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3第三章、腦波實驗之設計  

在此章將介紹用來量測腦波之儀器，與相關實驗場景之製作，以及駕
駛者心理負擔之實驗設計。 

 
3.1 腦波實驗之描述 

在我們的量測實驗中，所需為量測腦波之儀器，與量測實驗之場景，
在此將詳細介紹儀器之規格與場景之製作方法。 

 
3.1.1 量測腦波儀器 

我們所使用之腦波量測儀器為 NEUROSCAN 公司所開發之非侵入式
腦波量測儀主要是量取 EEG訊號，其中包含： 

1. 腦波放大器（NuAmps），把量測到之腦波放大並轉換成數位訊號，
讓電腦可以接收。如圖3-1為其形狀，表 3-1為它的規格。 

2. 腦波記錄軟體（目前為 SCAN 4.3），接收 NuAmps轉換出的腦波，
以圖形介面顯示量到之數據，並提供一些分析方法可直接使用，
也可把量到之訊號轉換成其它格式，以供分析之用。圖 3-2 為其
畫面之一。 

3. 電極帽（Quik-Cap 32 channels），把要量測之頭部位置先定好，直
接套於頭上定位帽子的位置即可，不用把每個要量測之腦波的位
置一一找出來，可量測 32個部位。其長相如圖 3-3所示。 

4. 輔助品如：電極膠與其它工具，幫助腦波的量測。 

 

圖3-1、NuAmps 
來源：http://www.neuro.com/index.sstg 
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圖3-2、SCAN 4.3 
來源：http://www.neuro.com/index.sstg 

 

 
圖3-3、Quik-Cap 

來源：http://www.neuro.com/index.sstg 
 

表3-1、NuAmps 規格一覽表 
NuAmps Specif icat ions  

NuAmps 規格  

Analog inputs  

類比輸入  

40  unipolar  (b ipolar  der iva t ions  can  be  computed)  

40個對同一地源之訊號輸入孔，點對點之訊號值可由計

算得知。  

Sampl ing f requencies  

取樣頻率  

125,  250,  500 ,  1000  Hz  per  channe l ,  sof tware  se lec tab le  

for  a l l  channels  

對每一輸入可選擇 125、 250、 500、 1000Hz。  

Sampling method 

取樣方法  

40  channe ls  sampled  s imul taneous ly 

40個輸入同時取樣。  
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A/D reso lu t ion 

數位轉類比之  

22 bits  

22位元  

Ful l  sca le  input  range  

輸入訊號之範圍值  

±130 Mv 

Input  impedance 

輸入阻抗  

Not  less  than  80  MOhm 

不小於 80  MΩ  

CMRR 100 dB a t  50/60  Hz 

Input  noise  

輸入雜訊  

0 .7  ∝ V RMS (4  ∝ V peak- to-peak)  

0 .7  ∝ V RMS(4 ∝ V 峰對峰值 )  

Bandwid th ,  3dB down 

3db 頻寬  

From DC to  262  Hz,  dependent  upon sampl ing  f requency  

se lected 

從  DC 至  262  Hz，根據選擇之取樣頻率而變  

In ter face  

介面  

Universa l  Ser ia l  Bus  (USB) ,  P lug-and - Play technology 

Suppor ted  e lec t rodes  

支援的電極  

•  Gold ,  Ag/AgCl ,  Carbon e lec t rodes  wi th  Touch Proof  

(DIN 42-802)  s ty le  connec tors  

•  QuikCap Ag/AgCl  e lec t rodes  wi th  Plas t ic  DSUB37F 

金，銀 /氯化銀，防止碰觸設計的碳電極（ DIN 42-802）。 

電極帽  銀 /氯化銀電極與塑膠DSUB37F 

Digi ta l  (TTL)  inputs /outputs  

數位（ T T L）輸入 /輸出  

14  TTL inputs  and 2  TTL outputs  

14個 TTL輸入及 2個 TTL輸出  

Qual i ty  cont ro l  of  e lec t rode  

app l ica t ion 

適用電極之品管  

•  Measurement  of  contact  impedance (a t  f requency 30 Hz)  

in  impedance  mode 

•  Constant  moni tor ing of  connec t ion  dur ing  record ing 

在阻抗模式，量測在 30Hz之接觸阻抗  

在記錄期間，持續監測其連接情況  

I so la t ion Opt ica l  S ignal  I so la t ion 

Display 

顯示  

16- le t te r  LCD wi th  background  l igh t ,  d i sp lay ing  ampl i f ie r  

s ta tus  or  e lec t rodes �  wi th  impedance  grea ter  than  

spec i f ied  cu tof f 

有背光的 16字 LCD，顯示放大器的狀況或各電極有電阻
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超過規定之情形  

Power  supply  & energy 

consumpt ion 

電源供應及消耗  

From USB (5V),  in  ac t ive  mode current  <= 500 mA,  in  

s tandby mode current  <= 20 mA 

從 USB取得 5 V電源，在作動模式所需電流 <=500mA，待

機模式的電流 <=20mA 

Elec t r ic  safe ty  leve l  

用電安全等級  

According to  EN60601-1( type BF),  IEC601-1  

符合  EN60601-1( type BF) ,  IEC601-1 

Size  (height  x  width  x  depth)  

大小（高 X寬 X長）  

7 .8 x 5.9 x 1.6 in .  (198 x 151 x 40 mm)  

Weight 

重量  

1 .4  lbs  (630 grams)  

1 .4  磅（ 630 克）  

來源：http://www.neuro.com/index.sstg 
 

3.2 駕駛實驗場景之架構 

在我們建立的駕駛場景中，在此介紹在城鎮駕駛的場景、直線道路駕
駛場景及彎曲道路駕駛場景之架構。 

 
3.2.1 城鎮駕駛場景 

我們運用 WTK建立之模擬駕駛場景，整體的架構如圖 3-4 所示。在
此場景中主要有城鎮地形、車子、紅綠燈及兩組紅、黃和綠亮燈的物件，
兩組亮燈的物件是把所有紅綠燈以十字路口的情形，分成在縱向及橫向兩
組，以供亮燈切換時之控制方便。而車子方面，所有有關車子的物件都會
隨著車子之右後車軸移動，在第二章已說明其原因。 

 
3.2.2 直線道路場景 

我們建構之無盡直線道路場景，整體架構突如圖 3-5 所示。車子的部
分相同，而地形場景則是使用四段一樣的直線道路串接起來，在盡頭時道
路中央增加一十字物件用來讓人眼集中注意力於其上。其中在場景裡使用
同一種 3D物件，可以直接增加節點連結於物件上，以減少記憶體的消耗。
車子在此場景中可以不停地前進，一直在直線道路中行駛，詳細直線道路
地形的製作於下節說明。 
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圖3-4、城鎮場景架構圖 

 
圖3-5、直線場景架構圖 

 
3.2.3 彎曲道路場景 

彎曲道路之場景架構圖如圖 3-6 所示，車子架構也是一樣，而地形則
是只用四段道路，在車子移動過後，把原本的道路取消再隨機加入已讀取
到記憶體中的彎路，連結於當時道路最後之位置，這樣車子就可以一直在
彎路中行駛。詳細彎路地形的製作於下節說明。 
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圖3-6、彎路場景架構圖 

 
3.3 駕駛場景之製作 

在駕駛場景的製作中，將介紹如何運用 WTK 來量測我們在製作場景
與動態模型所需之參數，以及直線、彎路、地形高度資料，及偵測距離、
固定視點與車輛貼地之用法。 

 
3.3.1 量測場景參數 

要能夠善用 3D物件來建構場景，就必須要先瞭解它，在WTK中，欲
量測 3D 物件的長、寬、高 … 等參數，可以利用其提供的函示
WTnode_getradius()，此函示作用為量測 3D物件中心到最遠端的距離。我
們先在製作 3D物件的軟體裡，編輯好我們所需要的 3D物件後，接著在我
們要量測的地方，用一個 3D 的面拉成一直線，兩端則放在我們要量測的
位置上，之後分別輸出成 WTK 可以讀取的格式，讀到場景裡利用上述函
示就可以知道它的長度。 
圖 3-7 為我們製作參數物件的情形，在圖裡我們欲量測的有輪胎半

徑、輪軸長度及前後輪距離，分別以綠、藍及紅色表示，圖中將物件放大
以供觀看，真實大小只有中間一條線而已。 
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圖3-7、參數物件 

 
3.3.2 無盡直線道路製作 

直線道路為昏睡實驗所需之場景設計，在實驗中，駕駛者必須在吃飽
飯後，容易睡覺的時間，駕駛車子在直線道路上，筆直地開在同一線道，
記錄何時打瞌睡，以觀測腦波，觀測時間較久，故需一段跑不完的道路。 
在建構走不到盡頭的直線道路時，最重要的是道路 3D 物件的製作，

我們只需完成一段路，而讓這段路最前端和最後端的物件能夠完全連接起
來。要完全能夠密合，可以在製作物件的時候，將其自身複製一份，把複
製那段路的最前端連到本身的最末端，再調整連接處到完全密合即可。 
如圖3-8所示在場景中，用測量場景參數的方法，測出路的長度。之

後在場景裡依據路的長度連接幾段同樣的路，鎖定一段路程讓車子只能在
裡面跑，當車子跑出那段路的時候把車子的座標減去路的長度，這樣就可
以讓駕駛者覺得一直跑在一段連續的道路上了。圖 3-9 為實際開在直線道
路場景中的情形。 
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圖3-8、直線場景製作圖 

 

 
圖3-9、直線場景成果圖 
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3.3.3連續隨機彎路的製作 

連續彎路為暈車實驗所需之場景設計，在實驗中，駕駛者必須要帶著
乘客坐在平台上，開在一連續的彎路裡面，記錄何時會暈車，以觀測腦波，
觀測時間較久，所以也需要一段連續的道路。 
在建構彎路時，利用做直線道路的方法，多做幾段彎曲度不同的道

路，並且把每一段最後彎了幾度記下來，在彎曲度上要注意，每一段路相
同的距離，彎的角度要盡量一樣，這樣比較有利於之後車子與欄杆間距的
量測。 
如圖 3-10在場景中，用測量場景參數的方法，測出每段路的起始點和

終點的垂直距離與水平距離。在連接每段路的時候，用隨機的方法選出一
段路，根據量到的距離與已知的角度，連接起來。下列為連接點的計算式： 

 
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ann

nynxnYnY
nynxnXnX

+=+
−+=+
++=+

θθ
θθ

θθ

1

sincos1
cossin)(1

    (3-1) 

 
( X(n),Y(n) ) 為上一段路起始點的座標，x、y 為其起點和終點水平與

垂直的距離，a 則為其轉彎的角度，θ(n+1) 為新路段之前所有道路彎曲
角度的總和。在新的路段加到場景之後，必須轉θ(n+1)，接著把他的起始
點放在( X(n+1),Y(n+1) ) 上，而此座標為上一段路起始點的座標，加上受
到旋轉過後起點到終點的距離之座標。 
車子在場景中移動的時候，通常放固定的路段數，每經過一段路時，

會把最前面的路移除，再隨機選一個彎路加到路的最底端，這樣就可以讓
車子一直在場景中移動，而且不會有後面的路會碰到前面路的問題。圖 3-11
為實際開在彎路場景的情形。 
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圖3-10、彎路場景製作圖 

 
圖3-11、彎路場景成果圖 
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3.3.4 隨選地形資料的建立 

在WTK的場景中，要得知一 3D物件與另一 3D物件的距離，可以使
用 WTK 的函示 WTnode_rayintersect()，此函示功能在於給定一個起點座
標、偵測方向、及測量物件，從起點循著偵測方向出發，若是有碰到偵測
物件，則會給一個距離，否則回傳 NULL。在一般場景裡，要得知車子的
四個輪子距離地面的高度，需偵測四次，越複雜的地形偵測時間越久。所
以在較複雜的地形時，預先建立好地形高度的資料，將可以節省很多運算
的時間，使得場景速度可以加快。 
我們所建構的地形資料庫，如圖 3-12所示是把欲偵測的地形用一方形

區域框起來，把這區域平均切割成 1000X1000個小區域，再紀錄每個小區
域的高度。而在決定用多大區域框起來之前，必須先求得上下左右的邊界
值，先利用 WTK提供的函示 WTnode_getradius() 得到中心點到最遠端的
距 離 ， 用 此 來 求 出 最 遠 有 可 能 會 到 達 的 邊 界 ， 接 著 使 用
WTnode_rayintersect()，在每一個小區域的上空由高到低偵測是否有地形存
在。 

 
圖3-12、地形資料切割示意圖 

 
如圖 3-13所示為量測左邊界其中方法為：從中心點出發，有偵測到地

形時，就持續向左邊筆直前進，若是偵測到無地形時，先向上下附近的區
域偵測，有地形的時候就繼續從此區域向左邊移動，若是附近都沒有，就
從上面最遠的邊界開始向下偵測，若是又碰到地形就繼續前進，若是偵測
到最下面的邊界都沒有地形時，其右邊的區域即是最左的邊界了。其他三
邊的也是一樣。 
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圖3-13、測量地形邊界示意圖 
 
找到邊界後，接著就在邊界裡用 WTnode_rayintersect()，由高到低求

出每一小區域的高度，在得到所有的高度後，如圖 3-14所示有些地區如圍
牆、草叢、森林… 等，都得不到其高度的資訊，原因在於他們在建構的時
候，都沒有使用到水平的面，這樣由高處垂直往下偵測的時候，自然就碰
不到了。為了要克服這個問題，必須要從水平的方向再進行高度資料的修
正。 

 
圖3-14、測量地形高度示意圖 
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在水平偵測方面，分成上下及左右來回的偵測。如圖 3-15 以向左為
例：由已建好的地形資料庫中，從最右邊開始向左，先找到一凹地，這凹
地邊界的定義為，相鄰兩點的高度差距在一距離以上，通常這差這距離會
使得車子無法向上通行。接著從凹地最右邊開始，從此地區的高度加上一
距離，當作 WTnode_rayintersect()偵測的原點，向左邊偵測，若是碰到障
礙物時，則把偵測原點放到障礙物前幾格做第二次確認，其原點座標一樣
是當時的高度加一距離，若是偵測到的距離和障礙物的座標吻合時，即可
以把他的高度加到地形資料庫裡，加上去的高度只要是車子無法通行的高
度即可。接著移動到障礙物的後面，向左繼續做重複的動作，直到碰到凹
地的最左邊為止，之後再尋找下一個凹地，重複以上的偵測直到地形最左
邊的邊界。做第二次的確認動作，可以防止在偵測時碰到坡地或其他特殊
的情形，而產生判斷錯誤。 

 

 
圖3-15、二度確認地形資料示意圖 

 
圖 3-16 是我們採用的場景之一，圖 3-17 為第一次製作地形高度的結

果，顏色從藍到紅為高度愈來愈高，白色的部分是空的部分。圖 3-18為經
過修正後的地形，圍牆、草叢、樹林以確實加入到高度資料之中。 
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圖3-16、場景 3D圖 

 

圖3-17、場景第一次量測高度資料圖 
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圖3-18、場景第二次量測高度資料圖 
 

3.3.5 比較 

直接偵測場景和使用地形高度資料的比較，可由表 3-2 中看出，在同
一部電腦中使用預先建立好地形資料庫的場景，每秒鐘會比直接偵測的多
10-25個畫數（frame），只是在建地形資料的時候會很久，不過只需建立一
次，建好之後輸出到檔案之中，下次開啟時就可以直接讀檔輸入了。其缺
點是當遇到騎樓、涼亭、地下室… 等地形，就會受到限制，必須把地形的
3D物件做修改，讓他可以偵測到車子可走的地區，若是直接偵測的方法，
將不受此限制。 
在另一方面，地形高度資料可以讓使用者很快的知道附近的地形，讓

他可以多做一些應用，若是要增加多一點的動態方程式在車子上，直接偵
測地形的將會變的更慢。 
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表3-2、地形資料比較表 

偵測方式  預先建好地形資料  直接偵測地形  

電腦配備  P4 - 1.8G  1.0GB ram 

Frame rate 25~36 frame/s 9~12 frame/s 

執行速度  快  慢  

讀取速度  第一次很慢而已  快  

應變能力  差  強  

探索能力  快  慢  

增加 dynamic model 

可行性  
行  已經很慢了，還要在加嗎？  

 
3.3.6 量測車子與護欄間距 

在昏睡實驗中，我們必須知道受測者何時在打瞌睡，我們採用車子到
左邊護欄距離來當作參考，在實驗中我們會隨時給車子一個外力，使得車
子會一直要偏離車道，偏越多時將會偏的越快，若是受測者睡著，那麼車
子將會偏到另外的車道上，甚至撞倒護欄。 
在 直 線 道 路 場 景 裡 ， 計 算 車 子 到 護 欄 的 間 距 ， 也 是 用

WTnode_rayintersect()來做偵測，如圖 3-19 所示，在此之前我們必須做一
道透明的牆，放到護欄的位置，接著以車子的座標為偵測原點，以固定方
向向左垂直於護欄，偵測到透明牆之間的距離，這個距離就可以當作腦波
分析的參考。 

 

 

圖3-19、直線道路偵測圖 
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在彎路場景中，因為護欄也是會跟著道路轉彎，當然就不能以固定方
向來測距離。若是以車子本身座標系，固定以車中心朝著車左邊中間的方
向來當作偵測方向，這樣在平常順著道路開時，當然就沒問題，但是車頭
的方向要是跟路的方向差很多的話，測到的數據會變的很有問題。為了要
克服這個問題，之前已經說過，做彎路的 3D 物件時，每個角度分配在這
一段路上要很平均，接著如圖 3-20在場景中，看這一段路轉了幾度，就把
他切幾個等分，在每個等分裡固定垂直於護欄的方向，當作是偵測的方向，
這樣量測出來的數據，就可以當成腦波分析的參考了。 

 

 
圖3-20、彎曲道路偵測圖 

 
3.3.7 固定視點 

在有關駕駛的場景中，如何能找到我們要看的角度及位置是非常重要
的，假若只是在場景中不斷的嘗試去尋找好的位置，這樣不會是很好的方
法。 
以我們的車子為例，在我們的設計裡，利用製作 3D 物件的軟體的便

利性，如圖 3-21在座椅的上方約人頭的地方，以其為中心點製作一 3D的
面（我們把它稱為 View Plane），用來當成場景的眼睛所在。 
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圖3-21、視點平面製作圖 

 
接下來計算出 View Plane 中心點和車子座標點（通常為中心點）相對

位置的關係，如圖 3-22所示，之後在車子移動後，從車子的新座標再根據
車子的方向即可算出新視點的座標及方向。 

 
圖3-22、視點與車輛關係圖 
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以我們使用的工具WTK為例，下圖 3-23所示為我們使用固定視點於
駕駛車輛之流程圖，首先把做好的車輛及視點之物件分別輸出成 WTK 可
以讀取的格式，把兩者讀到場景後，取得視點中心的座標，及車輛的座標
（取其直接可得到及使用之值，而不是需計算才能得之中心座標），前者減
後者可得到視點在以車本身為座標系之向量關係。接著當車子移動，取得
其新座標及方向後，把之前得到之以車子本身座標系之視點座標轉換為世
界座標系的座標，即是視點的新座標，而視點的方向與車子的方向一樣，
這樣就可以決定新的視點了。 

 

 
圖3-23、視點取得流程圖 
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在瞭解如何計算視點的新座標之前，必須先知道車子本身的座標系，
每一個物件都有他自己的座標系統，一個座標系包含其原點的座標，以及
X、Y 及 Z軸之方向向量，而它會決定物件的角度以及大小，一般其 3軸
的方向向量會互相垂直且各為單位向量，若不是單位向量會造成物體拉伸
或壓縮，若不垂直則會變形，如下圖 3-24所示。座標系統之表示法在後面
說明。 

 
圖3-24、物體本身座標變化圖 

 
計算出視點的新座標之方法，在 WTK 裡有函示可以直接使用，其原

理入下式： 
1 1 1 1

1 1 1 1
1 1 1 1

0 0 0 1 1 1

x x x x x x x x y x z x

y y y y y y x y y y z y

z z z z z z x z y z z z

X Y Z P P X P Y P Z P P

X Y Z P P X P Y P Z P P
X Y Z P P X P Y P Z P P

+ + +     
     + + +     =
     + + +
     
     

  (3-2) 

左邊第一項為車子的座標系統，（Px，Py，Pz）為車座標，（Xx，Xy，
Xz）為車量自身的 X 座標軸之方向向量（車向右之方向），其它為 Y（車
向下）及 Z（車向前）座標軸之方向向量。左邊第二項為視點相對於車座
標系之座標，相乘之後即可把位於車座標系中的一個點轉換成在世界座標
系的值。 

 
3.3.8 貼地 

當車子移動在路上的時候，要怎麼讓車子的車輪剛好貼在地表上，是
值得我們探討的。我們是採用三點可以成一平面的方法，如圖 3-25所示。
在以往以固定三個輪子測出其和地面的距離，算出在地面上三點的座標，
接著以此求出車輛的 X軸與 Z軸，轉換成單位向量後，再以兩者之外積求
得 Y軸，此三軸可組成車子的姿態。接著以地上之三點之一加上車輪半徑
的高度，當成車輪中心點的座標，以此就可求出車子貼地時的座標。 
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圖3-25、貼地示意圖 

 
在平常的地面上，使用上面的方法是沒問題的，但是地形若有不連續

的地面，就需要把重力的因素加進去，不能直接貼在地上。且在行進之中
若有一輪不受地形影響，感覺也會不好，故我們考慮四個輪子的情況，圖
3-26為貼地之流程圖。 
一開始和最後跟上面的方法差不多，差在於不是算距離貼上，而是讓

車子隨著受力升或降一距離，再判斷是否接觸地面及懸吊系統是否啟用，
接著判斷有哪些車輪著地與車輪高低之排序，決定用哪三個輪胎座標求車
子的姿態與位置。剩下之一輪除了四輪著地其餘都要設為零，是因為四輪
著地要在各輪都使用懸吊系統，其它在零及一輪著地是無影響，在二與三
輪時速度一直累計則會使車子搖晃不定。在決定哪一輪不用的時候，通常
選擇著地之外最高的輪子會比較穩定，三輪時要選不著地之輪或其對角是
要防止特殊情況，如三輪貼在人行道上而另一輪在外面，要使得車子向旁
傾斜才行，四輪著地時則是看車子前進的方向，來決定那邊要用比較精確
的偵測。 
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圖3-26、貼地流程圖 
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3.4 實驗設計 

在長途高速開車中是最容易產生疲倦與昏睡的駕駛狀況[37]，亦最容
易發生嚴重肇事傷亡，因此如何偵測到駕駛者長途高速駕駛的精神狀態與
心理負荷並給予適當的警示，是一項相當實際且有意義的課題。我們將初
步的由簡入繁以虛擬實境六軸平台產生快速道路場景，並且同步測量駕駛
者在快速道路上可能遭遇的突發狀況，以及實際量測駕駛者因為長途駕駛
所引起的精神狀態(清醒、失神、疲倦等)的生理訊號，我們所設計的長途
高速駕車 
實驗規劃如下： 
 
1. 實驗的基本快速道路場景如圖 3-27所示：為一左右各為兩線道的
四線道快速道路，左邊有行道樹，右邊則為寬闊的平原。 

2. 駕駛者需要維持車子開在第三車道（由左邊數來）的中心點上，
車子時速則維持在 100km/hr。 

3. 車子必須要能夠隨機的左右漂移，以迫使駕駛者集中注意力在維
持車子在中心車道上。 

4. 系統的效能(performance)估計以車子是否偏移車道的中心線的距
離為準則，一般而言，當駕駛者的精神狀態越清醒時、則車子可
以很容易的維持在車道的中心線上，反之，當駕駛者精神狀態有
出現失神、疲勞以及昏睡時、車子則不容易維持在車道中心線。 

 

 
圖3-27、以虛擬實境產生的快速道路場景 

 
車子受到左右漂移之力，以車子的方向和道路之方向來比較，方向差

愈多受到之漂移力愈大，其力的方向以車子偏向左右的方向為主，在受測
者精神不好時，會使車子更易撞到兩旁護欄。 
人體最想睡覺的時間，除了晚上睡覺時間之外，就屬中午吃飽飯後

了。而我們量測腦波資料就選在中午吃飽飯後開始，在戴電極帽及打電極
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膠的時候，一邊告訴受測者要開車於哪一線道上，眼睛要注視車道前方的
中間不要亂飄，一邊讓受測者練習駕駛。完成量測前的準備後，開始一個
小時的時間，在昏暗的房間裡不受任何人的干擾開車。另外在實驗中會拍
攝受測者的臉部，以供對照之用。 
而選擇的受測者，年齡在 20歲到 40歲之間，並有道路駕駛之經驗，

每個人至少作兩次的實驗，一次為建立心裡工作負荷之模型，一次則為測
試之用。 
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4第四章、實驗設計與分析  

在駕駛者開車之警覺性的研究上，我們設計了容易使駕駛者疲勞的實
驗，並運用獨立元素分析（ICA）、時頻分析、主要元素分析（PCA）等技
術，建構一駕駛員心理負擔之系統，以腦波進行駕駛員心理負擔之估測。 
在我們的研究中包含：實驗設計流程、腦波訊號分析方法、ICA演算

法以及具有線上學習能力的自我建構類神經模糊網路… 等，並且利用虛擬
實境六軸平台產生不同的動態駕駛場景，量測並分析駕駛者在不同的精神
狀態下 (清醒、失神、疲倦等)的生理訊號，並建構動態心理工作負荷
(Dynamic Mental Workload)模型。 
在本章之中將介紹駕駛者心理負擔之腦波的分析，如何判斷駕駛者疲

勞的狀態，腦波（EEG）量測之資料，以及運用線性回歸的方法，估計及
預測受測者在駕駛場景中心裡工作負荷的情形。 

 
4.1 量測之資料 

在量測的資料之中有一部份是由場景端輸出至腦波量測儀器之中，以
提供發生特殊事件時與當時的腦波同步之用，這樣就可以知道發生何種事
情，以及當時腦波的狀況。我們以此來量測車子在場景中的狀況，我們把
道路分成 255 個等分如圖 4-1，把車子中間左側和道路左邊護欄的距離，
以此數值 0-255 輸出。根據這個距離就可以知道車子在道路中的位置，而
又開車時會有一外力一直把車子向外推，就可依據此數值來看受測者的精
神狀況。 

 
圖4-1、行車狀況圖 
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我們使用電極帽來量測之生理訊號，其中包含使用 10-20 系統定位之
31個電極用來量測 EEG，以及 2個電極用來量測 EOG（心電圖），主要是
分析 EEG，EOG是分析時用來輔助濾除心跳對 EEG之影響。 

 
4.2 實驗分析 

整個從資料的輸入到建立受測者之心理負荷模型，其流程圖如圖 4-2
所示。資料取得後，利用獨立成分分析演算法（Independent Component 
Analysis，ICA)先濾除掉一些雜訊，再估測出各 EEG每兩秒鐘的能量狀況，
在每個訊號中找出主要跟人體疲勞度有關的 EEG，接著利用 PCA（Principal 
Component Analysis）降階，之後用線性回歸的方法建立模型（ linear 
regression model）。 
 

 

 

 

 

 

 

 

 

 

 

 

 
圖4-2、分析流程圖 

4.2.1濾除訊號之雜訊 

由於腦波訊號非常微弱，很容易受到外界的干擾，即使眼動、心跳等
訊號都比EEG大的多，所以在分析腦波之前必須先進行雜訊的濾除，首先
把所有的訊號包含：EEG、EOG及車子與護欄之距離，進行再取樣成 250 
Hz，接著把 EEG訊號經過一低通濾波器，把超過 50Hz之訊號濾掉，這樣
可以除去線的雜訊及其它高頻的雜訊。之後，利用獨立成分分析演算法
（ICA）之特性濾除眼動、心跳及其它雜訊。 
在腦科學的研究中，所觀察到的腦電位資料（EEG）是感應器在不同

的頭皮位置上所量測到腦部活動的電位訊號，這些電位是假設由一些基本
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的腦部活動的成分以及雜訊所混合而成的，假設這些成分是互為獨立的，
我們可以利用 ICA演算法去還原出原來與事件相關的腦電位活動來源。 
線性獨立成分分析模型(ICA Model)的基本定義為：假設 x為我們可以

觀察到的 n個線性組成的混合物 x1, x2, … ,xn, 如式子(4-1)，他們是由幾個
線性獨立的隨機變數 si所線性排列組合而成的。 

1 1 2 2 ... , .j j j jn nx a s a s a s for all j= + + +    (4-1) 
ICA演算法就是要盡可能的找到一組 x=As 的解，使得成分 si之間盡

可能的互為獨立。其中 x代表所觀察到的隨機變數{x1, x2, … , xn}，s為線性
獨立的組成成分{s1, s2, … , sn}以及 A為線性排列參數 aij所構成的混合矩
陣。既然獨立成分 s與混合矩陣 A是潛在變數，也就是無法直接經由觀測
得到，ICA演算法將利用觀察到的隨機向量 x，將 s及 A估計出來。 
除了一些統計獨立的基本假設之外，ICA演算法在應用時，需要假設

所有的的獨立成分 s 都是非高斯分佈的。根據中央極限定理(central limit 
theorem)：非高斯分佈且為互相獨立的隨機變數之和，其分佈會比一獨立
隨機變數的分佈更接近於高斯分佈。ICA利用逆向思考，找出那些最不是
高斯分佈的成分，就是有可能最接近線性獨立的成分。 
找出非高斯分佈的目標函數有很多種，例如以高次統計為基礎的峰態

（Kurtosis）函數，以及利用資訊理論（Information theory）中的相互資訊
（Mutual Information）的觀念所定亦的目標函數，也就是說如果將獨立成
分之間共同資訊最小化當作目標，會發現事實上與找到不是高斯分佈的方
向具有同等的意義。本論文就是主要是從類神經網路的觀點切入 ICA 問
題，在 1994年 Common[38]開始詳細闡述 ICA的觀念，並提出以 cumulant
為基礎的目標函數。到了 1995年 Bell 和 Sejnowski[39]自創了一套由推測
梯度上升導出的學習法則-資訊化最大法，可以達到讓類神經網路輸入與輸
出的共同資訊最大化，並將此法應用在實際盲目來源分離及盲目式去捲積
的問題上，此法也被認為比 Common所提出的方法更合理。 
在 ICA演算法中，一開始都會對欲分析的資料進行一些前處理，使得

ICA待分析的問題更容易處理。 
1. 置中（Centering）：即減去 x的平均值向量(Mean Value; u=E{x})，
讓 xi成為平均值為零的變數。 

2. 白化（Whitening）：也就是將所觀測的訊號轉為白雜訊（white 
noise），這個動作主要目的是要去除資料之間的相關性，也就是強
迫是使所觀察的到訊號互不相關，並使其變異數為 1。白化的式子
如下： 

% 1 2 Tx ED E x−=        (4-2) 
其中 E 及 D 為由 PCA得到之特徵向量與特徵值的矩陣，由於 D
為對角矩陣： 
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  ( )1 2 1 2 1 2 1 2
1 2, ,..., nD diag d d d− − − −=      (4-3) 

因此是（4-3）中的反矩陣 D-1/2，可以非常容易從 D的對角元素平
方根倒數計算出來。 

% %{ } { }1 2 1 2

1 2 1 2

T T T T

T T

E xx ED E E xx ED E

ED E CED E
I

− −

− −

=

=
=

     (4-4) 

將 TC EDE= 及式（4-2）帶入式（4-4）左式，就可以清楚地看出藉
由 PCA很容易就達到白化的目的：將 C轉換為對角矩陣，可使得
所觀察到的訊號互不相關，且對角線上的項皆為 1，也就是讓其變
異數為 1。 
 我們可以從另一個角度來看白化的功能，由 x As= 與式（4-4）
導出 
下列式（4-5）及式（4-6），可以發現白化事實上將混和矩陣 A，
轉變成一個計算量更少的正交矩陣 °A： 

% °1 2 Tx ED E As As−= =       (4-5) 
% %{ } ° { } ° ° ° 1

T T TTE xx AE ss A AA= = =      (4-6) 

因此若原來 A有 n x n 個矩陣需要估計，經過白化之後，使 °A成
為正交矩陣，而 n x n 正交矩陣的自由度會減為 n(n-1)/2，所
以白化可以說先幫 ICA解決了一半的問題，讓問題的複雜度降
低。 

 
3. 資訊最大法的概念： 

 
圖4-3、二神經元之類神經網路 

 
以圖 4-3兩個神經元為例，輸入 x與輸入 y的相互資訊為： 

( ) ( ) ( ), |I x y H y H y x= −      (4-7) 
H(y)是輸出端的熵。若將此系統如圖 4-3所示，用 ( )y G x n= + 表示，
n為雜訊，G即為類神經網路欲找尋的某種可逆的轉換，而 H(y|x)
是在給定輸入端 x資訊的條件下，輸出端 y所剩下的不確定性就
是雜訊所造成的，故 H(y|x)=H(n)。詳細來看 G轉換，x經由各神
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經元的加權向量得 u=Wx，u就是獨立成分 s的估計值，u進入神
經元後，在經過一非線性單調增加（monotonically increasing）函
數 g，輸出 y=g(u)=g(Wx)。現在的目標就是要找出使類神經網路
中的輸出端 y含有最大並和輸入端 x有關之相互資訊的 W，也就
是輸出能夠代表輸入的資訊。要找出 I 的最大值，就必須將相互
資訊對W偏微分： 

( ) ( ),I y x H y
w w
∂ ∂

=
∂ ∂

       (4-8) 

H(y|x)=H(n)和 W無關，故其偏微分 ( ) ( ) 0W H n∂ ∂ = 。因為目前所使
用的 ICA模式都沒有將雜訊考慮進去，因此可以發現僅僅讓輸出
熵 H(y)最大化，就等於是將輸入及輸出間相互資訊 I(x,y)，的最大
化。從另一個觀點來看輸出之間的相互資訊 I(y1,… ,yn)，根據

( ) ( ) ( )1 1,... ,...n i n
i

I y y H y H y y= −∑ ， 很 明 顯 在 輸 出 熵 H(y) = 

H(y1,y2,… ,yn) 最大時，輸出 yi 彼此之間相互資訊會是最小，而
I(y1,y2,… ,yn)=0時，yi之間就會互為獨立了。 

 
4.2.2 訊號之前處理 

濾除眼動、心跳及其它雜訊之訊號，在分析之前必須再進行處理，由
於人體的精神狀況的反應，從腦發出的訊號來看都是一段一段的，而不是
只看某個瞬間腦波的值，所以如圖 4-4 所示把 EEG 訊號之頻譜作
Moving-average（移動平均）就是使用 750點的 Hanning-window 加上 250
點的重疊。接著把這些 750點每隔 25點再分成幾個 125點的 sub-windows，
每個 sub-window再以補零的方法擴充成 256點，作 256點的 FFT。接下來，
我們利用一 2秒的 median-filter-window去更進一步減少因為 artifact 所引
起的 EEG雜訊。每隔兩秒輸出的 EEG頻譜序列包含 1-60Hz的 EEG power 
spectrum（功率頻譜）。在清醒-昏睡的 EEG 動態變化中，我們最後利用
logarithmic scale 去線性化腦波下皮成所造成的 multiplicative effects。 
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圖4-4、訊號之前處理 

 
而車子與護欄之距離，我們把他轉換乘車子中心與車到中心之偏移

量，車子離車道越遠此值越大，而偏移量在車子的行進中會是連續的，為
了消除資料接收上的一些錯誤以及讓訊號更平順，把每間隔兩秒鐘的訊號
以其前後共90秒（square window）之所有訊號作平均。 

 
4.2.3 訊號分析的方法 

在找出行車的狀況與 EEG的關係上，我們採用 Correlation Coefficient
的方法，把車子的偏移量和 EEG power spectrum代入此方法找出他們的關
係。Correlation Coefficient的方程式如下： 

∑ ∑
∑

−−

−−
=

22 )(*)(

)(*)(

yyxx

yyxx
Corrxy  

此法目的在量測出兩個或更多的變數之線性的關係，而得到的值為 -1
至 1之間，隨著一變數的改變造成另一變數的變化量而改變，等於 1時為
完美的正相關，-1則為完美的負相關，0則是兩者沒有關係。 
在用Correlation Coefficient找出各 EEG power spectrum和車子偏

移量的關係後，選擇較相關的一些 EEG訊號用 PCA（Principal Component 
Analysis）之演算法降階，而得到之值用來訓練心裡工作負荷之線性回歸
的模型，以估計和預測受測者開車的狀況。而 PCA是用數學的方法，在各
訊號之間找出主要的一些軸（方向），由這些軸的變化組合可形成各訊號，
而降階就是取重要的一些軸來用。 
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4.2.4 EEG頻譜和受測者警覺性的關係 

我們利用 Correlation Coefficient 的方法，在 40 個 EEG 的頻率（1∼
40Hz）求出 EEG功率和車子偏移量的關係值，如圖 4-5為五個受測者共十
次實驗中，各頻率之 Correlation Coefficient之值。可以看出在 20Hz之前都
是正相關，而在 7、12、16及 20Hz其值較大，把這幾個頻率之各點的 EEG
和車偏移量關係值，在腦殼之俯視圖上用顏色表示如圖 4-6，顏色越深關
係越強。可發現關係較強的地方在頭的中間和後面，而實際之應用上，以
越少的點能知道駕駛者的狀況越實用，所以我們取 Pz和 Cz來分析。 
接下來比較各實驗之關係值的相關性，在圖 4-7 與圖 4-8 為兩個受測

者各兩次的實驗中，在 Fz、Cz、Pz及 Oz各頻率之相關值。從兩者可以看
出，同一受測者相關值曲線類似，而每個受測者會不同，因此針對同一受
測者建構心理負荷模型以實行即時精神狀況的分析較為可行的。 

 

 
圖4-5、五個受測者各頻率之Correlation Coefficient之值 
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圖4-6、腦殼之俯視圖 

 
圖4-7、受測者一在Fz、Cz、Pz及Oz各頻率之相關值 
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圖4-8、受測者二在Fz、Cz、Pz及Oz各頻率之相關值 

 
4.2.5 行車狀況的估計與預測 

在我們的研究中，採用 Cz及 Pz兩點之 EEG power spectrum和車子之
偏移量加上 multiple linear regression model 估計和預測行車的狀況，只使
用此兩點是因為其 EEG power spectrum和車子之偏移量的關係值較高，此
外，使用較少的電極可提高實用性。在時間和頻率的分析後，我們得到各
時間的 EEG power spectrum，取實驗中連續 45分鐘的時間，每隔兩秒（500
點）的區間中，會有 1350個 EEG功率的估測在 60個頻率上（1∼60Hz）。
接著在所有取對數值的 EEG頻譜中，使用 PCA找出最大變化的方向（軸），
藉由將 EEG頻譜資訊投影在 PCA主軸的方式，取出相對應最大特徵值排
序的投影量，做訓練行車狀況模型的輸入值。 
所有的模型都是由各受測者的一次實驗中訓練得到，另一次實驗的資

料則用來測試，而從訓練時得到之 PCA的參數，將會在測試的資料時以相
同的方法使用。而線性回歸模型是用 50階的線性多項式，成本函數（cost 
function）用誤差的最小平方（least-square-error）。 
圖 4-9 為在一次實驗中訓練出模型，再用同一筆資料作測試，估測出

各時間之行車的狀況（車子離車道中心之偏移量），並與真實的情形比較，
兩者再取Correlation Coefficient的值r約為0.88。若是用另一次實驗
數據當測試為圖4-10，算出之r值約為0.7。 
在十次的實驗中，以訓練的資料當測試得到r值的平均為 0.90±0.034，

而以另一次實驗當作測試得到之 r值的平均則為 0.53±0.116，這結果顯示
我們使用少數的 EEG來估測行車狀況雖然尚可改善，然其可行性相當高。 
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圖4-9、訓練資料之估測 

 
圖4-10、測試資料之估測 
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5第五章、結論與未來展望  

我們以虛擬實境平台為基礎，以非侵入式的方法，利用量測所得之腦

波進行心理工作負荷估測。我們設計一系列駕駛車輛之場景，並量測與分

析駕駛者在開車時之警覺性，本論文完成之重點如下： 

 

（1）在模擬駕駛場景中，我們製作了一些場景如：可連續行駛沒有盡頭的

直線道路，隨機出現的彎路，以及在城鎮的場景。在複雜的場景也使

用到地形資料的建立並比較。在車子的動態方面，我們設計了可換檔

之引擎，在加速上會受到引擎扭力的影響，並以近似的方法，推導出

車子的在轉向時的情況，與懸吊系統受力的情形，以建構逼真的虛擬

汽車駕駛環境。 

（2）在腦波量測與分析實驗方面，設計了長程駕車時之警覺性實驗，我們

利用人類在中午吃飽飯會容易想睡覺的特點，加上長時間開車在單調

的路上，會讓人很容易覺得疲倦的特性。利用量到的腦波與開車的狀

況，建構一駕駛員心理負荷估測系統，此系統展示了未來實用化的潛

力。 

 

 在未來的發展上，可再規劃更逼真的場景，以供實驗之用；在車子的

動態上，可以發展更高階的動態特性，如碰撞與接觸不同地面等情況，並

建立各種動態的模組，以直接使用於未來的場景中；而在場景中的互動上，

可以再增加多種事件，如有其它車子或遇到行人⋯等突發情形。並利用加

速規等工具，量測六軸平台的動態與真實車輛之差異。在心理負荷模型建

構方面，可改善估測之準確性，並設計不同的實驗，探討不同的心理狀況，

以發展能夠進行即時分析生理訊號的方法，開發出實用的腦機介面。並設

計一些與安全性無關的實驗，例如人類看見圖像或文字在解讀上的速度，

以探討虛擬世界與真實世界的差異性。 
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