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ABSTRACT 

In this paper, we generalize some results of C. S. Ballantine concerning products 
of three n x n complex involutions. We prove that each n x n complex matrix A with 
determinant k 1 and dimker( A - (I) Q [n/2] for all a E C is the product of three 
involutions. On the other hand, we show that if an n x n complex matrix A is the 
product of three involutions, then m <(2n + r)/3 and m < [3n/4], where m = 
dimker(A - 8) and r = dimker(A - pe3) for any /I, /I # 0 and p4 # 1. We also 
completely characterize products of three 5 x 5 complex involutions. 

0. INTRODUCTION 

A square matrix A over some field is an involution if A2 is the identity 
matrix. Wonenburger [9] proved that an n x n matrix A over a field with 

characteristic # 2 is the product of two involutions if and only if A is similar 
to A-‘. Djokovic [5] proved it for arbitrary fields. Since then, it has also been 
proved by other people independently [l, 2, 71. In [S], Gus&on, Halmos, 
and Radjavi showed that every n X n matrix over a field F with determinant 
f 1 is the product of at most four involutions. Moreover, four is the smallest 
such number. In 1985, Sourour [S] gave a short proof for the special case 
when F has at least n + 2 elements. 

*This paper is adapted from the author’s Master’s thesis written at National Chiao Tung 
University under the guidance of Professor Pei Yuan Wu. 
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In [3], Ballantine proved that every matrix over an arbitrary field F with 
determinant f 1 having no more than two nontrivial invariant factors is the 
product of three involutions over F. Moreover, he showed that if an n X n 
matrix A over a field F is the product of three involutions, then m < 3n/4, 
where m = dim ker( A - /3Z) for any p E F, /I4 # 1. He also characterized 
products of three n x n involutions for the special cases when n < 4 or F has 
prime order < 5. 

In this paper, we generalize all these results for matrices over the complex 
field C. More precisely, we prove that each n X n complex matrix A with 
determinant f 1 and dim ker( A - o) < [n/2] for any (Y E C is the product of 
three involutions (Theorem 2.5). Moreover, we show that if an n x n com- 
plex matrix A is the product of three involutions, then m < (2n + r)/3 and 
m < [3n/4], where m = dim ker( A - p) and r = dim ker( A - pe3) for any p, 
p # 0 and /3” # 1 (Theorem 3.1). We also completely characterize products of 
three 5 X 5 complex involutions (Theorem 3.2). 

1. NOTATION AND PRELIMINARY DEFINITIONS 

A matrix is called cyclic if its characteristic and minimal polynomials 
coincide. By an elementary Jordan matrix .lk(h) is meant a square matrix of 
size k of the form 

h 
1 h 

1 . 
. . 

. . 
. . 

1. A_ 

Let tr( A) denote the trace of A, and a( A) denote the set of all eigenvalues of 
a matrix A. Denote by Z the identity matrix, by I, the n x n identity matrix, 
and by 0, the n X n zero matrix. Denote by T(n) the set of all n X n 

complex involutions, and by T( n)k the set of all matrices which are products 
of k matrices from T(n). 

For complex matrices, Djokovic [5] proved the following theorem, which 
is also our main tool in proving results for products of three involutions. 

THEOREM 1.1. Let A be a complex invertible matrix. Assume that A is 

similar to Xi@ Jk_( Xi), where each .lk (hi) is an elementary Jordan matrix 
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belonging to Xi of size ki. Then the following are equivalent: 

(1) A is similar to A-‘; 
(2) except those .l,,(Ai) with Xi = 5 1, all the rest are in pairs .lk,(X j) and 

Jk,(XI) such that kj = k, and hjh, = 1; 
(3) A is the product of two involutions. 

2. SUFFICIENT CONDITIONS 

Our main result in this section is Theorem 2.5, which gives a sufficient 
condition for a complex matrix expressible as the product of three involutions 
and generalizes a sufficient condition in [3]. To prove this theorem, we need 
the following lemmas. 

LEMMA 2.1. Let T be an invertible cyclic matrix of order n. Zf 
are complex numbers satisj@ng alas. . . a, = - det T, then 

~~~~&~is;aa”n involution P and a cyclic B with a(B) = { a1, CQ,. . . , cx, } such 
that T = PB. 

Proof. Since T is cyclic, T = ST,S’, where S is invertible and 

0 a0 

TI = a1 k---H Z . . 
n-1 

a,-, 

Let {cw,,~~,...,~,_~, a, } be the roots of the polynomial equation 

A” + d,_,A”-’ + . . . + d,A’+ d,X + a, = 0. 

If 

r 0 
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then B, is cyclic, a( B,) = { al’ az,.. . , a,} and detB,=Cy,cx,...a,= 

- det T. 
Let 

P, = 

where xi = - a;l(di + a,), 1~ i < n - 1. Note that P, is an involution and 

0 a0 

a1 3 a2 

Z n-1 

a n-l 

0 - a0 

aOX + al 
= _-r_ aox! + a2 

I,-, 

aOXnpl+an-l 

0 - a0 

-d1 =_T I 
-4 

n-1 

- rl”_, 

Hence Tl = P,B,. Let P = SP,S’ and B = SB,S-‘. We have T = ST,!?’ = 
SP,S-‘SB,S-‘= PB and o(B)= {(Y~,cQ,...,(Y,}. n 

LEMMA 2.2. Let A be an n x n complex matrix with determinant & 1. Zf 
A = A,@A,@ . . . @A,, where each Ai is a square matrix of order li at least 
2 and each Ai is cyclic, then A is the product of three involutions. 
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Proof. We distinguish two cases. Let ai = - det Ai, 16 i < m, and a 
besufficientlylarge,say, a>/h”‘,where h=maxiGiG,]ai]+l. 

Case 1: m is odd and det A = - 1, or m is even and det A = 1. 
Applying Lemma 2.1, we obtain m involutions Pi such that a( PiA,) = 

{ a, a-la,, 1,. . . , l} and o(PiAi) = {a(a, ... a,_l)-‘, a-‘(ala2 .. . 

ai),l,..., l}, 2 Q i Q m, where the l’s may be absent. Let P = P1@P2 
cl3 . . . @P,,,. Then P is an involution and PA = P,A,@P,A,@ . . . @ P,,,A,. 
Note that by our choice of a the eigenvalues of PA except the l’s are 
pairwise reciprocal and distinct. Hence PA is the product of two involutions 
by Theorem 1.1, and A is the product of three involutions. 

Case 2: misoddand detA=l, ormisevenand detA= -1. 

(I) If there exists some Ai, with Zi > 3, say I, >, 3, by the same method as 
in Case 1, there exist m involutions Pi such that a(P,A,) = 

:-I( 
a, a-‘a,, - l,l,. . . , l} and a(PiAi) = {a(al .. . ai_,)pl, 
alas.. . a,),l,..., l}, 2 < i < m, where the l’s may be absent. As 

before, A is the product of three involutions. 

(II) If A is not as in (I), then Zi = 2 for i = 1,2,. . . , m. Again, we consider 
two cases: 
(1) If a, # aj for some i # j, say a, # a2, then A,@A, is similar to 

either I?, or I?,@/?, where B, is cyclic, B, is a 3 X3 cyclic matrix, 
and /? is a scalar. 
If A,@A, is similar to B,, then A is similar to B,@A,$ . . . @A,, 
which reduce to Case 1. 
If A,@A, is similar to B,@j3, then choose 6 such that p, fi- ‘, 
- 6,6-‘ala, are distinct and 6 > a. Applying Lemma 2.1, we 
obtain m involutions Pi such that u(P,B,)= {p-l, - 6,6-‘ala,}, 
u(P2P)={ /3}, and u(PiAi)={ u(ala2. . . ai_l)-‘, u-l(a1a2 . . . a,), 
1 , . . . , l}, 3 < i < m, where the l’s may be absent. Using the same 
technique as in Case 1, we can prove this case. 

(2) If all a,‘s are equal, say a, = a for all i, then a”’ = - 1. By Lemma 
2.1, there exist m involutions Pi such that 

u(P,A,) = {al-i,ai}, Igi<m and a2’-‘#l. 

Let P = P,@ P2@ . . . @P,. By the same method as in Case 1, the 
proof is complete. n 

The main idea of constructing a new basis in the proofs of Lemmas 2.3 
and 2.4 comes from [4]. 
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LEMMA 2.3. Let A, be a complex invertible matrix of order 2k. lf 
A, = B,@D,, where B, is a square matrix of order k > 2, 

B,= 

and D, = aI, is a k X k scalar matrix, cx Z p, then, for any aI,. . . , ‘yk, 

P 1,. . . , Pk satisfying ai& = - cup, 1 < i < k, there exist an involution P and a 
2kx2kmutrixCwith a(C)= {(Y1,(YZ,...,(Yk,P1,P2,...,Pk} andPA,=C. 

P 
1 P 

1 . 
. . 

. . 

1 P 

Proof. Let A = A, - plzk and y = (Y-P. Then 

A= 

0 
1 0 

. . . . 0 _------l . . 

1 0 

0 Y1k 

Let e,= (s,i,s,i,..., S,i)t, 1~ i < n, where n = 2k and 

Sik = 
[ 

:, i; 
i 

i ; ; 

and let f = e, + e2 + . . . ek. Then the vectors f, Af,. . . , Akp ‘f are linearly 
independent. Let e( = A’-‘f + ek+i and e;,, = A’f + yek+, for 1~ i < k. 
Then 

e:+l - e;+i = A’f + ek+i+l- (A’f + ye,+,) 

=ek+i+l-Yek+i (*) 

for i = 1,2,..., k - 1, and Ae/ = ek+i, 1~ i < k. 
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Since the set {f, Af ,..., Ak-‘f, ek+l, ek+2 ,..., ezk} forms a basis, so does 
the set D = { ei, ei,. . . , e;, Ae;, Ae,‘,. . . , Ae;}. Moreover, 

Ae;,, = A”‘f+ y2e,+i 

=e;+i+~.-Yek+i+i+ Y2ek+i 

=4+j+l -Y(ek+i+l-Wk+i) 

= eL+i+l -Y(ei’+,-eL+i) by (* )I 

= -Yei’+1+eL+i+,+YeL+i7 l<i<k-1, 

and 

Ae,‘, = A(ye2,) = y2e2, = ye;,. 

Relative to the basis D, the matrix representation of A is of the form 

A,= 

where 

E,= 

i 

0 
-Y 0 

. . . . . 

-Y 0 

are both of size k. 

0 El +I ‘k E2 ’ 

J and E2=[: I....; j 

We conclude that A is similar to A,. Let 

s= 
‘k - bzk H--l 0 I, . 
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Then 

Hence A, = A + PZZk is similar to the matrix 

say, A, = VA,V’. Let E, = - p2Zk + E, - PE, and E, = 2/3Z, + E,. Then 

and 

A,= 
0 4 H--I ‘k E, ’ 

PI= [&i&j 
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where Q is an arbitrary k x k matrix, then P, is an involution and 

0 
P,A, = 

- 4 IN-1 1, Q * 

If X # 0, we have 

where E, = Q - XI, - X-‘E,. If we choose 

Q= , 

where ci = q + pi, 1~ i < k, then 

d, 

--a1 d2 

E,= -a . . . 

-a d, 

where di = ci - x + x-‘ap. Since 

det 
'k FE, N-1 0 Es 

= det E,, 

We have a(P,A,)= {CY,,(YZ,...,(Yk,Pl,P2,...,Pk}. 
Let P=VP,V-’ and PA,=C. Then PA,=VP,V-‘VA,Vp’=VP,A3V-’ 

and a( PA,) = a( P,A,). The proof is complete. n 
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LEMMA 2.4. Let A, be a 2n X2n complex invertible matrix. If A, = 
B@ D, where D is a scalar matrix al, of order m, and 

a 

1 (Y 
1 . 

B= . . 
. . 

. . 

1 a 

is a square matrix of order 12 3, I- m >, 2, then, for any aI,. . . , a,, 

P 1,. . . , p, satisfying ai& = - a 2, 1~ i < n, there exist an involution P and a 
2nX2n matrix C with a(C)= {~,,a, ,..., (r,,,Pl,P2 ,..., P,} and PA,=C. 
Moreover, we may choose some X, E a(C) such that 2 < dim ker(C - A,> < n. 

Proof. Let A = A, - OIZ~,,. Then 

A= 

0 I 

Let ei=(S,,i,S2,i,...,S2ni)t, l~ig2n, and f=e,+e,+ ... +e,. Then 
the vectors f, Af,. . . , Almif are linearly independent. 

Let k=n-m, A”f=f, ei’=Azip2f if l<i<k, and e;+i=A2kp2+“f 

+el+i if l<i<m. Let e,‘+i=Ae[, l<i<n. Then e,‘+i=A”-‘f if 
1 <i<k, and e,‘+k+i=A2k-1+if if l,<i<m. Since the set of vectors 

{ f, Af,. . . , A1-1f,el+,,el+2,..., ezn} forms a basis, so does the set 

{f, Af,..., A”f, Azkplf + el+l, Azkf + el+2,..., Alp2f + e2,,}. 

That is, the set D = {e;, e,l,. . . , e,l, } forms a basis. Under this change of 
basis, A is similar to 

on El 
A,= 1 

[ 1 n E2’ 
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where 

E,= 

11 

and 

E,= 

and thus A, = A + aZZn is similar to the matrix 

Say, A, = VA,V- ‘, By the same method as in proving Lemma 2.3, the proof 
is complete. n 

THEOREM 2.5. Let A be an n x n complete matrix with determinant 
k 1. Zf dim ker( A - aZ) < [n/2] fir all a E C, then A is the product of three 
involutions. 

Proof. A is similar to the Jordan canonical form A, = Vi@V@ . . . @V, 
@C,@C,@ *. . G+ C,,,, where each 

xi 

1 
vi= 

‘i 

. . . . 

. . 1 ‘i 

is a square matrix of order wi > 2, and each C, is a scalar matrix oiZI, of order 
zi with zi 2 zi + 1’ 1~ i < m - 1. It is understood that ai # cyj if i # j and that 
either the Vi’s or the C,‘s may be absent. 
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Case I: If the C,‘s are absent or I, < CyE2Zi, then A, is similar to 
A,= D,@D@ ... @D,,,,, where each D, is cyclic and of size > 2. The 
conclusion follows from Lemma 2.2. 

Case ZZ: If A, is not as in Case I, then 1, > CT=&. Let h, = Cyf”=zZi and 
h, = I, - h,. Then C,@C,@ . . . @C,,, is similar to C;@E,@E,@ . . . @Eh2, 
where Cf is a scalar matrix aiZh, of order hi and 

Ei = 

where e, is one of (yz, as,. . . , a, for each i = 1,2,. . . , h,. Hence A, is similar 
to A, = Vi@&@ . . . @Vk@C;@E,@E,$ . . . W&. 

Let k, be the number of y’s with eigenvalue (pi, k, = k - k,, and s be 
the number of V,‘s with order wi > 3. We may assume that (pi is not the 
eigenvahie of Vi, V, , . . . , Vk,. Then A, is similar to either 

or 

where 

0 < r(j) G ak,+j- 2, r(j)+ Ok,+j = 29, for some integer qi >, 2, j = 
1,2,..., s. It is understood that if k, = 0, then 

A, = B,@B,@ . . . @+~v~,+~+i@ . . . @V,@E,@E,@ . . . Ehp. 

Let a, = ( - 1)“ldet Ri and ui = - aih,, 1~ i <t; oj = detVj, t + 1~ j 
< k, and k, + s + 1~ j < k. Let u = - a:, bj = ( - 1)qjdet Bj, 1~ j < s, 
and ‘pi = - det Ei, 1~ i < h,. 
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For simplicity, we may assume that uq Z 1 if 0 < r~ < qi, 1~ i Q S, ~1’ # 1 
if 0 < ql<d, and up# 1 if O<qs< q, 2g i <t. Let e=l and I= 
d+C! r_z~i +C;=lqj + h, + k - t - s. To prove that there exists an involution 
P such that PA, is similar to its inverse, we choose (Y sufficiently large, say 

a> 

(1) 

(2) 

E”, where ty= m=XEocAjI I X + 1. We now distinguish five cases. - _ 

Assume that d = a1 and ( - 1)‘det A, = 1. Applying Lemmas 2.1, 2.3, 
and 2.4, we obtain k + h, involutions Pi such that 

a(P,R,) = { &(l, q’, uis )...) u;w’+q, p;‘( ui, t4; ,...) q)}, 

where pi = p(a,u, . . . u,_~)-‘, u. = 1, 1 d i < t; 

u(Pjvj)= {[j,gyluj,c ,..., E}, 

where Ej = pt(utqq+i.. . v~_~)-‘, t+ = 1, t + 1~ j < k,, and e may be 
absent; 

o(Pk,+iBi)= {&(l,u-i,u-s ,...) u-qi+i),~;i(u,us )...) bJ}, 

where li = [,l(b,,b, . . .bi_l)-‘, b,=l, l<iGs; 

a(Pjvj)= {ej,e~%j,c ,...) L}, 

where ej =5,(bsuk,+suk,+s+l.. . u~_~)-~, I)~,+~ = 1, k, + s + 1~ j < k, 
and E may be absent; and 

where Pi=ek(uk~~~l...~i_l)-l, ‘pa=l, l<i<h,. Let P=P,@P2 
@ -. . cBPk+h. Then P is an involution and PA is similar to its inverse 
by Theorem i.1. Hence A is the product of three involutions. 

Assume that d = o1 and ( - 1)‘det A, = - 1. We want to show that 
there exists an involution P, with det P, = ( - l)d+ ’ such that a( P,R 1) = 

{ al, a; l , p, p-‘uy, - p(uT2, uT3 ,..., uted), - p-l(u&. .., uf)}. Let 

P, = 
P; 0 

III 0 Pz” 
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where Pi is a 4 x 4 matrix and Pi is a (2d - 4) X (2d - 4) matrix. Since 
R, is similar to W, 

w= Wl 0 E-H w3 w2 ’ 

where 

w,= L a1 0 0 0 a1 0 0 0 A, 0 0 1 A, 0 0 0 

Then 

. . 
. . 

1 h l_(&Z)X(ri-2) 

Plw= [p$][&g= [gg 
i 

and there exist an involution P{ such that 

u(P/W,)= {a,,a;‘,p, -p+u:. 

and an involution Pi such that 

0 1 P,lW, ’ 

1 
u(P,‘W,)= { -p(u;2,u;3 )..., tp), -p-l(uf,u;l,..., uf)). 

Hence a(P,R,) = a(P,W) = {aI, a;‘, - p( - 1, uL2, uT3,. . . , u:~“), 
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- p-yuy, u;,..., uf )}. By the same method as in Case (l), the proof is 
complete. 

(3) Assume that d < w1 and q = ( - 1)‘det A,, where q = & 1. We want to 
prove that there exists an involution Pi with det Pi = ( - l)d such that 

a(P,R,) = (17, p, 77P-1r> rIIpr+(l, u;‘, q2,. . ., $“>, qp-%q, 
2 

Ul>..., 
d-l 

Ul >, G.*.,f}. 

(i) If d = 1, then R, is cyclic and there exists an involution Pi such that 
a(P,R,) = {q, p, q~~‘b}, where b = - det R,. 

(ii) d > 2. Let 

P, = 
P; 0 [+I 0 Pz’ 

wherePi’ isa(o,-d+2)x(o, - d +2) matrix and Pi is a (2d - 2) 
x (2d - 2) matrix. Since R, is similar to T, 

T= 
T, 0 H-1 T3 Tz. ’ 

where 

0 1 
T3 = 0, () ’ [+I r=(2d-3)x(w,-d+l), 

and 

1 

0 Al 
1 Xl 

T, = 1 . 
. . 

. . 
. . 

1 A, 



16 KANGMAN LIU 

is cyclic. Then 

PIT= [q-+][S]= [&g 
and there exist an involution Pi’ such that o(Pi’T,) = 
{q,p,vp-%,c ,..., e},where r= - det T, and c = 1 may be absent, 
and an involution Ps’ from Lemma 2.3 such that 

a(P,‘T,)= {qpT-1(1,U;1,U;2 )..., Uf-“),qp-‘+,,uf ,... Jp)}. 

~,...,E,wJ -lT(ul,uy,...,u ~;‘-‘)} and det P, = ( - l)d. I& in the 
for case (1) we have A as the product of three involutions. 

(4) Assume that k, = 0 and ( - 1)‘det A, = - 1. If o,+i 2 3, by the 
method as in case (l), we take 

o(P,+,V,+,) = { &+i, - ~S;lio,+i> - l,e ,...> e}, 

a(Pjvi)= { -ej, -e,:luj,e )...) t}, s+2< j<k, 

u(Pk+iEi)= { -Pi, -Pip’Cpi}, lgi<h,, 

proof 

same 

and complete the proof as before. Hence we may assume that q = 2 for 
s + 16 i < k. Again, we consider two cases: 

(4-l) If ‘pi # ‘pi for some i f j, say ‘pi # (p2, then E,@E, is similar to 
E;@a,, where E; is cyclic. By Lemma 2.1, there exists an involu- 
tion Pk+ 1 such that 

So u((P~+~@~)(E,cBE,))= {cu,,a;‘,&, --/3;‘cplcp2}. As in case 
(l),ifwetake Pk+2=land u(P,+,E~)= { -pi, -pie1qi},3<i< 
h,, then the proof is complete. 

(42) Assume that alI the Ei’s are absent or ‘pi = ‘pi for i = 1,2,. . . , h,. 
Since ( - l)‘det A, = - 1, we have u’-%& = - 1. For simplicity, 
we may assume that uglqy # 1 for all positive integers vi < q - h, 
and v2 < h,. Let rp = ‘pl. To choose in pairs ci and di such that 
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cidi = u and ci # di, 1~ i < 1 - h,, or in pairs c( and di such that 
c,!dj = ‘p and c( # dj, 1~ j < h,, we now distinguish seven sub- 
cases. 
(l)If h,=O, we take G,={-1,-u} and G,={-u-‘, 

- u2 )..., - lkl, -U’}. 
(2) If h,=l and uvfl for y=1,3,5 ,..., 21-3, we take G,= 

(1, cp} and G, = { - 1, - u, - u-l, - u2,. . . , - u2-l, 
- P}. 

(3) If h, = 1 and there exists an integer y with y = 2y, + 1 and 
l-h,<y<21-2h,-1 such that uy=l, we take G,= 

{% - e,“p} and G, = {cx;‘, cxiu, cu;‘u-‘, ~yiu’, . . . , 

“1 -ltP1, ap>. 

(4) If h,a2and (p”#l for x=1,3,5,...,2h,-1 and uy#l for 
y=1,3,5 ,..., 21- 2h, - 1, we take 

Cl= {l,q~,q’,q~~ ,..., q+,(p”,} 

and 

G,= { -1, -u, -u-l, -u2 ,..., -u~-‘+~,, -@z}. 

(5) If h, a 2 and ‘px # 1 for x = 1,3,5,. . . ,2h2 - 1 and there exists 
an integer y with y = 2yi + 1 and l- h2 < y Q 21- 2h2 - 1 
such that uy = 1, we take 

and 

G,= { - 1, - u, -u-l, - u2 ,..., - ~l-~l, - uy’, - Cy’, 

_ u~i91, _ u-~~q-l, - u~l+lq,._v, - Ul+Wq-l, - &h~~}. 

(6) If h, > 2 and there exists an integer r with x = 2s, + 1 and 
h, XX< 2h,- 1 such that cpr= 1, and uY# 1 for y = 
1,3,5 ,...) 21- 2h, - 1, we take 

‘p 
-s,-lu-1 

,p+% )..., p~U-l,(ph~U} 
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and 

G,= { - 1, - u, - u-l, - u2 ,..., - u~,-(+~, - @-l}. 

(7) If h, > 2 and there exists an integer x with x = 2s, + 1 and 
h, < x Q 2h, - 1 such that q?’ = 1, and there exists an integer 
y with y=2y,+l and l- h,<y<21-2h,-1 such that 
uy = 1, we take 

and 

G, = { - 1, -u, - u-l, - up2 ,..., - u~-~I, - uY1, - uPYl, 

By Lemmas 2.1 and 2.4, there exist k + h, involutions Pi such 
that 

(i-1’ ’ * ) (u=s+l’ ” ) (i=l” ’ ’ ] 
(J (P.B.) u ; (FT.) u $ (P.E.) =G,uG,. 

Let P = P,@P,@ . . . CBPk+h,. Then P is an involution and PA 
is similar to its inverse by Theorem 1.1 Hence A is the product 
of three involutions. 

(5) Assume that A is similar to A,. As in the proof for case (4-l) we may 
assume that wi = 2 for s + 1~ i < k. Again, we consider two cases: 

(5-l) Assume that each Ei is absent or ‘pl = ‘pi for i = 1,2,. . . , h,. As in 
the proof for case (42), we have A is the product of three 
involutions. 

(52) If h, >, 2 and vi # qj for some i z j, say, ‘pi z (p2, then 
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is similar to Ei@cu,, where 

Hence A, is similar to 

and A> is similar to 

A,=B;@B,‘@ ... $B;,$V,,+,$ ... $V,$+E;$E,~.. @Eh2, 

where each B[, B{ =y@alZsCij, 0 < S(i) < oi - 2, and S(i)+ wi = 
2d, for some integer di > 2, 1~ i < t,. By the same method as in 
case (l), the proof is thus complete. H 

3. NECESSARY CONDITIONS 

THEOREM 3.1. Let A be an n Xn complex matrix, p4#1, fi#O, 
m = dim ker(A - /3Z), and r = dim ker( A - p-3Z). Zf A is the product of 
three involutions, then m < (2n + r)/3 and m < [37x/4]. 

Proof. Let P, be an involution and 1 = dim ker( P,A - PI) + 
dimker( P,A + PZ). Then 2m - n < 1. If A = P,P,P,, where Pi’s are involu- 
tions, then P,A = P,P,. Since P,A is similar to its own inverse, we have 

P,A = SDS-‘, 

where D is in Jordan canonical form and D is similar to D- ‘. 
By (l), we obtain 

(1) 

P,A -p-2A-1P1= SD-‘S-‘. 

Multiplying (2) by jF2 and subtracting it from (l), we get 

A-‘P,=S(D-fi-2D-1)SF1. 

(2) 
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For simplicity, we wiIl assume that D is of the form 

0 ii l/a O O Hkl 0 v 0’ 

0 0 V, 

where 

V= [a y S] and v,= k’ “1 jl 

Then 

D-l= 

where 

KANGMAN LIU 

It follows from (3) and (4) that 

where 

E= 

(3) 

(4 
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+a_pa-‘, x2=a-‘-p-2~, ql=t-p-1, q2=t-l-pt, c= 

pp2tp2 + 1, and { = pp2t2 + 1. 

Since X,=Oifandodyifa2=pm2, X,=Oifandonlyif a2=P2, 71~0 
if and only if t2 = pe2, and q2 = 0 if and only if t2 = p2, we have 

rank( D - p-‘D-‘) = rank( P,A - pW2A-lP1) = n - 1. 

Since P,A - /!-2A-1P1 = P,(A - pp3Z) + pe3(A - /?Z)A-‘P,, we have 
rank(P,(A - pe3Z)) < rank(P,A - /_-2A-1P1) + rank(Pe3(A - /3Z)A-‘P,). 
By n - Z< 2n - 2m, rank(pe3(A - /3Z)A-‘P,) = n - m, and rank(P,(A - 
p-3Z))=n-r,weobtain 

n-r<n-m+2n-2m, 

i.e., m < (2n + r)/3 and m < [3n/4]. 

For 5 x 5 matrices, we have the following characterization: 

THEOREM 3.2. Let A be a 5 X 5 campLx matrix. Then A E T(5)3 if and 
only if one of the following holds: 

(1) detA = - 1 and, for any fi” # 1, dimker(A - /3Zs) < 3 and A is not 
similar to B = jIZ,@Z,; 

(2) det A = 1 and, for any p” # 1, dimker(A - j3Zs) < 3 and A is not 
similar to j3Z3@ ( - I,). 

Proof. Since A E T(5)3 if and only if - A E T(5)3, we need only prove 

(1). 
c=: In view of Theorem 2.5, we only need to show this for the case 

m = 3. Here A is either similar to A, = D1@j3@fi or A, = C,@C,@/3, where 
D, is cyclic, C, = C,, and C, is either 

[z ;I Or [f ;I. 
Let a = det C,. If p2a = - 1, then fi = 1 or a = 1 from det A = - 1, which 
contradicts that p4 # 1 and A is similar to B. So p2a # - 1. By Lemma 2.1, 
there exist three involutions Pi such that a(P,D,) = {p-l, -p-l, - l}, 
4P&) = {P-l, -up}, and a(P,C,)= { -l,a}. Let V=P,@l@-1 and 
V, = P2@ P3@ 1. Then V,A, = P,C,@p @ - /3, a(V,A,) = { j3, j_-‘, - p, 
- p-‘, - l}, V2A2 = P2C,@P3C2@p, and u(V,A,) = { - 1, a, - a/3, /3, /I-‘}. 
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Therefore V,A, is similar to its inverse, and so is V,A,. That is, A, E Z’(5)3 
and A, E YZ’(5)3. Hence A E T(5)3. 

- : By Theorem 3.1, we obtain m d 3. It remains to prove that B 4 T(5)3. 
If B = pZ3@Z2 E T(5)3, say B = P,P,P,, where the Pi’s are involutions, then, 
assuming 

p=c D 1 [ 1 E F 

with C and F of sizes 2 and 3, respectively, 

is similar to 

Since 

(P,B)‘= 
fi2C2+fiDE ,f3CD+ DF 

p2EC+pFE BED + F2 1 ’ 

‘C2 + ,&‘DE ,L? 2CD + ,&‘DF 

,k-‘C+ FE 1 ~-‘ED+F~ ’ 

tr(P,B) = tr(B-‘P,), p3 = - 1, and tr(P,B)2 = tr(B-‘P,)2, we have 

trC=O 

and 

trC2 +2trDE = 0. 

Since 

(1) 

(2) 

CD+DF 
ED+FE ED+F2 
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we have 

C2+DE=Z3, ED+F2=Z2, CD+ DF=O, EC+FE=O. 

(3) 

From (3), we obtain 

trC’+trDE=3 and trDE+trF’=2. (4) 

By (2) and (4), we get 

trDE = - 3, trF2=5, and trC2=6. (5) 

Since tr C = 0, tr C2 = 6, DE = I, - C2, and rank DE < 2, we have either 
o(C) = { l,l, - 2} or a(C) = { - 1, - 1,2}. So rank DE = 1 which implies 
that 

rankD=l or rankE=l. (*) 

As in the proof of Theorem 3.1, we have 

(6) 

From ( * ) and 

P,B - ,d2B-‘P1 = 
0 (1-P)D 

(P-P”)E 1 (l-P2)F ’ 
we obtain 

rank(PIB -fi2K1P1) < 3. (7) 

J’,B -fi-2B-1Pl= (‘;+$ 
(1 :“,,I; 1 

X I 13 2(1+p)-‘C-ID 1 (8) 
0 (1+/3)F-4P(l+p)-‘EC-ID ’ 
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SO 

rank@‘@ -P-‘@Pr) > 3. 

From (6) (7) (8), and (9) we get 

(l+p)F-4/3(1+P)-‘EC-‘D=O,. 

Multiplying (10) by (1 + /3)F and comparing with (3) we obtain 

(1+ ,L3)2F2 +4PED = O,, 

which contradicts (5). Hence B P Z(5)3. 
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