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摘      要 

 

經由提高晶片之間互連導線密度達到成本效益的三維度積體電路，被視為一個解決二維度

平面積體電路的良好替代方案。三維度積體電路確實提供快速成長的電路系統許多益處，然而，

由於主動電路層垂直堆疊造成較高的功率密度和較低的導熱特性，散熱問題成為其所面臨到的

棘手挑戰之一。因此，相較於過往對於溫度只做封裝前的電路驗證是不夠的，對於未來高整合

系統而言，溫度議題的處理需要被提早到實體設計階段做考量。基於這些原因，吾人使用提出

的 3D-AADI 演算法於從平面規劃 (floor-plan) 階段到驗證 (verification) 階段，研發了一個具有

網格分析適應性的溫度模擬器。 

本篇論文提出的三維度積體電路溫度模擬器，不僅在效率和精準度之間取得平衡的低複雜

度演算法，更可以建造出具適應性分析網格以避免因非關鍵區域造成的不必要時間浪費。此分

析器包含四個程序分別是：熱趨勢的估計、初始適應性網格的建立、非規則性矩陣的建立、和

3D-AADI非規則性矩陣的運算。由實驗結果顯示，此分析器在0.01%的收斂率下達到數百倍的速

度提升，而因線性複雜度，隨著分析解析度越密加速更為顯著。此外，此分析器具有可以部分

更新 (incremental) 的特性對應用於考慮溫度設計流程 (temperature-aware design flow) 中，是十

分有效率的應用。 
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ABSTRACT 

 

 

3D ICs, which deal with cost-effective achievement by increasing the densities of interconnection 

between dies, are regarded as an attractive alternative solution for overcoming the bottlenecks on 2D 

planar ICs. 3D ICs offer the increased system a large number of advantages; however, one of critical 

challenges is heat dissipation due to higher accumulated power density and lower thermal conductivity 

of inter-layer dielectrics for vertical stacking layers of active tier. In this way, the management of 

thermal issues should be considered during physical design stages rather than only pre-packaging 

verification on the future highly integrated systems. For these reasons, we develop an adaptive thermal 

simulator applying our 3D-AADI algorithm for providing temperature distribution to 3DIC physical 

design flow from floor-plan level to verification level.  

 

The proposed 3DIC thermal simulator, 3D-AADI, both utilizes low-complexity algorithm for 

achieving both efficient runtime and accuracy and constructs adaptive simulating granularity for 

avoiding unwanted runtime and resource consumption in non-critical position. Furthermore, 3D-AADI, 

including estimating heat trend, constructing initial adaptive grids, establishing non-uniform structure, 

and calculating 3D-AADI matrix processes, improves two orders of magnitude under 0.01% 

convergence in experimental results. As a result of linear complexity, the finer simulating granularity 

leads to the more speeding up. Due to the partial updating characteristics, 3D-AADI can not only be 

regarded as a reliable thermal simulator but also be applied to 3DIC design flow as a thermal-driven 

kernel.  
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Chapter 1

Introduction

Performance of chip systems has been successfully enhanced by downscaling the chip minimum

feature size. This benefits systems to operate at a higher frequency for performing more compu-

tations per second. However, the shrinking scale of IC technology also results in higher power

density, more metal layers with higher densities, and dielectric materials with lower thermal

conductivities, which significantly impacts on both signal propagation delay and manufactur-

ing reliability. Consequently, the advantages of 3D ICs become an attractive solution to relieve

2DIC bottleneck.

As the number of functions on one chip increases, more and more products have involved

the stacking of dies to minimize system size. Nowadays, there are several three-dimension inte-

gration chip (3DIC) approaches that deal with cost-effective achievement by striking a balance

between planar interconnects and vertical through-silicon vias (TSVs). 3D ICs are regarded as

an attractive alternative solution for overcoming the wire-length bottleneck of interconnection

and the physics of lithography on 2D planar ICs. three-dimension integration chips (3D ICs)

offer the increased system a large number of advantages such as miniaturization in chip area, ,

reducing form factor, reducing wire length, reducing interconnect delays [1] [2], lower power

consumption [3], supporting for mixed-technology chips, and heterogeneous SoC design.

1.1 Background on Thermal Simulation

However, there are several challenges such as TSVs, micro-bump, low temperature bonding,

and thin-wafer handling of manufacturing, thermal management, design methodologies and
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tools of design, known-good-die and yield-improving of testing. One of the critical challenges

that IC designers must consider is heat dissipation due to higher accumulated power density and

lower thermal conductivity of inter-layer dielectrics [4] [5] for the vertical stacking of active

tiers and interposer tiers. Furthermore, several previous studies of both computer aided design

(CAD) tools and reference flow for 3D ICs [1] [6] indicate that the management of thermal

issues plays an important role in the future generation of highly integrated systems due to the

highly complex problem of heat dissipating on 3D ICs. That is to say, thermal analysis should

be concerned not only on the verification level but also on the design level.

The algorithm of thermal simulators can be categorized into analytical and numerical meth-

ods. Analytical methods [7] [8] [9] are suitable for early design stages since the advantages

on both avoiding the volume meshing calculation of entire substrate, and representing closed-

form by modeling for temperature distribution. Hence, analytical methods are flexible to obtain

the temperature distribution of certain user-specified regions without performing the thermal

simulation for the entire chip.

The other category of thermal simulators is the numerical method, which applies the finite-

difference method (FDM) or finite-element method to transform heat-transfer equations into

thermal-circuit equations. For the constructed circuit network, several methods have been pro-

posed for saving run-time. [10] analyzed the efficiency of simulating execution on transient

state by model order reduction technique. [11] applied the multi-grid algorithm to improve the

convergent rate of iterations and proposed a reduction scheme to reduce the runtime of dynamic

thermal simulation. [12] utilized alternating-direction-implicit (ADI) method to separate the

equivalent circuit system into different alternating subsystems by considering the property of

linear complexity on each sub-system.

In recent years, great importance has been made in the area of 3DIC thermal analysis. Fur-

thermore, because of the stacking material and techniques on 3D ICs, the extensive range of lo-

cal heating and vertical dissipation of temperature distribution must be concerned. For designers

of high-performance 3D ICs, it is essential to apply an accurate simulator by considering adja-

cent heating to enhance simulating reliability. In addition, because of the flexibility for handling

the complicated structure, the numerical category is treated as the main stream on back-end de-
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sign stages such as the post-layout thermal verification. However, several numerical approaches

handling with simulation model on uniform slicing are performance-limited by the most crit-

ical position such as thermal or signal through silicon vias (TSVs) [12]. [12] consumed some

runtime and hardware resource on analyzing uniform geometry for the much more non-critical

positions such as substrate. In order to be more efficient, several approaches can solve adaptive

simulating geometry. For example, [13] handled both uniform and non-uniform slicing due to

the connecting rule between blocks; however, the characteristic also caused the simulating lim-

itation to be suitable on the floor-plan stage rather than on the placement stage. This limitation

of simulating number induces unsuitability on both high-performance and function-increasing

3D ICs. Although [14] modified the connecting rule by enhancing grid-based simulating mode,

both [13] and [14] neglected the thermal impact for TSVs. On the other hand, techniques such

as [11] [13] [15] and [16] have been developed to construct adaptive thermal modeling, but

they are suitable to be verification tools rather than thermal-driven design kernel because of the

incremental incapability. Indeed, great importance of thermal analysis has been made on both

physical design and verification of 3D ICs [1] [6].

1.2 Our Contributions

To summarize, we are eager to develop an algorithm with the following advantages for both

tape-out verification and high-performance physical design.

a). low-complexity algorithm for achieving both efficient runtime and accuracy.

b). referring estimator to provide a thermal reference for heat trend (where heat trend means es-

timation of power distribution, TSV cells, and thermal conductance using the compact thermal

model).

c). adaptive simulating geometry for avoiding unwanted runtime and resource consumption in

non-critical position.

d). partial updating analysis for local refinement and incremental characteristic.

In order to achieve these goals, this work derives several processes, including estimating heat
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trend, constructing initial adaptive grids, establishing non-uniform structure, and calculating

3D-AADI matrix. Although local-refined process of our whole flow (shown in Fig. 5.1) has not

been addressed, the major contributions of this work are:

1. Initial Heat Estimator:

We can develop a referring estimator to provide the heat trend as simulating reference

by applying z-tile compact thermal model. According to the curve of grid-number and

heat distribution, we set criteria and find out a suitable-analyzing resolution by taking

chip-size, runtime, and accuracy into consideration.

2. Initial Adaptive Simulation Grids:

We can strike a balance between the runtime and the accuracy. The simulating geometry

can avoid being performance-restricted by the most critical position usually on hot spots

and (thermal or signal) TSVs, since we develop the grid-construction processes depending

on heat gradients to build adaptive geometry of simulation grids, where heat gradient

means the gradient of the heat trend.

3. Non-Uniform Meshing Construction and Calculation of 3D Adaptive ADI (3D-AADI):

We can construct adaptive simulating geometry and develop non-uniform scanning algo-

rithm to handle non-uniform meshing which traditional ADI methods utilized on uniform

spatial step size of each direction can not deal with. Besides, We are the first one who

are eager for the property of linear complexity of ADI concept by concerning both a huge

amount of computation and incremental updating during temperature-aware design on 3D

chips.

4. One of Good Solutions for Application on Thermal-Driven Design Due to Incremen-

tal Property:

3D-AADI thermal conductance matrix of non-uniform meshing can be locally updated

on only the affected region rather than entirely re-construct and do LU-decomposition

entirely. In this way, it is a good solution to be treated as a thermal kernel in temperature-

aware design flow due to not only the non-uniform ability of node meshing but also the

incremental data structures of the updated sub-circuit.
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1.3 Organization of the Thesis

The rest of the paper is organized as follows. We first formulate our concerning problem in

Chapter 2. Then we illustrate the overview of the whole 3D-AADI procedures in Chapter 3

and organize it into four parts which are initial heat estimator in section 3.1, adaptive simula-

tion grids in section 3.2, non-uniform meshing construction on 3D-AADI in section 3.3, non-

uniform meshing calculation on 3D-AADI in section 3.4. Besides, we discuss local refinement

and incremental property in section 5.2 as the applications and future works. In the last chap-

ter, we summarize the contributions, provide concluding remarks and analyze the experimental

results about our 3D-AADI work.
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Chapter 2

Problem Formulation

The geometric information of device location and power dissipation on placement are known

as input data. In fact, the input information we need is the material structure and the power

distribution, so 3D-AADI thermal simulator can be applied to the stages from partition level to

tape-out verification level. This simulator can provide temperature distribution profiles on each

simulating tier including the active CMOS layers, interposer layers, and substrate layers.

Since the operating frequency of today’s manufacturing technology node is much faster

than the speed of heat dissipation, it is reliable to analyze temperature distribution on steady

state [17] [9]. We extract the power library by power simulating tools, considering internal,

switching and leakage power as the total power of each device. Based on [18], the heat sink

thermal conductance of the primary and secondary heat transfer paths can be modeled as com-

ponents and connected with thermal conductance into simulation meshing. Since the ambient

air has a constant temperature, the primary and secondary heat sink models respectively connect

the bottom and the top terminal with a constant voltage, room temperature node. Fig. 2.1 shows

the compact thermal model of N layer 3D IC.

Furthermore, [15] showed the effects of various cooling techniques and indicated that through

dummy thermal vias had a very effective cooling influence on temperature dissipation. In this

way, TSVs must be considered in 3DIC thermal simulation. For the reason that the routing de-

tail of interconnects on the given placement design is not complete, we build each interconnect

layer and TSV alignment routing interposer layer into equivalent thermal model based on the

weighted summation of each material thermal conductance. As a result of the package struc-

tures, the heat-transfer effect of air on vertical surfaces is strictly much less than that of primary

6



Fig. 2.1: The considering geometry of N layer 3D chip.

and secondary heat sinks on horizontal surfaces. For these reasons, the boundary of four vertical

surfaces can be treated as adiabatic [8] [9].

Based on the law of energy conservation, thermal approaches analyze temperature distribu-

tion of heat transformation [19] by the following partial differential equations, Eq.(2.1).

ρCp
∂T (−→r , t)

∂t
= O · [k(−→r , t)OT (−→r , t)] + g(−→r , t) (2.1)

subject to the thermal boundary conditions

k(−→r , t)∂T (−→r , t)
∂ni

+ hiT (−→r , t) = fi(
−→rsi , t), (2.2)

where ρ is the material density, Cp is the mass heat capacity, T (−→r , t) and k(−→r , t) are time- and

space- dependent temperature and thermal conductivity of the material, g(−→r , t)is the generat-

ing rate of heat source, hi is the heat transfer coefficient on the boundary surface of the chip,
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fi(
−→rsi , t) is an arbitrary function on the boundary surface si, and ∂

∂ni
is the differentiation along

the outward direction normal to the boundary surface si.

Since we apply the heat-transfer equation to steady-state condition, the left part of Eq.(2.1),

which is not variable with time parameter is equal to zero shown on Eq.(2.3). The steady-state

heat-transfer equation Eq.(2.4) can be derived as follows.

0 =
∂T (−→r , t)

∂t
=

1

ρCp
O · [k(−→r , t)OT (−→r , t)] +

1

ρCp
g(−→r , t) (2.3)

− 1

ρCp
g(−→r , t) =

k

ρCp
O · [OT (−→r , t)] (2.4)

In order to solve the temperature distribution with finite-difference method and finite-element

method, we apply the central-finite-difference approximation and discretize Eq.(2.4) in the spa-

tial domain to construct the given design into equivalent thermal conductance circuits shown in

Fig. 2.2. After modeling this equivalent circuit, it can be stamped into matrix equation, Eq.(2.5),

based on modified nodal analysis (MNA) method. The parameter G is the thermal conductance

coefficient of corresponding grid by equivalent weighted summation, parameter t represents

the concerning temperature vector of corresponding grids, and p is the heat source vector of

corresponding grids.

Fig. 2.2: The thermal circuit model of this numerical thermal simulation on steady state.

Gt = p (2.5)
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Chapter 3

The Framework of 3D-AADI Simulator

We approach a both adaptive thermal simulator and integrable thermal-aware kernel on 3D ICs.

It considers three-dimension structure [6] practically and provides the whole 3DIC temperature

distribution of steady state. In order to generate the adaptive simulating geometry depending

on thermal gradients at the beginning, we utilize the characteristics of heat dissipation as our

initial heat estimator. Furthermore, we develop our 3D-AADI algorithm that not only has the

property of linear complexity based on the ADI concept but also applies it into non-uniform

simulation grids on both construction and calculation. Since we do take incremental application,

local refinement, and temperature-aware design into consideration, 3D-AADI algorithm can be

applied to local refinement and incremental updating during design iterations. That is to say, this

simulator can both provide adaptive temperature distribution profile depending on user-defined

or estimator-suggesting granularity, and be suitable to be applied to 3DIC CAD flow.

For temperature verification, Fig. 3.1 gives an overview. At the beginning, simulator parses

3DIC geometry, power library and material files as input information to build heat sources

and thermal elements of simulation grids. Then, the first process for 3D-AADI is to provide

heat-trend curve as estimator-defined suggestion or to initially discretize the chip into grids of

user-given resolution. The second process of 3D-AADI is to establish the adaptive simulating

geometry by referring the estimating heat gradients. The third is to construct non-uniform ther-

mal circuits, and the fourth is to solve matrices of non-uniform meshing by 3D-AADI algorithm

to provide the temperature distribution profiles as output results.

On the other hand, local refinement and incremental-kernel application are discussed as

future works on section 5.2.
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Fig. 3.1: An overview of this work (which is in the background-color blocks). Authors explain
the left-middle orange block on section 3.1, the left-down purple block on section 3.2, the right-
up gray block on section 3.3, and the right-middle blue block on section 3.4.

3.1 Initial Heat Estimator

As a quick estimator, we utilize 1D tiles which is composed of the compact thermal model

(shown in Fig. 3.2) being our initial temperature estimator to obtain heat estimation. Concerning

the accuracy of the compact thermal modeling, there are two reasons that the heat-dissipating in-

fluence on vertical is much more obvious than on horizontal. First, the primary heat-dissipating

path, including the primary and the secondary heat sinks decided by chip package, is vertical.

Second, the boundary of four vertical surfaces can be treated as adiabatic [8] [9]. However,

different estimating resolution causes different error rate. For the reason that 1D thermal model

regards lateral heat dissipation as adiabatic between grids, and puts total power on the center of

each units, it indicates that the bigger grid-number makes both a larger amount of error due to

ignoring more lateral heat transformation and a larger amount heat distributing information of
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each grid. On the other hand, smaller grid-number makes both a smaller amount of modeling

error due to considering more lateral heat transformation and a larger amount temperature-like

information of averaging feature. For these reasons, we can balance the trade-off between heat-

distributing information and temperature-like information. In this way, plotting curves shown

in Fig. 3.3 indicates us the suitable estimating grid-number resulting from ignoring suitable

amount of lateral heat transformation.

Fig. 3.2: The z-tile model of proposed initial estimator.

As soon as the simulator constructs the cell (including TSVs) information of power, material

and position, curves (shown in Fig. 3.3 of grid number and heat difference display two parts, the

linear region and the saturation region. The linear region for low grid number presents too much

average property to concern accurate power distribution. On the other side, the saturation region

for high grid number presents too much power distribution to concern lateral heat dissipation.

In order to choose good suggesting resolution, we set criteria by abandoning the extreme and

by obtaining enough heat information. On Eq.(3.1), we choose the integer level whose average-

heat-difference changing rate is stable than its previous level,so we find the integer i such that

average-heat-difference changing rate of leveli is very close to that of leveli+1.
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Fig. 3.3: The z-tile curves built by initial heat estimator for test chip 1 (on left one) and test
chip 2 (on right one). The x-scale presents planer grid number which is gridx by gridy of every
simulating z-tier. The y-scale presents the average of heat difference comparing with average
temperature of the entire chip.

1 <
(AvgErri − AvgErri−1)/AvgErri−1

(AvgErri+1 − AvgErri)/AvgErri
< 1 + ε (3.1)

where AvgErri is the average of heat difference of i resolution reference by comparing with

chip average temperature, ε is a small and positive real number. Then, we divide the whole

chip into grids of suggesting level, which can be user-given beforehand or estimator-defined by

Eq.(5.1). In this way, the initial estimator applying 1D z-tile method for obtaining the trend of

thermal dissipation is reliable to be the reference approximation on proper simulating grid size.

3.2 Adaptive Simulation Grids

Although there have been several approaches that applied finite-difference method to analyzing

thermal dissipation, the runtime and the accuracy of their simulator are performance-limited by

the most critical position usually on hot spots and (thermal or signal) TSVs. We develop our

adaptive structure of simulation grids to eliminate the limited performance on spatial size of
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critical simulated elements.

Fig. 3.4: The merging processes of each level decide the analyzing geometry by computing the
gradients of initial estimator. The figure is a simple example of grid-merging process after the
estimating temperature distribution is computed.

In order to construct adaptive simulation geometry, we approach “level” as the simulating

size of grids. Take Fig. 3.4 for example, the finer grids belong to the higher level, and the

coarser grids belong to lower level. As shown in Fig. 3.4, we illustrate a simple example of

merging process. First of all, the heat information provided by z-tile estimator has been set up

on part A, B, C, and D, each one of which is composed of four leveli+1 grids on leveli merging

process. Secondly, we divide the section into finer grids with larger gradients and to merge the

section to coarser grid with lower gradients, where “gradient” represents the summation of heat

differences for four leveli+1 children in leveli merging process. After choosing the lowest heat

information of four members for being the comparing base, we calculate the gradients on every

sections of all levels to make the merging decisions. In order to reveal the maximum difference

between children, we define gradient of section k including MergeCount children grids as:

gradient(k) =

MergeCount−1∑
j=0

(Tj −min {Tk}), (3.2)

where MergeCount is the children count of the merging section. Then, until each simulating

units satisfy the gradient threshold, the entire simulating geometry is constructed. Therefore, the

resolution units sliced on initial estimating are merged to coarser level grid size if the gradient

between its neighbors is smaller than the given gradient threshold. Otherwise, the original size
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grids are flagged leaf as the current level in leveli merging. Finally, our simulator, constructing

each grid (shown in Fig. 3.6(a)(b)) into equivalent circuit (shown in Fig. 3.6(c)) by using thermal

resistant model (shown in Fig. 2.2), considers both lateral and vertical thermal dissipation.

3D-AADI: Adaptive Simulation Grids Framework
Input:

Material structures and power dissipation
Output:

Data structures of node list on the whole chip
01 Calculate average temperature by total power and

equivalent kappa of each layer.
02 for each material Z layer do
03 Decide grid number according to gradient of average

temperature between neighbor layers.
04 end
05 Estimate initial temperature based on Z-tile simulating

on the defined maximum grid granularity.
06 if LocalRefine == true then
07 Modify MaxLevel
08 for level i = MaxLevel - 1 : 0 do
09 Calculate gradient and average temperature of

each grid on level i.
10 end
11 for level i = MaxLevel - 1 : 0 do
12 for grid k = LevelGridCount - 1 : 0 do
13 if LevelGridGradient >= Threshold then
14 Construct(/Make leaf) Node as level i + 1
15 end
16 for grid k = LevelGridCount - 1 : 0 do
17 if one of grid neighbors has been Node then
18 Construct(/Merge) Node as level i
19 end
20 end

Fig. 3.5: Adaptive Simulation Grids Framework.

Pseudo code of adaptive simulating grids framework is derived in Fig. 3.5. First of all,

we calculate average temperature by total power and equivalent kappa of each layer to decide

the z grid number. Then, we establish the initial heat estimation by slicing into user-given or

estimator-defined proper granularity, and check every grids until the whole geometry of simu-

lating grids are adaptive for satisfying the gradient threshold.
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Fig. 3.6: The geometry distribution of adaptive simulation grids considering the gradient of es-
timating temperature. (a) The front view of chip sliced into simulation grids. (b) The front view
of non-uniform simulating case of our test chip 2. This is also the initial adaptive geometry on
layer 1 of Fig. 4.8. (c) The perspective view after constructing the equivalent thermal resistant
mesh of 3D chip, and the front view is shown on (a).

3.3 Non-Uniform Meshing Construction on 3D-AADI

For a given chip, the temperature distribution in the steady state is governed by Eq.(2.3) and

is subject to the boundary conditions in Eq.(2.2). To solve Eq.(2.4) with the finite-difference

method, discretization is necessary in spacial domain. When u is differentiable at x, then we

have the following limit by Taylor’s formula:

u(x+ h) = u(x) + h
du

dx
+
h2

2

d2u

dx2
+
h3

6

d3u

dx3
+
h4

24

d4u

dx4
(ξ+) (3.3)

for some (ξ+) in the interval (x, x+ h) and

u(x− h) = u(x)− hdu

dx
+
h2

2

d2u

dx2
− h3

6

d3u

dx3
+
h4

24

d4u

dx4
(ξ−) (3.4)
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in which (ξ−) belongs to the interval (x − h, x). Therefore, adding Eq.(3.4) and Eq.(3.3), and

dividing through by h2, the approximation of the second order derivative of u at x is

d2u(x)

dx2
=
u(x+ h)− 2u(x) + u(x− h)

h2
− h2

12

d4u

dx4
(ξ), (3.5)

where ξ− ≤ ξ ≤ ξ+. The formula is called a centered difference approximation of the second

derivative.

Applying the centered difference approximation in Eq.(3.5) to a finite number of grid points

in a second-order parabolic partial differential equation,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
,

u(x, y, z, 0) = u0(x, y, z), (3.6)

with u (independent of t) prescribed on the boundaries for the ∂2

∂x2
, ∂2

∂y2
, and ∂2

∂z2
terms, we use a

mesh size of ∆x for the x variable, ∆y for the y variable, and ∆z for the z variable to discretize

the continuous spacial domain into mesh grids. Then, according to central finite-difference

discretization, the second order accurate approximation of the temperature T (−→r ) at grid point

(i, j, k) can be replaced by T (i∆x, j∆y, k∆z) which is denoted as T ni,j,k for the rest of the paper

with respect to x can be expressed as:

∂2T

∂x2
|ni,j,k =

T ni−1,j,k − 2T ni,j,k + T ni+1,j,k

(∆x)2
+O((∆x)2) (3.7a)

≈
T ni−1,j,k − 2T ni,j,k + T ni+1,j,k

(∆x)2
≡ δ2

xT
n

(∆x)2
, (3.7b)

where the truncation error is O((∆x)2), and similar processes can be applied to the y and z

directions.

Concerning ADI method, it introduced by Peaceman and Rachford [20], and Douglas and

Gunn [21] in the mid-1950s was developed for solving equations arising from finite difference

discretization of elliptic and parabolic PDEs.

We define the deviation eni,j,k of the evolving solution T ni,j,k from the desired finite-difference

approximation to the steady-state convergence, T ∗x,y,z. Substituting Eq.(2.4) and Eq.(3.7b), the

convergent solution T ∗ satisfies the equation

µ

[
δ2
x

(∆x)2
+

δ2
y

(∆y)2
+

δ2
z

(∆z)2

]
T ∗ = p (3.8)
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where µ is k
ρCp

. Therefore, this deviation is given at the nth iteration by

eni,j,k = T ni,j,k − T ∗i,j,k. (3.9)

Eq.(3.8) using central finite-difference discretization results in the system of equation,

Ht + Vt + Zt = p, (3.10)

where H, V, and Z represent the central finite-difference discretization in Eq.(3.7b) to the op-

erators δ2x
(∆x)2

, δ2y
(∆y)2

, and δ2z
(∆z)2

in Eq.(3.8), respectively. The ADI algorithm consists of iterating

by solving Eq.(3.10) in the x, y, and z directions alternatively as follows.
(H + ρnI) · t(n+ 1

3) = p− (V + Z− ρnI) · t(n)

(V + ρnI) · t(n+ 2
3) = p− (H + Z− ρnI) · t(n+1

3)

(Z + ρnI) · t(n+1) = p− (H + V− ρnI) · t(n+2
3)

(3.11)

where ρn is a sequence of positive acceleration parameters. Since this work applies ADI concept

to non-uniform geometry, analyzing of ρn is still a difficulty to address.

Take Fig. 3.7(b) for example, when x sub-iteration executing, the one and only uncertainty

is x implicit vector, the connection of other directions are explicit. For the executing direction

d, the “Scan and do LU-decomposition for every LUVectorLists on d” function in Fig. 3.9 first

checks this node being the head (e.g. Fig. 3.8 node 1, 9, 17, 18, and 27) of LU vector or not.

For these head nodes, we find all neighbors to direction d and assign this node to be the head of

these LU vectors for all branches (i.e. node 1, 9, and 17 have one, node 18 has two, and node

27 has four branch vectors to x−direction in Fig. 3.8) on d. Then, for each neighbor, we point

to the next only one neighbor (e.g. Fig. 3.8 node 2, 10, 18, 19, 23, 28, 32, 37, and 40) on d

and add it to be members of its LU vector until there is not only one neighbor (e.g. Fig. 3.8

node 18) or until the level of pointing node is smaller than that of head node (e.g. Fig. 3.8 node

39). Next, we regard this node as end (e.g. Fig. 3.8 node 8, 16, 18, 22, 26, 31, 35, and 39)

of this LU vector and assign the end to be also the head of all next neighbors on d. Finally,

after “Solve LUt = p by reusing LU-decomposition for every LUVectorLists on d” function in

Fig. 3.13 provides new temperature for this LU vector, we update these new results into data

structures. Furthermore, in order to overcome the convergence and to keep the accuracy, we
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Fig. 3.7: (a) The constructing mesh including all directions. (b)(c)(d) One of different al-
ternative directions utilizing 3D-AADI method when scanning on x−, y−, and z−direction,
respectively. The step by step illustrate the framework of scan and solve LUVectorList of d.

treat every nodes with the same LU updating frequency on non-uniform meshing by making the

end implicit and the head explicit (e.g. Fig. 3.8 node 18) of the node being both head and end.

Besides, we deal with the updating temperature of gathering end (e.g. Fig. 3.8 node 39) to be

the average of all these gathering results. Similarly, y-direction and z-direction, the other two

sub-iteration utilize the same scanning rule.

Generally speaking, ADI method is one of numerical iterative methods. This method has the

properties of linear complexity because of separating the equivalent circuit system (Eq.(2.5))

into different alternating subsystems. This characteristic guarantees that G matrix of every

direction can be performed linearly during LU decomposition. Take Gx matrix, a subsystem

on x−direction, for example, several sub-LU matrices is shown on Fig. 3.10, where Gxk , one

thermal conductance sub-matrix, is tridiagonal and linear time complexity during matrix solving
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Fig. 3.8: Finding the stamping LU members on x-direction of one of every layers on our 3D-
AADI algorithm. The red rings stand for gathering nodes.

. In other words, each direction of ADI method is only related to the front and the back nodes, so

solving-matrix execution of G on each direction has linear runtime. Since the strict convergence

threshold causes the more times of iteration, the convergence rate of iteration can be controlled

by the user given accuracy which is in our guaranteeing range.

3.4 Non-Uniform Meshing Calculation on 3D-AADI

According to the property of linear complexity, ADI algorithm is suitable to be applied to solve

the larger scale matrix. Furthermore, in order to conquer the performance limitation due to

finite-difference method on both critical and non-critical positions, we develop 3D-AADI algo-

rithm and display the convergence of non-uniform meshing nodes. In addition, authors apply

it to solving the non-uniform nodes. The illustration of scanning and deciding the members of

every LU lists on x, y and z directions is shown in Fig. 3.8, Fig. 3.11 and Fig. 3.12, respectively.

Taking this simulating geometry for example, there are three kinds of simulating size which are

constructed by the previous geometry-deciding process (on section 3.2). After scanning and
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3D-AADI: Scan and do LU-decomposition for every LUVectorLists on d Framework
Input:

Doing direction d
Output:

LUVector lists and LU-decomposition results of sub-iteration d

01 for Node n = NodeCount - 1 : 0 do
02 if (n belongs to boundary of head)

or (there exists Head) then
03 for Neighbor nei = NeiSize - 1 : 0 do
04 Add n to be Head of this LUVector.
05 This = next neighbor (on d) of n.
06 while This has only one next neighbor do
07 Add This into this LUVector.
08 This = next neighbor (on d) of This.
09 if This.level < Head.level then
10 break
11 end
12 Add This to be End of this LUVector.
13 for Neighbor Nnei = ThisNeiSize - 1 : 0 do
14 Add This to be Head of Nnei’s LUVector.
15 end
16 if Head belongs to boundary of head then
17 Stamp subLU members excepting Head.
18 else
19 Stamp subLU members including Head.
20 subLU-DecompositionSolver(ThisLUVector).
21 end
22 end

Fig. 3.9: Scan and do LU-decomposition for every LUVectorLists on d Framework.

deciding the members of every LU lists, we construct thermal circuits and stamp thermal con-

ductance based on our 3D-AADI algorithm into LU-decomposition solver. (The pseudo code

in detail of scanning function is derived in Fig. 3.9.) As shown in Fig. 3.10, it plays a very

important role that the execution time of each sub-Gx matrices, Gxk , is linear with number

of unknown nodes. It is also important that the dimensions of each sub-matrix, Gx1 , Gx2 , ...,

and GxN , are independent. In this way, the linear complexity property of each sub-LU matrix

implies to the linear complexity property of the entire algorithm. We elaborate the framework

of non-uniform meshing calculation on 3D-AADI by Fig. 3.13. First of all, we scan and do

LU-decomposition for every LUVectorLists on every d to obtain the LU-decomposition results

for reusing during iterations. Secondly, while the maximum of absolute temperature difference

at last iteration is bigger than the given convergent threshold, we execute the next iteration in-
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Fig. 3.10: The entire stamping LU matrix of x-direction on our 3D-AADI algorithm. The
dimension of unknown-node vector for every sub-LU matrices, Gx1 , Gx2 , ..., and GxN can be
independent. In this way, the linear complexity property of each sub-LU matrix implies to the
linear complexity property of the entire algorithm.

cluding three sub-iteration, x, y and z directions. Concerning the gathering nodes generated

by non-uniform construction, we average all gathering results of relating LUVectorLists to bal-

ance the convergence and the accuracy. The gathering nodes are defined by red rings shown

in Fig. 3.8, Fig. 3.11, and Fig. 3.12. The function named “Scan and do LU-decomposition for

every LUVectorLists on d” on line 2 of Fig. 3.13 scans and executes LU-decomposition for ev-

ery LUVectorLists of direction, d. As long as one entire iteration, including three sub-iteration,

is done, we calculate the maximum and average difference temperature to decide whether it is

convergent or not.

According to the following derivation, because of the non-uniform meshing of thermal con-

ductance and the independent dimension between sub-LU matrices, convergent iterations and

executing time are wasted by waiting different convergence of several matrices with different

numerical scale. We apply the matrix splitting [22]

G = M− N (3.12)

to the constructed original linear system, G, of Eq.(2.5). Then, (M − N)t = p can be defined
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Fig. 3.11: Finding the stamping LU members on y-direction of one of every layers on our
3D-AADI algorithm. The red rings stand for gathering nodes.

Fig. 3.12: Finding the stamping LU members on z-direction of one of every layers on our 3D-
AADI algorithm. The red rings stand for gathering nodes. Besides, the rings with dotted lines
stand for the horizontal neighbors on the same layer on z-direction.
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3D-AADI: Non-Uniform Meshing Calculation Framework
Input:

Data structures of node list on the whole chip
Output:

Convergent 3D-AADI temperature distribution
01 for Direction d = 0 : 2 ( X−, Y−, Z− ) do
02 Scan and do LU-decomposition for every LUVectorLists on d.(Fig. 3.9)
03 end
04 while (AbsoluteMaxDifferenceT > ConvergentThresholdT)

or (iteration == 0) do
05 AbsoluteMaxDifferenceT = 0
06 for Direction d = 0 : 2 ( X−, Y−, Z− ) do
07 Solve LUt = p by reusing LU-decomposition for every LUVectorLists on d.
08 for Node n = NodeCount - 1 : 0 do
09 if End node belongs to gathering tail then
10 n.newT = average of all n.newT.
11 n.oldT = n.newT.
12 end
13 end
14 Update AbsoluteMaxDifferenceT for checking convergency.
15 iteration ++ .
16 end

Fig. 3.13: Non-Uniform Meshing Calculation Framework.

by recurrence,

tk+1 = M−1Ntk + M−1p, (3.13)

where tk+1 is implicit and tk is explicit during iterations. For solving the system, tk is ap-

proaching tk+1 when the iteration converges. Eq.(3.13) has the relation

(
I−M−1N

)
t = M−1p.

Utilizing Eq.(3.12), we replace N with M−G and derive as following.

(
I−M−1 (M−G)

)
t = M−1p.

(
I−M−1M + M−1G

)
t = M−1p.

M−1Gt = M−1p. (3.14)

The Jacobi iteration determines the ith component of the next approximation so as to anni-

hilate the ith component of residual vector. In the following, uki denotes the ith component of
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the iterate tk and pi the ith component of the right-hand side p in Eq.(2.5). Thus, writing

(
p−Gtk+1

)
i

= 0,

in which (vector)i represents the ith component of vector, yields

giiu
k+1
i = −

n∑
j=1,j 6=i

giju
k
j + pi

or

uk+1
i =

1

gii

(
pi −

N∑
j=1,j 6=i

giju
k
j

)
, i = 1, ..., N, (3.15)

where gij is (i, j) component of G. Then, block relaxation schemes [22] are generalizations

of point relaxation schemes described in Eq.(3.15). They update typically a subvector of the

solution vector, instead of only one component. The matrix G and the right-hand side and

solution vectors are partitioned from Eq.(2.5) as follows:

G =


G11 G12 · · · G1m

G21 G22 · · · G2m
...

... . . . ...
Gm1 Gm2 · · · Gmm

 , t =


t1

t2
...
tm

 ,p =


p1

p2
...

pm

 , (3.16)

in which the partitionings of p and t into subvectors pi and ti are identical and compatible with

the partitioning of G. Thus, for any vector t partitioned as in Eq.(3.16), [Gt]i =
∑m

j=1 Gijtj, in

which [vector]i denotes the ith subvector of vector according to the above partitioning.

With the splitting definitions in Eq.(3.12) and the block relaxation schemes in Eq.(3.16),

we generalize the previous iterative procedures in Eq.(3.13). Then, the block Jacobi iteration is

now defined as a technique in which the new subvectors tki are all replaced according to

tk+1
i = M−1

i Nit
k
i + M−1

i pi, i = 1, ...,m, (3.17)

where Mi is the corresponding preconditioning sub-matrix, and Ni are the corresponding sub-

matrix of splitting matrices, M and N, in Eq.(3.12), respectively. In order to improve the con-

vergence of a preconditioned system in Eq.(3.13), we precondition each sub-matrix in Eq.(3.17)

for every diagonal entry before LU-decomposition of each sub-system.
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Since the implicit variables are only in one direction in each step, the matrix for solving the

ADI method at each direction is tridiagonal. During the LU decomposition, no matrix solving

is required, so runtime for solving the tri-diagonal matrix is linear. The complexity for ADI

methods is O(N · 3 · IJK) = O(nodeADI), where N is the iteration number, nodeADI is

the node account for solving problem, I , J , and K are the discrete number on x, y, and z,

respectively. Concerning the proposed 3D-AADI, we regard the nodes being both head and tail

are implicit on only being tail, the complexity for 3D-AADI methods is O(N · [(I1 + I2 + ...) +

(J1 +J2 + ...) + (K1 +K2 + ...)]) = O(node3DAADI), where node3D−AADI is the node account

for non-uniform geometry, Ik, Jk, and Kk is the node number of each LU vector on x, y, and z,

respectively. For the reason that node3D−AADI is much smaller than nodeADI , we improve the

efficiency by non-uniform geometry.
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Chapter 4

Experimental Results

To verify that 3D-AADI can not only provide accurate temperature but speed up on the same

resolution, we develop the entire 3D-AADI algorithm and provide the simulating results. Since

the complexity of 3D-AADI, which is linear, is much lower than the complexity of direct solving

thermal conductance matrix, the higher simulating resolution leads to the more speeding up.

Furthermore, 3D-AADI does save execution time and resource, that is to say, it can display the

finer simulating resolution on finite hardware resource.

The developed 3D-AADI thermal simulator is implemented in C++ language and tested on

a Linux system with Intel Xeon 3.0-GHz CPU and 32 GB memory. The size of given 3D test

chip 1, a 3-layer circuit, is 379.06 µm by 379.06 µm for width and height respectively, and the

size of given 3D test chip 2, a 3-layer circuit, is 6600 µm by 6600 µm for width and height

respectively. The unit of the shown temperature distribution is ◦C. The equivalent heat transfer

coefficients of the primary and secondary heat flow paths, and thermal conductivity are 8700

W/(m·◦C), 2017 W/(m·◦C), and 148 W/(m·◦C),respectively. The boundary condition of each

vertical surface is set to be isothermal [8] [9].

We demonstrated that our 3D-AADI simulator is much more efficient than traditional uni-

form ADI and FDM-MNA due to both avoiding the limited simulating performance of the most

critical position and to the mathematical complexity. The approach can be not only adaptive

for verification but incremental for application to 3D ICs especially on physical design due to

the huge computation. Furthermore, the 3D-AADI tool can be regard as both a reliable thermal

simulator and a thermal-driven kernel on 3DIC design flow.
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4.1 Adaptive Distribution Results

In order to strike a balance between the runtime and accuracy, 3D-AADI simulating geome-

try can avoid being performance-restricted by the most critical position usually on hot spots

and (thermal or signal) TSVs, because we develop the merging processes depending on heat

gradients to construct adaptive geometry of simulation grids.

We compare adaptive simulating geometry with traditional uniform slicing to verify that

3D-AADI does avoid the performance limitation by merging the much less critical position. In

this way, we display temperature by golden solution, uniform slicing of traditional ADI, and

adaptive slicing of 3D-AADI respectively to demonstrate our adaptive contribution.

Fig. 4.1 shows the temperature by Finite Difference Method on Modified Nodal Analysis

(FDM-MNA) temperature solver. Since the accuracy of FDM-MNA has been compared with

SPICE by the same FDM thermal model, we treat FDM-MNA results as simulating golden

solution. In order to compare both the convergence and accuracy, Fig. 4.2 shows temperature

distribution of every layer. Fig. 4.3 shows the solution which is convergent to 0.01% provid-

ing by 3D-AADI algorithm with non-uniform grids. Fig. 4.4 shows the temperature which is

convergent to 0.0001% by our 3D-AADI algorithm, where “convergent” means the maximum

comparison rate of every corresponding-grid temperature between this and lase iteration.

Although the temperature range in Fig. 4.2 and Fig. 4.3 is too small to demonstrate the

accuracy between 0.01% and 0.0001% convergence, our 3D-AADI can speed up 274 times

than FDM-MNA (shown on Table 4.1) especially for higher resolution. According to Fig. 4.6

and Fig. 4.7, they point out that 3D-AADI solution is both very fast (61 times than FDM-MNA

shown in Table 4.3) and very approaching to golden solution when it is 0.01% convergence.

As a result of linear complexity, 3D-AADI has much higher efficiency, 117 times, than FDM-

MNA. Besides, it is the same with golden solution when it is convergent to 0.0001% shown in

Fig. 4.8.

We can clearly indicate that our 3D-AADI tool can be regarded as both a reliable thermal

simulator and a thermal-driven kernel on 3D IC design flow. First, we display the results by

traditional ADI algorithm and compare with our golden solution, FDM-MNA under the same

simulating-grid geometry. Then, the maximum error percentage is under 10E-6. Furthermore,
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Fig. 4.1: Finite Difference Method on Modified Nodal Analysis (FDM-MNA) Results on test
chip 1. We regard the FDM-MNA temperature distribution as our golden solution and compare
the error rate with its average degree. The temperature profiles are shown by tiers of every active
layers. Actually, our simulating tiers on z can be much larger than active numbers depending
on user-setting accuracy.
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Fig. 4.2: FDM-MNA golden solution temperature with grids-number 32 by 32 of test case 1.

Fig. 4.3: The solution which is convergent to 0.01% providing by 3D-AADI algorithm with
non-uniform grids of test case 1.

Fig. 4.4: Temperature solution which is convergent to 0.0001% providing by our 3D-AADI
algorithm with non-uniform grids of test case 1.
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Fig. 4.5: Finite Difference Method on Modified Nodal Analysis (FDM-MNA) Results on test
chip 2. We regard the FDM-MNA temperature distribution as our golden solution and compare
the error rate with its average degree. The temperature profiles are shown by tiers of every active
layers. Actually, our simulating tiers on z can be much larger than active numbers depending
on user-setting accuracy.

30



Fig. 4.6: FDM-MNA golden solution temperature with grids-number 32 by 32 of test case 2.

Fig. 4.7: The solution which is convergent to 0.01% providing by 3D-AADI algorithm with
non-uniform grids of test case 2.

Fig. 4.8: Temperature solution which is convergent to 0.0001% providing by our 3D-AADI
algorithm with non-uniform grids of test case 2.
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we implement our 3D-AADI algorithm and compare with both golden solution and traditional

ADI, the results (For example, 100-200 Lx and 100-200 Ly on layer 3 in Fig. 4.4 are merged.

For example, 200-380 Lx and 0-380 Ly on layer 3 in Fig. 4.8 are merged. ) are convergent to

golden solution and our simulating-grid geometry is much more adaptive.

Furthermore, the comparison also indicates that an accurate temperature simulation should

take lateral heat-transformation into consideration, because z-tile method, which applies 1-D

compact thermal model to temperature estimators, displays the influence on only power source

and material without lateral heat spreading. As the increasing number of simulating grids shown

on Fig 3.3 , both the range of temperature and the error percentage increase.

4.2 Comparison of Convergence Results

We can construct adaptive simulating geometry and develop non-uniform scanning algorithm

to handle non-uniform meshing which traditional ADI method utilized on uniform spatial step

size of each direction can not solve. Besides, since we concern both a huge amount of compu-

tation and incremental updating during temperature-aware design on 3D chips, the LU and LUx

complexity of 3D-AADI is linear.

Since we have demonstrated the adaptive geometry on section 4.1, we extract the execution

time and the maximum error between non-uniform slicing, uniform slicing and FDM-MNA

simulation methods in this section shown on Table 4.1 and Table 4.3. We can find out not

only that all of them are speed up but also that the finer simulating granularity results in the

more tremendous speeding up. In addition to time enhancement, since non-critical position

is preserved from both unwanted runtime and resource consumption by the proposed adaptive

simulating-geometry process, 3D-AADI can also reduce the maximum error rate shown in Ta-

ble 4.3.

Concerning each process, Table 4.2 and Table 4.4 demonstrate that the partial executing time

is linear-like growth for both LU and LUx. It is the reason that 3D-AADI is low-complexity

algorithm for achieving both efficient runtime and accuracy.

We compare the maximum temperature difference and runtime between non-uniform slic-
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ing, uniform slicing and MNA simulation methods shown on Table 4.5 and Table 4.6. The

comparison indicates that our 3D-AADI simulator is more accurate than traditional ADI simu-

lator and much more efficient than MAN.

chip 1 FDM-MNA Uniform Geometry Non-Uniform Geometry
grid Cnvg itr# time MxErRt SpUp itr# time MxErRt SpUp
4x4 0.1% 30 2 10 0.0078 3 2 10 0.0078 3

0.01% 12 10 0.0056 3 12 10 0.0056 3
8x8 0.1% 60 1 10 0.0087 6 2 10 0.0084 6

0.01% 16 30 0.0064 2 19 30 0.0058 2
16x16 0.1% 620 1 40 0.0090 15.5 5 80 0.0085 7.75

0.01% 8 50 0.0082 12.4 15 100 0.0074 6.2
32x32 0.1% 6040 2 180 0.0090 33.56 7 300 0.0129 20.13

0.01% 3 180 0.0090 33.56 22 460 0.0109 13.13
64x64 0.1% 98060 2 680 0.0091 144.21 8 1020 0.0246 96.14

0.01% 2 680 0.0091 144.21 49 2630 0.0154 37.29
128x128 0.1% 805880 2 2770 0.0091 290.93 14 2940 0.0119 274.11

0.01% 2 2770 0.0091 290.93 49 5430 0.0065 148.41

Table 4.1: The executing time results of FDM-MNA, uniform and non-uniform simulating
algorithm on test chip 1.
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chip 1 Uniform Geometry Non-Uniform Geometry
grid Cnvg Est. Cnstr LU LUx Est. Cnstr LU LUx
4x4 0.1% 0 0 10 0 0 0 10 0

0.01% 0 0 10 0 0 0 10 0
8x8 0.1% 0 0 0 10 0 0 10 0

0.01% 10 0 10 10 0 10 10 10
16x16 0.1% 10 0 30 0 10 20 40 10

0.01% 10 0 20 20 10 10 40 40
32x32 0.1% 40 10 100 30 50 40 110 100

0.01% 30 10 90 50 50 40 100 270
64x64 0.1% 160 30 340 150 160 160 300 400

0.01% 160 30 340 150 160 150 300 2020
128x128 0.1% 640 150 1340 640 570 700 530 1140

0.01% 640 150 1340 640 570 700 530 3630

Table 4.2: The partial executing time results of FDM-MNA, uniform and non-uniform simulat-
ing algorithm on test chip 1.

chip 2 FDM-MNA Uniform Geometry Non-Uniform Geometry
grid Cnvg itr# time MxErRt SpUp itr# time MxErRt SpUp
4x4 0.1% 40 12 10 0.0033 4 14 10 0.0321 4

0.01% 23 10 0.0008 4 24 10 0.0321 4
8x8 0.1% 80 27 10 0.0117 8 26 10 0.0149 8

0.01% 57 20 0.0020 4 65 10 0.0131 8
16x16 0.1% 600 47 60 0.0299 10 42 40 0.0316 15

0.01% 122 120 0.0045 5 119 70 0.0222 8.57
32x32 0.1% 5860 59 620 0.0847 9.45 51 290 0.0875 20.21

0.01% 271 2740 0.0117 2.14 238 1060 0.0216 5.53
64x64 0.1% 75880 32 2000 0.1578 37.94 42 1240 0.0937 61.19

0.01% 515 30370 0.0347 2.50 266 6010 0.0208 12.63
128x128 0.1% 570630 11 4050 0.1947 140.90 40 4870 0.0657 117.17

0.01% 506 136160 0.1005 4.19 192 18500 0.0328 30.84

Table 4.3: The executing time results of FDM-MNA, uniform and non-uniform simulating
algorithm on test chip 2.
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chip 2 Uniform Geometry Non-Uniform Geometry
grid Cnvg Est. Cnstr LU LUx Est. Cnstr LU LUx
4x4 0.1% 0 0 0 10 10 0 0 0

0.01% 10 0 0 0 10 0 0 0
8x8 0.1% 0 0 0 10 0 10 0 0

0.01% 0 0 10 10 0 0 0 10
16x16 0.1% 0 10 0 50 0 10 0 30

0.01% 0 10 0 110 0 10 0 60
32x32 0.1% 10 10 30 570 10 30 30 220

0.01% 0 10 30 2700 10 20 30 1000
64x64 0.1% 50 30 160 1760 40 130 110 960

0.01% 30 30 150 30140 40 120 110 5740
128x128 0.1% 170 150 750 2980 170 570 430 3700

0.01% 160 150 750 135100 170 570 420 17340

Table 4.4: The partial executing time results of FDM-MNA, uniform and non-uniform simulat-
ing algorithm on test chip 2.

Max. 4x4 grids 8x8 grids 16x16 grids 32x32 grids
Geometry Error Node # iter # Node # iter # Node # iter # Node # iter #
Uniform 1% 1 1 1 1

Simulating 0.5% 128 54 512 41 2048 86 8192 251
Grids 0.1% 1698 5683 17588 60804

Non-Uniform 1% 1 1 3 36
Simulating 0.5% 128 54 464 30 1736 54 5192 230

Grids 0.1% 1698 4939 11574 46656

Table 4.5: The iteration results of uniform and non-uniform simulating geometry on test chip 1.

Max. 4x4 grids 8x8 grids 16x16 grids 32x32 grids
Geometry Error Node # iter # Node # iter # Node # iter # Node # iter #
Uniform 1% 8 30 91 298

Simulating 0.5% 128 11 512 41 2048 124 8192 403
Grids 0.1% 21 78 226 719

Non-Uniform 1% 10 33 88 263
Simulating 0.5% 56 13 344 48 944 124 3128 367

Grids 0.1% 20 83 202 613

Table 4.6: The iteration results of uniform and non-uniform simulating geometry on test chip 2.

35



Chapter 5

Future Works and Applications

5.1 Enhancement of Suggesting Resolution

After finding the integer i such that average-heat-difference changing rate of leveli is very close

to that of leveli+1 on Eq.(3.1), we can also take chip-size, runtime, accuracy, and hardware

resource into consideration to decide the simulating resolution on Eq.(5.1).

resolution = i+ α · Size+ β · Time+ γ · Accuracy−1 + δ ·Resource (5.1)

where Size representing the chip size, Time representing the tolerance runtime for users,

Resource representing the resource of test machine, and Accuracy−1 representing the toler-

ance accuracy are user-setting constants, and α, β, γ, δ are author’s experimental parameters.

5.2 Local Refinement and Incremental Design

For temperature verification, Fig. 3.1 gives an overview. On the other hand, concerning local

refinement and incremental-kernel application, 3D-AADI owns the feature of executing sec-

tional “3D-AADI stamping” (a matrix-establishing process shown in Fig. 5.1) for the updating

regions during thermal-aware design iterations. The enhancement, local refinement, and appli-

cation, incremental kernel, are discussed as future works on section 5.2.

Since the 3D-AADI method we proposed owns the feature of updating only the affected
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Fig. 5.1: An overview of this work (which is in the background-color blocks) and 3D-AADI
enhancement. Authors explain the left-middle orange block on section 3.1, the left-down purple
block on section 3.2, the right-up gray block on section 3.3, and the right-middle blue block on
section 3.4. Besides, the right-middle green sub-flow, which illustrates our 3D-AADI algorithm
can be both enhanced in local-refined simulation and applied to thermal-driven kernel into the
entire physical design flow, is discussed as future works and applications on section 5.2.

region of the changed grids by sectional “3D-AADI stamping” to the matrix G of Eq.(2.5),

this simulator after being enhanced by local refinement and being applied by thermal kernel is

both adaptive and incremental. Indeed, it is one of good solution to integrated into physical

design flow as thermal-driven kernel due to not only that the node meshing can be non-uniform

but also that the data structures of the updated sub-circuits are incremental. For these reasons,

the thermal analysis solver can be both a simulator and thermal-aware design kernel. Fig. 5.2

illustrates the local adjustment of grids for satisfying the temperature gradient requirement on

the affected region around the updated grids. Pseudo code of local refinement framework is

derived in Fig. 5.3.
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Fig. 5.2: Local refinement on the affected region around the updated grids for satisfying the
requirement.

3D-AADI:Local Refinement Framework
Input:

Affected field
Output:

New refresh temperature of affected field
01 for Node n = AffectedNodeCount - 1 : 0 do
02 Update and re-slice node of affected field.
03 Construct new node of affected field.
04 Connect neighbors of new node.
05 Update LUVector of affected field.
06 subADILUVectorSolver(UpdateLUVector).
08 end
07 Update temperature of affected field.

Fig. 5.3: Local Refinement Framework.
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Chapter 6

Conclusions

3D ICs, which deal with cost-effective achievement by increasing the densities of interconnec-

tion between dies, are regarded as an attractive alternative solution for overcoming the bottle-

necks on 2D planar ICs. In fact, 3D ICs offer the increased system a large number of advantages.

However, one of critical challenges is heat dissipation due to higher accumulated power density

and lower thermal conductivity of inter-layer dielectrics for vertical stacking layers of active

tier. In this way, the management of thermal issues should be considered during physical design

stages rather than only post-packaging verification on the future highly integrated systems. For

these reasons, we develop an adaptive thermal simulator applying our 3D-AADI algorithm ac-

cording to ADI method to provide temperature distribution during 3D IC physical design flow

from floor-plan to verification.

The simulator constructs adaptive size of simulation grids to avoid the limited simulating

performance of the most critical position. Furthermore, we apply the concept of ADI iteration

method to non-uniform nodes. Eventually, the 3D-AADI tool can be regard as both a reliable

thermal simulator and a thermal-driven kernel on 3D IC design flow. The simulator we devel-

oped is both adaptive and incremental.

We proposed a thermal simulator on 3D IC applying our 3D-AADI algorithm according

to ADI concept to deal with temperature distribution during 3D IC physical design flow from

floor-plan to verification. In order to avoid the performance limitation of the most critical po-

sition such as hot spots and (thermal or signal) TSVs, this simulator utilizes adaptive analysis

size of grids. Furthermore, we develop 3D-AADI algorithm according to the concept of ADI

iteration method and analysis the non-uniform meshing calculation and convergence. Finally,
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the simulator we developed is both adaptive and incremental, because the 3D-AADI tool can

be regard as both a reliable thermal simulator and a thermal-driven kernel on 3D IC design flow

from floor-plan to verification.
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