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 I

基於幾何方法欠定多輸入多輸出系統之 

高效率解碼演算法 
 

學生：吳智湧 指導教授：李大嵩 博士 

 

Chinese Abstract 

國立交通大學電信工程研究所 

摘要 

在多輸入多輸出系統中，高效率且低功率消耗之接收機的設計為關鍵議題之

ㄧ。在多輸入多輸出系統中，球型解碼器是能有效提供最大似然的接收器。然而，

典型球型解碼器無法運用在傳送天線個數大於接收天線個數的欠定系統中。針對

此類系統，通用球型解碼被提出，但它的解碼複雜度隨著天線個數差的增加而呈

現指數增加。在本論文中，針對此類欠定系統，吾人提出具有低解碼複雜度的解

碼器。該解碼器包含了兩個步驟：1.藉由所提出的高效率的平面候選點搜尋器將

所有所需的候選點一一找出。2.針對這些候選點集合進行平面交集的動作並配合

動態半徑調整機制來快速地找出該問題的解。吾人亦提出一可與所提出解碼器結

合之通道矩陣行向量的排序策略，進而提供低運算需求及近似最大似然搜尋的解

碼性能。模擬結果顯示吾人提出方法的有效性。 
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Geometry Based Efficient Decoding Algorithm for 

Underdetermined MIMO Systems 
 

Student: Chih-Yung Wu Advisor:  Dr. Ta-Sung Lee 

English Abstract 

Institute of Communication Engineering 

National Chiao Tung University 

 

Abstract 

The design of high-performance and low-power consumption receiver is one of 

the key issues of MIMO systems. The sphere decoding algorithm (SDA) is an 

effective detector for MIMO systems. However, typical SDA fail to work in 

underdetermined MIMO systems where the number of transmit antennas is larger than 

the number of receive antennas. The generalized sphere decoder (GSD) had been 

proposed for underdetermined MIMO systems. However, its decoding complexity is 

exponentially increasing with the antenna number difference. In this thesis, we 

propose a decoder for underdetermined MIMO systems with low decoding complexity. 

The proposed decoder consists of two stages: 1. Obtaining all valid candidate points 

efficiently by slab decoder. 2. Finding the optimal solution by conducting the 

intersectional operations with dynamic radius adaptation to the candidate set obtained 

from Stage 1. We also propose a reordering strategy that can be incorporated into the 

proposed decoding algorithm to provide a lower computational complexity and 

near-ML decoding performance for underdetermined MIMO systems. Simulations 

confirm the effectiveness of the proposed methods. 
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Chapter 1  
 
Introduction 

Recently, in order to satisfy the growing demands of the personal 

communications, the design of next generation wireless communication systems goes 

for supporting high data rate and high mobility. However, the link quality suffers from 

frequency selective and time selective fading caused by multipath propagation in 

wireless channels. Moreover, the quality and reliability of wireless communication are 

degraded by Doppler shift and carrier frequency/phase. Beside, due to the limited 

available bandwidth and transmitted power, the design challenge of wireless 

communication systems becomes more difficult. Therefore, many innovative 

techniques have been devised and extensively used in this field to improve the 

reliability and the spectral efficiency of wireless communication links e.g. the coded 

multicarrier modulation, smart antenna and multiple-input multiple-output (MIMO) 

technology [1-4] and adaptive modulation [5], [6]. 

Among these technologies, MIMO is the most outstanding one. MIMO 

technology involves the use of multiple antennas to improve link performance. There 

are two major features of MIMO technologies: spatial multiplexing for increasing 

data rate and spatial diversity for improve link quality. Spatial multiplexing offers a 

linear increasing of data rate by transmitting multiple independent data streams at the 
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same time. Spatial diversity provides diversity gain to mitigate fading effects by using 

the multiple (ideally independent) copies of the transmitted signal in space, time and 

frequency. They are usually trade-offs to each other and provide an effective and 

promising solution while achieving high-data rate and reliable transmission. 

The major MIMO signal detection schemes include linear detection, successive 

interference cancellation (SIC) [7], [8] and the maximum-likelihood (ML) detection. 

The advantages of the first two detection schemes are low decoding complexity and 

easy implementation but their detection performances are non-optimal. ML detection 

provides optimal detection performance but its complexity increases exponentially 

with the size of constellation and the number of transmit antennas. Therefore, the 

design of high-performance and low decoding complexity is the one of key issues of 

MIMO designs. To reduce the complexity of the ML detector, the sphere decoding 

algorithm (SDA) [9], [10] has received considerable attention as an efficient detection 

scheme for MIMO systems. However, typical SDA fail to work in underdetermined 

MIMO systems where the number of transmit antennas is larger than the number of 

receive antennas. 

To overcome the above drawbacks of typical SDA, the conventional generalized 

sphere decoder (GSD), double-layer sphere decoder (DLSD) and slab sphere decoder 

(SSD) are introduced in [11-15]. These decoders transform underdetermined systems 

into overdetermined systems that can be solved by the SDA. Since the GSD performs 

an exhaustive search on ( t rN N− ) dimensions for the ML solution, the decoding 

complexity is increasing with the size of constellation and the antenna number 

difference. The DLSD uses the outer sphere decoder to find the valid candidate points 

and then the inner sphere decoder uses those points to find the solution. The SSD uses 

the geometry concept to find the valid candidate points to reduce the searching 

complexity of DLSD. However, the SDA still needs to be performed too many times 
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in SSD. 

   In this thesis, our goal is to reduce the decoding complexity of the SSD without 

degrading the decoding performance. The proposed decoder consists of two stages: 1. 

Obtaining all valid candidate points efficiently by the slab decoder. 2. Finding the 

optimal solution by conducting the intersectional operations with dynamic radius 

adaptation to the candidate set obtained from Stage 1. We also propose a reordering 

strategy that can be incorporated into the proposed decoding algorithm to provide a 

lower computational complexity and near-ML decoding performance in 

underdetermined MIMO systems. 

The organization of this thesis is given as follows. In Chapter 2, the signal model 

and typical detection schemes of overdetermined MIMO systems are introduced. In 

Chapter 3, the proposed decoder is presented. Two preprocessing scheme for the 

proposed decoder are suggested in Chapter 4. Simulation results are presented in both 

Chapter 3 and Chapter 4. Finally, Chapter 5 gives the conclusion and future works of 

this thesis. 
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Chapter 2  
 
Underdetermined MIMO System 
Model 

Many MIMO technologies are implemented in order to achieve the multiplexing 

gain and more diversity gain for wireless communication system. But in some 

scenarios (e.g. a strong LoS signal at receiver), an overdetermined MIMO system can 

be degraded into an underdetermined MIMO system. In underdetermined MIMO 

systems, the well-known SDA fail, therefore we need some special decoding schemes 

for these cases. In this chapter, those technologies of MIMO systems are introduced. 

We first introduce the MIMO system model in Section 2.1. Section 2.2 introduces the 

channel capacity. Second, the spatial diversity (SD) and the spatial multiplexing (SM) 

techniques are introduced in Section 2.3 and Section 2.4, respectively. Finally, the 

commonly used detection schemes for underdetermined MIMO systems including 

generalize sphere decoder (GSD), and Slab-sphere decoder (SSD) will be given in 

Section 2.5. 
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2.1 System Model 

Consider a Gaussian MIMO system with tN  transmit antennas and rN  receive 

antennas as shown in Fig. 2-1. The relation between transmitted signal vector and 

received signal vector can be written as 

 i ,= +y Hx n� � �  (2.1)

where 1
1 2, , , r

r

N
Ny y y ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦y� � � �" ^  stands for the received signal vector, 

[ ] 1
1 2, , , t

t
N

Nx x x ×= ∈x� � � �" ^  stands for the transmitted signal vector, iH  stands for 

the frequency-flat fading channel matrix: 

 i

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

,

t

t
r t

r r r t

N

N N N

N N N N

h h h

h h h

h h h

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H

� � �"

� � �"
^

# # % #

� � �"

 (2.2) 

where the elements of iH  are complex i.i.d. Gaussian random variables with normal 

distribution CN(0,1) and [ ] 1
1 2, , , r

r
N

Nn n n ×= ∈n� � � �" ^  stands for the complex 

additive white Gaussian noise (AWGN) with normal distribution ( )20,CN σ I . It is 

assumed n > m for an underdetermined MIMO systems. 
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 The complex equation in (2.1) can be rewritten into an equivalent real system by 

real value decomposition as 

 ,= +y Hx n  (2.3) 

where 

 

{ } { }

{ } { }

{ } { }

[Re Im ]

[Re Im ]

[Re Im ] ,

T T M

NT T

MT T

= ∈

= ∈

= ∈

y y y

x x x

n n n

� � \

� � \

� � \

 (2.4) 

and 

 
i{ } i{ }
i{ } i{ }

Re Im
.

Im Re

T T

M N
T T

×
⎡ ⎤−⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥⎣ ⎦

H H
H

H H
\  (2.5) 

Note the H is a size M N×  matrix where 2 rM N= ×  and 2 tN N= × . 

 

2.2 Channel Capacity 

Channel capacity is the upper bound of data rates in bits per channel that can be 

reliably transmitted over a communication channel. In other words, by channel coding 

theorem, if the data rate of transmission is below the channel capacity, the transmitted 

signals can be recovered with an arbitrarily small error probability. First, we introduce 

the single-input-single-output (SISO) channel capacity. Second, the MIMO channel 

capacity is introduced. The channel capacity is defined as [16] 

 
( )

max I( ; ),
p x

C X Y=  (2.6) 

where 

 I( ; ) H( ) H( | ),X Y Y Y X= −  (2.7) 

is the mutual information between X and Y, with H(Y) and H(Y|X) are the differential 
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entropy of Y and differential conditional entropy of Y with knowledge of X given, 

respectively. In (2.6), it states that the mutual information is maximized with respect to 

all possible transmitter statistical distributions p(x). 

SISO Channel Capacity 

For SISO systems, the ergodic capacity of a random channel can be defined as 

 
( ): 1
max I( ; ) ,

p x P
C E X Y

=

⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
 (2.8) 

where ( ){ }2P E x k=  is transmitted symbol power over the channel, {}E ⋅ denotes 

the expectation of all channel realization, and the mutual information is equal to 

2
2log (1 )hγ+ . The channel capacity defined in (2.8) means that the maximum of 

mutual information between X and Y of all statistical distribution on the X. From (2.8), 

the SISO system ergodic capacity I( ; )X Y  can be replaced by 2
2log (1 )hγ+  [16] 

 { }2
2log (1 )    bits/sec/Hz,C E hγ= +  (2.9) 

where 2Pγ σ=  is the average SNR at the receiver, P is the transmit power. 

MIMO Channel Capacity 

For a MIMO system with tN  transmit antennas and rN  receive antennas, the 

ergodic capacity of a random MIMO channel can be defined as [1] 

 
( )( ):tr

max I( ; ) ,
xx tp x N

C E X Y
=

⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭R
 (2.10) 

where { }H
xx E=R xx  is the covariance matrix of the transmitted signal vector x. 

Similar to SISO channel capacity, the MIMO mutual information can be described as 

 ( ) 2 2I ; log det( ) .
r

H
N xx

t

P
X Y E

Nσ

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭
I HR H  (2.11) 
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Substituting (2.11) into (2.10), we have 

 2 2( )
max log det( )    bits/sec/Hz.

r
xx t

H
N xx

tr N t

P
C E

Nσ=

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭R
I HR H  (2.12) 

When the channel knowledge is unknown to the transmitter, the optimal transmit 

signals are chosen to be independent and equal power. With independent and uniform 

power distribution, the covariance matrix of the transmit signal vector is then given by 

rxx N=R I . As a result, the ergodic capacity of a MIMO system can be written as [1] 

 2 2log det( )    bits/sec/Hz.
r

H
N

t

P
C E

Nσ

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭
I HH  (2.13) 

By using the eigenvalue decomposition, the matrix product of HHH  can be 

decomposed as H H= ΛHH E E  where E is an r rN N×  matrix which consists of the 

eigenvectors satisfying 
r

H H
N= =EE E E I  and { }1 2diag , , ,

rNλ λ λΛ = …  is a 

diagonal matrix with the eigenvalues 0iλ ≥  on the main diagonal. Assuming that the 

eigenvalues iλ  are ordered so that 1i iλ λ +≥ , we have 

 
2 if 1,

,
       if 10,

i
i

r

i r

r i N

σ
λ

⎧ ≤ ≤⎪⎪⎪= ⎨⎪ + ≤ ≤⎪⎪⎩
 (2.14) 

where 2
iσ  is the ith squared singular value of the channel matrix H and 

( ) { }rank min ,t rr N N= ≤H  is the rank of the channel matrix. Then the capacity of 

a MIMO channel can be rewritten as 

 

2 2

2 2

2 2
1

log det( )

  log det( )

  log (1 )    bits/sec/Hz.

r

r

H
N

t

N
t

r

i
i t

P
C E

N

P
E

N

P
E

N

σ

σ

λ
σ=

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= + Λ⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= + Λ⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑

I E E

I  (2.15) 
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Note that the second equation holds due to the fact ( ) ( )det det
r tN N+ = +I AB I BA  

for matrices r tN N×∈A ^ , t rN N×∈B ^  and 
r

H
N=E E I . Eq. (2.15) shows that the 

capacity of a MIMO channel is made up by the sum capacities of r independent SISO 

sub-channels with power gain iλ  for i = 1,2,…,r and transmit power tP N  

individually. 

When the channel knowledge is known to the transmitter, the capacity of a MIMO 

channel is the sum of the capacities associated with the independent SISO channels and 

is given by 

 2 2
1

log (1 )    bits/sec/Hz,
r

i i
i t

P
C E

N
γ λ

σ=

⎧ ⎫⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑  (2.16) 

where { }2
i iE xγ =  for i = 1,2,…,r is the transmit power in the ith sub-channel and 

{ }iγ  satisfy the power constraint 1
r

i ti Nγ= =∑ . Since the transmitter can access the 

spatial sub-channels, we can allocate those powers across the sub-channels to 

maximize the mutual information as 

 

1

2 2
1

max log (1 )    bits/sec/Hz,
r

i t
i

r

i i
i tN

P
C E

Nγ
γ λ

σ
=

==

⎧ ⎫⎪ ⎪⎪ ⎪= +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭∑
∑  (2.17) 

the optimal power allocation of the ith sub-channel is a water-filling solution given by 

[1], [16] 

 
2

opt    for 1,2, , ,i
i

m
i r

P
σ

γ μ
λ

+

⎛ ⎞⎟⎜ ⎟= − =⎜ ⎟⎜ ⎟⎜⎝ ⎠
"  (2.18) 

where μ  is chosen to satisfy the constraint opt
1

r
tii Nγ= =∑  and ( )+⋅  denotes the 

operation that takes those terms which are positive. 
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2.3 MIMO Diversity 

Diversity techniques are widely used in MIMO systems to improve the reliability 

of transmission without increasing the transmit power or bandwidth. There are many 

diversity techniques such as space, frequency and time diversity. In this section the 

space diversity is introduced, it is so called antenna diversity. 

2.3.1 Receive Diversity 
Receive diversity involves the receiver with multiple antennas. At the receiver, 

multiple copies of the transmitted signal are received, which can be efficiently 

combined with an appropriate signal processing algorithm. There are four main types 

of combining techniques, include selection combing, switch combining, equal-gain 

combining (EGC) and the maximum ratio combining (MRC). 

1. Selection combining – The received signal with the best quality is chosen 

and the choosing criterion is based on SNR.  

2. Switch combining – Switch the received signal path to an alternative 

antenna when the current received signal level falls below a given threshold.  

3. EGC – It is a simple method since it does not require estimation of the 

channel. The receiver simply combines the received signals from different 

receive antennas with weights set to be equal.  

4. MRC – It forms the output signal by a linear combination of all the 

received signals and is the optimal combination technique which achieves 

the maximum value of the output SNR. 
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2.3.2 Transmit Diversity 
Transmit diversity techniques provide more diversity benefits at the receiver with 

multiple transmit antennas, has received much attention, especially in wireless cellular 

systems. There are two broad categories of transmit diversity: the open loop schemes 

and the closed loop schemes. In the open loop schemes, the transmitter transmits 

signals without feedback information from receiver, e.g. Space-time code (STC). In the 

closed loop schemes, the transmitter transmits signals with feedback channel 

information from receiver, e.g. transmit beamforming. 

 

2.4 Spatial Multiplexing 

Spatial multiplexing is a transmission technique of MIMO wireless 

communication systems which increases the channel capacity without additional power 

or bandwidth, as shown in Fig. 2-2. In other words, spatial multiplexing means that 

transmit independent and separately data signals on each transmitted antenna in order 

to increase the channel capacity. If there are tN  antennas and rN  antennas of 

transmitter and receiver, respectively, the maximum spatial multiplexing order is 

 { }min , ,t rD N N=  (2.19) 

if a linear receiver is used. This means that D data streams can be transmitted in parallel, 

the data rate can be increased by D times in the ideal case. The practical multiplexing 

gain is limited by correlation of channels, which means that some of the parallel 

streams may have very weak channel gains. Two typical spatial multiplexing schemes, 

D-BLAST [2] and V-BLAST [17] are introduced. 
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Diagonal Bell Laboratories Layered Space-Time (D-BLAST) 

The concept of layered space-time processing was proposed by Foschini at Bell 

Laboratories [2]. D-BLAST uses multiple antennas at both the transmitter and the 

receiver. The encoder uses a space time arrangement that corresponds to a diagonal 

layering. Fig. 2-3 show the encoding procedure for D-BLAST. 

 

Vertical Bell Laboratories Layered Space-Time (V-BLAST) 

The D-BLAST algorithm suffers from complicated implementation which is not 

suitable for practical situation. Therefore, a simplified version of the BLAST algorithm 

is known as V-BLAST [17]. In V-BLAST system, independently encoded data streams 

are transmitted from each transmit antenna simultaneously. The encoding procedure is 

shown in Fig. 2-4. 

 

 

 

 

 

 

 

 

Fig. 2-2 Spatial multiplexing system 
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Fig. 2-3 Encoding procedure of D-BLAST (n=3) 

 

 

 

 

 

 

Fig. 2-4 Encoding procedure of V-BLAST (n=3) 

 

2.5 MIMO Detection 

In this section, we introduce the classification of MIMO detection schemes 

including Zero-Forcing (ZF), Zero-Forcing Successive Interference Cancellation 

(ZF-SIC) and Maximum-Likelihood (ML) detection. Assume that the received signal 

is given by (2.3) 
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(1) Zero-Forcing (ZF) 

The ZF scheme is a kind of linear detection that means the received signal y is 

multiplied by a filter ZFG  

 ( ) 1 †,H H−
= =ZFG H H H H  (2.21) 

where †H  is the Moore-Penrose pseudo-inverse of H. The output vector after the 

filter is as follows 

 † .=y H y�  (2.22) 

The ZF can remove the spatial interferences from the received signal; however, the 

main drawback of ZF scheme is the resulting noise enhancement. 

(2) Zero-Forcing Successive Interference Cancellation (ZF-SIC) 

Denote H as 

 1, , .tN⎡ ⎤= ⎢ ⎥⎣ ⎦H h h
JK JK
"  (2.23) 

The received signal is given by 

 1 1 2 2 .
t tN Nx x x= + = + + + +y Hx n h h h n"  (2.24) 

The main idea of SIC is to cancel the detected symbol from the received signal to 

improve primary ZF detection performance. The ZF filter is given in (2.21). The 

decision statistics of the ith symbol is obtained as 

 † ,i ix = H y�  (2.25) 

where †
iH  is the ith row of †H . Taking hard decision to ix� , the estimation symbol 

is�  can be obtained. After is�  is detected, it is subtracted from the received signal to 

remove its influence, then updating the received signal as 

 ' ,i is= −y y h�  (2.26) 
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where ih  is the ith column in the channel matrix H. Iterating the above procedure, 

the ZF-SIC solution can be achieved. 

(3) Maximum-Likelihood (ML) Detection 

The well known optimal detection scheme of the MIMO systems is the ML 

detection. The ML detection searches all possible combinations of transmitted 

symbols via the following criterion: 

 ML
2arg min ,

N∈
= −

x
x y Hx

]
�  (2.27) 

where N]  denotes the set of all possible transmitted symbol vectors. The 

computational complexity of an exhaustive searching algorithm for the ML solution 

increases exponentially with N. Therefore, it is not easy to be implemented at the 

receiver in practice which is the main drawback of this method. 

 

2.6 Underdetermined MIMO Detection 

The classification of underdetermined MIMO detection schemes (e.g. GSD and 

SSD) are introduced in this section 

 

2.6.1 Generalized Sphere Decoder (GSD) 
In order to reduce the complexity of ML detection, the SDA was proposed to 

achieve ML performance with low complexity. Hence, it is adopted on the receiver 

design in recent years. But the SDA fails in the underdetermined MIMO systems and 

then the GSD [11] was proposed to solve this problem. The GSD transforms 
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underdetermined systems to overdetermined system that can be solved by SDA [19]. 

Consider a Gaussian MIMO system with tN  transmitted antennas and rN  

received antennas, the received real signal can be formed as (2.3). The ML estimator 

x�  of x is obtained by minimizing the Euclidean distance of y from the legal lattice 

points as 

 ( ) 22argmin argmin .
N N

ρ
∈ ∈

= − = −
x x

x y Hx R x
] ]

�  (2.28) 

where { }3, 1,  1, 3= − −]  for 16-QAM cases, ( ) 1T Tρ
−

= H HH y , Q is a 

M M×  unitary matrix, and R is a M N×  upper triangular matrix corresponding to 

the QR-decomposition of H, i.e. =H QR . The matrix R can be represented by 

[ ]1 2,=R R R , where 1
M M×∈R \  is a upper triangular matrix and 

2
M N M× −∈R \ . Similarly, x can be represented by ,

T
G G

⎡ ⎤= ⎣ ⎦x x x , where G and 

G  are the indices corresponding to the first M and the last N M−  elements of the 

x vector. The minimum distance corresponding to the ML estimator in (2.28) can be 

rewritten by 

 

( )

[ ]

2

2
1 2 2 1

2
1

     argmin

min min ,

min min ,

N

N M M
GG

N M M
GG

GG

G

ρ

ρ

ρ

−

−

∈

∈ ∈

∈ ∈

−

⎛ ⎞⎟⎜= − − ⎟⎜ ⎟⎜ ⎟⎝ ⎠
⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠

x

x x

x x

R x

R R R x R x

R x

]

] ]

] ]
�

 (2.29) 

where [ ]1 2 2, Gρ ρ= −R R R x�  for the last equation. 

The GSD checks all the valid constellation points whose squared Euclidean 

distance calculated from (2.28) are smaller than a specified positive number C. It is 

done by an exhaustive search over Gx  and then employing the SDA to compute the 
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last equation in (2.29). The SDA will find if the squared minimum distance is less 

than C. Otherwise, a failure of the SDA for the given Gx  is declared and then the 

Gx  will be discarded. 

If the candidate constellation point ( Gx , Gx ) is found within the sphere, the 

value of C will be updated and the algorithm continues to search the remaining points 

for Gx . If no candidate constellation point ( Gx , Gx ) is found within the sphere, then 

the entire algorithm will repeat with a larger value of the radius C. The GSD based on 

the exhaustive search over Gx  and the SDA for every point of. Because of the 

exhaustive search over Gx , the complexity exponentially increase of the order 

N M− . 

2.6.2 Slab Sphere Decoding (SSD) Algorithm 
To perform (2.28) efficiently, an algorithm is proposed in [18], [19] to solve a 

search problem that finds all the lattice points satisfying 

 2 2C− ≤y Hx  (2.30) 

for given a radius C (>0). Apparently, the point that is the closest to center of the 

hypersphere y , is the ML decision point. By decomposing the channel using 

QR-decomposition, Eq. (2.30) can be rewritten as 

 
2' 2,C− ≤y Rx  (2.31) 

where ' T=y Q y . 

 If N > M we will have  
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 '
, , ,M M M M M N NC y r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦"  (2.32) 

at the Mth layer. Eq. (2.32) involves N-M+1 dimensions for detection. Eq. (2.32) is 

similar to a detection problem of a real-valued MISO system. First, we want to find 

the constellation points falling inside this slab. There are two algorithms that can help 

us find those constellation points, i.e., Plane Decoding Algorithm (PDA) [12] and 

Slab Decoding Algorithm (SLA) [14], [15]. 

Plane Decoding 

For a MISO system with k transmitted antennas where the inputs are independent 

symbols, the received signal can be written as 

 1 1 ,k ky h x h x η= + + +"  (2.33) 

where kx ∈ ] , nh  is the channel response and 2(0, )CNη σ∼  stands for AWGN. 

ML estimation of the transmitted vector [ ]1, , kx x=x "  can be written as 

 
( )

( )
1

2
1 1

, ,
arg min ,

k
k

ML k k
x x

y h x h x
∈

= − + +x
" ]

"  (2.34) 

the estimator means to find the point k∈x ]  which is the closest to the hyperplane 

P given as 

 1 1: .k kP h x h x y+ + ="  (2.35) 

First, define X, VX , PDX  as the sets of the points to be visited, the points that 

have been visited, and the points that are close to P in all dimensions, respectively. 

Then, initialize them with X= VX = ( ){ }1x  where the (1) stands for the order of the 

vector in a set and j = 1. 

The main idea of the PDA is to find those candidates ( PDX ) which are close to 

P in all dimensions. The procedures of the PDA are summarized as follows: 
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Step 1:  If X is empty, go to Step 5. Otherwise, we calculate 

 { }: min  s.t. j B
x

a x x x x
∈

= >
]

�  

 { }: max  s.t. ,j B
x

a x x x x
∈

= <
]

�  

where  

 [ ]
( )( )1

1
B j

j

y
x x

h

Δ
= −

x
 

 ( )( ) [ ] [ ] [ ]1 1 11
1 21 2 k ky h x h x h x yΔ = + + + −x "  

Step 2:  If { } { }k ka a≠ Φ ∧ = Φ� �  is not true, go to Step 3. Otherwise, we have 

the point ( )1=x x�  except that j jx a=� �  where x�  is close to P in 

dimension-j. Then, if ( )1
j jx x=� and then the point ( )1x  is close to P 

in dimension-1,2,…,j and do: 

 If j < k, update j = j + 1. Go to Step 1. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

Else, if ( )1
j jx a≠� , then discard ( )1x  from the set X and reset j = 1. 

Go back to Step 1. 
Step 3:  If { } { }k ka a= Φ ∧ ≠ Φ� �  is not true, go to Step 4. Otherwise, we have 

the point ( )1=x x�  except that j jx a=� �  where x�  is close to P in 

dimension-j. Then, if ( )1
j jx x=� and then the point ( )1x  is close to P 

in dimension-1,2,…,j and do: 
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 If j < k, update j = j + 1. Go to Step 1. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

Else, if ( )1
j jx a≠� , then discard ( )1x  from the set X and reset j = 1. 

Go back to Step 1. 
Step 4:  If { } { }k ka a≠ Φ ∧ ≠ Φ� �  is not true, go to Step 5. Otherwise, we have 

two points ( )1=x x�  except that j jx a=� �  and ( )1=x x�  except that 

j jx a=� �  where x�  and x�  are close to P in dimension-j. Then, if 

( )1
j jx x=� and then the point ( )1x  is close to P in dimension-1,2,…,j 

and do: 

 If j < k, update j = j + 1 and if VX∉x�  then update { },X X= x�  

and { },V VX X= x� . Go to Step 1. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 

If ( )1
j jx x=�  and then do: 

 If j < k, update j = j + 1 and if VX∉x�  then update { },X X= x�  

and { },V VX X= x� . Go to Step 2. 

 If j = k, the point ( )1x  is close to P in all dimensions and is stored in 

PDX . Next, discard ( )1x  from the set X and reset j = 1. Go back to 

Step 1 to check a new point in X. 
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Else, if ( )1 ,j jjx a a≠ � � , then discard ( )1x  from the set X and reset j = 1. 

Go back to Step 1. 

Step 5:   Each point x in PDX , update  

    if 0.k k kx x k h=− ∀ <  

 

The PDA guarantees to achieve the ML solution only for the MISO systems. For 

MIMO systems, we will need to find those points that fall inside the slab 

 [ ]1 1 ,k kC y h x h x C− ≤ − + + ≤"  (2.36) 

The following algorithm is designed to accomplish this. 

 

Slab Decoding 

Obviously, although the PDX  does not contain all the lattice points that fall 

inside the slab in (2.36), the PDX  provides a useful starting point for slab detection. 

The procedures of SDA are summarized as follows: 

Step 1:  Sorting the points of PDX  according to their Euclidean distances. 
Therefore, 

 ( ) ( ) ( ){ }1 2 3sort , , ,...PD PD PD PDX = x x x  

where ( )( ) ( )( )2 2 ji
PD PDy yΔ ≤ Δx x  if i j≤ . 

Step 2:  For a given C, find the set 

 ( ){ }2
sort

; :PDPD CX X C y C≤ = ∈ − ≤ Δ ≤x x  

Step 3:  For each point 2;PD CX ≤∈x , move away along each direction for 

finding other points which ( )2 2y CΔ ≤x . It is done by the following 

loop. 

a. Initialize n = 1, and j = 1. Pick the nth point ( )
2;

n
PD CX ≤∈u . 
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b. Compute 

 ( )

0 min ,max ,n
j

s
u u d s

∈

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎝ ⎠]
 

        where d stands for the separation of every adjacent constellation. 

         If ( )

0
n
ju u≠  and then do the following. 

 Set ( )

0
n
ju u= . 

 If ( )( )2 2ny CΔ ≤u , then ( ){ }2 2; ; , .n
PD C PD CX X≤ ≤= u  

c. Compute 

 ( )

0 max ,min .n
j

s
u u d s

∈

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎝ ⎠]
 

      If ( )

0
n
ju u≠  and then do the following. 

 Set ( )

0
n
ju u= . 

 If ( )( )2 2ny CΔ ≤u , then ( ){ }2 2; ; , .n
PD C PD CX X≤ ≤= u  

d. If j < k, then update j = j + 1 and go back to b. 

e. If j = k, then update n = n + 1 and j = 1. Then, go back to b. 

f. If 2;PD Cn X ≤= , then all lattice points that fall inside the slab are 

found. 

The two algorithms can find all the lattice points satisfying (2.36) for a given C. 

Each point of the set can be substituted into the original problem in (2.31), to obtain 

 2 2
1G G C− ≤y R x  (2.37) 

where 1M
G

−∈y \ , 1 1
1

M M− × −∈R \  corresponds to the first 1M −  columns 

and rows of the R and [ ] 1
1 2 1, , , M

G Mx x x −
−= ∈x " \ . Since 1R  is an upper 

triangular matrix with full rank, we can solve the problem by SDA directly. After the 

substitution of all points, the ML solution can be found. 
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2.7 Summary 

In this Chapter, we review the MIMO communication systems. In a rich 

multi-path scattering environment, the MIMO system deliver significant performance 

enhancement in terms of link quality and data rate. Spatial diversity is a key MIMO 

technique which mitigates fading and is realized by providing the receiver with 

multiple copies of the transmitted signal in space or time. Spatial multiplexing offer a 

linear increase in data rate by transmitting independent data streams from the 

individual transmit antennas.  

Two popular detectors of underdetermined MIMO systems are GSD and SSD. 

The complexity of GSD increases exponentially with the order of N M− . In order 

to reduce the complexity many algorithms have been proposed. The SSD uses a 

geometrical approach to solve the problem, and it has lower complexity than existing 

algorithms. 



 24

Chapter 3  
 
Proposed Geometry Based Decoding 
Algorithm with Intersection of 
Candidate Sets 

In Chapter2, we introduce the SSD which is a low complexity solution for 

underdetermined systems; however, the SSD has some disadvantages. First, because 

the two algorithms of SSD are independently and sequentially implemented, many 

constellation points are multiply checked. Second, in the PDA of SSD, in order to find 

the “ PDX ”, we perform many searches in the same dimension. As a result there are 

too many candidate points that fall inside the slab such that the SDA is executed too 

many times. For those reasons, its computational complexity is high. 

In this chapter, we introduce the proposed a low complexity search method for 

finding those points falling inside the slab and a low complexity decoding algorithm 

without the use of SDA. The details of the proposed algorithm will be introduced in 

Sections 3.1-3.2. The simulation results will be provided in Section 3.3 to show that 

the proposed algorithm performs better than the SSD. 
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3.1 Efficient Search Method for Points in Slab 

The search method is similar to the PDA and SLA. We use only one algorithm to 

find those points that fall inside the slab, so no constellation points and dimensions 

are multiply searched. First, performing QR-decomposition to the real channel matrix 

H, we obtain 

 ,=H QR  (3.1) 

where M N×∈Q \  and R is an M N×  upper triangular matrix. Substituting (3.1) 

into (2.30), we have 

 
2' 2,C− ≤y Rx  (3.2) 

where ' T=y Q y . If N>M, we will have 

 '
, , ,M M M M M N NC y r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦"  (3.3) 

at the M-th layer. Eq.(3.3) involves N-M+1 dimensions for detection. The algorithm 

still aims to find those points that fall inside the slab.  

 First, define as 

'
, , 1 , , 1 ,

'
1, 1 1,2 1, 1 1, 11

' , , 1 ,

0
Dist ,

0 0

i i i i i i M i M i N i

i i i M i M i N ii
i

NM M M M M N
M

y r r r r r x

r r r r xy

xr r ry

+ +

+ + + + + + ++

+

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

" "

" "

# " % % % % # ##
" "

 (3.4) 

where 1 i M≤ ≤ . 

Second, define as inX , 
inVX , 

outVX , 
inVD , 

outVD , VDX  the set of the points 

inside the slab, the sets of the points inside the slab to be visited, the sets of the points 

outside the slab to be visited, the visited dimensions of 
inVX , the visited dimensions 



 26

of 
outVX  and the points that have been visited, respectively. Then, initialize them 

with 
outVX = VDX = ( ){ }1

outx  where the superscript (1) stands for the order of the 

vector in a set, j = 1, and 
out

[0, 0, , 0]VD = "  indicates that no dimension is visited in 

the beginning. 

The main idea of the algorithm is to find those point ( inX ) which fall into the 

slab (3.3). We design an algorithm to find the set inX  efficiently and the procedures 

of the search algorithm are summarized as follows. 

Step 1: If 
inVX  and 

outVX are empty, go to Step 5. 

Step 2:  If 
outVX  is empty, go to Step 4. Otherwise, we calculate 

( )( )1
(1)

,up ,outj j
j

y
x x C

h

Δ
= − +

x
 

( )( )1
(1)

,low ,out ,j j
j

y
x x C

h

Δ
= − −

x
 

where j is chosen from the unvisited dimension of 
outVD  

corresponding to each x. 

Step 3: For each value { }1
,low ,up,j jx x x⎡ ⎤∈ ∩⎢ ⎥⎣ ⎦ ]  and then we have the points 

( )1=x x�  where jx x=� , and x�  is inside the slab. 

 Update the jth element of 
inVD  corresponding to each x� . If 

inVX∉x�  then { }in in
,V VX X= x� . 

And the value { }{ }1: max( ) , : min( )j ka a x d a x d∈ + − ∩� � ]  where 

d stands for the separation of every adjacent constellation, and we have 
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the points ( )1=x x�  where jx a=� , and x�  is outside the slab. 

 If ,outjx a∈ , Update { }out out
,V VX X= x�  and the jth element of 

outVD  corresponding to each x� . If j is the last visited dimension 

then discard ( )1x  from the set 
outVX . Go to Step 2. 

 Else, then discard ( )1x  from the set 
outVX , update 

{ }D ,V VDX X= x�  and the jth element of 
outVD  corresponding to 

each x� . Go back to Step 2. 

Step 4: If 
inVX  is empty, go to Step 1. Otherwise, we calculate 

( )( )1
(1)

,up ,inj j
j

y
x x C

h

Δ
= − +

x
 

( )( )1
(1)

,low ,in ,j j
j

y
x x C

h

Δ
= − −

x
 

where j is chosen from the unvisited dimension of 
inVD  

corresponding to each x. 

Step 5: For each value { }1
,low ,up,j jx x x⎡ ⎤∈ ∩⎢ ⎥⎣ ⎦ ]  and then we have the points 

( )1=x x�  where jx x=� , and x�  is inside the slab. 

 Update the jth element of 
inVD  corresponding to each x� . If 

inVX∉x�  then update { }in in
,V VX X= x� , and compute the 

MDist  by yΔ . 

And the value { }{ }1: max( ) , : min( )j ka a x d a x d∈ + − ∩� � ]  and 

then we have the points ( )1=x x�  where jx a=� , and x�  is outside 
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the slab. 

 Update { }out out
,V VX X= x�  and the jth element of 

outVD  

corresponding to each x� . If j is the last visited dimension then 

discard ( )1x  from the set 
outVX . Go to Step 4. 

Step 6: Each point x  in inX  falls in the slab, which is shown in Fig. 3-1. 

 

The proposed search algorithm can efficiently find the valid candidate points 

satisfying (3.3) for a given C. Typical underdetermined decoders use all those points 

to find the near-ML solution by the SDA when the radius of constraints is not large. In 

the above description, we know the decoding complexity is closely related to the 

number of candidate points. However, the number of candidate points is still large 

with large antenna number difference. Therefore, an efficient decoder by conducting 

the intersectional operations with dynamic radius adaptation will be proposed in next 

section. 

 

 

 

 

 

 

 

 

 

 

Fig. 3-1 An example of slab with 4-PAM and k = 2 
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C 

1 1 2 2h x h x y+ =
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3.2 Efficient Decoding Algorithm with   

Intersection of Candidate Sets 

The main idea of typical underdetermined decoding algorithms is to find a 

candidate set in which the number of candidate points is as small as possible. The 

SDA is then employed to find the ML solution. The conceptual diagram is illustrated 

in Fig. 3-2. From Fig. 3-2, we know that the decoding complexity depends on the 

number of candidate points, which is positively correlated to the constellation size 

(e.g. 64-QAM) and antenna number difference (i.e. t rN N− ). 

 

 

 

 

 

 

 

 

Fig. 3-2 Block diagram of typical underdetermined decoding algorithms 

 

We propose an efficient geometry based decoding algorithm, where (3.2) is 

rewritten and expanded as the summation form as follows: 

 

2'
1 1,1 1,2 1, 1 1, 1, 1

2
2

'
1, 1 1, 1,1

' , ,

0

0 0

0 0 0

M M N

M M M M M NM

NM M M N
M

y r r r r r x

x
C

r r ry
xr ry

−

− − − −−

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− ≤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

" "

# % % % % % #

" " #

" "

  

Y 

Underdetermined decoding 
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Use SDA to find ML 
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2 2

1 'M N
i ij ji j iy r x C= =

⎡ ⎤− ≤⎢ ⎥⎣ ⎦∑ ∑  (3.5) 

The total number of slab equations included in (3.5) is M. These equations can be 

written with corresponding IDs as follows: 

Slab equations ID Slab equations 

Slab  M  '
, ,M M M M M N NC y r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦"  

#  #  

Slab 2  '
2 2,2 2 ,M N NC y r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦"  (3.6)

Slab 1  '
1 1,1 1 , ,M N NC y r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦"  

In the SSD, only the last slab equation (Slab M) is used. However, the total available 

number of slab equations is M  in (3.6). Thus, the basic idea of the proposed method 

is to utilize all the available slab equations to find the candidate set, instead of only 

using Slab M. 

Assume that C is large enough to include the ML solution and the index satisfies 

i > j. Using Slabs i and j, we can find two candidate sets (i.e. ,i jx x� � ) which include 

the ML solution. Therefore, the ML solution must fall inside the intersection of the 

two candidate sets (i.e. 
G

x� ). This is illustrated in Fig. 3-3. After the slab intersection 

is performed, we will check the radius constraint of Slab i and j according to 
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 (3.7) 
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It is inefficient to perform slab intersection and constraint checking procedure 

sequentially. Because the procedure requires large storage memory and many times of 

intersection checking for candidate points, we use another approach to achieve the 

same goal. 

 

 

 

 

 

 

Fig. 3-3 Illustration of intersection of candidate sets 

 

The above procedure can be executed by the following efficient approach: we 

first find the candidate set ix�  and then check (3.7) with the next Slab (e.g. Slab j). In 

other words, we omit the procedure of storing jx�  and matching the points of the two 

candidate sets, which reduces the complexity and memory storage. Therefore, we will 

find a new candidate set satisfying Slab j (or i) equation in (3.6) and (3.7). There are 

two intersection scenarios: 

Scenario 1: we find ix�  and check (3.7) to expand the dimensions and 

discard the points which does not satisfy (3.7). After that, we 

obtain a new candidate set. 

Scenario 2: we first find jx�  and check (3.7). If the point of jx�  does not 

satisfy (3.7), we discard it. After that, we obtain a new candidate 

set. 

 

ix�
jx�

Gx
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In above Scenarios, we know that Scenario 1 has lower complexity than Scenario 2 

because the average number of candidate points of ix�  is smaller than that of jx� . By 

this reason, we expect that the number of candidate points can be as small as possible 

in the first candidate set just like Scenario 1. Therefore, we choose Slab M in (3.6) to 

find the first candidate set. Similarly, in order to have a lower complexity in the next 

procedure, we also expect that the number of points in the new candidate set can be as 

small as possible. By this reason, we choose Slab 1M −  to be next one to intersect 

with Slab M, and so on. The proposed decoding algorithm guarantees to find the ML 

solution after performing 1M −  times of the above efficient approach. 

 

Discussion of the radius (C) 

Note that 

 2 22
min NC χ= n ∼  (3.8) 

is Chi-square distributed with N degrees of freedom. Its cumulative distribution 

function is given by 

 
( )

( )
( )

/2, /2
( ; ) /2, /2 ,

/2

N x
F x N P N x

N

γ
= =

Γ
 (3.9) 

where ( )γ •  is the lower incomplete Gamma function, ( )Γ •  is the Gamma function, 

and ( )P •  is the regularized Gamma function. In order to ensure the high efficiency 

of the decoder, the radius starts [10], [15] with 

 ( ) ( )2 1 ; ,C F i Nσ −= Φ + Δ  (3.10) 

where i = 0 ,  Δ  and Φ  are judiciously set, e.g., 0.001Δ = and 0.99Φ = . If no 

points can be found within C, update i in (3.10) by i = i + 1. 
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The main idea of the decoding algorithm is to perform intersection of more slabs 

to achieve a lower decoding complexity. The procedure of the decoding algorithm is 

summarized as follows. 

Step 1: Set 1i M= − . Use Slab M  equation 

           '
, , ,M M M M M N NC R x R x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦y "  

to find the initial candidate set ( 1i+x� ). The corresponding distance 

( 1Disti+ ) can be obtained by the proposed search algorithm in Section 

3.1.  

Step 2: If 1i = , go to Step 4. The upper bound ( ,upix ) and lower bound 

( ,lowix ) of ix  corresponding to each candidate point of candidate set 

will be found by the radius constraint 

           

'
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" "

 

and 
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( ) ( )
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.
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=
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=

∑
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Therefore, we can easily find Disti  through 

( ) ( )
2 22'

, 1Dist Dist .N
i i i j j ij iy r x +== − +∑  

Step 3: Using the upper and lower bounds corresponding to each candidate 

point, the new candidate set ( ix� ) can be constructed by 
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        ,low ,up 1 2, , , .i i i i Nx x x x+
⎡ ⎤⎡ ⎤= ∩⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦x� ] "  

Choose a candidate point with minimum distance from ix�  and 

compute the ZF-SIC solution. It gives us a new radius ( newC ). If 

newC C< , update it. Set i = i +1 and go to Step 2. 

Step 4:  Choose a candidate point with minimum distance from 1x�  to be the 

   estimate of x. 

Note:  (1) If the initial candidate set ( Mx� ) is empty, increase C . 

(2) If the candidate set ( ,1 1i i M≤ ≤ −x� ) is empty, use the ZF-SIC 

solution as the estimate of x. 

 

3.3 Computer Simulation 

In this section, computer simulations are conducted to evaluate the 

symbol-error-rate (SER) and the decoding complexity. In order to compare the 

complexity of the proposed decoding algorithm with other decoding algorithms, we 

define the complexity weights of different operations according to [15]. The weight of 

additions and subtractions is one if real and two if complex. Each of The 

multiplications and divisions is counted one if the result is real and six if it is not real. 

The total complexity of each simulated algorithm is the sum of the number of times of 

each operation multiplied by its corresponding weight. The numerical results are 

measured and averaged over 1000 independent channels for various average 

signal-to-noise ratio (SNR). In addition, the calculation of complexity also includes 

all preprocessing procedures (e.g. QR decomposition). We set 0.99Φ =  and 

corresponding candidate point 
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0.001Δ =  for radius C and use Schnorr and Euchner SAD (SE-SDA) [9] in SSD. 

Denotes the antenna pair as ( ),t rN N . 

The average SER of using 16-QAM over various underdetermined MIMO 

systems using SSD and the proposed decoding algorithm are shown in Fig. 3-4. Note 

that the performance of the SSD is the same as ML detection. Fig. 3-4 shows that the 

performance of the proposed decoding algorithm is close to ML performance. The 

proposed decoding algorithm uses the ZF-SIC solution to be the estimate of x while 

the candidate set is empty. Therefore, the performance of the proposed decoding 

algorithm has slight loss at high SNR. Fig. 3-5 shows that the complexity of the 

proposed decoding algorithm is lower than that of the SSD. At SNR = 15 dB, the 

ratios of decoding complexity of the SSD to that of the proposed decoding algorithm 

are 1.59, 2.03, 2.53, 3.42, corresponding to (2,1), (3,2), (4,3), (5,4). It can be observed 

that the ratio becomes larger with increasing number of antennas. This phenomenon is 

due to the fact that the increase of 1N −  will lead to higher decoding complexity of 

the SSD. In Fig. 3-4 and Fig. 3-5, we can see that the proposed decoder reduces the 

decoding complexity without degrading the decoding performance. 
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Fig. 3-4 SER comparison of SSD and the proposed method using 16-QAM 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-5 Complexity comparison of SSD and the proposed method using 16-QAM 
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Here, we use 64-QAM modulation instead of 16-QAM. The average SER is 

shown Fig. 3-6. The decoding performance is close to the ML solution and still has 

slight loss at high SNR. Fig. 3-7 shows that the complexity of the proposed decoding 

algorithm is still lower than SSD. At SNR = 27 dB, the ratios of decoding complexity 

of the SSD to that of the proposed decoding algorithm are 1.92, 2.21 and 4.14 

corresponding to (2,1), (3,2) and (4,3). The increasing ratio phenomenon is the same 

as using 16-QAM. However, the reduction of complexity is larger than using 

16-QAM. It means that the proposed decoder is suitable for the systems using large 

constellation. In Fig. 3-6 and Fig. 3-7, we can see that the proposed decoder reduces 

the decoding complexity especially for a large number of antennas and large 

constellation size. Moreover, the proposed decoder also provides a near-ML solution. 
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Fig. 3-6 SER comparison of SSD and the proposed method using 64-QAM 
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Fig. 3-7 Complexity comparison of SSD and the proposed method using 64-QAM 

 

3.4 Summary 

In this chapter, we give the detailed description of the proposed efficient search 

method which combines the PDA and SLA of SSD. The proposed search algorithm 

works more efficiently than the search algorithm of SSD (PDA+SLA), especially 

under a large constellation (i.e. 64-QAM) and a large number of antenna difference 

( t rN N− ), which is shown in Section 3.1. In Section 3.2, we propose a novel 

underdetermined decoding technique. The proposed decoder incorporating the 

proposed search method works more efficiently than SSD and obtains a near-ML 

performance. 
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Chapter 4  
 
Preprocessing of Proposed Decoding 
Algorithm 

 In Chapter 3, we know that the decoding complexity of the proposed decoding 

algorithm depends on the number of candidate points ( pN ) of the initial candidate set. 

In order to reduce the decoding complexity, we want pN  to be as small as possible 

for the proposed decoding algorithm. To ensure this, we propose a preprocessing 

scheme to further reduce the decoding complexity. Furthermore, we will give a detail 

analysis of the decoding complexity. 

In this Chapter, we first introduce the proposed preprocessing scheme. The 

details of the proposed preprocessing will be introduced in Sections 4.1. In Section 

4.2, we discuss the decoding complexity with different antenna pairs. The decoding 

complexity and performance simulations will be presented in Section 4.3 to show that 

the proposed preprocessing can further reduce the decoding complexity. 
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4.1 Preprocessing 

In underdetermined MIMO systems, the channel matrix is preprocessed with 

some techniques, which can reduce the decoding complexity or improve the 

performance of the SDA. There are many preprocessing techniques such as lattice 

reduction [20-22], column permutation [22], and scaling [23]. However, we cannot 

apply these preprocessing techniques to reduce the decoding complexity in the 

proposed decoder in Chapter 3 over the underdetermined MIMO systems. In Section 

3.2, we know that the primary decoding complexity results from the intersection of 

candidate sets (3.7). Therefore, we want the procedure of intersection is executed as 

few times as possible. 

First, we define the number of candidate points ( pN ) inside the initial slab as an 

index of decoding complexity. Therefore, the pN  is expected to be as small as 

possible. We rewrite the initial slab form as 

 '
, , .M M M M M N NC r x r x C⎡ ⎤− ≤ − + + ≤⎢ ⎥⎣ ⎦y "  (4.1) 

The initial slab candidates can be found by channel columns reordering, and the 

number of the candidates is ( ), 1C N N M− + . Choosing the initial slab from the 

candidates is important for the proposed decoder. Geometrically speaking, '
My  

represents the distance from the origin to the slab, as shown in Fig. 4-1. In Fig. 4-1, 

we assume that the slab equation form is 1 1 2 2h x h x y+ = , where ih  is a constant 

and y is a variable, and we define '
My  as the location index of slab (ξ ). Fig. 4-1 

shows that pN  is small when ξ  is large. Therefore, we want to choose the slab 

from the candidates with the maximum ξ  to be the initial slab. 
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Fig. 4-1 Geometrical diagram of slabs with different y 

 

There is one issue needed to be addressed: how to find ξ  of each initial slab 

efficiently? We propose an efficient approach for this issue, which is summarized as 

follows: 

We rewrite ' T M= ∈y Q y \  of (3.2)  

 ' ' ' '
1 2 1 2 ,

T T MT T T
M My y y⎡ ⎤ ⎡ ⎤= = ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦y q y q y q yK K K" " \  (4.2) 

where 1 2
M M

M
×⎡ ⎤= ∈⎢ ⎥⎣ ⎦Q q q qK K K" \ . Here, we focus on finding '

My , which can 

be obtained by computing MqK . Since different reorderings of channel columns result 

in different MqK , the problem becomes how to find MqK  efficiently. The channel 

column reordering is formed as HP, where P is a permutation matrix. 

 

C 

C 

1 1 2 2 1h x h x y+ =  

1x

2x

C 1 1 2 2 2h x h x y+ =

ξ Constellation boundary 
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Step 1: P = I, therefore 1 2 N⎡ ⎤= = ⎢ ⎥⎣ ⎦HP H h h h
JK JK JK

" . The detail of the QR 

decomposition of HP is given as follows: 

 i
1

1
1

,
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T A
V H

0 H
 (4.3) 

where 1V  is M M×  Householder matrix of the first column vector of H, 1T  is a 

scalar and i [ ] [ ]1 1 2 : ,1 : 1 : ,2 :M M M M=H V H . Then define i 1 1
1

M M− × −∈H \  to 

be a new matrix to perform the same procedure as follows: 

 i
i

2
12

2
,

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T A
V H

0 H
 (4.4) 

where 2V  is ( ) ( )1 1M M− × −  Householder matrix of the first column vector of 

i1H , 2T  is a scalar and i [ ]i [ ]2 12 2 : 1,1 : 1 1 : 1,2 : 1M M M M= − − − −H V H . And 

so on, we can obtain QR composition of H as 

 ,T =Q H R  (4.5) 

where  

1

2
1 2 1
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T
T

M

T
M

−

⎡ ⎤
⎢ ⎥
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 .i
i

⎡ ⎤
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⎢ ⎥⎣ ⎦

I 0
U

0 V
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Since we only consider MqK , we compute the last row of 1M−U  to yield to 

following: 

 

( ) ( )

1

1 2,1 1 2,2

,

M MT
M

v v− −

⊗⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⊗ ⊗ Ω⎢ ⎥⎢ ⎥⊗ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

I 0 0

0

0
q

#

K

 (4.6) 

where 1 2 1M−Ω = U U" . To avoid unnecessary computations, we only consider the 

last two rows of 1Ω . Therefore, we compute the last two rows of 2M−U  as 

 
( ) ( ) ( )

( ) ( ) ( )

1 2
2 2,1 2 2,2 2 2,3

2 3,1 2 3,2 2 3,3

0 0 0

0
,

0

0
M M M

M M M

v v v

v v v
− − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥⊗ ⊗ ⊗⎢ ⎥Ω = Ω⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

I

 (4.7) 

where 2 3 1M−Ω = U U" . By iterating this procedure, we can obtain MqK with P = I. 

From (4.2) '
My  can be found accordingly. 

 Step 2: We can find '
My  of another order of channel columns quickly after Step 

1 is performed. For example, assuming that the order of channel columns is to 

exchange 1M−h
JK

 and Mh
JK

 as 1 1 1M M M N− +⎡ ⎤⎢ ⎥⎣ ⎦h h h h h
JK JK JK JK JK
" " . We can observe that 

only 1M−U  is required to be computed. This concept can be used to find '
My  of 

other orderings of the channel columns. Therefore, we choose the slab from the 

candidates with the maximum ξ  to be the initial slab.  
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4.2 Alternative Approach of Preprocessing 

The preprocessing scheme in Section 4.1 is to perform an exhaustive search for 

all ξ . Therefore, the computational complexity is large when the number of  

candidates ( ( ), 1C N N M− + ) is large. In this section, we propose another approach 

of preprocessing to avoid the exhaustive search. We know that the size of channel 

matrix H is M N×  where M N< , so the rank of H is M. Span the columns of H 

as 

 
( ) ( )
( )

1 2

1 2

span cols of H span

 span ,

N

M
M

S = =

= ∈

h h h

v v v

JK JK JK
"

K K K" \
 (4.8) 

where S is a space spaned from the columns of H. The set of ivK  is a basis set of H. 

In this approach, the goal is to find the slab with a large ξ , but not the 

maximum one. In other words, we want the basis MqK  to have a high correlation to y 

from (4.2) and rewrite it as follows 

 ' ' ' ' '
1 2 1 2 ,

T T MT T T
M My y y⎡ ⎤ ⎡ ⎤= = = + ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦y q y q y q y Rx nK K K" " \  (4.9) 

where 1 2
M M

M
×⎡ ⎤= ∈⎢ ⎥⎣ ⎦Q q q qK K K" \  is a unitary matrix. Those column vectors 

in Q can be a basis set of H. In Section 4.1, the QR decomposition of H is performed 

by Householder process (Householder-QRD). In this section, we consider that the QR 

decomposition of H is performed by Gram-Schmidt process (GS-QRD). The detail of 

GS-QRD is summarized as follows. 
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GS-QRD 

Consider the Gram-Schmidt procedure. The columns vectors of the matrix A is 

considered in the process as follows 

 1 2, , , .n
⎡ ⎤= ⎢ ⎥⎣ ⎦A a a aK K K"  

Then, 
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++ + + + +
+
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= − =

= − − − =

uu a v u
uu a a v v v u

uu a a v v a v v v u

JKJK K K JK
JKJK K K K K K JK

#
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where •  is the 2-norm. The resulting QR decomposition is 
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In the above GS-QRD, we can determine the ordering of iqK  of Q, by the procedure 

as follows. First, Choose the lowest correlation between y and ih
JK

 from the column 

vectors of H. Set the chosen ih
JK

 to be the first basis 1qK . Therefore, the value of 1y  

is smaller than other selections. Second, the remaining jh
JK

 will be updated by ih
JK

 as 

follows 

 ( )1
    .j j jj j i= − ⋅ ≠h h h q

JK JK JK K  (4.10) 

Finally, we repeat the above procedure, the ordering of H will be determined. The 

detail procedure of the preprocessing is summarized as follows. 
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Step 1:  Initialize the vector set { }, 1,2,...,iV i N= =h
JK

 and k = 1.  

Step 2:  Choose the lowest correlation between y and ih
JK

 from V and set it to 

be kqK . 

Step 3:   Discard ih
JK

 from V and update V 

( )1
    ,j j jj j i= − ⋅ ≠h h h q

JK JK JK K  

  and k = k + 1. Go to Step 2. 

Step 4:   Compute 

,   1,2,..., 1.kjk jr j k= = −q h
JKK  

The QR decomposition of the reordering H is obtained. 

 

 

In Fig. 4-2 simulation, the 16-QAM is used, 3tN =  and 2rN =  under SNR 

= 15 dB. Denote the preprocessing by Householder in Section 3.1 as Method I and the 

preprocessing by GS-QRD as Method II. We investigate the probability density 

function of my  and make comparisons between the cases without preprocessing, 

Method I and Method II, as shown in Fig. 4-2. Fig. 4-2 shows that the value of my  

without preprocessing is the lowest. This means that the slab locates on the central of 

the constellation area, it implies that the mean of pN  without preprocessing is large 

than the pN  of Method I and Method II. Fig. 4-2 also shows that the probability 

density function of my  with Method II is almost same as Method I. 
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In the following simulation, the 4-QAM is used, 3,4,5,6tN =  and 2rN =  

under SNR = 15 dB. The reduced percentage of Method I and Method II compared 

with no preprocessing are shown in Fig. 4-3. Since Method II does not perform 

exhaustive search for my , the proposed method has smaller reduced percentage. Fig. 

4-3 shows the reduced percentage is larger with the increasing antenna number 

difference. This phenomenon is due to the fact that the value of my  becomes larger 

when the antenna number difference increasing. Therefore, the reduced percentage 

saturates when the number of transmit antennas is too large.  
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Fig. 4-2 Probability density function of my  
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Fig. 4-3 The reduced percentage of Method I and Method II 

 

4.3 Computer Simulations 

In this section, computer simulations are conducted to evaluate the performance 

of SER and decoding complexity. The complexity weights of different operations are 

the same as in Section 3.3. The total complexity of each simulated algorithm is the 

sum of the number of times of each operation multiplied by its corresponding weight. 

The numerical results are measured and averaged over 1000 independent channels for 

various average SNRs. In addition, the calculation of complexity also includes all 

preprocessing procedures. We set 0.99Φ =  and 0.001Δ =  for radius C and use 

SE-SDA in SSD. The Method II preprocessing is used in the proposed decoder. 
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The average SER of using 64-QAM over various underdetermined MIMO 

systems using the proposed decoding algorithm with Method II preprocessing and 

without preprocessing are shown Fig. 4-4. The performance of the proposed decoding 

algorithm is also close to the performance of ML. The major difference between the 

proposed decoding algorithm with and without preprocessing is the channel ordering. 

Therefore, the different ZF-SIC solutions are found, the SER are slightly different at 

high SNR. Fig. 4-5 shows that the complexity of the proposed decoding algorithm 

with preprocessing is lower than the proposed decoding algorithm without 

preprocessing. This phenomenon is due to the fact that the number of initial candidate 

set points with preprocessing is smaller than that without preprocessing; this result is 

given in Section 4.3. Since the preprocessing improves less at high SNR, the reduced 

percentage of decoding complexity at low SNR is larger than at high SNR. However, 

the preprocessing complexity is still large with large the number of antennas. This 

leads to the complexity of the proposed decoder with preprocessing is dominated by 

the additional preprocessing complexity. In Fig. 4-4 and Fig. 4-5, we can see that the 

decoding complexity of the proposed decoder with preprocessing is further reduced 

especially at low SNR without degrading decoding performance. 
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Fig. 4-4 SER comparison of proposed method with and without preprocessing 
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Fig. 4-5 Complexity comparison of proposed method with and without preprocessing 
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4.4 Summary 

In this chapter, we provide two preprocessing schemes to further reduce the 

decoding complexity. In Section 4.1, we propose an exhaustive search of my  which 

can find the maximum my . This leads to the preprocessing complexity is too high. 

To reduce the preprocessing complexity, we propose an alternative approach in 

Section 4.2. The method finds a large my , but not the necessarily maximum my . 

In Section 4.3, we simulate the SER and the complexity of the proposed decoder with 

preprocessing and compare it with the proposed decoder without preprocessing. 

Simulations show that the proposed decoder with preprocessing has a lower 

complexity than the proposed decoder without preprocessing without degrading the 

decoding performance. 
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Chapter 5  
 
Conclusions and Future Works 

In the beginning, this thesis reviews some important MIMO techniques and 

typical decoding algorithms for MIMO systems. The GSD achieves the ML 

performance; however, its decoding complexity is exponentially increasing with the 

antenna number difference ( t rN N− ). Recently, the SSD is considered as an efficient 

decoding algorithm. However, there are two drawbacks of the SSD: search method of 

the SSD is not efficient and the number of valid candidate points is usually large. 

These lead to high decoding complexity. Hence, the goal of this thesis is aiming at the 

reduction of decoding complexity of the SSD without degrading its decoding 

performance. 

In Chapter 3, we propose another approach of search algorithms to find the valid 

candidate points in Section 3.1. In Section 3.2, an efficient decoding algorithm is 

proposed by conducting the intersectional operations with dynamic radius adaptation. 

With a large constellation size, the decoding complexity of the proposed decoding 

algorithm is significantly lower than that of the SSD. Simulations demonstrate that the 

proposed decoding algorithm has a lower decoding complexity than the SSD, and 

achieves a near-ML performance. 
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Since the decoding complexity is sensitive to the number of candidate points 

( pN ) of the initial candidate set, we want pN  to be as small as possible. In Chapter 

4, two preprocessing schemes for the proposed decoding algorithm are provided to 

further reduce the decoding complexity by reducing pN . First, the proposed 

Householder QR decomposition based preprocessing scheme which performs an 

exhaustive search for the location index of slab ( ξ ) is introduced in Section 4.1. To 

reduce the computational complexity of the preprocessing, an alternative approach is 

provided in Section 4.2. Simulations show that the proposed decoding algorithm with 

the GS based preprocessing further reduces the decoding complexity. The main 

contributions of this thesis are as follows. First, the proposed decoding algorithm 

reduces the decoding complexity of SSD. Second, the proposed preprocessing scheme 

can further reduce the decoding complexity of the proposed decoder especially for a 

large constellation size. In the case of 64-QAM and 4 3×  MIMO, the decoding 

complexity of proposed decoder can save up to 76% compared to SSD. If the 

proposed preprocessing is used, the decoding complexity of proposed decoder can 

save up to 79% compared to SSD. 

There are some future works worthy of further investigation. The first one is that 

the MIMO channel information is assumed to be perfectly known. However, the 

MIMO channel cannot be precisely estimated in practice. The second one is to find 

the mathematic analysis of the decoding complexity. Finally, finding a new approach 

to further reduce the preprocessing complexity is an important issue. 
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