

P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

Applied Intelligence 7, 257–267 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Using Disruptive Selection to Maintain Diversity in Genetic Algorithms

TING KUO AND SHU-YUEN HWANG
Department of International Trade, Takming Junior College of Commerce, Institute of Computer Science and

Information Engineering, National Chiao Tung University

Abstract. Genetic algorithms are a class of adaptive search techniques based on the principles of population
genetics. The metaphor underlying genetic algorithms is that of natural evolution. With their great robustness,
genetic algorithms have proven to be a promising technique for many optimization, design, control, and machine
learning applications. A novel selection method,disruptive selection, has been proposed. This method adopts
a nonmonotonicfitness function that is quite different from conventionalmonotonicfitness functions. Unlike
conventional selection methods, this method favors both superior and inferior individuals. Since genetic algorithms
allocate exponentially increasing numbers of trials to the observed better parts of the search space, it is difficult to
maintain diversity in genetic algorithms. We show that Disruptive Genetic Algorithms (DGAs) effectively alleviate
this problem by first demonstrating that DGAs can be used to solve a nonstationary search problem, where the goal
is to track time-varying optima. Conventional Genetic Algorithms (CGAs) using proportional selection fare poorly
on nonstationary search problems because of their lack of population diversity after convergence. Experimental
results show that DGAs immediately track the optimum after the change of environment. We then describe a
spike function that causes CGAs to miss the optimum. Experimental results show that DGAs outperform CGAs in
resolving a spike function.

Keywords: genetic algorithm, disruptive selection, diversity, nonstationary search problem, spike function

1. Genetic Algorithms (GAs)

The fundamental theory behind genetic algorithms was
presented in Holland’s pioneering book [29]. GAs are
population-based search techniques that maintain pop-
ulations of potential solutions during searches. A po-
tential solution usually is represented by a string with
a fixed bit-length. In order to evaluate each potential
solution, GAs need a payoff (or objective) function that
assigns a scalar payoff to any particular solution. Once
the representation scheme and evaluation function are
determined, a GA can start searching. Initially, often at
random, GAs create a certain number (called the popu-
lation size) of strings to form the first generation. Next,
the payoff function is used to evaluate each solution
in this first generation. Better solutions obtain higher
payoffs. Then, on the basis of these evaluations, some
genetic operators are employed to generate the next

generation. The procedures of evaluation and gener-
ation are iteratively performed until the optimal solu-
tion(s) is (are) found or the time alloted for computation
ends [19, 23, 29].

The three primary genetic operators focused on by
most researchers are selection, crossover, and muta-
tion. They are described below.

1. Selection(or Reproduction): The population of the
next generation is first formed by using a prob-
abilistic reproduction process, of which there are
two general types: generational reproduction and
steady-state reproduction. Generational reproduc-
tion replaces the entire population with a new one in
each generation. By contrast, steady-state reproduc-
tion [47, 52] replaces only a few individuals in each
generation. No matter what type of reproduction
is used, individuals with higher fitness usually have

 P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

258 Kuo and Hwang

a greater chance of contributing offspring. Several
methods may be used to determine the fitness of an
individual. Proportional [18, 29] and ranking [2] are
the main schemes used in GAs. The resulting pop-
ulation, sometimes called the intermediate popula-
tion, is then processed using crossover and mutation
to form the next generation.

2. Crossover: A crossover operator manipulates a pair
of individuals (called parents) to produce two new
individuals (called offspring) by exchanging seg-
ments from the parents’ coding. By exchanging
information between two parents, the crossover op-
erator provides a powerful exploration capability. A
commonly used method for crossover is called one-
point crossover. Assume that the individuals are rep-
resented as binary strings. In one-point crossover,
a point, called the crossover point, is chosen at ran-
dom and the segments to the right of this point
are exchanged. For example, letx1 = 101010
andx2 = 010100, and suppose that the crossover
point is between bits 4 and 5 (where the bits are
numbered from left to right starting at 1). Then
the children arey1 = 101000 andy2 = 010110.
Several other types of crossover operators have been
proposed, such as two-point crossover, multi-point
crossover [31], uniform crossover [1, 47], shuffle
crossover [15], and partially mapped crossover [17].

3. Mutation: By modifying one or more of an exist-
ing individual’s gene values, mutation creates new
individuals to increase variety in a population. The
mutation operator ensures that the probability of
reaching any point in the search space is never zero.

Genetic algorithms have been applied in many diverse
areas, such as function optimization [31], the travel-
ing salesman problem [20, 26], scheduling [8, 48],
neural network design [28, 40], system identifica-
tion [34], vision [5], control [33], and machine learn-
ing [14, 24, 32]. Goldberg’s book [18] provides a
detailed review of these applications.

1.1. Why GAs Work?

A good search technique must have two abilities:ex-
plorationandexploitation. Holland [29] indicated that
a GA contains these two properties simultaneously.
The notation ofschemamust be introduced first in
order to understand how genetic algorithms can direct
the search towards high-fitness regions of the search
space. A schema is a set of individuals in the search

space. In most GAs, individuals are represented by
fixed-length binary strings that express a schema as a
pattern defined over alphabet{0, 1, *}, and describe a
set of binary strings in the search space. In the pattern
of a schema, 1’s and 0’s are referred to asdefined bits;
the number of defined bits is called theorder of that
schema. The distance between the leftmost and right-
most defined bit is referred to as thedefining lengthof
the schema. For example, the order of of **0*11**1
is 4, and the defining length of **0*11**1 is 6. A bit
string x is said to be aninstanceof the schemas if x
has exactly the same bit values in exactly the same loci
as bits defined ins. For example, 00011 and 00110 are
both instances of schema 00*1*, but neither 10011 nor
00000 is an instance of schema 00*1*. Schema refers
to the conjecture (hypothesis, explanation) as to why its
instances are so good (or bad). A schema can be viewed
as a defining hyperplane in the search space. Usually,
schema and hyperplane are used interchangeably.

For each selection algorithm, it is clear that

tsr(H(t)) =
∑

x∈H(t)

tsr(x, t)

m(H(t))
, (1)

whereH is a hyperplane,H(t) is the set of individ-
uals that are in the populationP(t) and are instances
of hyperplaneH, m(H(t)) is the number of individ-
uals in the setH(t), and tsr(H(t)) is the growth rate
of the setH(t) without the effects of crossover and
mutation. Most well-known selection algorithms use
proportional selection, which can be described as

tsr(x, t) = u(x)

ū(t)
, (2)

whereu is the fitness function and̄u(t) is the average
fitness of the populationP(t). Thus,

tsr(H(t)) =
∑

x∈H(t)

u(x)

ū(t)m(H(t))
= ū(H(t))

ū(t)
, (3)

whereū(H(t)) is the average fitness of the setH(t).
The Schema Theorem[29, 30], a well-known fun-

damental GA theorem, explains the power of GAs in
terms of how schemata are processed. It provides a
lower bound on the change in the sampling rate for a
single schema from generationt to generationt + 1.
Since each individual is an instance of 2L schemata,
GAs implicitly process more schemata than explicitly
process individuals. This property is known asimplicit
parallelism and is the best explanation of how GAs

 P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

Using Disruptive Selection 259

work. Before stating the Schema Theorem, it is im-
portant to note the assumption that is used to simplify
the analysis. It is assumed that crossover within the
defining length of a schema is always destructive and
that gains from crossover are ignored. That is, the fol-
lowing Schema Theorem is a conservative view.

Schema Theorem.In a genetic algorithm using a pro-
portional selection algorithm, a one-point crossover op-
erator, and a mutation operator; for each hyperplaneH
represented inP(t) the following holds:

M(H(t + 1)) ≥ M(H(t))

(
ū(H(t))

ū(t)

)
×

(
1− pcd(H)

L − 1

)
(1− pm)o(H). (4)

Here,

• M(H(t + 1)) is the number of individuals expected
to be instances of hyperplaneH at time t + 1 un-
der the genetic algorithm, given thatM(H(t)) is the
expected number of individuals at timet ;

• pc is the crossover rate,
• pm is the mutation rate,
• d(H) is the defining length of hyperplaneH,
• o(H) is the order of hyperplaneH , and
• L is the length of each string.

The term ū(H(t))
ū(t) denotes the ratio of the observed

average fitness of hyperplaneH to the current pop-
ulation average. This term dominates the rate of
change ofM(H(t)), subject to the destructive terms
(1 − pcd(H)

L−1)(1 − pm)o(H). Clearly, M(H(t + 1)) in-
creases ifū(H(t)) is above the average fitness of
the current population (when the destructive terms
are small), and vice versa. The destructive terms de-
note the effect of breakup of instances of hyper-
planeH caused by crossover and mutation. The term
(1 − pcd(H)

L−1)(M(H(t)) specifies an upper bound on
thecrossover loss, the loss of instances ofH resulting
from crosses that fall within the defining lengthd(H)

of H . The term(1 − pm)o(H) gives the proportion of
instances ofH that escape a mutation at one of the
o(H) defined bits ofH . In short, the Schema Theorem
predicts changes in the expected number of individu-
als belonging to a hyperplane between two consecutive
generations. Clearly, short, low order, above-average
schemata receive exponentially increasing numbers of
trials in subsequent generations.

2. Disruptive Selection

Clearly, the Schema Theorem is based on the fitness
function rather than the objective function. The fit-
ness function determines the productivity of individu-
als in a population. In general, a fitness function can
be described as

u(x) = g(f (x)), (5)

where f is the objective function andu(x) is a non-
negative number. The functiong is often a linear trans-
formation, such as

u(x) = af(x) + b, (6)

wherea is positive when maximizingf and negative
when minimizingf, and b is used to ensure a non-
negative fitness. Two definitions concerning the selec-
tion strategy are described below [25].

Definition 1. A selection algorithm ismonotonicif
the following condition is satisfied:

tsr(xi) ≤ tsr(xj) ↔ u(xi) ≤ u(xj). (7)

Definition 2. A fitness function ismonotonicif the
following condition is satisfied:

u(xi) ≤ u(xj) ↔ α f (xi) ≤ α f (xj). (8)

Here (and hereafter)α = 1 when maximizingf and
α = −1 when minimizingf.

In [36], we proposed anonmonotonicfitness func-
tion instead of amonotonicfitness function. A non-
monotonic fitness function is one for which Eq. (8) is
not satisfied for some individuals in a population.

2.1. Nonmonotonic Fitness Functions

All conventional GAs use monotonic fitness functions,
even through they do not provide good performance for
all types of problems. Nonmonotonic fitness functions
can extend the class of GAs. As suggested above, a
worse solution also contains information that is useful
for biasing the search. This idea is based on the follow-
ing fact. Depending upon the distribution of function
values, the fitness function landscape can be more or
less mountainous. It may have many high-value peaks
beside steep cliffs that fall to deep low-value gullies.
On the other hand, the landscape may be a smoothly

 P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

260 Kuo and Hwang

rolling one, with low hills and gentle valleys. In the for-
mer case, a current worse solution, through the muta-
tion operator, may have a greater chance of “evolving”
towards a better future solution. In order to exploit
such current worse solutions, we define the following
new fitness function.

Definition 3. A fitness function is called anormal-
ized-by-meanfitness function if the following condition
is satisfied:

u(x) = | f (x) − f̄ (t)|. (9)

Here, f̄ (t) is the average value of the objective func-
tion f of the individuals in the populationP(t).
Clearly, the normalized-by-mean fitness function is
a type of nonmonotonicfitness function. We shall
refer to a monotonic selection algorithm that uses
thenormalized-by-meanfitness function asdisruptive
selection[35]. Now, we can give a formal definition of
directional selection, stabilizing selection, and disrup-
tive selection as follows.

Definition 4. A selection algorithm isdirectionalif it
satisfies

tsr(xi) ≤ tsr(xj) ↔ α f (xi) ≤ α f (xj). (10)

Definition 5. A selection algorithm isstabilizingif it
satisfies

tsr(xi) ≤ tsr(xj) ↔ | f (xi) − f̄ (t)|
≥ | f (xj) − f̄ (t)|. (11)

Definition 6. A selection algorithm isdisruptiveif it
satisfies

tsr(xi) ≤ tsr(xj) ↔ | f (xi) − f̄ (t)|
≤ | f (xj) − f̄ (t)|. (12)

Next, we shall examine schema processing under the
effect of disruptive selection.

Since sampling errors are inevitable, conventional
GAs do not perform well in domains that have large
variances within schemata. It is difficult to explicitly
compute the observed variance of a schema that is rep-
resented in a population and then use this observed
variance to estimate the real variance of that schema.
Hence, we will try to use another statistic, a schema’s
observed deviation from the mean value of a popula-
tion, to estimate the real variance of the schema. By

using this statistic, we can determine the relationship
between two schemata.

Definition 7. Hi is moreremarkablethanHj in P(t)
(Hi ≥R,t H j) if∑

x∈Hi(t)
| f (x) − f̄ (t)|

m(Hi(t))
≥

∑
y∈Hj(t)

| f (y) − f̄ (t)|
m(Hj(t))

. (13)

That is, on average,Hi has a larger deviation from̄f (t)
thanHj has. Since disruptive selection favors extreme
(both superior and inferior) individuals,Hi will receive
more trials in subsequent generations. We can now
characterize the behavior of a class of genetic algo-
rithms as follows.

Theorem 1. In any GA that uses amonotonicse-
lection algorithm and the normalized-by-mean fitness
function, for any pair of hyperplanes Hi , Hj in the
population P(t),

Hi ≥R,t H j → tsr(Hi (t)) ≥ tsr(H j (t)). (14)

Proof: Hi ≥R,t H j implies∑
x∈Hi (t)

| f (x) − f̄ (t)|
m(Hi (t))

≥
∑

y∈Hj (t)
| f (y) − f̄ (t)|

m(Hj (t))
.

By Eq. (5), we can conclude thatu(Hi (t)) ≥ u(Hj (t)).
Thus, by Eq. (3), it is clear that tsr(Hi (t)) ≥ tsr(Hj (t)).

2

Hence, using disruptive selection, a GA implicitly
allocates more trials to schemata that have a large de-
viation from the mean value of a population. It is im-
portant to note that this extension is still consistent with
Holland’s schema theorem.

3. Convergence vs. Diversity

Premature convergence—loss of population diversity
before optimal or at least satisfactory values have been
found—has long been recognized as a serious failure
mode for genetic algorithms. Genetic diversity helps
a population adapt quickly to changes in the environ-
ment, and allows GAs to continue searching for pro-
ductive niches, and avoid becoming trapped at local
optima [43]. In genetic algorithms, it is difficult to
maintain diversity because the algorithm allocates ex-
ponentially increasing numbers of trials to the observed
best parts of the search space. In this section we will

P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

Using Disruptive Selection 261

show that disruptive selection effectively alleviates this
problem. We first demonstrate that DGAs can be used
to solve a nonstationary search problem, where the goal
is to track time-varying optima. CGAs fare poorly on
nonstationary search problems because of their lack of
population diversity after convergence. We will then
describe a spike function that causes CGAs to miss the
optimum. Experimental results show that DGAs out-
perform CGAs in solving the spike function. A brief
survey of related works on the problem of premature
convergence is first given.

3.1. Related Works

Several mechanisms have been proposed to deal with
premature convergence in genetic algorithms. These
include restricting the selection procedure (crowding
models), restricting the mating procedure (assortative
mating, local mating, incest prevention, etc.), explic-
itly dividing the population into several subpopula-
tions (parallel GAs), and modifying the fitness function
(fitness sharing). These mechanisms are outlined as
follows.

1. Crowding models [31]: DeJong [31] proposed a
crowding scheme in which new individuals are more
likely to replace existing individuals that are sim-
ilar to themselves based on genotypic similarity.
Syswerda and Whiteley [47, 51] added a new indi-
vidual to the population only if it was not identical
to any existing individuals.

2. Fitness sharing [12, 13, 21]: Because Goldberg’s
sharing functionsreduces the fitness of individuals
by an amount proportional to the number of “simi-
lar” individuals in the population, it can be viewed
as an indirect mating strategy [21].

3. Assortative mating [6, 7]: The population is pre-
vented from becoming too homogeneous by limit-
ing the hybridization effects of crossover. That is,
this method restricts crossover, allowing it to occur
only between functionally similar individuals.

4. Local mating [10, 11, 39, 45]: The population
is arranged geometrically (e.g., into a grid) and
crossover occurs only between individuals that are
geographically “near” one another.

5. Incest prevention [16]: Eshelman’sincest preven-
tionmechanism is a more direct means of preventing
genetically similar individuals from mating. Indi-
viduals are randomly paired for mating, but are only
mated if their Hamming distance is above a cer-
tain threshold. The threshold is initially set to the

expected average Hamming distance of the initial
population, and then is allowed to drop as the pop-
ulation converges.

6. Parallel GAs [9, 22, 27, 42, 49, 50, 53]: The pop-
ulation is explicitly divided into several subpopula-
tions. Each subpopulation evolves independently,
but with periodicaly migrations of individuals from
one subpopulation to another.

Since the genetic material is primarily determined
by the selection phase of the genetic algorithm. Evalu-
ation does not alter the individuals and crossover does
not alter the alleles. Thus, the selection phase is re-
sponsible for the diversity of the population. When
conventional selection methods are used, it is hard to
maintain diversity in the population because that short,
low-order, above-average schemata will receive expo-
nentially increasing numbers of trials. However, if dis-
ruptive selection is used, it tends to preserve diversity
somewhat longer because that disruptive selection fa-
vors both superior and inferior solutions. In the next
two sections we will show the effectiveness of disrup-
tive selection on maintaining population diversity.

3.2. Nonstationary Search Problems

Conventional GAs are known to perform poorly on
nonstationary search problems, where the goal is to
track time-varying optima [41]. This is because of
their lack of population diversity after convergence.
Smith and Goldberg [44] examined the effects of
adding diploid representation and dominance opera-
tors in GAs applied to a nonstationary search prob-
lem. In this section, we apply DGAs to solve the
same problem [37]. Experimental results show that
DGAs immediately track the optimum after a change
of environment.

Smith and Goldberg [44] successfully adopted a
diploid GA instead of a haploid GA, a typical view
of GA, to solve a nonstationary search problem. It
has been recognized that in natural genetics,diploidy
and dominanceincrease the survivability of species
in time-varying environments [4]. In natural genet-
ics, haploid chromosomes are found primarily in very
simple organisms. More complex organisms often have
diploid chromosomes, which containtwice the infor-
mation necessary for specifying the organism’s struc-
ture. Conflicts that occur between the two halves of a
diploid chromosome are resolved by adominance rela-
tionship, which, in its simplest form, decides on which

 P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

262 Kuo and Hwang

of the conflicting genes will eventually be expressed in
the organism itself.

Typical GAs usehaploidrepresentations of potential
problem solutions. That is, each individual in the popu-
lation is a bit string that contains sufficient information
to specify a solution to the desired problem. By con-
trast, a diploid GA uses two bit strings, each of which
is sufficient to specify a complete solution, to repre-
sent an individual. Two strings are decoded, based on
a dominance relationship, into a singleexpressedstring
whose fitness is evaluated. For example, assume 1 is
the dominant alleleand 0 is therecessive allele, the
following diploid individual,

101101011
001010110

decodes to the following expressed string:

101111111.

Smith and Goldberg showed that those additions
greatly increase the efficacy of GAs in time-varying en-
vironments. That increased performance is made pos-
sible byabeyant recessive alleles.They also showed
that those recessive alleles increased population di-
versity without the disruptive effects of high mutation
rates. This diversity allowing the GA to renew its search
process as the problem varied over time. How do dom-
inance and diploidy improve a GA’s performance on
nonstationary search problems? They do so because
recessive alleles in a diploid GA preserve population
diversity after convergence.

Consider a problem in which some individuals are
inferior for some period of time. After this period, these
individuals become superior. In such cases, it may be
desirable to preserve the originally inferior individuals
for some period of time since conditions favorable to
them may occur.

3.2.1. Example: The Knapsack Problem.We choose
as a test case, the knapsack problem used by Smith and
Goldberg [44]. Knapsack problems are a class of com-
mon but difficult (NP-complete) problems. The knap-
sack may correspond to a truck, a ship, or a silicon
chip. A variety of industrial problems can be reduced
to knapsack problems, including cargo-loading, stock-
cutting, project-selection, and budget-control. There
are many variations of this problem [38]. Givenn ob-
jects, each with weightwi and valuevi , and a knapsack
that can holds a maximal weightW. The problem is
to find out how to pack the knapsack such that the ob-
jects in it have the maximal value among all possible

ways the knapsack can be packed. Mathematically, the
problem is

max
n∑

i =1

xi vi

subject to the total weight constraint
n∑

i =1

xi wi ≤ W,

where thex′
i s are variables that can be set to either 0 or 1;

the maximal weightW, thev′
i s, and thew′

i s are given
problem parameters; andn is the number of objects
available. A 17-object, 0–1 knapsack problem and its
optimal solutions associated with different total weight
constraints are listed in Table 1. The optimal packings
associated with these two constraints were determined
by standard methods [46]. They are

∑17
i =1 xi vi = 71

whenW = 60 and
∑17

i =1 xi vi = 87 whenW = 104.
We used a binary string of length of 17, where thei th

locus represents thei th variablexi , to code a potential
solutionx. The total weight constraint was enforced
by a penalty function during the GA evaluation phase.
The evaluation function is defined as follows.

f (x)

=


∑n

i =1 xi vi if
∑n

i =1 xi wi ≤ W∑n
i =1 xi vi

−20(
∑n

i =1 xi wi −W)2 if
∑n

i =1 xi wi > W.

(15)

In order to simulate a nonstationary search problem,
the limited total weightW was switched from 60 to
104.

We set the GA parameters to the parameters Smith
and Goldberg used. The population size was 150, the
crossover rate waspc = 0.75, and the mutation rate
was pm = 0.001. We replicated twenty runs of this
problem. Table 2 lists the experimental results of ap-
plying GAs to solving a nonstationary 0–1 knapsack
problem.

The figures in Table 2 indicate the number of runs
that reach the optimum. CGAs converged to the op-
timum in one of the two switching conditions, but
failed to have sufficient population diversity to continue
searching when the total weight constraint is changed.
DGAs consistently re-discovered the optimum when
the limited total weightW is switched from 60 to
104. Note that Smith and Goldberg [44] also showed
very good performance for the nonstationary knapsack
problem with diploid GA. The optimal is consistently

 P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

Using Disruptive Selection 263

Table 1. A 17-object, 0–1 knapsack problem with optimal solutions.

Opt. Opt.
Objecti Valuevi Weightwi xi (W = 60) xi (W = 104)

1 2 12 0 0

2 3 5 1 1

3 9 20 0 1

4 2 1 1 1

5 4 5 1 1

6 4 3 1 1

7 2 10 0 0

8 7 6 1 1

9 8 8 1 1

10 10 7 1 1

11 3 4 1 1

12 6 12 1 1

13 5 3 1 1

14 5 3 1 1

15 7 20 0 1

16 8 1 1 1

17 6 2 1 1

Total: 91 122 13 15∑17
i =1 xi vi = 71

∑17
i =1 xi vi = 87∑17

i =1 xi wi = 60
∑17

i =1 xi wi = 100

Table 2. Number of successful runs out of
20 runs of solving a nonstationary problem.

W = 60 W = 104

CGAs 8 1

DGAs 14 19

rediscovered when the weight constraint is switched ev-
ery 15 generations between 104 and 60. In our study,
the weight constraint is switched every 30 generations
between 104 and 60.

3.3. Spike Function

To further examine the effectiveness of disruptive selec-
tion at maintaining population diversity, we conducted
another experiment aimed at solving for a spike func-
tion. Spike functions causes CGAs to miss the opti-
mum [3]. This function has a gentle slope over more
than 99.2% of the search space. A steep, low-value
spike exists in the remaining region.

For example, bisect a 24-bit string into two 12-bit
integersa andb. Let x = a + (b/2048), thusx in the

range [0, 4097). Ifx is in [16, 32) then setf (x) equal
to 33− x (i.e., in the range (1, 17]) else setf (x) equal
to 31+ (x/2048) (i.e., in the range [31, 34)). It can
be seen that the probability thatf (x) falls inside the
spike is only 1/256 and the probability thatf (x) falls
outside the spike is 255/256. The goal is to minimize
the function.

We replicated ten runs of this function for each com-
bination of the following parameter settings:pc =
0.35, 0.65, 0.95 andpm = 0.01, 0.001. Here,pc and
pm represent the crossover rate and the mutation rate,
respectively. Each run searched 200 generations with
the best solution recorded at each generation. In all
cases a population size of 50 was used. Figures 1 and 2
show that DGAs outperformed CGAs.

The performance was measured by averaging the
best solutions of ten runs at every 20 generations.
Note that the values are divided by a factor of 10. For
pm = 0.01, DGAs found the optimal solution 1.00 in
all runs. On the other hand, CGAs always found solu-
tions in the range [31, 34). Forpm = 0.001, the perfor-
mance was not as good as that forpm = 0.01 whereas
old methods still found solutions in the range [31, 34).
It is worth noting that in [3], Baker applied several

P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

264 Kuo and Hwang

Figure 1. Average of best solutions of ten runs at every 20 genera-
tions (pm = 0.01).

Figure 2. Average of best solutions of ten runs at every 20 genera-
tions (pm = 0.001).

non-proportional selection algorithms (e.g., Ranking,
and Static Deletion) to this spike function and also
achieved the optimum. In [3], the various runtime pa-
rameter settings are the same as we used except that
they replicated four runs of this function withpc = 0.6
and pm = 0.001.

4. Discussion and Conclusions

Genetic algorithms apply natural selection to mimic
evolution. While natural selection may optimize
organisms, it does not optimizeoptimization. Since all

conventional GAs use a monotonic fitness function and
apply the “survival-of-the-fittest” principle to repro-
duce new populations, they can be viewed as processes
of evolution based on directional selection. In [36],
we proposed a type of disruptive selection that uses
a nonmonotonic fitness function. The major difference
between disruptive selection and directional selection
is that disruptive selection devotes more trials to both
better solutions and worse solutions than it does to mod-
erate solutions, whereas directional selection allocates
their attention according to the performance of each
individual. Since disruptive selection favors both su-
perior and inferior individuals, DGAs will very likely
perform well on problems easily solved by CGAs.

The purpose of our approach is to enlarge the do-
mains that GAs work. Disruptive selection does not,
of course, outperform conventional selection methods
in all kinds of problems. However, disruptive selec-
tion is well suited for some kinds of problems and can
serve as a supplement to conventional selection meth-
ods in solving problems that are hard for conventional
GAs to optimize. The experimental results reported
in [35] show that GAs using the proposed method eas-
ily find the optimum of a function that is non-deceptive
but GA-hard. Since sampling errors are inevitable,
conventional GAs do not perform well with functions
that have large variances within schemata. Using dis-
ruptive selection, GAs implicitly allocate more trials
to schemata that have a large deviation from the mean
value of the current population. This allocation strategy
implicitly allocates more trials to schemata that have
large variances. Experimental results reported in [35]
also show that DGAs find the optima of a deceptive
function more quickly and reliably than CGAs do. This
could be because the global optima of a deceptive func-
tion are surrounded by worst solutions and local optima
are surrounded by better solutions. Since disruptive se-
lection also favors inferior individuals, DGAs are im-
mune to traps.

CGAs are known to perform poorly on nonstation-
ary search problems, where the goal is to track time-
varying optima. This is because the lack of pop-
ulation diversity after convergence causes CGAs to
fare poorly on nonstationary search problems. Smith
and Goldberg examined the effects of using dipolid
representation and dominance operator to solve a non-
stationary search problem. However, their approach
needed more bits to represent a solution and needed
another decoding mechanism to evaluate a solution.
By contrast, our approach can be used to solve a non-
stationary search problem by only using a different

P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

Using Disruptive Selection 265

fitness function. Experimental results show that DGAs
immediately track the optimum after the change of en-
vironment. Experimental results also show that DGAs
outperform CGAs in resolving a spike function that
causes CGAs to miss the optimum.

In practice, for solving GA-hard problems, we can
implement a parallel GA in which directional, disrup-
tive, and even stabilizing selection can be used in dif-
ferent nodes and migration of good solutions occurs
between different nodes periodically. Thus, as a sup-
plement to directional selection, disruptive and stabi-
lizing selection promises to be helpful in solving prob-
lems that are hard for conventional GAs to optimize.

References

1. D.H. Ackley,A Connectionist Machine for Genetic Hillclimbing,
Kluwer Academic Publishers: Boston, MA, 1987.

2. J.E. Baker, “Adaptive selection methods for genetic algo-
rithms,” in Proceedings of the First International Conference
on Genetic Algorithms and Their Applications, edited by J.J.
Grefenstette, Lawrence Erlbaum Associates: Hillsdale, NJ, July
1985, pp. 101–111.

3. J.E. Baker, “An analysis of the effects of selection in genetic al-
gorithms,” Ph.D. thesis, Vanderbilt University, Nashville, 1989.

4. R.J. Berry,Genetics, English University Press: London, 1965.
5. B. Bhanu, S. Lee, and J. Ming, “Self-optimizing image seg-

mentation system using a genetic algorithm,” inProceedings
of the Fourth International Conference on Genetic Algorithms
and Their Applications, edited by R.K. Belew and L.B. Booker,
Morgan Kaufmann: San Mateo, CA, July 1991, pp. 362–369.

6. L.B. Booker, “Intelligent behavior as an adaptation to the task
environment,” Ph.D. thesis, Univ. of Michigan, 1982.

7. L.B. Booker, “Triggered rule discovery in classifier systems,”
in Proceedings of the Third International Conference on Ge-
netic Algorithms and Their Applications, edited by J.D. Schaffer,
Morgan Kaufmann: San Mateo, CA, June 1989, pp. 265–274.

8. G.A. Cleveland and S.F. Smith, “Using genetic algorithms to
schedule flow shop releases,” inProceedings of the Third Inter-
national Conference on Genetic Algorithms and Their Applica-
tions, edited by J.D. Schaffer, Morgan Kaufmann: San Mateo,
CA, June 1989, pp. 160–169.

9. J.P. Cohoon, S.U. Hegde, W.N. Martin, and D.S. Richards,
“Punctuated equilibria: A parallel genetic algorithm,” inPro-
ceedings of the Second International Conference on Genetic Al-
gorithms and Their Applications, edited by J.J. Grefenstette,
Lawrence Erlbaum Associates: Hillsdale, NJ, July 1987,
pp. 148–154.

10. R.J. Collins and D.R. Jefferson, “Selection in massively parallel
genetic algorithms,” inProceedings of the Fourth International
Conference on Genetic Algorithms and Their Applications,
edited by R.K. Belew and L.B. Booker, Morgan Kaufmann: San
Mateo, CA, July 1991, pp. 249–256.

11. Y. Davidor, “A naturally occurring niche and species phe-
nomenon: The model and first results,” inProceedings of the
Fourth International Conference on Genetic Algorithms and
Their Applications, edited by R.K. Belew, Morgan Kaufmann:
San Mateo, CA, July 1991, pp. 257–263.

12. K. Deb, “Genetic algorithms in multimodal function optimiza-
tion,” Technical Report, TCGA Report No. 89002, University
of Alabama, 1989.

13. K. Deb and D.E. Goldberg, “An investigation of niche and
species formation in genetic function optimization,” inProceed-
ings of the Third International Conference on Genetic Algo-
rithms and Their Applications, edited by J.D. Schaffer, Morgan
Kaufmann: San Mateo, CA, June 1989, pp. 42–50.

14. M. Dorigo and U. Schnepf, “Genetic-based machine learning
and behavior-based robotics: A new synthesis,”IEEE Trans-
actions on System, Man, and Cybernetics, vol. SMC-23, no. 1,
pp. 141–154, 1993.

15. L.J. Eshelman, R.A. Caruana, and J.D. Schaffer, “Biases in the
crossover landscape,” inProceedings of the Third International
Conference on Genetic Algorithms and Their Applications,
edited by J.D. Schaffer, Morgan Kaufmann: San Mateo, CA,
June 1989, pp. 10–19.

16. L.J. Eshelman and J.D. Schaffer, “Preventing premature conver-
gence in genetic algorithms by preventing incest,” inProceed-
ings of the Fourth International Conference on Genetic Algo-
rithms and Their Applications, edited by R.K. Belew and L.B.
Booker, Morgan Kaumann: San Mateo, CA, July 1991, pp. 115–
122.

17. D.E. Goldberg, “Genetic algorithms and rules learning in dy-
namic system control,” inProceedings of the First Interna-
tional Conference on Genetic Algorithms and Their Applica-
tions, edited by J.J. Grefenstette, Lawrence Erlbaum Associates:
Hillsdale, NJ, July, 1985, pp. 8–15.

18. D.E. Goldberg,Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley: Reading, MA, 1989.

19. D.E. Goldberg, “Sizing populations for serial and parallel ge-
netic algorithms,” inProceedings of the Third International Con-
ference on Genetic Algorithms and Their Applications, edited
by J. David Schaffer, Morgan Kaufmann: San Mateo, CA, June
1989, pp. 70–79.

20. D.E. Goldberg and R. Lingle, Jr., “Alleles, loci, and the trav-
eling salesman problem,” inProceedings of the First Interna-
tional Conference on Genetic Algorithms and Their Applica-
tions, edited by J.J. Grefenstette, Lawrence Erlbaum Associates:
Hillsdale, NJ, July 1985, pp. 154–159.

21. D.E. Goldberg and J. Richardson, “Genetic algorithms with shar-
ing for multimodal function optimization,” inProceedings of the
Second International Conference on Genetic Algorithms, edited
by J.J. Grefenstette, Lawrence Erlbaum Associates: Hillsdale,
NJ, July 1987, pp. 41–49.

22. M. Gorges-Schleuter, “Asparagos an asynchronous parallel ge-
netic optimization strategy,” inProceedings of the Third Inter-
national Conference on Genetic Algorithms and Their Applica-
tions, edited by J.D. Schaffer, Morgan Kaufmann: San Mateo,
CA, June 1989, pp. 422–427.

23. J.J. Grefenstette, “Optimization of control parameters for genetic
algorithms,”IEEE Transactions on System, Man, and Cybernet-
ics, vol. SMC-16, no. 1, pp. 122–128, 1986.

24. J.J. Grefenstette, “Credit assignment in rule discovery systems
based on genetic algorithms,”Machine Learning, vol. 3, no. 2/3,
pp. 225–245, 1988.

25. J.J. Grefenstette and J.E. Baker, “How genetic algorithms work:
A critical look at implicit parallelism,” inProceedings of the
Third International Conference on Genetic Algorithms and Their
Applications, edited by J.D. Schaffer, Morgan Kaufmann: San
Mateo, CA, June 1989, pp. 20–27.

P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

266 Kuo and Hwang

26. J.J. Grefenstette, R. Gopal, B.J. Rosmaita, and D.V. Gucht, “Ge-
netic algorithms for the traveling salesman problem,” inPro-
ceedings of the First International Conference on Genetic Al-
gorithms and Their Applications, edited by J.J. Grefenstette,
Lawrence Erlbaum Associates: Hillsdale, NJ, July 1985,
pp. 160–168.

27. P.B. Grosso, “Computer simulation of genetic adaptation: Par-
allel subcomponent interaction in a multilocus model,” Ph.D.
thesis, Univ. of Michigan, 1985.

28. S.A. Harp, T. Samad, and A. Guha, “Towards the genetic syn-
thesis of neural networks,” inProceedings of the Third Inter-
national Conference on Genetic Algorithms and Their Applica-
tions, edited by J.D. Schaffer, Morgan Kaufmann: San Mateo,
CA, June 1989, pp. 360–369.

29. J.H. Holland,Adaptation in Natural and Artificial System, The
University of Michigan Press: Ann Arbor, MI, 1975.

30. J.H. Holland, “Searching nonlinear functions for high values,”
Applied Mathematics and Computation, vol. 32, pp. 255–274,
1989.

31. K.A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. thesis, Univ. of Michigan, 1975.

32. K.A. De Jong, “Learning with genetic algorithms: An
overview.” Machine Learning, vol. 3, no. 2/3, pp. 121–138,
1988.

33. C.L. Karr, “Design of an adaptive fuzzy logic controller using
a genetic algorithm,”Proceedings of the Fourth International
Conference on Genetic Algorithms and Their Applications, Mor-
gan Kaufmann: San Mateo, CA, July 1991, pp. 450–457.

34. K. Kristinsson and G.A. Dumont, “System identification and
control using genetic algorithms,”IEEE Transactions on Sys-
tem, Man, and Cybernetics, vol. SMC-22, no. 5, pp. 1033–1046,
1992.

35. T. Kuo and S.Y. Hwang, “A genetic algorithm with disruptive se-
lection,” IEEE Transactions on System, Man, and Cybernetics,
vol. SMC-26, no. 2, pp. 299–307, 1996.

36. T. Kuo and S.Y. Hwang, “A genetic algorithm with disruptive
selection,” inProceedings of the Fifth International Conference
on Genetic Algorithms, edited by S. Forrest, Morgan Kaufmann:
San Mateo, CA, July 1993, pp. 65–69.

37. T. Kuo and S.Y. Hwang, “A study on diversity and conver-
gence in distruptive genetic algorithms,” inProceedings of
1994 International Computer Symposium, National Chiao Tung
University, Hsinchu, Taiwan, Republic of China, Dec. 1994,
pp. 145–150.

38. U. Manber,Introduction to Algorithms: A Creative Approach,
Addison-Wesley: Reading, MA, 1989.

39. H. Mühlenbein, “Parallel genetic algorithms, population ge-
netics and combinatorial optimization,” inProceedings of the
Third International Conference on Genetic Algorithms and Their
Applications, edited by J. David Schaffer, Morgan Kaufmann:
San Mateo, CA, June 1989, pp. 416–421.

40. G.F. Miller, P.M. Todd, and S.U. Hegde, “Designing neu-
ral networks using genetic algorithms,” inProceedings of the
Third International Conference on Genetic Algorithms and Their
Applications, edited by J.D. Schaffer, Morgan Kaufmann: San
Mateo, CA, June 1989, pp. 379–384.

41. E. Pettit and K.M. Swigger, “An analysis of genetic-based pat-
tern tracking and cognitive-based component tracking models
of adaptation,” inProceedings of the National Conference on
Artificial Intelligence, pp. 327–332, 1983.

42. C.B. Petty, M.R. Leuze, and J.J. Grefenstette, “A parallel genetic
algorithm,” inProceedings of the Second International Confer-
ence on Genetic Algorithms and Their Applications, edited by
J.J. Grefenstette, Lawrence Erlbaum Associates: Hillsdale, NJ,
July 1987, pp. 155–161.

43. R.E. Smith, S. Forrest, and A.S. Perelson, “Searching for diverse,
cooperative population with genetic algorithms,”Evolutionary
Computation, vol. 1, no. 2, pp. 127–149, 1993.

44. R.E. Smith and D.E. Goldberg, “Diploidy and dominance in
artificial genetic search,”Complex Systems, vol. 6, no. 3, pp.
251–285, 1992.

45. P. Spiessens and B. Manderick, “A massively parallel genetic
algorithm: Implementation and first results,” inProceedings
of the Fourth International Conference on Genetic Algorithms
and Their Applications, edited by R.K. Belew and L.B. Booker,
Morgan Kaufmann: San Mateo, CA, July 1991, pp. 279–286.

46. M.M. Syslo, N. Deo, and J.S. Kowalik,Discrete Optimization
Algorithms with Pascal Programs, Prentice-Hall: Englewood
Cliffs, NJ, 1983.

47. G. Syswerda, “Uniform crossover in genetic algorithms,” inPro-
ceedings of the Third International Conference on Genetic Algo-
rithms and Their Applications, edited by J.D. Schaffer, Morgan
Kaufmann: San Mateo, CA, June 1989, pp. 2–9.

48. G. Syswerda and J. Palmucci, “The application of genetic al-
gorithms to resource scheduling,” inProceedings of the Fourth
International Conference on Genetic Algorithms and Their Ap-
plications, edited by R.K. Belew and L.B. Booker, Morgan Kauf-
mann: San Mateo, CA, July 1991, pp. 502–508.

49. R. Tanese, “Distributed genetic algorithms,” inProceedings of
the Third International Conference on Genetic Algorithms and
Their Applications, edited by J.D. Schaffer, Morgan Kaufmann:
San Mateo, CA, June 1989, pp. 434–440.

50. R. Tanese, “Distributed genetic algorithms for function opti-
mizaiton,” Ph.D. thesis, Univ. of Michigan, 1989.

51. D. Whitley, “The genitor algorithm and selection pressure:
Why rank-based allocation of reproductive trials is best,” in
Proceedings of the Third International Conference on Genetic
Algorithms and Their Applications, edited by J.D. Schaffer,
Morgan Kaufmann: San Mateo, CA, June 1989, pp. 116–123.

52. D. Whitley and J. Kauth, “Genitor: A different algorithm,” in
Proc. of Rocky Mountain Conference on Artificial Intelligence,
1988, pp. 118–130.

53. D. Whitley and T. Starkweather, “Genitor II: A distributed
genetic algorithm,”Journal of Experimental and Theoretical
Artificial Intelligence, vol. 2, no. 3, pp. 189–214, 1990.

Ting Kuo received the B.S. degree in Industrial Engineering from
National Tsing Hua University, in 1979. From 1979 to 1981, he

P1: EHE/PCY P2: EHE/PMR P3: PMR/PMR QC:

Applied Intelligence KL450-05 May 14, 1997 17:3

Using Disruptive Selection 267

served in the Chinese Army as a logistics officer. From 1981 to 1982,
he worked at Shih-Lin Dyeing & Weaving Co., Ltd. as an Industrial
Engineer. From 1983 to 1991, he worked at the Technical Research
Division of the Institute for Information Industry, Taipei, Taiwan.
He received the M.S. and Ph.D. degrees in Computer Science and
Information Engineering from National Chiao-Tung University in
1990 and 1995, respectively. His current research interests include
Genetic Algorithms, Artificial Intelligence, and Scheduling.

Shu-Yuen Hwangreceived the B.S. and M.S. degrees in electrical
engineering from National Taiwan University in 1981 and 1983, res-

pectively, and the M.S. and Ph.D. degrees in computer science from
the University of Washington in 1987 and 1989, respectively. During
1989–1995, he was appointed as Associate Professor of Department
of Computer Science and Information Engineering, National Chiao-
Tung University, and was Director of CSIE during 1993–1995. Since
1995, he has been appointed as Full Professor of CSIE. His research
interests include computer vision, artificial intelligence, computer
simulation, and mobil computing.

