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Tze-Dan Chung�, Jen-Chi Lee��

Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30050, R.O.C.

Received: 24 June 1996

Abstract. A general formula for the discrete states (Neveu-
Schwarz sector) in N = 1 2D super-Liouville theory is writ-
ten down in the world-sheet supersymmetric form. We then
derive a set of gauge states at the discrete momenta. These
discrete gauge states are shown to carry the ω∞ charges
and serve as the symmetry parameters in the old covariant
quantization of the theory.

1 Introduction

One of the main motivations to study 2d quantum gravity
was to understand the non-perturbative information of string
theory. The discretized matrix model [1] approach devel-
oped so far has been very successful. On the other hand, the
continuum Liouville theory serves [2] as an important con-
sistency check for the matrix model approach. Since little is
now known for supersymmetric matrix model [3], it would
be interesting to develop 2D super-Liouville theory [4, 5]
and compare its results directly with the high dimensional
critical string theory.
In the Liouville theory, in addition to the massless

tachyon mode, an infinite number of massive discrete states
were discovered [6, 7] and the target space-time ω∞, sym-
metry [8–10] and Ward identities [11] were then identified.
In a previous paper [12], we introduced the concept of dis-
crete gauge states (DGS) and gave a general formula for
them. These DGS were then shown to carry the ω∞ charges
and can be considered as the symmetry parameters in the
old covariant quantization of the theory. This is in parallel
with the BRST approach [4, 8, 5, 13] appeared in the liter-
ature, and can be compared with the works of 10D critical
string theory [14], where a complete gauge state analysis
turns out to be extremely difficult to attain. In this paper, we
will generalize our results in [12] to N = 1 super-Liouville
theory in the worldsheet supersymmetric way. We will work
out the DGS of the Neveu-Schwarz sector in the zero ghost
picture. We organize the paper as following. In Sect. 2, we
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discuss the N = 1 super-Liouville theory and set up the
notations. In Sect. 3, we calculate the general formula for
discrete states in a worldsheet superfield form which seems
missing in the literature. The DGS and ω∞ charges were
then given in Sect. 4. A brief conclusion was summarized in
the final section.

2 2D Super-Liouville theory

TheN = 1 two dimensional supersymmetric Liouville action
is given by [15]

S =
1

8π

∫
d2z[gαβ(∂αX∂βX + ∂αΦ∂βΦ)−QŶΦ] , (2.1)

where Φ is the super-Liouville field, Ŷ the superfield curva-
ture, dz = dzdθ and with Xμ =

(
Φ
X

)
,

Xμ(z, θ, z̄, θ̄) = Xμ + θψμ + θ̄ψ̄μ + θθ̄Fμ . (2.2)

Bold faced variables denote superfields hereafter.
For ĉ = 1 = 2

3
c theory Q, which represents the back-

ground charge of the super-Liouville field, is set to be 2 so
that the total conformal anomaly cancels that from confor-
mal and superconformal ghost contribution.
The equations of motion show that the left and right-

moving components of Xμ decouple, and the auxiliary fields
Fμ vanish. As a result, we need to consider only one of the
chiral sectors, while the other (anti-holomorphic) sector has
a similar formula. The stress energy tensor is

Tzz = −1
2
DXμD2Xμ − 1

2
QD3Φ = TF + θTB , (2.3)

with

TF = − 1
2
∂Xμ∂Xμ − 1

2
Q∂2X0 + 1

2
ψμ∂ψμ

TB = −1
2
ψμ∂Xμ − 1

2
Q∂ψ0 ,

(2.4)

where D = ∂θ + θ∂z , and now Xμ = Xμ(z) + θψμ(z).
For the Neveu-Schwarz sector, if we define the mode

expansion by

∂zX
μ = −

∞∑
n=−∞

z−n−1(α0n, iα
1
n) , (2.5)
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ψμ = −
∑

r∈�+ 12

z−r− 1
2 (b0r, ib

1
r) , (2.6)

then we have

[αμ
m, αν

n] = nημνδm+n , {bμr , bνs} = ημνδr+s . (2.7)

With the Minkowski metric ημν =

(
−1 0
0 1

)
, Qμ =

(
2

0

)
and

the zero modes αμ
0 = fμ =

(
ε
p

)
, we find the super-Virasoro

generators as modes of TF and TB ,

Ln =

(
n + 1

2
Qμ + fμ

)
αμ,n +

1

2

∑
k/=0

: αμ,−kα
μ
n+k :

+
1

2

∑
r∈�+ 12

(
r + n +

1

2

)
: bμ−rbn+r,μ :

L0 =
1

2
(Qμ + fμ)fμ +

∞∑
k=1

: αμ,−kα
μ
k :

+
1

2

∑
r∈�+ 12

(
r +

1

2

)
: bμ−rbr,μ : ,

Gr =
∑

s∈�+ 12

αμ
r−sbμ,s +

(
r +

1

2

)
Qμbμ,r (2.8)

The vacuum |0〉 is annihilated by all αμ
n and bμr with

n > 0 and r > 0. In the old covariant quantization of the
theory, physical states |ψ〉 are those satisfying the conditions

G 1
2
|ψ〉 = G 3

2
|ψ〉 = 0

and L0|ψ〉 = 1
2
|ψ〉 . (2.9)

3 World-sheet superfield form of the discrete states

With (2.3) one can easily check that the two branches of
massless “tachyon”

T±(p) =
∫

dzeipX+(±|p|−1)Φ (3.1)

are positive norm physical states. It was also known that
there exists discrete momentum physical states. Writing∫
dzΨ (±)

J,±J = T (±)(±J), the discrete states in the “material
gauge” are

Ψ (±)
J,M ∼ (H−)J−MΨ (±)

J,J ∼ (H+)J+MΨ (±)
J,−J. (3.2)

where

H± =
√
2

∫
dze±iX(z) , H0 =

∫
dzDX (3.3)

are zero modes of the level 2 SU (2)κ=2 Kac-Moody algebra
in ĉ = 1 2d superconformal field theory. Here we note that
the NS sector corresponds to states with J ∈ � while the
Ramond sector corresponds to those with J ∈ � + 1

2
.

To find the explicit expressions for the discrete states,
we first define the super-Schur polynomials,

Sk(−iX) = D
ke−iX

[k/2]!
eiX , (3.4)

where [k
2
] denotes the integral part of k

2
, as the N = 1

generalization to the Schur polynomial Sk, which is defined
as

Exp

( ∞∑
k=1

akx
k

)
=

∞∑
k=0

Sk({ak})xk . (3.5)

Note that Sk({−i∂mX/m!}) = S2k(−iX). Direct integration
shows that∫

dz1
1

(z1 − z − θ1θ)n
f (X1) =

D2n−1f (X)
(n− 1)!

=
∂n−1
z (f ′(X)ψ) + θ∂n

z f (X)

(n− 1)! . (3.6)

Using (3.6) we obtain

Ψ±
J,J−1 ∼ S2J−1(−iX)ei(J−1)X+(±J−1)Φ

=
1

(J − 1)!
[
−i∂J−1(e−iX1

ψ1) + θ∂J−1e−iX1
]

×eiJX+(±J−1)Φ .

(3.7)

For example, by

(−D2rX0, iD2rX1)→ bμ−r ,
(−D2nX0, iD2nX1)→ αμ

−n

(3.8)

we have

Ψ+
1,0 = DX→ b1− 1

2
|fμ = (0, 0)〉 (3.9)

and

Φ+2,±1 = [−iD3X− DXD2X]e±iX+Φ

→ [−b1− 3
2
+ b1− 1

2
α1−1]|fμ = (1,±1)〉 . (3.10)

They can be checked to satisfy the physical state conditions
in (2.9).
Performing the operator products in (3.2), the discrete

states Φ±
J,M are

Ψ±
J,M ∼

J−M∏
i=1

∫
dziz−J

i0

J−M∏
j<k

zjk

×Exp

[
J−M∑
i=1

[−iX(zi)] + (iJX(z0) + (−1± J)Φ(z0))

]
,

(3.11)

where zab = za − zb − θaθb. If we write zab = za0 −
zb0 − (θa − θ0)(θb − θ0), and use

∫
dza(θa − θ0)z−n

a0 f (Xa) =

D2n−2f (X0)/(n− 1)!, we get, for M = J − 2,
Ψ±

J,J−2 ∼ [2S2J−3S2J−1 + S2J−2S2J−2]ei(J−2)X+(±J−1)Φ .

(3.12)

The vertex operators correspond to the upper components of
(3.12), i.e.,∫

dθΨ±
J,J−2 ∼ [(iJψ1 + (±J − 1)ψ0)(S2J−1 + 2SNS

J− 3
2
SNS
J− 1

2
)

−2J(SJS
NS
J− 3

2
− SJ−1SNS

J− 1
2
]

×ei(J−2)X1+(±J−1)X0

, (3.13)
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where SJ = SJ ({−i∂mX/m!}) and

SNS
k+ 12

=

k∑
m=0

−iSm∂k−mψ1

(k −m1)!
.

Using (3.8) and (3.12) it is found that

Ψ+
2,0 → [2b1− 1

2
b1− 3

2
+ α1−1α

1
−1]|fμ = (1, 0)〉 . (3.14)

It can be checked that it satisfies the physical state con-
ditions (2.9).
For M = J − 3, a straighforward calculation gives

Ψ±
J,J−3 ∼ [3!S2J−1S2J−3S2J−5 + 3!S2J−2S2J−3S2J−4

− 3!

1!2!
S2J−1S22J−4 −

3!

2!1!
S22J−2S2J−5]

×ei(J−3)X+(±J−1)Φ . (3.15)

It is now easy to write down an expression for general
M ,

Ψ±
J,M ∼

∣∣∣∣∣∣∣∣
S2J−1 S2J−2 · · · SJ+M
S2J−2 S2J−3 · · · SJ+M−1
...

...
. . .

...
SJ+M SJ+M−1 · · · S2M+1

∣∣∣∣∣∣∣∣

′

×Exp[(iMX(z0) + (−1± J)Φ(z0))] , (3.16)

with Sk = Sk(−iX(z0)) and Sk = 0 if k < 0. We will
denote the rank (J − M ) “primed”-determinant in (3.16)
as Δ′(J,M,−iX), which (by definition) has all the signed
terms in the normal determinant, except with a multiplic-

ity of the multinomial coefficient (J−M )!
na!nb!...

for the term

Sna
a S

nb

b . . . (where
∑

a na = J −M ).

4 DGS and ω∞ charges

It was known [4, 5] that the discrete states in (3.2) satisfy
the ω∞ algebra∫

dzΨ+
J1M1

(z)Ψ+
J2,M2

(0)

= (J2M1 − J1M2)Ψ
+
J1+J2−1,M1+M2

(0) , (4.1)∫
dzΨ−

J1,M1
(z)Ψ−

J2,M2
(0) ∼ 0 , (4.2)

where the RHS is defined up to a DGS.
In general, there are two types of gauge states in the old

covariant quantization of the theory,
Type I:

|ψ〉 = G− 1
2
|χ〉 where

G 1
2
|χ〉 = G 3

2
|χ〉 = L0|χ〉 = 0 (4.3)

Type II:

|ψ〉 = (G− 3
2
+ 2L−1G− 1

2
|χ̃〉

whereG 1
2
|χ̃〉 = G 3

2
|χ̃〉 = 0

(L0 + 1)|χ̃〉 = 0 .
(4.4)

They satisfy the physical state conditions (2.9), and have
zero norm. There is an infinite number of continuum mo-
mentum gauge state solutions for (4.3) and (4.4). However,

as far as the dynamics is concerned, we are only interested
in those with discrete momentum.
At mass level one, fμ(f

μ+Qμ) = 0, only gauge states of

type I are found: fμα
μ
−1|f〉, where |f〉 =: eipX+εΦ : |0〉. The

DGS G−
1,0 =: DΦe−2Φ : |0〉 corresponds to the momentum

of Ψ−
1,0. There is no corresponding DGS for Ψ

+
1,0 =: DX:.

At the next mass level, fμ(f
μ+Qμ) = −2, Nμν = −Nνμ

and Mμ = 2Nμν(f
ν + Qν), the type I gauge state is found

to be

|ψ〉 = [(Mμfνα
μ
−1b

ν
− 1
2
+Mμb

μ

− 3
2

+ 2Nμνα
μ
−1b

ν
− 1
2
]|f〉 , (4.5)

while the type II state is

|ψ〉 = [(2fμfν + ημν)αμ
−1b

ν
− 1
2
+ (3fμ −Qμ)b

μ

− 3
2

]|f〉 . (4.6)

As in the bosonic Liouville theory [12], the gauge states
corresponding to the discrete momenta of Ψ+

2,±1, are degen-
erate, i.e., the type I and type II gauge states are linearly
dependent:

G+2,±1 ∼
[(

1 ∓2
∓2 3

)]
αμ
−1b

ν
− 1
2
+

(−1
±3

)
bμ− 3

2

|fμ

= (1,±1)〉 . (4.7)

For the minus sector, type I DGS is

G−,I
2,±1 ∼

[(
3 ±2
±2 1

)
αμ
−1b

ν
− 1
2
+

(
1
±1

)
bμ− 3

2

]
|fμ

= (−3,±1)〉 , (4.8)

and type II DGS is

G−,II
2,±1 ∼

[(
17 ±6
±6 3

)
αμ
−1b

ν
− 1
2

(
11
±3

)
bμ− 3

2

]
|fμ

= (−3,±1)〉 . (4.9)

Note that 3G−,I
2,±1−G−,II

2,±1 is a “pure Φ” DGS, similar to the
DGS in the bosonic Liouville theory.
We now apply the scheme used in [12] to derive a general

formula for the DGS. From (4.2), the DGS in the minus
sector can be written down explicitly as follows

G−
J,M ∼

[∫
dze−Φ(z)

)
Ψ−

J−1,M (0)

∼ S2J−1(−Φ)Δ′(J − 1,M,−iX)e[iMX+(−1−J)Φ] .

(4.10)

We thus have explicitly obtained a DGS for each Ψ− discrete
momentum. However, there are still other DGS in this sector,
for example, the states

G′−
J,M ∼

[∫
dze−Φ(z)

]J−M

Ψ−M,M (0) (4.11)

can be shown to satisfy the physical state condtions. Since
they are “pure Φ” states, they are also DGS. For example,
G−
1,0 = DΦe−Φ and G−

2,±1 = [−D3Φ + DΦD2Φ]e±iX−3Φ,
which is a linear combination of (4.8) and (4.9).
For the plus sector, we can subtract two (distinct) posi-

tive norm discrete states at the same momentum to obtain a
pure gauge state
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G+J,M = (J +M + 1)−1
∫

dz
[
Ψ+
1,−1(z)Ψ+

J,M+1(0)

−Ψ+
J,M+1(z)Ψ+

1,−1(0)
]
. (4.12)

As an example, with (4.12) one finds

G+2,±1 = [±3iD3X + D3Φ + 2iD2XDX
±2iD2XDΦ± 2iDXD2Φ + DΦD2Φ]e±iX+Φ, (4.13)

which is exactly the state we found in (4.7). We thus have
explicitly obtained a DGS for each Ψ+ momentum.
By construction in (4.12) one can see that G+J,M carry

the w∞ charges and serve as the symmetry parameters of
the theory. In fact, their operator products form the same
w∞ algebra∫

dzG+J1,M1
(z)G+J2,M2

(0)

= (J2M1 − J1M2)G+J1+J2−1,M1+M2
(0) , (4.14)

where the RHS is defined up to another DGS.

5 Conclusion

We have demonstrated that the space-time w∞ symmetry
parameters in the 2D superstring theory come from solution
of equations (4.3) and (4.4). This phenomenon should sur-
vive in the more realistic 10D heterotic string theory [14],
although it would be difficult to find the general solution
(due to the high dimensionality of space-time). The DGS
in the old covariant quantization of the theory seems to be
related to the ground ring structure in the BRST approach.
Finally, the GSO projection can be easily imposed on the
spectrum.
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