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3-1 NuAmps
NuAmps Specifications
NuAmps
Analog inputs 40 unipolar (bipolar derivations can be computed)
40
Sampling frequencies 125, 250, 500, 1000 Hz per channel, software selectable

for all channels

125 250 500 1000Hz

Sampling method 40 channels sampled simultaneously

40




A/D resolution 22 bits
22
Full scale input range +130 Mv

Input impedance

Not less than 80 MOhm

80 MQ
CMRR 100 dB at 50/60 Hz
Input noise 0.7 uV RMS (4 pV peak-to-peak)

0.7 4V RMS(4 pV )

Bandwidth, 3dB down

From DC to 262 Hz, dependent upon sampling frequency

3db selected
DC 262 Hz
Interface Universal Serial Bus (USB), Plug-and-Play technology

Supported electrodes

+““Gold, 7Ag/AgCl,;".Carbon electrodes with Touch Proof
(DIN 42-802) style connectors
* Quik€ap Ag/AgCl -electrodes with Plastic DSUB37F

/ DIN 42-802

/ DSUB37F

Digital (TTL) inputs/outputs

TTL /

14 TTL inputs and 2 TTL outputs

14 TTL 2 TTL

Quality control of electrode

* Measurement of contact impedance (at frequency 30 Hz)

application in impedance mode
» Constant monitoring of connection during recording
30Hz
Isolation Optical Signal Isolation
Display 16-letter LCD with background light, displaying amplifier

status or electrodes with impedance greater than

specified cutoff

16 LCD




Power supply & energy From USB (5V), in active mode current <= 500 mA, in

consumption standby mode current <= 20 mA
USB 5V <=500mA
<=20mA
Electric safety level According to EN60601-1(type BF), IEC601-1

EN60601-1(type BF), IEC601-1

Size (height x width x depth) | 7.8 x 5.9 x 1.6 in. (198 x 151 x 40 mm)

X X
Weight 1.4 Ibs (630 grams)
1.4 630
http://www.neuro.com/index.sstg
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X(n+1)= X (n) +xsing(n) + ycosq (n)
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