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摘 要       

當電路發生開放式線段缺陷，實體電路上的缺陷周圍的其他邏輯閘造成的偶

和電容及拜占庭效應對缺陷影響到的輸出會隨著缺陷的位置改變，許多先前的研

究針對開放式缺陷的測試和檢驗。這篇論文提供了一個利用兩個階段產生診斷性

測試向量的方法：首先使用布林可滿足性引擎在單一缺陷的假設下，針對發生缺

陷影響到的邏輯閘自動產生向量。另外搭配上兩階段的診斷方法，分別使用一個

修正的字典(dictionary)診斷法，去減少可能發生錯誤開放式缺陷的候選線段數

量，接著在利用注入和評估(inject-and-evaluate)診斷法使得結果能夠達到很高的

準確性。實驗執行在 ISCAS85的電路上，結果顯示在檢測方面最後的解析度(即
對應的候選線段數量)可以達到幾乎接近 1的準確性。 

。 
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ABSTRACT 

As an open defect occurs on one segment in the circuit, the coupling 
capacitances from the neighboring nets and the Byzantine effect based on 
the physical layout and cell library can result in different faulty behaviors. 
Many previous researches focus on the test and diagnosis issue for open 
defects. However, the diagnosability of test patterns is not well addressed. 
Therefore, in this paper, we propose a high-resolution algorithm which 
consists of two stages: (1) a diagnostic ATPG and (2) its diagnosis flow. 
A Boolean Satisfiability solver is incorporated to generate patterns for 
target driven gates of the open segment under the single defect 
assumption. Later, the diagnosis flow first constructs the set of candidates 
based on a dictionary-based approach followed by an inject-and-evaluate 
analysis with the assistance of physical information to greatly reduce the 
candidate size. Experiments are conducted on ISCAS85 benchmark 
circuits and the results show that the proposed algorithm runs efficiently 
and can deduce nearly 1 candidate for each individual open-segment 
defect. 
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Open defects can be mainly classified into two kinds of faults: (1) open-segment defects, 

also known as interconnect open defects, which indicate that unintended breaks or electrical 

discontinuities in IC interconnect lines occurring in metal, poly-silicon, or diffusion regions; 

(2) intra-gate opens, regarded as an open with an infinite resistance that disconnects the 

charge path or discharge path to the gate output, and it is also regarded as stuck-open faults. 

This paper mainly targets the former.  

When open segment defects occur in the circuit, there are many problems. One is the 

tunneling effect, which is caused by narrow cracks appearing in metal lines or in a contact or 

via. Fig 1.1[1] shows such a defect. The crack is narrow enough to support quantum 

mechanical electron tunneling. One of famous tunneling mechanisms is Fowler-Nordheim 

tunneling. Those tunneling effects depend on the characters of the materials, such as the IC 

with that defect fails in the high temperatures. Another is the floating node. When the crack is 

wide enough that electrons can’t through the gap, the logic value of the gate containing the 

defects depends on the coupling capacitances. Fig 1.2(a) and (b)[1] illustrates that condition. 

The third one is open delay defect, shown in Fig 1.3[1]. If a small crack with metal material 

has an interesting temperature property for an IC, the frequency becomes lower and lower 

when temperature is dropping. This is unusual property for an IC, the defect can be difficult to 

detect in test. Today’s ATPG for interconnect open defects also suffers from too many 

neighbors’ combinations. It is hard to assign the logic values effectively and quickly. This 

problem makes open-segment ATPG time-consuming. 

 

 

Fig. 1.1 SEM photo of metal tunnel open [1] 
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Fig. 1.2 (a) open crack in a metal line and (b) its electrical equivalent: a capacitor voltage 

divider [1] 

 

 

Fig. 1.3 (a) Tunneling open and (b) response to electron tunneling [1] 

 

When the manufacturing process scales down to the deep sub-micron, the distance 

between metal lines becomes narrower and the probability of defect occurrences becomes 

higher. When open-segment defects occur, the number of the coupling capacitances increase. 

To properly model the defect behaviors, the Byzantine effect needs to be considered with the 
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assistance of layout information and the cell library. According to the physical layout, a 

logical net can be divided into multiple segments as defect sources, not only the net itself[2, 

3]. For example, in Fig 1.4(a), gate G1 drives gate G2, G3 and G4 through a logical net. 

When a defect occurs on the output of G1, all downstream gates, G2, G3 and G4, receive 

faulty values. However, considering the physical layout shown in Fig. 1.4(b), the net can be 

further divided into five segments. When an open-segment defect occurs on different 

segments, the faulty values propagate to different gates and result in different faulty 

behaviors. 

 

G1

G2

G3

G4

 
Fig. 1.4 (a) logic level (b) Byzantine effect 

 

For IC diagnosis, two core problems are fault activation and fault propagation. In 

addition, resolution which denotes the reported number of candidates per fault/defect is also 

important for the success to diagnosis. For a high-quality diagnosis, both the diagnostic 

algorithm and patterns needs devising particularly. Therefore, diagnostic test pattern 

generation (TPG) generates patterns not only with a highly fault coverage but also with 

different erroneous output syndromes for different defects for diagnosis. As a result, the 

diagnosis algorithm which ties in diagnostic patterns can reach the high diagnosability and 



 

5 

 

resolution[4]. The state-of-the-art TPG research for open-segment defects focuses on 

achieving the same fault coverage as stuck-at fault patterns do. When applying these patterns 

in the traditional diagnosis flow, resolution may not be satisfactory because one error 

syndrome can be attributed to different defects. 

Automatic test pattern generation (ATPG) has been investigated in the test area where 

many different methods were developed specifically for different faults/defects. ATPG 

mainly involves three fundamental problems: justification, propagation and implication[5]. 

The D-algorithm, the first complete ATPG algorithm, relies on analyzing the circuit structure 

in the early 1960s[6]. The next important landmark is PODEM in 1981[7], which search the 

primary input assignments with simulation to enhance the computational efficiency. The other 

approach proposed in 1992 uses Boolean Satisfiability (SAT) based model to represent the 

logic functionality of a circuit to facilitate pattern generation[8]. In general, SAT-based 

approaches outperform PODEM-based approaches for most of the cases nowadays. 

When a circuit fails after testing, the diagnosis process starts to analyze its behaviors.  

Basically, diagnosis can be classified into two types: one is cause-effect analysis which 

mainly uses fault simulation to build a dictionary-based paradigm for each error syndrome[7, 

9-11], and the other is effect-cause analysis which focuses on error output to find the 

candidate as faults/defects in the circuit. As the cause-effect analysis are criticized for 

unpredicted diagnosis result due to different pattern qualities, most of the recent diagnostic 

flows belong to the effect-cause analysis and can be further divided into has three categories: 

structural pruning[12], backtracing[11, 13], and inject-and-evaluate paradigms[14, 15]. 

However, effect-cause based diagnostic approaches still suffer from time-inefficiency when 

tracing error signals from primary outputs towards primary inputs. 

Therefore, in this work, we apply a SAT solver to facilitate the diagnostic pattern 

generation under the assumption of a single defect. Effect of each open-segment defect is 

further decomposed and reflected on its driven gates, respectively. Moreover, a 

branch-and-bound algorithm is also used with COP (controllability and observability 

procedure) to guide the search of solutions. Later, in our diagnostic flow, a hybrid method is 

proposed and starts from a dictionary-based analysis followed by an inject-and-evaluate 

analysis. The experimental result shows that the proposed diagnosis can run efficiently and 

our diagnostic patterns along with the proposed diagnosis flow can achieve a high resolution. 

For all ISCAS 85 benchmark circuits, nearly only 1 candidate is reported and matches the 

injected defect. 
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To ensure that no fault exists in the circuit, typically engineers have two ways: one is 

automatic-test-pattern-generation (ATPG) based approach, and the other is 

design-for-testability (DFT) based approach. Automatic test pattern generation (ATPG) 

represents the process of generating effective test patterns for specific problems in a digital 

circuit efficiently whereas design for testability (DFT) denotes the design techniques that add 

certain testability features to a circuit design. If the ATPG is powerful to capture all faults, 

DFT will be useless. For a good ATPG technique, fault equivalence, pattern compaction and 

pattern compression are the core issues. ATPG can be classified into two types: 

structure-based ATPG and SAT-based ATPG. 

Structure-based ATPG have been investigated for a long time. In 1967, the first 

algorithm, D algorithm [6], was proposed by Roth and proposed D-frontier and J-frontier 

during its logic tracing. D-frontier consists of all the gates whose output values are X but have 

faulty effect values D (or ~D) on their inputs. J-frontier consists of all gates whose output 

values are known but are not justified by their inputs. When D-frontier and J-frontier 

collectively derive all values of the circuit, one pattern is found. The next landmark developed 

in 1981 is Path Oriented Decision Making (PODEM) [7] which only makes decisions at 

necessary primary inputs. In 1983, the Fanout-Oriented TG algorithm (FAN)[16] proposed by 

Fujiwara extended the PODEM-based algorithm to remedy these shortcomings. 

Until 1992, a new type of methods for ATPG was proposed. In [8], Larrabee showed a 

method to generate test patterns using Boolean Satisfiability, not backtracing the circuit 

structure. It combines the correct and faulty circuits into one miter circuit, converts the new 

circuit into the corresponding conjunctive normal form (CNF), and then uses s SAT solver to 

find input vectors. 

For diagnosing a digital circuit, we usually assume that faults only occur in the 

combinational part whereas flip-flops and the scan chain are fault-free. Diagnosis algorithms 

can be divided into two major paradigms: cause-effect analysis and effect-cause analysis [4]. 

Cause-effect analysis first specifies constraints for the fault type, and then uses fault 

simulation to build the dictionary as fault lists. Once this dictionary is built, it can be looked 

up for analyzing the fault syndrome. However, this type of methods mainly suffers from two 

shortcomings: the dictionary-size problem and the un-modeled fault problem. The former 

analysis that dictionary should remember all the output responses of each model fault at each 

clock may exceed the limit of memory size. When the number of test vectors, number of 

faults and the number of output syndromes are all over 10,000, the dictionary size may go up 

to 1012 bits [17]. The latter analysis has the fault-escape problem when different types of 

faults are not built in the dictionary for diagnosis [11]. 

Effect-Cause analysis directly analyzes the falling patterns and fault syndromes to 

retrieve the error information. It has several advantages over cause-effect analysis: first, it 

does not need to depend on a priori fault model; second, it can ne applied to multiple faults; 
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last, it can be adapted to partial-scan designs more easily. The drawback of this solution is the 

waste of time to explore solutions. This method mainly consists of three sub-categories: 

structural pruning [12], backtracing[11, 13] and inject-and-evaluate paradigm [14]. 

 

Diagnostic resolution depends on not only the diagnosis flow but also the pattern quality. 

In fact, a pattern set that can achieve a high defect/fault coverage from general ATPG does 

not necessarily guarantee a high diagnostic resolution and accuracy. Therefore, diagnosis test 

pattern generation (DTPG) process is needed to facilitate the diagnostic flow. P. Camurati 

developed a DTPG to generate patterns for the stuck-at fault model in [18] and later Hartanto 

from [19] targeted sequential circuit in the proposed DTPG. 

 

The open-defect problem has drawn more attentions since the manufacturing 

technologies scales down to deep submicron. Many researches have addressed the importance 

of then open-defect problem and proposed solutions for its testing and diagnosis. Previous 

works for open-segment defects include diagnosis and automatic test pattern generation 

(ATPG). For ATPG, the core problem is that it involves many constraints from neighboring 

wires and different threshold voltages of gates from the design library. For diagnosis, the 

drawbacks of recent diagnosis algorithms are inefficiency and inaccuracy for open defects. 

Xue et al showed that ISCAS’85 circuits with high probabilities have different kinds of 

open defects according to their experimental results [20]. Rodriguez-Montaneze R et al 

proposed the via also behaves like a wire or an intra-gate component where a open defect may 

possibly occur, and moreover the number of via may be larger than number of components in 

the circuits [21]. Needham W. et al also found that open defects can be escaped under the test 

of stuck-at fault model [22]. Further, Henderson CL et al characterized open defects:  it can 

run correctly in the low frequencies and failed in the high frequencies. This property makes 

logic testing more difficult[23]. Therefore, researchers start to propose new methods using 

logic test and current test together. Makki et al showed experimental results to prove that 

90.9% to 90.6% faults can be detected by IDDQ tests with transition-fault logic tests[24]. 

Konuk proposed a method that combines stuck-at fault tests and current based tests to achieve 

a high coverage as well[25]. 

More researches even use the logic tests only. S. Spinner built a aggressor -victim model 

for the inter-layer opens and the intra-layer opens, and generated the patterns 

automatically[26]. Their experimental results showed a high defected coverage with a small 

number of patterns. X. Lin et al proposed three methods: static dominant and dynamic 

dominant and double observation[27]. The former two methods are used to generate patterns 

while the last one is applied when the output of a gate coincides with one of the neighboring 

nets of such gate. S. Hillebrecht et al developed a flow that integrates the physical information 

such as the layout and the cell library[28]. It not only applies the aggressor-victim model for 
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pattern generation but also redefines the untestability for open defects. Their experimental 

results demonstrate high efficiency. N. Devtaprasanna et al gave a solution of testing 

intra-gate open defects and reached the complete defect coverage [29]. Roberto G’omez et al 

used the commercial tool to build a flow from layout extraction to ATPG for interconnect 

open defect [30]. 

For open-defect diagnosis, many previous works also take the physical information into 

account. Huang proposed a diagnosis flow which focuses on single interconnect-defect 

assumption and uses inject-and-evaluate paradigm for diagnosis, High accuracy was 

shown[31]. Different views of testing from the gate level down to the physical (segment) 

level are provided. Zou et al further considered Byzantine effect as well as physical 

information for their diagnosis of single open defects[3]. Kao et al targeted multiple 

open-segment defects and proposed a diagnosis flow which uses the falling patterns to 

formulate constraints for ILP solving and derives the fault combinations automatically[32]. 
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Fig. 3.1 Fault model for an open defect 

 

Several fault modes of open defects has already been proposed in previous researches [3, 

26, 33]. We use the fault model that describes an open on a segment of net considering the 

impact of physical information in the paper. When a segment of one net is unintended break, 

the node f is regarded as an open-segment fault. The voltage of the fault is high-impedance, 

and the logic value of the floating node f is determined by floating node voltage and threshold 

voltage of the driven gates. If the floating node voltage is larger than the threshold voltage of 

a driven gate, the logic value for the driven gate is logic 1. Therefore, the floating nodes do 

not always become faulty gates. 

There is an open segment fault example as Fig. 3.1.the floating node voltage Vf is 

counted by the following equation: 

gnd

t
ddf C

Q

CC

C
VV +

+
×=

10

1        (3.1) 

Where Qt is the initial trapped charge of the floating node and Cgnd is the capacitance 

between floating node and ground. C0 and C1 are the sum of the capacitance with logic 1 and 

logic 0, respectively. Furthermore, the values of C0 and C1 can be decomposed into: 

000 ingnd CCCC ++=        (3.2) 

111 invdd CCCC ++=        (3.3) 

Where Cvdd and Cgnd are the capacitances between the floating node and the power, and 

between the floating and the ground, respectively. Cn0 and Cn1 are the capacitances between 

floating node and its neighboring node with logic 0 and logic 1, respectively. Ci0 and Ci1 are 

the internal capacitances and reside inside the driven gate. Because Cn0 and Cn1 dominate the 

major part of fault behavior, we only observe the coupling effect from Cn0 and Cn1. However, 

trapped charge Qt and internal capacitances, Ci0 and Ci1 are typically hard to predict. Process 

variation also makes parasitic capacitances extracted from physical layout unpredictable. 

Therefore, this paper adopts a simplified model similar to [26, 27] by assumption that the 

parasitic capacitances between the open net and its neighboring nets dominate the decision of 

the logic value on the following node. 
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Fig. 4.1 Diagnostic ATPG Flow 

 

Having the open segment fault model, the next step focuses on ATPG flow shown as 

Fig. 4.1 for the generation of diagnostic patterns. A pre-processing step builds an 

open-segment list for the ATPG. Structurally untestable defects should be removed from the 
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list. Here structurally untestable defects denote those defects with no neighboring aggressor to 

affect Vf according to the layout and therefore can be dropped from the list.  

When an open-segment defect occurs in the circuit, the corresponding voltage value, Vf, 

is decided by the logic value of its neighboring combination. Besides a fault can be activated 

on the segment, a successful ATPG also requires that such fault can propagate and can be 

observed at one output of the circuits. During the process, fault activation and propagations 

result in many constraints which collectively make ATPG not easy to solve. The proposed 

ATPG flow is built upon the assumption of a single open-segment defect and modifies the 

original stuck-at-fault ATPG with the integration of the physical information. 

The first step in our ATPG flow is to decide the logic value (either 1 or 0) on the target 

segment to be justified. It is important for the branch-and-bound search in the later step. For 

example, if logic-0 is chosen to be justified on the target segment, the logic values from its 

neighboring aggressors should be assigned properly. Once the floating-net voltage derived 

from the aggressors with logic-0 is greater than the threshold voltages, the coupling-net 

combination is used to generate a pattern for such open-segment defect. If the exhaustive 

search finds no solution from all coupling-net combinations, our flow will change to justify 

logic-1 on the target segment. It is very important to know which logic value to be justified 

before the ATPG starts. 

 

 
Fig. 4.2 (a) controllability and observability procedure COP 

 

There exist multiple metrics such as signal probability and testability to provide 

information for deciding the logic value of the target segment We choose the controllability 
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and observability procedure (COP) shown as Fig. 4.2, to estimate the most likely logic value 

that the target segment can have. 

 COP denotes “controllability and observability procedure,” one of the probabilistic 

testability analysis methods with the computing complexity of O(n). According to Table 1, 

Table 2 and Fig. 4.2(a), We first compute the controllability values and then use the 

controllability values to derive the observability values.] 

 

Table 1 Basic gate Table 

gate controllability observability 

w1 w2

 
C1(W2) = 1 – C1(W1) O(W1) = O(W2) 

w1 w2

 
C1(W2) = C1(W1) O(W1) = O(W2) 

 

C1(W3) = C1(W1)• C1(W2) 
O(W1) = C1(W2)•O(W3) 

O(W2) = C1(W1)•O(W3) 

 

C1(W3) = 1-[1-C1(W1)]• 

[1-C1(W2)] 

O(W1) = C0(W2)•O(W3) 

O(W2) = C0(W1)•O(W3) 

 

C1(W2) = C1(W1) 

C1(W3) = C1(W1) 

O(W1) = [ 1- O(W2) ] • 

[ 1- O(W3) ] 
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Table 2 Advanced gate Table 

gate Controllability observability 

 

C1(W3) = 

1-[ C1(W1)• 

C1(W2) ] 

O(W1) = 

C1(W2)•O(W3) 

O(W2) = 

C1(W1)•O(W3) 

 

C1(W3) = 

[1-C1(W1)]• 

[1-C1(W2)] 

O(W1) = 

C0(W2)•O(W3) 

O(W2) = 

C0(W1)•O(W3) 

 

C1(W3) = 1- 

[ 1-[ C1(W2) •  

[ 1-C1(W1) ] ] ] • 

[ 1-[ C1(W1) •  

[ 1-C1(W2) ] ] ] 

O(W1) = 1 – [ 1 - 

C0(W2)•O(W3)•[

 1- C1(W2) ] ] • 

[ 1- 

C0(W1)•O(W3)•[

1-[1- C1(W1)]]] 

O(W2) =1 – [ 1 - 

C0(W1)•O(W3)•[

 1- C1(W1) ] ] • 

[ 1- 

C0(W2)•O(W3)•[

1-[1- C1(W2)]]] 

 

C1(W3) = 

[ 1-[ C1(W2) •  

[ 1-C1(W1) ] ] ] • 

[ 1-[ C1(W1) •  

[ 1-C1(W2) ] ] ] 

O(W1) = 1 – [ 1 - 

C0(W2)•O(W3)•[

 1- C1(W2) ] ] • 

[ 1- 

C0(W1)•O(W3)•[

1-[1- C1(W1)]]] 

O(W2) =1 – [ 1 - 

C0(W1)•O(W3)•[

 1- C1(W1) ] ] • 

[ 1- 

C0(W2)•O(W3)•[

1-[1- C1(W2)]]] 

 

Here is an example for COP calculation shown in Fig. 4.2(b) where the controllability 
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and observability values of the circuit are computed based on the former tables. 

 

G1

G2

G4

G3

G5

G6 G7

C = 0.25

C = 0.75 

C = 0.19

C = 0.75

C = 0.34

C = 0.37 C = 0.63

O1_1=0.26

O1_2=0.26

O2_1=0.22

O3_1=0.24

O4_1=0.51

O4_2=0.17

O5_1=0.5

O5_1=0.48

O5_2=0.48

O6_1=0.68

O6_2=0.66

O7_1=1

O2 = 0.43

O2_2=0.22

O3_2=0.24

 
Fig. 4.2(b) example of COP 

 

thresholdf Vor
CCCCCCCCCC

CCCCCCCCCCCCCCC
V <>

++++
×+×+×+×+×=

54321

5544332211

 
Fig. 4.3 expected voltage value 

 

The second step in our ATPG flow takes physical information including the circuit 

layout and extracted RC values into consideration. We reuse the controllability and 

observability values computed in the first step to estimate the expected voltage value for such 

floating net. First, every neighbor’s controllability multiplied by its coupling capacitance is 

summed up, then multiplied by such ratio with Vdd and the computed voltage is compared 
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with the threshold of the driven gate to determine the logic value. If the computed voltage is 

bigger, logic-1 is justified on the driven gate. Otherwise, logic-0 is justified. Using the 

probability point of view to determine the logic value to be justified on the driven gate can 

speed up the ATPG process. Since the logic value of each neighboring net can be 0 or 1 with 

its individual probability, we incorporate the information to help determine the logic value of 

one driven gate. Fig. 4.4 shows an example. The target net can be coupled by five aggressors, 

N1 to N5, and their controllability values as well as the coupling capacitance values jointly 

determine the floating-net voltage, Vf. 

 
Fig. 4.4 example about affects outputs 
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The third step is to decide the target logic value to be justified. The step is different from 

previous open-segment ATPGs which target the segment as defect locations. We choose the 

branch segment connecting to a driven gate as one target to generate patterns. Fig. 4.4 shows 

an example. Gate G1 is connected with three fanout gates, G2, G3 and G4, and the net can be 

divided into five corresponding segments, S1, S2, S3, S4 and S5. Since previous 

open-segment ATPGs generate patterns for each segment defect, so in this example five 

patterns are generated. Instead, our flow generates only three patterns for G2, G3 and G4, 

respectively for diagnosis. The idea behind is not only to guarantee an faulty effects appearing 

at the input of the driven gate but also to enhance the diagnosis resolution. 

 

 
Fig. 4.5(a) sort the coupling capacitances 
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Fig. 4.5(b) Example of a branch-and-bound tree 

 

After choosing the target defect and evaluating the probabilities of logic values to be 

justified, a branch-and-bound algorithm is performed. The forth step of the flow is to 

construct and explore the coupling tree. It sorts the neighbors of the target defect by 

comparing their coupling-capacitance values first, and assigns the logic values in this order. 

The key idea is first to decide the logic value for the coupling net with a large capacitance 

which can save time on the exploration of the coupling tree and can derive the coupling net 

combination easier. Fig. 4.5(a) shows a example. If gate, G1 has five neighbors, N1 to N5 

with the coupling-capacitance ranking as N5 > N2 > N3 > N4 > N1, Fig. 4.5(b) shows the 

assignments of logic values in the corresponding order. 

 

N5

N2

1

1

N3

0.5 (N5) + 0.43 

(N2)

0.21(N1) + 0.43(N2) + 0.41(N3) + 0.24(N4) + 0.5(N5)

X1.8 = 0.935 > 0.85(threshold)

 
Fig. 4.5(c) Justifying the threshold voltage 
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After having the order for the assignments, we start to give the logic value for the 

neighboring nets. The fifth step aims to find a feasible combination of all coupling nets which 

can induce a proper floating-net voltage bigger than the threshold voltage of the target driven 

gate. For example, if we choose logic-1 to be justified, a legal coupling-net combination has 

the sum of coupling capacitances from logic-1 neighbors divided by the sum of total coupling 

capacitances then multiplied by VDD bigger than the threshold voltage of the target driven 

gate. We show an example in Fig. 4.5(c). As both N5 and N2 are assigned logic-1, the 

corresponding floating-net voltage is larger than the threshold voltage of G2 and thus makes 

G2 receive logic-1. Then a feasible combination of coupling nets is found and shown as Fig. 

4.5(d). 

 

 

 
Fig. 4.5(d) change other nets combinations 

 

 
Fig. 4.5(e) logic conflict in choosing logic value 

 

After the combination of coupling nets is decided by the previous step, then we can 

check whether such combination can satisfy the functionality from the circuit structure or not. 

The sixth step applies a SAT solver to mainly check the coupling-net combination again the 

functionality of the circuit. If the result return SAT, it means there is no conflict among the 

assignment of the coupling nets. If UNSAT is returned, the combination is infeasible. Fig. 

4.5(e) indicates that N5 and N2 cannot have logic-1 at the same time. When we assign logic-1 
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to both of them, UNSAT is returned and make us check whether we explore 2N times for this 

type of justification or no. Note that N is the number of neighbors. If 2N is reached, we 

classified this defect as pseudo-untestable. If not, more combinations are explored. Fig. 4.5(b) 

shows the coupling tree. When assigning N5 and N2 to logic-1 is UNSAT, an alternative 

combination should be explored until 2N times are reached. The whole process is illustrated 

in Fig. 4.5(f). 

 

 
Fig. 4.5(f) aborted fault 

 

After ensuring the activation of an faulty effect induced by the combination of coupling 

nets, we then check if the faulty effect can propagate to any output. The seventh step is done 

by SAT solving of coupling-net combination over a miter circuit that combines the faulty and 

fault free circuits shown as Fig 4.5(g). 
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fault 

Check the fault activation.
 

Fig. 4.5(g) check the fault activation 

 

OX1

OX2

OXN

O = 1

Faulty circuit

Fault free circuit

faults
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Fig. 4.5(h) check the fault propagation 

 

The miter circuit combines the faulty and fault-free circuits with proper XOR gates into a 

new circuit as shown as Fig. 4.5(h). A SAT engine is performed on the corresponding CNF 

form for such miter. If SAT is returned, the faulty effect can successfully propagate to at least 

one output and a legal pattern is found. If UNSAT is returned, the faulty effect is blocked 

during the propagation and cannot be observed at any output. When an UNSAT occurs, we 

repeat trying up to 2N times for this coupling-net combination.  

 

S1 S2

S3

S4

S5

G1

G2

G3

G4

Focus on G1's output G2, generate pattern P1 and Xor results XO1

0

0

0

0

0

0

P1

golden

1

0

0

0

0

0

Sim

result

 
Fig. 4.5(i) Example of check robustness 
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Fig. 4.5(j) Example of check robustness 

 

When a pattern is successfully generated, our last step will check its robustness. We use 

the pattern to run fault simulation with the injection of the target defect, and then check 

whether output responses match the expected values under this pattern or not. If yes, the 

pattern as well as its information is stored for diagnosis. If not, the pattern is removed. Fig. 

4.5(i) and Fig. 4.5(j) illustrate the step. 
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Chapter 5 
 
Diagnosis Flow 
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Fig. 5.1 Diagnosis flow 

 

After the diagnostic ATPG, the information about patterns and its matching outputs is 

available. Under the single defect assumption, we can diagnose the faulty circuit by a 

diagnosis flow shown in Fig. 5.1 and the proposed diagnosis flow can achieve high resolution.  
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Fig. 5.2 Divide diagnosis flow into two stages 

 

This flow mainly consists of two steps which are illustrated in Fig. 5.2: the first one is 

dictionary-based diagnosis and the second one is inject-and-evaluate diagnosis. 

 

S1 S2

S3

S4

S5

G1

G2

G3

G4

Real defect occurs in S2
 

Fig. 5.3(a) defect occur in S2 

 

 
Fig. 5.3(b) Pattern, P2 and its output result O2 
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Fig. 5.3(c) Pattern, P3 and its output result O3 

 

The diagnosis flow starts after deriving the diagnostic patterns for the circuit under test. 

Correct logic values for all outputs can be obtained from the simulation. The first step is to 

construct open-segment candidates. We can get all faulty gate candidates by matching the real 

outputs and the patterns included in the diagnostic pattern information. Because the proposed 

ATPG targets the gate not the segment, we combine the faulty gate candidates to derive the 

corresponding faulty segments. This method can be viewed as one of the dictionary diagnosis 

approaches. Here shows an example. Fig. 5.3(a) shows a real defect that occurs on segment 2 

(denoted as S2) driven by the gate G1. We apply all the patterns generated from our ATPG to 

testing and record the output responses. As S2 is open, two out of our diagnostic patterns will 

result in the error outputs and Fig. 5.3(b) and (c) show these two cases. Because the open S2 

can affect gate G2 and gate G3 only, the pattern for G4 should not result in any error output 

shown as Fig. 5.3(d). With our diagnostic patterns and matching information, we can 

compose the defect location in Fig. 5.3(e). 

 

 
Fig. 5.3(d) Pattern, P4 and its results 
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S3

S4

S5

G1
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X
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X

 
Fig. 5.3(e) backtrace to the defect 

 

Multiple open-segment candidates can be obtained from the first step. Next, we perform 

the silicon diagnosis in an inject-and-evaluate manner. During such second step, we choose 

one defect candidate at a time for injection and run simulation with the assistance of physical 

information. At the end, whether a candidate is a true or not depends on whether the 

simulation result matches the real silicon output result or not. If not, such defect candidate is 

eliminated. If yes, it remains in the defect pool as shown in Fig. 5.4 for silicon inspection in 

the future. 
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Fig. 5.4 inject-and-evaluate methods 
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Chapter 6 
 
Experimental Results 
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Table 3 circuit information 

circuit #net #m-f net #seg 

C432 203 89 443 

C499 275 59 566 

C880 468 125 979 

C1355 619 259 1404 

C1908 938 385 1893 

C2670 1642 454 2821 

C3540 1741 579 3781 

 

The experiments are conducted on the ISCAS85 benchmark circuits. The ISCAS 85 

benchmark circuits, layouts and coupling capacitance information are available from TAMU 

websites [34]. The ISCAS 85 benchmark circuits are synthesized with a 5-metal-layer TSMC 

180 nm CMOS technology. The threshold voltage of each type of gate is determined through 

SPICE simulation. For ATPG, we use a SAT solver named MiniSat 2.0 which is one of the 

best SAT solvers in practice. MiniSAT 2.0 is a fast complete SAT solvers and the source code 

is open for public. 

Table 3 shows the gate-level and physical information of the ISCAS 85 circuit: the 

second row denotes the total number of nets; the third row denotes the number of nets with 

multiple fanouts; the forth denotes the total number of segments according to the layout of the 

circuits. 

During the ATPG step, the testability of the circuit is incorporated in the-branch 

and-bound method. The original version of the-branch-and-bound method is proposed by 

Spinner [26], and always chooses logic-1 then logic-0 to justify (1->0). If the ATPG for 

justifying logic-1 fails, the algorithm will change to justify logic-0. Obviously, it is not 

necessarily better to start with logic-1. Therefore, three other different strategies are also 

proposed to guide the ATPG process: (1) 0->1: logic-0 is first justified and then logic-1; (2) 

controllability: the controllability values of the coupling nets for the target segment can 

determines the expected logic value of the target segment to be justified; (3) observability: 

the observability value of the target segment determines the logic value to be justified. 

Table 4 shows the runtime comparison of using the above 4 different strategies on some 

small ISCAS85 circuits. The first column shows the name of the circuits and column 2, 3, 4 

and 5 shows the runtime in seconds for the 1->0, 0->1, observability and controllability 

strategies, respectively. As you can see, the 1->0 strategy is not necessarily superior. 

Especially when the circuit size goes larger, the observability and controllability strategies 

both have better efficiency over the 1->0 strategy. Therefore, the observability strategy is 
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chosen to be incoportated in our ATPG algorithm. 

 

Table 4 compare with other ATPG 

circuit 1->0 0->1 observation controllability 

c432 46 137 75 97 

c499 497 542 507 470 

c880 299 330 267 312 

c1355 1124 993 873 884 

 

After the ATPG process completes successfully, defects can be further classified into 

different categories, and Table 5 shows the statistics. The first column shows the number of 

ATPG-untestable defects which means that no pattern can be generated after trying the 2N or 

all possible combinations of the coupling nets for the target segment defect. The second 

column shows the number of aborted defects, which are defined as after trying up to five 

times the generated pattern cannot result in matching output responses with those from the 

physical simulation. The third and forth columns show the numbers of no-coupling defects 

and no-segment defects, respectively. Both categories are also classified as the structurally 

untestable. The last column shows the numbers for successful defects where a pattern can be 

successfully generated by the ATPG process. 

 

Table 5 fault classification 

circuit 
ATPG- 

untestable 
aborted no-coupling no-segment successful 

c432 15 4 28 7 292 

c499 79 19 36 32 303 

c880 30 3 98 26 615 

c1355 170 32 138 32 729 

c1908 293 2 195 25 1000 

c2670 243 31 198 140 1801 

c3540 453 14 269 22 2170 

 

After generating diagnostic patterns and collecting the pattern information, the diagnosis 

step proceeds and the experimental result is shown in Table 6. The first column represents the 

total runtime for diagnosis. Since the proposed diagnosis algorithm is dictionary-based, it runs 

efficiently. The second column represents the numbers of detected defects. In our experiments, 

100 random defects are injected onto the circuit under test individually and 91 defects can be 

detected by our algorithm. The third column represents the number of candidate defects 
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reported by our diagnosis algorithm. For example, for c432, 91 defects are detected and only 

91 candidate defects are reported, correspondingly. After checking the candidates against the 

injected defects, they are perfectly matched. The forth column represents the diagnosis 

resolution which is computed as the number of candidates divided by the number of injected 

defects. For example, the resolution is 1 for c432 and it means that our algorithm can find the 

exact defect on every defective circuit. The last column represents the total number of 

generated patterns. Note that we do not apply any compaction or compression technique on 

the pattern set and thus pattern reduction can be one of the future directions of this work. 

 

Table 6: Diagnosis results 

circuit Ddtime(s) detected candidate resolution # patterns 

c432 11.584 91 91 1 292 

c499 16.013 73 74 1.01 303 

c880 41.526 83 84 1.01 615 

c1355 145.753 70 70 1 729 

c1908 91.917 68 68 1 1000 

c2670 259.844 70 73 1.04 1801 

c3540 445.219 79 79 1 2170 

 

To fairly compare our diagnostic patterns and the diagnosis flow with other 

conventional random and 5-detect stuck-at patterns, in Fig 6.1 we also develop a 

dictionary-based diagnosis flow which consists of two parts: (1) the generation of the defect 

dictionary and (2) dictionary comparison. 
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Fig. 6.1 diagnosis flow for random patterns and 5-detection patterns 

 

The first part of such flow applies the patterns set for simulation with the assistance of 

physical information against all possible defects. All the falling patterns and the related 

information including faulty driven gates, faulty segments and output syndromes are recorded 

to build a dictionary for diagnosis.  

The second part of the flow is dictionary diagnosis. We first sample 100 same circuits 

with random injection of defects. After defect injection, we run the simulation with physical 

information. The third step validate whether the defect dictionary matches the output 

responses from the physical simulation on each pattern. If yes, the counts of defects are 

checked. Otherwise, we skip to the next pattern. If the count for one defect is equal to the 

expected value from the dictionary, such defect is saved as a true defect. Otherwise, it is 

removed.  

Table 7 shows the information about the pattern sizes and their dictionary sizes for 

random patterns and 5-detect patterns. The total numbers of random patterns used in our 

experiments are 1000 while the 5-detect patterns are generated by a commercial tools with 

proper modifications. 
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Table 7: random patterns and 5-detection pattern fault dictionary 

circuit 
# random 

patterns 

random 

pattern 

dictionary 

# 5-detection 

patterns 

5-detect 

pattern 

dictionary 

c432 1000 42688 617 29033 

c499 1000 92501 794 105195 

c880 1000 168376 476 92055 

c1355 1000 197062 1272 432926 

c1908 1000 290561 1725 643695 

c2670 1000 500262 786 410883 

c3540 1000 429523 1465 638965 

 

After applying the diagnosis flow, we can obtain the following two tables. Table 8 shows 

the diagnosis results for 5-detect patterns whereas Table 9 shows the results for random 

patterns. Column 1 shows the circuit name and column 2 shows the runtime required by the 

diagnosis process. Column 3 and 4 reports the numbers of defected defects and reported 

candidates whereas resolution in column 5 is computed by column 4 divided / column 3. 

Column 5 shows the total number of patterns used for diagnosis. 
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Table 8: 5-detection patterns diagnosis result 

circuit Ddtime(s) # detected 
# 

candidates 
resolution #patterns 

c432 107.883 92 148 1.6 617 

c499 613.446 77 262 3.4 794 

c880 340.501 86 123 1.43 476 

c1355 4093.384 80 232 2.9 1272 

c1908 7565.367 75 240 3.2 1725 

c2670 3126.143 75 182 2.43 786 

c3540 6898.963 83 208 2.51 1465 

 

Table 9: random pattern diagnosis results 

circuit Ddtime(s) # detected 
# 

candidates 
resolution #patterns 

c432 265.441 92 148 1.6 1000 

c499 792.886 75 396 5.28 1000 

c880 1260.463 85 125 1.47 1000 

c1355 1480.233 80 291 5.74 1000 

c1908 1942.933 70 419 5.99 1000 

c2670 4624.633 64 267 4.17 1000 

c3540 3070.196 70 392 5.6 1000 

 

By comparing Table 8 and Table 9 with Table 6, we can observe that the proposed 

diagnosis with the diagnostic patterns run much faster than the dictionary-based diagnosis 

using random and/or 5-detect stuck-at patterns. Also, the result in Table 7 is worse than the 

other two on the numbers of detected defects. Besides the limitation due to the SAT solving in 

the ATPG process, there are two more limitations in the proposed flow: one is the success out 

of 2N trials in the-branch-and-bound search to derive a feasible coupling-net combination and 

the other is the success out of 5 trials in fault propagation of physical simulation to observe 

expected output responses. Both failures create extra un-diagnosable defects which are 

excluded from the defect dictionary. Comparing with the forth and the fifth columns in Table 

7, apparently our diagnostic patterns with the proposed diagnostic flow can reach better 

resolutions for all benchmark circuits.  
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Chapter 7 
 
Conclusion 
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When an open defect occurs on a segment of the circuit, physical characteristics of the 

circuit such as the layout and the cell library cause dynamic faulty behaviors under different 

input patterns. Such phenomenon is called Byzantine effect which makes open-segment 

defects not easy to be detected. Previous researches about open-segment defects mainly focus 

on ATPG and the diagnosis techniques and do not address the diagnosability of test patterns 

properly. The test set with high defect coverage does not necessarily accompany good 

diagnosability. Therefore, we are motivated to develop a two-stage algorithm including 

diagnostic ATPG and its diagnosis flow in the thesis. 

The first stage for diagnostic ATPG aims to generate the patterns for all open-segment 

defects and consists of three steps: (1) finding a feasible coupling-net combination, (2) 

justifying a pattern conforming to the coupling-net combination, and (3) validating output 

responses through physical simulation. Branch-and-bound search, testability analysis and 

SAT solving techniques are integrated during this stage. Particularly, our indirect diagnostic 

ATPG targets each driven gate of the open segment instead of the segment itself, and greatly 

reduces the pattern size as well as the total runtime. In the second stage for diagnosis, defect 

candidates are composed according to information obtained during the previous stage in a 

dictionary fashion. As a result, only very few candidates are reported. Last, a 

inject-and-evaluate approach is applied to remove those candidates failing to match output 

responses against all patterns. 

Experiments are conducted on ISCAS85 benchmark circuits and the result explains the 

effectiveness and efficiency of the proposed algorithm. For all ISCAS85 circuits, nearly 1 

candidate that exactly matches the injected defect can be reported for each defective sample. 

Due to the indirect diagnostic ATPG, the pattern size as well as the total runtime (including 

ATPG and diagnosis) is greatly reduced. The overall performance in terms of time is about 

10X better than that from previous researches. However, some aborted defects may escape 

from our diagnostic ATPG pattern set and thus become our future work. 

Other future directions include: (1) extending our algorithm to handle multiple defects, 

(2) applying pattern compaction and compression to further reduce pattern size, and (3) 

improving the timing performance by the replace of a better SAT solving engine. 
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