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準 確 的 軟 性 錯 誤 率 分 析 

     學生：郭雨欣 

 

指導教授：溫宏斌 教授 

國立交通大學電信工程研究所碩士班 

摘 要       

 
 在 90 奈米製程以下，電路因為宇宙射線而產生軟性錯誤的影響越來越大。尤其在

製程變異下，更需要用統計的方法去估計電路的軟性錯誤率。然而，因為缺少高品質的

統計模型，現今的軟性錯誤率統計分析研究無法達到良好的準確性。在這篇論文裡，我

們考慮在在 90 奈米製程下，由於宇宙輻射線索引起的軟性錯誤。並且提出了一個高準

確性查表法的統計模型，並利用蒙地卡羅去分析這些統計模型。我們更進一步探索如何

使用似隨機的序列，已達到比較好的收斂並且增加速度。實驗結果顯示，我們可以在合

理的時間內更準確的估計出軟性錯誤率。 
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Accurate Statistical Soft Error Rate (SSER) Analysis

student：Yu-Hsin Kuo Advisors：Dr. Hung-Pin Wen

Institute of Communication Engineering
National Chiao Tung University

ABSTRACT

For CMOS designs in sub 90nm technologies, statistical methods are necessary to

accurately estimate circuit soft error rate (SER) considering process variations. However,

due to the lack of quality statistical models, current statistical SER (SSER) frameworks have

not yet achieved satisfactory accuracies. In this work, we consider the soft error effect

caused by cosmic radiation in sub 90nm technologies, and present accurate table-based cell

models, based on which a Monte Carlo SSER analysis framework is built. We further

propose a heuristic to customize the use of quasirandom sequences, which successfully

speeds up the convergence of simulation error and hence shortens the runtime. Experimental

results show that this framework is capable of more precisely estimating circuit SSERs with

a reasonable speed.
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Introduction

1



1.1 Motivation
Recently, process variations that worsens in sub-90nm technologies have brought a

paradigm shift to soft-error research, and it have grown to be one of the major challenges

to scaled CMOS designs [2] [3]. The authors of [19] first investigate the various sources

of process variations, and conclude that the traditional static approach will underestimate

circuit SER in presence of process variations [20]. More specifically, according to Fig-

ure 1.1 from [17], static approaches will underestimate circuit SER by up to 50% un-

der the process variation σproc = 5% (±3 σproc covers 99.73% of the distribution), or

over 100% under σproc = 10%.Such an phenomenon represents that the impact of pro-

cess variations to soft error analysis may no longer be ignored beyond deep sub-miciron

era.However, although [20] and [17], respectively, proposes a symbolic- and statistical-

learning-based frameworks for statistical SER (SSER) analysis, their SSER results are not

accurate enough, where the main challenge comes from the difficulty of constructing qual-

ity cell models for transient-fault distributions.
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Figure 1.1: SER discrepancies between static and Monte Carlo SPICE simulation w.r.t.

process-variation rates
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1.2 Preliminaries and Previous Work
Formerly only concerned in memory, soft errors have emerged to be one of the major

failure mechanisms for logic circuits in sub-90nm technologies. As predicted in [4] [5] [1],

the soft error rate in combinational logic will be comparable to that of unprotected memory

cells in 2011. Therefore, numerous studies have been dedicated to modeling of transient

faults [7] [6] [12] [9], propagation and simulation/estimation of soft error rates [10] [11]

[12] [13] and circuit hardening techniques including detection and protection [27] [26] [14].

It is important to first define the causes and effects of single-event upsets in Figure1.2

[28]. SEEs (single-event effects) are associated with the change of states or transients in

a device that energetic external radiation particles induce. The SEEs can be classified into

soft errors or hard errors. Soft errors are nondestructive, because resetting or rewriting the

device restores normal behavior; however, hard errors are permanent. A common example

of a hard error is an SEL (single- event latch-up).

SINGLE-EVENT EFFECTS

SOFT ERRORSHARD ERRORS

SINGLE-EVENT 

LATCH-UPS

SINGLE-EVENT 

UPSETS

SOFT ERRORS SOFT ERRORS

Figure 1.2: The cause and effects of single-event errors

Soft errors are also known as SEUs, causing transient or inconsistent error in data that

are unrelated to components or manufacturing failures. Intrinsic noise and interference can

also cause SEUs; however, design engineers can accommodate these causes. SEUs can be

3



further classify into SBUs (single-bit upsets) or MBUs (multiple-bit upsets). SBU refers to

the flipping of one bit due to the passage of a single energetic radiation particle, where the

physical separation from any other flipped bit is at least two memory cells. MBU refers to

the flipping of several elements due to the passage of one or more radiation particles.

Soft errors occurred when the electric charges created by absorption of high-energy

radiation are collected by the critical nodes in the circuit. The four common sources of soft

errors are low energy alpha particles, high energy cosmic particles, thermal neutrons, and

poor system design. These all cause reliability problems of electronics.

To achieve a reasonable balance between reliability and performance, we must estimate

the overall soft error rate of the devices. Soft error rate(SER) is an measurement of relia-

bility and availability, and it is commonly expressed by failure-in-time, or FIT rates, where

1 FIT means 1 failure per 109 hours of operation.

Consequently, soft error rate (SER) has become a key metric for circuit reliability and

been extensively investigated. SERA [10] computes SER by means of a waveform model

to consider the electrical attenuation effect and error-latching probability while ignoring

logical masking. Whereas MARS-C [15] applies the symbolic technique to both logical

and electrical maskings and scales the error probability according to the specified clock

period, An SER [16] applies signature observability and latching window computation for

logical and timing maskings to estimate SER for circuit hardening. SEAT-LA [12] and the

algorithm in [13] simultaneously characterize cells, flip-flops and propagation of transient

faults by waveform models and result in good SER estimate when comparing to SPICE

simulation.
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1.3 Organization of Our Framework
In this work, we first build accurate table-based models for transient-fault distributions,

according to which a Monte Carlo SSER analysis framework is built. Further, we propose

a heuristic to customize the use of quasirandom sequences, which successfully speed up

the convergence of simulation error and hence shorten the runtime. From the experimental

results, the framework is capable of yielding more accurate SSER results compared to

previous works with reasonable speed.

The rest of this paper is organized as follows. In Chapter 3, we presents the SSER

analysis framework. In Chapter 4, the generation of our table-based cell models is detailed.

Then, we propose a heuristic of using quasirandom sequences to speed up the framework

in Chapter 5. Chapter 6 describes the experimental results, including the accuracy of our

models, the Monte Carlo convergence with and without quasirandom sequences, and the

SSERs as well as runtime over a variety of benchmark circuits. Finally, we draw our

conclusion and outline future works in Chapter 7.
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Chapter 2

Background
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2.1 The Basic Form SER & Charge to Voltage Pulse Model
The basic form of SER model in [1] is as follow:

SER ∝ F × A× exp (−QCRIT

QS

) (2.1)

where

F is the neutron flux with energy > 1MeV , in particles/(cm2*s)

A is the area of the circuit sensitive to particle strikes, in cm2

QCRIT is the critical charge, in fC, and

QS is the charge collection efficiency of the device, in fC

BothQCRIT andQS decrease with decreasing feature size. From equation2.1, the value

of QCRIT relative to QS have large impact on SER, and is proportional to the sensitive area

A. This model estimates SER due to atmospheric neutrons for a range of submicron feature

sizes.

When a particle strikes a sensitive region of circuit elements, it will produce current

pulse , and it is traditionally described as a double exponential function [9] as follows:

I(q, t) =
q

τα − τβ
× (e−

t
τα − e−

t
τβ ) (2.2)

where

q is the amount of charge deposited as a result of the ion strike

τα is the collection time constant for the junction

τβ is the ion track establishment time constant

Time constants τα and τβ depends upon several process related parameters, and typi-

cally τα is on the order of 200ps, and τβ is on the order of tens of picoseconds.
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2.2 Three Masking Mechanisms
Whether the soft errors result from radiation-induced transient faults latched by state-

holding elements depends on three masking effects logical,electrical and timing maskings

[1]. As shown in Figure 2.1, logical masking occurs when the input value of one cell

blocks the propagation of the transient fault under one input pattern. One transient fault

attenuated by electrical masking may further disappear due to cell’s electrical properties.

Timing masking occurs when the survival transient faults arrives one state-holding element

outside its window of clock transition. These three masking effects will lower the SER;

however, these effects will decline continually in the Deep Sub-Micron(DSM) technology.

Subject to the three mechanisms, numerous researches are presented to evaluate soft

error for logic circuits. The work in [8] propagates transient faults through one gate ac-

cording to the logic function and meanwhile uses analytical models to electrically evaluate

the change of transient faults. A refined model is presented in [9] to incorporate non-linear

transistor current, which is further applied to all gates with different charges deposited. A

static analysis is also proposed in [16] for timing masking by computing backwards the

propagation of the error-latching windows efficiently.

8
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Figure 2.1: Three masking mechanisms for soft errors
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2.3 Statistical View of Transient Faults
Under the process variation, transient faults have different statistical properties than be-

fore. We will discuss these from electrically and timing masking mechanisms, respectively.

The first observation is conducted on running Monte-Carlo SPICE simulation over a

path considering 5% process variation on circuit geometry. In Figure 2.2, the radiation par-

ticle first strikes on the output of the NOT gate and then propagate the transient fault along

two OR gates and two AND gates by setting up all side inputs properly. The pulse widths

of the transient fault along the path are then measured in each Monte Carlo round, based

on which a normal distribution curve are drawn using the empirical mean and standard de-

viation. The solid and dotted lines marks the empirical means before and after passing the

current gate, respectively.

Figure 2.2: Monte Carlo SPICE simulation of a path

Along the path, the transient fault’s pulse widths are approximated by normal distribu-

tion. We found that the mean of the pulse width goes larger(the first two stages), while

sometimes it goes smaller(the last two stages). This phenomenon indicates that the pulse

width of the transient fault is not always diminishing, which contradicts to some assump-

tions made in traditional static analysis. This phenomenon happens to the pulse height,

too. The mean of the pulse height along the path dose not always attenuate, it goes larger

sometimes.

The second observation is dedicated to the timing masking effect under process varia-

tions. In [12][29], the error-latching probability PL for one flip-flop is defined as

10



PL =
pw − w
tclk

(2.3)

where pw, w and tclk denote the pulse width of the arrival transient fault, latching win-

dow of the flip-flop and the clock period, respectively.Statistically, however, process varia-

tions make pw and w become random variables. Therefore, we need to redefine Equation

2.3 as following.

Definition (Perr−latch, error-latching probability)

Assume that the pulse width of one arrival transient fault and the latching window (tsetup+

thold) of one flip-flop are random variables and denoted as pw and w, respectively. Let

x = pw − w be a new random variable where µx and σx are its mean and variance. The

latch probability is defined as:

Perr−latch(pw,w) =
1

tclk

∫ µx+3σx

0

x× P(x > 0)× dx (2.4)

With the above definition, we further illustrate the contribution of process variations on

SER analysis from two parts of Equation 2.3, P (x > 0) and x, respectively. Figure 2.3

shows the 3 distributions for the transient fault with the same mean (95ps) for pulse widths

under different process variation rates (σ = 1%, 5% and 10%). Given 100ps as the mean

latching window of the flip-flop denoted as the solid line, the cumulative probabilities for

pw > w under 3 different σ are 17%, 40%, and 49%, respectively. Here we observe that the

largest process variation rate corresponds to the largest P (x > 0) in Equation 2.3. Besides,

in Figure 2.3(b), we compute the pulse-width averages for the portion x = pw−w > 0 and

they are 1, 13 and 26, respectively. Again, the distribution under σ = 10% has the largest x

in Equation 2.3.

These two effects jointly explain the increasing discrepancy in Figure1.1. In summary,

process variations make traditional static analysis no longer effective and should be con-

sidered in order to estimate SER accurately.
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Figure 2.3: Latching probability vs. process variation

12



Chapter 3

SSER Analysis Framework

13



In this section, we describe the SSER analysis framework that considers process-variation

impacts for cell-based designs. The proposed framework is illustrated in Figure 3.1 and

mainly consists of four stages: (1) cell modeling, (2) electrical probability computation,

(3) signal probability computation and (4) SER estimation. A stage-by-stage explanation

of each component will start reversely from SER estimation to cell modeling.

3.1 SER Estimation

We will first introduce the estimation of the overall SER in our framework. The overall

SER for the circuit under test (CUT) can be computed by summing up the SER’s of each

individual node in the circuit. That is,

SERCUT =

Nnode∑
i=0

SERi (3.1)

where Nnode is the total number of possible nodes to be struck by radiation particles in the

CUT.

Each SERi can be further formulated by integrating over the range q = 0 to QMAX the

products of particle-hit rate and the probability that a soft error can survive. Therefore,

SERi =

∫ QMAX

q=0

(R(q)× Psoft−err(i, q))dq (3.2)

Here Psoft−err(i, q) represents the probability that a transient fault originated from the par-

ticle of charge q at node i can result in one soft error at any flip-flop. R(q) represents the

effective frequency for a particle hit of charge q in unit time according to [1] [10]. That is,

R(q) = F ×K × A× 1

Qs

× exp(
−q
Qs

) (3.3)

where F , K, A and Qs denote the constants for neutron flux(> 10MeV), the technology-

independent fitting parameter, the susceptible area in cm2 and the charge collection slope,

respectively.

14
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3.2 Signal Probability Computation

Psoft−err(i, q) depends on all three masking effects and can be further decomposed into

Psoft−err(i, q) =

Nff∑
j=0

Plogic(i, j)× Pelec(i, j, q) (3.4)

whereNff denotes the total number of flip-flops in the circuit under test. Plogic(i, j) denotes

the overall signal probability of propagating the transient faults through all cells along the

path from node i to flip-flop j. It can be computed by multiplying the signal probabilities

of all cells as follows.

Plogic(i, j) =
∏
k∈i;j

Psig(k) (3.5)

where k denotes one node on the path i ; j and Psig(k), accordingly, denotes the prob-

ability that all input signals of node k jointly determine such that the transient fault is not

logically masked on this path.

The handling of reconvergent fanout nodes (RFONs) is an issue of computing signal

probability whereas omitting it may cause considerable error [21]. In this work, a linear-

time algorithm, dynamic weighted averaging algorithm (DWAA), is employed to consider

the RFON effect and fix the signal probability. The main idea behind DWAA is to consider

the dependency of signals between the fanout cone and the reconvergent node by forcing

the reconvergent signals to the value corresponding to their respective fanins.Here are the

algorithm of DWAA [22] used in our framework.

1. Levelize the circuit and decide the order of RFONs to be processed. Those RFONs

will be processed from lower to higher level. For those within the same level, whose

branches reconverge at the lower level will be processed first.

2. Calculate the signal probabilities by means of the 0-algorithm, and refer these values

as p(j, 0) which means the probability of node j after processed 0 RFON.

3. For each RFONs, calculate signal probability pf (j)

Pf (j) = P (j/f = o)P (f = o) + P (j/f = l)P (f = l) (3.6)

16



using as pf (j, t− 1) which means the probability of element j in the fan-out cone f

after having processing (t− 1) RFONs.

And update the value of p(j) in each step as follows:

pf (j, t) =
pf (j, t− 1)ws(j, t− 1) + pf (j)wf (j)

ws(j, t− 1) + wf (j)
(3.7)

where the weighting factor

w(j) = |pf (j)− pj(0)| (3.8)

which measures the deviation of p(j) according to the influence of RFON under

consideration,and

ws(j, t− 1) =
t−1∑
k=1

wk(j) (3.9)

represents the sum of all wf on all the (t− 1) RFONs already processed.

4. Stop when t equals the number of RFONs.

The following example shows how signal probability calculation influences the estima-

tion of SSER. Consider a sample circuit in Figure 3.2 with two RFONs i2 and n3. The

comparison of signal probability calculation with DWAA and without DWAA to the exact

signal probability by means of exhaustive simulation is given in Table 3.1. It can be seen

that the SSER obtained using DWAA shows only 0.4% difference to the exact signal prob-

ability, while there is 3.3%difference without using DWAA. This is because DWAA takes

into account RFONs, thus improve the accuracy of SSER.

3.3 Electrical Probability Computation

Electrical probability Pelec(i, j, q) considers the electrical and timing masking effects

and can be defined as
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Figure 3.2: circuit example

Table 3.1: Comparison of signal probability estimation

signal probability

method n1 n2 n3 n4 n5 n6 O1 SSER error rate

Estimate 0.25 0.25 0.75 0.437 0.375 0.328 0.42 49.24 3.29

DWAA 0.25 0.25 0.75 0.375 0.375 0.281 0.474 50.71 0.41

Exact 0.25 0.25 0.75 0.375 0.375 0.281 0.485 50.92 0

Pelec(i, j, q) = Perr−latch(pwj, wj)

= Perr−latch(λelec−mask(i, j, q), wj) (3.10)

While Perr−latch in equation 2.3 accounts for the timing making effect, λelec−mask ac-

counts for the electrical masking effect with the following definition.

Definition (λelec−mask, electrical masking function)

Given the node i where the particle strikes to cause a transient fault and flip-flop j is the

destination that the transient fault finally ends at, assume that the transient fault propagates

along one path i ; j through v0, v1, ..., vm, vm+1 where v0 and vm+1 denote node i and

flip-flop j, respectively.
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λelec−mask(i, j, q) =

δprop(· · · (δprop(δprop︸ ︷︷ ︸
m times

(pw0, 1), 2), · · · ),m) (3.11)

where pw0 = δstrike(q, i).

In Equation (3.11), δstrike and δprop, respectively, represent the first-strike function and

the propagation distribution function of transient faults.

3.4 Cell Modeling

Since δstrike and δprop are both non-linear functions of distributions, they are non-

deterministic in nature and can only be only approximated by efficient and accurate models

Mstrike and Mprop. As detailed in the next section, they are also the most critical com-

ponents for an accurate SSER analysis framework due to the difficulty from integrating

process-variation impacts.
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Chapter 4

Table-based Statistical Models
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Mstrike and Mprop are respectively the generation and propagation models of pw that is

a random variable. According to [17], pw follows the normal distribution, which can be

written as:

pw ∼ N(µpw, σpw) (4.1)

Therefore, we decompose Mstrike and Mprop into four models: Mµ
strike, M

σ
strike, M

µ
prop,

and Mσ
prop where each can be defined as:

M : ~x 7→ y (4.2)

where ~x denotes a vector of input variables and y is called the model’s label or target value.

For Mµ
strike and Mσ

strike, we use input variables including charge strength, driving gate, in-

put pattern, and output loading. For Mµ
prop and Mσ

prop, we use input variables including

input pattern, pin index, driving gate, input pulse-width distribution (µi−1pw and σi−1pw ), prop-

agation depth, and output loading.

To build these models, a traditional approach is to construct tables according to manually-

selected corner cases. However, such approach has two difficulties: first, these models

have a lot of input variables so that their combinations enumerating all corner cases are

prohibitively expensive. Second, input variables such as input pulse-width distribution are

dependent variables in nature, which cannot be specified directly according to pre-selected

combinations. Therefore, we use a different approach, as shown in Figure 4.1, consisting

of 3 steps: random sample generation, table fill-up, and table lookup.

4.1 Random Sample Generation

We use a unified Monte Carlo SPICE simulation framework to build the two kinds of

models (Mstrike and Mprop) of distinct mapping spaces, as illustrated by Step 1 of Figure

4.1. The framework first generates a random path loaded with additional random cells. A

charge is then injected as a current source at the beginning of the path according to the

equation [9].
In each Monte Carlo instance, the pulse-width distributions are recorded along the path,

which are later collected separately for different models. Note that this framework can
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be applied to all sources of process variations, as long as each of their impacts can be

reflected using SPICE simulation. Also, to build accurate models, it is essential to acquire

sufficiently large amount of samples in this step; in our case, for example, 500K.

4.2 Table Fill-up

In Step 2 of Figure 4.1, we classify all samples according to their corresponding input

variables to fill up the tables. For discrete variables such as charge strength, driving gate,

input pattern, pin index, propagation depth, and output loading (in terms of equivalent-

INVs), this can be done directly, which is like having multiple slices of tables, as illustrated

in Figure 4.1.

For continuous variables such as the width and height of input pulse, however, we

must discretize them to form a number of table cells. It can be done through determining

the upper/lower bounds and the number of partitions. For the two bounds, we use the

MIN and MAX values of samples sharing the same discrete input variable combination.

For the number of partitions, there is a trade-off between table resolution and size: with

sufficient samples, a larger number of partitions leads to finer table resolution and accuracy,

in expense of a larger table size.

To achieve the balance the table size and resolution, an estimate of the table error is:

MEANCi∈all cells

(
MAX(Ci)−MIN(Ci)

MEAN(Ci)

)
≤ ε̂ (4.3)

Ci represents the samples within a specific cell; ε̂ represents the error rate threshold. MAX,

MIN, and MEAN respectively represent the maximum, minimum, and mean of the sample

labels of Ci. We iteratively increase the number of partitions and calculate the mean error

estimate until it falls below the target threshold. In our case, we found good accuracy can

be reached with the number of partitions no more than 25 for all tables.

To promote the accuracy of our tables, we further adjust it according to the behaviors

of transient faults observed. At the propagation depth one, the transient faults may have

very large voltage drop compared to other propagation depth; otherwise, the transient faults

have similar voltage variations. So we further separate our tables into two parts depend on

whether its propagation depth is one, making our table more precise.

22



The Figure4.2 and Figure4.3 are our first strike and propagation tables. For first strike

table, we use the input vectors, charge q and output loading as the index when the particle

strikes on a node. In the process of propagation, we first decide whether the transient pulse

is positive or negative, and combine with charge q and output loadings to form the labels

of propagation tables. Next, we derive the transient pulses according to two continuous

variables pw and vm.

4.3 Table Lookup

After all samples are allocated into table cells, there are two types of cells: non-empty

cells with a number of samples and empty cells with none. For non-empty cells, we calcu-

late its lookup value according to the samples within. While there are many ways to do it,

we found the mean a good and efficient representative.

For the lookup values of empty cells, a traditional approach would be extrapolating

them from non-empty ones. However, under sufficiently large amount of random samples,

it is very likely that the empty cells originate from unrealistic situations. For example, as in

Step 3 of Figure 4.1, the empty cells are distributed only in the top-right and lower-left cor-

ners, representing the extremely flat and the extremely sharp transient faults, respectively.

Although neither of the two kinds of transient faults exists in reality, accesses to these cells

happen during the SSER analysis occasionally as a result of error propagation. In such

cases, we use the lookup value of the nearest non-empty cell instead to offset the expected

error.
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Figure 4.1: Construction of table-based models
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Using Quasirandom Sequences
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Figure 5.1: Distributions from the Monte Carlo methods with random number generation

and quasirandom sequences
Pseudorandom number generation plays a key role to the success of the Monte Carlo

method. However, using rand() function for sampling points often suffers from the cluster-

ing problem [23] in high dimensional spaces. Figure 5.1(a) illustrates this problem on an

example of generating a (X ,Y )-distribution by the Monte Carlo method using the rand()

function. The sampling points are observed not evenly scattered among the (X ,Y ) plate,

which means that these sampling points from pseudorandom generation may not be repre-

sentative enough for the entire space.

5.1 Concept of QMC

The clustering problem motivates research of finding a deterministic sequence such

that well-chosen points are distributed in the high-dimensional spaces uniformly. Such

sequences are named quasirandom sequences. Figure 5.1(b) shows the same number of

sampling points using quasirandom sequences on the (X ,Y ) plate. From Figure 5.1(b),

new sampling points are observed more uniformly distributed over the (X ,Y ) plate and

thus have better representativeness.

The quasi-random sequences, also called low-discrepancy sequences, in several cases

permit to improve the performance of Monte Carlo simulations, offering shorter compu-

tational times and/or higher accuracy. In fact, the low discrepancy sequences are totally

deterministic, so the name quasi-random can be misleading.

27



The concept of low-discrepancy is associated with the property that the successive num-

bers are added in a position as away as possible from the others numbers, that is, avoiding

clustering (groups of numbers close to other). The sequence is constructed based on the

idea that each point is repelled from the others. So, if the idea for the points is maximally

avoiding of each other, the job for the numbers generated sequentially is to fill in the larger

”gaps” between the previous numbers of the sequence. In this way, we can improve the

uniformity of the sequences.

The van der corput sequence is the basic of one dimensional low discrepancy sequence.

For different base b,the number n in van der corput sequence can be generated from three

steps as follow.

1. Expand the decimal-base number n to base b.

2. Reflect the number in base b.

3. Get the reflected number in base b.

n =
m∑
j=0

aj(n)bj

van der corput sequence

b(n) = Φb(n)aj(n)b−j−1

The figure 5.2 is an example of van der corput sequence with base 2 distributed over

interval [0,1).

0 91021248 6 135114 7 15113

1/160 3/161/8 5/16 7/163/8 9/161/2 11/165/8 13/163/4 15/167/81/4

Figure 5.2: The first 16 number of van der corput sequence in interval [0,1)
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5.2 Different Types of Low Discrepancy Sequences

The van der corput sequence is the basic one dimensional low discrepancy sequence.

For multi-dimensional low discrepancy sequences, there are some famous algorithms. Three

most common algorithms for computing quasirandom sequences include Halton algorithm,

Faure algorithm and Sobol algorithm. However, because Halton and Faure sequences may

suffer from the correlation problems in high dimension with longer computation time,

Sobol algorithm is chosen as the quasirandom number generation scheme in our frame-

work. Here outlines the Sobol Z2-algorithm1:

1. Given the sequence length N , choose a polynomial of degree d :

pi(x) = xd + c1x
d−1 + ...+ cd−1x

1 + 1 where i ≤ N,

2. Assign r direction numbers v1, v2, ..., vd with :

1 ≤ vj
2m−j

≤ (2j − 1) where vj
2m−j is one odd integer

That is, vj = 2m−j(2j − 1).

3. Compute other direction numbers (j ≤ m = lgN ) by recurrence :

vj = c1vj−1 ⊕ c2vj−2 ⊕ · · · ⊕ cdvj−d ⊕ bvj−d/2dc

4. Given the binary representation of n, compute the sequence for each dimension,

recursively :

xi0 = 0 and xik =
(xik−1 × 2m)⊕ vc

2m

Monte Carlo methods with quasirandom sequences are termed Quasi-Monte Carlo

(QMC) methods. Given a sampling number N and a dimension d, Monte Carlo methods

converge with O(1/
√
N) simulation errors whereas QMC methods converge with O(1/N)

for optimal cases. Previous research works have demonstrated better results for QMC than

MC methods for the problems with ≤ 360 dimensions in finance and physics.
12 is the base number b that the user can specify.
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5.3 Effective Dimensions in QMC

Since each gate in the circuit becomes a free dimension (regardless of spatial corre-

lations), the total dimension in the corresponding SSER system can be very high. How-

ever, for a large d and moderate N , quasirandom sequences perform no better than the

pseudorandom sequences [23]. Besides, high dimensional quasirandom sequences tend to

suffer from the clustering problem again. In the worst cases, QMC’s convergence rate,

O((lnN)d/N), are even worse than MC’s O(1/
√
N) as d goes larger. Therefore, we are

motivated to apply dimension reduction to ensure the effectiveness of the proposed QMC

framework for SSER analysis.
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Figure 5.3: Convergence rate, dimension number, and logic depth of benchmark circuits

Effective dimensions of circuits can be observed through experiments. Figure 5.3 shows

the convergence rates for four sample circuits where the vertical lines indicate the logic

depths (a.k.a. levels) of each circuit. All convergence rates drops quickly as the dimension

numbers increase. Such phenomenon implies their underlying SSER systems can be prop-

erly described using much lower dimensions. For example, the intuitive dimension number

for the circuit c7552 is 2114, the total number of its nodes.From Figure 5.3(d), however,

a dimension number of 60 is already good enough. Also, from Figure 5.3 states that the

circuit level can suffice to represent the total dimension and thus converge SER faster. In

Table 6.2 of the next section, more benchmark circuits are used to validate this hypothesis

of using the circuit level as the reduced dimension.
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Table 5.1: Comparison of dimension reduction methods

method level sser(rand) error(%) sser(level) error(%)

i4 4 26.53 12.32 24.08 1.94

i6 3 38.92 4.20 37.56 0.01

i18 5 64.81 2.14 64.35 2.83

c17 5 62.88 2.77 62.98 2.94

5.4 A Heuristic for Dimension Reduction

Although we can assign the dimensions obtained from random function to each gate,

there are some disadvantages of it. The random function may have higher probability

of providing inferior results once the level of the circuit is small. That is, there may be

dimension correlations among gates.

To solve this problem, we can use level number as each gate’s dimension number. Since

the correlations between each gate in the same level can be seen independently in the pro-

cess of simulation, it is intuitive to assign each gate at different level with different dimen-

sions. Otherwise, assign gates at the same level with the same dimension.It can be shown

at Table5.1 that the dimension reduction method using level numbers have better accuracy

compared to random decision method when the circuit’s logic depth is too small.
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Experimental Results
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Table 6.1: Summary of table error

error rate (%)

cell Mµ
strike Mσ

strike Mµ
prop Mσ

prop

INV 0.35 0.19 0.38 1.07

AND 0.30 0.23 0.36 1.35

OR 0.39 0.21 0.37 2.07

Average 0.35 0.21 0.37 1.50

A series of table-based models are built and evaluated in accuracy. These models are

then integrated into our SSER analysis framework to evaluate their SER estimation capa-

bility.

6.1 Model Accuracy

We build the table-based models according to Figure 4.1 for three cells under 45nm

technology. Assuming 5% process variation (σproc = 5%), the models are built using 500K

training samples. The total size of cell models in our experiments is 9.5MB. Then, we

examine these models’ accuracy using another 10K test samples.

The average errors of the models are summarized in Table 6.1 according to model

types. Accordingly, two messages can be observed: (1) ForMµ
strike, M

σ
strike, andMµ

prop, the

models are highly accurate with average errors no more than 0.4%. For the Mσ
prop models,

the average error is still within 2.1%. (2) In [17], the Mµ
strike, M

µ
prop, and Mσ

prop models

have average errors up to 3.9%. For its Mσ
strike models, the average error further reaches

12.9%. In summary, our models exhibit much better quality.

6.2 SSER Measurement

The proposed framework is implemented in C/C++ and exercised on a Linux machine

with a Pentium Core Duo (2.4GHz) processor and 4GB RAM. The 45nm Predictive Tech-

nology Model (PTM) [24] is used for cell modeling. For all circuits, each node under every
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input pattern combination is injected with four levels of electrical charges: Q0 = 34fC,

Q1 = 66fC, Q2 = 99fC and Q3 = 132fC, where 32fC is observed to be the weakest

charge capable of generating a transient fault with positive pulse width under the settings

in our experiments.

Both circuit SER and SSER are measured and compared. For SER, we use static SPICE

simulation; for SSER, we use Monte Carlo SPICE simulation as well as the proposed

framework with (QMC) and without (MC) quasirandom sequences. Considering the ex-

tremely long runtime of Monte Carlo SPICE simulation (w/ 100 runs), we can only afford

to perform tests on small circuits (i4, i6, i18 and c17), with the largest containing 7 gates,

12 strike nodes and 5 inputs. The runtime of the Monte Carlo SPICE simulation ranges

from 8 hours to slightly more than one day. The runtime of our framework requires less

than 1 second with an average of 106 speedup.
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Figure 6.1: SSER comparison from static and Monte Carlo SPICE simulations, the pro-

posed MC and QMC frameworks

Figure 6.1 compares the results from SPICE simulation and our frameworks. The three

facts are observed: (1) Considering 5% process variations, the SSER obtained by Monte

Carlo SPICE simulation are 35% ∼ 52% above the SER obtained by static SPICE analysis

(indicated by the black bars). Since the process variation worsens the stability of circuits

beyond the deep submicron era, statistical effect should be considered to avoid increasingly

underestimated circuit SER. (2) The proposed MC and QMC frameworks yield very similar

SSERs with each others where the mismatches are within 0.4%. This means that we can
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use the faster QMC without serious accuracy degradation. (3) Compared to the results of

Monte Carlo SPICE simulation, the proposed QMC framework has error rates of 2.5%,

0.8%, 2.9%, and 2.8%, respectively. Compared to [20] and [17] where the error rates are

around 10%, our framework is quite accurate, which can be well attributed to our models.
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Figure 6.2: SER breakdown by charge strength

To more closely investigate the SER difference between static and statistical analysis,

we breakdown the results in Figure 6.1 by charge strength levels, and present the results in

Figure 6.2. Comparing the results between static and statistical SPICE simulations across

all test circuits, it is observed that the results of the two SPICE simulations and the proposed

framework are very similar for Q1 ∼ Q3 parts (within 1% difference). However, the static

SPICE simulation dramatically underestimate the SERs for the Q0 part (indicated by the

white bars), whereas the proposed framework gives much closer results with Q0-part errors

of 11.4%, 2.3%, 5.6%, and 4.1%, respectively. It also discloses that the analysis of weak

charges is the most challenging task of SSER analysis.
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Table 6.2: Benchmark circuits, SER and runtime from the baseline MC and QMC frame-

works

MC QMC Comparison

circuit Nnode Npo SSER TMC SSER TQMC SSER speedup

(E-05)(FIT) (s) (E-05)(FIT) (s) diff. (%) (X)

i4 4 1 24.22 < 1 24.31 < 1 0.37 -

i6 6 2 37.66 < 1 37.65 < 1 0.03 -

i18 12 3 64.26 < 1 64.24 < 1 0.02 -

c17 12 3 63.00 < 1 62.89 < 1 0.17 -

c432 233 7 1047.12 114.37 1045.23 30.43 0.18 3.76

c499 638 32 1150.61 870.61 1161.77 269.71 0.97 3.23

c880 443 26 1519.24 173.23 1516.46 36.90 0.18 4.69

c1355 629 32 1188.16 891.80 1169.25 273.20 1.59 3.26

c1908 425 25 1124.75 365.07 1148.27 109.25 2.09 3.34

c2670 841 157 3479.23 401.02 3463.73 120.23 0.45 3.34

c3540 901 22 2411.57 1070.61 2395.72 309.53 0.66 3.46

c5315 1806 123 9764.66 818.22 9983.29 403.17 2.23 2.03

c6288 2788 32 3860.03 15703.05 3769.48 4710.04 2.35 3.33

c7552 2114 126 6074.29 1406.70 6098.88 658.37 0.40 2.14

mul 4 158 8 883.38 98.82 890.33 34.85 0.79 2.84

mul 8 728 16 2127.35 710.21 2094.05 271.03 1.57 2.62

mul 16 3156 32 4775.07 9565.03 4845.29 5010.40 1.47 1.91

mul 24 7234 48 7636.46 39628.50 7478.02 29930.01 2.07 1.35

Average 0.88 2.95
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6.3 SSER Estimation on Benchmark Circuits

Using the proposed MC/QMC frameworks, we conduct SSER analysis on a variety of

circuits including the ones in Figure 6.1, the ISCAS’85 benchmark circuits, and a series of

multipliers. Table 6.2 first lists the name, the total number of nodes, and the total number

of outputs for each circuits. The following four columns report the SSER values and the

runtime required by the MC and QMC frameworks, respectively. The last two columns

compute the SER difference and speedup, respectively, by comparing results from the MC

and QMC frameworks.

From Table 6.2, SSER is clearly related to the number of nodes and primary outputs of

a circuit, which correspond to the possibility of the circuit struck by radiation particles and

the possibility of the transient faults observed at primary outputs, respectively. The runtime,

however, depend on not only the number of strike nodes, but also the number of convolu-

tions between nodes. SER difference is computed by |SSERMC−SSERQMC |/SSERMC

and the average of 0.88% difference implies that the QMC and MC frameworks are of the

same quality. For all benchmark circuits, the overall speedup brought by QMC is 2.95X in

average and the QMC runtime is comparable to that of [17].
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Chapter 7

Conclusion
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Traditional SER analysis techniques intend to mimic the static SPICE simulation. How-

ever, in presence of process variation, all static techniques tend to unavoidably underesti-

mate true SERs and thus the research of statistical SER analysis is emerging. In this paper,

we propose a method for building quality statistical cell models, based on which a Monte

Carlo SSER framework is built. A heuristic is particularly proposed to apply quasirandom

sequences to the framework for faster convergence and shorter runtime. According to the

experimental results, the SSER errors are within 3% compared to Monte Carlo SPICE sim-

ulations, which are more accurate than those from previous works. Furthermore, the use of

quasirandom sequences demonstrates an average of 2.95X runtime improvement over the

baseline MC framework while preserving the same SSER quality.

SSER analysis is a thriving research topic in sub-90nm technologies. Future works

include further reduction of dimensions to improvement runtime, applications of various

variance reduction techniques to the QMC framework, and the inclusion of spatial correla-

tion over cells.
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