it is possible to change the

execution period of each task dynamically, as shown in Fig. 2-1. In this case the system can

conserve the computing power for the most urgent or suitable tasks. The robot can therefore

concentrate on the most important issue at the moment.

 10

Figure 2-1 A simplified example for period adjusting

2.2.3. Connectivity

Good connectivity is an important feature for any architecture since it guarantees that

all the entities in the architecture can communicate with each other. In this control system, the

communication network or dataflow can be modified both off line and on line, in order to

support the flexibility of the system. This feature is superior to a hierarchical layered

architecture. Moreover, one can build the connection with agents in other system through

internet, which provides the ability of building a distributed system.

2.2.4. Loosely Classified

Each agent can be a simple function, assembled sub system with other agents, or a

small hybrid system of its own. Each system can use different classifications of deliberation

or reactive behaviors. In other words, user can port various kinds of algorithms or systems to

our system, without doing lots of decoupling works.

Execution time

Reactive
behaviors

Deliberative
behaviors

Variable period

 11

2.2.5. Generality

Since the agents connected with message flows, the coding style of agents is much

unlimited. Users can design their own agent with pre-defined templates, thus they can

complete an agent easily by filling in the desired algorithm and do not have to take care of any

low-level program features. One can also re-implement their own agent with new templates or

styles, as long as they keep the same protocol of the message flow and execution time

management. Therefore, porting a program to this system is simple.

2.3. Proposed System Architecture

The architecture is the foundation of the system since it usually determines its

properties. In this system, the architecture only proposes an organization method for its

construction. It defines the properties and characteristics of the necessary components, and the

relationship among them. Fig. 2-2 presents the proposed architecture of the robot control

system.

The design of architecture is based on the basic definition of agents, including the

abilities of sensing, thinking, and acting. The core components in the architecture provide

these abilities, and maintain the performance of the system. They will be introduced in depth

in the next section.

 12

Global
Decision
Maker

Sensors
Actuator
Agents ActuatorsSensor

Agents

clock
Resource
Manager

Direct Access

Knowledge Base

Short-term Memory

clock clock

clock

Functional
Agents

Router

Figure 2-2 Global view of the control system architecture

2.3.1. System Components

 Sensor Agents are responsible for processing or interpreting the sensor input data

into useful information. For example, image processing, noise filtering, etc.

Furthermore, it is able to access the actuator agent directly for some special cases.

In our design, sensor agents always get the highest priority.

Therefore, the system is capable of monitoring any changes and phenomena happened in the

real world. The concept of the sensor agent is depicted in Fig. 2-3. The receiver reads the data

from the hardware interface, synchronized with the hardware or asynchronized using an

external clock. The data then flows into the filters or other processors in output layers,

processed and output to other components. Notice that in the output layer, one can choose the

 13

 Sensor

Hardware Interface

ReceiverClock

Post Processor Filter

Post Processor

Input layer

Output layer

Configuration

Configuration

Agents

Figure 2-3 Sensor agent pattern

most proper output of the processors for different proposes. The parameters of the processors

can be tuned by sending configuration commands. Actuator Agents are responsible for fusing

input commands and controlling the hardware, for example, a wheel motor. Both linguistic

and numeric commands are acceptable. The agents also filter out impractical inputs to fit the

hardware limitation or for safety. The concept of the actuator agent is shown in Fig. 2-4. The

filter receives and blocks out the improper command from other agents. If the command were

in numerical form, the command would send to the controller; if the command were linguistic

commands, the fuzzy behavior system will translate and fuse the commands for the controller.

The sensor and actuator agents solve the hardware-sharing problem when integrating

various functions. Not only the raw sensory data, but also the processed data can now be

 14

Actuator

Filter

Fuzzy behavior system

Controller

Input layer

Output layer

System State

Configuration

Configuration

Hardware Interface

Agents

Figure 2-4 Actuator agent pattern

freely accessed. For example, the image sensor agent may provide raw image, edge image,

motion vector of the image, etc, and thus the other agents do not need to waste CPU time for

processing

 Functional Agents are in charge of all the functions and skills equipped on the

robot. For example, face tracking, path planning, etc. To make the system work

better, users should implement their function with anytime algorithm or multiple

methods. Therefore, the system can choose a preferred result between high

updating rate and accurate answer.

 Router records all the input and output paths of the agents connected to the system.

It manages the message network of agents. The user therefore does not have to

take care of the communication issues. Furthermore, the router makes the agents

possible to recognize the composition of the system. Therefore, a newly added

agent would be able to know what agent it could work with in the system.

 15

 Short-term Memory records recent information used by the agents. Agents can

share data and state through it.

 Knowledge Base stores the prepared information for deliberation, such as patterns,

schedules, symbolic data, etc.

 Resource Manager manages the memory and computing power used, and adjusts

the configuration of the clock and the agents.

 Global Decision Maker determines the current state and goal of the whole robot.

2.3.2. Inter Agent Communication

One of the main factor of this system is to keep the message flows smoothly and in

real-time. Therefore, the procedure that is responsible for processing message / data flows of

the system always works at the highest priority (as high as sensor agent). Under this design,

every message will be delivered to the target agent at the very first time.

In order to fulfill the needs of various kinds of functions of the agent, the system

provides different method for communication:

‧ Direct Access: For small messages such as commands or control signal, the router

directly sends the messages to the agents. This can be used to send commands or linguistic

input for algorithms using fuzzy set.

‧ Shared Memory: If the size of the data is huge (such as images) or is used by too

many agents, we can only send a link and a signal to agents, and they can gather the data from

 16

the shared memory, thus save a lot of time and memory. For each data in the shared memory,

we use a circular buffer, logging the data with the storing time. Thus, it can be used for

prediction, data mining, etc.

The system starts from the clock and the router, which works like the heartbeat and

nerve system of a human, provide the execution pulse and message exchanges. The agents

then joined in the architecture, provides the practical abilities of the robot. They can

communicate and work together via the router. The memory and knowledge base will be read

or updated by these agents. The functional agents may lead to different results, and will be

determined by the global decision maker. When the computing power is running out, the

resource manager will try to adjust the speed of the agents depending on its necessity for

current work. The manager refers the data from the knowledge base.

2.3.3. Examples

2.3.3.1. Multi-agent cooperation

Fig. 2-5 shows an example of how the whole system works. This is a conceptual system

of a home robot, which can navigate through the house, avoiding obstacles, and tracking an

object or a moving person.

 17

Safety
Monitor

Motor
Actuator

Human
Recognition
&Tracking

Method 1

Object
Recognition
&Tracking

Obstacle
DetectionMethod 2

Method 1 Method 2

Obstacle
Detection

Image
Sensor Sonar

Sensor

Navigation
Global

Decision
Maker

Figure 2-5 An example of the control system

The first feature is the global decision maker. Consider, for instance, the three different

agents that Motor Actuator is connected to: Object Recognition and Tracking, Safety Monitor,

and Navigation. Each of them is responsible for a specific function. It is obvious that their

desired outputs may conflict in many cases. The global decision maker will decide the

importance of the agent, and alter the weight of the output from each agent.

The second feature is the robustness brought by multi-agent approach. In the Safety

Monitor case, two agents using different sensor sources (image and sonar respectively) are

 18

then utilized concurrently. This is termed sensor fusing, which brings results that are more

reliable. Another example is the object recognition. There are two different methods for

general object recognition, and an extra one for human face recognition. Two different

methods are employed for human face recognition. The successful rate is therefore increased.

However, the drawback is the CPU time increases to a high degree. In our system, the

resource manger will observe the CPU usage, and terminate some extra process if the real

time concern cannot be fulfilled. On the other hand, the global decision maker will slow down

or stop unused agent to preserve more CPU time, for instance, when the robot is focusing on

tracking.

Finally, we observe that the actual behaviors, whether reactive or deliberative, are

separated in different agents. Thus, the responding time is actually determined by the

performance of the agent connected to the actuator. Therefore, these agents are suggested to

be implemented with fast algorithm, or a hybrid behavior model.

2.3.3.2. Multi-robot control

The architecture can also be extended for a multi-robot control system. The

communication among individual systems is then a key factor. For mobile robots, the

communication is often realized by wireless communication such as wireless LAN or

Bluetooth. Since the hardware varies and the transmission rate is non-deterministic, it is not a

good idea to integrate the remote message delivering function into the real-time router.

Instead, the transmitter and receiver (or the server and client in internet connection) are

 19

treated as sensors and actuators. Different agents can be implemented to deal with different

protocol. Figure 2-6 shows an example of a 2-robot cooperation system. Each robot contains

pairs of senders and receivers, used to synchronize a global map and issue commands to each

other. Therefore, no server is needed in this system.

Local
Sensor

Local
Actuator

remote
map

integrator

Command
Sender

Robot 2

Map
builder

Local
Sensor

Local
Actuator

Robot 1

Map
builder

Planner
(Decision maker)

Synchronize the global
map

map
supplier

remote
map

integrator

map
supplier

Command
Receiver

Command
Receiver

Command
Sender

Planner
(Decision maker)

Command another robot if necessary

Local
Sensor

Local
Actuator

remote
map

integrator

Command
Sender

Robot 2

Map
builder

Local
Sensor

Local
Actuator

Robot 1

Map
builder

Planner
(Decision maker)

Synchronize the global
map

map
supplier

remote
map

integrator

map
supplier

Command
Receiver

Command
Receiver

Command
Sender

Planner
(Decision maker)

Command another robot if necessary

Figure 2-6 An example of a 2-robot cooperation system

 20

2.4. Summary

In this chapter, a robot control system is proposed. This system features a

comprehensive way to divide a complex control system into individual pieces, and reunion

them efficiently by using multi-agent approach under a flexible architecture. The development

effort is reduced since the agent can be reused and the system is easy to modify. The

resource-sharing problem is solved by introducing the sensor and actuator agents, which

manage the hardware. Functional agents can cooperate with each other in order to obtain a

better result. The router simplifies the data exchanging issues, and provides the flexible

composition ability of the system. The message-first policy grantees the data transmitted in

real-time, and results in the fast and real-time reaction of the system.

 21

3 . Software Realization

C and C++ are chosen for programming the agents, rather than inventing a new

language, in order to provide the generality. The first version of system realization is written

under Linux and RTAI, since RTAI provides many good features to reduce the effort of

realization.

3.1. RTAI

3.1.1. Overview

RTAI [12] stands for Real Time Application Interface. Strictly speaking, it is not a

real-time operating system, but is a modules based on the Linux kernel, providing the

capability to make it fully preemptable.

Linux is a standard time-sharing operating system that provides good average

performance and highly sophisticated services. Like other OS, it offers applications for at

least the following services:

 Hardware management layer dealing with event polling or processor/peripheral

interrupts

 Scheduler classes dealing with process activation, priorities, and time slice

 Communication among applications

 22

Linux suffers from a lack of real-time support, however. To obtain correct timing

behavior, it is necessary to make some changes in the kernel sources, i.e. in the interrupt

handling and scheduling policies. In this way, a real time platform with low latency and high

predictability requirements can be established within full non-real-time Linux environment

(access to TCP/IP, graphical display and windowing systems, file and data base systems, etc.).

RTAI offers the same services as Linux kernel core, adding the features of an industrial

real time operating system, as shown in Fig. 3-1. It consists of an interrupt dispatcher: RTAI

mainly traps the peripherals interrupts and if necessary re-routes them to Linux. It is not an

intrusive modification of the kernel; it uses the concept of hardware abstraction layer (HAL)

to get information from Linux and to trap some fundamental functions. This HAL provides

few dependencies to Linux Kernel. This leads to a simple adaptation in the Linux kernel, an

easy RTAI port from version to version of Linux and an easier use of other operating systems

instead of RTAI. RTAI considers Linux as a background task running when no real time

activity occurs.

A1
T1 T2

A2

Scheduler

HW Management IPC

Interrupt Dispatcher

Processor Peripherals

PROCESSES

HARDWARE

TASKS

RTAI
SchedulerLINUX

IPC

A1
T1 T2

A2

Scheduler

HW Management IPC

Interrupt Dispatcher

Processor Peripherals

PROCESSES

HARDWARE

TASKS

RTAI
SchedulerLINUX

IPC

Figure 3-1 RTAI architecture

 23

3.1.2. Compare with Other RTOS

There are other real time operating systems (RTOS), which can be used to implement

the system, but RTAI seems to be the best choice for the first version of the realization. The

comparative result is discussed in the following section:

3.1.2.1. Microsoft Windows®

While there is RTlinux /RTAI on Linux, Windows can also reach hard real-time by

installing RTX (VenturCom ©) for Windows. Although the approaches are similar, RTX is a

commercial product and thus cannot be modified to fulfill the requirement of the system. On

the other hand, RTAI is an open source project, which is still maintained and updated by its

original team.

3.1.2.2. Commercial hard real-time operating systems

Commercial hard real-time operating systems such as QNX are small and convenient to

be used in embedded systems, but they usually support only limited numbers of devices and

are lack of resources compare with Linux.

Therefore, RTAI is most efficient choice, which is free, resourceful, and up to date.

 24

3.1.3. RTAI Features

3.1.3.1. Scheduling

The scheduling units of RTAI are called tasks. There is always at least one task, namely

the Linux kernel, running as a low-priority task. When real time tasks are added, the scheduler

gives those priorities higher then the Linux kernel. The scheduler provides operators such as

suspend, resume, yield, make_periodic, wait_until, which are used in various real-time

operating systems.

3.1.3.2. Inter Process Communication (IPC)

RTAI provides a variety of mechanisms for inter-process communication. Although the

UNIX systems provide similar IPC mechanisms to the user-space processes, RTAI needs to

provide its own implementation for them in order to make it possible for the real-time tasks to

use the IPC mechanisms, as they cannot use the standard Linux system calls. Different IPC

mechanisms are included in RTAI in the form of kernel modules, which can be loaded in

addition to the basic RTAI and scheduler modules only when they are needed by the tasks. An

additional advantage of using modules is that the IPC services can be easily customized and

expanded. The mechanism supported by RTAI includes FIFO, shared memory, semaphores,

and mailboxes.

 25

3.1.3.3. Memory management

The present versions of RTAI include a memory management module, which allows

dynamic allocation of memory in the real-time tasks by using an interface similar to the

standard C library. RTAI pre-allocates a large piece of memory (with configurable size and

number) before real-time execution. When a real-time task calls rt_malloc (), the requested

memory is given from a pre-allocated chunk. When the amount of free memory in the chunk

is less than a threshold value, a new piece of memory is reserved for future allocations.

Similarly, when rt_free () is called, the released memory is left on the allocated chunk to wait

for future reservations. When the amount of free memory is more than a high water mark

value, the memory chunk is released.

3.1.3.4. Soft-hard real time in user space: LXRT

LXRT is a group of APIs for RTAI, which makes it possible to develop real-time

applications in user-space, without creating kernel modules. This feature is useful, since in the

past, real-time execution is only allowed in kernel space, which has some drawbacks. First, it

is inconvenient to debug a kernel module. Although there are certain debugging tools existing,

they are more difficult to use and less matured than the one used in user space. Furthermore,

many useful system calls, such as file manipulation and socket communication are not

supported in kernel space. Therefore, users have to take a lot more effort implement these

system calls in order to convert a user space program into a real-time kernel modules.

 26

With LXRT, converting an application from user-space process to a real-time task

becomes much simple, because LXRT provides a symmetrical API for inter-process

communication and other RTAI services. This means that both kernel-space tasks and

user-space processes can use the same API. The same LXRT API can also be used when two

user-space processes or two real-time tasks communicate with each other. This implies that

the various timers and messaging systems that LXRT provides could be used by a user-space

application even if it would not actually have any real-time requirements.

3.1.3.5. Real-time API for hardware

RTAI also provide real-time APIs for hardware in order to handle data from the

interface. For example, spdrv is a serial port driver for setting up, sending, and receiving data

via RS-232 serial port.

3.2. Implementation

Referred to Fig 2-2, the system components determine the performance of the system.

With the aid of RTAI APIs, the components can be realized easily.

3.2.1. Clock

The system clock is hidden in the system scheduler of RTAI, as mentioned in the last

section. The function start_rt_timer () and stop_rt_timer () can switch the system timer (clock)

on and off, with desired period. Furthermore, one can use rt_get_time () to get current system

 27

time.

3.2.2. Short-term Memory

The short-term memory is a large piece of memory stores the recent variables, states of

the agents, and can be accessed by every agent. Circular buffer is therefore a good data

structure under this requirement. First, it can be allocated once and remain useful, which

reduce the overhead of memory allocating time; Secondly, it allows the agents to read and

write at the same time and therefore prevent the synchronization problem, as shown in Fig.

3-2.

In practice, the shared memory is allocated using the RTAI API rt_malloc (). Every

chunk of circular buffer can be identified with an unsigned long integer, or a six characters

name.

Data NWriting_lock

Current data

Data 3

Data 2

Data 1

Figure 3-2 The concept of the circular buffer

 28

3.2.3. Message Delivery and Router

The mailbox service is chosen in this system for message delivery. The mailbox service

allows messages between processes to be automatically stored and retrieved as needed in a

priority queue. In RTAI, mailbox service is very flexible.

 It can be explicitly setup to accept messages of customized sizes.

 Multiple receivers and senders can be connected to the same mailbox where the

order in which messages are taken depends on the priorities of the receivers.

 When large messages need to be sent, the service provides functions to allow the

process to send only the portion of the message that can be stored, returning the

number of unsent bytes, or to continue to send the message until all of it has been

accepted.

Mailboxes can be slightly less efficient than FIFO since it has twice more numbers of

memcopy () operations. However, the advantage is relatively high that it is worth such a minor

penalty. Furthermore, the effect is unlikely to be noticeable for relatively short messages.

The router is a real-time task with two mailboxes, one for registry, and the other for

message dispatching. If an agent wants to join the system, it has to register its own mailboxes

(which means that an agent can own more than one mailbox), and subscribes the desired

mailboxes of the agents from the router. It can also assign target mailboxes initiatively. The

router therefore records the connection lists of the mailboxes. An agent sends its output

 29

message to the router, and the router will look through the list and broadcast the message to

every subscriber. This process produces some minor overhead, but introduces a dynamic

linking between agents, instead of changing the code and recompiling it.

The connection list is maintained with a two-layered linking list, as shown in Fig 3-3,

which takes advantages on adding and checking through mailboxes fast. However, removing a

MBX from the list causes a chain effect: Every sub-list has to be checked and removed, which

is O (N2). Therefore, the deletion of the MBX only removes it from the top level. When a

sending task is processed, every MBX will be checked and the deleted one will be removed.

MBX1 MBX2 MBX N…

MBX5

MBX7

MBX1

MBX3

MBX6

MBX5

MBX7

Figure 3-3 The connection list of the router

 30

3.2.4. Agent

The agent defined in our system can be just part of algorithm or functions. Since this is

a multi-process/ multi-threaded system, it surfers from the synchronization and deadlock

problems, etc, and have to be carefully handled. In this implementation, the messages and

main tasks used by the agent are separated. This approach guarantees that the functions will

never be blocked when waiting for messages. Fig. 3-4 shows how this approach works.

The message checker is a high priority task that listens to the mailbox and responses

immediately on receiving messages. The message checker will interpret the message, modify

the parameters or states of the agent, and keep them in the memory. The interpretation of the

messages is left for the user in order to be compatible with their design. The agent task can be

classified into two different types:

main function
task2

mailbox message checker
rt_task

task1

Get parameter
and data

Shared
memory

User’s own Algorithm

Wait for next period

Router

main function
task2

mailbox message checker
rt_task

task1

Get parameter
and data

Shared
memory

User’s own Algorithm

Wait for next period

Router

Figure 3-4 The basic design pattern of agents

 31

 The event-driven (aperiodic) type is triggered right after the messages arrive.

Therefore, its execution rate is determined by its message source. Once it is started,

the function will lock itself to prevent reentrant

 The periodic type is triggered periodically with different priorities and rates. The

system can adjust its rate to achieve better performance.

In the case of sensor agent, it does the same trick. The only difference is that there is

one more task, which listens to the data transferred from the sensor devices.

As mentioned before, the RTAI task can be executed in kernel space or user space.

Therefore, an agent may be implemented in two different forms. In the kernel space, the agent

has to be written in the form of modules. The real-time tasks are initialed in init_module (),

which is the starting point when a module is loaded. The code of the real-time task is

implemented as function and then linked to the task when it is initialized using rt_task_init ().

In the user space, it takes more efforts to do the same job. First, the code of the

real-time tasks is not linked to a function. The user has to use pthread to execute the functions

with multi- threads, and initial the real-time task inside each thread. Another big difference is

that the user space program always blocks the console and stops the batch loading process of

agents. Therefore, the user space program has to be daemonized in order to execute as a

background process as if the module does. In this implementation, the agent template is done

for both kernel and user space, so the end user can choose a preferred one.

 32

3.2.5. Decision Maker and Knowledge base

The decision maker works as a table look-up agent, which assigns different weight and

execution rate under different circumstances reported by the agents.

3.2.6. Resource Manager

The resource manger works as a virtual sensor agent, gathering the CPU usage info and

memory usage status, and reporting it to the decision maker. The system information can be

gathered from the files under /proc directory.

3.3. Summary

The software framework of the system is realized on RTAI Linux. Its favorite

performance and properties reduce a lot of effort to reach the desired functions and enhance

the system performance. The robot designer can easily port their work to the system by

attaching their own C/C++ program into the agent template. User can also build their own

templates using the system APIs.

 33

4 . Experimental Results

4.1. The experimental mobile robots

The proposed system is tested on our laboratory robot platforms, H1 and H2, which are

self-constructed mobile robots in our lab. Fig. 6 shows recent pictures of H1 and H2. These

two robots are similar and composed by the following components:

 An USB web Cam on a two DOF pan-tilt head for image capturing

 A 3DOF arm for grasping. (Only on H2)

 Twelve ultra-sonic sensors with RS-232 interface for environment sensing. (Only on H1)

 An IR receiver receives the digital code from the IR transmitter.

 A Celeron 300MHz PC for system control, using Linux (kernel 2.4.18) and RTAI

(24.1.13).

 Two independent drive wheels and two casers for mobility

 DSP boards for motors controls. PC can access the boards to control the motors via serial

ports.

 12V to 5V DC-DC Converter

 Two 12V batteries and two 6V batteries, for power supply

 34

(a) (b)

Figure 4-1 (a) H1 robot platform (b) H2 robot platform

4.2. Experiment of single robot exploration

4.2.1. Goal

The goal of this experiment is to program a robot that explores autonomously in an

unknown environment, searches for, and tracks a target object. All the functions are designed

separately and integrated with the proposed architecture. The efficiency of programming the

robot and the performance of the system will be presented in this experiment.

4.2.2. Implementation

The implementation for this experiment is carried out by going through the processes

described in Chapter 3. Fig. 4-2 shows the organization of the agents used in this experiment.

 35

Figure 4-2 The system organization e robot exploration experiment

4.2.2.1. Sensor agents

 The sonar sensor agent gathers the data from the ultrasonic sensor via serial port.

The sensor modules offer distance from 12 different directions, as shown in Fig

4-3, with a 4 Hz sampling rate [13]. The agent measures the probability of risks at

each direction by estimating the difference of the distance between two sample

times.

 The image sensor agent captures a 320x240, RGB image from the Web Cam at the

speed of 15 frames per second. The input image will be converted to HSI color

space for further usages.

Safety
Monitor

Foot
Motor

Actuator

Wall
following

Sonar
Sensor

Image
Sensor

Object
Tracking

Global
Decision
Maker

Head
Motor

Actuator

Distance around the robot Raw Image and
Color filtered Image

CommandsCommands
Control Signal

 36

S5

S8

S7

S6

S0
S11

S4

S3

S2
S10

S9

S1

Group_1

Group_2

Group_3

Figure 4-3 The sonar sensors module

4.2.2.2. Actuator agents

 The head and foot motor agents interpret the linguistic commands into the

controller desired, numerical format, and send it to DSP controller via the serial

port. For example, turn right a little bit or increase speed. The state of the motors

such as speed and position is stored inside the agent and will be updated from the

encoder data provided by DSP.

4.2.2.3. Functional agents

 The safety monitor agent will decrease the robot speed if it is approaching an

obstacle detected by the sonar sensor, and try to make a left turn or a right turn to

avoid the obstacle. The robot will go forward to the direction, which is detected as

a safer, wider space. Furthermore, if something comes too close to an object, the

agent will force the robot to stop moving (but not turning) immediately.

 The wall following agent keeps increasing the speed of the robot and try to

 37

maintain the distance between the robot and the wall.

 The image-tracking agent tries to track the red object using its head and moves

close to it. This is done in the following steps:

1. Split the red part of the HSI image (H=350 to 10) to a binary image.

2. Find the maximum area in the binary image, which is indicated as the

target object.

3. Find the centre of the object

The control policy is quite straightforward: move forward to the target object. If

the centre of the object is far from the center of the image, the robot moves its head

and the foot to locate the object to the center; if the area is small, the robot will try to

come closer.

4.2.2.4. Decision making

For the head motor, there is only one agent connected, thus there is no need to make

any decision. For the foot motor, the behavior is determined by two parameters: tendencies for

danger and handling target tracking. The decision-making agent receives the environmental

information from the agents, estimate the parameters, and activate relating agents. If the

webcam observes a target to track, the tracking agent is activated. If the state is dangerous,

such as something approaching nearby, or the environment becoming narrow, the object

avoidance agent will be activated. Since the desire and danger compete with each other, the

 38

tracking process will never collide with the target. The wall following agent works when the

other two are suspend.

4.2.3. Experimental Result

Fig. 4-4 shows the recorded trajectory of how the robot managed to navigate safely in a

crowded room. It passed a door to the corridor and tracked an object. The gray area in the

figure only roughly represents obstacles, since the actual environment is quite complicated.

See the pictures in the right side of Fig. 4-4. The agent-based control system successfully

guided the robot through the door, without bumping into anything in a narrow space. After the

robot went out the room, it was attracted by a red object hold by a person. The robot moved

forward to it. However, the image-tracking agent stops the robot when it came too close to the

person with the red object.

Fig. 4-5 illustrates the reactions of the robot at each moment during the experiment. The

states of the robot change every 0.25 sec, which is the same as the update rate of the sonar

sensor. Fig. 4-5 (a) shows that the robot suffered from sudden stops occasionally. It was

caused by the strict safety control and erroneous sonar readings. At 160~180 sec, the robot

increased its speed and moved straight forward since it faced a wide corridor and there was no

danger. At 180 sec a person with the red object appeared, which caused the robot to stop. The

person then stepped backward to lead the robot make a U-turn. As shown in Fig. 4-5 (b) and

(c), the robot followed his steps.

This experiment shows the proposed control system successfully combines

 39

heterogeneous agents in to a single system. The router works as expected, broadcasts

messages between agents, makes the agents possible to receive the sonar information

simultaneously. Agents can stop execution and restart during the experiment, without hanging

up the whole system. The decision maker indicates the agent to execute at the proper time and

thus merges three single-function agents into the multi-purpose robot. Therefore, all the

components in the architecture works properly, except the resource manger since the CPU

time is still sufficient (66%) in this experiment.

In every experiment made, the trajectories may be quite different. Sometimes the robot

could not find the door and turned back to the starting point. This is because of the error

distance measurement from the ultrasonic sensors.

 40

Figure 4-4 Recorded trajectory of the robot

(a)Worktable and walls at (1) in Figure 4-4 (b)Doorway at (2) in Figure 4-4

Figure 4-5 The environment of the experiment.

e

robot won ’

A person took a red object to
attract the robot. The robot
therefore turned right and
followed the person

(2) (1)

 41

(a)The Magnitude of velocity versus time

(b)The Magnitude of angular speed versus time

(c)The angle versus time

Figure 4-6 The changes of the (a) velocity, (b) angular speed, and (c) angle versus time of
this experiment

4.3. Experiment of two robot cooperation

4.3.1. Goal

The goal of this experiment is to show how robots with different ability can cooperate

 42

and accomplish an assigned task. The robots share their information obtained individually and

finish the task according to their specific skills. Two heterogeneous robots are used in this

experiment: the one equipped the sonar sensor is responsible for exploring the area and

finding the path to the target; the robot with the grasping capacity otherwise follow the given

path, achieving the target and perform its specialties. The cooperation model of multiple-robot

cooperation (referred to Section 2.3.2.2) will be used and tested in this experiment.

4.3.2. Implementation

The control system of both robots are modified from the one introduced in the first

experiment. New agents are added for new functions, and unnecessary agents are purged. The

details for these modifications are described in the following sections:

4.3.2.1. Localization

In order to an obstacle-free path and latter on to follow it, the robots need a method to

localize its coordinate. The dead reckoning can be use for a short distance, but is suffered

from the accumulated error. Therefore, artificial landmarks, termed checkpoints, are utilized

in this experiment for the localization of the robot. The checkpoint is a landmark with a

two-color tube and four IR transmitters, shown in Figure 4-7.

 43

Figure 4-7 The artificial landmark: checkpoint

The two-color tube offers the distance between the robot and the checkpoint. The robot

on-board webcam acquire the image, estimate the distance between the centers of two color

areas, and estimate the distance using simple triangulation approaches. See Appendix A for

detailed description. The range of distance measurement is from 0.8 m to 3 m

The IR transmitter offers an identification (ID) code of the checkpoint and the direction

the robot orientation. The range IR sensor is from 0 m to 2 m (may vary with the available

power of the battery). Each transmitter sends a unique digital code, represented by different

frequencies. The receiver recognizes the code, and the robot will translate the code into the ID

and the directions. Since the distance and orientation between the robot and checkpoint can be

obtained, and the coordinates of checkpoints are already known in advance, the coordinate of

the robot can therefore be estimated. This mechanism is useful for correction of accumulated

error of odometer.

Two-color
tube

IR
transmitter

 44

The Checkpoint Sensor Agent is responsible for this procedure. It obtains the

information from the image sensor agent and IR sensor agent, and updates the recorded

coordinate on board the robot. Furthermore, this agent is able to find the target, which is a

special checkpoint with an inversed color tube.

In hits experiment, robot 1 first explores the environment, and locates the path to the

target. The observed information will be transferred to robot 2, which can reach the target

point directly.

4.3.2.2. Robot 1(Exploration)

The programming organization of robot 1 is shown in Figure 4-8. The exploration part

is similar to the one described in the first experiment, which makes the robot be able to

explore the area along the wall.

Safety
Monitor

Foot
Motor

Actuator

Wall
following

Sonar
Sensor Image

Sensor

Check
Point

Sensor

Global
Decision

Maker

IR
Sensor

Map
Builder

Odometer

Command
Sender

Distance
Orientation

Location of robot

Location of robot

Distance around the robot

Robot 2

Robot 2

Command
receiver

Figure 4-8 The programming organization of robot 1

 45

During the exploration, the map builder obtains the coordinate of the robot, which will

be updated by the odometer and Checkpoint Sensor Agent. When the target is found, the map

builder will produce a path for robot 2, and send it to robot 2 via WLAN. For convenience, a

two-colored tube is used to represent the target. It is up side down in order to be distinguished

with others. The following steps produce the path:

Step 1: Detect the checkpoints, and record their coordinate.

Step 2: Mark via points between the robot and checkpoints (or the final target). The

distance from via points is fixed to 1.6 meter far from checkpoints (or the

final target).

Step 3: Connect via points and target point according to the sequence their relative

location.

Meanwhile, the decision maker will launch the command sender and ask the robot 2 to

come for the target. It will then wait for the arrival of robot2. If robot 2 finds the target, the

command receiver will get the response from robot 2 and resume exploring the area.

4.3.2.3. Robot 2(Task Execution)

The programming organization of robot 2 is shown in Figure 4-9. Agents in robot 1,

such as Checkpoint Sensor, Command Sender, etc, are reused. The Target Achieving Agent

provides the ability to go from one target to another.

 46

Foo

t Motor
Actuator

Global
Decision

Maker

Map
Builder Odometer

External
Control
Module

Target
Achieving

Command
Receiver

Image
Sensor

Check
Point

Sensor

IR
Sensor

Command
Sender

Distance
Orientation

Coordinate of robot

Robot 1

Robot 1

External
Control
Monitor

Figure 4-9 The programming organization of robot 2

The execution sequence is quite simple:

1. Update the coordinate of the robot from the Checkpoint Sensor Agent and the

odometer.

2. Calculate the differential angle and distance between the robot and the target

coordinate.

3. If the angle is more than ±10 degrees, the robot will stop and rotate in order to

face the target. Otherwise, the robot will approach to the target.

Once the map data and the command from robot 1 are received, the target-achieving

 47

agent will be executed in order to go from one via point to the next. When robot 2 arrives the

final target, it will give its control to the external control module to execute a special actuation

function, for example, grasping. Meanwhile, robot 2 will inform robot 1 to start exploration

again.

4.3.3. Experimental Result

Fig. 4-10 illustrates the environment of this experiment and the recorded trajectories of

two robots. The experiment was carried out in the corridor of our laboratory. The target is

situated at an open space in a corner of corridor, at the coordinate in meters (12.8,-3). Four

checkpoints are placed at the coordinates respectively, (1.2, 1.2), (6, 1.2), (10.8, 1.2), and

(15.6, 1.2). The initial location of Robot 1 and Robot 2 are (0, 0) and (-4, 0) respectively, as

shown in Fig 4-11(a).

The process execution of this experiment is divided into two stages:

 STAGE 1: Exploration of robot 1:

Since the environment is unknown in the beginning of the experiment, robot 1 explores

the environment using the sonar sensor. It first moves forward, since there were no obstacles

in the corridor. Fig 4-10 shows that the recorded odometer data of robot 1 from its traveling

along the corridor. However, the actual path of robot 1 is slanting to the right. This error was

corrected every time robot 1 came by the checkpoint. These corrections cause a sudden

change of the recorded trajectory, which can be easily observed in Fig 4-10.

 48

-4.9
-4.5
-4.1
-3.7
-3.3
-2.9
-2.5
-2.1
-1.7
-1.3
-0.9
-0.5
-0.1
0.3
0.7
1.1
1.5

0
2

4
6

8
10

12
14

16

C
heckpoint and Target

R
obot2:Encoder trajectory+C

heckPoint Localization
R

obot1:Encoder trajectory+C
heckPoint Localization

Via Point and Target Point of the path
R

obot1(C
ont. Exporing):Encoder trajectory+C

heckPoint Localization

Final Target

Via point 1
and the nearly recorded
trajectories

Via point 2
and the nearly recorded
trajectories

Via point 3
and the nearly recorded
trajectories

Target point
and the nearly recorded
trajectories

 Figure 4-10 The recorded trajectories of two robots

 49

(a) (b)

(c) (d)

(e) (f)

Figure 4-11 (a) Robots at the starting point (b)Robot 2 at via point 2 (c) Robot 2 at via point 2

(d)Robot 2 start the right turn (e)Robot 2 approaching target point (e)Robot 2 arrived

 50

When robot 1 passed by the third checkpoint, the sonar senor agent detected a free

space at its right side. Robot 1 therefore made a right turn until it found a wall to follow again.

This phenomenon can also be observed in Fig 4-10, at the coordinate (-0.5, 11). Latter, robot

1 found the target with the webcam and stopped. During its journey, robot 1 marked via points

1.6m in front of every checkpoints and the target. The coordination of these via points is

shown in Fig 4-10. Robot 1 then sent this information to robot2, and asks it to launch...

 STAGE 2: Path tracking :

After robot 1 reaches the target point, robot 2 started to move along the desired path,

which is the exploration result of robot 1. Robot 2 first turned and reached via point 1. It

adjusted its coordinate using the checkpoint, and continue to move toward the via point 2.

At the beginning, robot 2 did not seem to move ahead to via point 2. It is because robot 2

would not adjust its direction if the angular error were within ±1 degree, in order to avoid

motion fluctuation. When the robot came closer to via point 2, the angular error increased,

and the heading direction was adjusted. Robot 2 therefore approached via point 2 as

expected, as shown in Fig 4-11(b). The trajectory in Fig 4-10 from via point 1 to via point 2

shows the u-shaped curve formed by the previous behaviors. Robot 2 then moved toward to

via point 3, as shown in Fig 4-11(c). After it arrived, it turned right and moved forward to the

target point, as shown in Fig 4-11(d). When robot 2 was arriving at the target point, as shown

in Fig 4-11(e), it would inform robot 1 to resume exploring. At the end, robot 2 arrived the

target point, as shown in Fig 4-11(f).

In Fig 4-10, it can be observed that the Checkpoint and path information collected by

 51

robot 1 is correctly transferred to robot 2, and robot 2 uses the information to travel in the

corridor and reach the target in a direct way. However, the accumulated odometer errors

during the movement were corrected by using the Checkpoints. Fig 4-10 shows the

adjustment of the trajectory of robot 2 at via point 1, 2 and 3. Without these Checkpoints,

Robot 2 would suffer from the acuminated error, and cannot reach the given via points and

target point as desired. The experimental result in Fig 4-10 show that the robot indeed use

checkpoint to eliminate the acuminated error, and find via points and the target point

accurately.

This experiment may fail under certain conditions. One of the main reasons is the error

measurement of the ultrasonic sensor, as mentioned in experiment1. The robot may turn back

before it finds the open space where the target is. The other one is the misunderstanding of the

checkpoint data. The webcam suffers from the variance of the environmental illumination,

which might result in an error on distance measurement and therefore a failed localization.

 52

5 . Conclusions and Future Work

5.1. Conclusions

This thesis presents a flexible real-time robot control system based on a multi-agent

approach. The flexible architecture decomposes as complex robotic control system into agents,

which makes teamwork more efficient. The software framework solves the resource sharing,

message flows, and coding problems. It helps to reunion the separated works into a whole

system with very few efforts. The core components guarantee a real-time responding and high

performance of the system. This approach is also suitable for a long-term project in a research

lab, since the former effort can be remained, and teamwork becomes much easier.

The practical experiment reveals a primitive success of the system. Agents fruitfully

operate together, communicate with each other, give full scope to their specialist, and control

the robot to explore the room autonomously and for a multi-robot cooperation task.

5.2. Future work

The proposed system only provides a skeleton for robot control. In the future, the

improvement should be focused on two major parts. One is to provide a better development

environment. For example, an integrated develop environment (IDE) that can automatically

transfer a piece of program into an agent suitable for the system will eliminate many

unnecessary efforts doing copy-and-paste. A Graphics User Interface (GUI) that is able to

 53

manage connection between agents will bring an effective way to design a robot controller in

an intuitive way.

The other one is to increase the intelligence of the decision maker. Rather than using the

pre-defined knowledge, the artificial intelligence and machine learning technique may provide

an interactive and adaptive way to determine what should be done autonomously.

 54

References

[1] Robin R. Murphy, Introduction to AI robotics, The MIT press, MA 2000

[2] R. C. Arkin, E. M. Riseman, and A. Hansen, “Aura: An architecture for vision-based robot

navigation,” in Proc. of the DARPA Image Understanding Workshop, Los Angeles, CA,

Feb 1987, pp. 417-431.

[3] Nourredine Bensaid and Philippe Mathieu, “A hybrid architecture for hierarchical agents,”

Griffith University, Gold-Coast, Australia, Feb 1997, pp. 91-95.

[4] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti,”The Saphira Architecture: A

Design for Autonomy”, J. of Experimental and Theoretical Artificial Intelligence, 1997,

pp. 215-235

[5] Maria C. Neves and Eugénio Oliveira, "Fuzzy and Connectionist Paradigms in a

Multi-Agent Control Architecture for a Mobile Robot," in Proceeding of the 3rd World

Multi-Conference on Systems, Cybernetics and Informatics and The 5th International

Conference on Information Systems Analysis and Synthesis (SCI/ISAS'99) ,Orlando -

Florida - USA, July 31-Aug 4,1999

[6] F. G. McCabe, and K. L. Clark, “April—Agent Process Interaction Language,” in

Intelligent Agents, Lecture Notes in Artificial Intelligence, M. J. and Jennings, N. R., Eds,

Springer-Verlag, 1995, pp.324-340,

[7] Y. Takada, F. G. McCabe, and Y. Wada, “Multi-Agent Oriented Programming

 55

Language—April,” in Proc. of the 51st International IPSJ Conference, 1995.

[8] Mattias Lindstrom, Anders Oreback, and Henrik I. Christensen, “BERRA : A Research

Architecture for Service Robots,” in Proceeding of the IEEE Conference on Robotics and

Automation, San Francisco, CA, USA, 2000, pp. 3278-3283

[9] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. “The CLARAty

architecture for robotic autonomy,” in Proc. of the 2001 IEEE Aerospace Conference, Big

Sky, Montana, March 2001, pp. 121-132.

[10] Herman Bruyninck, Peter Soetens, and Bob Koninck, “The Real-Time Motion Control

Core of the Orocos Project,” in Proc. of the 2003 IEEE International Conference on

Robotics & Automation, Taipei, Taiwan, September 14-19, 2003, pp. 2766-2771

[11] Herman Bruyninckx, "Orocos (Open RObot COntrol Software)" [online], Nov. 2003,

[cited Nov. 16, 2003], available from World Wide Web: <http://www.orocos.org>

[12] Cloutier, et. al. DIAPM-RTAI Position paper. In Workshop on Real Time Operating

Systems and Applications and 2nd Real Time Linux Workshop, November 2000. available

from World Wide Web: < http://www.aero.polimi.it/projects/rtai/position_paper.pdf>

[13] Wen-pin Chen, “Development of an Environment Exploration system for a Home

Robot”, Master Thesis, National ChiaoTung University, July, 2002

 56

Appendix A- Distance Estimation of

Checkpoint

Assume that the distance between the two centers of the two-color-tube is known and

noted as D . (See Fig A-1). f denotes the focal length of the camera. The distance between

the camera and Checkpoint can be obtained by

5
4

4
3

3
2

2
1

1)()()()()(−−−−− −+−+−+−+= hdαhdαhdαhdαdDfZ ,

where h and iα , 4~1=i are the parameters for correcting distance estimation. We can

find these parameters using least-square estimation method.

Figure A-1. Model of distance estimation.

D

f
Z

d

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

