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中文摘要 

   

本論文中將研究離散時間中卜瓦松通道之通道容量。此通道模型可描述一

個包含直接感測接收端的光通道，其接收端可視為一個計算光子的計數器，而到

達接收端之光子數量由傳送端信號以及環境中游離的光子決定。基於能量消耗和

安全的考量，我們將同時對傳送信號的平均能量和瞬時能量作限制。 

 

我們嘗試找出此通道容量的上下界。藉著某些近日研究卜瓦松分布的新成

果以及應用通道容量的二元性，可以推導出包含部份數值估計的數學式，其中數

值估計的複雜度十分的低。我們上下界所夾的區域並不大，換句話說，我們成功

的縮小了估計通道容量時可能的區間。 



Abstract

On the Capacity of the Discrete-Time

Poisson Channel

Student: Chen Wei-Hsiang Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering

National Chiao Tung University

The capacity of the discrete time Poisson channel is studied. This channel law de-

scribes optical communication with a direct-detection receiver, where the output models

the receiving photons due to the transmitted laser signal and due to surrounding light.

For battery issues and safety reasons the inputs are simultaneously constrained on both

their average and peak power.

We try to find an upper and a lower bound on the capacity. Applying some recent

results on the Poisson distribution and a dual expression of channel capacity, the bounds

are partially analytic and partially numerical, where the computation complexity is very

low. The gap between our bounds is not large, i.e. we ave succeeded in narrowing the

range of the capacity.
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Chapter 1

Introduction

We consider a memoryless discrete-time channel whose output Y takes value in the set

of nonnegative integers Z
+
0 and whose input takes value in the set of nonnegative real

numbers R
+
0 . Conditional on the input x ≥ 0, the output is Poisson distributed with

mean x + λ0, where λ0 is some nonnegative constant, called dark current. Thus, the

conditional channel law is given by

W (y|x) = e−(x+λ0) (x + λ0)
y

y!
, y ∈ Z

+
0 , x ∈ R

+
0 (1.1)

The channel law is often used to model pulse-amplitude modulated optical communication

with a direct-detection receiver. The input x is proportional to the product of light

intensity by the pulse duration, and the dark current λ0 is proportional to the product

of background radiation and the pulse duration. The output Y models the number of

photons arriving at the receiver during the pulse.

Due to power and safety issues, we have peak-power and average-power constraints on

the transmitter. Since the input is proportional to the light intensity, the power constraints

apply to the input directly and not to the square of its magnitude as is usual for radio

communication:

Pr[X > A] = 0 (1.2)

E[X] ≤ E (1.3)

We use 0 < α < 1 to denote the average-to-peak-power ratio

α ,
E
A

(1.4)

The case α = 1 corresponds to the absence of an average-power constraint, whereas α ≪ 1

corresponds to a very weak peak-power constraint.

Our work builds on the results in [1] with the same power constraints. There proposed

asymptotic upper bounds valid only for infinite power and lower bounds valid for all value

of power condition but only tight for high power. These upper and lower bounds will

asymptotically coincide, thus yielding the exact asymptotic behavior of channel capacity.

1



Chapter 1 Introduction

On the other hand, we propose upper bounds which are valid for any specified power, and

we derive lower bounds that are better in the low-SNR region. Our lower bounds contain

an integral that needs numerical computation, however the complexity for this integral is

very low.

The derivation of the upper bounds is based on a technique introduced in [2], which

uses a dual expression for mutual information. The main idea is to use dual expression to

change the maximization problem of capacity into a minimization. Thereby, it becomes

possible to find an upper bound to capacity by simply dropping the minimization. Briefly

speaking, although capacity is usually not easy to compute because it’s a supremum of

mutual information, we can find an expression of capacity where we can upper-bound it

by choosing specific output distribution.

The idea of the lower bound is easier. It follows the definition of capacity and mutual

information. Since capacity is the supremum of mutual information, an intuitive lower

bound is the mutual information with a specific input distribution.

This thesis is structured as follows. After some remarks about our notations, we

summarize our main results in the subsequent chapter. We also show some figures with

brief explanations in Chapter 2. The derivation are then given in Chapter 3 (upper bounds)

and Chapter 4 (lower bounds). These two derivation chapters both contain a section with

mathematical preliminaries.

2



Chapter 2

Main Results

2.1 Notation and Definition

We try to distinguish between those quantities that are random and that are constant:

for random quantities we use upper-case letter and for their realizations lower-case letters.

Scalars are typically denoted using Greek letters or lower-case Roman letters. However,

there will be a few exceptions to these rules. Since they are widely used in the literature,

we will stick with the common customary shape of the following symbols: C stands for ca-

pacity, H(·) denotes the entropy of a discrete random variable. D(·‖·) denotes the relative

entropy between two probability measures, and I(·; ·) stands for the mutual information

functional. Moreover, we decide to use the capitals Q, W , and R to denote probabil-

ity mass function (PMF) in case of discrete random variables or cumulative distribution

functions (CDF) in case of continuous random variables, respectively:

• Q(·) denotes a distribution on an input of a channel

• W (·|·) denotes a channel law, i.e. the distribution of the channel output conditioned

on the channel input.

• R(·) denotes a distribution on the channel output.

In the case when Q(·) or R(·) represents a CDF, the corresponding probability density

function (PDF) is denoted by Q′(·) and R′(·), respectively.

The symbol E denotes average power and A stands for peak power. We shall denote

the mean-λ Poisson distribution by P0(λ) and the uniform distribution on the interval

[a, b) by U([a, b)). All rates specified in this thesis are in nats per channel use, and all

logarithms are natural logarithms.

Next, we provide some definitions required in our bounds. According to our introduc-

tion, different bounds can be found with different choices of input and output distributions.

Here we focus on notations related to the distributions we choose in this thesis, where the

main ideas of derivation will be shown in later chapters.

3



Chapter 2 Main Results

First we define the probability mass function of a Poisson random variable Nλ with

parameter λ, i.e.

Pr[Nλ = n] = e−λ λn

n!
, n ∈ N0 (2.1)

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 2.1: Poisson law with mean equal to 5

We observe that the Poisson channel (1.1) with input x and discrete output y follows

(2.1). Note that Y is discrete, i.e., Y ∈ N0. In certain situations, it will be easier to have

a channel model with a continuous output. To that goal, we define an adapted Poisson

random variable as follows: Ñλ with mean λ

Ñλ = Nλ + U (2.2)

where

U ∼ U([0, 1)) (2.3)

and its probability density function yields

fÑλ
(r) = e−λ λ⌊r⌋

⌊r⌋! , r ∈ R
+
0 (2.4)

According to (2.4), we introduce a new channel output random variable Ỹ

Ỹ = Y + U (2.5)

4



2.1 Notation and Definition Chapter 2

where U satisfies (2.3). The channel model with dark current λ0 can be adapted to

W̃ ′ (ỹ|x) = e−(x+λ0) (x + λ0)
⌊ỹ⌋

⌊ỹ⌋! , ỹ ≥ 0, x ≥ 0, λ0 ≥ 0 (2.6)

We call it an adapted Poisson channel model with continuous output. Properties of this

channel will be given in Chapter 3. Here we just define some notations related to this

model.

px , Pr[Ỹ ≤ (A + λ0)(1 + δ)|X = x] (2.7)

pT,x , Pr[Ỹ > (A + λ0)(1 + δ)|X = x] = 1 − px (2.8)

where A denotes peak-power constraint, and δ is a constant.

As an example, Figure 2.2 shows p3 and pT,3 in adapted Poisson channel model. We

assume that

x = 3

A = 10.5

λ0 = 2

δ = 0

which leads to

x + λ0 = 5

(A + λ0)(1 + δ) = 12.5

and we can derive

pk =

⌊(A+λ0)(1+δ)⌋
∑

n=0

Pr[Nλ = n]

− Pr[Nλ = ⌊(A + λ0)(1 + δ)⌋] · (1 − ⌊(A + λ0)(1 + δ)⌋ + (A + λ0)(1 + δ)) (2.9)

=

12∑

n=0

Pr[Nλ = n] − 0.5 · Pr[Nλ = 12] (2.10)

Finally we present some functions we use in this thesis.

• The Gamma function and the incomplete Gamma function:

Γ(ν) ,

∫ ∞

0
e−ttν−1 dt, (2.11)

γ (ν, ξ) ,

∫ ξ

0
e−ttν−1 dt, ν > 0 (2.12)

Note that Γ(n) = (n − 1)! for all positive integer n.

5
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0 2 4 6 8 10 12 14 16 18 20
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Ỹ

px

pT,x

Figure 2.2: Adapted Poisson channel law with continuous output

• The Gaussian Q-function and the error function:

Q(ξ) ,

∫ ∞

ξ

1√
2π

· e− t2

2 dt, ∀ξ ∈ R (2.13)

erf (ξ) ,
2√
π

∫ ξ

0
e−t2 dt, ∀ξ ∈ R (2.14)

Note that Q(ξ) = 1
2 − 1

2erf
(

ξ√
2

)

.

• The hypergeometric functions:

pFq (a1, a2, · · · , ap; b1, b2, · · · , bq; x)

,

∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k
· xk

k!
(2.15)

where

(a)k ,
Γ(a + k)

Γ(a)
(2.16)

2.2 Results

We present upper and lower bounds on the capacity of channel (1.1). The upper bounds are

found analytically, and the lower bounds are expressed with some integral terms. These

numerical terms are easy to approximate theoretically, but some computing problems

6



2.2 Results Chapter 2

occur in the simulation of Matlab. We will show the results first and defer the simulation

discussion to Chapter 5.

We distinguish between three cases: in the first case, we have both an average- and

peak-power constraint where the average-to-peak ratio (1.4) is in the range 0 < α < 1
3 . In

the second case, 1
3 ≤ α ≤ 1, which includes the situation with only peak-power constraint

α = 1. And finally, in the third case, we look at the situation with only an average-power

constraint. Each case contains two parts with different assumptions. First part contains

the upper and lower bounds on a Poisson channel with dark current. However, the lower

bound here is not good for low SNR, so we assume a channel without dark current and

derive another lower bound. Note that we don’t propose upper bounds on a channel

without dark current due to some limitation of our derivation in Chapter 3.

We begin with the first case.

Theorem 1. The channel capacity C(A, E) of a Poisson channel with dark current λ0

under a peak-power constraint (1.2) and an average-power constraint (1.3), where the ratio

α = E
A

lies in (0, 1
3), is bounded as follows

C ≤ −1

2
log(2πe) +

(
1

2
− ν

)

log(αA + λ0) +

(
5

6
(αA + λ0)

−1 +
1

6
(αA + λ0)

−2

)

+ (1 − ν)

(
1

2
(αA + λ0)

−1 +
5

6
(αA + λ0)

−2 +
1

3
(αA + λ0)

−3

+ (αA + λ0) log

(

1 +
1

αA + λ0

)

− 1

)

+
µ

(
αA + λ0 + 1

2

)

(A + λ0)(1 + δ)

+

(

1 − γ(⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋)

+ Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]
·
(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋
)
)

·
(

ν log(
(A + λ0)(1 + δ)

µ
) + log γ(ν, µ) + log

1

1 − pT,A

)

+ pT,A log
1

pT,A

+

(
1

2
− (A + λ0)δ

)

· γ(⌊(A + λ0)(1 + δ)⌋ + 1, A + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋)

+ Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]
·
(

(A + λ0)

+
1

2

(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋ − 1

)2
)

(2.17)

C ≥ r log A + (αA + r) log
(

1 +
r

αA

)

− αA

+ (2r − 1)eµ(2αµ − 1) · 2F2

(
1

2
,
1

2
;
3

2
,
3

2
;−µ

)

− µ − log

(
1

2
− αµ

)

+ αµ − r − λ

+

∫ A

0

√
µ · (x + λ0) log(x + λ0)√

Aπx · erf
(√

µ
) e−

µx
A dx

7



Chapter 2 Main Results

+

∫ 1

0

(

1

1 − t
+

(tr−1 − 1 − e−λ0(1−t))
√

µ · erf
(√

µ + (1 − t)A

)

(1 − t)
√

µ + (1 − t)A · erf
(√

µ
)

+ αA + λ0 + r − 1

)

1

log t
dt

(2.18)

Recall that

pT,A , Pr[Ỹ > (A + λ0)(1 + δ)|X = A] = 1 − pA (2.19)

and Γ(·), γ(·) are defined by (2.11), (2.12). In the bounds, µ is the solution to

α =
1

2µ
− e−µ

√
µπ · erf

(√
µ
) (2.20)

where the error function erf (·) is defined by (2.14). This solution is well-defined because

µ 7→ 1
2µ

− e−µ

√
µπ·erf(√µ)

is monotonically decreasing in [0,∞) and tends to 1
3 for µ ↓ 0 and

to 0 for µ ↑ ∞. Besides, we choose ν a specific value for our derivation of upper bounds.

δ and r are free parameters we can choose and we will show some examples in the plots.

Theorem 2. The channel capacity C(A, E) of a Poisson channel without dark current

λ0 under a peak-power constraint (1.2) and an average-power constraint (1.3), where the

ratio α = E
A

lies in (0, 1
3), is lower-bounded as follows

C ≥ r log A + (αA + r) log
(

1 +
r

αA

)

+ αA log A

+
2

9
eµ(2αµ − 1) · 2F2

(
3

2
,
3

2
;
5

2
,
5

2
;−µ

)

A − αA

+ (2r − 1)eµ(2αµ − 1) · 2F2

(
1

2
,
1

2
;
3

2
,
3

2
;−µ

)

− µ − log

(
1

2
− αµ

)

+ αµ − r

+

∫ 1

0




1

1 − t



1 − tr−1

√
µ · erf

(√

µ + A(1 − t)
)

erf
(√

µ
) √

µ + A(1 − t)



 − (αA + r − 1)




1

log t
dt

(2.21)

In the second case α ≥ 1
3 , we have the following bounds.

Theorem 3. The channel capacity C(A, E) of a Poisson channel with dark current λ0

under a peak-power constraint (1.2) and an average-power constraint (1.3), where the ratio

α = E
A

lies in [13 , 1], is bounded as follows

C ≤ −1

2
log(2πe) +

(
1

2
− β

)

log(αA + λ0) +

(
5

6
(αA + λ0)

−1 +
1

6
(αA + λ0)

−2

)

+ (1 − β)

(
1

2
(αA + λ0)

−1 +
5

6
(αA + λ0)

−2 +
1

3
(αA + λ0)

−3

8



2.2 Results Chapter 2

+ (αA + λ0) log

(

1 +
1

αA + λ0

)

− 1

)

+

(

1 − γ(⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋)

+ Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]
· ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋)

)

·
(

β log ((A + λ0)(1 + δ)) + log
1

β · (1 − pT,A)

)

+ pT,A log
1

pT,A

+

(
1

2
− (A + λ0)δ

)

· γ(⌊(A + λ0)(1 + δ)⌋ + 1, A + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋ + 1)

+ Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]
·
(

(A + λ0)

+
1

2

(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋ − 1

)2
)

(2.22)

C ≥ r log A +

(
1

3
A + r

)

log

(

1 +
3r

A

)

− 1

3
A + log 2 − 3r + 1 − λ0

+

∫ A

0

(x + λ0) log(x + λ0)√
4Ax

dx

+

∫ 1

0

(

1

1 − t
+

(tr−1 − 1 − e−λ0(1−t))
√

π · erf
(√

(1 − t)A

)

(1 − t)
√

4A(1 − t)

+
1

3
A + λ0 + r − 1

)

1

log t
dt

(2.23)

Remark 4. In [1], it is discovered that asymptotically α = 1
3 is the threshold of activating

the average-power constraint. That is, whenever α ≥ 1
3 , the average-power constraint is

inactive and the upper- and lower-bound can be expressed without α. However, here we

reach a result that the upper bound is always related to α. Note that for A → ∞, almost

all terms of (2.22) containing α tend to some constant such that the bounds become again

independent of α. Hence we make a conjecture: for α ≥ 1
3 , average- and peak-power

constraints are both active for low SNR while only the peak-power constraint is active for

high SNR.

Theorem 5. The channel capacity C(A, E) of a Poisson channel without dark current

λ0 under a peak-power constraint (1.2) and an average-power constraint (1.3), where the

ratio α = E
A

lies in [13 , 1], is bounded as follows

C ≥ r log A +

(
1

3
A + r

)

log

(

1 +
3r

A

)

+
1

3
A log A − 5

9
A + log 2 − 3r + 1

+

∫ 1

0

[
1

1 − t

(

1 − tr−1

√
πerf

(√

(1 − t)A

)

√

4A(1 − t)

)

− 1

3
A − r + 1

]
1

log t
dt (2.24)

9



Chapter 2 Main Results

Finally, for the case with only a average-power constraint the result are as follows.

Theorem 6. The channel capacity C(E) of a Poisson channel with dark current λ0 under

an average-power constraint (1.3) is bounded as follows:

C ≤ −1

2
log(2πe) +

(
1

2
− ν

)

log(E + λ0) +

(
5

6
(E + λ0)

−1 +
1

6
(E + λ0)

−2

)

+ (1 − ν)

(
1

2
(E + λ0)

−1 +
5

6
(E + λ0)

−2 +
1

3
(E + λ0)

−3

+ (E + λ0) log

(

1 +
1

E + λ0

)

− 1

)

+ ν log
E + λ0 + 1

2

ν
+ log Γ(ν) + ν (2.25)

C ≥ r log E + (E + r) log
(

1 +
r

E
)

− E +
1

2
log π − (r − 1)(log 2 + γ) +

1

2
(1 − γ)

− r − λ0 +

∫ ∞

0

(x + λ0) log(x + λ0)√
2πEx

e−
x
2E dx

+

∫ 1

0

(

1

1 − t
+

tr−1 − 1 − e−λ0(1−t)

1 − t
·
√

2

2 + 4E − 4Et

+ E + λ0 + r − 1

)

1

log t
dt

(2.26)

where γ is the Euler’s constant defined as

γ , lim
n→∞

(
n∑

k=1

1

k
− log n

)

≃ 0.57721 · · · (2.27)

Theorem 7. The channel capacity C(E) of a Poisson channel without dark current λ0

under an average-power constraint (1.3) is bounded as follows:

C ≥ r log E + (E + r) log
(

1 +
r

E
)

+ E log E + (1 − log 2 − γ)E +
1

2
log π

+
1

2
(1 − γ) − (r − 1)(log 2 + γ) − r

+

∫ 1

0

[

1

1 − t

(

1 − tr−1

√

2

2 + 4E + 4Et

)

− E − r + 1

]

1

log t
dt (2.28)

2.3 Plots

Plots of our upper bounds and lower bounds will be shown here with some discussions.

We first observe some behaviors of upper bounds and lower bounds individually, and then

put them together at last.

One important parameter in the computation of upper bounds is δ. As Figure 2.3

shows, choosing small δ causes zigzag lines for low SNR and choosing δ large leads to

failures of numerical computation for high SNR. This problem basically comes from the

10
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Figure 2.3: Upper bounds with α = 0.2, λ0 = 12

evaluation of E[pX ], where px is defined in (2.7). This behavior always appears whatever

power constraints we have.

We also provide upper bounds with different λ0 and α in Figure 2.4 and Figure 2.5.

It can be observed in Figure 2.4 that the upper bounds on capacity at high SNR become

small for large dark current λ0, which is compatible to the idea that noise makes channel

worse. In Figure 2.5 we show upper bounds of (2.17) and (2.22) based on different power

constraints. In comparison with [1], our upper bounds here are valid for finite A. However,

in [1] it is proved that the upper bounds become the same asymptotically with α ≥ 1
3 .

Our bounds could be less good for large A since they don’t reach that statement.

For the lower bounds, r is an important parameter, we can reach a better bound for

low SNR by choosing r properly. As shown in Figure 2.6, r = 1
2 is the optimal solution

among our options. So we will use this choice of r for the following plots. The optimal

choice of r is not found in this thesis, but we will provide some principles later.

A comparison of lower bounds with and without dark current is shown in Figure 2.7.

It’s obvious that the bounds without dark current is tighter than ones with dark current.

However, it’s shown in Figure 2.8 that the lower bounds are good for high SNR since they

coincide with the asymptotic upper bounds from [1]. Besides, Figure 2.9 depicts both

upper and lower bounds on capacity. We can observe that our upper bound is loose for

high SNR. Nevertheless, we provide bounds for finite power.

Figure 2.10 shows bounds with only average power constraint.
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Figure 2.4: Upper bounds with α = 0.2, δ = 1
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Figure 2.5: Upper bounds with λ0 = 12, δ = 1

12



2.3 Plots Chapter 2

−20 −15 −10 −5 0 5 10 15 20
−5

−4

−3

−2

−1

0

1

 

 

r=0.1

r=0.5

r=0.9

r=1.1

r=1.5

r=3

A[dB]

C
[n

a
ts

p
er

ch
a
n
n
el

u
se

]

Figure 2.6: Lower bounds with α = 0.2, λ0 = 12
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Figure 2.7: Lower bounds with different λ0, r = 0.5
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Figure 2.8: Lower bounds with dark current and asymptotic upper bounds in [1], λ0 = 12
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Figure 2.9: Lower bounds and upper bounds with dark current λ0 = 12
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Figure 2.10: Lower bounds and upper bounds with only average power constraint
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Chapter 3

Derivation of the Upper Bound

3.1 Overview

The derivation of the upper bounds is based on the following key ideas.

• To evaluate an upper bound of capacity, we refer to the duality of mutual information

and propose the following proposition:

Proposition 8. Assume a channel W̃ (·|·) with input alphabet X = R
+
0 and output

alphabet Y = R
+
0 . Then for an arbitrary distribution R (·) over the channel output

alphabet, the channel capacity is upper-bounded by

C ≤ EQ∗

[

D
(
W̃ ′ (·|X)

∥
∥R′ (·)

)]

(3.1)

Here, D (·‖·) stands for the relative entropy, and Q∗ (·) denotes the capacity-achieving

input distribution.

The challenge of using (3.1) lies in a clever choice of the arbitrary law R′(·) that

will lead to a good upper bound. Moreover, note that the bound (3.1) still contains

an expectation over the (unknown) capacity-achieving input distribution Q∗(·). To

handle this expectation we will use Jensen’s inequality with some assumptions based

on channel noise, i.e., dark current.

• We will refer to [3] and adapt their bounds on the entropy H(Nλ) and expected

logarithm E[log Nλ] to our channel, where the Poisson law is given in (2.1).

• One difficulty of the Poisson channel model (1.1) is that while we have a continuous

input, the output is discrete. This complicates the application of the technique

explained in Proposition 8 considerably. To circumvent this problem we slightly

change the channel model without changing its capacity value. The idea is to add

some independent continuous noise U to the channel output Y that is uniformly

distributed between 0 and 1, i.e.,

Ỹ , Y + U (3.2)
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3.2 Mathematical Preliminaries Chapter 3

where U ∼ U([0, 1)) and is independent of X and Y . There is no loss in information

because, given Ỹ , we can always recover Y by applying the ”floor”-operation

Y = ⌊Ỹ ⌋ (3.3)

where for any a ∈ R, ⌊a⌋ denotes the largest integer smaller than or equal to a.

• To evaluate the expectation in (3.1) over the unknown capacity-achieving input

distribution Q∗(·) we need the following trick. We will further bound the expectation

with the aid of Jensen’s inequality, which states that

E[f(X)] ≤ f (E[X]) (3.4)

for a concave function f(·), i.e., d2f(x)
dx2 ≤ 0.

In the following part of this chapter we will focus on the case that the average-to-peak

power ratio is between zero and one third, i.e.,

α =
E
A

∈
(

0,
1

3

)

(3.5)

where the other cases are derived with similar steps in Appendix A.

3.2 Mathematical Preliminaries

We start with some preliminaries to our channel model (1.1). We will first state some

theorems we need in this thesis and then make some adaption.

3.2.1 Bounds on the Entropy of the Poisson Law

Recall that Nλ denotes a Poisson random variable with mean λ where the mass function

is defined in (2.1). We then have the following lemmas.

Lemma 9. For λ ≥ 0, the entropy of a Poisson random variable H(λ) can be bounded as

−γm(λ) ≤ H(λ) − 1

2
log(2πλ) − 1

2
− βm(λ) ≤ 0 (3.6)

where

γm(λ) =

2m−1∑

k=1

b(m, k)

λk
(3.7)

βm(λ) =
2m∑

k=m

a(m, k)

λk
(3.8)

and b(m, k), a(m, k) are some constants.

Proof. See [3].
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Lemma 10. Assume the kth central moment of the Poisson distribution is

µk(λ) = E
[

(Y − λ)k
]

(3.9)

Then we can state

0 ≤ E

[

log
Y + 1

λ

]

−
2m+1∑

k=2

(−1)kµk(λ)

k(k − 1)λk
≤ µ2m+2(λ)

(2m + 1)λ2m+2
(3.10)

Proof. See [3].

The above lemmas bound the entropy and log-expectation of Poisson distribution with

polynomial. According to the integer m we choose, we can gain different coefficients for

the bounds. The bounds become tighter with larger m and longer formula.

We choose m = 1 for our following derivation and adapt its form to our model.

H(Y |X = x) ≤ 1

2
log(2π(x + λ0)) +

1

2
+

1

6
(x + λ0)

−1 (3.11)

H(Y |X = x) ≥ 1

2
log(2π(x + λ0)) +

1

2
− 5

6
(x + λ0)

−1 − 1

6
(x + λ0)

−2 (3.12)

E[ log Y + 1 | X = x] ≤ log(x + λ0) +
1

2
(x + λ0)

−1 +
5

6
(x + λ0)

−2 +
1

3
(x + λ0)

−3(3.13)

3.2.2 A Poisson Channel with Continuous Output

In the following we define an adapted Poisson channel model which has a continuous

output. To this end, let Y be the output of a Poisson channel with input x as given in

(1.1). We define a new random variable with PDF

W̃ ′ (ỹ|x) = W (⌊ỹ⌋|x) = e−(x+λ0)
(x + λ0)

⌊ỹ⌋

⌊ỹ⌋! , ỹ ≥ 0, x ≥ 0, λ0 ≥ 0 (3.14)

The Poisson channel with continuous output is equivalent to the Poisson channel defined

in the introduction. This is shown in the following lemma.

Lemma 11. Let the random variables Y , Ỹ , and X be defined as above. Then

a)

I(X; Ỹ ) = I(X; Y ) (3.15)

b)

h(Ỹ |X = x) = H(Y |X = x) (3.16)

c)

h(Ỹ ) = H(Y ) (3.17)
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Proof. Define Y ′ , ⌊Ỹ ⌋. The random variables

X⊸−−Y ⊸−−Ỹ ⊸−−Y ′ (3.18)

form a Markov chain. Hence, from the data processing inequality it follows

I(X; Y ) ≥ I(X; Ỹ ) ≥ I(X; Y ′) (3.19)

On the other hand, Y ′ = Y , thus Part a) is proven.

Part b) follows from the definition of h(·) and H(·) respectively, and the fact that, for

ỹ ≥ 0, W̃ ′(ỹ|x) = W (⌊ỹ⌋|x):

h(Ỹ |X = x) = −
∫ ∞

0
W̃ ′(ỹ|x) log W̃ ′(ỹ|x) dỹ (3.20)

= −
∞∑

y=0

∫ y+1

y

W (⌊ỹ⌋|x) log W (⌊ỹ⌋|x) dỹ (3.21)

= −
∞∑

y=0

W (y|x) log W (y|x)

∫ y+1

y

dỹ (3.22)

= −
∞∑

y=0

W (y|x) log W (y|x) (3.23)

= H(Y |X = x) (3.24)

Part c) now follows from a) and b).

Note that the expected logarithm of the continuous Poisson distribution can be bounded

as follows:

E
[

log Ỹ
∣
∣
∣ X = x

]

≤ E[ log(Y + 1) | X = x] (3.25)

3.3 Proof of the Upper Bound (2.17)

The derivation of (2.17) is based on Proposition 8 and the following choice of an output

distribution R′(·):

R′ (ỹ) ,







pA · ỹν−1e
−

ỹ
β

βνγ
“

ν,
(A+λ0)(1+δ)

β

” , ∀0 ≤ ỹ ≤ (A + λ0)(1 + δ)

(1 − pA) · e−(ỹ−(A+λ0)(1+δ)), ∀ỹ > (A + λ0)(1 + δ)

(3.26)

where pA is a variable of A defined in (2.7) and ν, β, δ are free parameters that will be

specified later.
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With this choice we get

C ≤ EQ∗
[

D
(
W̃ ′ (ỹ|x)

∥
∥R′ (ỹ)

)]

(3.27)

≤ EQ∗

[

− h(Ỹ |X = x) + log
1

pA

· Pr
[
Ỹ ≤ (A + λ0)(1 + δ)

∣
∣X = x

]

+ (1 − ν)E
[

log Ỹ
∣
∣
∣ X = x

]

+

(

ν log β + log γ

(

ν,
(A + λ0)(1 + δ)

β

))

·Pr
[
Ỹ ≤ (A + λ0)(1 + δ)

∣
∣X = x

]
+

1

β

(

x + λ0 +
1

2
︸︷︷︸

E[U ]

)

+ log
1

1 − pA

· Pr
[
Ỹ > (A + λ0)(1 + δ)

∣
∣X = x

]

+

∫ ∞

(A+λ0)(1+δ)
W̃ ′ (ỹ|x) (ỹ − (A + λ0)(1 + δ)) dỹ

]

(3.28)

The above equation can be separated into four parts

Ca , −h(Ỹ |X = x) + (1 − ν)E
[

log Ỹ
∣
∣
∣ X = x

]

(3.29)

Cb ,

(

ν log β + log γ

(

ν,
(A + λ0)(1 + δ)

β

))

Pr
[
Ỹ ≤ (A + λ0)(1 + δ)

∣
∣X = x

]

+
1

β

(

x + λ0 +
1

2

)

(3.30)

Cc , log
1

pA

· Pr
[
Ỹ ≤ (A + λ0)(1 + δ)

∣
∣X = x

]

+ log
1

1 − pA

· Pr
[
Ỹ > (A + λ0)(1 + δ)

∣
∣X = x

]
(3.31)

Cd ,

∫ ∞

(A+λ0)(1+δ)
W̃ ′ (ỹ|x) (ỹ − (A + λ0)(1 + δ)) dỹ (3.32)

and we will consider each term individually. We first start with Ca.

E
[

log Ỹ
∣
∣
∣ X = x

]

=

∫ ∞

0
log ỹ · e−(x+λ0)

(x + λ0)
⌊ỹ⌋

⌊ỹ⌋! dỹ (3.33)

=

∞∑

k=0

∫ k+1

k

log ỹ · e−(x+λ0) (x + λ0)
k

k!
dỹ (3.34)

=
∞∑

k=0

e−(x+λ0) (x + λ0)
k

k!

∫ k+1

k

log ỹ dỹ (3.35)

=
∞∑

k=0

e−(x+λ0) (x + λ0)
k

k!

(

log(k + 1) + k log

(

1 +
1

k

)

− 1

)

(3.36)

= E[ log(Y + 1) | X = x] + E

[

Y log

(

1 +
1

Y

) ∣
∣
∣
∣

X = x

]

− 1 (3.37)
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≤ E[ log(Y + 1) | X = x] + E[Y | X = x] log

(

1 +
1

E[Y | X = x]

)

− 1 (3.38)

= E[ log(Y + 1) | X = x] + (x + λ0) log

(

1 +
1

x + λ0

)

− 1 (3.39)

Hence, applying Lemma 9 and Lemma 10, we get

Ca = −h(Ỹ |X = x) + (1 − ν)E
[

log Ỹ
∣
∣
∣ X = x

]

(3.40)

≤ −h(Ỹ |X = x) + (1 − ν)

(

E[log(Y + 1)|X = x]

+(x + λ0) log

(

1 +
1

x + λ0

)

− 1

)

(3.41)

≤ −1

2
log(2πe) +

(
1

2
− ν

)

log(x + λ0) +

(
5

6
(x + λ0)

−1 +
1

6
(x + λ0)

−2

)

+(1 − ν)

(
1

2
(x + λ0)

−1 +
5

6
(x + λ0)

−2 +
1

3
(x + λ0)

−3

+(x + λ0) log

(

1 +
1

x + λ0

)

− 1

)

(3.42)

We observe that Ca is a function of x given specific ν and λ0. So we try to explore some

properties of it with respect to ν and λ0. First, we split Ca into two parts and define a

new variable x̃ as follows

x̃ , x + λ0 (3.43)

Ca,1 , (1 − ν)

(

(x + λ0) log

(

1 +
1

x + λ0

)

− 1

)

(3.44)

= (1 − ν)

(

x̃ log

(

1 +
1

x̃

)

− 1

)

(3.45)

Ca,2 , −1

2
log(2πe) +

(
1

2
− ν

)

log(x + λ0) +

(
5

6
(x + λ0)

−1 +
1

6
(x + λ0)

−2

)

+ (1 − ν)

(
1

2
(x + λ0)

−1 +
5

6
(x + λ0)

−2 +
1

3
(x + λ0)

−3

)

(3.46)

= −1

2
log(2πe) +

(
1

2
− ν

)

log x̃ +

(
5

6
x̃−1 +

1

6
x̃−2

)

+ (1 − ν)

(
1

2
x̃−1 +

5

6
x̃−2 +

1

3
x̃−3

)

(3.47)

Now we consider the first and second derivative of Ca,1:

∂Ca,1

∂x̃
= (1 − ν)

(

log
1 + x̃

x̃
− 1

1 + x̃

)

(3.48)

∂2Ca,1

∂x̃2
= (1 − ν)

−1

x̃(1 + x̃)2
(3.49)

We can observe that Ca,1 is monotonically increasing and concave as long as

ν ≤ 1 (3.50)
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For Ca,2 we derive

∂Ca,2

∂x̃
=

(
1

2
− ν

)

x̃−1 −
(

5

6
x̃−2 +

1

3
x̃−3

)

− (1 − ν)

(
1

2
x̃−2 +

5

3
x̃−3 + x̃−4

)

(3.51)

=

(
1

2
− ν

)

x̃−1 −
(

8

6
− ν

2

)

x̃−2 −
(

2 − 5

3
ν

)

x̃−3 − (1 − ν) x̃−4 (3.52)

∂2Ca,2

∂x̃2
= −

(
1

2
− ν

)

x̃−2 +

(
5

3
x̃−3 + x̃−4

)

+ (1 − ν)
(
x̃−3 + 5x̃−4 + 4x̃−5

)
(3.53)

=

(

ν − 1

2

)

x̃−2 +

(
8

3
− ν

)

x̃−3 + (6 − 5ν) x̃−4 + (4 − 4ν) x̃−5 (3.54)

We wish to choose ν such that Ca,2 becomes monotonically increasing and concave, so we

assume that

∂Ca,2

∂x̃
≥ 0 (3.55)

∂2Ca,2

∂x̃2
≤ 0 (3.56)

where we can find that for x̃ large enough(e.g, x̃ = 5), a possible value of ν can be specified

satisfying (3.55) and (3.56). Meanwhile, such ν also satisfies (3.50), i.e.

ν ≤ 3x̃−1 − 8x̃−2 − 12x̃−3 − 6x̃−4

6x̃−1 − 3x̃−2 − 10x̃−3 − 6x̃−4
(3.57)

ν ≤ 3x̃−2 + 16x̃−3 + 36x̃−4 + 24x̃−5

6x̃−2 + 6x̃−3 + 30x̃−4 + 24x̃−5
(3.58)

We conclude that for a Poisson channel with large enough dark current λ0, the function

Ca can always be set as monotonically increasing and concave for a specified value of ν.

And we can find such ν easily with the help of (3.50), (3.57) and (3.58).

Now we apply these two properties to our derivation.

EQ∗ [Ca] , EQ∗

[

−1

2
log(2πe) +

(
1

2
− ν

)

log(X + λ0) +

(
5

6
(X + λ0)

−1 +
1

6
(X + λ0)

−2

)

+ (1 − ν)

(
1

2
(X + λ0)

−1 +
5

6
(X + λ0)

−2 +
1

3
(X + λ0)

−3

+ (X + λ0) log

(

1 +
1

X + λ0

)

− 1

)]

(3.59)

≤ −1

2
log(2πe) +

(
1

2
− ν

)

log(E[X] + λ0) +

(
5

6
(E[X] + λ0)

−1 +
1

6
(E[X] + λ0)

−2

)

+ (1 − ν)

(
1

2
(E[X] + λ0)

−1 +
5

6
(E[X] + λ0)

−2 +
1

3
(E[X] + λ0)

−3

+ (E[X] + λ0) log

(

1 +
1

E[X] + λ0

)

− 1

)

(3.60)

≤ −1

2
log(2πe) +

(
1

2
− ν

)

log(αA + λ0) +

(
5

6
(αA + λ0)

−1 +
1

6
(αA + λ0)

−2

)

+ (1 − ν)

(
1

2
(αA + λ0)

−1 +
5

6
(αA + λ0)

−2 +
1

3
(αA + λ0)

−3
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Figure 3.11: Derivatives of Ca,2 for different ν

+ (αA + λ0) log

(

1 +
1

αA + λ0

)

− 1

)

(3.61)

Note that for (3.60) we apply Jensen’s inequality (3.4) and for (3.61) we use the fact that

Ca is monotonically increasing.

Next, we bound Cb as follows:

Cb =

(

ν log β + log γ

(

ν,
(A + λ0)(1 + δ)

β

))

Pr
[

Ỹ ≤ (A + λ0)(1 + δ)|X = x
]

︸ ︷︷ ︸

=1−pT,x

+
1

β

(

x + λ0 +
1

2

)

(3.62)

= (1 − pT,x)

(

ν log β + log γ

(

ν,
(A + λ0)(1 + δ)

β

))

+
1

β

(

x + λ0 +
1

2

)

(3.63)

We choose the free parameter β as

β ,
(A + λ0)(1 + δ)

µ
(3.64)

where µ is the solution of

α =
1

2µ
− e−µ

√
µπ · erf

(√
µ
) (3.65)

Note that this is a suboptimal choice.
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Before going further, we first look at some properties related to pT,x.

pT,x , Pr
[
Ỹ > (A + λ0)(1 + δ)

∣
∣X = x

]
(3.66)

=

∫ ∞

(A+λ0)(1+δ)
e−(x+λ0) (x + λ0)

⌊ỹ⌋

⌊ỹ⌋! dỹ (3.67)

=
∞∑

y=⌊(A+λ0)(1+δ)⌋
e−(x+λ0) (x + λ0)

y

y!

− e−(x+λ0) (x + λ0)
⌊(A+λ0)(1+δ)⌋

⌊(A + λ0)(1 + δ)⌋! ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋) (3.68)

=
γ (⌊(A + λ0)(1 + δ)⌋, x + λ0)

Γ (⌊(A + λ0)(1 + δ)⌋)
− Pr [Nx+λ0 = ⌊(A + λ0)(1 + δ)⌋] · ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋) (3.69)

where

∞∑

y=⌊(A+λ0)(1+δ)⌋
e−(x+λ0) (x + λ0)

y

y!
=

γ (⌊(A + λ0)(1 + δ)⌋, x + λ0)

Γ (⌊(A + λ0)(1 + δ)⌋) (3.70)

Note that

∂2

∂x2
γ(x, n) = xn−2e−x(n − 1 − x) (3.71)

Hence, γ (⌊(A + λ0)(1 + δ)⌋, x + λ0) is convex as long as

⌊(A + λ0)(1 + δ)⌋ − 1 − (A + λ0) ≥ 0 (3.72)

i.e., δ is big enough. Moreover, the second term of pT,x is decreasing in x. According to

the above properties and Jensen’s inequality,

γ (⌊(A + λ0)(1 + δ)⌋, x + λ0)

Γ (⌊(A + λ0)(1 + δ)⌋) ≥ γ (⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ (⌊(A + λ0)(1 + δ)⌋) (3.73)

Pr [Nx+λ0 = ⌊(A + λ0)(1 + δ)⌋] ≤ Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]

(3.74)

so we can derive

EQ∗ [pT,X ]

≥ γ (⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ (⌊(A + λ0)(1 + δ)⌋)
− Pr

[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]
· ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋) (3.75)

which leads to

EQ∗ [Cb]

= EQ∗ [1 − pT,X ]

(

ν log
(A + λ0)(1 + δ)

µ
+ log γ(ν, µ)

)

+
µ

(
αA + λ0 + 1

2

)

(A + λ0)(1 + δ)
(3.76)
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≤
(

1 − γ(⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋) + Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]

· ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋)
)(

ν log
(A + λ0)(1 + δ)

µ
+ log γ(ν, µ)

)

+
µ

(
αA + λ0 + 1

2

)

(A + λ0)(1 + δ)
(3.77)

Now we consider Cc and bound it as follows:

EQ∗ [Cc] = EQ∗ [1 − pT,X ] log
1

1 − pT,A

+ EQ∗ [pT,X ] log
1

pT,A

(3.78)

≤
(

1 − γ(⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋) + Pr
(
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
)

· ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋)
)

log
1

1 − pT,A

+ pT,A log
1

pT,A

(3.79)

where for the first part we use (3.75) and for the second part we use the fact that pT,x is

decreasing in x.

Finally we bound Cd as follows:

EQ∗ [Cd] = EQ∗






∫ ∞

(A+λ0)(1+δ)
W̃ ′ (ỹ|x) (ỹ − (A + λ0)(1 + δ))

︸ ︷︷ ︸

≥0

dỹ




 (3.80)

≤
∫ ∞

(A+λ0)(1+δ)
(ỹ − (A + λ0)(1 + δ)) W̃ ′ (ỹ|A) dỹ (3.81)

=

∫ ∞

(A+λ0)(1+δ)
(ỹ − (A + λ0)(1 + δ)) e−(A+λ0) (A + λ0)

⌊ỹ⌋

⌊ỹ⌋! dỹ (3.82)

=
∞∑

k=⌊(A+λ0)(1+δ)⌋+1

∫ k+1

k

(ỹ − (A + λ0)(1 + δ)) e−(A+λ0) (A + λ0)
k

k!
dỹ

+ e−(A+λ0) (A + λ0)
⌊(A+λ0)(1+δ)⌋

⌊(A + λ0)(1 + δ)⌋

·
∫ ⌊(A+λ0)(1+δ)⌋+1

(A+λ0)(1+δ)
(ỹ − (A + λ0)(1 + δ)) dỹ (3.83)

=

∞∑

k=⌊(A+λ0)(1+δ)⌋+1

(

k +
1

2
− (A + λ0)(1 + δ)

)

e−(A+λ0) (A + λ0)
k

k!

+ e−(A+λ0) (A + λ0)
⌊(A+λ0)(1+δ)⌋

⌊(A + λ0)(1 + δ)⌋

· 1

2

(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋ − 1

)2

(3.84)
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=
∞∑

k=⌊(A+λ0)(1+δ)⌋+1

(
1

2
− (A + λ0)(1 + δ)

)

e−(A+λ0) (A + λ0)
k

k!

+

∞∑

k=⌊(A+λ0)(1+δ)⌋+1

(A + λ0)e
−(A+λ0) (A + λ0)

k−1

(k − 1)!

+ Pr[NA+λ0
= ⌊(A + λ0)(1 + δ)⌋]

· 1

2

(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋ − 1

)2

(3.85)

=
∞∑

k=⌊(A+λ0)(1+δ)⌋+1

(
1

2
− (A + λ0)δ

)

e−(A+λ0) (A + λ0)
k

k!

+ (A + λ0) · Pr[NA+λ0
= ⌊(A + λ0)(1 + δ)⌋]

+ Pr[NA+λ0
= ⌊(A + λ0)(1 + δ)⌋]

· 1

2

(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋ − 1

)2

(3.86)

=

(
1

2
− (A + λ0)δ

)
γ(⌊(A + λ0)(1 + δ)⌋ + 1, A + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋ + 1)

+ Pr[NA+λ0
= ⌊(A + λ0)(1 + δ)⌋] ·

(

(A + λ0)

+
1

2

(

(A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋ − 1

)2
)

(3.87)

where

W̃ ′ (ỹ|x) ≤ W̃ ′ (ỹ|A) ∀ (x ≤ A) ∩ (y ≥ (A + λ0)(1 + δ)) (3.88)

Since we have bounded all parts of (3.28) individually, we can derive an upper bound of

capacity (2.17). The derivation for the cases that with different power constraints follows

along the same lines. We defer the details to Appendix A.
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Chapter 4

Derivation of the Lower Bound

4.1 Overview

The key ideas of the derivation of the lower bounds are as follows. We drop the optimiza-

tion in the definition of capacity and simply choose a specific input distribution

C = sup
Q′(·)

I(X; Y ) ≥ I(X; Y )|for a specific Q′(·) (4.1)

This leads to a natural lower bound on capacity.

We would like to choose a distribution Q′(·) that is reasonably close to the capacity-

achieving input distribution in order to get a tight lower bound. However, it might be

difficult to evaluate I(X; Y ) for such a Q′(·). Note that even for a relative ”simple” input

distribution the corresponding channel output Y may be hard to compute, let alone H(Y ).

To avoid this problem we first lower-bound H(Y ) in terms of h(X). Besides, we

simplify the channel by reducing the dark current λ0 to zero in some parts of the proof,

which will help our derivation but also loose the results. And we use some numerical

evaluations in our bounds.

4.2 Mathematical Preliminaries

Given X = x, we assume Y ∼ Po(x + λ0) is conditionally Poisson with rate x + λ0,

W (y|x) = e−(x+λ0) (x + λ0)
y

y!
, y ∈ N0, x ≥ 0, λ0 ≥ 0 (4.2)

Then Y can be written as Y = Y1 + Y2, , where Y1 ∼ Po(x) and Y2 ∼ Po(λ0), Y1 ⊥⊥ Y2.

Note that

H(Y ) = H(Y1 + Y2) (4.3)

≥ H(Y1 + Y2|Y2) (4.4)

= H(Y1|Y2) (4.5)

= H(Y1) (4.6)
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Chapter 4 Derivation of the Lower Bound

Hence, we will assume that the dark current is zero in some parts of our derivations.

The following proposition is key in our derivation of a lower bound. It demonstrates

that if Y is conditionally Poisson given a mean X + λ0, then the entropy H(Y ) can be

lower-bounded in terms of the differential entropy h(X).

Proposition 12. Let Y be the output of a Poisson channel with input X ≥ 0 and dark

current λ0 according to (1.1). Assume that X has a finite positive expectation E [X] > 0.

Then

H(Y ) ≥ h(X) − (E[X] + r) log
E[X]

E[X] + r
− r + (r − 1)E[log X]

+ E[log Γ(Y1 + 1) − log Γ(Y1 + r)] (4.7)

= h(X) − (E[X] + r) log
E[X]

E[X] + r
− r + (r − 1)E[log X]

+ I{r 6= 1} ·
∫ 1

0

(
tr−1 − 1

1 − t
E

[

e−X(1−t)
]

+ r − 1

)
1

log t
dt. (4.8)

where r is a parameter we can choose and conditioned on X = x, Y1 ∼ Po(x).

Proof. A proof is given in Appendix C.

4.3 Proof of the Lower Bound

4.3.1 General Form

The first step of the derivation follows (4.1) using the definition of mutual information.

C = sup
Q(·)

I(X; Y ) ≥ I(X; Y )|for a specific Q′(·) (4.9)

= H(Y ) − H(Y |X) (4.10)

for a good choice of Q′(·).
Note that the conditional entropy of the channel output given the channel input is

given by

H(Y |X) = E[X] + λ0 − E[(X + λ0) log(X + λ0)] + E[log Γ(Y + 1)] (4.11)

Since X is nonnegative, we can derive

H(Y |X) = E[X] + λ0 − E[(X + λ0) log(X + λ0)] + E[log Γ(Y + 1)] (4.12)

= E[X] + λ0 − E[X log(X + λ0)] − λ0E[log(X + λ0)] + E[log Γ(Y + 1)] (4.13)

Moreover, we can derive a lower bound of H(Y ) according to Proposition 12.

According to the definition of mutual information (4.10), we can derive a lower bound

I(X; Y ) ≥ h(X) − (E[X] + r) log
E[X]

E[X] + r
+ (r − 1)E[log X] + E[(X + λ0) log(X + λ0)]

− E[X] − r − λ0 + E[log Γ(Y1 + 1) − log Γ(Y1 + r) − log Γ(Y + 1)] (4.14)
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4.3 Proof of the Lower Bound Chapter 4

where we can express

E[log Γ(Y1 + 1) − log Γ(Y1 + r) − log Γ(Y + 1)]

=

∫ 1

0

((
tr−1 − 1 + e−λ0(1−t)

)
E
[
e−X(1−t)

]
− 1

1 − t
+ E[X] + λ0 + r − 1

)

1

log t
dt (4.15)

A lower bound can be derived if the expected values in (4.14) can be solved. However,

it becomes difficult if we try to make a tighter bound and choose input distributions more

complicated. Hence, we loose the channel condition and investigate a channel without

dark current. The lower bound will become

I(X; Y ) ≥ h(X) − (E[X] + r) log
E[X]

E[X] + r
+ (r − 1)E[log X] + E[X log X]

− E[X] − r − E[Γ(Y1 + r)] (4.16)

where

E[log Γ(Y1 + r)] =

∫ 1

0

(

1 − E
[
e−X(1−t)

]

1 − t
− E[X] − r + 1

)

1

log t
dt (4.17)

In the remainder of this chapter we will show the proof of (2.18). Derivation with

different power constraints are similar and deferred to Appendix B.

4.3.2 Proof of (2.21)

We choose the input distribution as follows:

Q′(x) =

√
µ√

Aπx · erf
(√

µ
)e−

µx
A , 0 ≤ x ≤ A, (4.18)

where µ is a solution to (2.20), or
√

µ√
πerf

(√
µ
) =

(
1

2
− αµ

)

eµ. (4.19)

Then we have:

E[X] = αA (4.20)

E[log X] = log A + 2eµ(2αµ − 1) · 2F2

(
1

2
,
1

2
;
3

2
,
3

2
;−µ

)

(4.21)

h(X) = log A + eµ(2αµ − 1) · 2F2

(
1

2
,
1

2
;
3

2
,
3

2
;−µ

)

− µ − log

(
1

2
− αµ

)

+ αµ (4.22)

E
[

e−X(1−t)
]

=

√
µ

erf
(√

µ
) ·

erf
(√

µ + (1 − t)A

)

√

µ + (1 − t)A
(4.23)

E[X log X] = αA log A +
2

9
eµ(2αµ − 1) · A · 2F2

(
3

2
,
3

2
;
5

2
,
5

2
;−µ

)

(4.24)

Here, 2F2 denotes the hypergeometric function defined in (2.15).

According to (4.14) and (4.16), we can derive the lower bound (2.18) and (2.21) by

plugging in above expectations.
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Chapter 5

Conclusion and Discussion

Some lower bounds and upper bounds on capacity of discrete-time Poisson channel subject

to a peak-power constraint and average-power constraint are derived in this thesis. The

bounds help us to evaluate a region the capacity supposed to be with given power. We

propose upper bounds for a channel with dark current. Besides, lower bounds are derived

for a channel with or without dark current separately.

Since the entropy of Poisson is not known yet, we use different methods to evaluate it

in the derivation of upper bounds and lower bounds. For upper bounds, we use Lemma

9 and Lemma 10, which can be accurate if we use more terms in evaluation. On the

other hand, we use Proposition 12 in the derivation of lower bounds, where some integral

expression are used.

In derivation of upper bounds, we choose some parameters of output distribution

R′(ỹ) in order to satisfy Jensen’s inequality. It’s shown that these choices lead to some

suboptimal bounds, especially for high SNR. It might be improved if we can choose the

output distribution in a more clever way.

Some general form of lower bounds are derived with data processing lemma. However,

we make sacrifice in (4.4) and result in poor lower bounds at low SNR. We need to evaluate

the entropy of output H(Y ) more precisely to solve this problem. Besides, there are some

integral expressions in the lower bounds as (4.15) and (4.17). They are theoretically

computable but cause some problems in Matlab simulations. Hence, we evaluate them

with the help of Taylor expansions.
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Appendix A

A Proof of Upper Bound

The derivations shown in this appendix follow the same line as presented in Chapter 3. We

first choose an output distribution and use Proposition 8, and then separate the formula

into different parts. Every part can be bounded individually to yield an upper bound on

capacity.

A.1 Average-to-Peak Ratio α ∈ [13 , 1]

We choose the following output distribution:

R′(ỹ) ,

{

pA · β·ỹβ−1

((A+λ)(1+δ))β , ∀0 ≤ ỹ ≤ (A + λ0)(1 + δ)

(1 − pA) · e−(ỹ−(A+λ0)(1+δ)), ∀ỹ > (A + λ0)(1 + δ)
(A.1)

The upper bound can be derived proceeding similar to Chapter 3:

C ≤ EQ∗
[

D
(
W̃ ′ (ỹ|x)

∥
∥R′ (ỹ)

)]

(A.2)

≤ EQ∗

[

− h(Ỹ |X = x) + log
1

β · pA

· Pr
[

Ỹ ≤ (A + λ0)(1 + δ)
∣
∣
∣X = x

]

+ (1 − β)E
[

log Ỹ
∣
∣
∣ X = x

]

+ β log ((A + λ0)(1 + δ)) · Pr
[

Ỹ ≤ (A + λ0)(1 + δ)
∣
∣
∣X = x

]

+ log
1

1 − pA

· Pr
[

Ỹ > (A + λ0)(1 + δ)
∣
∣
∣X = x

]

+

∫ ∞

(A+λ0)(1+δ)
W̃ ′ (ỹ|x) (ỹ − (A + λ0)(1 + δ)) dỹ

]

(A.3)

We define

Ca , −h(Ỹ |X = x) + (1 − β)E
[

log Ỹ
∣
∣
∣ X = x

]

(A.4)

Cb , β log ((A + λ0)(1 + δ)) · Pr
[

Ỹ ≤ (A + λ0)(1 + δ)
∣
∣
∣X = x

]

(A.5)

Cc , log
1

β · pA

· Pr
[

Ỹ ≤ (A + λ0)(1 + δ)
∣
∣
∣X = x

]
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+ log
1

1 − pA

· Pr
[

Ỹ > (A + λ0)(1 + δ)
∣
∣
∣X = x

]

(A.6)

Cd ,

∫ ∞

(A+λ0)(1+δ)
W̃ ′ (ỹ|x) (ỹ − (A + λ0)(1 + δ)) dỹ (A.7)

We start with Ca and follow the same steps we had before. From (3.59) and (3.60) we

can choose a specific value of β and the upper bound will be similar to (3.61) with β

substituting for ν.

The derivation of Cb and Cc is as follows:

EQ∗ [Cb] = EQ∗ [1 − pT,X ] · β log ((A + λ0)(1 + δ)) (A.8)

≤
(

1 − γ(⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋) + Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]

· ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋)
)

· β log ((A + λ0)(1 + δ)) (A.9)

and

Cc = (1 − pT,x) log
1

β ·
(
1 − pT,A

) + pT,x log
1

pT,A

(A.10)

thus we can have the following bound:

EQ∗ [Cc] = EQ∗ [1 − pT,X ] log
1

1 − pT,A

+ EQ∗ [pT,X ] log
1

pT,A

(A.11)

≤
(

1 − γ(⌊(A + λ0)(1 + δ)⌋, αA + λ0)

Γ(⌊(A + λ0)(1 + δ)⌋) + Pr
[
NA+λ0

= ⌊(A + λ0)(1 + δ)⌋
]

· ((A + λ0)(1 + δ) − ⌊(A + λ0)(1 + δ)⌋)
)

log
1

β ·
(
1 − pT,A

)

+ pT,A log
1

pT,A

(A.12)

The term Cd is the same as before so we ignore the derivation.

A.2 Only Average-Power Constraint

We choose the output distribution as follows:

R′(ỹ) ,
ỹν−1 · e−

ỹ
β

βν · Γ(ν)
, ỹ ≥ 0 (A.13)

and we derive

C ≤ EQ∗
[

D
(

W̃ ′ (ỹ|x)
∥
∥
∥R′ (ỹ)

) ]

(A.14)

≤ EQ∗

[

− h(Ỹ |X = x) + (1 − ν)E
[

log Ỹ
∣
∣
∣ X = x

]

+
1

β

(

X + λ0 +
1

2

)

+ ν log β + log Γ(ν)

]

(A.15)
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We set

Ca , −h(Ỹ |X = x) + (1 + ν)E
[

log Ỹ
∣
∣
∣ X = x

]

(A.16)

Cb , ν log β + log Γ(ν) +
1

β

(

x + λ0 +
1

2

)

(A.17)

where Ca here can be bounded as in (3.61). And Cb is bounded as follows:

EQ∗ [Cb] = ν log β + log Γ(ν) +
1

β

(

EQ∗ [X] + λ0 +
1

2

)

(A.18)

≤ ν log β + log Γ(ν) +
1

β

(

E + λ0 +
1

2

)

(A.19)

where we choose

β ,
E + λ0 + 1

2

ν
(A.20)
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Appendix B

A Proof of Lower Bound

This chapter contains parts of the derivations of the lower bound in Chapter 4. According

to (4.14), a lower bound can be derive by solving some expectations of our chosen distri-

bution. In the following we show the input distribution we choose and the corresponding

parts needed for a lower bound.

B.1 Average-to-Peak Ratio α ∈ [13 , 1]

Here we choose the input distribution as

Q′(x) =
1√
4Ax

, ∀ 0 ≤ x ≤ A (B.1)

Then we have:

E[X] =
1

3
A (B.2)

E[log X] = log A − 2 (B.3)

h(X) = log(2A) − 1 (B.4)

E
[

e−X(1−t)
]

=

√
πerf

(√

(1 − t)A

)

√

4A(1 − t)
(B.5)

E[X log X] =
1

3
A log A − 2

9
A (B.6)

Plugging above results in (4.14) we get (2.24).

B.2 Only Average-Power Constraint

Here we choose the input distribution as

Q′(x) =
1√

2πEx
e−

x
2E , x ≥ 0 (B.7)
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and derive

E[X] = E (B.8)

E[log X] = log E − log 2 − γ (B.9)

h(X) =
1

2
log π + log E +

1

2
(1 − γ) (B.10)

E
[

e−X(1−t)
]

=

√

2

2 + 4E − 4Et
(B.11)

E[X log X] = E (log E − log 2 + 2 − γ) (B.12)

where γ is defined in (2.27).
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Appendix C

A Proof of Proposition 12

The proof is based on the data processing inequality of the relative entropy [4]. We focus

our discussion on the Poisson channel described in (1.1). Besides, we use an numerical

evaluation for the logarithm Euler’s gamma function [5]:

log Γ(x) =

∫ 1

0

(
1 − ux−1

1 − u
− (x − 1)

)
du

log u
(C.1)

where Euler’s gamma function is defined as

Γ(x) = ax

∫ ∞

0
ux−1e−au du (C.2)

where a is a positive real number. We often take a = 1, the common definition of the

gamma function.

Let Q′(·) denote an arbitrary PDF on R
+ with a certain finite mean EQ′ [X] = η > 0,

and let R(·) be the PMF of Y when Y is conditionally Poisson given X ∼ Q′(·). On the

other hand, let another input distribution Q′
Γ,r,β denotes the Gamma distribution:

Q′
Γ,r,β(x) =

xr−1e
− x

β

βrΓ(r)
, x ≥ 0, β > 0, r > 0 (C.3)

where its corresponding output Y will be negative binomial distributed, i.e,

RNB,r,p(y) =
Γ(r + y)

y!Γ(r)
(1 − p)rpy, y ∈ N0, 0 < p < 1, r > 0 (C.4)

where RNB,r,p(·) is the output distribution with the following choice:

β =
p

1 − p
, 0 < p < 1 (C.5)

By the data processing theorem we obtain

D(Q′‖Q′
Γ,r,β) ≥ D(R‖RNB,r,p) (C.6)
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We evaluate both sides of the inequality as follows:

D(Q′‖Q′
Γ,r,β) = −h(X) +

1 − p

p
E[X] + (1 − r)E[log X] + r log

p

1 − p
+ log Γ(r) (C.7)

D(R‖RNB,r,p) = −H(Y1) + E[log Γ(Y1 + 1)] + log Γ(r) − E[log Γ(Y1 + r)]

− r log(1 − p) − E[Y1] log p (C.8)

Next we use that E[Y ] = E[X], apply (C.1)

E[log Γ(Y1 + 1) − log Γ(Y1 + r)]

= I{r 6= 1} ·
∫ 1

0

(
tr−1 − 1

1 − t
E
[

e−X(1−t)
]

+ r − 1

)
1

log t
dt (C.9)

and choose the optimal value for p to derive (4.8)

p =
E[X]

E[X] + r
(C.10)
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