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for 3D IC Physical Design Flow Based on ADI Method
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ABSTRACT

3D ICs, which deal with cost-effective achievement by increasing the densities of interconnection
between dies, are regarded as an'attractive alternative solution for overcoming the bottlenecks on 2D
planar ICs. 3D ICs offer the increased system a large-number of advantages; however, one of critical
challenges is heat dissipation due to-higheraccumulated power density and lower thermal conductivity
of inter-layer dielectrics for vertical stacking layers-of active tier. In this way, the management of
thermal issues should be considered during physical design stages rather than only pre-packaging
verification on the future highly integrated systems. For these reasons, we develop an adaptive thermal
simulator applying our 3D-AADI algorithm for providing temperature distribution to 3DIC physical
design flow from floor-plan level to verification level.

The proposed 3DIC thermal simulator, 3D-AADI, both utilizes low-complexity algorithm for
achieving both efficient runtime and accuracy and constructs adaptive simulating granularity for
avoiding unwanted runtime and resource consumption in non-critical position. Furthermore, 3D-AADI,
including estimating heat trend, constructing initial adaptive grids, establishing non-uniform structure,
and calculating 3D-AADI matrix processes, improves two orders of magnitude under 0.01%
convergence in experimental results. As a result of linear complexity, the finer simulating granularity
leads to the more speeding up. Due to the partial updating characteristics, 3D-AADI can not only be
regarded as a reliable thermal simulator but also be applied to 3DIC design flow as a thermal-driven
kernel.
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Chapter 1

Introduction

Performance of chip systems has been successfully enhanced by downscaling the chip minimum
feature size. This benefits systems to operate at a higher frequency for performing more compu-
tations per second. However, the shrinking scale of IC technology also results in higher power
density, more metal layers with higher densities, and dielectric materials with lower thermal
conductivities, which significantly. impacts on both signal propagation delay and manufactur-
ing reliability. Consequently, the advantages of 3D ICs become an attractive solution to relieve
2DIC bottleneck.

As the number of functions on one chip increases, more and more products have involved
the stacking of dies to minimize System size. Nowadays, there are several three-dimension inte-
gration chip (3DIC) approaches that deal with cost-effective achievement by striking a balance
between planar interconnects and vertical through-silicon vias (TSVs). 3D ICs are regarded as
an attractive alternative solution for overcoming the wire-length bottleneck of interconnection
and the physics of lithography on 2D planar ICs. three-dimension integration chips (3D ICs)
offer the increased system a large number of advantages such as miniaturization in chip area, ,
reducing form factor, reducing wire length, reducing interconnect delays [1] [2], lower power

consumption [3], supporting for mixed-technology chips, and heterogeneous SoC design.

1.1 Background on Thermal Simulation

However, there are several challenges such as TSVs, micro-bump, low temperature bonding,

and thin-wafer handling of manufacturing, thermal management, design methodologies and



tools of design, known-good-die and yield-improving of testing. One of the critical challenges
that IC designers must consider is heat dissipation due to higher accumulated power density and
lower thermal conductivity of inter-layer dielectrics [4] [5] for the vertical stacking of active
tiers and interposer tiers. Furthermore, several previous studies of both computer aided design
(CAD) tools and reference flow for 3D ICs [1] [6] indicate that the management of thermal
issues plays an important role in the future generation of highly integrated systems due to the
highly complex problem of heat dissipating on 3D ICs. That is to say, thermal analysis should
be concerned not only on the verification level but also on the design level.

The algorithm of thermal simulators can be categorized into analytical and numerical meth-
ods. Analytical methods [7] [8] [9] are suitable for early design stages since the advantages
on both avoiding the volume meshing calculation of entire substrate, and representing closed-
form by modeling for temperature distribution. Hence, analytical methods are flexible to obtain
the temperature distribution of certain user-specified regions without performing the thermal
simulation for the entire chip.

The other category of thermal simulators is the numerical method, which applies the finite-
difference method (FDM) or finite-element method to transform heat-transfer equations into
thermal-circuit equations. For the constructed circuit network, several methods have been pro-
posed for saving run-time. [10] analyzed the efficiency of simulating execution on transient
state by model order reduction technique. [11] applied the multi-grid algorithm to improve the
convergent rate of iterations and proposed a reduction scheme to reduce the runtime of dynamic
thermal simulation. [12] utilized alternating-direction-implicit (ADI) method to separate the
equivalent circuit system into different alternating subsystems by considering the property of
linear complexity on each sub-system.

In recent years, great importance has been made in the area of 3DIC thermal analysis. Fur-
thermore, because of the stacking material and techniques on 3D ICs, the extensive range of lo-
cal heating and vertical dissipation of temperature distribution must be concerned. For designers
of high-performance 3D ICs, it is essential to apply an accurate simulator by considering adja-
cent heating to enhance simulating reliability. In addition, because of the flexibility for handling

the complicated structure, the numerical category is treated as the main stream on back-end de-



sign stages such as the post-layout thermal verification. However, several numerical approaches
handling with simulation model on uniform slicing are performance-limited by the most crit-
ical position such as thermal or signal through silicon vias (TSVs) [12]. [12] consumed some
runtime and hardware resource on analyzing uniform geometry for the much more non-critical
positions such as substrate. In order to be more efficient, several approaches can solve adaptive
simulating geometry. For example, [13] handled both uniform and non-uniform slicing due to
the connecting rule between blocks; however, the characteristic also caused the simulating lim-
itation to be suitable on the floor-plan stage rather than on the placement stage. This limitation
of simulating number induces unsuitability on both high-performance and function-increasing
3D ICs. Although [14] modified the connecting rule by enhancing grid-based simulating mode,
both [13] and [14] neglected the thermal impact for TSVs. On the other hand, techniques such
as [11] [13] [15] and [16] have been developed to construct adaptive thermal modeling, but
they are suitable to be verification teols rather thanthermal-driven design kernel because of the
incremental incapability. Indeed; great importance of thermal analysis has been made on both

physical design and verification of 3D ICs [1] [6]-

1.2 Our Contributions

To summarize, we are eager to develop an algorithm with the following advantages for both
tape-out verification and high-performance physical design.

a). low-complexity algorithm for achieving both efficient runtime and accuracy.

b). referring estimator to provide a thermal reference for heat trend (where heat trend means es-
timation of power distribution, TSV cells, and thermal conductance using the compact thermal
model).

c). adaptive simulating geometry for avoiding unwanted runtime and resource consumption in
non-critical position.

d). partial updating analysis for local refinement and incremental characteristic.

In order to achieve these goals, this work derives several processes, including estimating heat



trend, constructing initial adaptive grids, establishing non-uniform structure, and calculating
3D-AADI matrix. Although local-refined process of our whole flow (shown in Fig. 5.1) has not

been addressed, the major contributions of this work are:

1. Initial Heat Estimator:
We can develop a referring estimator to provide the heat trend as simulating reference
by applying z-tile compact thermal model. According to the curve of grid-number and
heat distribution, we set criteria and find out a suitable-analyzing resolution by taking

chip-size, runtime, and accuracy into consideration.

2. Initial Adaptive Simulation Grids:
We can strike a balance between the runtime and the accuracy. The simulating geometry
can avoid being performance-restricted by the most critical position usually on hot spots
and (thermal or signal) TS Vs, since we develop.the grid-construction processes depending
on heat gradients to build adaptive geometry of simulation grids, where heat gradient

means the gradient of the heat trend.

3. Non-Uniform Meshing Construction.and Calculation of 3D Adaptive ADI (3D-AADI):
We can construct adaptive simulating geometry and develop non-uniform scanning algo-
rithm to handle non-uniform meshing which traditional ADI methods utilized on uniform
spatial step size of each direction can not deal with. Besides, We are the first one who
are eager for the property of linear complexity of ADI concept by concerning both a huge
amount of computation and incremental updating during temperature-aware design on 3D

chips.

4. One of Good Solutions for Application on Thermal-Driven Design Due to Incremen-
tal Property:
3D-AADI thermal conductance matrix of non-uniform meshing can be locally updated
on only the affected region rather than entirely re-construct and do LU-decomposition
entirely. In this way, it is a good solution to be treated as a thermal kernel in temperature-
aware design flow due to not only the non-uniform ability of node meshing but also the

incremental data structures of the updated sub-circuit.



1.3 Organization of the Thesis

The rest of the paper is organized as follows. We first formulate our concerning problem in
Chapter 2. Then we illustrate the overview of the whole 3D-AADI procedures in Chapter 3
and organize it into four parts which are initial heat estimator in section 3.1, adaptive simula-
tion grids in section 3.2, non-uniform meshing construction on 3D-AADI in section 3.3, non-
uniform meshing calculation on 3D-AADI in section 3.4. Besides, we discuss local refinement
and incremental property in section 5.2 as the applications and future works. In the last chap-
ter, we summarize the contributions, provide concluding remarks and analyze the experimental

results about our 3D-AADI work.



Chapter 2

Problem Formulation

The geometric information of device location and power dissipation on placement are known
as input data. In fact, the input information we need is the material structure and the power
distribution, so 3D-AADI thermal simulator can be applied to the stages from partition level to
tape-out verification level. This simulator can provide temperature distribution profiles on each
simulating tier including the active. CMOS layers, interposer layers, and substrate layers.

Since the operating frequency of today’s manufacturing technology node is much faster
than the speed of heat dissipation, it is reliable to analyze temperature distribution on steady
state [17] [9]. We extract the_power library by power simulating tools, considering internal,
switching and leakage power as‘the total power of each device. Based on [18], the heat sink
thermal conductance of the primary and secondary heat transfer paths can be modeled as com-
ponents and connected with thermal conductance into simulation meshing. Since the ambient
air has a constant temperature, the primary and secondary heat sink models respectively connect
the bottom and the top terminal with a constant voltage, room temperature node. Fig. 2.1 shows
the compact thermal model of N layer 3D IC.

Furthermore, [15] showed the effects of various cooling techniques and indicated that through
dummy thermal vias had a very effective cooling influence on temperature dissipation. In this
way, TSVs must be considered in 3DIC thermal simulation. For the reason that the routing de-
tail of interconnects on the given placement design is not complete, we build each interconnect
layer and TSV alignment routing interposer layer into equivalent thermal model based on the
weighted summation of each material thermal conductance. As a result of the package struc-

tures, the heat-transfer effect of air on vertical surfaces is strictly much less than that of primary
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Fig. 2.1: The considering geometry of N layer 3D chip.

and secondary heat sinks on horizontal sutfaces. For these reasons, the boundary of four vertical
surfaces can be treated as adiabatic [8] [9].
Based on the law of energy conservation, thermal approaches analyze temperature distribu-

tion of heat transformation [19] by the following partial differential equations, Eq.(2.1).

aT(7,t)

PG ot

=V [k(7 V(7. 8)] +g(T,t) 2.1)

subject to the thermal boundary conditions

k(7 t)%j’t) + hT(7,t) = fi(7s, 1), (2.2)

where p is the material density, C), is the mass heat capacity, T’ (7, t) and k(?, t) are time- and
space- dependent temperature and thermal conductivity of the material, g(?, t)is the generat-

ing rate of heat source, h; is the heat transfer coefficient on the boundary surface of the chip,



fz(E> ,1) is an arbitrary function on the boundary surface s;, and 6%1, is the differentiation along
the outward direction normal to the boundary surface s;.

Since we apply the heat-transfer equation to steady-state condition, the left part of Eq.(2.1),
which is not variable with time parameter is equal to zero shown on Eq.(2.3). The steady-state

heat-transfer equation Eq.(2.4) can be derived as follows.

_or(@y 1 N N
0= g7 =55 7 KT HVI(T. 0]+ Z5g(7.0) 23)
_ ke
" oC, (7.1) = oo, Y VT ) 2.4)

In order to solve the temperature distribution with finite-difference method and finite-element
method, we apply the central-finite-difference approximation and discretize Eq.(2.4) in the spa-
tial domain to construct the given design into equivalent thermal conductance circuits shown in
Fig. 2.2. After modeling this equivalent circuit, it can be stamped into matrix equation, Eq.(2.5),
based on modified nodal analysis (MNA) method. The parameter G is the thermal conductance
coefficient of corresponding grid by equivalent weighted-summation, parameter t represents
the concerning temperature vector of corresponding grids, and p is the heat source vector of

corresponding grids.

o
:
o009 ;

Fig. 2.2: The thermal circuit model of this numerical thermal simulation on steady state.

Gt=p 2.5



Chapter 3
The Framework of 3D-AADI Simulator

We approach a both adaptive thermal simulator and integrable thermal-aware kernel on 3D ICs.
It considers three-dimension structure [6] practically and provides the whole 3DIC temperature
distribution of steady state. In order to generate the adaptive simulating geometry depending
on thermal gradients at the beginning, we utilize the characteristics of heat dissipation as our
initial heat estimator. Furthermore, we developour 3D-AADI algorithm that not only has the
property of linear complexity based on the ADI concept but also applies it into non-uniform
simulation grids on both construction and calculation. Since we do take incremental application,
local refinement, and temperature-aware design into consideration, 3D-AADI algorithm can be
applied to local refinement and incremental updating during design iterations. That is to say, this
simulator can both provide adaptive temperature distribution profile depending on user-defined
or estimator-suggesting granularity, and be suitable to be applied to 3DIC CAD flow.

For temperature verification, Fig. 3.1 gives an overview. At the beginning, simulator parses
3DIC geometry, power library and material files as input information to build heat sources
and thermal elements of simulation grids. Then, the first process for 3D-AADI is to provide
heat-trend curve as estimator-defined suggestion or to initially discretize the chip into grids of
user-given resolution. The second process of 3D-AADI is to establish the adaptive simulating
geometry by referring the estimating heat gradients. The third is to construct non-uniform ther-
mal circuits, and the fourth is to solve matrices of non-uniform meshing by 3D-AADI algorithm
to provide the temperature distribution profiles as output results.

On the other hand, local refinement and incremental-kernel application are discussed as

future works on section 5.2.



Input files:
1. 3D IC netlist (DEF)

(Placement/floor-plan)
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3D-AADIstamping
2. Celllibrary (LEF)
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- Merge (4—1) ||Flag “leaf”

Fig. 3.1: An overview of this work (which is in the background-color blocks). Authors explain
the left-middle orange block on section 3.1, the left-down purple block on section 3.2, the right-
up gray block on section 3.3, and the right-middle blue block on section 3.4.

3.1 Initial Heat Estimator

As a quick estimator, we utilize 1D tiles which is composed of the compact thermal model
(shown in Fig. 3.2) being our initial temperature estimator to obtain heat estimation. Concerning
the accuracy of the compact thermal modeling, there are two reasons that the heat-dissipating in-
fluence on vertical is much more obvious than on horizontal. First, the primary heat-dissipating
path, including the primary and the secondary heat sinks decided by chip package, is vertical.
Second, the boundary of four vertical surfaces can be treated as adiabatic [8] [9]. However,
different estimating resolution causes different error rate. For the reason that 1D thermal model
regards lateral heat dissipation as adiabatic between grids, and puts total power on the center of
each units, it indicates that the bigger grid-number makes both a larger amount of error due to

ignoring more lateral heat transformation and a larger amount heat distributing information of

10



each grid. On the other hand, smaller grid-number makes both a smaller amount of modeling
error due to considering more lateral heat transformation and a larger amount temperature-like
information of averaging feature. For these reasons, we can balance the trade-off between heat-
distributing information and temperature-like information. In this way, plotting curves shown
in Fig. 3.3 indicates us the suitable estimating grid-number resulting from ignoring suitable

amount of lateral heat transformation.
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Fig. 3.2: The z-tile model of proposed initial estimator.

As soon as the simulator constructs the cell (including TSVs) information of power, material
and position, curves (shown in Fig. 3.3 of grid number and heat difference display two parts, the
linear region and the saturation region. The linear region for low grid number presents too much
average property to concern accurate power distribution. On the other side, the saturation region
for high grid number presents too much power distribution to concern lateral heat dissipation.
In order to choose good suggesting resolution, we set criteria by abandoning the extreme and
by obtaining enough heat information. On Eq.(3.1), we choose the integer level whose average-
heat-difference changing rate is stable than its previous level,so we find the integer ¢ such that

average-heat-difference changing rate of level; is very close to that of level;, .

11
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chip 2 (on right one). The x-scale presents planer grid number which is grid, by grid, of every

simulating z-tier. The y-scale presents the average of heat difference comparing with average
temperature of the entire chip.

(AugErr; — AvgErriy) JAvgErr;_,

1<
(AvgErr; i = AvgErr;)/AvgErr;

<l+e¢ 3.1

where AvgErr; is the average of heat difference of i resolution reference by comparing with
chip average temperature, € is a small and positive real number. Then, we divide the whole
chip into grids of suggesting level, which can be user-given beforehand or estimator-defined by
Eq.(5.1). In this way, the initial estimator applying 1D z-tile method for obtaining the trend of

thermal dissipation is reliable to be the reference approximation on proper simulating grid size.

3.2 Adaptive Simulation Grids

Although there have been several approaches that applied finite-difference method to analyzing
thermal dissipation, the runtime and the accuracy of their simulator are performance-limited by
the most critical position usually on hot spots and (thermal or signal) TSVs. We develop our

adaptive structure of simulation grids to eliminate the limited performance on spatial size of
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critical simulated elements.

A B A B
: : Merging Process on level:-:

—

Compute all gradients.

level,.;:level;.; | level. i level,;

level,.;: level,.; | level,. i level;

MergeCount—1

2 p— (T — min {T}})
gradient(k) ; ' level;.; : level;.,;
If (gradient(k) < T h fevel
(ﬁ;a lent( )< Illl'esllﬂld) then le"eli_l le"eli_l
erge.
C D

Fig. 3.4: The merging processes of each level decide the analyzing geometry by computing the
gradients of initial estimator. The figure is a simple example of grid-merging process after the
estimating temperature distribution is computed.

In order to construct adaptive.simulation geometty; we approach “level” as the simulating
size of grids. Take Fig. 3.4 for example, the finer grids belong to the higher level, and the
coarser grids belong to lower-level. As shown in Fig. 3.4, we illustrate a simple example of
merging process. First of all, the heat information provided by z-tile estimator has been set up
on part A, B, C, and D, each one of which is composed of four level;,, grids on [evel; merging
process. Secondly, we divide the section into finer grids with larger gradients and to merge the
section to coarser grid with lower gradients, where “gradient” represents the summation of heat
differences for four level;; children in level; merging process. After choosing the lowest heat
information of four members for being the comparing base, we calculate the gradients on every
sections of all levels to make the merging decisions. In order to reveal the maximum difference

between children, we define gradient of section & including MergeCount children grids as:

MergeCount—1

gradient(k) = Z (T; — min {T}}), (3.2)

J=0

where MergeCount is the children count of the merging section. Then, until each simulating
units satisfy the gradient threshold, the entire simulating geometry is constructed. Therefore, the
resolution units sliced on initial estimating are merged to coarser level grid size if the gradient

between its neighbors is smaller than the given gradient threshold. Otherwise, the original size
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grids are flagged leaf as the current level in [evel; merging. Finally, our simulator, constructing
each grid (shown in Fig. 3.6(a)(b)) into equivalent circuit (shown in Fig. 3.6(c)) by using thermal

resistant model (shown in Fig. 2.2), considers both lateral and vertical thermal dissipation.

3D-AADI: Adaptive Simulation Grids Framework
Input:

Material structures and power dissipation
Output:

Data structures of node list on the whole chip

01 Calculate average temperature by total power and
equivalent kappa of each layer.

02 for each material Z layer do

03 Decide grid number according to gradient of average

temperature between neighbor layers.

04 end

05 Estimate initial temperature based on Z-tile simulating
on the defined maximum grid granularity.

06 if LocalRefine == true then

07 Modify MaxLevel

08 for level i = MaxLevel +1.:.0 do

09 Calculate gradient and average temperature of
each'grid on level 7.

10 end

11 for level : = MaxLevel -'1 : 0 do

12 for grid k = LevelGridCount -1 :.0 do

13 if LevelGridGradient >= Threshold then

14 Construct(/Make leaf) Node as level ¢ + 1

15 end

16 for.grid k& = LevelGridCount- 1.: 0 do

17 if one-of grid neighbors has been Node then

18 Construct(/Merge) Node as level ¢

19 end

20 end

Fig. 3.5: Adaptive Simulation Grids Framework.

Pseudo code of adaptive simulating grids framework is derived in Fig. 3.5. First of all,
we calculate average temperature by total power and equivalent kappa of each layer to decide
the ~ grid number. Then, we establish the initial heat estimation by slicing into user-given or
estimator-defined proper granularity, and check every grids until the whole geometry of simu-

lating grids are adaptive for satisfying the gradient threshold.
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Fig. 3.6: The geometry distribution of adaptive simulation grids considering the gradient of es-
timating temperature. (a) The front.view of chip shiced into simulation grids. (b) The front view
of non-uniform simulating case.of our test chip 2. This'is also the initial adaptive geometry on
layer 1 of Fig. 4.8. (c) The perspective view after constructing the equivalent thermal resistant
mesh of 3D chip, and the front.view is shown on (a).

3.3 Non-Uniform Meshing Construction on 3D-AADI

For a given chip, the temperature distribution in the steady state is governed by Eq.(2.3) and
is subject to the boundary conditions in Eq.(2.2). To solve Eq.(2.4) with the finite-difference
method, discretization is necessary in spacial domain. When w is differentiable at =, then we

have the following limit by Taylor’s formula:

du h?d*u  A3d3w  R*d*w

u(z + h) :u(ZL’)—f—h@—f—?@ﬁ‘g@ﬁ—ﬂ@(&J 3.3)
for some (£, ) in the interval (z, x + h) and
du h*d%u  R3d%u  h*dYu
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in which (£_) belongs to the interval (z — h, x). Therefore, adding Eq.(3.4) and Eq.(3.3), and
dividing through by h?, the approximation of the second order derivative of u at x is

d2u(x) _ u(z+h) —2u(x) + u(z — h) h? d*u

da? h2 C12dat (

£), (3.5)

where ¢ < & < &,. The formula is called a centered difference approximation of the second
derivative.
Applying the centered difference approximation in Eq.(3.5) to a finite number of grid points

in a second-order parabolic partial differential equation,

du 0%*u N 0%*u N 0%*u
ot ox2  oy? 022

U({E,y,Z,O) :’U[)(ZL',y,Z), (36)

92 02

2
527> 57> and % terms, we use a

with v (independent of t) prescribed on the boundaries for the
mesh size of Az for the x variable, Ay for the 7 variable, and Az for the z variable to discretize
the continuous spacial domain.into mesh grids. Then, according to central finite-difference

discretization, the second order accurate approximation of the temperature 7' (7) at grid point

(4, J, k) can be replaced by T'(iAx, jAy, kAz) which is denoted as 77", ;. for the rest of the paper
with respect to x can be expressed as:
’T ., Ty = 20050+ T i 2
g2 liik = (Az)? + O((Ax)?) (3.7a)
o L = Ml F g 0T : (3.7b)
(Az)? (Az)?

where the truncation error is O((Az)?), and similar processes can be applied to the y and z

directions.

Concerning ADI method, it introduced by Peaceman and Rachford [20], and Douglas and
Gunn [21] in the mid-1950s was developed for solving equations arising from finite difference
discretization of elliptic and parabolic PDEs.

We define the deviation ¢;'; ;. of the evolving solution 77, , from the desired finite-difference

Z7j7k

approximation to the steady-state convergence, 1 Substituting Eq.(2.4) and Eq.(3.7b), the

Y,z
convergent solution 7™ satisfies the equation
52 5; 52
e T e T (B

;| T =p (3.8)
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where y is %. Therefore, this deviation is given at the nth iteration by

eire = Tijr = Tijn (3.9)
Eq.(3.8) using central finite-difference discretization results in the system of equation,
Ht + Vt + Zt = p, (3.10)

where H, V, and Z represent the central finite-difference discretization in Eq.(3.7b) to the op-

02 5
(Bx)2> (Ay)?°

erators and 0 ;%2 in Eq.(3.8), respectively. The ADI algorithm consists of iterating

by solving Eq.(3.10) in the z, y, and z directions alternatively as follows.
H+p,D) 073 = p— (V4 Z— pI) - t®

(V+paD) 05 = p— (H+Z— pl) - £(2F5) (3.11)
(Z+paD) -t = p— (H+V - pI) - t(*3)

where p,, is a sequence of positive acceleration parameters. Since this work applies ADI concept
to non-uniform geometry, analyzing of p,, is still a difficulty to address.

Take Fig. 3.7(b) for example, when 2 sub-iteration executing, the one and only uncertainty
is x implicit vector, the connection of other directions are explicit. For the executing direction
d, the “Scan and do LU-decomposition for-every LU VectorLists on d” function in Fig. 3.9 first
checks this node being the head (e.g. Fig. 3.8 node 1, 9, 17, 18, and 27) of LU vector or not.
For these head nodes, we find all neighbors to direction d and assign this node to be the head of
these LU vectors for all branches (i.e. node 1, 9, and 17 have one, node 18 has two, and node
27 has four branch vectors to xz—direction in Fig. 3.8) on d. Then, for each neighbor, we point
to the next only one neighbor (e.g. Fig. 3.8 node 2, 10, 18, 19, 23, 28, 32, 37, and 40) on d
and add it to be members of its LU vector until there is not only one neighbor (e.g. Fig. 3.8
node 18) or until the level of pointing node is smaller than that of head node (e.g. Fig. 3.8 node
39). Next, we regard this node as end (e.g. Fig. 3.8 node 8, 16, 18, 22, 26, 31, 35, and 39)
of this LU vector and assign the end to be also the head of all next neighbors on d. Finally,
after “Solve LUt = p by reusing LU-decomposition for every LU VectorLists on d” function in
Fig. 3.13 provides new temperature for this LU vector, we update these new results into data

structures. Furthermore, in order to overcome the convergence and to keep the accuracy, we
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(d)

Fig. 3.7: (a) The constructing mesh including all directions. (b)(c)(d) One of different al-
ternative directions utilizing 3D-AADI method when 'scanning on z—, y—, and z—direction,
respectively. The step by step illustrate the framework of scan and solve LU VectorList of d.

treat every nodes with the same LU updating frequency on non-uniform meshing by making the
end implicit and the head explicit (e.g. Fig. 3.8 node 18) of the node being both head and end.
Besides, we deal with the updating temperature of gathering end (e.g. Fig. 3.8 node 39) to be
the average of all these gathering results. Similarly, y-direction and z-direction, the other two
sub-iteration utilize the same scanning rule.

Generally speaking, ADI method is one of numerical iterative methods. This method has the
properties of linear complexity because of separating the equivalent circuit system (Eq.(2.5))
into different alternating subsystems. This characteristic guarantees that G matrix of every
direction can be performed linearly during LU decomposition. Take (G, matrix, a subsystem
on z—direction, for example, several sub-LU matrices is shown on Fig. 3.10, where G, , one

thermal conductance sub-matrix, is tridiagonal and linear time complexity during matrix solving
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Fig. 3.8: Finding the stamping LU members on «-direction of one of every layers on our 3D-
AADI algorithm. The red rings stand for gathering nodes.

. In other words, each direction-of ADI method is only related to the front and the back nodes, so
solving-matrix execution of G 'on each direction has linear runtime. Since the strict convergence
threshold causes the more times of iteration, the convergence rate of iteration can be controlled

by the user given accuracy which is in our guaranteeing range.

3.4 Non-Uniform Meshing Calculation on 3D-AADI

According to the property of linear complexity, ADI algorithm is suitable to be applied to solve
the larger scale matrix. Furthermore, in order to conquer the performance limitation due to
finite-difference method on both critical and non-critical positions, we develop 3D-AADI algo-
rithm and display the convergence of non-uniform meshing nodes. In addition, authors apply
it to solving the non-uniform nodes. The illustration of scanning and deciding the members of
every LU lists on x, y and z directions is shown in Fig. 3.8, Fig. 3.11 and Fig. 3.12, respectively.
Taking this simulating geometry for example, there are three kinds of simulating size which are

constructed by the previous geometry-deciding process (on section 3.2). After scanning and
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3D-AADI: Scan and do LU-decomposition for every LUVectorLists on d Framework
Input:

Doing direction d
Output:

LU Vector lists and LU-decomposition results of sub-iteration d

01 for Node n =NodeCount -1 : 0 do

02 if (n belongs to boundary of head)
or (there exists Head) then
03 for Neighbor net = NeiSize - 1 : 0 do
04 Add n to be Head of this LU Vector.
05 This = next neighbor (on d) of n.
06 while This has only one next neighbor do
07 Add This into this LU Vector.
08 This = next neighbor (on d) of This.
09 if This.level < Head.level then
10 break
11 end
12 Add This to be End of this LU Vector.
13 for Neighbor Nnei = ThisNeiSize - 1 : 0 do
14 Add This to be Head of Nnei’s LUVector.
15 end
16 if Head belongs to boundary of head then
17 Stamp subLU members excepting Head.
18 else
19 Stamp subLU members including Head.
20 subLU-DecompositionSolver(ThisL.U Vector).
21 end
22 end

Fig. 3.9: Scan and do LU=decomposition for every LUVectorLists on d Framework.

deciding the members of every LU lists, we construct thermal circuits and stamp thermal con-
ductance based on our 3D-AADI algorithm into LU-decomposition solver. (The pseudo code
in detail of scanning function is derived in Fig. 3.9.) As shown in Fig. 3.10, it plays a very
important role that the execution time of each sub-G, matrices, G,,, is linear with number
of unknown nodes. It is also important that the dimensions of each sub-matrix, G,,, Gz,, ..,

and G, are independent. In this way, the linear complexity property of each sub-LU matrix

TN
implies to the linear complexity property of the entire algorithm. We elaborate the framework
of non-uniform meshing calculation on 3D-AADI by Fig. 3.13. First of all, we scan and do
LU-decomposition for every LU VectorLists on every d to obtain the LU-decomposition results

for reusing during iterations. Secondly, while the maximum of absolute temperature difference

at last iteration is bigger than the given convergent threshold, we execute the next iteration in-
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Fig. 3.10: The entire stamping LU matrix of z-direction on our 3D-AADI algorithm. The
dimension of unknown-node vector for every sub-LU matrices, G, G,,, ..., and G, can be
independent. In this way, the linear complexity property of each sub-LU matrix implies to the
linear complexity property of the entire algorithm.

cluding three sub-iteration, z;4 and z directions. Concerning the gathering nodes generated
by non-uniform construction, we average all gathering results of relating LU VectorLists to bal-
ance the convergence and the accuracy. The gathering nodes are defined by red rings shown
in Fig. 3.8, Fig. 3.11, and Fig. 3.12. The function named “Scan and do LU-decomposition for
every LUVectorLists on d” on line 2 of Fig. 3.13 scans and executes LU-decomposition for ev-
ery LU VectorLists of direction, d. As long as one entire iteration, including three sub-iteration,
is done, we calculate the maximum and average difference temperature to decide whether it is
convergent or not.

According to the following derivation, because of the non-uniform meshing of thermal con-
ductance and the independent dimension between sub-LU matrices, convergent iterations and
executing time are wasted by waiting different convergence of several matrices with different

numerical scale. We apply the matrix splitting [22]

G=M-N (3.12)

to the constructed original linear system, G, of Eq.(2.5). Then, (M — N)t = p can be defined
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Fig. 3.11: Finding the stamping LU members- on y-direction of one of every layers on our
3D-AADI algorithm. The red rings stand for gathering nodes.
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Fig. 3.12: Finding the stamping LU members on z-direction of one of every layers on our 3D-
AADI algorithm. The red rings stand for gathering nodes. Besides, the rings with dotted lines
stand for the horizontal neighbors on the same layer on z-direction.
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3D-AADI: Non-Uniform Meshing Calculation Framework
Input:

Data structures of node list on the whole chip
Output:

Convergent 3D-AADI temperature distribution

01 for Directiond=0:2(X—,Y—,Z—)do

02 Scan and do LU-decomposition for every LU VectorLists on d.(Fig. 3.9)
03 end
04 while (AbsoluteMaxDifferenceT > ConvergentThresholdT)
or (iteration == 0) do
05 AbsoluteMaxDifferenceT = 0
06 for Directiond=0:2(X—,Y—,Z—)do
07 Solve LUt = p by reusing LU-decomposition for every LU VectorLists on d.
08 for Node n = NodeCount - 1 : 0 do
09 if End node belongs to gathering tail then
10 n.newT = average of all n.newT.
11 n.0ldT = n.newT.
12 end
13 end
14 Update AbsoluteMaxDifferenceT for checking convergency.
15 iteration ++ .
16 end

Fig. 3.13: Non-Uniform Meshing Calculation Framework.

by recurrence,

t< L= M INtK M p, (3.13)

where t%*1 is implicit and t¥ is explicit during iterations. For solving the system, t¥ is ap-

proaching t**! when the iteration converges. Eq.(3.13) has the relation
(I — M_lN) t =M 'p.
Utilizing Eq.(3.12), we replace N with M — G and derive as following.
(I ~M (M - G)) t=M'p.
I-M'M+M'G)t=M"p.

MGt =M 'p. (3.14)

The Jacobi iteration determines the ith component of the next approximation so as to anni-

hilate the ith component of residual vector. In the following, u} denotes the ith component of
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the iterate t* and p; the ith component of the right-hand side p in Eq.(2.5). Thus, writing
(p— Gt*™), =0,

in which (vector), represents the ith component of vector, yields

giiuy T = — Z gijul + pi
=157
or
1 N
N <pi _ Z giju]’?) i=1,..,N, (3.15)
Jii j=1g7i

where g;; is (7, j) component of G. Then, block relaxation schemes [22] are generalizations
of point relaxation schemes described in Eq.(3.15). They update typically a subvector of the
solution vector, instead of only one component. The matrix G and the right-hand side and

solution vectors are partitioned from Eq.(2.5) as follows:

G Gui 1 Gy t; P1
G G - Gy, t

G=| ST e o= | P (3.16)
Gml Gm2 SN2 Gmm tm Pm

in which the partitionings of p and t into subvectors p; and t; are identical and compatible with
the partitioning of G. Thus, for any vector t partitioned as in Eq.(3.16), [Gt], = > ™" | Gy;t;, in
which [vector], denotes the ith subvector of vector according to the above partitioning.

With the splitting definitions in Eq.(3.12) and the block relaxation schemes in Eq.(3.16),
we generalize the previous iterative procedures in Eq.(3.13). Then, the block Jacobi iteration is

now defined as a technique in which the new subvectors t are all replaced according to

th = M7INgE + M pyi =1, .., m, (3.17)

where M; is the corresponding preconditioning sub-matrix, and N; are the corresponding sub-
matrix of splitting matrices, M and N, in Eq.(3.12), respectively. In order to improve the con-
vergence of a preconditioned system in Eq.(3.13), we precondition each sub-matrix in Eq.(3.17)

for every diagonal entry before LU-decomposition of each sub-system.
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Since the implicit variables are only in one direction in each step, the matrix for solving the
ADI method at each direction is tridiagonal. During the LU decomposition, no matrix solving
is required, so runtime for solving the tri-diagonal matrix is linear. The complexity for ADI
methods is O(N - 3 - IJK) = O(nodeapr), where N is the iteration number, nodep; is
the node account for solving problem, I, J, and K are the discrete number on z, ¥y, and z,
respectively. Concerning the proposed 3D-AADI, we regard the nodes being both head and tail
are implicit on only being tail, the complexity for 3D-AADI methods is O(N - [(I1 + I+ ...) +
(Ji+Jo+..)+ (K1 + Ks+...)]) = O(nodespaapr), where nodesp_ aapy is the node account
for non-uniform geometry, I, J;, and K is the node number of each LU vector on z, ¥, and z,
respectively. For the reason that nodesp_ 4 4p; is much smaller than node 4p;, we improve the

efficiency by non-uniform geometry.
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Chapter 4

Experimental Results

To verify that 3D-AADI can not only provide accurate temperature but speed up on the same
resolution, we develop the entire 3D-AADI algorithm and provide the simulating results. Since
the complexity of 3D-AADI, which is linear, is much lower than the complexity of direct solving
thermal conductance matrix, the higher simulating resolution leads to the more speeding up.
Furthermore, 3D-AADI does save execution time and.resource, that is to say, it can display the
finer simulating resolution on finite hardware resource.

The developed 3D-AADI thermal simulator is implemented in C++ language and tested on
a Linux system with Intel Xeon 3.0-GHz CPU and 32 GB memory. The size of given 3D test
chip 1, a 3-layer circuit, is 379.06 um by 379.06 pm for width and height respectively, and the
size of given 3D test chip 2, a 3-layer ‘circuit, 1s 6600 ym by 6600 pm for width and height
respectively. The unit of the shown temperature distribution is °C. The equivalent heat transfer
coefficients of the primary and secondary heat flow paths, and thermal conductivity are 8700
W/(m-°C), 2017 W/(m-°C), and 148 W/(m-°C),respectively. The boundary condition of each
vertical surface is set to be isothermal [8] [9].

We demonstrated that our 3D-AADI simulator is much more efficient than traditional uni-
form ADI and FDM-MNA due to both avoiding the limited simulating performance of the most
critical position and to the mathematical complexity. The approach can be not only adaptive
for verification but incremental for application to 3D ICs especially on physical design due to
the huge computation. Furthermore, the 3D-AADI tool can be regard as both a reliable thermal

simulator and a thermal-driven kernel on 3DIC design flow.
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4.1 Adaptive Distribution Results

In order to strike a balance between the runtime and accuracy, 3D-AADI simulating geome-
try can avoid being performance-restricted by the most critical position usually on hot spots
and (thermal or signal) TSVs, because we develop the merging processes depending on heat
gradients to construct adaptive geometry of simulation grids.

We compare adaptive simulating geometry with traditional uniform slicing to verify that
3D-AADI does avoid the performance limitation by merging the much less critical position. In
this way, we display temperature by golden solution, uniform slicing of traditional ADI, and
adaptive slicing of 3D-AADI respectively to demonstrate our adaptive contribution.

Fig. 4.1 shows the temperature by Finite Difference Method on Modified Nodal Analysis
(FDM-MNA) temperature solver. Since the accuracy of FDM-MNA has been compared with
SPICE by the same FDM thermal model; we:treat FDM-MNA results as simulating golden
solution. In order to compare both the convergence and accuracy, Fig. 4.2 shows temperature
distribution of every layer. Fig: 4.3 shows the solution which is convergent to 0.01% provid-
ing by 3D-AADI algorithm with non-uniform grids. Fig..4.4 shows the temperature which is
convergent to 0.0001% by our3D-AADI algorithm, where “convergent” means the maximum
comparison rate of every corresponding-grid temperature between this and lase iteration.

Although the temperature range in Fig. 4.2 and Fig. 4.3 is too small to demonstrate the
accuracy between 0.01% and 0.0001% convergence, our 3D-AADI can speed up 274 times
than FDM-MNA (shown on Table 4.1) especially for higher resolution. According to Fig. 4.6
and Fig. 4.7, they point out that 3D-AADI solution is both very fast (61 times than FDM-MNA
shown in Table 4.3) and very approaching to golden solution when it is 0.01% convergence.
As a result of linear complexity, 3D-AADI has much higher efficiency, 117 times, than FDM-
MNA. Besides, it is the same with golden solution when it is convergent to 0.0001% shown in
Fig. 4.8.

We can clearly indicate that our 3D-AADI tool can be regarded as both a reliable thermal
simulator and a thermal-driven kernel on 3D IC design flow. First, we display the results by
traditional ADI algorithm and compare with our golden solution, FDM-MNA under the same

simulating-grid geometry. Then, the maximum error percentage is under 10E-6. Furthermore,
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Fig. 4.1: Finite Difference Method on Modified Nodal Analysis (FDM-MNA) Results on test
chip 1. We regard the FDM-MNA temperature distribution as our golden solution and compare
the error rate with its average degree. The temperature profiles are shown by tiers of every active

layers. Actually, our simulating tiers on z can be much larger than active numbers depending
on user-setting accuracy.
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Fig. 4.2: FDM-MNA golden solution temperature with grids-number 32 by 32 of test case 1.
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Fig. 4.3: The solution which is convergent to 0.01% providing by 3D-AADI algorithm with
non-uniform grids of test case 1.
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Fig. 4.4: Temperature solution which is convergent to 0.0001% providing by our 3D-AADI
algorithm with non-uniform grids of test case 1.
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we implement our 3D-AADI algorithm and compare with both golden solution and traditional
ADI, the results (For example, 100-200 Lx and 100-200 Ly on layer 3 in Fig. 4.4 are merged.
For example, 200-380 Lx and 0-380 Ly on layer 3 in Fig. 4.8 are merged. ) are convergent to
golden solution and our simulating-grid geometry is much more adaptive.

Furthermore, the comparison also indicates that an accurate temperature simulation should
take lateral heat-transformation into consideration, because z-tile method, which applies 1-D
compact thermal model to temperature estimators, displays the influence on only power source
and material without lateral heat spreading. As the increasing number of simulating grids shown

on Fig 3.3 , both the range of temperature and the error percentage increase.

4.2 Comparison of Convergence Results

We can construct adaptive simulating geometry and develop non-uniform scanning algorithm
to handle non-uniform meshing which traditional-ADI method utilized on uniform spatial step
size of each direction can not'solve. Besides, since we concern both a huge amount of compu-
tation and incremental updating during temperature-aware design on 3D chips, the LU and LUx
complexity of 3D-AADI is linear.

Since we have demonstrated the adaptive geometry on section 4.1, we extract the execution
time and the maximum error between non-uniform slicing, uniform slicing and FDM-MNA
simulation methods in this section shown on Table 4.1 and Table 4.3. We can find out not
only that all of them are speed up but also that the finer simulating granularity results in the
more tremendous speeding up. In addition to time enhancement, since non-critical position
is preserved from both unwanted runtime and resource consumption by the proposed adaptive
simulating-geometry process, 3D-AADI can also reduce the maximum error rate shown in Ta-
ble 4.3.

Concerning each process, Table 4.2 and Table 4.4 demonstrate that the partial executing time
is linear-like growth for both LU and LUx. It is the reason that 3D-AADI is low-complexity
algorithm for achieving both efficient runtime and accuracy.

We compare the maximum temperature difference and runtime between non-uniform slic-
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ing, uniform slicing and MNA simulation methods shown on Table 4.5 and Table 4.6. The
comparison indicates that our 3D-AADI simulator is more accurate than traditional ADI simu-

lator and much more efficient than MAN.

chip 1 FDM-MNA Uniform Geometry Non-Uniform Geometry
grid Cnvg itr# time MxErRt SpUp || itr## time MxErRt SpUp
4x4 0.1% 30 2 10 0.0078 3 2 10 0.0078 3
0.01% 12 10  0.0056 3 12 10  0.0056 3
8x8 0.1% 60 1 10 0.0087 6 2 10 0.0084 6
0.01% 16 30  0.0064 2 19 30 0.0058 2
16x16  0.1% 620 1 40  0.0090 15.5 5 80  0.0085  7.75
0.01% 8 50  0.0082 12.4 15 100 0.0074 6.2
32x32  0.1% 6040 2 180 0.0090 33.56 7 300 0.0129 20.13
0.01% 3 180 0.0090 3356 || 22 460 0.0109 13.13
64x64  0.1% 98060 2 680 0.0091 14421 | 8 1020 0.0246 96.14
0.01% 2 680 0.0091 14421 | 49 2630 0.0154 37.29
128x128 0.1% 805880 2 2770.7.0.0091 29093 | 14 2940 0.0119 274.11
2

0.01% 27707 0.0091 29093 || 49 5430 0.0065 148.41

Table 4.1: The executing time results of FDM-MNA, uniform and non-uniform simulating
algorithm on test chip 1.
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chip 1 Uniform Geometry Non-Uniform Geometry
grid Cnvg || Est. Cnstr LU LUx | Est. Cnstr LU LUx
4x4 0.1% 0 0 10 0 0 0 10 0
001% | O 0 10 0 0 0 10 0
8x8 0.1% 0 0 0 10 0 0 10 0
0.01% | 10 0 10 10 0 10 10 10
16x16  0.1% | 10 0 30 0 10 20 40 10
0.01% | 10 0 20 20 10 10 40 40
32x32  0.1% | 40 10 100 30 50 40 110 100
0.01% | 30 10 90 50 50 40 100 270
64x64  0.1% || 160 30 340 150 || 160 160 300 400
0.01% | 160 30 340 150 || 160 150 300 2020
128x128 0.1% | 640 150 1340 640 || 570 700 530 1140
0.01% | 640 150 1340 640 || 570 700 530 3630

Table 4.2: The partial executing time results of FDM-MNA, uniform and non-uniform simulat-
ing algorithm on test chip 1.

chip 2 FDM-MNA Uniform'Geometry Non-Uniform Geometry
grid Cnvg itr#  time  MxErRt SpUp || itr# time MxErRt SpUp
4x4 0.1% 40 12 10 0.0033 4 14 10 0.0321 4
0.01% 23 10 0.0008 4 24 10 0.0321 4
8x8 0.1% 80 27 10 0.0117 8 26 10 0.0149 8
0.01% 57 20 0.0020 4 65 10 0.0131 8
16x16  0.1% 600 47 60 0.0299 10 42 40 0.0316 15
0.01% 122 120 0.0045 5 119 70 0.0222  8.57
32x32  0.1% 5860 59 620 0.0847 945 51 290  0.0875  20.21
0.01% 271 2740  0.0117 2.14 | 238 1060 0.0216  5.53
64x64  0.1% 75880 32 2000  0.1578 3794 | 42 1240 0.0937 61.19
0.01% 515 30370 0.0347 250 | 266 6010 0.0208 12.63
128x128 0.1% 570630 11 4050  0.1947 14090 | 40 4870 0.0657 117.17
0.01% 506 136160 0.1005  4.19 | 192 18500 0.0328  30.84

Table 4.3: The executing time results of FDM-MNA, uniform and non-uniform simulating

algorithm on test chip 2.
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chip 2 Uniform Geometry Non-Uniform Geometry
grid Cnvg | Est. Cnstr LU LUx | Est. Cnstr LU LUx
4x4 0.1% 0 0 0 10 10 0 0 0
0.01% | 10 0 0 0 10 0 0 0
8x8 0.1% 0 0 0 10 0 10 0 0
001% | O 0 10 10 0 0 0 10
16x16  0.1% 0 10 0 50 0 10 0 30
001% | O 10 0 110 0 10 0 60
32x32  0.1% || 10 10 30 570 10 30 30 220
001% | O 10 30 2700 10 20 30 1000
64x64  0.1% || 50 30 160 1760 40 130 110 960
0.01% | 30 30 150 30140 || 40 120 110 5740
128x128 0.1% | 170 150 750 2980 || 170 570 430 3700
0.01% | 160 150 750 135100 || 170 570 420 17340

Table 4.4: The partial executing time results of FDM-MNA, uniform and non-uniform simulat-
ing algorithm on test chip 2.

Max. 4x4 grids 8x8 grids 16x16 grids 32x32 grids
Geometry | Error | Node # _iter # | Node # = iter # | Node # iter# | Node # iter #
Uniform 1% 1 1 1 1
Simulating | 0.5% 128 54 512 41 2048 86 8192 251
Grids 0.1% 1698 5683 17588 60804
Non-Uniform | 1% 1 1 3 36
Simulating | 0.5% 128 54 464 30 1736 54 5192 230
Grids 0.1% 1698 4939 11574 46656

Table 4.5: The iteration results of uniform and non-uniform simulating geometry on test chip 1.

Max. 4x4 grids 8x8 grids 16x16 grids 32x32 grids
Geometry | Error | Node # iter# | Node # iter# | Node# iter# | Node # iter#
Uniform 1% 8 30 91 298
Simulating | 0.5% 128 11 512 41 2048 124 | 8192 | 403
Grids 0.1% 21 78 226 719
Non-Uniform | 1% 10 33 88 263
Simulating | 0.5% 56 13 344 48 944 124 | 3128 | 367
Grids 0.1% 20 83 202 613

Table 4.6: The iteration results of uniform and non-uniform simulating geometry on test chip 2.
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Chapter 5

Future Works and Applications

5.1 Enhancement of Suggesting Resolution

After finding the integer ¢ such that average-heat-difference changing rate of level; is very close
to that of level;;; on Eq.(3.1), we.can also take chip-size, runtime, accuracy, and hardware

resource into consideration to decide the-simulating resolution on Eq.(5.1).

resolution = i + o~ Size + B - Time + v+ Accuracy™" + 6 - Resource 5.1

where Size representing the chip size, T'me representing the tolerance runtime for users,
Resource representing the resource of test machine, and Accuracy™' representing the toler-

ance accuracy are user-setting constants, and «, (3, 7, ¢ are author’s experimental parameters.

5.2 Local Refinement and Incremental Design

For temperature verification, Fig. 3.1 gives an overview. On the other hand, concerning local
refinement and incremental-kernel application, 3D-AADI owns the feature of executing sec-
tional “3D-AADI stamping” (a matrix-establishing process shown in Fig. 5.1) for the updating
regions during thermal-aware design iterations. The enhancement, local refinement, and appli-
cation, incremental kernel, are discussed as future works on section 5.2.

Since the 3D-AADI method we proposed owns the feature of updating only the affected
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Input files: Establish 3D-AADI matrixes

1. 3D IC netlist _
(Placeme oor-plan) 3D-AADI stamping

2. Cell Ji#atry (LEF) S | -

o%

3. r cell library i - - o - - )
Naterial properties One iteration: X-l, Y-, Z-direction <—
T
_— 92
Providing heat—trenw Sl
g | Yes L No

nto Next iteration
esolution == _ - - -

kappa_ and Local Refinement
ower of every grid . -— Local-refined process
— analysis? Yes
Checking every Update | | No L
. - o
N grid adaptive or not: Providing 3D-AADI temperature profiles.
i |No
Yes -ti - P . .
Merge (4—1) Reporting as temperature-aware design Kernel.
: Cut (1—4) | |Flag “leaf”

Fig. 5.1: An overview of this-work (which is in the background-color blocks) and 3D-AADI
enhancement. Authors explain the left-middle orange block on section 3.1, the left-down purple
block on section 3.2, the right-up gray block on section 3.3, and the right-middle blue block on
section 3.4. Besides, the right-middle green sub-flow, which illustrates our 3D-AADI algorithm
can be both enhanced in local-refined simulation and applied to thermal-driven kernel into the
entire physical design flow, is discussed as future works and applications on section 5.2.

region of the changed grids by sectional “3D-AADI stamping” to the matrix G of Eq.(2.5),
this simulator after being enhanced by local refinement and being applied by thermal kernel is
both adaptive and incremental. Indeed, it is one of good solution to integrated into physical
design flow as thermal-driven kernel due to not only that the node meshing can be non-uniform
but also that the data structures of the updated sub-circuits are incremental. For these reasons,
the thermal analysis solver can be both a simulator and thermal-aware design kernel. Fig. 5.2
illustrates the local adjustment of grids for satisfying the temperature gradient requirement on
the affected region around the updated grids. Pseudo code of local refinement framework is

derived in Fig. 5.3.
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Fig. 5.2: Local refinement on the affected region around the updated grids for satisfying the

requirement.

3D-AADI:Local Refinement Framework

Input:

Affected field

Output:

New refresh temperature of affected field

01 for Node n = AffectedNodeCount - 1 : 0 do

02
03
04
05
06
08 end

Update and re-slice node of affected field.
Construct new node of affected field.
Connect neighbors of new node.

Update LU Vector of affected field.
subADILU VectorSolver(UpdateL. U Vector).

07 Update temperature of affected field.

Fig. 5.3: Local Refinement Framework.
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Chapter 6

Conclusions

3D ICs, which deal with cost-effective achievement by increasing the densities of interconnec-
tion between dies, are regarded as an attractive alternative solution for overcoming the bottle-
necks on 2D planar ICs. In fact, 3D ICs offer the increased system a large number of advantages.
However, one of critical challenges is heat dissipation due to higher accumulated power density
and lower thermal conductivity of inter-layer dielectrics for vertical stacking layers of active
tier. In this way, the management of thermalissues should be considered during physical design
stages rather than only post-packaging verification on the future highly integrated systems. For
these reasons, we develop an adaptive thermal simulator applying our 3D-AADI algorithm ac-
cording to ADI method to provide temperature distribution during 3D IC physical design flow
from floor-plan to verification.

The simulator constructs adaptive size of simulation grids to avoid the limited simulating
performance of the most critical position. Furthermore, we apply the concept of ADI iteration
method to non-uniform nodes. Eventually, the 3D-AADI tool can be regard as both a reliable
thermal simulator and a thermal-driven kernel on 3D IC design flow. The simulator we devel-
oped is both adaptive and incremental.

We proposed a thermal simulator on 3D IC applying our 3D-AADI algorithm according
to ADI concept to deal with temperature distribution during 3D IC physical design flow from
floor-plan to verification. In order to avoid the performance limitation of the most critical po-
sition such as hot spots and (thermal or signal) TSVs, this simulator utilizes adaptive analysis
size of grids. Furthermore, we develop 3D-AADI algorithm according to the concept of ADI

iteration method and analysis the non-uniform meshing calculation and convergence. Finally,
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the simulator we developed is both adaptive and incremental, because the 3D-AADI tool can
be regard as both a reliable thermal simulator and a thermal-driven kernel on 3D IC design flow

from floor-plan to verification.
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