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ABSTRACT

In this paper, we generalize some results of C. S. Ballantine concerning products
of three n X n complex involutions. We prove that each n X n complex matrix A with
determinant +1 and dimker(A — a) <[n/2] for all a €€ is the product of three
involutions. On the other hand, we show that if an n X n complex matrix A is the
product of three involutions, then m < (2n +r)/3 and m <[3n/4], where m =
dimker(A — 8) and r =dimker(A —873) for any 8, B+0 and B8*+#1. We also
completely characterize products of three 5X 5 complex involutions.

0. INTRODUCTION

A square matrix A over some field is an involution if A2 is the identity
matrix. Wonenburger [9] proved that an n X n matrix A over a field with
characteristic # 2 is the product of two involutions if and only if A is similar
to A ™. Djokovic [5) proved it for arbitrary fields. Since then, it has also been
proved by other people independently [1, 2, 7]. In {6], Gustafson, Halmos,
and Radjavi showed that every n X n matrix over a field F with determinant
+1 is the product of at most four involutions. Moreover, four is the smallest
such number. In 1985, Sourour [8] gave a short proof for the special case
when F has at least n +2 elements.

*This paper is adapted from the author’s Master’s thesis written at National Chiao Tung
University under the guidance of Professor Pei Yuan Wu.

LINEAR ALGEBRA AND ITS APPLICATIONS 111:1-24 (1988) 1

© Elsevier Science Publishing Co., Inc., 1988
655 Avenue of the Americas, New York, NY 10010 0024-3795 /88 /$3.50



2 KANG-MAN LIU

In [3], Ballantine proved that every matrix over an arbitrary field F with
determinant + 1 having no more than two nontrivial invariant factors is the
product of three involutions over F. Moreover, he showed that if an n X n
matrix A over a field F is the product of three involutions, then m < 3n /4,
where m = dimker(A — 8I) for any B € F, %+ 1. He also characterized
products of three n X n involutions for the special cases when n < 4 or F has
prime order < 5.

In this paper, we generalize all these results for matrices over the complex
field C. More precisely, we prove that each n X n complex matrix A with
determinant +1 and dimker(A — ) < [n/2] for any a € C is the product of
three involutions (Theorem 2.5). Moreover, we show that if an n X n com-
plex matrix A is the product of three involutions, then m < (2n + r)/3 and
m < [3n /4], where m = dimker(A — 8) and r = dimker(A — 873) for any 8,
B # 0and 8%+ 1 (Theorem 3.1). We also completely characterize products of
three 5x5 complex involutions (Theorem 3.2).

1. NOTATION AND PRELIMINARY DEFINITIONS

A matrix is called cyclic if its characteristic and minimal polynomials
coincide. By an elementary Jordan matrix J,(A) is meant a square matrix of
size k of the form

1 A

Let tr( A) denote the trace of A, and o( A) denote the set of all eigenvalues of
a matrix A. Denote by I the identity matrix, by I, the n X n identity matrix,
and by 0, the n X n zero matrix. Denote by T(n) the set of all nXn
complex involutions, and by T(n)* the set of all matrices which are products
of k matrices from T(n).

For complex matrices, Djokovic [5] proved the following theorem, which
is also our main tool in proving results for products of three involutions.

Tuaeorem 1.1.  Let A be a complex invertible matrix. Assume that A is
similar to L, @], (A;), where each I (X;) is an elementary Jordan matrix
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belonging to A, of size k,. Then the following are equivalent:

(1) A is similar to A7}

(2) except those Ji (A;) with A, = £1, all the rest are in pairs ]kj(}\ ;) and
Ji (X)) such that k =k, and A A =1,

(3) A is the product of two involutions.

2. SUFFICIENT CONDITIONS

Our main result in this section is Theorem 2.5, which gives a sufficient
condition for a complex matrix expressible as the product of three involutions
and generalizes a sufficient condition in [3]. To prove this theorem, we need
the following lemmas.

Lemma 2.1. Let T be an invertible cyclic matrix of order n. If
&y, Ay, ..., A, are complex numbers satisfying ayay- - a, = —detT, then
there exist an involution P and a cyclic B with 6(B) = {a,, a,,...,a,} such
that T = PB.

Proof. Since T is cyclic, T = STls_l, where § is invertible and

0 a,
a,
T,= .
! In—l :
an-1
Let {a;,ay,...,a,_,,a,} be the roots of the polynomial equation

Ntd, A4+ d A+ d A+ a,=0.

If
o e
—d,
B, = I,_, ._dz >
i —d,,
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then B, is cyclic, o(B;)= {aay,...,a,} and detB,=aja,- - a,=
—detT.
Let
—1 ‘
Xy
P1= x2 ’
. In~l
Xp-1
where xr,= —ag'(d;+a;), 1<i<n—1 Note that P, is an involution and
[ -1 | 0 0 a,
*1 o
PT, o Qg
. In—l Infl .
Lx"_l A,y
i 0 —a,
agx;+a,
agxy+ay
In~l .
ann71.+an—l
i 0 —ag,
—d,
—d, = B,.
In—l :
_dnfl

Hence T,= P,B,. Let P=SP,S™! and B=5B,S™'. We have T =ST\5"'=
SP,S"!SB,S"!=PB and o(B) = {a;, as,...,a,}. [ ]

LemMa 2.2.  Let A be an n X n complex matrix with determinant +1. If
A=A ®A® - @A, where each A, is a square matrix of order l; at least
2 and each A, is cyclic, then A is the product of three involutions.
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Proof. We distinguish two cases. Let a;= —detA,, 1<i<m, and «
be sufficiently large, say, a > h™, where h =max, _, m|a,|+ 1

Case 1: m is odd and det A= —1, or m is even and det A=1.
Applying Lemma 2.1, we obtain m involutions P; such that o(PA))=
{a, a7 'ay, 1,...,1) and o(PA) = {ala; --- a; )", a Yaa, -
a,),l,...,1}, 2<i<m, where the 1’s may be absent. Let P =P &P,
@ --- ®P_. Then P is an involution and PA=P A ®P,A;® --- 8P A .
Note that by our choice of a the eigenvalues of PA except the 1’s are
pairwise reciprocal and distinct. Hence PA is the product of two involutions
by Theorem 1.1, and A is the product of three involutions.

Case 2: m is odd and det A=1, or m is even and det A= — 1.

(I) If there exists some A, with I, > 3, say I, > 3, by the same method as
in Case 1 there exist m involutions P, such that o(P,A))=
{— a,a 'a, —1,1,...,1} and o(PA,) = {ala, --- a;_) %,
a Naa,--a; ),1,...,1}, 2 < i< m, where the 1’'s may be absent. As
before, A is the product of three involutions.

(ID) I A is not as in (I), then [, =2 for i =1,2,..., m. Again, we consider
two cases:

(1) If a, #a; for some i# j, say a,+# ay, then A/®A, is similar to
elther 32 or B,®f, where B, is cycllc B, is a 3X3 cyclic matrix,
and B is a scalar.

If A/®A, is similar to B,, then A is similar to B,®A;® --- ©A
which reduce to Case 1.
If A/®A, is similar to B,;®f, then choose § such that 8,87 "
~ 8,8 'a,a, are distinct and 8> a. Applying Lemma 2.1, we
obtain m involutions P, such that o(P,B,)= {87!, — 8,8 'aa,)},
o(P,B)={B}, and o(P;A;)={0o(aya, - - a; 1) Lo Naay- - ay),
.,1}, 3< i< m, where the 1’s may be absent. Using the same
technique as in Case 1, we can prove this case.

(2) If all a,’s are equal, say a; = a for all i, then a™ = — 1. By Lemma

2.1, there exist m involutions P, such that

m>

o(PA,) = {a' " ,a'}, I<igmand e '#1.
Let P=P,®P,® --- ®P,. By the same method as in Case 1, the

proof is complete. [ ]

The main idea of constructing a new basis in the proofs of Lemmas 2.3
and 2.4 comes from [4).
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Lemma 2.3. Let A| be a complex invertible matrix of order 2k. If
A, = B,®D,, where B, is a square matrix of order k > 2,

B
1 B
1

1 g

and D =al, is a kX k scalar matrix, a+ B, then, for any a,...,q,
Bi...., By satisfying a8, = — af, 1 < i < k, there exist an involution P and a
2k X 2k matrix C with o(C)= {a}, ay,..., 0, By, Bos---» B} and PA,=C.

Proof. Let A=A, —BI,, and y=a— . Then

.1 0
0 | YL

Let ¢, = (8,,,08,;,-..,8,;),, 1 <i<n, where n =2k and

1 if i=k

%=10 i izk,

and let f=e,+e,+ - - - e,. Then the vectors f, Af,..., A" If are linearly
independent. Let ¢/ =A'"'f+e¢,,, and e],,= A'f+ye,,, for 1<i<k.
Then

eli1— e i=Afte .~ (Aif+ Yek+i)
SCriiv1l T Yy (%)

fori=12,...,k—1,and Ae/=¢,,;,, I <i<k.
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. k—1 .
Since the set { f, Af,..., A" 'f, e, 1, €510, ..» g } forms a basis, so does
the set D= {e{,e],..., e}, Ae{, Aeg,..., Ae;}. Moreover,

Aef,, =AM f+y%, .,
=€iiiv1 " Yot Yo,
=€liiv1 Y(ek+i+1 - Yek+i)
=el, i1~ Y€1 eiy) [by (%)]
==ve/ 1t eiiii1t Yo I<i<k-1,
and
Aeg = A(vey) = Yzezk = Yeg-
Relative to the basis D, the matrix representation of A is of the form

0] E,
A= TE |
k 2

where
E, = - and E,=

are both of size k.
We conclude that A is similar to A,. Let

. {zk —mk}_
ol I,
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1, | —-Blk]lo | El}[ol Blk]
0| I ||L]| EJo] I

- BI, ' - B, + E, - BE,

I | Bl +E,

Hence A, = A + BI,, is similar to the matrix

Ay=

0| - B’ +E, - BE,
I | 281, + E, |

say, A, =VAV L Let E;= — B%I, + E, — BE, and E,=28I, + E,. Then

[ —aB
-a -«
E,= . A ,
L —a —aff
—a+B
1 a+
E,= ] B ,
| 1 a+8
and
0| E
A= 21.
I | E,
If
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where Q is an arbitrary k X k matrix, then P, is an involution and

0| —E,
PAs= | o |
k

If A+ 0, we have

-Mi| -E ~AL| 0 1k| AE,
PA;— Ay = =
o~ Mok [ L |Q‘Mk] [ L llk][0| Es |

where E; = Q — AI, — A7 'E;. If we choose

1
Co
Q= b
Ck
where ¢;= a; + 8, 1 <i<k, then
} -
—a  dy
E5= T . . . bl
B - dk_
where d, = c, — A + A" ap. Since
IL| A'E
det| ® | = det E,
0 E,

we have o(P,A;) = {@a;, ay,..., 0, B, Bose-u Bi )
Let P=VPV~! and PA;=C. Then PA,=VPV VAV !=VPAyV"!
and o(PA,) = o(P,A;). The proof is complete. a
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LemMa 2.4. Let A; be a 2n X2n complex invertible matrix. If A, =
B® D, where D is a scalar matrix al,, of order m, and

o
1 «a
1
B=
1 «
is a square matrix of order l>3 l-mz2, then, for any a,...,«q,,
Bis---» B, satisfying a,B;, = — a® 1< i < n, there exist an involution P and a

2n X2n matrix C with o(C)= {al,az,...,an,,Bl,Bz,...,Bn} and PA,=C.
Moreover, we may choose some A | € o(C) such that 2 < dimker(C—A))<n

Proof. Let A=A — al,,. Then

0
1 0
. 0
A= .
1 0
0 | 0,
Let e, = (8, ;05 ;-.-, 2,,,) 1<i<2n, and f=¢;+e,+ --- +¢;. Then
the vectors f, Af,.. f are lmearly mdependent
Letk-n—m Aof f, e/ =A% %f if 1<i<k, and ef,,= A%k 2+if
+e,+ if 1gigm. Let e/,,= Ae/, 1<z<n Then e/, = A% 'f if
<k, and en+k+,—A2k I*if if 1<i<m. Since the set of vectors

{f Af LA ey g a0 ) forms a basxs, so does the set
(£ Af, AU AR g | AKfte o AT 4 ey, )

That is, the set D= {e{,e4,...,eg,} forms a basis. Under this change of
basis, A is similar to
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where
o _
1 0
. . 0
E = Lot and
1 0
L 0 Onik_
[0, , 0 )
0

E2= O 1 0 >

L I 0]

and thus A, = A + al,, is similar to the matrix

0 ‘ — o, +E,—aF,

A=
T 2al +E,

n ‘

Say, A,=VA,V ™! By the same method as in proving Lemma 2.3, the proof
is complete. ]

THEOREM 2.5. Let A be an n X n complete matrix with determinant
+1. If dimker(A — al) < [n/2] forall « € C, then A is the product of three
involutions.

Proof. A is similar to the Jordan canonical form A, =V,@V,® - .- @V,
&C,®C,® --- &C,, where each

is a square matrix of order w, > 2, and each C, is a scalar matrix a,I; of order
I, with [, > 1,, |, 1 <i<m—1 Itis understood that a; # a; if i # j and that
either the V,’s or the C;’s may be absent.
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Case I. 1f the C/’s are absent or I, <X ,l, then A, is similar to
Ay=D\®Dy® --- @D, , where each D, is cyclic and of size >2. The
conclusion follows from Lemma 2.2.

Case II: Y A, is not as in Case I, then I, > X" ,l;. Let hy =27 ,[; and
hy=1,—hy. Then C,®Cy® --- &C, is similar to C{®ESE,® --- @E,,
where C/ is a scalar matrix a,I, of order h; and

where ¢; is one of a,, a,,..., «, for each i=1,2,..., hy. Hence A, is similar
to A,=V,0V,® -+ ®V,@8C{OE,®E® - -- OF,, .

Let k, be the number of V;’s with eigenvalue a;, k, =k — k,, and s be
the number of V;’s with order w; > 3. We may assume that «, is not the
eigenvalue of V,V,,...,V; . Then A, is similar to either

A;=R®R®---®R,®V, 1® - &V, @B ®B® - --
®B®V, ,,,,® - OV,0E@E® --- ®F,
or
A,=B®B,® - ®B@V, ,,.,® - OV, 0E,6E,® - - 0F, ®a,
where
R,=Vi®ql,, 0<d<w,
R,=Veal,, 2gigt,

Bi=Vi,. @l

0<r(jy< o, ;=2 r(j)+og,;=2q; for some integer ¢;>2, j=
1,2,..., s. It is understood that if k; = 0, then

A;,=B®B® - - @BV, ,,,,0 - 8V,@E®0FE,® ---E, .

Let a,=(—1)*detR,; and u;= —aA,, I <i<t; u].=deth, t+1<j
<k, and kj+s+1<j<k Let u=—aj, bj=(—1)%detB;, 1<j<s,
and ¢, = —detE,, 1 <i<h,.
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For simplicity, we may assume that " #1if0<n<gq, I1<i<s, uft#1

if 0<m <d, and ul2#1 if 0<9y<w;, 2<i<t. Let ¢=1 and I=
d +X? 5w, +L5_,g;+ hy+ k —t — 5. To prove that there exists an involution
P such that PA; is similar to its inverse, we choose a sufficiently large, say
a > £", where § = max, ¢ ,4)|A|+ 1. We now distinguish five cases.

(1) Assume that d = @, and (—1)'det A;=1. Applying Lemmas 2.1, 2.3,

@

and 2.4, we obtain k + h, involutions P, such that

o(PR,) = {p(L a7 u7% w7 ), o7  (u, ul . a,) ),

VAN
S*

where p, = p(aga; - a;, ;)7}, ap=1,1<i
O(P]‘fl) = {‘Ej’g‘;lvj,f,...,é}’

where §;=pfa,0,0,,, " v]._l)_l, 0,=1t+1<j<k, and € may be
absent;

o( P iB) = (S u w2 w9t ) 7 (u,u?, b)),
where §, =&, (bob, -~ b,_y) 7', by=1,1<i<s;

o(PY;) = {6;,

-1

0; vj,e,...,s},

where 0, = (boy + Ok +or17  0j—1) " Vg =1 ky+s+I<j<k,
and & may be absent; and

O(Pk+iEi) = {Bi’ﬂi—l(pi},

where B, =0,(v,90®; " Pi_1) Y @=1, 1<i<h, Let P=P®P,
® -+ ®@P, ). Then P is an involution and PA is similar to its inverse
by Theorem 1.1. Hence A is the product of three involutions.

Assume that d = w, and (—1)'det A;= —1. We want to show that
there exists an involution P; with det P, =( — 1)4*! such that ¢(P,R,) =
{ap a7l p,p Wl —p(ururd,..,ui™®), —p Yud,..., ud)). Let

P/| 0O
P,= |,
0| P
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where P/ is a 4X4 matrix and P is a (2d — 4)X(2d —

R, is similar to W,

where
W [0 1
8 LOSX(d—z) oy
[0, 0 0 O
wol0 @ 0 0
10 0 A, OF
(0 0 1 A
s -
1A
1
W,=a;l; &
i 1A
Then

KANG-MAN LIU

4) matrix. Since

(d—2)X{d~-2)

0

il

and there exist an involution P such that
o(P{W,) = {a,ar ' p, —p uf
and an involution P such that

o(PyW,) = { —p(ur® u®,..

R
LARA PW, | BEW, |

sui ), = Huul

Lud)).

Hence o(PR,) =o(PW)= {a;,a7", —p(— 1 ui?u3. .., ul™ ),
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—p Xu?, u3,...,u?)}. By the same method as in Case (1), the proof is
complete.

(3) Assume thatd < w, and n=(— 1) det A,, where n=+1. We want to
prove that there exists an involution P, with det P, =( — 1) such that
O(PIRI) = {”l, P> TIP_IT’ in_l(la u;19 u;Z, D] ufid)> T’pilT(ul,
u%,...,u‘f"l), € ..., €}

(1) If d =1, then R, is cyclic and there exists an involution P, such that
o(P,R,)={n,p,mp 'b}, where b= —detR,.

(ii) d = 2. Let
P/l O
P = ,
0| P

where P} isa (w; —d +2)X(w, —d +2) matrix and P, isa (2d — 2)
X (2d — 2) matrix. Since R, is similar to T,

T,| O
T = s
I;| T

where
01
L=|ots] r=@d-3)x(e,-d+1),
A
1 Ay
Ty=al, & . ,
1 >‘1 (d-1)xd-1)
and
—0‘1 _
0 A
1 A
T, = 1
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is cyclic. Then

[P; OHTI‘ 0} |:P1’Tl‘ 0 }
PT= = ,
0P |[Ts| T P/T, | PJT,

and there exist an involution P/ such that o(P/T,) =

{m,p,mp '1,¢,...,€}, where 7= —det T, and € =1 may be absent,

and an involution P, from Lemma 2.3 such that

o(PyTy) = {mor~(Lourh up ..., ud~4), mp~r(uy, ud, .., ud=1) ).

So o(PyRy)=o(P,T)={n, p,mp “omer MLurLup? o, uitd),
€....e,mp r(uy, ud,...,uf"1)} and det P, = ( — 1)% As in the proof
for case (1), we have A as the product of three involutions.

(4) Assume that k; =0 and (—1)'det A,= — 1. If w,,,> 3, by the same
method as in case (1), we take

( s+1 +1) { s+1’_0;+1105+1, —1,6,...,c},
o(PV,)={ -6, -6 ",,¢..¢}, s+2<j<k,
O(Pk+iEi)= { _Bi, _Biilq)i}’ 1<1<h2,

and complete the proof as before. Hence we may assume that w, = 2 for
s +1 < i< k. Again, we consider two cases:

4-1) If @;# @; for some i+ j, say ¢, # ,, then E,®E, is similar to
E{®a,, where E] is cyclic. By Lemma 2.1, there exists an involu-
tion P, such that

U(Pk+1Ef) = {afl,Bl, _,81'1‘1’1%}'-

So o(P @ I(E\®Ey)) = {aj, a7 ', By, — Bl '91¢;}. As in case
(1), if we take P, ., =1and o(Px E)={—-B; — B '¢;},3<i<
h,, then the proof is complete.

(4-2) Assume that all the E;s are absent or ¢, = ¢, for i=1,2,..., h,.
Since ( —1)'det A; = — 1, we have u!~ hahz = — 1. For sxmphmty,
we may assume that um @2 # 1 for all positive integers 1, < q — h,
and 7, < h,. Let ¢ = ¢,. To choose in pairs ¢; and d; such that



DECOMPOSITIONS INTO INVOLUTIONS 17

cid;=uand ¢;#d;, 1 <i<I— hy, orin pairs ¢/ and d such that
cj’d]’. =@ and ¢/ # d]’., < j < hy, we now distinguish seven sub-

cases.

(1) If hy=0, we take G,={—-1, —u} and Gy={—-u"",
—u?.., —u7 —dl)

(2 If hy=1and u?#1 for y=1,3,5,...,2] - 3, we take G, =
{1 q)} and Go={-1, —u, —u!, —u? ..., —u>},

.
3y It h =1 and there exists an integer y with y =2y, +1 and
l—h2<y<2l— 2h, —1 such that u¥=1, we take G,=
{al, —a; g} and Gy = {a7 ', ayu, a; 'u™l, aju?, ...,
af Wi Loy,
{(4) If h,>2 and ¢ #1 for x=1,3,5,...,2hy — 1 and u¥#1 for
y=13,5,...,21 — 2h, — 1, we take

Gi={Lo, o Lo .. ¢ ", o)}

and
Go={~1,—u, —ul, —u?, . —ul"lh gl h}

(5) If hy>2and ¢* #1 for x =1,3,5,...,2h, — 1 and there exists
an integer y with y=2y,+1 and I -hy <y <2]—-2h,—1
such that u¥=1, we take

G,= {l’q”q)—l’q)z,.”’q)2—h2,(ph2-l}
and

Go={-1,~u,—ut, —u? .., -, ¥, —uY,

-1 1+hy—1

—ubp, —u Ve, —uhtlp,., —u et —ulThe}.

(6) If hy>2 and there exists an integer x with x =2s, +1 and
hy,<x<2h,—1 such that ¢*=1, and uY#1 for y=
1,3,5,. 2l 2h, — 1, we take

Gl = {1,q),(P_l,<P2,---, (P_sl, (p’lu,(p_slu‘l, q)sl“u,

(p—sl—lu—l’(psl+2u’ “,(pl—hzuvl, q)hgu}
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and
Go={-1,—u, —ul, —u? ., —u 2 —ylhl}

(7Y If hy> 2 and there exists an integer x with x =2s,+1 and
h, <x < 2hy,—1 such that ¢* =1, and there exists an integer
y with y=2y,+1 and | —hy, <y <2l —2h,—1 such that
u¥ =1, we take

Gi={Le,o ¢’ ..o " ¢u, @ lut gty

P gy g h L by )
and
Go={-1,—u, —ul, —u 2., -l —uy%, —u ¥,
—uhg, —u gl —u it —uhlpTl gkl

By Lemmas 2.1 and 2.4, there exist k + h, involutions P; such

that
s k hy
( UU(PiB,‘) U U U(PiVi) U Uo(PiEi) =G, UG,.
i=1 u=s+1 i=1

Let P=P@F,® --- ®P,, . Then P is an involution and PA
is similar to its inverse by Theorem 1.1 Hence A is the product
of three involutions.

5) Assume that A is similar to A,. As in the proof for case (4-1), we ma
4 y
assume that w, =2 for s +1 < i < k. Again, we consider two cases:

(5-1) Assume that each E, is absent or ¢, =, for i=1,2,..., hy. As in
the proof for case (4-2), we have A is the product of three
involutions.

(52) If hy > 2 and @, # ¢; for some i # j, say, @, # @,, then

E®E=¢1|O®q)1‘0
TR0 @] [0 o
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is similar to E;® «;, where

P
E}= P2 .
P3

Hence A, is similar to
Ay=B®B® - - ®B®V,, 0 - OV, OE;OEOE® -+ OF, dayl,,
and A’ is similar to

As;=B{®B;® --- @BV, , |6 - OV,OE{0E; - ®F,,

where each B/, B/ =V,®a,l;), 0 <8(i) < w;— 2, and 8(i)+ w; =
2d,; for some integer d; > 2, 1 <i<t,. By the same method as in
case (1), the proof is thus complete. ]

3. NECESSARY CONDITIONS

TueoreM 3.1. Let A be an nXn complex matrix, B*+1, B+0,
m = dimker(A — BI), and r =dimker(A — B73I). If A is the product of
three involutions, then m < (2n +r)/3 and m < [3n/4].

Proof. Let P, be an involution and [ = dim ker(P;A — BI)+
dimker(P,A + BI). Then 2m —n<l. If A= P,P,P,, where P,’s are involu-
tions, then P, A = P, P,. Since P, A is similar to its own inverse, we have

P,A=SDS™!, (1)

where D is in Jordan canonical form and D is similar to D™,
By (1), we obtain

PA—B AP =SD 'S, (2)
Multiplying (2) by 872 and subtracting it from (1), we get

A™'p=S(D-B2D 1)s L.
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For simplicity, we will assume that D is of the form

o 0
0 1|00
3
5 1o | (3)
0 0| v
where
t 0 0 t™1 0 0
V=|1 ¢t 0f and V=] 1 1
0 1 t 1 ¢!
Then
a’t 0
0 0
. 0 a
e 4
b 0 vl 0o | (4)
0 0 vt
where
¢! 0 0 ¢ 0 0
Vil=|_¢2 41 o | and Vi'=|-t2 ¢t 0]
2 b Al t> —t? ¢

It follows from (3) and (4) that

A, O
0
D—g D1 0 A,
E| O
0 0| F
where
m 0 0 Mg 0 O
E= € n 0, F= § ny 0|,

_’872t73 € m, _B—Zt:} g- Ny
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AM=a—B 2 L Ay=a1-872, n,=t—B7%7Y g=t"1-B7%, =
B72t72+1,and {=B8"22+1

Since A, =0 if and only if a®=8"2% A, =0if and only if a>= B2, 4,=0
if and only if ¢2= "2 and 5, =0 if and only if ¢2= B2, we have

rank(D — 872D~ ') =rank(P,A- B 2A"'P,) =n—1.

Since PJA— B ?A7'P,=P(A-B731)+ B %A -BI)A'P, we have
rank(P(A — B731)) < rank(P,A — B7?A7'P)) + rank(8 " 3(A — BI)A'P)).
By n—1<2n—2m, rank(8 (A — BI)A"'P,)=n—m, and rank(P,(A —
B731))=n — r, we obtain

n—r<n—m+2n—2m,
ie, m<(@2n+7)/3and m <[3n/4]. ]

For 5 X 5 matrices, we have the following characterization:

TuEOREM 3.2. Let A be a 5X5 complex matrix. Then A € T(5)® if and
only if one of the following holds:

(1) detA = —1 and, for any B*+1, dimker(A — BI;) < 3 and A is not
similar to B=BI,®1,;

(2) det A =1 and, for any B*+# 1, dimker(A — BI5)< 3 and A is not
similar to BI.® (- I,).

Proof. Since A € T(5)® if and only if — A € T(5)%, we need only prove
(D).

<: In view of Theorem 2.5, we only need to show this for the case
m = 3. Here A is either similar to A, =D,6888 or A,=C,®C,®8, where
D, is cyclic, C; = C,, and C is either

R

Let a=detC,. If B%a = —1, then =1 or a=1 from det A= — 1, which
contradicts that 8% #1 and A is similar to B. So 8% # — 1. By Lemma 2.1,
there exist three involutions P, such that o(P,D,)= {87!, — 871 —1},
o(P,C))={B !, —aB}, and o(PC,)={—1,a}. Let V=P,®1® —1 and
V,=P,®P,®1. Then VA, =PC,®8® —B,0(V;A))={B, B} — B,
-B71, - 1}, VA, = PC,®PLC,®B, and o(V,A)={ —1,a, —aB, B, B_l}.
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Therefore V| A, is similar to its inverse, and so is V,A,. That is, A, € T(5)*
and A, € T(5)%. Hence A € T(5)°.

=: By Theorem 3.1, we obtain m < 3. It remains to prove that B ¢ T(5)°.
If B=gI®I, e T(5)% say B= P P,P,, where the P,’s are involutions, then,
assuming

_|C D
Pl*[E F]

with C and F of sizes 2 and 3, respectively,

P1B=[C D][313 0}_ BC D]

E Fllo 1,| [BE F

is similar to

B_1P1=[B‘113 OMC D]z[B‘IC ,BIDJ.

0 L, |ILE F E F
Since
(P.B)’ = B2C%*+ BDE BCD + DF
! B2EC + BFE BED + F2 |’
(B-1p )2_ B %C*+ B 'DE B *CD+ B 'DF
! B~1C+ FE B ED+F? |

tr(P,B)=tr(B~'P)), B3= —1, and tr(P,B)? = tr(B'P,))?, we have
trC=0 (1)
and

trC2 +2tr DE = 0. (2)

[0
o L

Since

p2_|C?*+DE CD+DF
ED+FE ED+F?
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we have

C*+DE=1,, ED+F®=I,, CD+DF=0, EC+FE=0.

(3)
From (3), we obtain
trC2+trDE=3 and trDE +trF2=2. (4)
By (2) and (4), we get
tr DE= — 3, trF2=5, and trC%2=6. (5)

Since trC =0, trC2=6, DE = I,— C2, and rank DE < 2, we have either
o(C)={1,1, — 2} or o(C)={ —1, —1,2}. So rank DE =1 which implies
that

rank D=1 or rankE=1. (%)
As in the proof of Theorem 3.1, we have
rank (P,B— 87 2B 'P, ) = rank( P,B — B2B " 'P,). (6)
From (*) and

0 (1-B)D
(B—B*)E (1-B*)F

>

P,B—B2B~'P, = [

we obtain
rank (P,B — B2B~'P,) < 3. (7)

1+ 8)C 2D
PB-f*Bh = [( ;/55) (1+,B)F]
_[a+p)c o
| 2BE I,

. (8)

e 2(1+8) 'c™'D
0 (1+B)F—-4B(1+B) 'EC™'D
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rank (P,B— 872B7'P)) > 3. (9)
From (6), (7), (8), and (9), we get

(1+B)F —48(1+B) 'EC 'D=0,. (10)

Multiplying (10) by (1+ 8)F and comparing with (3), we obtain

(1+B)’F2+4BED =0,,

which contradicts (5). Hence B & T(5)°. [ ]
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