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應用於三維積體電路在矽穿孔的限制下的掃描鏈重排序設計方法 
 
 

學生：陳韋廷 

 

指導教授：溫宏斌 

國立交通大學電信工程研究所碩士班 

摘 要       

本論文定義出在利用一定數量的矽穿孔的掃描鏈重排序問題，而且提出

了一個有效率的兩階段演算法去解決該問題。在三維積體電路最佳化中，

我們在第一階段使用 Multiple Fragment Heuristic 的貪婪演算法並且使用處

理最靠近點對的資料結構 FastPair 去得到一個好的初始解，包括掃描鏈線

長和測試時的功率消耗。而在演算法的第二階段，提出了三維平坦化(3D 
Planarization)去減少所使用的線長和功率消耗，也提出了三維釋放(3D 
Relaxation)去減少矽穿孔的使用量以符合數量限制。最後，實驗結果顯現出

該演算法比以基因演算法為基礎的先前技術，在可以比較的效能下，提出

的演算法比先前技術快上百倍以上。由此證明，該演算法可以實際應用在

三維積體電路以矽穿孔數量為限制的掃描鏈重排序。 
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ABSTRACT 

 
This thesis formulates the scan-chain reordering problem considering a 

limited number of through-silicon vias (TSVs), and further develops an efficient 

2-stage algorithm. For three-dimensional optimization, a greedy algorithm 

named Multiple Fragment Heuristic combined with a dynamic closest-pair data 

structure FastPair is proposed to derive a good initial solution at stage 1. Later, 

stage 2 proceeds two local refinements 3D Planarization and 3D Relaxation to 

reduce the wire/power cost and the number of TSVs in use, respectively. 

Experiments show that the proposed algorithm can result in a comparable 

performance to a genetic-algorithm-based method but can run at least 2-order 

faster, which evidently makes it more practical for TSV-constrained scan-chain 

reordering for 3D ICs. 
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Introduction
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Interconnect along with technology scaling plays an important role in deciding cir-

cuit performance. Structural three-dimensional (3D) integration is emerging as a promis-

ing solution to reduce the length of long interconnects across the circuit [12]. Moreover,

3D integration provides many other advantages over the traditional 2D implementation,

such as better packaging efficiency and higher transistor density. These advantages, collec-

tively, not only provide significant performance improvement but also alleviate the prob-

lems caused by lengthy interconnects [1, 5, 13, 23]. Therefore, different vertical-integration

techniques have been proposed for manufacture, including wire bounds, solder balls, con-

tactless, and through silicon vias (TSVs) [17]. Among all, TSVs provide the best perfor-

mance of interconnect on timing and power.

Electrical characteristics of TSVs from different processes could result in different per-

formance for 3D IC designs. Several types of TSVs with different aspect ratios are studied

in [11, 14, 19, 20]. In general, the resistance of single TSV is small and the corresponding

capacitance is proportional to the height of TSV. The impact of self-inductance and mutual

inductance of TSVs has not been well-studied. But a long path through a large number of

TSVs is known to bring potential and unpredictable timing failure. According to [4], RTI

demonstrated that the current yield of TSVs is about 99.98% from manufacturing 65536

TSVs. Therefore, the yield for a design with 100 TSVs would drop to 98.01% due to man-

ufacturing defect in TSVs. If the design contains 1000 TSVs, the yield would further drop

to 81.88Considering the yield loss, the usage of TSV is typically limited during the designs

of 3D ICs.

Scan chain design is the most prevailing DfT (Design-for-Testability) technique which

aims to reduce the difficulty of testing on the circuit-under-test (CUT). In order to guar-

antee high fault coverage on complex designs, the CUT is modified during the synthesis

stage to enhance its controllability and observability. All flip-flops (FFs) are replaced by

multiplexed-input scan FFs with multiple operation modes. A conceptual scan-based de-

sign is illustrated as Figure 1. During the test mode, i.e. signal test is activated, the values of

one test pattern are shifted to FFs of the scan chain in sequel. Later, the pattern is applied to

the combinational logic through the primary inputs under the normal mode. The response

values are finally captured at the primary outputs and shifted out through the scan chain

under test mode again. Scan test reduces the sequential problem into the combinational

2



problem and thus can achieve high coverage efficiently.

Figure 1.1: A general model for scan chain

Although scan cells enhance the testability on the CUT, the stitching wire of the scan

chain can be lengthy and may deteriorate the signal integrity or even violate the timing

constraint. Therefore, scan chain reordering referring to the order decision for scan cells

based on the physical information, is widely studied and layout-based techniques [8, 9, 15]

have been shown to reduce the scan stitching wire effectively.

Test power has always been the concern of scan test due to the trait of test pattern and

the shift. The higher logic switching activities in the combinational logic resulting from

patterns generated by ATPG and LFSR generated without considering the functionality of

the circuit. The scan chain shift operation also causes the high toggle rate during testing.

Generally, different methods have been reported to solve the power-related problem in the

CUT, such as power-aware test pattern generation, test-pattern-filling technique, primary

input controlling, and scan chain reordering. Scan chain reordering technique offers sev-

eral advantages over other technique, including no negative effects in the test application

time and fault coverage, easily combined to the design flow and other power reduction

techniques. Several reordering techniques are proposed to reduce the power consumption

during testing and also consider the scan stitching wire issue [3, 10, 16, 22].

To further study the interconnects in 3D ICs, Yuan et al [21] shows that the scan stitch-

ing wire in a multi-layer circuit is shorten comparing to wire length in the planar circuit.

Several scan reordering approaches for 3D ICs are accordingly proposed: VIA3D, MAP3D

and OPT3D. VIA3D uses the least number of TSVs to alleviate TSV impact on the scan

stitching wire. MAP3D first maps all scan cells onto one single layer and then use the 2D
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scan chain reordering. OPT3D considers the TSV impact in the computation of cost for

the scan stitching wire. The OPT3D approach outperforms the other two in terms of total

wire cost. The experimental results in [21] also suggest that the more TSVs in use in the

scan chain, the smaller scan stitching wire cost. Such observation combing with the TSV-

induced yield loss indicates an important tradeoff between the scan stitching wire and the

number of TSVs in use. Therefore, the limitation of TSV in use must be considered due to

the prevention of yield loss.

In this paper, TSV-based scan-chain reordering is first analyzed and formulated into a

Traveling Salesman Problem (TSP). Later, a fast algorithm is developed to minimize the

scan stitching wire or scan-induced power dissipation, and meet the limitation of TSVs in

use simultaneously for 3D ICs. Our algorithm consists of two phases: first, we construct an

initial simple path through all scan cells using a greedy algorithm named Multiple Fragment

Heuristic via a dynamic closest pair data structure FastPair. Second, we propose new two

local refinement techniques 3D Planarization and 3D Relaxation to reduce the wire cost

or the power dissipation and to meet the TSV constraint, respectively. Experiments show

the practicality of our algorithm by producing the comparable length of scan stitching wire

to that from the genetic algorithm (GA) but runs at least three-order faster with the TSV

constraint.

The rest of this paper is organized as follows. In Chapter 2, we present the problem

formulation for TSV-constrained scan chain reordering for 3D ICs. In Chapter 3, a multiple

fragment heuristic with the support of FastPair is first developed to obtain an initial good

solution. Then 3D Planarization and 3D Relaxation for minimizing scan stitching wire cost

or scan-induced power dissipation, and meeting the limitation of TSVs in use are detailed,

respectively. Chapter 4 shows the experimental results including the comparison between

our algorithm and the GA algorithm with and without the limitation of TSVs in use in terms

of scan stitching wire and runtime over a variety of benchmark circuits. Finally, we draw

our conclusion and outline future works in Chapter 5.
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Chapter 2

Problem Formulation for TSV-based 3D

Scan Chain Reordering
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In this section, we formulate two scan chain reordering problems for 3D ICs. One target

is to optimize the scan stitching wire for preventing the routing congestion and the timing

violation; the other is to minimize the scan-induced power dissipation during testing in

order to avoid the damage and the reliability degradation for CUT. We will first introduce

the traditional scan reordering problem for wire reduction and define a new model for TSV-

based 3D ICs. Then we will review the background knowledge on power-optimized scan

reordering, and we will define the 3D power-optimized scan reordering problem at last.

2.1 Minimizing Scan-stitching Wire

The problem of planar scan-chain reordering to minimize the scan stitching wire cost

can be formulated into:

Input: a CUT C with n scan cells {c0, c1, . . . , cn−1} and their locations

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}

Output: a scan-cell ordering is formed as follow 〈cπ(0), cπ(1), . . . , cπ(n−1)〉 such that the

total cost of scan stitching wire

n−1∑
i=1

∣∣xπ(i) − xπ(i−1)∣∣+ ∣∣yπ(i) − yπ(i−1)∣∣ (2.1)

is minimized.

In Equation (2.1), xπ(i) and yπ(i) denote the x and y coordinates of the ith scan cell in

the formed scan-cell ordering, respectively. All FFs are on the same plane and the stitching

wire cost is defined as the Manhattan distance between ci and ci+1 in this formulation.

However, for 3D ICs, FFs can be located across different layers and thus the TSV cost for

connecting two cross-layer FFs is not considered. In order to consider the TSV cost in

TSV-based 3D scan-chain reordering, the layer information needs to be included:

{(x0, y0, L0), (x1, y1, L1), . . . , (xn−1, yn−1, Ln−1)}
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And the total cost of scan stitching wire is modified as follow∑n−1
i=1

∣∣xπ(i) − xπ(i−1)∣∣+ ∣∣yπ(i) − yπ(i−1)∣∣
+cTSV ×

∣∣Lπ(i) − Lπ(i−1)∣∣
(2.2)

In Equation (2.2), cTSV denotes the equivalent stitching wire cost for one TSV connecting

two consecutive layers. Without losing the generality, cTSV is defined as the height HTSV

for one single-layer TSV in this paper. Hence, the total TSV cost in the stitching wire is

denoted as TCtotal and modeled into:

TCtotal =
n−1∑
i=1

∣∣Lπ(i) − Lπ(i−1)∣∣ (2.3)

According to such modified formulation for TSV-based scan-chain reordering problem,

two approaches are proposed in [21]: one is developed on the basis of genetic algorithm

(GA), and the other is based on integer linear programming (ILP). Although the GA-based

approach may possibly find the near-optimal solution, the quality of one found solution

cannot be guaranteed under the limited time. Moreover, the ILP-based approach that shall

find the optimal solution may not be able produce a feasible solution within the limited

time. Experimental results in [21] shows the ILP-based approach can estimate the lower-

bound values for the total scan stitching wire cost quickly, but cannot produce a feasible

ordering of scan cells in time.

To be more practical, a new fast algorithm needs to be developed and overcomes the

runtime issue. Therefore, we propose an efficient 2-stage algorithm. In stage 1, we con-

vert the 3D scan-chain reordering problem into a TSP problem. Then, a tour-construction

heuristic [2] with the support of a particular closest-pair data structure named FastPair [6]

to stitch a simple path as one initial solution. During stage 2, the local refinement by 3D

Planarization and constraint solving by 3D Relaxation start to minimize the total wire cost

and to reduce the number of TSVs in use, respectively. Figure 2.1 shows the overall flow,

and more details are given in the following section. Note that although the proposed al-

gorithm is currently applied for one scan chain, it is easy to scale to support multiple scan

chains when scan-cell partitioning is available.
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Figure 2.1: Flow of proposed scan reordering algorithm

2.2 Reducing Scan-induced Power

In this problem, the goal of scan chain reordering is to find a scan chain ordering while

minimizing the power dissipation during the scan shifting operations. Integrate scan chain

reordering techniques into the current design flow would be easy while maintaining the

original fault coverage and test application time. The only limitation for scan chain ordering

techniques is that it must target a fixed set of test patterns generated by ATPG. In the

following subsections, we will briefly introduce the background on power-aware scan chain

reordering and then formulate this problem for TSV-based 3D ICs.

Estimation for Power Dissipation

Previous power-optimized reordering techniques concern the total power and the peak

power consumption. The total power consumption is the sum of power consumed during

testing, and the peak power consumption is the highest power consumption at any given

test pattern. Therefore, the dynamic power consumption is modeled into

P = 0.5·Cld·V 2
dd·F ·S (2.4)

where P is the dynamic power consumption, Cld is the load capacitor, Vdd is the supply

voltage, S is the switching activity, and F is the clock frequency.
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According to Equation (2.4), the power consumption during scan shifting operations

completely depends on the switching activities in CUT. In practice, it is time-consuming to

count the exact number of all switching activities in CUT. It has been proved in [18] that

the number of scan chain transitions and the triggered logic elements transitions in CUT

are highly correlated. In the other word, the number of transitions in the scan chain is a

good estimation for total switching activities in CUT.

(a) Simple view

(b) Detailed view

Figure 2.2: Transitions of one test pattern for 4-cell scan chain

Figure 2.2(a) shows a 4-cell scan chain by applying an input vector and capturing the

corresponding output response. There are two transition t1, t2 in the input vector V1 and

one transition t3 in output response R1. And we use 8 clocks to finish feeding the input

vector and capturing the output response.

Figure 2.2(b) describes the details of operations in this case. We assume that the un-

known states are stored in the 4 scan cells. At the first clock, the first value is scanned in the

first scan cell SC1. After scanning in the second value 0, the state of the scan cell SC1 will

change from 1 to 0. This transition t1 will cause the switching activities of related logic

elements in CUT. At the third clock, the transition t1 makes the value toggle of the scan
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cell SC2, which switches the related logic elements in the CUT; the same condition occurs

at the fourth clock for the scan cell SC3. On the other hand, the transition t2 only toggle

the state of the scan cell SC1 at the fourth clock during scan-in operation. Therefore, the

first transition created by the test pattern causes the largest number of switching activities

in the CUT.

The second vector (w, x, y, z) is applied after using 4 clock cycles to apply the first

test vector V1. Meanwhile, the first output response (0, 0, 1, 1) is captured at the same

time. Hence, the transition t3 also causes the related switching activities in the CUT and

the total number of scan-out operations depends on the position of t3 in the scan chain.

In contrast of scan-in operations, the last-out transition in the output response causes the

largest number of switching activities in the CUT among the other transitions. Conse-

quently, the total switching activities in CUT during shifting operations depend on the tran-

sitions in the scan chain and the corresponding positions. Thus, [18] defined the number of

weighted transitions as follow,
Weighted Transitions =∑

(Size of Scan Chain− Position of Transition)

where Weighted Transitions represents the real switching activities in the CUT,

Size of Scan Chain is the total number of scan cells, and Position of Transition is

indexed from the different beginnings between input vector and output response. Hence,

every transition in the input vector or output response has its own weight that reflects the

real conditions. We will explain the weighted transitions by defining some notations used

in the rest of paper.

{c0, c1, . . . , cn−1}: The n scan cells in the CUT C.

O = 〈cπ(0), cπ(1), . . . , cπ(n−1)〉: The scan chain ordering with n scan cells.

V = {v0, v1, . . . , vn−1}: A n-bit input pattern, where vi is scanned in the scan cell ci
during scan testing. Therefore, 〈vπ(0), vπ(1), . . . , vπ(n−1)〉 represents an input pattern for a

given scan chain ordering.

R = {r0, r1, . . . , rn−1}: A n-bit output response, where ri is scanned in the scan cell ci
during scan testing. Therefore, 〈rπ(0), rπ(1), . . . , rπ(n−1)〉 represents an output response for

a given scan chain ordering.
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The weighted transitions of an input vector V and an output response R are defined as

Equation (2.5) and Equation (2.6), respectively.

VWT (V ) =
n−1∑
i=1

i · (vπ(i) ⊕ vπ(i−1)) (2.5)

RWT (R) =
n−1∑
i=1

(n− i) · (rπ(i) ⊕ rπ(i−1)) (2.6)

where VWT (V ) and RWT (R) are denoted as the weighted transitions for the input vector

V and the output response R; the ⊕ operator checks the difference between two adjacent

bits. The i and (n − i) represent different weighting rules for scan-in and scan-out oper-

ations respectively. Generally, above equations can be easily extended into the following

equations for m test patterns.

VWT ({V 1, V 2, . . . , V m}) =
n−1∑
i=1

m∑
j=1

i · (vjπ(i) ⊕ v
j
π(i−1)) (2.7)

RWT ({R1, R2, . . . , Rm}) =
n−1∑
i=1

m∑
j=1

(n− i) · (rjπ(i) ⊕ r
j
π(i−1)) (2.8)

The V j and Rj are the jth input vector and the jth output response in the set of m test

pattern respectively, and the vjπ(i)(r
j
π(i)) is the bit being scanned in the ith scan cell of the

chain ordering and located at the jth input vector(output response).

In addition to scan-in and scan-out transitions, the peak transitions are taken account

into the total weighted transitions. A peak transition is occurred when there is a difference

between the last-out bit of the jth output response and the first-in bit of the (j + 1)th input

vector. Since a peak transition causes all scan cells to toggle, the weight of peak transitions

is the size of the scan chain. The weighted peak transition is denoted by PWT and defined

as follow,

PWT =
m−1∑
j=1

n · (rjπ(0) ⊕ v
j+1
π(n−1)) (2.9)

Consequently, we denote the total weighted transition TWT which equals to the sum of

VWT , RWT , and PWT .
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Figure 2.3 shows two examples of calculating the total weighted transitions. The CUT

with 4 scan cells has the scan chain ordering, and three test patterns are applied during

scan testing. Hence, the total transitions, the transitions for input vectors, the transi-

tions for output response, the peak transitions and the corresponding weights in differ-

ent positions are shown in the Figure 2.3. In Figure 2.3(a), the scan chain has the ini-

tial ordering (1, 2, 3, 4). Thus, VWT ({V 1, V 2, V 3}) = 1 · 1 + 1 · 2 + 3 · 3 = 12,

RWT ({R1, R2, R3}) = 2 · 3 + 1 · 2 + 1 · 1 = 9, and PWT = 2 · 4 = 8. The to-

tal weighted transitions TWT is 12 + 9 + 8 = 29. However, Figure 2.3(b) represents

the power-optimized ordering (2, 3, 4, 1) by scanning in the same test patterns. Thus,

VWT ({V 1, V 2, V 3}) = 1·1+3·2+1·3 = 11,RWT ({R1, R2, R3}) = 1·3+1·2+2·1 = 7,

and PWT = 0 · 4 = 0. The total weighted transitions TWT is 11 + 7 + 0 = 18. Therefore,

the total power reduction rate is almost 38% and the number of peak transitions is reduced

from 2 to 0.

Formulation for TSV-based 3D ICs

The problem of scan-chain reordering to minimize the scan-shift power dissipation can

be formulated into:

Input: a CUT C with n scan cells {c0, c1, . . . , cn−1}, their layer information

{(L0), (L1), . . . , (Ln−1)}, and a fixed set ofm test patterns {V 1, R1, V 2, R2, . . . , V m, Rm}

Output: a scan-cell ordering is formed as follow 〈cπ(0), cπ(1), . . . , cπ(n−1)〉 such that the to-

tal weighted transitions TWT ({V 1, R1, V 2, R2, . . . , V m, Rm}) is minimized with(without)

the TSV constraint

Comparing with the scan wire reduction problem, we only concern the layer informa-

tion of the scan cells since the problem is not related to their locations and the objective

function. Therefore, we only need to calculate the total TSV cost by using the Equation 2.3

under the limitation of TSV.

According to such formulation for power-minimized problem for TSV-based 3D ICs,

[7] also uses the GA approach to solve this problem, which is time-consuming and unstable

for the quality of solutions. We also use the same flow of the proposed algorithm, as
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illustrated in Figure 2.1, to solve this power-optimized problem. Some processes need to

be modified due to different objective functions. In the beginning, we establish a look-

up table storing the pair-wise cost, because the high complexity of calculations for pair-

wise cost function for the power-optimized problem. There are several modifications while

performing proposed algorithm since the objective weighted transitions depends on the

transition positions in the scan chain. However, we also overcome the runtime issue in this

problem and more details are addressed in the next section.
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(a) Initial ordering

(b) Power-optimized ordering

Figure 2.3: Calculations for weighted transitions
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Chapter 3

Proposed Scan Chain Reordering

Algorithm

15



In this section, we introduce this algorithm by considering scan wire and scan-induced

power optimized problems in 3.1 and 3.2, respectively.

3.1 Minimizing Scan-stitching Wire

According to Figure 2.1, in stage one, Multiple Fragment Heuristic is applied because

it is one of the state-of-the-art tour-construction heuristics known for TSP problems [2].

Moreover, a dynamic closest-pair data structure FastPair [6] can further be used to facilitate

the considerable computation of pair-wise cost in the tour-construction heuristic. After

stage 1, an initial solution is obtained and sent to stage 2 which performs 3D Planarization

to lower the total wire cost and 3D Relaxation to reduce the total number of TSVs in use.

Initial Solution Computation

First, a good initial ordering of scan cells needs to be constructed in stage 1 and can

be solved by one TSP heuristic called Multiple Fragment Heuristic. This heuristic finds

the shortest edge between the endpoints of two different paths each time until all points

are connected. Each point has its own path connecting to it itself in the beginning. The

procedure of Multiple Fragment Heuristic is shown as follow,

MULTIPLE FRAGMENT HEURISTIC(C)

1 for each cell ci ∈ C
2 do endpoint(ci)← ci

3 while |C| > 2

4 do (ci, cj)← CLOSEST PAIR(C)

5 cx ← endpoint(ci)

6 cy ← endpoint(cj)

7 endpoint(cx)← cy

8 endpoint(cy)← cx

9 if cx 6= ci

10 then delete ci from C
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11 if cy 6= cj

12 then delete cj from C

The for loop of line 1-2 sets the endpoint of each cell to itself. The endpoint of each

cell will be updated and then check if the illegal conditions occur. The while loop of lines

3-12 grows the traversal of scan cells and conforms to the property of the simple path until

the number of point set C is less than two. Figure 3.1(a) is an example with no edge in

the original graph. Then the first shortest edge between node 2 and node 3 denoted by

(2,3) (i.e. the minimum cost) will be connected as the dotted line. Figure 3.1(b) shows the

decision of the shortest edges among the remaining five points. The gray nodes are deleted

in the early stages since they cannot form any new edges in a simple path. The solid line

represents the connected edge while the dotted line connects the next candidate node. In

this example, edge (3,4) is added among five points 1, 3, 4, 6, 7. This path will continue

growing until only two nodes 1, 7 in the CUT. Finally, connecting all points by n-1 edges

forms a simple path as an initial ordering of scan cells in Figure 3.1(c).

Figure 3.1: Applying Multiple Fragment Heuristic to 7 points
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FastPair is first proposed for handling dynamic closest-pair problems with pair-wise

cost functions [6] and similar to the neighbor heuristic that each point stores its nearest

neighbor, creates initial neighbor values differently, and insertion never changes values of

old neighbors. Before introducing the FastPair data structure, we must understand the

neighbor heuristic. This heuristic maintains the closest point with each point p of point set

S and the corresponding distance

d (p) = minq∈S−{p}D(p, q) (3.1)

which D(p, q) is a user-defined function. Hence, this function computes the distance be-

tween scan cells. That is,

D1(p, q) = |xp − xq|+ |yp − yq|+ cTSV × |Lp − Lq| (3.2)

Therefore, these data are maintained for all operations, including insertion, deletion,

and query. A query is scanning all the distances and selecting the smallest one. However,

this heuristic is the simple maintenance for storing the closest point via graph structure and

illustrated in Figure 3.2. Figure 3.2(a) shows the initialization of the neighbor heuristic.

The closest nodes of nodes 1, 6, 7 are 2, 5, 6, respectively; the closest nodes 2, 4 are 3, 5

and vice versa. After deleting the node 5, two nodes 4, 6 need to update their closest nodes

and then connect to nodes 3, 4, respectively. Such result is illustrated as Figure 3.2(b).

Figure 3.2: Illustration of the neighbor heuristic

FastPair can be explained in terms of the neighbor heuristic. In this method, the data

structure is initialized with a single directed path, instead of computing all possible dis-

tances. Such structure promises only one update after deleting one node, which differs
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Figure 3.3: Illustration of the FastPair method

from the neighbor heuristic. Figure 3.3 shows a simple example with graph view. In the

Figure 3.3(a), every node has its own closest node by only checking the node without any

degree. Therefore, this method only updates a closest node of node 4 by deleting one node

in the Figure 3.3(b).

Although no improving on the neighbor heuristic in the complexity bounds, FastPair

still outperforms experimentally. In [6], runtimes to delete an object, and to query the

closest pair among several different closest pair data structures are thoroughly compared,

and FastPair stands out to be the best one for most applications. In our algorithm, Multiple

Fragment Heuristic can be implemented in the greedy fashion with the support of FastPair

and runs in the time complexity of O(n2).

Local Refinement & Constraint Solving

Figure 3.4: A 6-point example for Planarization

After having the initial solution, the second stage of our algorithm further applies two

strategies to optimize the total wire cost and/or relax the TSVs in use. Figure 3.4(a) shows
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an initial path with the un-optimized scan stitching wire cost. In the optimization study,

(2D) Planarization is one of the most common techniques to reduce the total traversal cost

for the TSP problem. The key idea behind is to transform a graph into a planar graph

which does not contain any cross edge on the plane. A modified tour with cross-edge

removal results in a shorter cost than that from the initial tour. Figure 3.4(b) shows such an

example. Cross edges, (2, 6) and (3, 7) are replaced by edge (2, 3) and (6, 7).

From a different point of view, such operation behaves like the reverse of a fragment, i.e.

the sequence of node traversal. Reversing the fragment from 2 → 6 → 5 → 4 → 3 → 7

into 2 → 3 → 4 → 5 → 6 → 7 can effectively reduce the total stitching wire cost. To

generalize this idea, we reverse any possible fragment with edge length starting from of

1 to (n-1) and test if such reversion can reduce the total wire cost. Such local refinement

technique is called 3D Planarization and runs in time complexity of O(k1n2) where k1
denotes the constant number of iterations. After constructing the initial solution, a small

k1 << n usually suffice to do a good optimization in our experiment.

Figure 3.5: An example for 3D Planarization

The key reason by using above refinement technique is to avoid checking the cross
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edges in the 3D space. Hence, Figure 3.5 shows two examples of using 3D Planarization

to reduce the total wire cost. In Figure 3.5, L1, L2, L3, L4 represents the 1st, 2nd, 3rd, 4th

layer, respectively and the connection of two scan cells among two neighboring layers

requires one TSV. Figure 3.5(a) shows a refinement example for the wire cost reduction

and in-use TSV relaxation. The left part of Figure 3.5(a) represents an initial scan-chain

ordering: 1 → 2 → 3 → 4 → 5. After reversing the fragment 2 → 3 → 4 to 4 → 3 → 2

shown as the right part of Figure 3.5(a), the total wire cost is reduced: the reversed fragment

has the same cost, but the transition of 1 → 2 to 1 → 4 reduces the wire cost successfully

as well as one TSV. The transition of 4 → 5 to 2 → 5 also reduces the extra wire cost and

one more TSV. Similarly, Figure 3.5(b) shows another example for refinement but with no

TSV relaxation. After reversing the fragment 2 → 3 to 3 → 2, no TSV can be saved but

the wire cost can be reduced.

Figure 3.6: An example for 3D Relaxation

A similar constraint solving technique named 3D Relaxation to reduce the number of

TSVs in use is also proposed and aims to fulfill the TSV constraint imposed for alleviating

the yield loss. 3D Relaxation reverses all fragments of 1 to (n-1) edges again to find the

best reduction of TSVs in use until the target number is achieved. Later, 3D Planarization

is also performed to further reduce the total wire cost but use no extra TSV. Figure 3.6

shows an example for illustrating the 3D Relaxation Process. The left part of Figure 3.6

represents an initial scan-chain ordering: 1 → 2 → 3 → 4 → 5. After reversing the

fragment 2 → 3 → 4 to 4 → 3 → 2, the total TSV cost can be effectively reduced and

shown as the right part of Figure 3.6. The reversed fragment results in the same cost, but

the replacement of connecting 1 → 2 to 1 → 4, 4 → 5 to 2 → 5, saves the total of six

TSVs.

21



The time complexity for the constraint solving technique is also O(k2n2) and k2 de-

pends on the relaxed TSV number, i.e. the difference between the initial and the limitation

TSV number. The total complexity in the 2nd phase is T (n) = O(k1n
2) + O(k2n

2) =

O(n2). To sum up, the above 2-phase scan-chain reordering algorithm is efficient and can

run much faster than previous techniques [21].

3.2 Reducing Scan-induced Power

We use the same flow of proposed algorithm to solve the power-optimized problem,

and address the differences with the wire-minimized problem in this part. According to

section 2.2, we take the pattern information as input, and the objective is to minimize the

total weighted transitions. Again, the computation for the total weighted transitions needs

to know the whole scan cell ordering due to the position-related property. However, we

only get the scan-induced transitions between scan cells in the beginning.

In the initial solution computation, we change the user-defined function D(p, q) in

Equation (3.1) to count the scan-induced transitions between scan cells by considering

the m test patterns. That is,

D2(p, q) =
m∑
j=1

[(
vjp ⊕ vjq

)
+
(
rjp ⊕ rjq

)]
(3.3)

whose notations is defined in the section 2.2. Since every computation in the Equation(3.3)

costsO(m) inm test patterns, a look-up table storing the pair-wise transitions is established

to avoid the huge number of calculations during performing proposed algorithm. After

constructing the scan cells ordering, the sum of the total transitions between cells is mini-

mized under the property of Multiple Fragments Heuristic. Therefore, we improve the total

weighted transitions by rotating it n times and choose the best solution. Figure 2.3 shows

a simple example. The total scan-induced transitions between cells are counted in the first

row whose header is Total Trans.. Although the sum of the total transitions are the same in

this two scan cell orderings, the ordering illustrated as Figure 2.3(b) has the best solution in

the total weighted transition by rotating the initial ordering SC1→ SC2→ SC3→ SC4

3 times.
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In the local refinement, a better solution is confirmed by checking the best total weighted

transitions among the results by rotating n times. Although the construction of the look-

up table spends more time than the cost computation in the scan-stitching wire minimized

problem, the total time complexity is O(n2) and faster than the state-of-the-art technique

proposed in [7].
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Chapter 4

Experiment Results
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A reference flow for 3D scan designs in [21] requires an academic placement-and-

routing tool MITPR3D which is not available publicly. Therefore, we modify the flow

and utilize commercial software for 3D scan designs and Figure 4.1 illustrates our flow

for 3D scan designs. In the left part of Figure 4.1, we first partition a original design

to N layers which minimizes the number of TSVs in use and balances the area between

different layers. After obtaining N-layer designs, Design Compiler does logic synthesis

for each layer designs. Then, all FFs are placed in N-layer designs with scan cells and

placed by First Encounter. Finally, all planar placements are combined into one single 3D

placement and output the locations of all scan cells from DEF (Design Exchange Format)

files. Therefore, we get all layout information, which can perform the proposed algorithm

for minimizing the scan-stitching wire cost.

Figure 4.1: Proposed 3D scan design flow

In the right part of Figure 4.1, we also do logic synthesis and scan insertion for the

original design and then get the test pattern information via the STIL (Standard Test Inter-

face Language) file by using the commercial tool TetraMax. Two input data including the

layout information and the test pattern are achieved to reduce the scan-induced power by

performing the proposed algorithm.
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For fair comparison, we use the same settings as the previous GA-based approach uses

in [21]. The population size is set to be 2000; the same operators are used and include

reproduction, crossover, mutation; the GA stops until no more than 0.0001% improvement

on the fitness score (a.k.a. the total scan-stitching wire cost or the total weighted transitions)

can be obtained for last 1000 generations.

Both the proposed 3D scan-chain reordering algorithm and previous GA-based ap-

proach are exercised on a Linux machine with a Pentium Core Duo (2.4GHz) processor

and 4GB memory. TSMC .18µm library is used and the height of a TSV is set as 10µm

while the partitions for 3D ICs range from 2 to 5. ISCAS89 benchmark circuits are used to

conduct experiments.

In this section, all experiments are divided into two parts. The first part is to minimize

the scan-stitching wire cost. In the second part, the results considering the reduction of

scan-induced power are proposed.

4.1 Minimizing Scan-stitching Wire

Table 4.1 shows the performance of our algorithm without the limitation of TSVs for

all circuits. The first column shows the name of ISCAS89 circuits and the total number of

scan cells in the parenthesis; the second column shows the number of layer of 3D circuits;

the third and fourth columns show the total wire cost in µm of the initial ordering and the

new ordering, respectively; the fifth column shows the reduction rate of total wire cost from

the initial ordering to the new one; the sixth and seventh columns show the TSV cost in

the initial ordering and the reordering after performing the local refinement technique 3D

Planarization, respectively;

As we can see, fewer TSVs in the new ordering are used than that from the initial

one since the initial solution serves as the initial point for the TSV optimization. Then,

the technique 3D Planarization shows a good reduction rate of 4.72% averagely over the

initial solution on all circuits.

Table 4.2 shows the performance of our algorithm with the TSV constraint. The third

and fourth columns show the total wire cost in µm after performing the constraint solver
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Table 4.1: Performance for wire minimzation without the TSV constraint

stage 1 stage 2 red. initial final

circuit(#FF) #layer (µm) (µm) (%) #TSV #TSV

3 1338 1324 1.05 21 21

s1423(74) 4 1430 1386 3.08 27 25

5 1208 1190 1.49 21 21

3 3432 3246 5.42 44 44

s5378(179) 4 3222 3190 0.99 39 43

5 3128 2990 4.41 28 28

3 4786 4582 4.26 71 61

s9234(211) 4 4886 4598 5.89 81 73

5 4108 3944 3.99 50 48

3 12472 11714 6.08 181 161

s15850(597) 4 11984 11496 4.07 239 231

5 11006 10360 5.87 153 155

3 12736 11972 6.00 185 173

s13207(669) 4 11608 10928 5.88 139 123

5 11566 11200 3.16 247 237

3 31570 29344 7.05 475 457

s38584(1452) 4 30640 28780 6.07 575 551

5 30676 28842 5.98 596 568

3 32314 30564 5.42 445 425

s38417(1636) 4 31820 30076 5.48 592 572

5 30446 28798 5.41 536 506

3 32380 30698 5.19 628 608

s35932(1728) 4 31218 29514 5.46 505 487

5 30792 29146 5.35 552 532

average 4.72
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Table 4.2: Performance for wire minimization with the TSV constraint

stage 2a stage 2b red. initial target #TSV

circuit (#FF) #layer (µm) (µm) (%) #TSV / final #TSV

3 1360 1336 1.76 21 20/19

s1423(74) 4 1564 1466 6.27 27 20/19

5 1302 1222 6.14 21 20/17

3 5280 3484 34.02 44 20/20

s5378(179) 4 3788 3256 14.04 39 20/19

5 3252 3054 6.09 28 20/20

3 8916 5088 42.93 71 20/19

s9234(211) 4 8698 5428 37.59 81 20/19

5 5044 4078 19.15 50 20/20

3 17314 12764 26.28 181 100/99

s15850(597) 4 24606 12778 48.07 239 100/99

5 14774 10820 26.76 153 100/99

3 18912 12750 32.58 185 100/99

s13207(669) 4 14354 11134 22.43 139 100/97

5 22394 12812 42.79 247 100/99

3 51086 32868 35.66 475 200/199

s38584(1452) 4 68376 32804 52.02 575 200/199

5 88704 33014 62.78 596 200/200

3 58294 33166 43.11 445 200/199

s38417(1636) 4 100906 34516 65.79 592 200/200

5 79730 32972 58.65 536 200/200

3 72208 34826 51.77 628 200/200

s35932(1728) 4 70540 32370 54.11 505 200/199

5 79288 33002 58.38 552 200/200

average 35.38

28



3D Relaxation and the local refinement 3D Planarization without adding the TSV cost,

respectively. Both solutions fulfill the related TSV constraint. The fifth column reports the

reduction rate from the constraint solving to local refinement during the second stage. This

case has the same initial solution with that without imposing TSV constraint. Differently,

the local search first derives the solution under the limitation of TSV, and then finds the

local optimized solution. The sixth column shows the TSV usage in the initial ordering; the

seventh column reports the TSV usage in the wire-minimization ordering and the limitation

of TSV.

Table 4.2 shows a good reduction of the total TSV cost due to the loose TSV constraint

in the big circuits, such as s38584, s38417, and s35932. At the same time, the 4-layer

s38417 has the best optimization rate 65.79% from the solution after constraint solving due

to the huge change in the initial solution. For all circuits, the local refinement technique

achieves an average of 35.38% on the wire cost reduction but consumes more time for

iterations during the stage-2 algorithm.

Table 4.3 shows the results of comparing the total stitching wire cost without imposing

any TSV constraint for multi-layer circuits. The third and fourth columns show the total

wire cost in µm after performing the GA-based method and the proposed algorithm, re-

spectively; the fifth column shows that improvement ratio of our approach to the GA-based

approach; the sixth and seventh columns report runtime in seconds for our algorithm and

GA-based method, respectively, and the last column shows the speed-up of our algorithm to

the GA-based approach. Therefore, the runtime of the proposed algorithm is proportional

to the number of iterations used to perform the local refinement technique and the circuit

size.

Although the proposed algorithm results in the slightly worse total cost on the small

circuit s1423 and s9234, it can have the comparable or even better results than the GA-

based approach on all other bigger circuits. Moreover, the proposed algorithm can compute

results of the total wire cost in less than one second and runs at least 2-order faster than the

GA-based approach.

Table 4.4 reports the results of comparing the wire cost with the constraint on the num-

ber of TSVs in use for all 3D circuits. Each column has the same meaning as those in Table

4.3 except that the second column specifies the maximum number of TSVs that can be
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Table 4.3: Comparisons of wire cost and runtime for wire minimization without the TSV

constraint

len-GA len-FP over. time-GA time-FP speedup

circuit (#FF) #layer (µm) (µm) (%) (sec) (sec) (X)

3 1226 1324 7.99 41.5 <0.01 >40000

s1423(74) 4 1284 1386 7.94 62.9 <0.01 >60000

5 1162 1190 2.41 62.3 <0.01 >60000

3 3388 3246 -4.19 252.2 0.06 4203

s5378(179) 4 3270 3190 -2.45 285.4 0.02 14270

5 3050 2990 -1.97 289.7 0.04 7242

3 4442 4582 3.15 479.7 0.07 6853

s9234(211) 4 4470 4598 2.86 457.9 0.07 6542

5 4020 3944 -1.89 427.2 0.06 7120

3 12168 11714 -3.73 3248.9 1.8 1815

s15850(597) 4 11746 11500 -2.09 4330.1 1.6 2776

5 10658 10360 -2.80 5211.7 1.6 3237

3 12276 11972 -2.48 5205.6 2.4 2151

s13207(669) 4 11226 10928 -2.65 8721.8 2.1 4173

5 11862 11200 -5.58 7471.2 1.8 4151

3 30432 29344 -3.58 19467.8 27.2 716

s38584(1452) 4 30266 28792 -4.87 24305.8 26.9 904

5 30112 28842 -4.22 25740.0 24.9 1033

3 32286 30564 -5.33 54083.5 29.9 1812

s38417(1636) 4 32320 30072 -6.96 51510.6 30.6 1681

5 31082 28798 -7.35 69316.5 30.5 2273

3 33010 30698 -7.00 68546.3 37.7 1820

s35932(1728) 4 31454 29514 -6.17 98843.8 39.4 2507

5 31088 29146 -6.25 107629.0 45.4 2370
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Table 4.4: Comparisons of wire cost and runtime for wire minimization with the TSV

constraint

circuit TSV len-GA len-FP over. time-GA time-FP speedup

(#FF) const. #layer (µm) (µm) (%) (sec) (sec) (X)

3 1272 1336 5.03 34.8 <0.01 >30000

s1423 20 4 1378 1466 6.39 51.0 0.01 5096

(74) 5 1152 1222 6.08 38.8 0.01 3877

3 3580 3484 -2.68 245.0 0.16 1531

s5378 20 4 3298 3256 -1.27 237.1 0.11 2155

(179) 5 3138 3054 -2.68 173.5 0.09 1928

3 5310 5088 -4.18 341.3 0.4 922

s9234 20 4 5182 5428 4.75 319.0 0.4 725

(211) 5 4166 4078 -2.11 307.1 0.3 1228

3 12636 12764 1.01 2961.1 5.8 514

s15850 100 4 12180 12778 4.91 3867.6 9.3 415

(597) 5 11094 10820 -2.47 4577.4 4.3 1067

3 12646 12750 0.82 4763.1 8.7 551

s13207 100 4 11484 11134 -3.05 7295.1 4.1 1771

(669) 5 12884 12812 -0.56 5300.3 9.3 572

3 32464 32868 1.24 15692.4 109.1 144

s38584 200 4 32906 32804 -0.31 20845.2 132.0 158

(1452) 5 33500 33014 -1.45 17467.6 141.6 123

3 34566 33166 -4.05 47988.8 122.0 393

s38417 200 4 34752 34516 -0.68 41204.7 182.0 226

(1636) 5 33744 32972 -2.29 55407.5 164.3 337

3 35748 34826 -2.58 62614.4 218.3 287

s35932 200 4 33864 32370 -4.41 74544.8 172.2 433

(1728) 5 33418 33002 -1.24 75214.4 186.5 403
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used. Note that benchmark circuits of different scales are imposed with different numbers

of TSVs in use, say from 20 to 200. Similarly, the GA-based approach can obtain good

total wire cost on smaller circuits, but not on bigger circuits. Although the runtime used for

relaxing the TSV number slows down the overall performance, our algorithm still can run

at least 2-order faster than the GA-based approach.
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Figure 4.2: TSV impact on the stitching-wire cost for four circuits partitioned into 5 layers

Figure 4.2 studies the TSV impact on the stitching wire cost for four circuits s13207,

s38584, s38417, and s35932 partitioned into 5 layers. The x-axis represents the different

limitations of TSVs in use, which ranges from 50 to 200; the y-axis represents the stitching

wire cost in µm obtained from the proposed algorithm. Four figures illustrated as Figure

4.2 have the same trend that the curve line has the negative slope. Therefore, Figure 4.2

shows that the shorter total wire cost, the more the TSV cost for multi-layer circuits.
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Table 4.5: Performance for power reduction without the TSV constraint

red. initial / final

circuit(#FF) stage 1 stage 2 (%) peak trans.

s1423(74) 9.22E+04 9.15E+04 0.77 14/16

s5378(179) 1.23E+06 1.22E+06 1.08 57/56

s9234(211) 1.86E+06 1.84E+06 0.80 47/47

s15850(597) 1.32E+07 1.31E+07 0.53 32/32

s13207(669) 1.60E+07 1.59E+07 0.78 48/48

s38584(1452) 1.05E+08 1.03E+08 1.04 63/42

s38417(1636) 7.97E+07 7.94E+07 0.47 39/47

s35932(1728) 8.83E+06 8.76E+06 0.76 4/8

average 0.78

Moreover, we get the wire-cost reduction rates 12.38%, 5.28%, 4.66%, and 4.31% from

50-TSV to 200-TSV circuits s13207, s38584, s38417, and s35932. The data show that the

circuit has more scan cells, the reduction rate is lower, which shows that the reduction rate

is bigger when the TSV number is closer to the TSV number used in the optimized solution.

4.2 Reducing Scan-induced Power

Table 4.5 shows the performance of our algorithm without the limitation of TSVs for all

circuits. The first column also shows the same information in the wire-minimization part,

but we don’t show the multi-layer information since the same total weighted transitions are

obtained from the multi-layer circuits without the TSV constraints. The second and third

columns show the total weighted transition of the initial ordering and the new ordering,

respectively; the fourth column shows the reduction rate of total weighted transition from

the initial ordering to the new one; the fifth and sixth columns show the peak transition in

the initial ordering and the reordering after performing the local refinement technique 3D

Planarization, respectively.

From this table, the technique 3D Planarization reports a small reduction rate of 0.78%
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Table 4.6: Performance for power reduction with the TSV constraint

red. initial target #TSV

circuit (#FF) #layer stage 2a stage 2b (%) #TSV / final #TSV

3 1.00E+05 9.54E+04 5.02 62 20/20

s1423(74) 4 1.08E+05 9.77E+04 9.93 80 20/20

5 1.09E+05 9.88E+04 9.31 118 20/20

3 1.38E+06 1.28E+06 7.26 122 20/20

s5378(179) 4 1.44E+06 1.28E+06 11.15 180 20/20

5 1.44E+06 1.29E+06 10.15 236 20/20

3 2.26E+06 2.02E+06 10.63 200 20/20

s9234(211) 4 2.31E+06 2.02E+06 12.34 296 20/20

5 2.36E+06 2.04E+06 13.50 390 20/20

3 1.46E+07 1.34E+07 8.25 358 100/100

s15850(597) 4 1.49E+07 1.37E+07 8.56 546 100/100

5 1.51E+07 1.37E+07 8.73 872 100/100

3 1.84E+07 1.68E+07 9.13 450 100/100

s13207(669) 4 1.82E+07 1.66E+07 9.26 688 100/100

5 1.94E+07 1.69E+07 13.07 828 100/100

3 1.17E+08 1.08E+08 7.59 914 200/200

s38584(1452) 4 1.20E+08 1.09E+08 9.64 1444 200/200

5 1.23E+08 1.09E+08 10.98 1746 200/200

3 9.28E+07 8.28E+07 10.77 1400 200/200

s38417(1636) 4 9.62E+07 8.35E+07 13.17 1926 200/200

5 9.64E+07 8.40E+07 12.94 2562 200/200

3 1.40E+07 1.01E+07 27.64 1430 200/200

s35932(1728) 4 1.53E+07 1.04E+07 31.91 2230 200/200

5 1.76E+07 1.10E+07 37.40 2818 200/200

average 12.85
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averagely over the initial solution on all circuits since we find a good solution after perform-

ing the Multiple Fragment Heuristic. Although some peak transitions after performing the

refinement technique are worse than that in the initial solution, no big differences occur in

all multi-layer circuit.

Table 4.6 shows the performance of our algorithm with the TSV constraint. In this

case, the information for the number of layer for all circuits are shown. The third and

fourth columns show the total weighted transition after performing the constraint solver

3D Relaxation and the local refinement 3D Planarization without adding the TSV cost,

respectively. The fifth column also reports the reduction rate from the constraint solving to

local refinement during the second stage. The sixth column shows the TSV usage in the

initial ordering; the seventh column reports the TSV usage in the power-reduction ordering

and the limitation of TSV.

Table 4.6 also shows a good reduction of the total TSV cost due to the loose TSV

constraint in the big circuits, especially in s35932. Therefore, the 5-layer s35932 has the

best optimization rate 37.40% from the solution after constraint solving due to the huge

change in the initial solution. Consequently, the local refinement technique obtains the

average reduction rate 12.85% on the total power cost.

Table 4.7 reports the results of comparing the power cost without imposing any TSV

constraint for all circuits. The second and third columns show the total weighted transition

after performing the GA-based method and the proposed algorithm, respectively; the fourth

column also shows that improvement ratio of our approach to the GA-based approach; the

fifth column shows the number of peak transition after performing the GA-based method

and the proposed algorithm; the sixth and seventh columns report runtime in seconds for

our algorithm and GA-based method, respectively, and the last column shows the speed-up

of our algorithm to the GA-based approach. Therefore, the runtime is related to the number

of iterations used to perform the local refinement technique, look-up table construction, and

the circuit size.

In this table, the differences in the peak transition between the GA-based method and

the proposed algorithm results are small. Then, the proposed algorithm results have the

comparable or even better results than the GA-based approach on all circuits. Moreover,

the proposed algorithm can compute results of the total power cost in less than one second
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and still runs at least 2-order faster than the GA-based approach.

Table 4.8 reports the results of comparing the power cost with the constraint on the

number of TSVs in use for three big circuits s38584, s38417, and s35932. Each column

has the same meaning as those in Table 4.7 except that the second column specifies the

limitation of TSV in use. Similarly, different circuits are imposed with different numbers of

TSVs in use, ranges from 20 to 200. Since used for relaxing the TSV number, the runtime

is slower than the power-reduction problem without the TSV constraints. Consequently,

our algorithm still can run at least 2-order faster than the GA-based approach.
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Chapter 5

Conclusion
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The scan-chain reordering problem is reviewed and modified for TSV-constrained 3D

IC designs. A fast scan-chain reordering algorithm is developed and consists of two stages:

(1) initial solution computation and (2) local refinement & constraint solving. To avoid the

high complexity of 3D optimization, we convert such problem into a TSP problem and use

one of the state-of-the-art algorithms named Multiple Fragment Heuristic combined with a

dynamic closest-pair data structure FastPair to derive a good initial solution quickly. Then

two local refinement techniques 3D Planarization and 3D Relaxation are also proposed to

minimize the wire cost or reduce the scan-induced power and to relax the use of TSVs, re-

spectively. Experimental results show that the proposed algorithm can achieve comparable

(<3%), or even better performance than that from a GA-based approach and runs at least

2-order faster with (without) considering the TSV constraint.
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